Merge tag 'md/3.17' of git://neil.brown.name/md
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
155ec602 121/**
d26e4fe0 122 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 123 *
d26e4fe0 124 * @tk: The target timekeeper to setup.
155ec602
MS
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
f726a697 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
133{
134 cycle_t interval;
a386b5af 135 u64 tmp, ntpinterval;
1e75fa8b 136 struct clocksource *old_clock;
155ec602 137
d28ede83
TG
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
a386b5af 147 ntpinterval = tmp;
0a544198
MS
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
155ec602
MS
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
f726a697 154 tk->cycle_interval = interval;
155ec602
MS
155
156 /* Go back from cycles -> shifted ns */
f726a697
JS
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
0a544198 160 ((u64) interval * clock->mult) >> clock->shift;
155ec602 161
1e75fa8b
JS
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
d28ede83 166 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 167 else
d28ede83 168 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 169 }
d28ede83 170 tk->tkr.shift = clock->shift;
155ec602 171
f726a697
JS
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
d28ede83 181 tk->tkr.mult = clock->mult;
dc491596 182 tk->ntp_err_mult = 0;
155ec602 183}
8524070b 184
2ba2a305 185/* Timekeeper helper functions. */
7b1f6207
SW
186
187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
188static u32 default_arch_gettimeoffset(void) { return 0; }
189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 190#else
e06fde37 191static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
192#endif
193
0e5ac3a8 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 195{
3a978377 196 cycle_t cycle_now, delta;
1e75fa8b 197 s64 nsec;
2ba2a305
MS
198
199 /* read clocksource: */
0e5ac3a8 200 cycle_now = tkr->read(tkr->clock);
2ba2a305
MS
201
202 /* calculate the delta since the last update_wall_time: */
0e5ac3a8 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
2ba2a305 204
0e5ac3a8
TG
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
f2a5a085 207
7b1f6207 208 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 209 return nsec + arch_gettimeoffset();
2ba2a305
MS
210}
211
f726a697 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 213{
d28ede83 214 struct clocksource *clock = tk->tkr.clock;
3a978377 215 cycle_t cycle_now, delta;
f2a5a085 216 s64 nsec;
2ba2a305
MS
217
218 /* read clocksource: */
d28ede83 219 cycle_now = tk->tkr.read(clock);
2ba2a305
MS
220
221 /* calculate the delta since the last update_wall_time: */
d28ede83 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
2ba2a305 223
f2a5a085 224 /* convert delta to nanoseconds. */
3a978377 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 226
7b1f6207 227 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 228 return nsec + arch_gettimeoffset();
2ba2a305
MS
229}
230
4396e058
TG
231/**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tk: The timekeeper from which we take the update
234 * @tkf: The fast timekeeper to update
235 * @tbase: The time base for the fast timekeeper (mono/raw)
236 *
237 * We want to use this from any context including NMI and tracing /
238 * instrumenting the timekeeping code itself.
239 *
240 * So we handle this differently than the other timekeeping accessor
241 * functions which retry when the sequence count has changed. The
242 * update side does:
243 *
244 * smp_wmb(); <- Ensure that the last base[1] update is visible
245 * tkf->seq++;
246 * smp_wmb(); <- Ensure that the seqcount update is visible
247 * update(tkf->base[0], tk);
248 * smp_wmb(); <- Ensure that the base[0] update is visible
249 * tkf->seq++;
250 * smp_wmb(); <- Ensure that the seqcount update is visible
251 * update(tkf->base[1], tk);
252 *
253 * The reader side does:
254 *
255 * do {
256 * seq = tkf->seq;
257 * smp_rmb();
258 * idx = seq & 0x01;
259 * now = now(tkf->base[idx]);
260 * smp_rmb();
261 * } while (seq != tkf->seq)
262 *
263 * As long as we update base[0] readers are forced off to
264 * base[1]. Once base[0] is updated readers are redirected to base[0]
265 * and the base[1] update takes place.
266 *
267 * So if a NMI hits the update of base[0] then it will use base[1]
268 * which is still consistent. In the worst case this can result is a
269 * slightly wrong timestamp (a few nanoseconds). See
270 * @ktime_get_mono_fast_ns.
271 */
272static void update_fast_timekeeper(struct timekeeper *tk)
273{
274 struct tk_read_base *base = tk_fast_mono.base;
275
276 /* Force readers off to base[1] */
277 raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279 /* Update base[0] */
280 memcpy(base, &tk->tkr, sizeof(*base));
281
282 /* Force readers back to base[0] */
283 raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285 /* Update base[1] */
286 memcpy(base + 1, base, sizeof(*base));
287}
288
289/**
290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291 *
292 * This timestamp is not guaranteed to be monotonic across an update.
293 * The timestamp is calculated by:
294 *
295 * now = base_mono + clock_delta * slope
296 *
297 * So if the update lowers the slope, readers who are forced to the
298 * not yet updated second array are still using the old steeper slope.
299 *
300 * tmono
301 * ^
302 * | o n
303 * | o n
304 * | u
305 * | o
306 * |o
307 * |12345678---> reader order
308 *
309 * o = old slope
310 * u = update
311 * n = new slope
312 *
313 * So reader 6 will observe time going backwards versus reader 5.
314 *
315 * While other CPUs are likely to be able observe that, the only way
316 * for a CPU local observation is when an NMI hits in the middle of
317 * the update. Timestamps taken from that NMI context might be ahead
318 * of the following timestamps. Callers need to be aware of that and
319 * deal with it.
320 */
321u64 notrace ktime_get_mono_fast_ns(void)
322{
323 struct tk_read_base *tkr;
324 unsigned int seq;
325 u64 now;
326
327 do {
328 seq = raw_read_seqcount(&tk_fast_mono.seq);
329 tkr = tk_fast_mono.base + (seq & 0x01);
330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 return now;
334}
335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
c905fae4
TG
337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339static inline void update_vsyscall(struct timekeeper *tk)
340{
341 struct timespec xt;
342
e2dff1ec 343 xt = timespec64_to_timespec(tk_xtime(tk));
d28ede83
TG
344 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
345 tk->tkr.cycle_last);
c905fae4
TG
346}
347
348static inline void old_vsyscall_fixup(struct timekeeper *tk)
349{
350 s64 remainder;
351
352 /*
353 * Store only full nanoseconds into xtime_nsec after rounding
354 * it up and add the remainder to the error difference.
355 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
356 * by truncating the remainder in vsyscalls. However, it causes
357 * additional work to be done in timekeeping_adjust(). Once
358 * the vsyscall implementations are converted to use xtime_nsec
359 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
360 * users are removed, this can be killed.
361 */
d28ede83
TG
362 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
363 tk->tkr.xtime_nsec -= remainder;
364 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 365 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 366 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
367}
368#else
369#define old_vsyscall_fixup(tk)
370#endif
371
e0b306fe
MT
372static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
373
780427f0 374static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 375{
780427f0 376 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
377}
378
379/**
380 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
381 */
382int pvclock_gtod_register_notifier(struct notifier_block *nb)
383{
3fdb14fd 384 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
385 unsigned long flags;
386 int ret;
387
9a7a71b1 388 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 389 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 390 update_pvclock_gtod(tk, true);
9a7a71b1 391 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
392
393 return ret;
394}
395EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
396
397/**
398 * pvclock_gtod_unregister_notifier - unregister a pvclock
399 * timedata update listener
e0b306fe
MT
400 */
401int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
402{
e0b306fe
MT
403 unsigned long flags;
404 int ret;
405
9a7a71b1 406 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 407 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 408 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
409
410 return ret;
411}
412EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
413
7c032df5
TG
414/*
415 * Update the ktime_t based scalar nsec members of the timekeeper
416 */
417static inline void tk_update_ktime_data(struct timekeeper *tk)
418{
419 s64 nsec;
420
421 /*
422 * The xtime based monotonic readout is:
423 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
424 * The ktime based monotonic readout is:
425 * nsec = base_mono + now();
426 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
427 */
428 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
429 nsec *= NSEC_PER_SEC;
430 nsec += tk->wall_to_monotonic.tv_nsec;
d28ede83 431 tk->tkr.base_mono = ns_to_ktime(nsec);
f519b1a2
TG
432
433 /* Update the monotonic raw base */
434 tk->base_raw = timespec64_to_ktime(tk->raw_time);
7c032df5
TG
435}
436
9a7a71b1 437/* must hold timekeeper_lock */
04397fe9 438static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 439{
04397fe9 440 if (action & TK_CLEAR_NTP) {
f726a697 441 tk->ntp_error = 0;
cc06268c
TG
442 ntp_clear();
443 }
576094b7 444 update_vsyscall(tk);
780427f0 445 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
48cdc135 446
7c032df5
TG
447 tk_update_ktime_data(tk);
448
04397fe9 449 if (action & TK_MIRROR)
3fdb14fd
TG
450 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
451 sizeof(tk_core.timekeeper));
4396e058
TG
452
453 update_fast_timekeeper(tk);
cc06268c
TG
454}
455
8524070b 456/**
155ec602 457 * timekeeping_forward_now - update clock to the current time
8524070b 458 *
9a055117
RZ
459 * Forward the current clock to update its state since the last call to
460 * update_wall_time(). This is useful before significant clock changes,
461 * as it avoids having to deal with this time offset explicitly.
8524070b 462 */
f726a697 463static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 464{
d28ede83 465 struct clocksource *clock = tk->tkr.clock;
3a978377 466 cycle_t cycle_now, delta;
9a055117 467 s64 nsec;
8524070b 468
d28ede83
TG
469 cycle_now = tk->tkr.read(clock);
470 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
471 tk->tkr.cycle_last = cycle_now;
8524070b 472
d28ede83 473 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 474
7b1f6207 475 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 476 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 477
f726a697 478 tk_normalize_xtime(tk);
2d42244a 479
3a978377 480 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 481 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 482}
483
484/**
d6d29896 485 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 486 * @ts: pointer to the timespec to be set
487 *
1e817fb6
KC
488 * Updates the time of day in the timespec.
489 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 490 */
d6d29896 491int __getnstimeofday64(struct timespec64 *ts)
8524070b 492{
3fdb14fd 493 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 494 unsigned long seq;
1e75fa8b 495 s64 nsecs = 0;
8524070b 496
497 do {
3fdb14fd 498 seq = read_seqcount_begin(&tk_core.seq);
8524070b 499
4e250fdd 500 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 501 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 502
3fdb14fd 503 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 504
ec145bab 505 ts->tv_nsec = 0;
d6d29896 506 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
507
508 /*
509 * Do not bail out early, in case there were callers still using
510 * the value, even in the face of the WARN_ON.
511 */
512 if (unlikely(timekeeping_suspended))
513 return -EAGAIN;
514 return 0;
515}
d6d29896 516EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
517
518/**
d6d29896 519 * getnstimeofday64 - Returns the time of day in a timespec64.
1e817fb6
KC
520 * @ts: pointer to the timespec to be set
521 *
522 * Returns the time of day in a timespec (WARN if suspended).
523 */
d6d29896 524void getnstimeofday64(struct timespec64 *ts)
1e817fb6 525{
d6d29896 526 WARN_ON(__getnstimeofday64(ts));
8524070b 527}
d6d29896 528EXPORT_SYMBOL(getnstimeofday64);
8524070b 529
951ed4d3
MS
530ktime_t ktime_get(void)
531{
3fdb14fd 532 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 533 unsigned int seq;
a016a5bd
TG
534 ktime_t base;
535 s64 nsecs;
951ed4d3
MS
536
537 WARN_ON(timekeeping_suspended);
538
539 do {
3fdb14fd 540 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 541 base = tk->tkr.base_mono;
0e5ac3a8 542 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 543
3fdb14fd 544 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 545
a016a5bd 546 return ktime_add_ns(base, nsecs);
951ed4d3
MS
547}
548EXPORT_SYMBOL_GPL(ktime_get);
549
0077dc60
TG
550static ktime_t *offsets[TK_OFFS_MAX] = {
551 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
552 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
553 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
554};
555
556ktime_t ktime_get_with_offset(enum tk_offsets offs)
557{
558 struct timekeeper *tk = &tk_core.timekeeper;
559 unsigned int seq;
560 ktime_t base, *offset = offsets[offs];
561 s64 nsecs;
562
563 WARN_ON(timekeeping_suspended);
564
565 do {
566 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 567 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 568 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
569
570 } while (read_seqcount_retry(&tk_core.seq, seq));
571
572 return ktime_add_ns(base, nsecs);
573
574}
575EXPORT_SYMBOL_GPL(ktime_get_with_offset);
576
9a6b5197
TG
577/**
578 * ktime_mono_to_any() - convert mononotic time to any other time
579 * @tmono: time to convert.
580 * @offs: which offset to use
581 */
582ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
583{
584 ktime_t *offset = offsets[offs];
585 unsigned long seq;
586 ktime_t tconv;
587
588 do {
589 seq = read_seqcount_begin(&tk_core.seq);
590 tconv = ktime_add(tmono, *offset);
591 } while (read_seqcount_retry(&tk_core.seq, seq));
592
593 return tconv;
594}
595EXPORT_SYMBOL_GPL(ktime_mono_to_any);
596
f519b1a2
TG
597/**
598 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
599 */
600ktime_t ktime_get_raw(void)
601{
602 struct timekeeper *tk = &tk_core.timekeeper;
603 unsigned int seq;
604 ktime_t base;
605 s64 nsecs;
606
607 do {
608 seq = read_seqcount_begin(&tk_core.seq);
609 base = tk->base_raw;
610 nsecs = timekeeping_get_ns_raw(tk);
611
612 } while (read_seqcount_retry(&tk_core.seq, seq));
613
614 return ktime_add_ns(base, nsecs);
615}
616EXPORT_SYMBOL_GPL(ktime_get_raw);
617
951ed4d3 618/**
d6d29896 619 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
620 * @ts: pointer to timespec variable
621 *
622 * The function calculates the monotonic clock from the realtime
623 * clock and the wall_to_monotonic offset and stores the result
624 * in normalized timespec format in the variable pointed to by @ts.
625 */
d6d29896 626void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 627{
3fdb14fd 628 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 629 struct timespec64 tomono;
ec145bab 630 s64 nsec;
951ed4d3 631 unsigned int seq;
951ed4d3
MS
632
633 WARN_ON(timekeeping_suspended);
634
635 do {
3fdb14fd 636 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 637 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 638 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 639 tomono = tk->wall_to_monotonic;
951ed4d3 640
3fdb14fd 641 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 642
d6d29896
TG
643 ts->tv_sec += tomono.tv_sec;
644 ts->tv_nsec = 0;
645 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 646}
d6d29896 647EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 648
e2c18e49
AG
649#ifdef CONFIG_NTP_PPS
650
651/**
652 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
653 * @ts_raw: pointer to the timespec to be set to raw monotonic time
654 * @ts_real: pointer to the timespec to be set to the time of day
655 *
656 * This function reads both the time of day and raw monotonic time at the
657 * same time atomically and stores the resulting timestamps in timespec
658 * format.
659 */
660void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
661{
3fdb14fd 662 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
663 unsigned long seq;
664 s64 nsecs_raw, nsecs_real;
665
666 WARN_ON_ONCE(timekeeping_suspended);
667
668 do {
3fdb14fd 669 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 670
7d489d15 671 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 672 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 673 ts_real->tv_nsec = 0;
e2c18e49 674
4e250fdd 675 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 676 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 677
3fdb14fd 678 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
679
680 timespec_add_ns(ts_raw, nsecs_raw);
681 timespec_add_ns(ts_real, nsecs_real);
682}
683EXPORT_SYMBOL(getnstime_raw_and_real);
684
685#endif /* CONFIG_NTP_PPS */
686
8524070b 687/**
688 * do_gettimeofday - Returns the time of day in a timeval
689 * @tv: pointer to the timeval to be set
690 *
efd9ac86 691 * NOTE: Users should be converted to using getnstimeofday()
8524070b 692 */
693void do_gettimeofday(struct timeval *tv)
694{
d6d29896 695 struct timespec64 now;
8524070b 696
d6d29896 697 getnstimeofday64(&now);
8524070b 698 tv->tv_sec = now.tv_sec;
699 tv->tv_usec = now.tv_nsec/1000;
700}
8524070b 701EXPORT_SYMBOL(do_gettimeofday);
d239f49d 702
8524070b 703/**
704 * do_settimeofday - Sets the time of day
705 * @tv: pointer to the timespec variable containing the new time
706 *
707 * Sets the time of day to the new time and update NTP and notify hrtimers
708 */
1e6d7679 709int do_settimeofday(const struct timespec *tv)
8524070b 710{
3fdb14fd 711 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 712 struct timespec64 ts_delta, xt, tmp;
92c1d3ed 713 unsigned long flags;
8524070b 714
cee58483 715 if (!timespec_valid_strict(tv))
8524070b 716 return -EINVAL;
717
9a7a71b1 718 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 719 write_seqcount_begin(&tk_core.seq);
8524070b 720
4e250fdd 721 timekeeping_forward_now(tk);
9a055117 722
4e250fdd 723 xt = tk_xtime(tk);
1e75fa8b
JS
724 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
725 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
726
7d489d15 727 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 728
7d489d15
JS
729 tmp = timespec_to_timespec64(*tv);
730 tk_set_xtime(tk, &tmp);
1e75fa8b 731
780427f0 732 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 733
3fdb14fd 734 write_seqcount_end(&tk_core.seq);
9a7a71b1 735 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 736
737 /* signal hrtimers about time change */
738 clock_was_set();
739
740 return 0;
741}
8524070b 742EXPORT_SYMBOL(do_settimeofday);
743
c528f7c6
JS
744/**
745 * timekeeping_inject_offset - Adds or subtracts from the current time.
746 * @tv: pointer to the timespec variable containing the offset
747 *
748 * Adds or subtracts an offset value from the current time.
749 */
750int timekeeping_inject_offset(struct timespec *ts)
751{
3fdb14fd 752 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 753 unsigned long flags;
7d489d15 754 struct timespec64 ts64, tmp;
4e8b1452 755 int ret = 0;
c528f7c6
JS
756
757 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
758 return -EINVAL;
759
7d489d15
JS
760 ts64 = timespec_to_timespec64(*ts);
761
9a7a71b1 762 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 763 write_seqcount_begin(&tk_core.seq);
c528f7c6 764
4e250fdd 765 timekeeping_forward_now(tk);
c528f7c6 766
4e8b1452 767 /* Make sure the proposed value is valid */
7d489d15
JS
768 tmp = timespec64_add(tk_xtime(tk), ts64);
769 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
770 ret = -EINVAL;
771 goto error;
772 }
1e75fa8b 773
7d489d15
JS
774 tk_xtime_add(tk, &ts64);
775 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 776
4e8b1452 777error: /* even if we error out, we forwarded the time, so call update */
780427f0 778 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 779
3fdb14fd 780 write_seqcount_end(&tk_core.seq);
9a7a71b1 781 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
782
783 /* signal hrtimers about time change */
784 clock_was_set();
785
4e8b1452 786 return ret;
c528f7c6
JS
787}
788EXPORT_SYMBOL(timekeeping_inject_offset);
789
cc244dda
JS
790
791/**
792 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
793 *
794 */
795s32 timekeeping_get_tai_offset(void)
796{
3fdb14fd 797 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
798 unsigned int seq;
799 s32 ret;
800
801 do {
3fdb14fd 802 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 803 ret = tk->tai_offset;
3fdb14fd 804 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
805
806 return ret;
807}
808
809/**
810 * __timekeeping_set_tai_offset - Lock free worker function
811 *
812 */
dd5d70e8 813static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
814{
815 tk->tai_offset = tai_offset;
04005f60 816 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
817}
818
819/**
820 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
821 *
822 */
823void timekeeping_set_tai_offset(s32 tai_offset)
824{
3fdb14fd 825 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
826 unsigned long flags;
827
9a7a71b1 828 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 829 write_seqcount_begin(&tk_core.seq);
cc244dda 830 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 831 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 832 write_seqcount_end(&tk_core.seq);
9a7a71b1 833 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 834 clock_was_set();
cc244dda
JS
835}
836
8524070b 837/**
838 * change_clocksource - Swaps clocksources if a new one is available
839 *
840 * Accumulates current time interval and initializes new clocksource
841 */
75c5158f 842static int change_clocksource(void *data)
8524070b 843{
3fdb14fd 844 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 845 struct clocksource *new, *old;
f695cf94 846 unsigned long flags;
8524070b 847
75c5158f 848 new = (struct clocksource *) data;
8524070b 849
9a7a71b1 850 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 851 write_seqcount_begin(&tk_core.seq);
f695cf94 852
4e250fdd 853 timekeeping_forward_now(tk);
09ac369c
TG
854 /*
855 * If the cs is in module, get a module reference. Succeeds
856 * for built-in code (owner == NULL) as well.
857 */
858 if (try_module_get(new->owner)) {
859 if (!new->enable || new->enable(new) == 0) {
d28ede83 860 old = tk->tkr.clock;
09ac369c
TG
861 tk_setup_internals(tk, new);
862 if (old->disable)
863 old->disable(old);
864 module_put(old->owner);
865 } else {
866 module_put(new->owner);
867 }
75c5158f 868 }
780427f0 869 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 870
3fdb14fd 871 write_seqcount_end(&tk_core.seq);
9a7a71b1 872 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 873
75c5158f
MS
874 return 0;
875}
8524070b 876
75c5158f
MS
877/**
878 * timekeeping_notify - Install a new clock source
879 * @clock: pointer to the clock source
880 *
881 * This function is called from clocksource.c after a new, better clock
882 * source has been registered. The caller holds the clocksource_mutex.
883 */
ba919d1c 884int timekeeping_notify(struct clocksource *clock)
75c5158f 885{
3fdb14fd 886 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 887
d28ede83 888 if (tk->tkr.clock == clock)
ba919d1c 889 return 0;
75c5158f 890 stop_machine(change_clocksource, clock, NULL);
8524070b 891 tick_clock_notify();
d28ede83 892 return tk->tkr.clock == clock ? 0 : -1;
8524070b 893}
75c5158f 894
2d42244a
JS
895/**
896 * getrawmonotonic - Returns the raw monotonic time in a timespec
897 * @ts: pointer to the timespec to be set
898 *
899 * Returns the raw monotonic time (completely un-modified by ntp)
900 */
901void getrawmonotonic(struct timespec *ts)
902{
3fdb14fd 903 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 904 struct timespec64 ts64;
2d42244a
JS
905 unsigned long seq;
906 s64 nsecs;
2d42244a
JS
907
908 do {
3fdb14fd 909 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 910 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 911 ts64 = tk->raw_time;
2d42244a 912
3fdb14fd 913 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 914
7d489d15
JS
915 timespec64_add_ns(&ts64, nsecs);
916 *ts = timespec64_to_timespec(ts64);
2d42244a
JS
917}
918EXPORT_SYMBOL(getrawmonotonic);
919
8524070b 920/**
cf4fc6cb 921 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 922 */
cf4fc6cb 923int timekeeping_valid_for_hres(void)
8524070b 924{
3fdb14fd 925 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 926 unsigned long seq;
927 int ret;
928
929 do {
3fdb14fd 930 seq = read_seqcount_begin(&tk_core.seq);
8524070b 931
d28ede83 932 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 933
3fdb14fd 934 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 935
936 return ret;
937}
938
98962465
JH
939/**
940 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
941 */
942u64 timekeeping_max_deferment(void)
943{
3fdb14fd 944 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
945 unsigned long seq;
946 u64 ret;
42e71e81 947
70471f2f 948 do {
3fdb14fd 949 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 950
d28ede83 951 ret = tk->tkr.clock->max_idle_ns;
70471f2f 952
3fdb14fd 953 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
954
955 return ret;
98962465
JH
956}
957
8524070b 958/**
d4f587c6 959 * read_persistent_clock - Return time from the persistent clock.
8524070b 960 *
961 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
962 * Reads the time from the battery backed persistent clock.
963 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 964 *
965 * XXX - Do be sure to remove it once all arches implement it.
966 */
52f5684c 967void __weak read_persistent_clock(struct timespec *ts)
8524070b 968{
d4f587c6
MS
969 ts->tv_sec = 0;
970 ts->tv_nsec = 0;
8524070b 971}
972
23970e38
MS
973/**
974 * read_boot_clock - Return time of the system start.
975 *
976 * Weak dummy function for arches that do not yet support it.
977 * Function to read the exact time the system has been started.
978 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
979 *
980 * XXX - Do be sure to remove it once all arches implement it.
981 */
52f5684c 982void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
983{
984 ts->tv_sec = 0;
985 ts->tv_nsec = 0;
986}
987
8524070b 988/*
989 * timekeeping_init - Initializes the clocksource and common timekeeping values
990 */
991void __init timekeeping_init(void)
992{
3fdb14fd 993 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 994 struct clocksource *clock;
8524070b 995 unsigned long flags;
7d489d15
JS
996 struct timespec64 now, boot, tmp;
997 struct timespec ts;
31ade306 998
7d489d15
JS
999 read_persistent_clock(&ts);
1000 now = timespec_to_timespec64(ts);
1001 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1002 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1003 " Check your CMOS/BIOS settings.\n");
1004 now.tv_sec = 0;
1005 now.tv_nsec = 0;
31ade306
FT
1006 } else if (now.tv_sec || now.tv_nsec)
1007 persistent_clock_exist = true;
4e8b1452 1008
7d489d15
JS
1009 read_boot_clock(&ts);
1010 boot = timespec_to_timespec64(ts);
1011 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1012 pr_warn("WARNING: Boot clock returned invalid value!\n"
1013 " Check your CMOS/BIOS settings.\n");
1014 boot.tv_sec = 0;
1015 boot.tv_nsec = 0;
1016 }
8524070b 1017
9a7a71b1 1018 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1019 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1020 ntp_init();
1021
f1b82746 1022 clock = clocksource_default_clock();
a0f7d48b
MS
1023 if (clock->enable)
1024 clock->enable(clock);
4e250fdd 1025 tk_setup_internals(tk, clock);
8524070b 1026
4e250fdd
JS
1027 tk_set_xtime(tk, &now);
1028 tk->raw_time.tv_sec = 0;
1029 tk->raw_time.tv_nsec = 0;
f519b1a2 1030 tk->base_raw.tv64 = 0;
1e75fa8b 1031 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1032 boot = tk_xtime(tk);
1e75fa8b 1033
7d489d15 1034 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1035 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1036
f111adfd 1037 timekeeping_update(tk, TK_MIRROR);
48cdc135 1038
3fdb14fd 1039 write_seqcount_end(&tk_core.seq);
9a7a71b1 1040 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1041}
1042
8524070b 1043/* time in seconds when suspend began */
7d489d15 1044static struct timespec64 timekeeping_suspend_time;
8524070b 1045
304529b1
JS
1046/**
1047 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1048 * @delta: pointer to a timespec delta value
1049 *
1050 * Takes a timespec offset measuring a suspend interval and properly
1051 * adds the sleep offset to the timekeeping variables.
1052 */
f726a697 1053static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1054 struct timespec64 *delta)
304529b1 1055{
7d489d15 1056 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1057 printk_deferred(KERN_WARNING
1058 "__timekeeping_inject_sleeptime: Invalid "
1059 "sleep delta value!\n");
cb5de2f8
JS
1060 return;
1061 }
f726a697 1062 tk_xtime_add(tk, delta);
7d489d15 1063 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1064 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1065 tk_debug_account_sleep_time(delta);
304529b1
JS
1066}
1067
304529b1
JS
1068/**
1069 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1070 * @delta: pointer to a timespec delta value
1071 *
1072 * This hook is for architectures that cannot support read_persistent_clock
1073 * because their RTC/persistent clock is only accessible when irqs are enabled.
1074 *
1075 * This function should only be called by rtc_resume(), and allows
1076 * a suspend offset to be injected into the timekeeping values.
1077 */
1078void timekeeping_inject_sleeptime(struct timespec *delta)
1079{
3fdb14fd 1080 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1081 struct timespec64 tmp;
92c1d3ed 1082 unsigned long flags;
304529b1 1083
31ade306
FT
1084 /*
1085 * Make sure we don't set the clock twice, as timekeeping_resume()
1086 * already did it
1087 */
1088 if (has_persistent_clock())
304529b1
JS
1089 return;
1090
9a7a71b1 1091 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1092 write_seqcount_begin(&tk_core.seq);
70471f2f 1093
4e250fdd 1094 timekeeping_forward_now(tk);
304529b1 1095
7d489d15
JS
1096 tmp = timespec_to_timespec64(*delta);
1097 __timekeeping_inject_sleeptime(tk, &tmp);
304529b1 1098
780427f0 1099 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1100
3fdb14fd 1101 write_seqcount_end(&tk_core.seq);
9a7a71b1 1102 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1103
1104 /* signal hrtimers about time change */
1105 clock_was_set();
1106}
1107
8524070b 1108/**
1109 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1110 *
1111 * This is for the generic clocksource timekeeping.
1112 * xtime/wall_to_monotonic/jiffies/etc are
1113 * still managed by arch specific suspend/resume code.
1114 */
e1a85b2c 1115static void timekeeping_resume(void)
8524070b 1116{
3fdb14fd 1117 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1118 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1119 unsigned long flags;
7d489d15
JS
1120 struct timespec64 ts_new, ts_delta;
1121 struct timespec tmp;
e445cf1c
FT
1122 cycle_t cycle_now, cycle_delta;
1123 bool suspendtime_found = false;
d4f587c6 1124
7d489d15
JS
1125 read_persistent_clock(&tmp);
1126 ts_new = timespec_to_timespec64(tmp);
8524070b 1127
adc78e6b 1128 clockevents_resume();
d10ff3fb
TG
1129 clocksource_resume();
1130
9a7a71b1 1131 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1132 write_seqcount_begin(&tk_core.seq);
8524070b 1133
e445cf1c
FT
1134 /*
1135 * After system resumes, we need to calculate the suspended time and
1136 * compensate it for the OS time. There are 3 sources that could be
1137 * used: Nonstop clocksource during suspend, persistent clock and rtc
1138 * device.
1139 *
1140 * One specific platform may have 1 or 2 or all of them, and the
1141 * preference will be:
1142 * suspend-nonstop clocksource -> persistent clock -> rtc
1143 * The less preferred source will only be tried if there is no better
1144 * usable source. The rtc part is handled separately in rtc core code.
1145 */
d28ede83 1146 cycle_now = tk->tkr.read(clock);
e445cf1c 1147 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1148 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1149 u64 num, max = ULLONG_MAX;
1150 u32 mult = clock->mult;
1151 u32 shift = clock->shift;
1152 s64 nsec = 0;
1153
d28ede83
TG
1154 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1155 tk->tkr.mask);
e445cf1c
FT
1156
1157 /*
1158 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1159 * suspended time is too long. In that case we need do the
1160 * 64 bits math carefully
1161 */
1162 do_div(max, mult);
1163 if (cycle_delta > max) {
1164 num = div64_u64(cycle_delta, max);
1165 nsec = (((u64) max * mult) >> shift) * num;
1166 cycle_delta -= num * max;
1167 }
1168 nsec += ((u64) cycle_delta * mult) >> shift;
1169
7d489d15 1170 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1171 suspendtime_found = true;
7d489d15
JS
1172 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1173 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1174 suspendtime_found = true;
8524070b 1175 }
e445cf1c
FT
1176
1177 if (suspendtime_found)
1178 __timekeeping_inject_sleeptime(tk, &ts_delta);
1179
1180 /* Re-base the last cycle value */
d28ede83 1181 tk->tkr.cycle_last = cycle_now;
4e250fdd 1182 tk->ntp_error = 0;
8524070b 1183 timekeeping_suspended = 0;
780427f0 1184 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1185 write_seqcount_end(&tk_core.seq);
9a7a71b1 1186 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1187
1188 touch_softlockup_watchdog();
1189
1190 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1191
1192 /* Resume hrtimers */
b12a03ce 1193 hrtimers_resume();
8524070b 1194}
1195
e1a85b2c 1196static int timekeeping_suspend(void)
8524070b 1197{
3fdb14fd 1198 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1199 unsigned long flags;
7d489d15
JS
1200 struct timespec64 delta, delta_delta;
1201 static struct timespec64 old_delta;
1202 struct timespec tmp;
8524070b 1203
7d489d15
JS
1204 read_persistent_clock(&tmp);
1205 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1206
0d6bd995
ZM
1207 /*
1208 * On some systems the persistent_clock can not be detected at
1209 * timekeeping_init by its return value, so if we see a valid
1210 * value returned, update the persistent_clock_exists flag.
1211 */
1212 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1213 persistent_clock_exist = true;
1214
9a7a71b1 1215 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1216 write_seqcount_begin(&tk_core.seq);
4e250fdd 1217 timekeeping_forward_now(tk);
8524070b 1218 timekeeping_suspended = 1;
cb33217b
JS
1219
1220 /*
1221 * To avoid drift caused by repeated suspend/resumes,
1222 * which each can add ~1 second drift error,
1223 * try to compensate so the difference in system time
1224 * and persistent_clock time stays close to constant.
1225 */
7d489d15
JS
1226 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1227 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1228 if (abs(delta_delta.tv_sec) >= 2) {
1229 /*
1230 * if delta_delta is too large, assume time correction
1231 * has occured and set old_delta to the current delta.
1232 */
1233 old_delta = delta;
1234 } else {
1235 /* Otherwise try to adjust old_system to compensate */
1236 timekeeping_suspend_time =
7d489d15 1237 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1238 }
330a1617
JS
1239
1240 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1241 write_seqcount_end(&tk_core.seq);
9a7a71b1 1242 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1243
1244 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1245 clocksource_suspend();
adc78e6b 1246 clockevents_suspend();
8524070b 1247
1248 return 0;
1249}
1250
1251/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1252static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1253 .resume = timekeeping_resume,
1254 .suspend = timekeeping_suspend,
8524070b 1255};
1256
e1a85b2c 1257static int __init timekeeping_init_ops(void)
8524070b 1258{
e1a85b2c
RW
1259 register_syscore_ops(&timekeeping_syscore_ops);
1260 return 0;
8524070b 1261}
e1a85b2c 1262device_initcall(timekeeping_init_ops);
8524070b 1263
1264/*
dc491596 1265 * Apply a multiplier adjustment to the timekeeper
8524070b 1266 */
dc491596
JS
1267static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1268 s64 offset,
1269 bool negative,
1270 int adj_scale)
8524070b 1271{
dc491596
JS
1272 s64 interval = tk->cycle_interval;
1273 s32 mult_adj = 1;
8524070b 1274
dc491596
JS
1275 if (negative) {
1276 mult_adj = -mult_adj;
1277 interval = -interval;
1278 offset = -offset;
1d17d174 1279 }
dc491596
JS
1280 mult_adj <<= adj_scale;
1281 interval <<= adj_scale;
1282 offset <<= adj_scale;
8524070b 1283
c2bc1111
JS
1284 /*
1285 * So the following can be confusing.
1286 *
dc491596 1287 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1288 *
dc491596 1289 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1290 * have been appropriately scaled so the math is the same.
1291 *
1292 * The basic idea here is that we're increasing the multiplier
1293 * by one, this causes the xtime_interval to be incremented by
1294 * one cycle_interval. This is because:
1295 * xtime_interval = cycle_interval * mult
1296 * So if mult is being incremented by one:
1297 * xtime_interval = cycle_interval * (mult + 1)
1298 * Its the same as:
1299 * xtime_interval = (cycle_interval * mult) + cycle_interval
1300 * Which can be shortened to:
1301 * xtime_interval += cycle_interval
1302 *
1303 * So offset stores the non-accumulated cycles. Thus the current
1304 * time (in shifted nanoseconds) is:
1305 * now = (offset * adj) + xtime_nsec
1306 * Now, even though we're adjusting the clock frequency, we have
1307 * to keep time consistent. In other words, we can't jump back
1308 * in time, and we also want to avoid jumping forward in time.
1309 *
1310 * So given the same offset value, we need the time to be the same
1311 * both before and after the freq adjustment.
1312 * now = (offset * adj_1) + xtime_nsec_1
1313 * now = (offset * adj_2) + xtime_nsec_2
1314 * So:
1315 * (offset * adj_1) + xtime_nsec_1 =
1316 * (offset * adj_2) + xtime_nsec_2
1317 * And we know:
1318 * adj_2 = adj_1 + 1
1319 * So:
1320 * (offset * adj_1) + xtime_nsec_1 =
1321 * (offset * (adj_1+1)) + xtime_nsec_2
1322 * (offset * adj_1) + xtime_nsec_1 =
1323 * (offset * adj_1) + offset + xtime_nsec_2
1324 * Canceling the sides:
1325 * xtime_nsec_1 = offset + xtime_nsec_2
1326 * Which gives us:
1327 * xtime_nsec_2 = xtime_nsec_1 - offset
1328 * Which simplfies to:
1329 * xtime_nsec -= offset
1330 *
1331 * XXX - TODO: Doc ntp_error calculation.
1332 */
dc491596 1333 tk->tkr.mult += mult_adj;
f726a697 1334 tk->xtime_interval += interval;
d28ede83 1335 tk->tkr.xtime_nsec -= offset;
f726a697 1336 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1337}
1338
1339/*
1340 * Calculate the multiplier adjustment needed to match the frequency
1341 * specified by NTP
1342 */
1343static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1344 s64 offset)
1345{
1346 s64 interval = tk->cycle_interval;
1347 s64 xinterval = tk->xtime_interval;
1348 s64 tick_error;
1349 bool negative;
1350 u32 adj;
1351
1352 /* Remove any current error adj from freq calculation */
1353 if (tk->ntp_err_mult)
1354 xinterval -= tk->cycle_interval;
1355
375f45b5
JS
1356 tk->ntp_tick = ntp_tick_length();
1357
dc491596
JS
1358 /* Calculate current error per tick */
1359 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1360 tick_error -= (xinterval + tk->xtime_remainder);
1361
1362 /* Don't worry about correcting it if its small */
1363 if (likely((tick_error >= 0) && (tick_error <= interval)))
1364 return;
1365
1366 /* preserve the direction of correction */
1367 negative = (tick_error < 0);
1368
1369 /* Sort out the magnitude of the correction */
1370 tick_error = abs(tick_error);
1371 for (adj = 0; tick_error > interval; adj++)
1372 tick_error >>= 1;
1373
1374 /* scale the corrections */
1375 timekeeping_apply_adjustment(tk, offset, negative, adj);
1376}
1377
1378/*
1379 * Adjust the timekeeper's multiplier to the correct frequency
1380 * and also to reduce the accumulated error value.
1381 */
1382static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1383{
1384 /* Correct for the current frequency error */
1385 timekeeping_freqadjust(tk, offset);
1386
1387 /* Next make a small adjustment to fix any cumulative error */
1388 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1389 tk->ntp_err_mult = 1;
1390 timekeeping_apply_adjustment(tk, offset, 0, 0);
1391 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1392 /* Undo any existing error adjustment */
1393 timekeeping_apply_adjustment(tk, offset, 1, 0);
1394 tk->ntp_err_mult = 0;
1395 }
1396
1397 if (unlikely(tk->tkr.clock->maxadj &&
1398 (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1399 printk_once(KERN_WARNING
1400 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1401 tk->tkr.clock->name, (long)tk->tkr.mult,
1402 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1403 }
2a8c0883
JS
1404
1405 /*
1406 * It may be possible that when we entered this function, xtime_nsec
1407 * was very small. Further, if we're slightly speeding the clocksource
1408 * in the code above, its possible the required corrective factor to
1409 * xtime_nsec could cause it to underflow.
1410 *
1411 * Now, since we already accumulated the second, cannot simply roll
1412 * the accumulated second back, since the NTP subsystem has been
1413 * notified via second_overflow. So instead we push xtime_nsec forward
1414 * by the amount we underflowed, and add that amount into the error.
1415 *
1416 * We'll correct this error next time through this function, when
1417 * xtime_nsec is not as small.
1418 */
d28ede83
TG
1419 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1420 s64 neg = -(s64)tk->tkr.xtime_nsec;
1421 tk->tkr.xtime_nsec = 0;
f726a697 1422 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1423 }
8524070b 1424}
1425
1f4f9487
JS
1426/**
1427 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1428 *
1429 * Helper function that accumulates a the nsecs greater then a second
1430 * from the xtime_nsec field to the xtime_secs field.
1431 * It also calls into the NTP code to handle leapsecond processing.
1432 *
1433 */
780427f0 1434static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1435{
d28ede83 1436 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1437 unsigned int clock_set = 0;
1f4f9487 1438
d28ede83 1439 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1440 int leap;
1441
d28ede83 1442 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1443 tk->xtime_sec++;
1444
1445 /* Figure out if its a leap sec and apply if needed */
1446 leap = second_overflow(tk->xtime_sec);
6d0ef903 1447 if (unlikely(leap)) {
7d489d15 1448 struct timespec64 ts;
6d0ef903
JS
1449
1450 tk->xtime_sec += leap;
1f4f9487 1451
6d0ef903
JS
1452 ts.tv_sec = leap;
1453 ts.tv_nsec = 0;
1454 tk_set_wall_to_mono(tk,
7d489d15 1455 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1456
cc244dda
JS
1457 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1458
5258d3f2 1459 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1460 }
1f4f9487 1461 }
5258d3f2 1462 return clock_set;
1f4f9487
JS
1463}
1464
a092ff0f 1465/**
1466 * logarithmic_accumulation - shifted accumulation of cycles
1467 *
1468 * This functions accumulates a shifted interval of cycles into
1469 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1470 * loop.
1471 *
1472 * Returns the unconsumed cycles.
1473 */
f726a697 1474static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1475 u32 shift,
1476 unsigned int *clock_set)
a092ff0f 1477{
23a9537a 1478 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1479 u64 raw_nsecs;
a092ff0f 1480
f726a697 1481 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1482 if (offset < interval)
a092ff0f 1483 return offset;
1484
1485 /* Accumulate one shifted interval */
23a9537a 1486 offset -= interval;
d28ede83 1487 tk->tkr.cycle_last += interval;
a092ff0f 1488
d28ede83 1489 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1490 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1491
deda2e81 1492 /* Accumulate raw time */
5b3900cd 1493 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1494 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1495 if (raw_nsecs >= NSEC_PER_SEC) {
1496 u64 raw_secs = raw_nsecs;
1497 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1498 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1499 }
f726a697 1500 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1501
1502 /* Accumulate error between NTP and clock interval */
375f45b5 1503 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1504 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1505 (tk->ntp_error_shift + shift);
a092ff0f 1506
1507 return offset;
1508}
1509
8524070b 1510/**
1511 * update_wall_time - Uses the current clocksource to increment the wall time
1512 *
8524070b 1513 */
47a1b796 1514void update_wall_time(void)
8524070b 1515{
3fdb14fd 1516 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1517 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1518 cycle_t offset;
a092ff0f 1519 int shift = 0, maxshift;
5258d3f2 1520 unsigned int clock_set = 0;
70471f2f
JS
1521 unsigned long flags;
1522
9a7a71b1 1523 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1524
1525 /* Make sure we're fully resumed: */
1526 if (unlikely(timekeeping_suspended))
70471f2f 1527 goto out;
8524070b 1528
592913ec 1529#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1530 offset = real_tk->cycle_interval;
592913ec 1531#else
d28ede83
TG
1532 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1533 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1534#endif
8524070b 1535
bf2ac312 1536 /* Check if there's really nothing to do */
48cdc135 1537 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1538 goto out;
1539
a092ff0f 1540 /*
1541 * With NO_HZ we may have to accumulate many cycle_intervals
1542 * (think "ticks") worth of time at once. To do this efficiently,
1543 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1544 * that is smaller than the offset. We then accumulate that
a092ff0f 1545 * chunk in one go, and then try to consume the next smaller
1546 * doubled multiple.
8524070b 1547 */
4e250fdd 1548 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1549 shift = max(0, shift);
88b28adf 1550 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1551 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1552 shift = min(shift, maxshift);
4e250fdd 1553 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1554 offset = logarithmic_accumulation(tk, offset, shift,
1555 &clock_set);
4e250fdd 1556 if (offset < tk->cycle_interval<<shift)
830ec045 1557 shift--;
8524070b 1558 }
1559
1560 /* correct the clock when NTP error is too big */
4e250fdd 1561 timekeeping_adjust(tk, offset);
8524070b 1562
6a867a39 1563 /*
92bb1fcf
JS
1564 * XXX This can be killed once everyone converts
1565 * to the new update_vsyscall.
1566 */
1567 old_vsyscall_fixup(tk);
8524070b 1568
6a867a39
JS
1569 /*
1570 * Finally, make sure that after the rounding
1e75fa8b 1571 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1572 */
5258d3f2 1573 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1574
3fdb14fd 1575 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1576 /*
1577 * Update the real timekeeper.
1578 *
1579 * We could avoid this memcpy by switching pointers, but that
1580 * requires changes to all other timekeeper usage sites as
1581 * well, i.e. move the timekeeper pointer getter into the
1582 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1583 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1584 * updating.
1585 */
1586 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1587 timekeeping_update(real_tk, clock_set);
3fdb14fd 1588 write_seqcount_end(&tk_core.seq);
ca4523cd 1589out:
9a7a71b1 1590 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1591 if (clock_set)
cab5e127
JS
1592 /* Have to call _delayed version, since in irq context*/
1593 clock_was_set_delayed();
8524070b 1594}
7c3f1a57
TJ
1595
1596/**
1597 * getboottime - Return the real time of system boot.
1598 * @ts: pointer to the timespec to be set
1599 *
abb3a4ea 1600 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1601 *
1602 * This is based on the wall_to_monotonic offset and the total suspend
1603 * time. Calls to settimeofday will affect the value returned (which
1604 * basically means that however wrong your real time clock is at boot time,
1605 * you get the right time here).
1606 */
1607void getboottime(struct timespec *ts)
1608{
3fdb14fd 1609 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1610 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1611
1612 *ts = ktime_to_timespec(t);
7c3f1a57 1613}
c93d89f3 1614EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1615
17c38b74 1616unsigned long get_seconds(void)
1617{
3fdb14fd 1618 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1619
1620 return tk->xtime_sec;
17c38b74 1621}
1622EXPORT_SYMBOL(get_seconds);
1623
da15cfda 1624struct timespec __current_kernel_time(void)
1625{
3fdb14fd 1626 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1627
7d489d15 1628 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1629}
17c38b74 1630
2c6b47de 1631struct timespec current_kernel_time(void)
1632{
3fdb14fd 1633 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1634 struct timespec64 now;
2c6b47de 1635 unsigned long seq;
1636
1637 do {
3fdb14fd 1638 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1639
4e250fdd 1640 now = tk_xtime(tk);
3fdb14fd 1641 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1642
7d489d15 1643 return timespec64_to_timespec(now);
2c6b47de 1644}
2c6b47de 1645EXPORT_SYMBOL(current_kernel_time);
da15cfda 1646
1647struct timespec get_monotonic_coarse(void)
1648{
3fdb14fd 1649 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1650 struct timespec64 now, mono;
da15cfda 1651 unsigned long seq;
1652
1653 do {
3fdb14fd 1654 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1655
4e250fdd
JS
1656 now = tk_xtime(tk);
1657 mono = tk->wall_to_monotonic;
3fdb14fd 1658 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1659
7d489d15 1660 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1661 now.tv_nsec + mono.tv_nsec);
7d489d15
JS
1662
1663 return timespec64_to_timespec(now);
da15cfda 1664}
871cf1e5
TH
1665
1666/*
d6ad4187 1667 * Must hold jiffies_lock
871cf1e5
TH
1668 */
1669void do_timer(unsigned long ticks)
1670{
1671 jiffies_64 += ticks;
871cf1e5
TH
1672 calc_global_load(ticks);
1673}
48cf76f7
TH
1674
1675/**
76f41088
JS
1676 * ktime_get_update_offsets_tick - hrtimer helper
1677 * @offs_real: pointer to storage for monotonic -> realtime offset
1678 * @offs_boot: pointer to storage for monotonic -> boottime offset
1679 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1680 *
1681 * Returns monotonic time at last tick and various offsets
48cf76f7 1682 */
76f41088
JS
1683ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1684 ktime_t *offs_tai)
48cf76f7 1685{
3fdb14fd 1686 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1687 unsigned int seq;
48064f5f
TG
1688 ktime_t base;
1689 u64 nsecs;
48cf76f7
TH
1690
1691 do {
3fdb14fd 1692 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1693
d28ede83
TG
1694 base = tk->tkr.base_mono;
1695 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1696
76f41088
JS
1697 *offs_real = tk->offs_real;
1698 *offs_boot = tk->offs_boot;
1699 *offs_tai = tk->offs_tai;
3fdb14fd 1700 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1701
48064f5f 1702 return ktime_add_ns(base, nsecs);
48cf76f7 1703}
f0af911a 1704
f6c06abf
TG
1705#ifdef CONFIG_HIGH_RES_TIMERS
1706/**
76f41088 1707 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1708 * @offs_real: pointer to storage for monotonic -> realtime offset
1709 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1710 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1711 *
1712 * Returns current monotonic time and updates the offsets
b7bc50e4 1713 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1714 */
76f41088 1715ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1716 ktime_t *offs_tai)
f6c06abf 1717{
3fdb14fd 1718 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1719 unsigned int seq;
a37c0aad
TG
1720 ktime_t base;
1721 u64 nsecs;
f6c06abf
TG
1722
1723 do {
3fdb14fd 1724 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1725
d28ede83 1726 base = tk->tkr.base_mono;
0e5ac3a8 1727 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1728
4e250fdd
JS
1729 *offs_real = tk->offs_real;
1730 *offs_boot = tk->offs_boot;
90adda98 1731 *offs_tai = tk->offs_tai;
3fdb14fd 1732 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1733
a37c0aad 1734 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1735}
1736#endif
1737
aa6f9c59
JS
1738/**
1739 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1740 */
1741int do_adjtimex(struct timex *txc)
1742{
3fdb14fd 1743 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1744 unsigned long flags;
7d489d15 1745 struct timespec64 ts;
4e8f8b34 1746 s32 orig_tai, tai;
e4085693
JS
1747 int ret;
1748
1749 /* Validate the data before disabling interrupts */
1750 ret = ntp_validate_timex(txc);
1751 if (ret)
1752 return ret;
1753
cef90377
JS
1754 if (txc->modes & ADJ_SETOFFSET) {
1755 struct timespec delta;
1756 delta.tv_sec = txc->time.tv_sec;
1757 delta.tv_nsec = txc->time.tv_usec;
1758 if (!(txc->modes & ADJ_NANO))
1759 delta.tv_nsec *= 1000;
1760 ret = timekeeping_inject_offset(&delta);
1761 if (ret)
1762 return ret;
1763 }
1764
d6d29896 1765 getnstimeofday64(&ts);
87ace39b 1766
06c017fd 1767 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1768 write_seqcount_begin(&tk_core.seq);
06c017fd 1769
4e8f8b34 1770 orig_tai = tai = tk->tai_offset;
87ace39b 1771 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1772
4e8f8b34
JS
1773 if (tai != orig_tai) {
1774 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1775 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1776 }
3fdb14fd 1777 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1778 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1779
6fdda9a9
JS
1780 if (tai != orig_tai)
1781 clock_was_set();
1782
7bd36014
JS
1783 ntp_notify_cmos_timer();
1784
87ace39b
JS
1785 return ret;
1786}
aa6f9c59
JS
1787
1788#ifdef CONFIG_NTP_PPS
1789/**
1790 * hardpps() - Accessor function to NTP __hardpps function
1791 */
1792void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1793{
06c017fd
JS
1794 unsigned long flags;
1795
1796 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1797 write_seqcount_begin(&tk_core.seq);
06c017fd 1798
aa6f9c59 1799 __hardpps(phase_ts, raw_ts);
06c017fd 1800
3fdb14fd 1801 write_seqcount_end(&tk_core.seq);
06c017fd 1802 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1803}
1804EXPORT_SYMBOL(hardpps);
1805#endif
1806
f0af911a
TH
1807/**
1808 * xtime_update() - advances the timekeeping infrastructure
1809 * @ticks: number of ticks, that have elapsed since the last call.
1810 *
1811 * Must be called with interrupts disabled.
1812 */
1813void xtime_update(unsigned long ticks)
1814{
d6ad4187 1815 write_seqlock(&jiffies_lock);
f0af911a 1816 do_timer(ticks);
d6ad4187 1817 write_sequnlock(&jiffies_lock);
47a1b796 1818 update_wall_time();
f0af911a 1819}
This page took 0.716341 seconds and 5 git commands to generate.