hrtimer: Get rid of softirq time
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26
JS
120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121/*
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
127 */
128static int timekeeping_underflow_seen;
129static int timekeeping_overflow_seen;
130
131/* last_warning is only modified under the timekeeping lock */
132static long timekeeping_last_warning;
133
3c17ad19
JS
134static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135{
136
876e7881
PZ
137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
139
140 if (offset > max_cycles) {
a558cd02 141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 142 offset, name, max_cycles);
a558cd02 143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
144 } else {
145 if (offset > (max_cycles >> 1)) {
146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 offset, name, max_cycles >> 1);
148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149 }
150 }
4ca22c26
JS
151
152 if (timekeeping_underflow_seen) {
153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 timekeeping_last_warning = jiffies;
158 }
159 timekeeping_underflow_seen = 0;
160 }
161
162 if (timekeeping_overflow_seen) {
163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 timekeeping_last_warning = jiffies;
168 }
169 timekeeping_overflow_seen = 0;
170 }
3c17ad19 171}
a558cd02
JS
172
173static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174{
4ca22c26
JS
175 cycle_t now, last, mask, max, delta;
176 unsigned int seq;
a558cd02 177
4ca22c26
JS
178 /*
179 * Since we're called holding a seqlock, the data may shift
180 * under us while we're doing the calculation. This can cause
181 * false positives, since we'd note a problem but throw the
182 * results away. So nest another seqlock here to atomically
183 * grab the points we are checking with.
184 */
185 do {
186 seq = read_seqcount_begin(&tk_core.seq);
187 now = tkr->read(tkr->clock);
188 last = tkr->cycle_last;
189 mask = tkr->mask;
190 max = tkr->clock->max_cycles;
191 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 192
4ca22c26 193 delta = clocksource_delta(now, last, mask);
a558cd02 194
057b87e3
JS
195 /*
196 * Try to catch underflows by checking if we are seeing small
197 * mask-relative negative values.
198 */
4ca22c26
JS
199 if (unlikely((~delta & mask) < (mask >> 3))) {
200 timekeeping_underflow_seen = 1;
057b87e3 201 delta = 0;
4ca22c26 202 }
057b87e3 203
a558cd02 204 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26
JS
205 if (unlikely(delta > max)) {
206 timekeeping_overflow_seen = 1;
a558cd02 207 delta = tkr->clock->max_cycles;
4ca22c26 208 }
a558cd02
JS
209
210 return delta;
211}
3c17ad19
JS
212#else
213static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214{
215}
a558cd02
JS
216static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217{
218 cycle_t cycle_now, delta;
219
220 /* read clocksource */
221 cycle_now = tkr->read(tkr->clock);
222
223 /* calculate the delta since the last update_wall_time */
224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226 return delta;
227}
3c17ad19
JS
228#endif
229
155ec602 230/**
d26e4fe0 231 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 232 *
d26e4fe0 233 * @tk: The target timekeeper to setup.
155ec602
MS
234 * @clock: Pointer to clocksource.
235 *
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
238 *
239 * Unless you're the timekeeping code, you should not be using this!
240 */
f726a697 241static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
242{
243 cycle_t interval;
a386b5af 244 u64 tmp, ntpinterval;
1e75fa8b 245 struct clocksource *old_clock;
155ec602 246
876e7881
PZ
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.read = clock->read;
250 tk->tkr_mono.mask = clock->mask;
251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 252
4a4ad80d
PZ
253 tk->tkr_raw.clock = clock;
254 tk->tkr_raw.read = clock->read;
255 tk->tkr_raw.mask = clock->mask;
256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
155ec602
MS
258 /* Do the ns -> cycle conversion first, using original mult */
259 tmp = NTP_INTERVAL_LENGTH;
260 tmp <<= clock->shift;
a386b5af 261 ntpinterval = tmp;
0a544198
MS
262 tmp += clock->mult/2;
263 do_div(tmp, clock->mult);
155ec602
MS
264 if (tmp == 0)
265 tmp = 1;
266
267 interval = (cycle_t) tmp;
f726a697 268 tk->cycle_interval = interval;
155ec602
MS
269
270 /* Go back from cycles -> shifted ns */
f726a697
JS
271 tk->xtime_interval = (u64) interval * clock->mult;
272 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 tk->raw_interval =
0a544198 274 ((u64) interval * clock->mult) >> clock->shift;
155ec602 275
1e75fa8b
JS
276 /* if changing clocks, convert xtime_nsec shift units */
277 if (old_clock) {
278 int shift_change = clock->shift - old_clock->shift;
279 if (shift_change < 0)
876e7881 280 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 281 else
876e7881 282 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 283 }
4a4ad80d
PZ
284 tk->tkr_raw.xtime_nsec = 0;
285
876e7881 286 tk->tkr_mono.shift = clock->shift;
4a4ad80d 287 tk->tkr_raw.shift = clock->shift;
155ec602 288
f726a697
JS
289 tk->ntp_error = 0;
290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
292
293 /*
294 * The timekeeper keeps its own mult values for the currently
295 * active clocksource. These value will be adjusted via NTP
296 * to counteract clock drifting.
297 */
876e7881 298 tk->tkr_mono.mult = clock->mult;
4a4ad80d 299 tk->tkr_raw.mult = clock->mult;
dc491596 300 tk->ntp_err_mult = 0;
155ec602 301}
8524070b 302
2ba2a305 303/* Timekeeper helper functions. */
7b1f6207
SW
304
305#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
306static u32 default_arch_gettimeoffset(void) { return 0; }
307u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 308#else
e06fde37 309static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
310#endif
311
0e5ac3a8 312static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 313{
a558cd02 314 cycle_t delta;
1e75fa8b 315 s64 nsec;
2ba2a305 316
a558cd02 317 delta = timekeeping_get_delta(tkr);
2ba2a305 318
0e5ac3a8
TG
319 nsec = delta * tkr->mult + tkr->xtime_nsec;
320 nsec >>= tkr->shift;
f2a5a085 321
7b1f6207 322 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 323 return nsec + arch_gettimeoffset();
2ba2a305
MS
324}
325
4396e058
TG
326/**
327 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 328 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
329 *
330 * We want to use this from any context including NMI and tracing /
331 * instrumenting the timekeeping code itself.
332 *
333 * So we handle this differently than the other timekeeping accessor
334 * functions which retry when the sequence count has changed. The
335 * update side does:
336 *
337 * smp_wmb(); <- Ensure that the last base[1] update is visible
338 * tkf->seq++;
339 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 340 * update(tkf->base[0], tkr);
4396e058
TG
341 * smp_wmb(); <- Ensure that the base[0] update is visible
342 * tkf->seq++;
343 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 344 * update(tkf->base[1], tkr);
4396e058
TG
345 *
346 * The reader side does:
347 *
348 * do {
349 * seq = tkf->seq;
350 * smp_rmb();
351 * idx = seq & 0x01;
352 * now = now(tkf->base[idx]);
353 * smp_rmb();
354 * } while (seq != tkf->seq)
355 *
356 * As long as we update base[0] readers are forced off to
357 * base[1]. Once base[0] is updated readers are redirected to base[0]
358 * and the base[1] update takes place.
359 *
360 * So if a NMI hits the update of base[0] then it will use base[1]
361 * which is still consistent. In the worst case this can result is a
362 * slightly wrong timestamp (a few nanoseconds). See
363 * @ktime_get_mono_fast_ns.
364 */
4498e746 365static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 366{
4498e746 367 struct tk_read_base *base = tkf->base;
4396e058
TG
368
369 /* Force readers off to base[1] */
4498e746 370 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
371
372 /* Update base[0] */
affe3e85 373 memcpy(base, tkr, sizeof(*base));
4396e058
TG
374
375 /* Force readers back to base[0] */
4498e746 376 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
377
378 /* Update base[1] */
379 memcpy(base + 1, base, sizeof(*base));
380}
381
382/**
383 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384 *
385 * This timestamp is not guaranteed to be monotonic across an update.
386 * The timestamp is calculated by:
387 *
388 * now = base_mono + clock_delta * slope
389 *
390 * So if the update lowers the slope, readers who are forced to the
391 * not yet updated second array are still using the old steeper slope.
392 *
393 * tmono
394 * ^
395 * | o n
396 * | o n
397 * | u
398 * | o
399 * |o
400 * |12345678---> reader order
401 *
402 * o = old slope
403 * u = update
404 * n = new slope
405 *
406 * So reader 6 will observe time going backwards versus reader 5.
407 *
408 * While other CPUs are likely to be able observe that, the only way
409 * for a CPU local observation is when an NMI hits in the middle of
410 * the update. Timestamps taken from that NMI context might be ahead
411 * of the following timestamps. Callers need to be aware of that and
412 * deal with it.
413 */
4498e746 414static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
415{
416 struct tk_read_base *tkr;
417 unsigned int seq;
418 u64 now;
419
420 do {
4498e746
PZ
421 seq = raw_read_seqcount(&tkf->seq);
422 tkr = tkf->base + (seq & 0x01);
876e7881 423 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 424 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 425
4396e058
TG
426 return now;
427}
4498e746
PZ
428
429u64 ktime_get_mono_fast_ns(void)
430{
431 return __ktime_get_fast_ns(&tk_fast_mono);
432}
4396e058
TG
433EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434
f09cb9a1
PZ
435u64 ktime_get_raw_fast_ns(void)
436{
437 return __ktime_get_fast_ns(&tk_fast_raw);
438}
439EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440
060407ae
RW
441/* Suspend-time cycles value for halted fast timekeeper. */
442static cycle_t cycles_at_suspend;
443
444static cycle_t dummy_clock_read(struct clocksource *cs)
445{
446 return cycles_at_suspend;
447}
448
449/**
450 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451 * @tk: Timekeeper to snapshot.
452 *
453 * It generally is unsafe to access the clocksource after timekeeping has been
454 * suspended, so take a snapshot of the readout base of @tk and use it as the
455 * fast timekeeper's readout base while suspended. It will return the same
456 * number of cycles every time until timekeeping is resumed at which time the
457 * proper readout base for the fast timekeeper will be restored automatically.
458 */
459static void halt_fast_timekeeper(struct timekeeper *tk)
460{
461 static struct tk_read_base tkr_dummy;
876e7881 462 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
463
464 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465 cycles_at_suspend = tkr->read(tkr->clock);
466 tkr_dummy.read = dummy_clock_read;
4498e746 467 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
468
469 tkr = &tk->tkr_raw;
470 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471 tkr_dummy.read = dummy_clock_read;
472 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
473}
474
c905fae4
TG
475#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476
477static inline void update_vsyscall(struct timekeeper *tk)
478{
0680eb1f 479 struct timespec xt, wm;
c905fae4 480
e2dff1ec 481 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 482 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
483 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484 tk->tkr_mono.cycle_last);
c905fae4
TG
485}
486
487static inline void old_vsyscall_fixup(struct timekeeper *tk)
488{
489 s64 remainder;
490
491 /*
492 * Store only full nanoseconds into xtime_nsec after rounding
493 * it up and add the remainder to the error difference.
494 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
495 * by truncating the remainder in vsyscalls. However, it causes
496 * additional work to be done in timekeeping_adjust(). Once
497 * the vsyscall implementations are converted to use xtime_nsec
498 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499 * users are removed, this can be killed.
500 */
876e7881
PZ
501 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502 tk->tkr_mono.xtime_nsec -= remainder;
503 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 504 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 505 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
506}
507#else
508#define old_vsyscall_fixup(tk)
509#endif
510
e0b306fe
MT
511static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512
780427f0 513static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 514{
780427f0 515 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
516}
517
518/**
519 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
520 */
521int pvclock_gtod_register_notifier(struct notifier_block *nb)
522{
3fdb14fd 523 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
524 unsigned long flags;
525 int ret;
526
9a7a71b1 527 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 528 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 529 update_pvclock_gtod(tk, true);
9a7a71b1 530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
535
536/**
537 * pvclock_gtod_unregister_notifier - unregister a pvclock
538 * timedata update listener
e0b306fe
MT
539 */
540int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541{
e0b306fe
MT
542 unsigned long flags;
543 int ret;
544
9a7a71b1 545 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 546 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
548
549 return ret;
550}
551EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
552
7c032df5
TG
553/*
554 * Update the ktime_t based scalar nsec members of the timekeeper
555 */
556static inline void tk_update_ktime_data(struct timekeeper *tk)
557{
9e3680b1
HS
558 u64 seconds;
559 u32 nsec;
7c032df5
TG
560
561 /*
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 */
9e3680b1
HS
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
571
572 /* Update the monotonic raw base */
4a4ad80d 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
574
575 /*
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
579 */
876e7881 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
7c032df5
TG
584}
585
9a7a71b1 586/* must hold timekeeper_lock */
04397fe9 587static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 588{
04397fe9 589 if (action & TK_CLEAR_NTP) {
f726a697 590 tk->ntp_error = 0;
cc06268c
TG
591 ntp_clear();
592 }
48cdc135 593
7c032df5
TG
594 tk_update_ktime_data(tk);
595
9bf2419f
TG
596 update_vsyscall(tk);
597 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598
04397fe9 599 if (action & TK_MIRROR)
3fdb14fd
TG
600 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601 sizeof(tk_core.timekeeper));
4396e058 602
4498e746 603 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 604 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
cc06268c
TG
605}
606
8524070b 607/**
155ec602 608 * timekeeping_forward_now - update clock to the current time
8524070b 609 *
9a055117
RZ
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
8524070b 613 */
f726a697 614static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 615{
876e7881 616 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 617 cycle_t cycle_now, delta;
9a055117 618 s64 nsec;
8524070b 619
876e7881
PZ
620 cycle_now = tk->tkr_mono.read(clock);
621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 623 tk->tkr_raw.cycle_last = cycle_now;
8524070b 624
876e7881 625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 626
7b1f6207 627 /* If arch requires, add in get_arch_timeoffset() */
876e7881 628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 629
f726a697 630 tk_normalize_xtime(tk);
2d42244a 631
4a4ad80d 632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 633 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 634}
635
636/**
d6d29896 637 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 638 * @ts: pointer to the timespec to be set
639 *
1e817fb6
KC
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 642 */
d6d29896 643int __getnstimeofday64(struct timespec64 *ts)
8524070b 644{
3fdb14fd 645 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 646 unsigned long seq;
1e75fa8b 647 s64 nsecs = 0;
8524070b 648
649 do {
3fdb14fd 650 seq = read_seqcount_begin(&tk_core.seq);
8524070b 651
4e250fdd 652 ts->tv_sec = tk->xtime_sec;
876e7881 653 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 654
3fdb14fd 655 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 656
ec145bab 657 ts->tv_nsec = 0;
d6d29896 658 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
659
660 /*
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
663 */
664 if (unlikely(timekeeping_suspended))
665 return -EAGAIN;
666 return 0;
667}
d6d29896 668EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
669
670/**
d6d29896 671 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 672 * @ts: pointer to the timespec64 to be set
1e817fb6 673 *
5322e4c2 674 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 675 */
d6d29896 676void getnstimeofday64(struct timespec64 *ts)
1e817fb6 677{
d6d29896 678 WARN_ON(__getnstimeofday64(ts));
8524070b 679}
d6d29896 680EXPORT_SYMBOL(getnstimeofday64);
8524070b 681
951ed4d3
MS
682ktime_t ktime_get(void)
683{
3fdb14fd 684 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 685 unsigned int seq;
a016a5bd
TG
686 ktime_t base;
687 s64 nsecs;
951ed4d3
MS
688
689 WARN_ON(timekeeping_suspended);
690
691 do {
3fdb14fd 692 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
693 base = tk->tkr_mono.base;
694 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 695
3fdb14fd 696 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 697
a016a5bd 698 return ktime_add_ns(base, nsecs);
951ed4d3
MS
699}
700EXPORT_SYMBOL_GPL(ktime_get);
701
0077dc60
TG
702static ktime_t *offsets[TK_OFFS_MAX] = {
703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
706};
707
708ktime_t ktime_get_with_offset(enum tk_offsets offs)
709{
710 struct timekeeper *tk = &tk_core.timekeeper;
711 unsigned int seq;
712 ktime_t base, *offset = offsets[offs];
713 s64 nsecs;
714
715 WARN_ON(timekeeping_suspended);
716
717 do {
718 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
719 base = ktime_add(tk->tkr_mono.base, *offset);
720 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
721
722 } while (read_seqcount_retry(&tk_core.seq, seq));
723
724 return ktime_add_ns(base, nsecs);
725
726}
727EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728
9a6b5197
TG
729/**
730 * ktime_mono_to_any() - convert mononotic time to any other time
731 * @tmono: time to convert.
732 * @offs: which offset to use
733 */
734ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735{
736 ktime_t *offset = offsets[offs];
737 unsigned long seq;
738 ktime_t tconv;
739
740 do {
741 seq = read_seqcount_begin(&tk_core.seq);
742 tconv = ktime_add(tmono, *offset);
743 } while (read_seqcount_retry(&tk_core.seq, seq));
744
745 return tconv;
746}
747EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748
f519b1a2
TG
749/**
750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751 */
752ktime_t ktime_get_raw(void)
753{
754 struct timekeeper *tk = &tk_core.timekeeper;
755 unsigned int seq;
756 ktime_t base;
757 s64 nsecs;
758
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
761 base = tk->tkr_raw.base;
762 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
763
764 } while (read_seqcount_retry(&tk_core.seq, seq));
765
766 return ktime_add_ns(base, nsecs);
767}
768EXPORT_SYMBOL_GPL(ktime_get_raw);
769
951ed4d3 770/**
d6d29896 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
772 * @ts: pointer to timespec variable
773 *
774 * The function calculates the monotonic clock from the realtime
775 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 776 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 777 */
d6d29896 778void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 779{
3fdb14fd 780 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 781 struct timespec64 tomono;
ec145bab 782 s64 nsec;
951ed4d3 783 unsigned int seq;
951ed4d3
MS
784
785 WARN_ON(timekeeping_suspended);
786
787 do {
3fdb14fd 788 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 789 ts->tv_sec = tk->xtime_sec;
876e7881 790 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 791 tomono = tk->wall_to_monotonic;
951ed4d3 792
3fdb14fd 793 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 794
d6d29896
TG
795 ts->tv_sec += tomono.tv_sec;
796 ts->tv_nsec = 0;
797 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 798}
d6d29896 799EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 800
9e3680b1
HS
801/**
802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803 *
804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
807 * covers ~136 years of uptime which should be enough to prevent
808 * premature wrap arounds.
809 */
810time64_t ktime_get_seconds(void)
811{
812 struct timekeeper *tk = &tk_core.timekeeper;
813
814 WARN_ON(timekeeping_suspended);
815 return tk->ktime_sec;
816}
817EXPORT_SYMBOL_GPL(ktime_get_seconds);
818
dbe7aa62
HS
819/**
820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821 *
822 * Returns the wall clock seconds since 1970. This replaces the
823 * get_seconds() interface which is not y2038 safe on 32bit systems.
824 *
825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826 * 32bit systems the access must be protected with the sequence
827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
828 * value.
829 */
830time64_t ktime_get_real_seconds(void)
831{
832 struct timekeeper *tk = &tk_core.timekeeper;
833 time64_t seconds;
834 unsigned int seq;
835
836 if (IS_ENABLED(CONFIG_64BIT))
837 return tk->xtime_sec;
838
839 do {
840 seq = read_seqcount_begin(&tk_core.seq);
841 seconds = tk->xtime_sec;
842
843 } while (read_seqcount_retry(&tk_core.seq, seq));
844
845 return seconds;
846}
847EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848
e2c18e49
AG
849#ifdef CONFIG_NTP_PPS
850
851/**
852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853 * @ts_raw: pointer to the timespec to be set to raw monotonic time
854 * @ts_real: pointer to the timespec to be set to the time of day
855 *
856 * This function reads both the time of day and raw monotonic time at the
857 * same time atomically and stores the resulting timestamps in timespec
858 * format.
859 */
860void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861{
3fdb14fd 862 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
863 unsigned long seq;
864 s64 nsecs_raw, nsecs_real;
865
866 WARN_ON_ONCE(timekeeping_suspended);
867
868 do {
3fdb14fd 869 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 870
7d489d15 871 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 872 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 873 ts_real->tv_nsec = 0;
e2c18e49 874
4a4ad80d 875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 877
3fdb14fd 878 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
879
880 timespec_add_ns(ts_raw, nsecs_raw);
881 timespec_add_ns(ts_real, nsecs_real);
882}
883EXPORT_SYMBOL(getnstime_raw_and_real);
884
885#endif /* CONFIG_NTP_PPS */
886
8524070b 887/**
888 * do_gettimeofday - Returns the time of day in a timeval
889 * @tv: pointer to the timeval to be set
890 *
efd9ac86 891 * NOTE: Users should be converted to using getnstimeofday()
8524070b 892 */
893void do_gettimeofday(struct timeval *tv)
894{
d6d29896 895 struct timespec64 now;
8524070b 896
d6d29896 897 getnstimeofday64(&now);
8524070b 898 tv->tv_sec = now.tv_sec;
899 tv->tv_usec = now.tv_nsec/1000;
900}
8524070b 901EXPORT_SYMBOL(do_gettimeofday);
d239f49d 902
8524070b 903/**
21f7eca5 904 * do_settimeofday64 - Sets the time of day.
905 * @ts: pointer to the timespec64 variable containing the new time
8524070b 906 *
907 * Sets the time of day to the new time and update NTP and notify hrtimers
908 */
21f7eca5 909int do_settimeofday64(const struct timespec64 *ts)
8524070b 910{
3fdb14fd 911 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 912 struct timespec64 ts_delta, xt;
92c1d3ed 913 unsigned long flags;
8524070b 914
21f7eca5 915 if (!timespec64_valid_strict(ts))
8524070b 916 return -EINVAL;
917
9a7a71b1 918 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 919 write_seqcount_begin(&tk_core.seq);
8524070b 920
4e250fdd 921 timekeeping_forward_now(tk);
9a055117 922
4e250fdd 923 xt = tk_xtime(tk);
21f7eca5 924 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 926
7d489d15 927 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 928
21f7eca5 929 tk_set_xtime(tk, ts);
1e75fa8b 930
780427f0 931 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 932
3fdb14fd 933 write_seqcount_end(&tk_core.seq);
9a7a71b1 934 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 935
936 /* signal hrtimers about time change */
937 clock_was_set();
938
939 return 0;
940}
21f7eca5 941EXPORT_SYMBOL(do_settimeofday64);
8524070b 942
c528f7c6
JS
943/**
944 * timekeeping_inject_offset - Adds or subtracts from the current time.
945 * @tv: pointer to the timespec variable containing the offset
946 *
947 * Adds or subtracts an offset value from the current time.
948 */
949int timekeeping_inject_offset(struct timespec *ts)
950{
3fdb14fd 951 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 952 unsigned long flags;
7d489d15 953 struct timespec64 ts64, tmp;
4e8b1452 954 int ret = 0;
c528f7c6
JS
955
956 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957 return -EINVAL;
958
7d489d15
JS
959 ts64 = timespec_to_timespec64(*ts);
960
9a7a71b1 961 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 962 write_seqcount_begin(&tk_core.seq);
c528f7c6 963
4e250fdd 964 timekeeping_forward_now(tk);
c528f7c6 965
4e8b1452 966 /* Make sure the proposed value is valid */
7d489d15
JS
967 tmp = timespec64_add(tk_xtime(tk), ts64);
968 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
969 ret = -EINVAL;
970 goto error;
971 }
1e75fa8b 972
7d489d15
JS
973 tk_xtime_add(tk, &ts64);
974 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 975
4e8b1452 976error: /* even if we error out, we forwarded the time, so call update */
780427f0 977 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 978
3fdb14fd 979 write_seqcount_end(&tk_core.seq);
9a7a71b1 980 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
981
982 /* signal hrtimers about time change */
983 clock_was_set();
984
4e8b1452 985 return ret;
c528f7c6
JS
986}
987EXPORT_SYMBOL(timekeeping_inject_offset);
988
cc244dda
JS
989
990/**
991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
992 *
993 */
994s32 timekeeping_get_tai_offset(void)
995{
3fdb14fd 996 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
997 unsigned int seq;
998 s32 ret;
999
1000 do {
3fdb14fd 1001 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1002 ret = tk->tai_offset;
3fdb14fd 1003 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1004
1005 return ret;
1006}
1007
1008/**
1009 * __timekeeping_set_tai_offset - Lock free worker function
1010 *
1011 */
dd5d70e8 1012static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1013{
1014 tk->tai_offset = tai_offset;
04005f60 1015 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1016}
1017
1018/**
1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020 *
1021 */
1022void timekeeping_set_tai_offset(s32 tai_offset)
1023{
3fdb14fd 1024 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1025 unsigned long flags;
1026
9a7a71b1 1027 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1028 write_seqcount_begin(&tk_core.seq);
cc244dda 1029 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1030 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1031 write_seqcount_end(&tk_core.seq);
9a7a71b1 1032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1033 clock_was_set();
cc244dda
JS
1034}
1035
8524070b 1036/**
1037 * change_clocksource - Swaps clocksources if a new one is available
1038 *
1039 * Accumulates current time interval and initializes new clocksource
1040 */
75c5158f 1041static int change_clocksource(void *data)
8524070b 1042{
3fdb14fd 1043 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1044 struct clocksource *new, *old;
f695cf94 1045 unsigned long flags;
8524070b 1046
75c5158f 1047 new = (struct clocksource *) data;
8524070b 1048
9a7a71b1 1049 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1050 write_seqcount_begin(&tk_core.seq);
f695cf94 1051
4e250fdd 1052 timekeeping_forward_now(tk);
09ac369c
TG
1053 /*
1054 * If the cs is in module, get a module reference. Succeeds
1055 * for built-in code (owner == NULL) as well.
1056 */
1057 if (try_module_get(new->owner)) {
1058 if (!new->enable || new->enable(new) == 0) {
876e7881 1059 old = tk->tkr_mono.clock;
09ac369c
TG
1060 tk_setup_internals(tk, new);
1061 if (old->disable)
1062 old->disable(old);
1063 module_put(old->owner);
1064 } else {
1065 module_put(new->owner);
1066 }
75c5158f 1067 }
780427f0 1068 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1069
3fdb14fd 1070 write_seqcount_end(&tk_core.seq);
9a7a71b1 1071 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1072
75c5158f
MS
1073 return 0;
1074}
8524070b 1075
75c5158f
MS
1076/**
1077 * timekeeping_notify - Install a new clock source
1078 * @clock: pointer to the clock source
1079 *
1080 * This function is called from clocksource.c after a new, better clock
1081 * source has been registered. The caller holds the clocksource_mutex.
1082 */
ba919d1c 1083int timekeeping_notify(struct clocksource *clock)
75c5158f 1084{
3fdb14fd 1085 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1086
876e7881 1087 if (tk->tkr_mono.clock == clock)
ba919d1c 1088 return 0;
75c5158f 1089 stop_machine(change_clocksource, clock, NULL);
8524070b 1090 tick_clock_notify();
876e7881 1091 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1092}
75c5158f 1093
2d42244a 1094/**
cdba2ec5
JS
1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1097 *
1098 * Returns the raw monotonic time (completely un-modified by ntp)
1099 */
cdba2ec5 1100void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1101{
3fdb14fd 1102 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1103 struct timespec64 ts64;
2d42244a
JS
1104 unsigned long seq;
1105 s64 nsecs;
2d42244a
JS
1106
1107 do {
3fdb14fd 1108 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1109 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1110 ts64 = tk->raw_time;
2d42244a 1111
3fdb14fd 1112 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1113
7d489d15 1114 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1115 *ts = ts64;
2d42244a 1116}
cdba2ec5
JS
1117EXPORT_SYMBOL(getrawmonotonic64);
1118
2d42244a 1119
8524070b 1120/**
cf4fc6cb 1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1122 */
cf4fc6cb 1123int timekeeping_valid_for_hres(void)
8524070b 1124{
3fdb14fd 1125 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1126 unsigned long seq;
1127 int ret;
1128
1129 do {
3fdb14fd 1130 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1131
876e7881 1132 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1133
3fdb14fd 1134 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1135
1136 return ret;
1137}
1138
98962465
JH
1139/**
1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1141 */
1142u64 timekeeping_max_deferment(void)
1143{
3fdb14fd 1144 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1145 unsigned long seq;
1146 u64 ret;
42e71e81 1147
70471f2f 1148 do {
3fdb14fd 1149 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1150
876e7881 1151 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1152
3fdb14fd 1153 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1154
1155 return ret;
98962465
JH
1156}
1157
8524070b 1158/**
d4f587c6 1159 * read_persistent_clock - Return time from the persistent clock.
8524070b 1160 *
1161 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1162 * Reads the time from the battery backed persistent clock.
1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1164 *
1165 * XXX - Do be sure to remove it once all arches implement it.
1166 */
52f5684c 1167void __weak read_persistent_clock(struct timespec *ts)
8524070b 1168{
d4f587c6
MS
1169 ts->tv_sec = 0;
1170 ts->tv_nsec = 0;
8524070b 1171}
1172
2ee96632
XP
1173void __weak read_persistent_clock64(struct timespec64 *ts64)
1174{
1175 struct timespec ts;
1176
1177 read_persistent_clock(&ts);
1178 *ts64 = timespec_to_timespec64(ts);
1179}
1180
23970e38
MS
1181/**
1182 * read_boot_clock - Return time of the system start.
1183 *
1184 * Weak dummy function for arches that do not yet support it.
1185 * Function to read the exact time the system has been started.
1186 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1187 *
1188 * XXX - Do be sure to remove it once all arches implement it.
1189 */
52f5684c 1190void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1191{
1192 ts->tv_sec = 0;
1193 ts->tv_nsec = 0;
1194}
1195
9a806ddb
XP
1196void __weak read_boot_clock64(struct timespec64 *ts64)
1197{
1198 struct timespec ts;
1199
1200 read_boot_clock(&ts);
1201 *ts64 = timespec_to_timespec64(ts);
1202}
1203
0fa88cb4
XP
1204/* Flag for if timekeeping_resume() has injected sleeptime */
1205static bool sleeptime_injected;
1206
1207/* Flag for if there is a persistent clock on this platform */
1208static bool persistent_clock_exists;
1209
8524070b 1210/*
1211 * timekeeping_init - Initializes the clocksource and common timekeeping values
1212 */
1213void __init timekeeping_init(void)
1214{
3fdb14fd 1215 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1216 struct clocksource *clock;
8524070b 1217 unsigned long flags;
7d489d15 1218 struct timespec64 now, boot, tmp;
31ade306 1219
2ee96632 1220 read_persistent_clock64(&now);
7d489d15 1221 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1222 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1223 " Check your CMOS/BIOS settings.\n");
1224 now.tv_sec = 0;
1225 now.tv_nsec = 0;
31ade306 1226 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1227 persistent_clock_exists = true;
4e8b1452 1228
9a806ddb 1229 read_boot_clock64(&boot);
7d489d15 1230 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1231 pr_warn("WARNING: Boot clock returned invalid value!\n"
1232 " Check your CMOS/BIOS settings.\n");
1233 boot.tv_sec = 0;
1234 boot.tv_nsec = 0;
1235 }
8524070b 1236
9a7a71b1 1237 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1238 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1239 ntp_init();
1240
f1b82746 1241 clock = clocksource_default_clock();
a0f7d48b
MS
1242 if (clock->enable)
1243 clock->enable(clock);
4e250fdd 1244 tk_setup_internals(tk, clock);
8524070b 1245
4e250fdd
JS
1246 tk_set_xtime(tk, &now);
1247 tk->raw_time.tv_sec = 0;
1248 tk->raw_time.tv_nsec = 0;
1e75fa8b 1249 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1250 boot = tk_xtime(tk);
1e75fa8b 1251
7d489d15 1252 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1253 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1254
f111adfd 1255 timekeeping_update(tk, TK_MIRROR);
48cdc135 1256
3fdb14fd 1257 write_seqcount_end(&tk_core.seq);
9a7a71b1 1258 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1259}
1260
264bb3f7 1261/* time in seconds when suspend began for persistent clock */
7d489d15 1262static struct timespec64 timekeeping_suspend_time;
8524070b 1263
304529b1
JS
1264/**
1265 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1266 * @delta: pointer to a timespec delta value
1267 *
1268 * Takes a timespec offset measuring a suspend interval and properly
1269 * adds the sleep offset to the timekeeping variables.
1270 */
f726a697 1271static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1272 struct timespec64 *delta)
304529b1 1273{
7d489d15 1274 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1275 printk_deferred(KERN_WARNING
1276 "__timekeeping_inject_sleeptime: Invalid "
1277 "sleep delta value!\n");
cb5de2f8
JS
1278 return;
1279 }
f726a697 1280 tk_xtime_add(tk, delta);
7d489d15 1281 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1282 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1283 tk_debug_account_sleep_time(delta);
304529b1
JS
1284}
1285
7f298139 1286#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1287/**
1288 * We have three kinds of time sources to use for sleep time
1289 * injection, the preference order is:
1290 * 1) non-stop clocksource
1291 * 2) persistent clock (ie: RTC accessible when irqs are off)
1292 * 3) RTC
1293 *
1294 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1295 * If system has neither 1) nor 2), 3) will be used finally.
1296 *
1297 *
1298 * If timekeeping has injected sleeptime via either 1) or 2),
1299 * 3) becomes needless, so in this case we don't need to call
1300 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1301 * means.
1302 */
1303bool timekeeping_rtc_skipresume(void)
1304{
1305 return sleeptime_injected;
1306}
1307
1308/**
1309 * 1) can be determined whether to use or not only when doing
1310 * timekeeping_resume() which is invoked after rtc_suspend(),
1311 * so we can't skip rtc_suspend() surely if system has 1).
1312 *
1313 * But if system has 2), 2) will definitely be used, so in this
1314 * case we don't need to call rtc_suspend(), and this is what
1315 * timekeeping_rtc_skipsuspend() means.
1316 */
1317bool timekeeping_rtc_skipsuspend(void)
1318{
1319 return persistent_clock_exists;
1320}
1321
304529b1 1322/**
04d90890 1323 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1324 * @delta: pointer to a timespec64 delta value
304529b1 1325 *
2ee96632 1326 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1327 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1328 * and also don't have an effective nonstop clocksource.
304529b1
JS
1329 *
1330 * This function should only be called by rtc_resume(), and allows
1331 * a suspend offset to be injected into the timekeeping values.
1332 */
04d90890 1333void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1334{
3fdb14fd 1335 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1336 unsigned long flags;
304529b1 1337
9a7a71b1 1338 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1339 write_seqcount_begin(&tk_core.seq);
70471f2f 1340
4e250fdd 1341 timekeeping_forward_now(tk);
304529b1 1342
04d90890 1343 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1344
780427f0 1345 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1346
3fdb14fd 1347 write_seqcount_end(&tk_core.seq);
9a7a71b1 1348 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1349
1350 /* signal hrtimers about time change */
1351 clock_was_set();
1352}
7f298139 1353#endif
304529b1 1354
8524070b 1355/**
1356 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1357 */
124cf911 1358void timekeeping_resume(void)
8524070b 1359{
3fdb14fd 1360 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1361 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1362 unsigned long flags;
7d489d15 1363 struct timespec64 ts_new, ts_delta;
e445cf1c 1364 cycle_t cycle_now, cycle_delta;
d4f587c6 1365
0fa88cb4 1366 sleeptime_injected = false;
2ee96632 1367 read_persistent_clock64(&ts_new);
8524070b 1368
adc78e6b 1369 clockevents_resume();
d10ff3fb
TG
1370 clocksource_resume();
1371
9a7a71b1 1372 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1373 write_seqcount_begin(&tk_core.seq);
8524070b 1374
e445cf1c
FT
1375 /*
1376 * After system resumes, we need to calculate the suspended time and
1377 * compensate it for the OS time. There are 3 sources that could be
1378 * used: Nonstop clocksource during suspend, persistent clock and rtc
1379 * device.
1380 *
1381 * One specific platform may have 1 or 2 or all of them, and the
1382 * preference will be:
1383 * suspend-nonstop clocksource -> persistent clock -> rtc
1384 * The less preferred source will only be tried if there is no better
1385 * usable source. The rtc part is handled separately in rtc core code.
1386 */
876e7881 1387 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1388 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1389 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1390 u64 num, max = ULLONG_MAX;
1391 u32 mult = clock->mult;
1392 u32 shift = clock->shift;
1393 s64 nsec = 0;
1394
876e7881
PZ
1395 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1396 tk->tkr_mono.mask);
e445cf1c
FT
1397
1398 /*
1399 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1400 * suspended time is too long. In that case we need do the
1401 * 64 bits math carefully
1402 */
1403 do_div(max, mult);
1404 if (cycle_delta > max) {
1405 num = div64_u64(cycle_delta, max);
1406 nsec = (((u64) max * mult) >> shift) * num;
1407 cycle_delta -= num * max;
1408 }
1409 nsec += ((u64) cycle_delta * mult) >> shift;
1410
7d489d15 1411 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1412 sleeptime_injected = true;
7d489d15
JS
1413 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1414 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1415 sleeptime_injected = true;
8524070b 1416 }
e445cf1c 1417
0fa88cb4 1418 if (sleeptime_injected)
e445cf1c
FT
1419 __timekeeping_inject_sleeptime(tk, &ts_delta);
1420
1421 /* Re-base the last cycle value */
876e7881 1422 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1423 tk->tkr_raw.cycle_last = cycle_now;
1424
4e250fdd 1425 tk->ntp_error = 0;
8524070b 1426 timekeeping_suspended = 0;
780427f0 1427 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1428 write_seqcount_end(&tk_core.seq);
9a7a71b1 1429 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1430
1431 touch_softlockup_watchdog();
1432
4ffee521 1433 tick_resume();
b12a03ce 1434 hrtimers_resume();
8524070b 1435}
1436
124cf911 1437int timekeeping_suspend(void)
8524070b 1438{
3fdb14fd 1439 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1440 unsigned long flags;
7d489d15
JS
1441 struct timespec64 delta, delta_delta;
1442 static struct timespec64 old_delta;
8524070b 1443
2ee96632 1444 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1445
0d6bd995
ZM
1446 /*
1447 * On some systems the persistent_clock can not be detected at
1448 * timekeeping_init by its return value, so if we see a valid
1449 * value returned, update the persistent_clock_exists flag.
1450 */
1451 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1452 persistent_clock_exists = true;
0d6bd995 1453
9a7a71b1 1454 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1455 write_seqcount_begin(&tk_core.seq);
4e250fdd 1456 timekeeping_forward_now(tk);
8524070b 1457 timekeeping_suspended = 1;
cb33217b 1458
0fa88cb4 1459 if (persistent_clock_exists) {
cb33217b 1460 /*
264bb3f7
XP
1461 * To avoid drift caused by repeated suspend/resumes,
1462 * which each can add ~1 second drift error,
1463 * try to compensate so the difference in system time
1464 * and persistent_clock time stays close to constant.
cb33217b 1465 */
264bb3f7
XP
1466 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1467 delta_delta = timespec64_sub(delta, old_delta);
1468 if (abs(delta_delta.tv_sec) >= 2) {
1469 /*
1470 * if delta_delta is too large, assume time correction
1471 * has occurred and set old_delta to the current delta.
1472 */
1473 old_delta = delta;
1474 } else {
1475 /* Otherwise try to adjust old_system to compensate */
1476 timekeeping_suspend_time =
1477 timespec64_add(timekeeping_suspend_time, delta_delta);
1478 }
cb33217b 1479 }
330a1617
JS
1480
1481 timekeeping_update(tk, TK_MIRROR);
060407ae 1482 halt_fast_timekeeper(tk);
3fdb14fd 1483 write_seqcount_end(&tk_core.seq);
9a7a71b1 1484 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1485
4ffee521 1486 tick_suspend();
c54a42b1 1487 clocksource_suspend();
adc78e6b 1488 clockevents_suspend();
8524070b 1489
1490 return 0;
1491}
1492
1493/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1494static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1495 .resume = timekeeping_resume,
1496 .suspend = timekeeping_suspend,
8524070b 1497};
1498
e1a85b2c 1499static int __init timekeeping_init_ops(void)
8524070b 1500{
e1a85b2c
RW
1501 register_syscore_ops(&timekeeping_syscore_ops);
1502 return 0;
8524070b 1503}
e1a85b2c 1504device_initcall(timekeeping_init_ops);
8524070b 1505
1506/*
dc491596 1507 * Apply a multiplier adjustment to the timekeeper
8524070b 1508 */
dc491596
JS
1509static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1510 s64 offset,
1511 bool negative,
1512 int adj_scale)
8524070b 1513{
dc491596
JS
1514 s64 interval = tk->cycle_interval;
1515 s32 mult_adj = 1;
8524070b 1516
dc491596
JS
1517 if (negative) {
1518 mult_adj = -mult_adj;
1519 interval = -interval;
1520 offset = -offset;
1d17d174 1521 }
dc491596
JS
1522 mult_adj <<= adj_scale;
1523 interval <<= adj_scale;
1524 offset <<= adj_scale;
8524070b 1525
c2bc1111
JS
1526 /*
1527 * So the following can be confusing.
1528 *
dc491596 1529 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1530 *
dc491596 1531 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1532 * have been appropriately scaled so the math is the same.
1533 *
1534 * The basic idea here is that we're increasing the multiplier
1535 * by one, this causes the xtime_interval to be incremented by
1536 * one cycle_interval. This is because:
1537 * xtime_interval = cycle_interval * mult
1538 * So if mult is being incremented by one:
1539 * xtime_interval = cycle_interval * (mult + 1)
1540 * Its the same as:
1541 * xtime_interval = (cycle_interval * mult) + cycle_interval
1542 * Which can be shortened to:
1543 * xtime_interval += cycle_interval
1544 *
1545 * So offset stores the non-accumulated cycles. Thus the current
1546 * time (in shifted nanoseconds) is:
1547 * now = (offset * adj) + xtime_nsec
1548 * Now, even though we're adjusting the clock frequency, we have
1549 * to keep time consistent. In other words, we can't jump back
1550 * in time, and we also want to avoid jumping forward in time.
1551 *
1552 * So given the same offset value, we need the time to be the same
1553 * both before and after the freq adjustment.
1554 * now = (offset * adj_1) + xtime_nsec_1
1555 * now = (offset * adj_2) + xtime_nsec_2
1556 * So:
1557 * (offset * adj_1) + xtime_nsec_1 =
1558 * (offset * adj_2) + xtime_nsec_2
1559 * And we know:
1560 * adj_2 = adj_1 + 1
1561 * So:
1562 * (offset * adj_1) + xtime_nsec_1 =
1563 * (offset * (adj_1+1)) + xtime_nsec_2
1564 * (offset * adj_1) + xtime_nsec_1 =
1565 * (offset * adj_1) + offset + xtime_nsec_2
1566 * Canceling the sides:
1567 * xtime_nsec_1 = offset + xtime_nsec_2
1568 * Which gives us:
1569 * xtime_nsec_2 = xtime_nsec_1 - offset
1570 * Which simplfies to:
1571 * xtime_nsec -= offset
1572 *
1573 * XXX - TODO: Doc ntp_error calculation.
1574 */
876e7881 1575 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1576 /* NTP adjustment caused clocksource mult overflow */
1577 WARN_ON_ONCE(1);
1578 return;
1579 }
1580
876e7881 1581 tk->tkr_mono.mult += mult_adj;
f726a697 1582 tk->xtime_interval += interval;
876e7881 1583 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1584 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1585}
1586
1587/*
1588 * Calculate the multiplier adjustment needed to match the frequency
1589 * specified by NTP
1590 */
1591static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1592 s64 offset)
1593{
1594 s64 interval = tk->cycle_interval;
1595 s64 xinterval = tk->xtime_interval;
1596 s64 tick_error;
1597 bool negative;
1598 u32 adj;
1599
1600 /* Remove any current error adj from freq calculation */
1601 if (tk->ntp_err_mult)
1602 xinterval -= tk->cycle_interval;
1603
375f45b5
JS
1604 tk->ntp_tick = ntp_tick_length();
1605
dc491596
JS
1606 /* Calculate current error per tick */
1607 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1608 tick_error -= (xinterval + tk->xtime_remainder);
1609
1610 /* Don't worry about correcting it if its small */
1611 if (likely((tick_error >= 0) && (tick_error <= interval)))
1612 return;
1613
1614 /* preserve the direction of correction */
1615 negative = (tick_error < 0);
1616
1617 /* Sort out the magnitude of the correction */
1618 tick_error = abs(tick_error);
1619 for (adj = 0; tick_error > interval; adj++)
1620 tick_error >>= 1;
1621
1622 /* scale the corrections */
1623 timekeeping_apply_adjustment(tk, offset, negative, adj);
1624}
1625
1626/*
1627 * Adjust the timekeeper's multiplier to the correct frequency
1628 * and also to reduce the accumulated error value.
1629 */
1630static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1631{
1632 /* Correct for the current frequency error */
1633 timekeeping_freqadjust(tk, offset);
1634
1635 /* Next make a small adjustment to fix any cumulative error */
1636 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1637 tk->ntp_err_mult = 1;
1638 timekeeping_apply_adjustment(tk, offset, 0, 0);
1639 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1640 /* Undo any existing error adjustment */
1641 timekeeping_apply_adjustment(tk, offset, 1, 0);
1642 tk->ntp_err_mult = 0;
1643 }
1644
876e7881
PZ
1645 if (unlikely(tk->tkr_mono.clock->maxadj &&
1646 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1647 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1648 printk_once(KERN_WARNING
1649 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1650 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1651 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1652 }
2a8c0883
JS
1653
1654 /*
1655 * It may be possible that when we entered this function, xtime_nsec
1656 * was very small. Further, if we're slightly speeding the clocksource
1657 * in the code above, its possible the required corrective factor to
1658 * xtime_nsec could cause it to underflow.
1659 *
1660 * Now, since we already accumulated the second, cannot simply roll
1661 * the accumulated second back, since the NTP subsystem has been
1662 * notified via second_overflow. So instead we push xtime_nsec forward
1663 * by the amount we underflowed, and add that amount into the error.
1664 *
1665 * We'll correct this error next time through this function, when
1666 * xtime_nsec is not as small.
1667 */
876e7881
PZ
1668 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1669 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1670 tk->tkr_mono.xtime_nsec = 0;
f726a697 1671 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1672 }
8524070b 1673}
1674
1f4f9487
JS
1675/**
1676 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1677 *
1678 * Helper function that accumulates a the nsecs greater then a second
1679 * from the xtime_nsec field to the xtime_secs field.
1680 * It also calls into the NTP code to handle leapsecond processing.
1681 *
1682 */
780427f0 1683static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1684{
876e7881 1685 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1686 unsigned int clock_set = 0;
1f4f9487 1687
876e7881 1688 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1689 int leap;
1690
876e7881 1691 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1692 tk->xtime_sec++;
1693
1694 /* Figure out if its a leap sec and apply if needed */
1695 leap = second_overflow(tk->xtime_sec);
6d0ef903 1696 if (unlikely(leap)) {
7d489d15 1697 struct timespec64 ts;
6d0ef903
JS
1698
1699 tk->xtime_sec += leap;
1f4f9487 1700
6d0ef903
JS
1701 ts.tv_sec = leap;
1702 ts.tv_nsec = 0;
1703 tk_set_wall_to_mono(tk,
7d489d15 1704 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1705
cc244dda
JS
1706 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1707
5258d3f2 1708 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1709 }
1f4f9487 1710 }
5258d3f2 1711 return clock_set;
1f4f9487
JS
1712}
1713
a092ff0f 1714/**
1715 * logarithmic_accumulation - shifted accumulation of cycles
1716 *
1717 * This functions accumulates a shifted interval of cycles into
1718 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1719 * loop.
1720 *
1721 * Returns the unconsumed cycles.
1722 */
f726a697 1723static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1724 u32 shift,
1725 unsigned int *clock_set)
a092ff0f 1726{
23a9537a 1727 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1728 u64 raw_nsecs;
a092ff0f 1729
f726a697 1730 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1731 if (offset < interval)
a092ff0f 1732 return offset;
1733
1734 /* Accumulate one shifted interval */
23a9537a 1735 offset -= interval;
876e7881 1736 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1737 tk->tkr_raw.cycle_last += interval;
a092ff0f 1738
876e7881 1739 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1740 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1741
deda2e81 1742 /* Accumulate raw time */
5b3900cd 1743 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1744 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1745 if (raw_nsecs >= NSEC_PER_SEC) {
1746 u64 raw_secs = raw_nsecs;
1747 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1748 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1749 }
f726a697 1750 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1751
1752 /* Accumulate error between NTP and clock interval */
375f45b5 1753 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1754 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1755 (tk->ntp_error_shift + shift);
a092ff0f 1756
1757 return offset;
1758}
1759
8524070b 1760/**
1761 * update_wall_time - Uses the current clocksource to increment the wall time
1762 *
8524070b 1763 */
47a1b796 1764void update_wall_time(void)
8524070b 1765{
3fdb14fd 1766 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1767 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1768 cycle_t offset;
a092ff0f 1769 int shift = 0, maxshift;
5258d3f2 1770 unsigned int clock_set = 0;
70471f2f
JS
1771 unsigned long flags;
1772
9a7a71b1 1773 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1774
1775 /* Make sure we're fully resumed: */
1776 if (unlikely(timekeeping_suspended))
70471f2f 1777 goto out;
8524070b 1778
592913ec 1779#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1780 offset = real_tk->cycle_interval;
592913ec 1781#else
876e7881
PZ
1782 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1783 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1784#endif
8524070b 1785
bf2ac312 1786 /* Check if there's really nothing to do */
48cdc135 1787 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1788 goto out;
1789
3c17ad19
JS
1790 /* Do some additional sanity checking */
1791 timekeeping_check_update(real_tk, offset);
1792
a092ff0f 1793 /*
1794 * With NO_HZ we may have to accumulate many cycle_intervals
1795 * (think "ticks") worth of time at once. To do this efficiently,
1796 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1797 * that is smaller than the offset. We then accumulate that
a092ff0f 1798 * chunk in one go, and then try to consume the next smaller
1799 * doubled multiple.
8524070b 1800 */
4e250fdd 1801 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1802 shift = max(0, shift);
88b28adf 1803 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1804 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1805 shift = min(shift, maxshift);
4e250fdd 1806 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1807 offset = logarithmic_accumulation(tk, offset, shift,
1808 &clock_set);
4e250fdd 1809 if (offset < tk->cycle_interval<<shift)
830ec045 1810 shift--;
8524070b 1811 }
1812
1813 /* correct the clock when NTP error is too big */
4e250fdd 1814 timekeeping_adjust(tk, offset);
8524070b 1815
6a867a39 1816 /*
92bb1fcf
JS
1817 * XXX This can be killed once everyone converts
1818 * to the new update_vsyscall.
1819 */
1820 old_vsyscall_fixup(tk);
8524070b 1821
6a867a39
JS
1822 /*
1823 * Finally, make sure that after the rounding
1e75fa8b 1824 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1825 */
5258d3f2 1826 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1827
3fdb14fd 1828 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1829 /*
1830 * Update the real timekeeper.
1831 *
1832 * We could avoid this memcpy by switching pointers, but that
1833 * requires changes to all other timekeeper usage sites as
1834 * well, i.e. move the timekeeper pointer getter into the
1835 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1836 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1837 * updating.
1838 */
1839 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1840 timekeeping_update(real_tk, clock_set);
3fdb14fd 1841 write_seqcount_end(&tk_core.seq);
ca4523cd 1842out:
9a7a71b1 1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1844 if (clock_set)
cab5e127
JS
1845 /* Have to call _delayed version, since in irq context*/
1846 clock_was_set_delayed();
8524070b 1847}
7c3f1a57
TJ
1848
1849/**
d08c0cdd
JS
1850 * getboottime64 - Return the real time of system boot.
1851 * @ts: pointer to the timespec64 to be set
7c3f1a57 1852 *
d08c0cdd 1853 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1854 *
1855 * This is based on the wall_to_monotonic offset and the total suspend
1856 * time. Calls to settimeofday will affect the value returned (which
1857 * basically means that however wrong your real time clock is at boot time,
1858 * you get the right time here).
1859 */
d08c0cdd 1860void getboottime64(struct timespec64 *ts)
7c3f1a57 1861{
3fdb14fd 1862 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1863 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1864
d08c0cdd 1865 *ts = ktime_to_timespec64(t);
7c3f1a57 1866}
d08c0cdd 1867EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1868
17c38b74 1869unsigned long get_seconds(void)
1870{
3fdb14fd 1871 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1872
1873 return tk->xtime_sec;
17c38b74 1874}
1875EXPORT_SYMBOL(get_seconds);
1876
da15cfda 1877struct timespec __current_kernel_time(void)
1878{
3fdb14fd 1879 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1880
7d489d15 1881 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1882}
17c38b74 1883
2c6b47de 1884struct timespec current_kernel_time(void)
1885{
3fdb14fd 1886 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1887 struct timespec64 now;
2c6b47de 1888 unsigned long seq;
1889
1890 do {
3fdb14fd 1891 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1892
4e250fdd 1893 now = tk_xtime(tk);
3fdb14fd 1894 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1895
7d489d15 1896 return timespec64_to_timespec(now);
2c6b47de 1897}
2c6b47de 1898EXPORT_SYMBOL(current_kernel_time);
da15cfda 1899
334334b5 1900struct timespec64 get_monotonic_coarse64(void)
da15cfda 1901{
3fdb14fd 1902 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1903 struct timespec64 now, mono;
da15cfda 1904 unsigned long seq;
1905
1906 do {
3fdb14fd 1907 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1908
4e250fdd
JS
1909 now = tk_xtime(tk);
1910 mono = tk->wall_to_monotonic;
3fdb14fd 1911 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1912
7d489d15 1913 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1914 now.tv_nsec + mono.tv_nsec);
7d489d15 1915
334334b5 1916 return now;
da15cfda 1917}
871cf1e5
TH
1918
1919/*
d6ad4187 1920 * Must hold jiffies_lock
871cf1e5
TH
1921 */
1922void do_timer(unsigned long ticks)
1923{
1924 jiffies_64 += ticks;
871cf1e5
TH
1925 calc_global_load(ticks);
1926}
48cf76f7 1927
f6c06abf 1928/**
76f41088 1929 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1930 * @offs_real: pointer to storage for monotonic -> realtime offset
1931 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1932 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1933 *
1934 * Returns current monotonic time and updates the offsets
b7bc50e4 1935 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1936 */
76f41088 1937ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1938 ktime_t *offs_tai)
f6c06abf 1939{
3fdb14fd 1940 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1941 unsigned int seq;
a37c0aad
TG
1942 ktime_t base;
1943 u64 nsecs;
f6c06abf
TG
1944
1945 do {
3fdb14fd 1946 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1947
876e7881
PZ
1948 base = tk->tkr_mono.base;
1949 nsecs = timekeeping_get_ns(&tk->tkr_mono);
f6c06abf 1950
4e250fdd
JS
1951 *offs_real = tk->offs_real;
1952 *offs_boot = tk->offs_boot;
90adda98 1953 *offs_tai = tk->offs_tai;
3fdb14fd 1954 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1955
a37c0aad 1956 return ktime_add_ns(base, nsecs);
f6c06abf 1957}
f6c06abf 1958
aa6f9c59
JS
1959/**
1960 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1961 */
1962int do_adjtimex(struct timex *txc)
1963{
3fdb14fd 1964 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1965 unsigned long flags;
7d489d15 1966 struct timespec64 ts;
4e8f8b34 1967 s32 orig_tai, tai;
e4085693
JS
1968 int ret;
1969
1970 /* Validate the data before disabling interrupts */
1971 ret = ntp_validate_timex(txc);
1972 if (ret)
1973 return ret;
1974
cef90377
JS
1975 if (txc->modes & ADJ_SETOFFSET) {
1976 struct timespec delta;
1977 delta.tv_sec = txc->time.tv_sec;
1978 delta.tv_nsec = txc->time.tv_usec;
1979 if (!(txc->modes & ADJ_NANO))
1980 delta.tv_nsec *= 1000;
1981 ret = timekeeping_inject_offset(&delta);
1982 if (ret)
1983 return ret;
1984 }
1985
d6d29896 1986 getnstimeofday64(&ts);
87ace39b 1987
06c017fd 1988 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1989 write_seqcount_begin(&tk_core.seq);
06c017fd 1990
4e8f8b34 1991 orig_tai = tai = tk->tai_offset;
87ace39b 1992 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1993
4e8f8b34
JS
1994 if (tai != orig_tai) {
1995 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1996 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1997 }
3fdb14fd 1998 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1999 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2000
6fdda9a9
JS
2001 if (tai != orig_tai)
2002 clock_was_set();
2003
7bd36014
JS
2004 ntp_notify_cmos_timer();
2005
87ace39b
JS
2006 return ret;
2007}
aa6f9c59
JS
2008
2009#ifdef CONFIG_NTP_PPS
2010/**
2011 * hardpps() - Accessor function to NTP __hardpps function
2012 */
2013void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2014{
06c017fd
JS
2015 unsigned long flags;
2016
2017 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2018 write_seqcount_begin(&tk_core.seq);
06c017fd 2019
aa6f9c59 2020 __hardpps(phase_ts, raw_ts);
06c017fd 2021
3fdb14fd 2022 write_seqcount_end(&tk_core.seq);
06c017fd 2023 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2024}
2025EXPORT_SYMBOL(hardpps);
2026#endif
2027
f0af911a
TH
2028/**
2029 * xtime_update() - advances the timekeeping infrastructure
2030 * @ticks: number of ticks, that have elapsed since the last call.
2031 *
2032 * Must be called with interrupts disabled.
2033 */
2034void xtime_update(unsigned long ticks)
2035{
d6ad4187 2036 write_seqlock(&jiffies_lock);
f0af911a 2037 do_timer(ticks);
d6ad4187 2038 write_sequnlock(&jiffies_lock);
47a1b796 2039 update_wall_time();
f0af911a 2040}
This page took 0.6845 seconds and 5 git commands to generate.