Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
fc4fa6e1 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
2c756feb 236 ++tk->cs_was_changed_seq;
876e7881
PZ
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 242
4a4ad80d
PZ
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
155ec602
MS
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
a386b5af 251 ntpinterval = tmp;
0a544198
MS
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
155ec602
MS
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
f726a697 258 tk->cycle_interval = interval;
155ec602
MS
259
260 /* Go back from cycles -> shifted ns */
f726a697
JS
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
0a544198 264 ((u64) interval * clock->mult) >> clock->shift;
155ec602 265
1e75fa8b
JS
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
876e7881 270 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 271 else
876e7881 272 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 273 }
4a4ad80d
PZ
274 tk->tkr_raw.xtime_nsec = 0;
275
876e7881 276 tk->tkr_mono.shift = clock->shift;
4a4ad80d 277 tk->tkr_raw.shift = clock->shift;
155ec602 278
f726a697
JS
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
876e7881 288 tk->tkr_mono.mult = clock->mult;
4a4ad80d 289 tk->tkr_raw.mult = clock->mult;
dc491596 290 tk->ntp_err_mult = 0;
155ec602 291}
8524070b 292
2ba2a305 293/* Timekeeper helper functions. */
7b1f6207
SW
294
295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
296static u32 default_arch_gettimeoffset(void) { return 0; }
297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 298#else
e06fde37 299static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
300#endif
301
6bd58f09
CH
302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304{
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312}
313
0e5ac3a8 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 315{
a558cd02 316 cycle_t delta;
2ba2a305 317
a558cd02 318 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
319 return timekeeping_delta_to_ns(tkr, delta);
320}
2ba2a305 321
6bd58f09
CH
322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324{
325 cycle_t delta;
f2a5a085 326
6bd58f09
CH
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
330}
331
4396e058
TG
332/**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 334 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
6695b92a 339 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
4498e746 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 347{
4498e746 348 struct tk_read_base *base = tkf->base;
4396e058
TG
349
350 /* Force readers off to base[1] */
4498e746 351 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
352
353 /* Update base[0] */
affe3e85 354 memcpy(base, tkr, sizeof(*base));
4396e058
TG
355
356 /* Force readers back to base[0] */
4498e746 357 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361}
362
363/**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
4498e746 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
396{
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
7fc26327 402 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 403 tkr = tkf->base + (seq & 0x01);
876e7881 404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 405 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 406
4396e058
TG
407 return now;
408}
4498e746
PZ
409
410u64 ktime_get_mono_fast_ns(void)
411{
412 return __ktime_get_fast_ns(&tk_fast_mono);
413}
4396e058
TG
414EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
415
f09cb9a1
PZ
416u64 ktime_get_raw_fast_ns(void)
417{
418 return __ktime_get_fast_ns(&tk_fast_raw);
419}
420EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
421
060407ae
RW
422/* Suspend-time cycles value for halted fast timekeeper. */
423static cycle_t cycles_at_suspend;
424
425static cycle_t dummy_clock_read(struct clocksource *cs)
426{
427 return cycles_at_suspend;
428}
429
430/**
431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432 * @tk: Timekeeper to snapshot.
433 *
434 * It generally is unsafe to access the clocksource after timekeeping has been
435 * suspended, so take a snapshot of the readout base of @tk and use it as the
436 * fast timekeeper's readout base while suspended. It will return the same
437 * number of cycles every time until timekeeping is resumed at which time the
438 * proper readout base for the fast timekeeper will be restored automatically.
439 */
440static void halt_fast_timekeeper(struct timekeeper *tk)
441{
442 static struct tk_read_base tkr_dummy;
876e7881 443 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
444
445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 cycles_at_suspend = tkr->read(tkr->clock);
447 tkr_dummy.read = dummy_clock_read;
4498e746 448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
449
450 tkr = &tk->tkr_raw;
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 tkr_dummy.read = dummy_clock_read;
453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
454}
455
c905fae4
TG
456#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
457
458static inline void update_vsyscall(struct timekeeper *tk)
459{
0680eb1f 460 struct timespec xt, wm;
c905fae4 461
e2dff1ec 462 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 463 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 tk->tkr_mono.cycle_last);
c905fae4
TG
466}
467
468static inline void old_vsyscall_fixup(struct timekeeper *tk)
469{
470 s64 remainder;
471
472 /*
473 * Store only full nanoseconds into xtime_nsec after rounding
474 * it up and add the remainder to the error difference.
475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 * by truncating the remainder in vsyscalls. However, it causes
477 * additional work to be done in timekeeping_adjust(). Once
478 * the vsyscall implementations are converted to use xtime_nsec
479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 * users are removed, this can be killed.
481 */
876e7881 482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
0209b937
TG
483 if (remainder != 0) {
484 tk->tkr_mono.xtime_nsec -= remainder;
485 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
486 tk->ntp_error += remainder << tk->ntp_error_shift;
487 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
488 }
c905fae4
TG
489}
490#else
491#define old_vsyscall_fixup(tk)
492#endif
493
e0b306fe
MT
494static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
495
780427f0 496static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 497{
780427f0 498 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
499}
500
501/**
502 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
503 */
504int pvclock_gtod_register_notifier(struct notifier_block *nb)
505{
3fdb14fd 506 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
507 unsigned long flags;
508 int ret;
509
9a7a71b1 510 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 511 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 512 update_pvclock_gtod(tk, true);
9a7a71b1 513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
514
515 return ret;
516}
517EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
518
519/**
520 * pvclock_gtod_unregister_notifier - unregister a pvclock
521 * timedata update listener
e0b306fe
MT
522 */
523int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
524{
e0b306fe
MT
525 unsigned long flags;
526 int ret;
527
9a7a71b1 528 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 529 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
535
833f32d7
JS
536/*
537 * tk_update_leap_state - helper to update the next_leap_ktime
538 */
539static inline void tk_update_leap_state(struct timekeeper *tk)
540{
541 tk->next_leap_ktime = ntp_get_next_leap();
542 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
543 /* Convert to monotonic time */
544 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
545}
546
7c032df5
TG
547/*
548 * Update the ktime_t based scalar nsec members of the timekeeper
549 */
550static inline void tk_update_ktime_data(struct timekeeper *tk)
551{
9e3680b1
HS
552 u64 seconds;
553 u32 nsec;
7c032df5
TG
554
555 /*
556 * The xtime based monotonic readout is:
557 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
558 * The ktime based monotonic readout is:
559 * nsec = base_mono + now();
560 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
561 */
9e3680b1
HS
562 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
563 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 564 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
565
566 /* Update the monotonic raw base */
4a4ad80d 567 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
568
569 /*
570 * The sum of the nanoseconds portions of xtime and
571 * wall_to_monotonic can be greater/equal one second. Take
572 * this into account before updating tk->ktime_sec.
573 */
876e7881 574 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
575 if (nsec >= NSEC_PER_SEC)
576 seconds++;
577 tk->ktime_sec = seconds;
7c032df5
TG
578}
579
9a7a71b1 580/* must hold timekeeper_lock */
04397fe9 581static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 582{
04397fe9 583 if (action & TK_CLEAR_NTP) {
f726a697 584 tk->ntp_error = 0;
cc06268c
TG
585 ntp_clear();
586 }
48cdc135 587
833f32d7 588 tk_update_leap_state(tk);
7c032df5
TG
589 tk_update_ktime_data(tk);
590
9bf2419f
TG
591 update_vsyscall(tk);
592 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
593
4498e746 594 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 595 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
596
597 if (action & TK_CLOCK_WAS_SET)
598 tk->clock_was_set_seq++;
d1518326
JS
599 /*
600 * The mirroring of the data to the shadow-timekeeper needs
601 * to happen last here to ensure we don't over-write the
602 * timekeeper structure on the next update with stale data
603 */
604 if (action & TK_MIRROR)
605 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
606 sizeof(tk_core.timekeeper));
cc06268c
TG
607}
608
8524070b 609/**
155ec602 610 * timekeeping_forward_now - update clock to the current time
8524070b 611 *
9a055117
RZ
612 * Forward the current clock to update its state since the last call to
613 * update_wall_time(). This is useful before significant clock changes,
614 * as it avoids having to deal with this time offset explicitly.
8524070b 615 */
f726a697 616static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 617{
876e7881 618 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 619 cycle_t cycle_now, delta;
9a055117 620 s64 nsec;
8524070b 621
876e7881
PZ
622 cycle_now = tk->tkr_mono.read(clock);
623 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
624 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 625 tk->tkr_raw.cycle_last = cycle_now;
8524070b 626
876e7881 627 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 628
7b1f6207 629 /* If arch requires, add in get_arch_timeoffset() */
876e7881 630 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 631
f726a697 632 tk_normalize_xtime(tk);
2d42244a 633
4a4ad80d 634 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 635 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 636}
637
638/**
d6d29896 639 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 640 * @ts: pointer to the timespec to be set
641 *
1e817fb6
KC
642 * Updates the time of day in the timespec.
643 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 644 */
d6d29896 645int __getnstimeofday64(struct timespec64 *ts)
8524070b 646{
3fdb14fd 647 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 648 unsigned long seq;
1e75fa8b 649 s64 nsecs = 0;
8524070b 650
651 do {
3fdb14fd 652 seq = read_seqcount_begin(&tk_core.seq);
8524070b 653
4e250fdd 654 ts->tv_sec = tk->xtime_sec;
876e7881 655 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 656
3fdb14fd 657 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 658
ec145bab 659 ts->tv_nsec = 0;
d6d29896 660 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
661
662 /*
663 * Do not bail out early, in case there were callers still using
664 * the value, even in the face of the WARN_ON.
665 */
666 if (unlikely(timekeeping_suspended))
667 return -EAGAIN;
668 return 0;
669}
d6d29896 670EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
671
672/**
d6d29896 673 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 674 * @ts: pointer to the timespec64 to be set
1e817fb6 675 *
5322e4c2 676 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 677 */
d6d29896 678void getnstimeofday64(struct timespec64 *ts)
1e817fb6 679{
d6d29896 680 WARN_ON(__getnstimeofday64(ts));
8524070b 681}
d6d29896 682EXPORT_SYMBOL(getnstimeofday64);
8524070b 683
951ed4d3
MS
684ktime_t ktime_get(void)
685{
3fdb14fd 686 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 687 unsigned int seq;
a016a5bd
TG
688 ktime_t base;
689 s64 nsecs;
951ed4d3
MS
690
691 WARN_ON(timekeeping_suspended);
692
693 do {
3fdb14fd 694 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
695 base = tk->tkr_mono.base;
696 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 697
3fdb14fd 698 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 699
a016a5bd 700 return ktime_add_ns(base, nsecs);
951ed4d3
MS
701}
702EXPORT_SYMBOL_GPL(ktime_get);
703
6374f912
HG
704u32 ktime_get_resolution_ns(void)
705{
706 struct timekeeper *tk = &tk_core.timekeeper;
707 unsigned int seq;
708 u32 nsecs;
709
710 WARN_ON(timekeeping_suspended);
711
712 do {
713 seq = read_seqcount_begin(&tk_core.seq);
714 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
715 } while (read_seqcount_retry(&tk_core.seq, seq));
716
717 return nsecs;
718}
719EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
720
0077dc60
TG
721static ktime_t *offsets[TK_OFFS_MAX] = {
722 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
723 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
724 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
725};
726
727ktime_t ktime_get_with_offset(enum tk_offsets offs)
728{
729 struct timekeeper *tk = &tk_core.timekeeper;
730 unsigned int seq;
731 ktime_t base, *offset = offsets[offs];
732 s64 nsecs;
733
734 WARN_ON(timekeeping_suspended);
735
736 do {
737 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
738 base = ktime_add(tk->tkr_mono.base, *offset);
739 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
740
741 } while (read_seqcount_retry(&tk_core.seq, seq));
742
743 return ktime_add_ns(base, nsecs);
744
745}
746EXPORT_SYMBOL_GPL(ktime_get_with_offset);
747
9a6b5197
TG
748/**
749 * ktime_mono_to_any() - convert mononotic time to any other time
750 * @tmono: time to convert.
751 * @offs: which offset to use
752 */
753ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
754{
755 ktime_t *offset = offsets[offs];
756 unsigned long seq;
757 ktime_t tconv;
758
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
761 tconv = ktime_add(tmono, *offset);
762 } while (read_seqcount_retry(&tk_core.seq, seq));
763
764 return tconv;
765}
766EXPORT_SYMBOL_GPL(ktime_mono_to_any);
767
f519b1a2
TG
768/**
769 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
770 */
771ktime_t ktime_get_raw(void)
772{
773 struct timekeeper *tk = &tk_core.timekeeper;
774 unsigned int seq;
775 ktime_t base;
776 s64 nsecs;
777
778 do {
779 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
780 base = tk->tkr_raw.base;
781 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
782
783 } while (read_seqcount_retry(&tk_core.seq, seq));
784
785 return ktime_add_ns(base, nsecs);
786}
787EXPORT_SYMBOL_GPL(ktime_get_raw);
788
951ed4d3 789/**
d6d29896 790 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
791 * @ts: pointer to timespec variable
792 *
793 * The function calculates the monotonic clock from the realtime
794 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 795 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 796 */
d6d29896 797void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 798{
3fdb14fd 799 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 800 struct timespec64 tomono;
ec145bab 801 s64 nsec;
951ed4d3 802 unsigned int seq;
951ed4d3
MS
803
804 WARN_ON(timekeeping_suspended);
805
806 do {
3fdb14fd 807 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 808 ts->tv_sec = tk->xtime_sec;
876e7881 809 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 810 tomono = tk->wall_to_monotonic;
951ed4d3 811
3fdb14fd 812 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 813
d6d29896
TG
814 ts->tv_sec += tomono.tv_sec;
815 ts->tv_nsec = 0;
816 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 817}
d6d29896 818EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 819
9e3680b1
HS
820/**
821 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
822 *
823 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
824 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
825 * works on both 32 and 64 bit systems. On 32 bit systems the readout
826 * covers ~136 years of uptime which should be enough to prevent
827 * premature wrap arounds.
828 */
829time64_t ktime_get_seconds(void)
830{
831 struct timekeeper *tk = &tk_core.timekeeper;
832
833 WARN_ON(timekeeping_suspended);
834 return tk->ktime_sec;
835}
836EXPORT_SYMBOL_GPL(ktime_get_seconds);
837
dbe7aa62
HS
838/**
839 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
840 *
841 * Returns the wall clock seconds since 1970. This replaces the
842 * get_seconds() interface which is not y2038 safe on 32bit systems.
843 *
844 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
845 * 32bit systems the access must be protected with the sequence
846 * counter to provide "atomic" access to the 64bit tk->xtime_sec
847 * value.
848 */
849time64_t ktime_get_real_seconds(void)
850{
851 struct timekeeper *tk = &tk_core.timekeeper;
852 time64_t seconds;
853 unsigned int seq;
854
855 if (IS_ENABLED(CONFIG_64BIT))
856 return tk->xtime_sec;
857
858 do {
859 seq = read_seqcount_begin(&tk_core.seq);
860 seconds = tk->xtime_sec;
861
862 } while (read_seqcount_retry(&tk_core.seq, seq));
863
864 return seconds;
865}
866EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
867
dee36654
D
868/**
869 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
870 * but without the sequence counter protect. This internal function
871 * is called just when timekeeping lock is already held.
872 */
873time64_t __ktime_get_real_seconds(void)
874{
875 struct timekeeper *tk = &tk_core.timekeeper;
876
877 return tk->xtime_sec;
878}
879
9da0f49c
CH
880/**
881 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
882 * @systime_snapshot: pointer to struct receiving the system time snapshot
883 */
884void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
885{
886 struct timekeeper *tk = &tk_core.timekeeper;
887 unsigned long seq;
888 ktime_t base_raw;
889 ktime_t base_real;
890 s64 nsec_raw;
891 s64 nsec_real;
892 cycle_t now;
893
ba26621e
CH
894 WARN_ON_ONCE(timekeeping_suspended);
895
9da0f49c
CH
896 do {
897 seq = read_seqcount_begin(&tk_core.seq);
898
899 now = tk->tkr_mono.read(tk->tkr_mono.clock);
2c756feb
CH
900 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
901 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
902 base_real = ktime_add(tk->tkr_mono.base,
903 tk_core.timekeeper.offs_real);
904 base_raw = tk->tkr_raw.base;
905 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
906 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
907 } while (read_seqcount_retry(&tk_core.seq, seq));
908
909 systime_snapshot->cycles = now;
910 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
911 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
912}
913EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 914
2c756feb
CH
915/* Scale base by mult/div checking for overflow */
916static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
917{
918 u64 tmp, rem;
919
920 tmp = div64_u64_rem(*base, div, &rem);
921
922 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
923 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
924 return -EOVERFLOW;
925 tmp *= mult;
926 rem *= mult;
927
928 do_div(rem, div);
929 *base = tmp + rem;
930 return 0;
931}
932
933/**
934 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
935 * @history: Snapshot representing start of history
936 * @partial_history_cycles: Cycle offset into history (fractional part)
937 * @total_history_cycles: Total history length in cycles
938 * @discontinuity: True indicates clock was set on history period
939 * @ts: Cross timestamp that should be adjusted using
940 * partial/total ratio
941 *
942 * Helper function used by get_device_system_crosststamp() to correct the
943 * crosstimestamp corresponding to the start of the current interval to the
944 * system counter value (timestamp point) provided by the driver. The
945 * total_history_* quantities are the total history starting at the provided
946 * reference point and ending at the start of the current interval. The cycle
947 * count between the driver timestamp point and the start of the current
948 * interval is partial_history_cycles.
949 */
950static int adjust_historical_crosststamp(struct system_time_snapshot *history,
951 cycle_t partial_history_cycles,
952 cycle_t total_history_cycles,
953 bool discontinuity,
954 struct system_device_crosststamp *ts)
955{
956 struct timekeeper *tk = &tk_core.timekeeper;
957 u64 corr_raw, corr_real;
958 bool interp_forward;
959 int ret;
960
961 if (total_history_cycles == 0 || partial_history_cycles == 0)
962 return 0;
963
964 /* Interpolate shortest distance from beginning or end of history */
965 interp_forward = partial_history_cycles > total_history_cycles/2 ?
966 true : false;
967 partial_history_cycles = interp_forward ?
968 total_history_cycles - partial_history_cycles :
969 partial_history_cycles;
970
971 /*
972 * Scale the monotonic raw time delta by:
973 * partial_history_cycles / total_history_cycles
974 */
975 corr_raw = (u64)ktime_to_ns(
976 ktime_sub(ts->sys_monoraw, history->raw));
977 ret = scale64_check_overflow(partial_history_cycles,
978 total_history_cycles, &corr_raw);
979 if (ret)
980 return ret;
981
982 /*
983 * If there is a discontinuity in the history, scale monotonic raw
984 * correction by:
985 * mult(real)/mult(raw) yielding the realtime correction
986 * Otherwise, calculate the realtime correction similar to monotonic
987 * raw calculation
988 */
989 if (discontinuity) {
990 corr_real = mul_u64_u32_div
991 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
992 } else {
993 corr_real = (u64)ktime_to_ns(
994 ktime_sub(ts->sys_realtime, history->real));
995 ret = scale64_check_overflow(partial_history_cycles,
996 total_history_cycles, &corr_real);
997 if (ret)
998 return ret;
999 }
1000
1001 /* Fixup monotonic raw and real time time values */
1002 if (interp_forward) {
1003 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1004 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1005 } else {
1006 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1007 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1008 }
1009
1010 return 0;
1011}
1012
1013/*
1014 * cycle_between - true if test occurs chronologically between before and after
1015 */
1016static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1017{
1018 if (test > before && test < after)
1019 return true;
1020 if (test < before && before > after)
1021 return true;
1022 return false;
1023}
1024
8006c245
CH
1025/**
1026 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1027 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1028 * system counter from the device driver
2c756feb
CH
1029 * @ctx: Context passed to get_time_fn()
1030 * @history_begin: Historical reference point used to interpolate system
1031 * time when counter provided by the driver is before the current interval
8006c245
CH
1032 * @xtstamp: Receives simultaneously captured system and device time
1033 *
1034 * Reads a timestamp from a device and correlates it to system time
1035 */
1036int get_device_system_crosststamp(int (*get_time_fn)
1037 (ktime_t *device_time,
1038 struct system_counterval_t *sys_counterval,
1039 void *ctx),
1040 void *ctx,
2c756feb 1041 struct system_time_snapshot *history_begin,
8006c245
CH
1042 struct system_device_crosststamp *xtstamp)
1043{
1044 struct system_counterval_t system_counterval;
1045 struct timekeeper *tk = &tk_core.timekeeper;
2c756feb 1046 cycle_t cycles, now, interval_start;
6436257b 1047 unsigned int clock_was_set_seq = 0;
8006c245
CH
1048 ktime_t base_real, base_raw;
1049 s64 nsec_real, nsec_raw;
2c756feb 1050 u8 cs_was_changed_seq;
8006c245 1051 unsigned long seq;
2c756feb 1052 bool do_interp;
8006c245
CH
1053 int ret;
1054
1055 do {
1056 seq = read_seqcount_begin(&tk_core.seq);
1057 /*
1058 * Try to synchronously capture device time and a system
1059 * counter value calling back into the device driver
1060 */
1061 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1062 if (ret)
1063 return ret;
1064
1065 /*
1066 * Verify that the clocksource associated with the captured
1067 * system counter value is the same as the currently installed
1068 * timekeeper clocksource
1069 */
1070 if (tk->tkr_mono.clock != system_counterval.cs)
1071 return -ENODEV;
2c756feb
CH
1072 cycles = system_counterval.cycles;
1073
1074 /*
1075 * Check whether the system counter value provided by the
1076 * device driver is on the current timekeeping interval.
1077 */
1078 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1079 interval_start = tk->tkr_mono.cycle_last;
1080 if (!cycle_between(interval_start, cycles, now)) {
1081 clock_was_set_seq = tk->clock_was_set_seq;
1082 cs_was_changed_seq = tk->cs_was_changed_seq;
1083 cycles = interval_start;
1084 do_interp = true;
1085 } else {
1086 do_interp = false;
1087 }
8006c245
CH
1088
1089 base_real = ktime_add(tk->tkr_mono.base,
1090 tk_core.timekeeper.offs_real);
1091 base_raw = tk->tkr_raw.base;
1092
1093 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1094 system_counterval.cycles);
1095 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1096 system_counterval.cycles);
1097 } while (read_seqcount_retry(&tk_core.seq, seq));
1098
1099 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1100 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1101
1102 /*
1103 * Interpolate if necessary, adjusting back from the start of the
1104 * current interval
1105 */
1106 if (do_interp) {
1107 cycle_t partial_history_cycles, total_history_cycles;
1108 bool discontinuity;
1109
1110 /*
1111 * Check that the counter value occurs after the provided
1112 * history reference and that the history doesn't cross a
1113 * clocksource change
1114 */
1115 if (!history_begin ||
1116 !cycle_between(history_begin->cycles,
1117 system_counterval.cycles, cycles) ||
1118 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1119 return -EINVAL;
1120 partial_history_cycles = cycles - system_counterval.cycles;
1121 total_history_cycles = cycles - history_begin->cycles;
1122 discontinuity =
1123 history_begin->clock_was_set_seq != clock_was_set_seq;
1124
1125 ret = adjust_historical_crosststamp(history_begin,
1126 partial_history_cycles,
1127 total_history_cycles,
1128 discontinuity, xtstamp);
1129 if (ret)
1130 return ret;
1131 }
1132
8006c245
CH
1133 return 0;
1134}
1135EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1136
8524070b 1137/**
1138 * do_gettimeofday - Returns the time of day in a timeval
1139 * @tv: pointer to the timeval to be set
1140 *
efd9ac86 1141 * NOTE: Users should be converted to using getnstimeofday()
8524070b 1142 */
1143void do_gettimeofday(struct timeval *tv)
1144{
d6d29896 1145 struct timespec64 now;
8524070b 1146
d6d29896 1147 getnstimeofday64(&now);
8524070b 1148 tv->tv_sec = now.tv_sec;
1149 tv->tv_usec = now.tv_nsec/1000;
1150}
8524070b 1151EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1152
8524070b 1153/**
21f7eca5 1154 * do_settimeofday64 - Sets the time of day.
1155 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1156 *
1157 * Sets the time of day to the new time and update NTP and notify hrtimers
1158 */
21f7eca5 1159int do_settimeofday64(const struct timespec64 *ts)
8524070b 1160{
3fdb14fd 1161 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1162 struct timespec64 ts_delta, xt;
92c1d3ed 1163 unsigned long flags;
e1d7ba87 1164 int ret = 0;
8524070b 1165
21f7eca5 1166 if (!timespec64_valid_strict(ts))
8524070b 1167 return -EINVAL;
1168
9a7a71b1 1169 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1170 write_seqcount_begin(&tk_core.seq);
8524070b 1171
4e250fdd 1172 timekeeping_forward_now(tk);
9a055117 1173
4e250fdd 1174 xt = tk_xtime(tk);
21f7eca5 1175 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1176 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1177
e1d7ba87
WY
1178 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1179 ret = -EINVAL;
1180 goto out;
1181 }
1182
7d489d15 1183 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1184
21f7eca5 1185 tk_set_xtime(tk, ts);
e1d7ba87 1186out:
780427f0 1187 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1188
3fdb14fd 1189 write_seqcount_end(&tk_core.seq);
9a7a71b1 1190 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1191
1192 /* signal hrtimers about time change */
1193 clock_was_set();
1194
e1d7ba87 1195 return ret;
8524070b 1196}
21f7eca5 1197EXPORT_SYMBOL(do_settimeofday64);
8524070b 1198
c528f7c6
JS
1199/**
1200 * timekeeping_inject_offset - Adds or subtracts from the current time.
1201 * @tv: pointer to the timespec variable containing the offset
1202 *
1203 * Adds or subtracts an offset value from the current time.
1204 */
1205int timekeeping_inject_offset(struct timespec *ts)
1206{
3fdb14fd 1207 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1208 unsigned long flags;
7d489d15 1209 struct timespec64 ts64, tmp;
4e8b1452 1210 int ret = 0;
c528f7c6 1211
37cf4dc3 1212 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
1213 return -EINVAL;
1214
7d489d15
JS
1215 ts64 = timespec_to_timespec64(*ts);
1216
9a7a71b1 1217 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1218 write_seqcount_begin(&tk_core.seq);
c528f7c6 1219
4e250fdd 1220 timekeeping_forward_now(tk);
c528f7c6 1221
4e8b1452 1222 /* Make sure the proposed value is valid */
7d489d15 1223 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
1224 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1225 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1226 ret = -EINVAL;
1227 goto error;
1228 }
1e75fa8b 1229
7d489d15
JS
1230 tk_xtime_add(tk, &ts64);
1231 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1232
4e8b1452 1233error: /* even if we error out, we forwarded the time, so call update */
780427f0 1234 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1235
3fdb14fd 1236 write_seqcount_end(&tk_core.seq);
9a7a71b1 1237 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1238
1239 /* signal hrtimers about time change */
1240 clock_was_set();
1241
4e8b1452 1242 return ret;
c528f7c6
JS
1243}
1244EXPORT_SYMBOL(timekeeping_inject_offset);
1245
cc244dda
JS
1246
1247/**
1248 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1249 *
1250 */
1251s32 timekeeping_get_tai_offset(void)
1252{
3fdb14fd 1253 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1254 unsigned int seq;
1255 s32 ret;
1256
1257 do {
3fdb14fd 1258 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1259 ret = tk->tai_offset;
3fdb14fd 1260 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1261
1262 return ret;
1263}
1264
1265/**
1266 * __timekeeping_set_tai_offset - Lock free worker function
1267 *
1268 */
dd5d70e8 1269static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1270{
1271 tk->tai_offset = tai_offset;
04005f60 1272 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1273}
1274
1275/**
1276 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1277 *
1278 */
1279void timekeeping_set_tai_offset(s32 tai_offset)
1280{
3fdb14fd 1281 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1282 unsigned long flags;
1283
9a7a71b1 1284 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1285 write_seqcount_begin(&tk_core.seq);
cc244dda 1286 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1287 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1288 write_seqcount_end(&tk_core.seq);
9a7a71b1 1289 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1290 clock_was_set();
cc244dda
JS
1291}
1292
8524070b 1293/**
1294 * change_clocksource - Swaps clocksources if a new one is available
1295 *
1296 * Accumulates current time interval and initializes new clocksource
1297 */
75c5158f 1298static int change_clocksource(void *data)
8524070b 1299{
3fdb14fd 1300 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1301 struct clocksource *new, *old;
f695cf94 1302 unsigned long flags;
8524070b 1303
75c5158f 1304 new = (struct clocksource *) data;
8524070b 1305
9a7a71b1 1306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1307 write_seqcount_begin(&tk_core.seq);
f695cf94 1308
4e250fdd 1309 timekeeping_forward_now(tk);
09ac369c
TG
1310 /*
1311 * If the cs is in module, get a module reference. Succeeds
1312 * for built-in code (owner == NULL) as well.
1313 */
1314 if (try_module_get(new->owner)) {
1315 if (!new->enable || new->enable(new) == 0) {
876e7881 1316 old = tk->tkr_mono.clock;
09ac369c
TG
1317 tk_setup_internals(tk, new);
1318 if (old->disable)
1319 old->disable(old);
1320 module_put(old->owner);
1321 } else {
1322 module_put(new->owner);
1323 }
75c5158f 1324 }
780427f0 1325 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1326
3fdb14fd 1327 write_seqcount_end(&tk_core.seq);
9a7a71b1 1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1329
75c5158f
MS
1330 return 0;
1331}
8524070b 1332
75c5158f
MS
1333/**
1334 * timekeeping_notify - Install a new clock source
1335 * @clock: pointer to the clock source
1336 *
1337 * This function is called from clocksource.c after a new, better clock
1338 * source has been registered. The caller holds the clocksource_mutex.
1339 */
ba919d1c 1340int timekeeping_notify(struct clocksource *clock)
75c5158f 1341{
3fdb14fd 1342 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1343
876e7881 1344 if (tk->tkr_mono.clock == clock)
ba919d1c 1345 return 0;
75c5158f 1346 stop_machine(change_clocksource, clock, NULL);
8524070b 1347 tick_clock_notify();
876e7881 1348 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1349}
75c5158f 1350
2d42244a 1351/**
cdba2ec5
JS
1352 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1353 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1354 *
1355 * Returns the raw monotonic time (completely un-modified by ntp)
1356 */
cdba2ec5 1357void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1358{
3fdb14fd 1359 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1360 struct timespec64 ts64;
2d42244a
JS
1361 unsigned long seq;
1362 s64 nsecs;
2d42244a
JS
1363
1364 do {
3fdb14fd 1365 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1366 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1367 ts64 = tk->raw_time;
2d42244a 1368
3fdb14fd 1369 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1370
7d489d15 1371 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1372 *ts = ts64;
2d42244a 1373}
cdba2ec5
JS
1374EXPORT_SYMBOL(getrawmonotonic64);
1375
2d42244a 1376
8524070b 1377/**
cf4fc6cb 1378 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1379 */
cf4fc6cb 1380int timekeeping_valid_for_hres(void)
8524070b 1381{
3fdb14fd 1382 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1383 unsigned long seq;
1384 int ret;
1385
1386 do {
3fdb14fd 1387 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1388
876e7881 1389 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1390
3fdb14fd 1391 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1392
1393 return ret;
1394}
1395
98962465
JH
1396/**
1397 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1398 */
1399u64 timekeeping_max_deferment(void)
1400{
3fdb14fd 1401 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1402 unsigned long seq;
1403 u64 ret;
42e71e81 1404
70471f2f 1405 do {
3fdb14fd 1406 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1407
876e7881 1408 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1409
3fdb14fd 1410 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1411
1412 return ret;
98962465
JH
1413}
1414
8524070b 1415/**
d4f587c6 1416 * read_persistent_clock - Return time from the persistent clock.
8524070b 1417 *
1418 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1419 * Reads the time from the battery backed persistent clock.
1420 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1421 *
1422 * XXX - Do be sure to remove it once all arches implement it.
1423 */
52f5684c 1424void __weak read_persistent_clock(struct timespec *ts)
8524070b 1425{
d4f587c6
MS
1426 ts->tv_sec = 0;
1427 ts->tv_nsec = 0;
8524070b 1428}
1429
2ee96632
XP
1430void __weak read_persistent_clock64(struct timespec64 *ts64)
1431{
1432 struct timespec ts;
1433
1434 read_persistent_clock(&ts);
1435 *ts64 = timespec_to_timespec64(ts);
1436}
1437
23970e38 1438/**
e83d0a41 1439 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1440 *
1441 * Weak dummy function for arches that do not yet support it.
1442 * Function to read the exact time the system has been started.
e83d0a41 1443 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1444 *
1445 * XXX - Do be sure to remove it once all arches implement it.
1446 */
e83d0a41 1447void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1448{
1449 ts->tv_sec = 0;
1450 ts->tv_nsec = 0;
1451}
1452
0fa88cb4
XP
1453/* Flag for if timekeeping_resume() has injected sleeptime */
1454static bool sleeptime_injected;
1455
1456/* Flag for if there is a persistent clock on this platform */
1457static bool persistent_clock_exists;
1458
8524070b 1459/*
1460 * timekeeping_init - Initializes the clocksource and common timekeeping values
1461 */
1462void __init timekeeping_init(void)
1463{
3fdb14fd 1464 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1465 struct clocksource *clock;
8524070b 1466 unsigned long flags;
7d489d15 1467 struct timespec64 now, boot, tmp;
31ade306 1468
2ee96632 1469 read_persistent_clock64(&now);
7d489d15 1470 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1471 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1472 " Check your CMOS/BIOS settings.\n");
1473 now.tv_sec = 0;
1474 now.tv_nsec = 0;
31ade306 1475 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1476 persistent_clock_exists = true;
4e8b1452 1477
9a806ddb 1478 read_boot_clock64(&boot);
7d489d15 1479 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1480 pr_warn("WARNING: Boot clock returned invalid value!\n"
1481 " Check your CMOS/BIOS settings.\n");
1482 boot.tv_sec = 0;
1483 boot.tv_nsec = 0;
1484 }
8524070b 1485
9a7a71b1 1486 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1487 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1488 ntp_init();
1489
f1b82746 1490 clock = clocksource_default_clock();
a0f7d48b
MS
1491 if (clock->enable)
1492 clock->enable(clock);
4e250fdd 1493 tk_setup_internals(tk, clock);
8524070b 1494
4e250fdd
JS
1495 tk_set_xtime(tk, &now);
1496 tk->raw_time.tv_sec = 0;
1497 tk->raw_time.tv_nsec = 0;
1e75fa8b 1498 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1499 boot = tk_xtime(tk);
1e75fa8b 1500
7d489d15 1501 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1502 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1503
56fd16ca 1504 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1505
3fdb14fd 1506 write_seqcount_end(&tk_core.seq);
9a7a71b1 1507 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1508}
1509
264bb3f7 1510/* time in seconds when suspend began for persistent clock */
7d489d15 1511static struct timespec64 timekeeping_suspend_time;
8524070b 1512
304529b1
JS
1513/**
1514 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1515 * @delta: pointer to a timespec delta value
1516 *
1517 * Takes a timespec offset measuring a suspend interval and properly
1518 * adds the sleep offset to the timekeeping variables.
1519 */
f726a697 1520static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1521 struct timespec64 *delta)
304529b1 1522{
7d489d15 1523 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1524 printk_deferred(KERN_WARNING
1525 "__timekeeping_inject_sleeptime: Invalid "
1526 "sleep delta value!\n");
cb5de2f8
JS
1527 return;
1528 }
f726a697 1529 tk_xtime_add(tk, delta);
7d489d15 1530 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1531 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1532 tk_debug_account_sleep_time(delta);
304529b1
JS
1533}
1534
7f298139 1535#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1536/**
1537 * We have three kinds of time sources to use for sleep time
1538 * injection, the preference order is:
1539 * 1) non-stop clocksource
1540 * 2) persistent clock (ie: RTC accessible when irqs are off)
1541 * 3) RTC
1542 *
1543 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1544 * If system has neither 1) nor 2), 3) will be used finally.
1545 *
1546 *
1547 * If timekeeping has injected sleeptime via either 1) or 2),
1548 * 3) becomes needless, so in this case we don't need to call
1549 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1550 * means.
1551 */
1552bool timekeeping_rtc_skipresume(void)
1553{
1554 return sleeptime_injected;
1555}
1556
1557/**
1558 * 1) can be determined whether to use or not only when doing
1559 * timekeeping_resume() which is invoked after rtc_suspend(),
1560 * so we can't skip rtc_suspend() surely if system has 1).
1561 *
1562 * But if system has 2), 2) will definitely be used, so in this
1563 * case we don't need to call rtc_suspend(), and this is what
1564 * timekeeping_rtc_skipsuspend() means.
1565 */
1566bool timekeeping_rtc_skipsuspend(void)
1567{
1568 return persistent_clock_exists;
1569}
1570
304529b1 1571/**
04d90890 1572 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1573 * @delta: pointer to a timespec64 delta value
304529b1 1574 *
2ee96632 1575 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1576 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1577 * and also don't have an effective nonstop clocksource.
304529b1
JS
1578 *
1579 * This function should only be called by rtc_resume(), and allows
1580 * a suspend offset to be injected into the timekeeping values.
1581 */
04d90890 1582void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1583{
3fdb14fd 1584 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1585 unsigned long flags;
304529b1 1586
9a7a71b1 1587 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1588 write_seqcount_begin(&tk_core.seq);
70471f2f 1589
4e250fdd 1590 timekeeping_forward_now(tk);
304529b1 1591
04d90890 1592 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1593
780427f0 1594 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1595
3fdb14fd 1596 write_seqcount_end(&tk_core.seq);
9a7a71b1 1597 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1598
1599 /* signal hrtimers about time change */
1600 clock_was_set();
1601}
7f298139 1602#endif
304529b1 1603
8524070b 1604/**
1605 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1606 */
124cf911 1607void timekeeping_resume(void)
8524070b 1608{
3fdb14fd 1609 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1610 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1611 unsigned long flags;
7d489d15 1612 struct timespec64 ts_new, ts_delta;
e445cf1c 1613 cycle_t cycle_now, cycle_delta;
d4f587c6 1614
0fa88cb4 1615 sleeptime_injected = false;
2ee96632 1616 read_persistent_clock64(&ts_new);
8524070b 1617
adc78e6b 1618 clockevents_resume();
d10ff3fb
TG
1619 clocksource_resume();
1620
9a7a71b1 1621 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1622 write_seqcount_begin(&tk_core.seq);
8524070b 1623
e445cf1c
FT
1624 /*
1625 * After system resumes, we need to calculate the suspended time and
1626 * compensate it for the OS time. There are 3 sources that could be
1627 * used: Nonstop clocksource during suspend, persistent clock and rtc
1628 * device.
1629 *
1630 * One specific platform may have 1 or 2 or all of them, and the
1631 * preference will be:
1632 * suspend-nonstop clocksource -> persistent clock -> rtc
1633 * The less preferred source will only be tried if there is no better
1634 * usable source. The rtc part is handled separately in rtc core code.
1635 */
876e7881 1636 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1637 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1638 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1639 u64 num, max = ULLONG_MAX;
1640 u32 mult = clock->mult;
1641 u32 shift = clock->shift;
1642 s64 nsec = 0;
1643
876e7881
PZ
1644 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1645 tk->tkr_mono.mask);
e445cf1c
FT
1646
1647 /*
1648 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1649 * suspended time is too long. In that case we need do the
1650 * 64 bits math carefully
1651 */
1652 do_div(max, mult);
1653 if (cycle_delta > max) {
1654 num = div64_u64(cycle_delta, max);
1655 nsec = (((u64) max * mult) >> shift) * num;
1656 cycle_delta -= num * max;
1657 }
1658 nsec += ((u64) cycle_delta * mult) >> shift;
1659
7d489d15 1660 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1661 sleeptime_injected = true;
7d489d15
JS
1662 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1664 sleeptime_injected = true;
8524070b 1665 }
e445cf1c 1666
0fa88cb4 1667 if (sleeptime_injected)
e445cf1c
FT
1668 __timekeeping_inject_sleeptime(tk, &ts_delta);
1669
1670 /* Re-base the last cycle value */
876e7881 1671 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1672 tk->tkr_raw.cycle_last = cycle_now;
1673
4e250fdd 1674 tk->ntp_error = 0;
8524070b 1675 timekeeping_suspended = 0;
780427f0 1676 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1677 write_seqcount_end(&tk_core.seq);
9a7a71b1 1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1679
1680 touch_softlockup_watchdog();
1681
4ffee521 1682 tick_resume();
b12a03ce 1683 hrtimers_resume();
8524070b 1684}
1685
124cf911 1686int timekeeping_suspend(void)
8524070b 1687{
3fdb14fd 1688 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1689 unsigned long flags;
7d489d15
JS
1690 struct timespec64 delta, delta_delta;
1691 static struct timespec64 old_delta;
8524070b 1692
2ee96632 1693 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1694
0d6bd995
ZM
1695 /*
1696 * On some systems the persistent_clock can not be detected at
1697 * timekeeping_init by its return value, so if we see a valid
1698 * value returned, update the persistent_clock_exists flag.
1699 */
1700 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1701 persistent_clock_exists = true;
0d6bd995 1702
9a7a71b1 1703 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1704 write_seqcount_begin(&tk_core.seq);
4e250fdd 1705 timekeeping_forward_now(tk);
8524070b 1706 timekeeping_suspended = 1;
cb33217b 1707
0fa88cb4 1708 if (persistent_clock_exists) {
cb33217b 1709 /*
264bb3f7
XP
1710 * To avoid drift caused by repeated suspend/resumes,
1711 * which each can add ~1 second drift error,
1712 * try to compensate so the difference in system time
1713 * and persistent_clock time stays close to constant.
cb33217b 1714 */
264bb3f7
XP
1715 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716 delta_delta = timespec64_sub(delta, old_delta);
1717 if (abs(delta_delta.tv_sec) >= 2) {
1718 /*
1719 * if delta_delta is too large, assume time correction
1720 * has occurred and set old_delta to the current delta.
1721 */
1722 old_delta = delta;
1723 } else {
1724 /* Otherwise try to adjust old_system to compensate */
1725 timekeeping_suspend_time =
1726 timespec64_add(timekeeping_suspend_time, delta_delta);
1727 }
cb33217b 1728 }
330a1617
JS
1729
1730 timekeeping_update(tk, TK_MIRROR);
060407ae 1731 halt_fast_timekeeper(tk);
3fdb14fd 1732 write_seqcount_end(&tk_core.seq);
9a7a71b1 1733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1734
4ffee521 1735 tick_suspend();
c54a42b1 1736 clocksource_suspend();
adc78e6b 1737 clockevents_suspend();
8524070b 1738
1739 return 0;
1740}
1741
1742/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1743static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1744 .resume = timekeeping_resume,
1745 .suspend = timekeeping_suspend,
8524070b 1746};
1747
e1a85b2c 1748static int __init timekeeping_init_ops(void)
8524070b 1749{
e1a85b2c
RW
1750 register_syscore_ops(&timekeeping_syscore_ops);
1751 return 0;
8524070b 1752}
e1a85b2c 1753device_initcall(timekeeping_init_ops);
8524070b 1754
1755/*
dc491596 1756 * Apply a multiplier adjustment to the timekeeper
8524070b 1757 */
dc491596
JS
1758static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759 s64 offset,
1760 bool negative,
1761 int adj_scale)
8524070b 1762{
dc491596
JS
1763 s64 interval = tk->cycle_interval;
1764 s32 mult_adj = 1;
8524070b 1765
dc491596
JS
1766 if (negative) {
1767 mult_adj = -mult_adj;
1768 interval = -interval;
1769 offset = -offset;
1d17d174 1770 }
dc491596
JS
1771 mult_adj <<= adj_scale;
1772 interval <<= adj_scale;
1773 offset <<= adj_scale;
8524070b 1774
c2bc1111
JS
1775 /*
1776 * So the following can be confusing.
1777 *
dc491596 1778 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1779 *
dc491596 1780 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1781 * have been appropriately scaled so the math is the same.
1782 *
1783 * The basic idea here is that we're increasing the multiplier
1784 * by one, this causes the xtime_interval to be incremented by
1785 * one cycle_interval. This is because:
1786 * xtime_interval = cycle_interval * mult
1787 * So if mult is being incremented by one:
1788 * xtime_interval = cycle_interval * (mult + 1)
1789 * Its the same as:
1790 * xtime_interval = (cycle_interval * mult) + cycle_interval
1791 * Which can be shortened to:
1792 * xtime_interval += cycle_interval
1793 *
1794 * So offset stores the non-accumulated cycles. Thus the current
1795 * time (in shifted nanoseconds) is:
1796 * now = (offset * adj) + xtime_nsec
1797 * Now, even though we're adjusting the clock frequency, we have
1798 * to keep time consistent. In other words, we can't jump back
1799 * in time, and we also want to avoid jumping forward in time.
1800 *
1801 * So given the same offset value, we need the time to be the same
1802 * both before and after the freq adjustment.
1803 * now = (offset * adj_1) + xtime_nsec_1
1804 * now = (offset * adj_2) + xtime_nsec_2
1805 * So:
1806 * (offset * adj_1) + xtime_nsec_1 =
1807 * (offset * adj_2) + xtime_nsec_2
1808 * And we know:
1809 * adj_2 = adj_1 + 1
1810 * So:
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * (adj_1+1)) + xtime_nsec_2
1813 * (offset * adj_1) + xtime_nsec_1 =
1814 * (offset * adj_1) + offset + xtime_nsec_2
1815 * Canceling the sides:
1816 * xtime_nsec_1 = offset + xtime_nsec_2
1817 * Which gives us:
1818 * xtime_nsec_2 = xtime_nsec_1 - offset
1819 * Which simplfies to:
1820 * xtime_nsec -= offset
1821 *
1822 * XXX - TODO: Doc ntp_error calculation.
1823 */
876e7881 1824 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1825 /* NTP adjustment caused clocksource mult overflow */
1826 WARN_ON_ONCE(1);
1827 return;
1828 }
1829
876e7881 1830 tk->tkr_mono.mult += mult_adj;
f726a697 1831 tk->xtime_interval += interval;
876e7881 1832 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1833 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1834}
1835
1836/*
1837 * Calculate the multiplier adjustment needed to match the frequency
1838 * specified by NTP
1839 */
1840static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841 s64 offset)
1842{
1843 s64 interval = tk->cycle_interval;
1844 s64 xinterval = tk->xtime_interval;
ec02b076
JS
1845 u32 base = tk->tkr_mono.clock->mult;
1846 u32 max = tk->tkr_mono.clock->maxadj;
1847 u32 cur_adj = tk->tkr_mono.mult;
dc491596
JS
1848 s64 tick_error;
1849 bool negative;
ec02b076 1850 u32 adj_scale;
dc491596
JS
1851
1852 /* Remove any current error adj from freq calculation */
1853 if (tk->ntp_err_mult)
1854 xinterval -= tk->cycle_interval;
1855
375f45b5
JS
1856 tk->ntp_tick = ntp_tick_length();
1857
dc491596
JS
1858 /* Calculate current error per tick */
1859 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860 tick_error -= (xinterval + tk->xtime_remainder);
1861
1862 /* Don't worry about correcting it if its small */
1863 if (likely((tick_error >= 0) && (tick_error <= interval)))
1864 return;
1865
1866 /* preserve the direction of correction */
1867 negative = (tick_error < 0);
1868
ec02b076
JS
1869 /* If any adjustment would pass the max, just return */
1870 if (negative && (cur_adj - 1) <= (base - max))
1871 return;
1872 if (!negative && (cur_adj + 1) >= (base + max))
1873 return;
1874 /*
1875 * Sort out the magnitude of the correction, but
1876 * avoid making so large a correction that we go
1877 * over the max adjustment.
1878 */
1879 adj_scale = 0;
79211c8e 1880 tick_error = abs(tick_error);
ec02b076
JS
1881 while (tick_error > interval) {
1882 u32 adj = 1 << (adj_scale + 1);
1883
1884 /* Check if adjustment gets us within 1 unit from the max */
1885 if (negative && (cur_adj - adj) <= (base - max))
1886 break;
1887 if (!negative && (cur_adj + adj) >= (base + max))
1888 break;
1889
1890 adj_scale++;
dc491596 1891 tick_error >>= 1;
ec02b076 1892 }
dc491596
JS
1893
1894 /* scale the corrections */
ec02b076 1895 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
dc491596
JS
1896}
1897
1898/*
1899 * Adjust the timekeeper's multiplier to the correct frequency
1900 * and also to reduce the accumulated error value.
1901 */
1902static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903{
1904 /* Correct for the current frequency error */
1905 timekeeping_freqadjust(tk, offset);
1906
1907 /* Next make a small adjustment to fix any cumulative error */
1908 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909 tk->ntp_err_mult = 1;
1910 timekeeping_apply_adjustment(tk, offset, 0, 0);
1911 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912 /* Undo any existing error adjustment */
1913 timekeeping_apply_adjustment(tk, offset, 1, 0);
1914 tk->ntp_err_mult = 0;
1915 }
1916
876e7881
PZ
1917 if (unlikely(tk->tkr_mono.clock->maxadj &&
1918 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1920 printk_once(KERN_WARNING
1921 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1922 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1924 }
2a8c0883
JS
1925
1926 /*
1927 * It may be possible that when we entered this function, xtime_nsec
1928 * was very small. Further, if we're slightly speeding the clocksource
1929 * in the code above, its possible the required corrective factor to
1930 * xtime_nsec could cause it to underflow.
1931 *
1932 * Now, since we already accumulated the second, cannot simply roll
1933 * the accumulated second back, since the NTP subsystem has been
1934 * notified via second_overflow. So instead we push xtime_nsec forward
1935 * by the amount we underflowed, and add that amount into the error.
1936 *
1937 * We'll correct this error next time through this function, when
1938 * xtime_nsec is not as small.
1939 */
876e7881
PZ
1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942 tk->tkr_mono.xtime_nsec = 0;
f726a697 1943 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1944 }
8524070b 1945}
1946
1f4f9487
JS
1947/**
1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949 *
571af55a 1950 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1951 * from the xtime_nsec field to the xtime_secs field.
1952 * It also calls into the NTP code to handle leapsecond processing.
1953 *
1954 */
780427f0 1955static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1956{
876e7881 1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1958 unsigned int clock_set = 0;
1f4f9487 1959
876e7881 1960 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1961 int leap;
1962
876e7881 1963 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1964 tk->xtime_sec++;
1965
1966 /* Figure out if its a leap sec and apply if needed */
1967 leap = second_overflow(tk->xtime_sec);
6d0ef903 1968 if (unlikely(leap)) {
7d489d15 1969 struct timespec64 ts;
6d0ef903
JS
1970
1971 tk->xtime_sec += leap;
1f4f9487 1972
6d0ef903
JS
1973 ts.tv_sec = leap;
1974 ts.tv_nsec = 0;
1975 tk_set_wall_to_mono(tk,
7d489d15 1976 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1977
cc244dda
JS
1978 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979
5258d3f2 1980 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1981 }
1f4f9487 1982 }
5258d3f2 1983 return clock_set;
1f4f9487
JS
1984}
1985
a092ff0f 1986/**
1987 * logarithmic_accumulation - shifted accumulation of cycles
1988 *
1989 * This functions accumulates a shifted interval of cycles into
1990 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991 * loop.
1992 *
1993 * Returns the unconsumed cycles.
1994 */
f726a697 1995static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1996 u32 shift,
1997 unsigned int *clock_set)
a092ff0f 1998{
23a9537a 1999 cycle_t interval = tk->cycle_interval << shift;
deda2e81 2000 u64 raw_nsecs;
a092ff0f 2001
571af55a 2002 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2003 if (offset < interval)
a092ff0f 2004 return offset;
2005
2006 /* Accumulate one shifted interval */
23a9537a 2007 offset -= interval;
876e7881 2008 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2009 tk->tkr_raw.cycle_last += interval;
a092ff0f 2010
876e7881 2011 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2012 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2013
deda2e81 2014 /* Accumulate raw time */
5b3900cd 2015 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 2016 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
2017 if (raw_nsecs >= NSEC_PER_SEC) {
2018 u64 raw_secs = raw_nsecs;
2019 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 2020 tk->raw_time.tv_sec += raw_secs;
a092ff0f 2021 }
f726a697 2022 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 2023
2024 /* Accumulate error between NTP and clock interval */
375f45b5 2025 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2026 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2027 (tk->ntp_error_shift + shift);
a092ff0f 2028
2029 return offset;
2030}
2031
8524070b 2032/**
2033 * update_wall_time - Uses the current clocksource to increment the wall time
2034 *
8524070b 2035 */
47a1b796 2036void update_wall_time(void)
8524070b 2037{
3fdb14fd 2038 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2039 struct timekeeper *tk = &shadow_timekeeper;
8524070b 2040 cycle_t offset;
a092ff0f 2041 int shift = 0, maxshift;
5258d3f2 2042 unsigned int clock_set = 0;
70471f2f
JS
2043 unsigned long flags;
2044
9a7a71b1 2045 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2046
2047 /* Make sure we're fully resumed: */
2048 if (unlikely(timekeeping_suspended))
70471f2f 2049 goto out;
8524070b 2050
592913ec 2051#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2052 offset = real_tk->cycle_interval;
592913ec 2053#else
876e7881
PZ
2054 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2055 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2056#endif
8524070b 2057
bf2ac312 2058 /* Check if there's really nothing to do */
48cdc135 2059 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2060 goto out;
2061
3c17ad19
JS
2062 /* Do some additional sanity checking */
2063 timekeeping_check_update(real_tk, offset);
2064
a092ff0f 2065 /*
2066 * With NO_HZ we may have to accumulate many cycle_intervals
2067 * (think "ticks") worth of time at once. To do this efficiently,
2068 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2069 * that is smaller than the offset. We then accumulate that
a092ff0f 2070 * chunk in one go, and then try to consume the next smaller
2071 * doubled multiple.
8524070b 2072 */
4e250fdd 2073 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2074 shift = max(0, shift);
88b28adf 2075 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2076 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2077 shift = min(shift, maxshift);
4e250fdd 2078 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2079 offset = logarithmic_accumulation(tk, offset, shift,
2080 &clock_set);
4e250fdd 2081 if (offset < tk->cycle_interval<<shift)
830ec045 2082 shift--;
8524070b 2083 }
2084
2085 /* correct the clock when NTP error is too big */
4e250fdd 2086 timekeeping_adjust(tk, offset);
8524070b 2087
6a867a39 2088 /*
92bb1fcf
JS
2089 * XXX This can be killed once everyone converts
2090 * to the new update_vsyscall.
2091 */
2092 old_vsyscall_fixup(tk);
8524070b 2093
6a867a39
JS
2094 /*
2095 * Finally, make sure that after the rounding
1e75fa8b 2096 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2097 */
5258d3f2 2098 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2099
3fdb14fd 2100 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2101 /*
2102 * Update the real timekeeper.
2103 *
2104 * We could avoid this memcpy by switching pointers, but that
2105 * requires changes to all other timekeeper usage sites as
2106 * well, i.e. move the timekeeper pointer getter into the
2107 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2108 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2109 * updating.
2110 */
906c5557 2111 timekeeping_update(tk, clock_set);
48cdc135 2112 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2113 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2114 write_seqcount_end(&tk_core.seq);
ca4523cd 2115out:
9a7a71b1 2116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2117 if (clock_set)
cab5e127
JS
2118 /* Have to call _delayed version, since in irq context*/
2119 clock_was_set_delayed();
8524070b 2120}
7c3f1a57
TJ
2121
2122/**
d08c0cdd
JS
2123 * getboottime64 - Return the real time of system boot.
2124 * @ts: pointer to the timespec64 to be set
7c3f1a57 2125 *
d08c0cdd 2126 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2127 *
2128 * This is based on the wall_to_monotonic offset and the total suspend
2129 * time. Calls to settimeofday will affect the value returned (which
2130 * basically means that however wrong your real time clock is at boot time,
2131 * you get the right time here).
2132 */
d08c0cdd 2133void getboottime64(struct timespec64 *ts)
7c3f1a57 2134{
3fdb14fd 2135 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
2136 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2137
d08c0cdd 2138 *ts = ktime_to_timespec64(t);
7c3f1a57 2139}
d08c0cdd 2140EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2141
17c38b74 2142unsigned long get_seconds(void)
2143{
3fdb14fd 2144 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2145
2146 return tk->xtime_sec;
17c38b74 2147}
2148EXPORT_SYMBOL(get_seconds);
2149
da15cfda 2150struct timespec __current_kernel_time(void)
2151{
3fdb14fd 2152 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2153
7d489d15 2154 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2155}
17c38b74 2156
8758a240 2157struct timespec64 current_kernel_time64(void)
2c6b47de 2158{
3fdb14fd 2159 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2160 struct timespec64 now;
2c6b47de 2161 unsigned long seq;
2162
2163 do {
3fdb14fd 2164 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2165
4e250fdd 2166 now = tk_xtime(tk);
3fdb14fd 2167 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2168
8758a240 2169 return now;
2c6b47de 2170}
8758a240 2171EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2172
334334b5 2173struct timespec64 get_monotonic_coarse64(void)
da15cfda 2174{
3fdb14fd 2175 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2176 struct timespec64 now, mono;
da15cfda 2177 unsigned long seq;
2178
2179 do {
3fdb14fd 2180 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2181
4e250fdd
JS
2182 now = tk_xtime(tk);
2183 mono = tk->wall_to_monotonic;
3fdb14fd 2184 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2185
7d489d15 2186 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2187 now.tv_nsec + mono.tv_nsec);
7d489d15 2188
334334b5 2189 return now;
da15cfda 2190}
eaaa7ec7 2191EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2192
2193/*
d6ad4187 2194 * Must hold jiffies_lock
871cf1e5
TH
2195 */
2196void do_timer(unsigned long ticks)
2197{
2198 jiffies_64 += ticks;
871cf1e5
TH
2199 calc_global_load(ticks);
2200}
48cf76f7 2201
f6c06abf 2202/**
76f41088 2203 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2204 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
2205 * @offs_real: pointer to storage for monotonic -> realtime offset
2206 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2208 *
868a3e91
TG
2209 * Returns current monotonic time and updates the offsets if the
2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211 * different.
2212 *
b7bc50e4 2213 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2214 */
868a3e91
TG
2215ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2217{
3fdb14fd 2218 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2219 unsigned int seq;
a37c0aad
TG
2220 ktime_t base;
2221 u64 nsecs;
f6c06abf
TG
2222
2223 do {
3fdb14fd 2224 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2225
876e7881
PZ
2226 base = tk->tkr_mono.base;
2227 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2228 base = ktime_add_ns(base, nsecs);
2229
868a3e91
TG
2230 if (*cwsseq != tk->clock_was_set_seq) {
2231 *cwsseq = tk->clock_was_set_seq;
2232 *offs_real = tk->offs_real;
2233 *offs_boot = tk->offs_boot;
2234 *offs_tai = tk->offs_tai;
2235 }
833f32d7
JS
2236
2237 /* Handle leapsecond insertion adjustments */
2238 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
3fdb14fd 2241 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2242
833f32d7 2243 return base;
f6c06abf 2244}
f6c06abf 2245
aa6f9c59
JS
2246/**
2247 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2248 */
2249int do_adjtimex(struct timex *txc)
2250{
3fdb14fd 2251 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2252 unsigned long flags;
7d489d15 2253 struct timespec64 ts;
4e8f8b34 2254 s32 orig_tai, tai;
e4085693
JS
2255 int ret;
2256
2257 /* Validate the data before disabling interrupts */
2258 ret = ntp_validate_timex(txc);
2259 if (ret)
2260 return ret;
2261
cef90377
JS
2262 if (txc->modes & ADJ_SETOFFSET) {
2263 struct timespec delta;
2264 delta.tv_sec = txc->time.tv_sec;
2265 delta.tv_nsec = txc->time.tv_usec;
2266 if (!(txc->modes & ADJ_NANO))
2267 delta.tv_nsec *= 1000;
2268 ret = timekeeping_inject_offset(&delta);
2269 if (ret)
2270 return ret;
2271 }
2272
d6d29896 2273 getnstimeofday64(&ts);
87ace39b 2274
06c017fd 2275 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2276 write_seqcount_begin(&tk_core.seq);
06c017fd 2277
4e8f8b34 2278 orig_tai = tai = tk->tai_offset;
87ace39b 2279 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2280
4e8f8b34
JS
2281 if (tai != orig_tai) {
2282 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2283 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2284 }
833f32d7
JS
2285 tk_update_leap_state(tk);
2286
3fdb14fd 2287 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2289
6fdda9a9
JS
2290 if (tai != orig_tai)
2291 clock_was_set();
2292
7bd36014
JS
2293 ntp_notify_cmos_timer();
2294
87ace39b
JS
2295 return ret;
2296}
aa6f9c59
JS
2297
2298#ifdef CONFIG_NTP_PPS
2299/**
2300 * hardpps() - Accessor function to NTP __hardpps function
2301 */
7ec88e4b 2302void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2303{
06c017fd
JS
2304 unsigned long flags;
2305
2306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2307 write_seqcount_begin(&tk_core.seq);
06c017fd 2308
aa6f9c59 2309 __hardpps(phase_ts, raw_ts);
06c017fd 2310
3fdb14fd 2311 write_seqcount_end(&tk_core.seq);
06c017fd 2312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2313}
2314EXPORT_SYMBOL(hardpps);
2315#endif
2316
f0af911a
TH
2317/**
2318 * xtime_update() - advances the timekeeping infrastructure
2319 * @ticks: number of ticks, that have elapsed since the last call.
2320 *
2321 * Must be called with interrupts disabled.
2322 */
2323void xtime_update(unsigned long ticks)
2324{
d6ad4187 2325 write_seqlock(&jiffies_lock);
f0af911a 2326 do_timer(ticks);
d6ad4187 2327 write_sequnlock(&jiffies_lock);
47a1b796 2328 update_wall_time();
f0af911a 2329}
This page took 0.737668 seconds and 5 git commands to generate.