Merge branch 'formingo/3.2/tip/timers/core' of git://git.linaro.org/people/jstultz...
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b 18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
23ce7211
MS
28 /* The shift value of the current clocksource. */
29 int shift;
155ec602
MS
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
a386b5af
KP
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
155ec602
MS
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
39
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
23ce7211
MS
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
0a544198
MS
48 /* NTP adjusted clock multiplier */
49 u32 mult;
155ec602
MS
50};
51
afa14e7c 52static struct timekeeper timekeeper;
155ec602
MS
53
54/**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
56 *
57 * @clock: Pointer to clocksource.
58 *
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
61 *
62 * Unless you're the timekeeping code, you should not be using this!
63 */
64static void timekeeper_setup_internals(struct clocksource *clock)
65{
66 cycle_t interval;
a386b5af 67 u64 tmp, ntpinterval;
155ec602
MS
68
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
71
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
a386b5af 75 ntpinterval = tmp;
0a544198
MS
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
155ec602
MS
78 if (tmp == 0)
79 tmp = 1;
80
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
83
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 87 timekeeper.raw_interval =
0a544198 88 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
89
90 timekeeper.xtime_nsec = 0;
23ce7211 91 timekeeper.shift = clock->shift;
155ec602
MS
92
93 timekeeper.ntp_error = 0;
23ce7211 94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
95
96 /*
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
100 */
101 timekeeper.mult = clock->mult;
155ec602 102}
8524070b 103
2ba2a305
MS
104/* Timekeeper helper functions. */
105static inline s64 timekeeping_get_ns(void)
106{
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
109
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
113
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
120}
121
122static inline s64 timekeeping_get_ns_raw(void)
123{
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
126
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
130
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136}
137
8524070b 138/*
139 * This read-write spinlock protects us from races in SMP while
dce48a84 140 * playing with xtime.
8524070b 141 */
ba2a631b 142__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
8524070b 143
144
145/*
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
7c3f1a57
TJ
152 *
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
156 *
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
8524070b 159 */
0fb86b06
JS
160static struct timespec xtime __attribute__ ((aligned (16)));
161static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
d4f587c6 162static struct timespec total_sleep_time;
8524070b 163
155ec602
MS
164/*
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166 */
afa14e7c 167static struct timespec raw_time;
155ec602 168
1c5745aa
TG
169/* flag for if timekeeping is suspended */
170int __read_mostly timekeeping_suspended;
171
31089c13
JS
172/* must hold xtime_lock */
173void timekeeping_leap_insert(int leapsecond)
174{
175 xtime.tv_sec += leapsecond;
176 wall_to_monotonic.tv_sec -= leapsecond;
7615856e
JS
177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 timekeeper.mult);
31089c13 179}
8524070b 180
8524070b 181/**
155ec602 182 * timekeeping_forward_now - update clock to the current time
8524070b 183 *
9a055117
RZ
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
8524070b 187 */
155ec602 188static void timekeeping_forward_now(void)
8524070b 189{
190 cycle_t cycle_now, cycle_delta;
155ec602 191 struct clocksource *clock;
9a055117 192 s64 nsec;
8524070b 193
155ec602 194 clock = timekeeper.clock;
a0f7d48b 195 cycle_now = clock->read(clock);
8524070b 196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 197 clock->cycle_last = cycle_now;
8524070b 198
0a544198
MS
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
7d27558c 201
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
204
9a055117 205 timespec_add_ns(&xtime, nsec);
2d42244a 206
0a544198 207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
155ec602 208 timespec_add_ns(&raw_time, nsec);
8524070b 209}
210
211/**
efd9ac86 212 * getnstimeofday - Returns the time of day in a timespec
8524070b 213 * @ts: pointer to the timespec to be set
214 *
efd9ac86 215 * Returns the time of day in a timespec.
8524070b 216 */
efd9ac86 217void getnstimeofday(struct timespec *ts)
8524070b 218{
219 unsigned long seq;
220 s64 nsecs;
221
1c5745aa
TG
222 WARN_ON(timekeeping_suspended);
223
8524070b 224 do {
225 seq = read_seqbegin(&xtime_lock);
226
227 *ts = xtime;
2ba2a305 228 nsecs = timekeeping_get_ns();
8524070b 229
7d27558c 230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
232
8524070b 233 } while (read_seqretry(&xtime_lock, seq));
234
235 timespec_add_ns(ts, nsecs);
236}
237
8524070b 238EXPORT_SYMBOL(getnstimeofday);
239
951ed4d3
MS
240ktime_t ktime_get(void)
241{
951ed4d3
MS
242 unsigned int seq;
243 s64 secs, nsecs;
244
245 WARN_ON(timekeeping_suspended);
246
247 do {
248 seq = read_seqbegin(&xtime_lock);
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
2ba2a305 251 nsecs += timekeeping_get_ns();
951ed4d3
MS
252
253 } while (read_seqretry(&xtime_lock, seq));
254 /*
255 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 */
258 return ktime_add_ns(ktime_set(secs, 0), nsecs);
259}
260EXPORT_SYMBOL_GPL(ktime_get);
261
262/**
263 * ktime_get_ts - get the monotonic clock in timespec format
264 * @ts: pointer to timespec variable
265 *
266 * The function calculates the monotonic clock from the realtime
267 * clock and the wall_to_monotonic offset and stores the result
268 * in normalized timespec format in the variable pointed to by @ts.
269 */
270void ktime_get_ts(struct timespec *ts)
271{
951ed4d3
MS
272 struct timespec tomono;
273 unsigned int seq;
274 s64 nsecs;
275
276 WARN_ON(timekeeping_suspended);
277
278 do {
279 seq = read_seqbegin(&xtime_lock);
280 *ts = xtime;
281 tomono = wall_to_monotonic;
2ba2a305 282 nsecs = timekeeping_get_ns();
951ed4d3
MS
283
284 } while (read_seqretry(&xtime_lock, seq));
285
286 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 ts->tv_nsec + tomono.tv_nsec + nsecs);
288}
289EXPORT_SYMBOL_GPL(ktime_get_ts);
290
e2c18e49
AG
291#ifdef CONFIG_NTP_PPS
292
293/**
294 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295 * @ts_raw: pointer to the timespec to be set to raw monotonic time
296 * @ts_real: pointer to the timespec to be set to the time of day
297 *
298 * This function reads both the time of day and raw monotonic time at the
299 * same time atomically and stores the resulting timestamps in timespec
300 * format.
301 */
302void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
303{
304 unsigned long seq;
305 s64 nsecs_raw, nsecs_real;
306
307 WARN_ON_ONCE(timekeeping_suspended);
308
309 do {
310 u32 arch_offset;
311
312 seq = read_seqbegin(&xtime_lock);
313
314 *ts_raw = raw_time;
315 *ts_real = xtime;
316
317 nsecs_raw = timekeeping_get_ns_raw();
318 nsecs_real = timekeeping_get_ns();
319
320 /* If arch requires, add in gettimeoffset() */
321 arch_offset = arch_gettimeoffset();
322 nsecs_raw += arch_offset;
323 nsecs_real += arch_offset;
324
325 } while (read_seqretry(&xtime_lock, seq));
326
327 timespec_add_ns(ts_raw, nsecs_raw);
328 timespec_add_ns(ts_real, nsecs_real);
329}
330EXPORT_SYMBOL(getnstime_raw_and_real);
331
332#endif /* CONFIG_NTP_PPS */
333
8524070b 334/**
335 * do_gettimeofday - Returns the time of day in a timeval
336 * @tv: pointer to the timeval to be set
337 *
efd9ac86 338 * NOTE: Users should be converted to using getnstimeofday()
8524070b 339 */
340void do_gettimeofday(struct timeval *tv)
341{
342 struct timespec now;
343
efd9ac86 344 getnstimeofday(&now);
8524070b 345 tv->tv_sec = now.tv_sec;
346 tv->tv_usec = now.tv_nsec/1000;
347}
348
349EXPORT_SYMBOL(do_gettimeofday);
350/**
351 * do_settimeofday - Sets the time of day
352 * @tv: pointer to the timespec variable containing the new time
353 *
354 * Sets the time of day to the new time and update NTP and notify hrtimers
355 */
1e6d7679 356int do_settimeofday(const struct timespec *tv)
8524070b 357{
9a055117 358 struct timespec ts_delta;
8524070b 359 unsigned long flags;
8524070b 360
361 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 return -EINVAL;
363
364 write_seqlock_irqsave(&xtime_lock, flags);
365
155ec602 366 timekeeping_forward_now();
9a055117
RZ
367
368 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
8524070b 371
9a055117 372 xtime = *tv;
8524070b 373
155ec602 374 timekeeper.ntp_error = 0;
8524070b 375 ntp_clear();
376
7615856e
JS
377 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 timekeeper.mult);
8524070b 379
380 write_sequnlock_irqrestore(&xtime_lock, flags);
381
382 /* signal hrtimers about time change */
383 clock_was_set();
384
385 return 0;
386}
387
388EXPORT_SYMBOL(do_settimeofday);
389
c528f7c6
JS
390
391/**
392 * timekeeping_inject_offset - Adds or subtracts from the current time.
393 * @tv: pointer to the timespec variable containing the offset
394 *
395 * Adds or subtracts an offset value from the current time.
396 */
397int timekeeping_inject_offset(struct timespec *ts)
398{
399 unsigned long flags;
400
401 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
402 return -EINVAL;
403
404 write_seqlock_irqsave(&xtime_lock, flags);
405
406 timekeeping_forward_now();
407
408 xtime = timespec_add(xtime, *ts);
409 wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
410
411 timekeeper.ntp_error = 0;
412 ntp_clear();
413
414 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
415 timekeeper.mult);
416
417 write_sequnlock_irqrestore(&xtime_lock, flags);
418
419 /* signal hrtimers about time change */
420 clock_was_set();
421
422 return 0;
423}
424EXPORT_SYMBOL(timekeeping_inject_offset);
425
8524070b 426/**
427 * change_clocksource - Swaps clocksources if a new one is available
428 *
429 * Accumulates current time interval and initializes new clocksource
430 */
75c5158f 431static int change_clocksource(void *data)
8524070b 432{
4614e6ad 433 struct clocksource *new, *old;
8524070b 434
75c5158f 435 new = (struct clocksource *) data;
8524070b 436
155ec602 437 timekeeping_forward_now();
75c5158f
MS
438 if (!new->enable || new->enable(new) == 0) {
439 old = timekeeper.clock;
440 timekeeper_setup_internals(new);
441 if (old->disable)
442 old->disable(old);
443 }
444 return 0;
445}
8524070b 446
75c5158f
MS
447/**
448 * timekeeping_notify - Install a new clock source
449 * @clock: pointer to the clock source
450 *
451 * This function is called from clocksource.c after a new, better clock
452 * source has been registered. The caller holds the clocksource_mutex.
453 */
454void timekeeping_notify(struct clocksource *clock)
455{
456 if (timekeeper.clock == clock)
4614e6ad 457 return;
75c5158f 458 stop_machine(change_clocksource, clock, NULL);
8524070b 459 tick_clock_notify();
8524070b 460}
75c5158f 461
a40f262c
TG
462/**
463 * ktime_get_real - get the real (wall-) time in ktime_t format
464 *
465 * returns the time in ktime_t format
466 */
467ktime_t ktime_get_real(void)
468{
469 struct timespec now;
470
471 getnstimeofday(&now);
472
473 return timespec_to_ktime(now);
474}
475EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 476
2d42244a
JS
477/**
478 * getrawmonotonic - Returns the raw monotonic time in a timespec
479 * @ts: pointer to the timespec to be set
480 *
481 * Returns the raw monotonic time (completely un-modified by ntp)
482 */
483void getrawmonotonic(struct timespec *ts)
484{
485 unsigned long seq;
486 s64 nsecs;
2d42244a
JS
487
488 do {
489 seq = read_seqbegin(&xtime_lock);
2ba2a305 490 nsecs = timekeeping_get_ns_raw();
155ec602 491 *ts = raw_time;
2d42244a
JS
492
493 } while (read_seqretry(&xtime_lock, seq));
494
495 timespec_add_ns(ts, nsecs);
496}
497EXPORT_SYMBOL(getrawmonotonic);
498
499
8524070b 500/**
cf4fc6cb 501 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 502 */
cf4fc6cb 503int timekeeping_valid_for_hres(void)
8524070b 504{
505 unsigned long seq;
506 int ret;
507
508 do {
509 seq = read_seqbegin(&xtime_lock);
510
155ec602 511 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 512
513 } while (read_seqretry(&xtime_lock, seq));
514
515 return ret;
516}
517
98962465
JH
518/**
519 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
520 *
521 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
522 * ensure that the clocksource does not change!
523 */
524u64 timekeeping_max_deferment(void)
525{
526 return timekeeper.clock->max_idle_ns;
527}
528
8524070b 529/**
d4f587c6 530 * read_persistent_clock - Return time from the persistent clock.
8524070b 531 *
532 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
533 * Reads the time from the battery backed persistent clock.
534 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 535 *
536 * XXX - Do be sure to remove it once all arches implement it.
537 */
d4f587c6 538void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 539{
d4f587c6
MS
540 ts->tv_sec = 0;
541 ts->tv_nsec = 0;
8524070b 542}
543
23970e38
MS
544/**
545 * read_boot_clock - Return time of the system start.
546 *
547 * Weak dummy function for arches that do not yet support it.
548 * Function to read the exact time the system has been started.
549 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
550 *
551 * XXX - Do be sure to remove it once all arches implement it.
552 */
553void __attribute__((weak)) read_boot_clock(struct timespec *ts)
554{
555 ts->tv_sec = 0;
556 ts->tv_nsec = 0;
557}
558
8524070b 559/*
560 * timekeeping_init - Initializes the clocksource and common timekeeping values
561 */
562void __init timekeeping_init(void)
563{
155ec602 564 struct clocksource *clock;
8524070b 565 unsigned long flags;
23970e38 566 struct timespec now, boot;
d4f587c6
MS
567
568 read_persistent_clock(&now);
23970e38 569 read_boot_clock(&boot);
8524070b 570
571 write_seqlock_irqsave(&xtime_lock, flags);
572
7dffa3c6 573 ntp_init();
8524070b 574
f1b82746 575 clock = clocksource_default_clock();
a0f7d48b
MS
576 if (clock->enable)
577 clock->enable(clock);
155ec602 578 timekeeper_setup_internals(clock);
8524070b 579
d4f587c6
MS
580 xtime.tv_sec = now.tv_sec;
581 xtime.tv_nsec = now.tv_nsec;
155ec602
MS
582 raw_time.tv_sec = 0;
583 raw_time.tv_nsec = 0;
23970e38
MS
584 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
585 boot.tv_sec = xtime.tv_sec;
586 boot.tv_nsec = xtime.tv_nsec;
587 }
8524070b 588 set_normalized_timespec(&wall_to_monotonic,
23970e38 589 -boot.tv_sec, -boot.tv_nsec);
d4f587c6
MS
590 total_sleep_time.tv_sec = 0;
591 total_sleep_time.tv_nsec = 0;
8524070b 592 write_sequnlock_irqrestore(&xtime_lock, flags);
593}
594
8524070b 595/* time in seconds when suspend began */
d4f587c6 596static struct timespec timekeeping_suspend_time;
8524070b 597
304529b1
JS
598/**
599 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
600 * @delta: pointer to a timespec delta value
601 *
602 * Takes a timespec offset measuring a suspend interval and properly
603 * adds the sleep offset to the timekeeping variables.
604 */
605static void __timekeeping_inject_sleeptime(struct timespec *delta)
606{
cb5de2f8 607 if (!timespec_valid(delta)) {
cbaa5152 608 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
609 "sleep delta value!\n");
610 return;
611 }
612
304529b1
JS
613 xtime = timespec_add(xtime, *delta);
614 wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
615 total_sleep_time = timespec_add(total_sleep_time, *delta);
616}
617
618
619/**
620 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
621 * @delta: pointer to a timespec delta value
622 *
623 * This hook is for architectures that cannot support read_persistent_clock
624 * because their RTC/persistent clock is only accessible when irqs are enabled.
625 *
626 * This function should only be called by rtc_resume(), and allows
627 * a suspend offset to be injected into the timekeeping values.
628 */
629void timekeeping_inject_sleeptime(struct timespec *delta)
630{
631 unsigned long flags;
632 struct timespec ts;
633
634 /* Make sure we don't set the clock twice */
635 read_persistent_clock(&ts);
636 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
637 return;
638
639 write_seqlock_irqsave(&xtime_lock, flags);
640 timekeeping_forward_now();
641
642 __timekeeping_inject_sleeptime(delta);
643
644 timekeeper.ntp_error = 0;
645 ntp_clear();
646 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
647 timekeeper.mult);
648
649 write_sequnlock_irqrestore(&xtime_lock, flags);
650
651 /* signal hrtimers about time change */
652 clock_was_set();
653}
654
655
8524070b 656/**
657 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 658 *
659 * This is for the generic clocksource timekeeping.
660 * xtime/wall_to_monotonic/jiffies/etc are
661 * still managed by arch specific suspend/resume code.
662 */
e1a85b2c 663static void timekeeping_resume(void)
8524070b 664{
665 unsigned long flags;
d4f587c6
MS
666 struct timespec ts;
667
668 read_persistent_clock(&ts);
8524070b 669
d10ff3fb
TG
670 clocksource_resume();
671
8524070b 672 write_seqlock_irqsave(&xtime_lock, flags);
673
d4f587c6
MS
674 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
675 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 676 __timekeeping_inject_sleeptime(&ts);
8524070b 677 }
678 /* re-base the last cycle value */
155ec602
MS
679 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
680 timekeeper.ntp_error = 0;
8524070b 681 timekeeping_suspended = 0;
682 write_sequnlock_irqrestore(&xtime_lock, flags);
683
684 touch_softlockup_watchdog();
685
686 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
687
688 /* Resume hrtimers */
b12a03ce 689 hrtimers_resume();
8524070b 690}
691
e1a85b2c 692static int timekeeping_suspend(void)
8524070b 693{
694 unsigned long flags;
cb33217b
JS
695 struct timespec delta, delta_delta;
696 static struct timespec old_delta;
8524070b 697
d4f587c6 698 read_persistent_clock(&timekeeping_suspend_time);
3be90950 699
8524070b 700 write_seqlock_irqsave(&xtime_lock, flags);
155ec602 701 timekeeping_forward_now();
8524070b 702 timekeeping_suspended = 1;
cb33217b
JS
703
704 /*
705 * To avoid drift caused by repeated suspend/resumes,
706 * which each can add ~1 second drift error,
707 * try to compensate so the difference in system time
708 * and persistent_clock time stays close to constant.
709 */
710 delta = timespec_sub(xtime, timekeeping_suspend_time);
711 delta_delta = timespec_sub(delta, old_delta);
712 if (abs(delta_delta.tv_sec) >= 2) {
713 /*
714 * if delta_delta is too large, assume time correction
715 * has occured and set old_delta to the current delta.
716 */
717 old_delta = delta;
718 } else {
719 /* Otherwise try to adjust old_system to compensate */
720 timekeeping_suspend_time =
721 timespec_add(timekeeping_suspend_time, delta_delta);
722 }
8524070b 723 write_sequnlock_irqrestore(&xtime_lock, flags);
724
725 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 726 clocksource_suspend();
8524070b 727
728 return 0;
729}
730
731/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 732static struct syscore_ops timekeeping_syscore_ops = {
8524070b 733 .resume = timekeeping_resume,
734 .suspend = timekeeping_suspend,
8524070b 735};
736
e1a85b2c 737static int __init timekeeping_init_ops(void)
8524070b 738{
e1a85b2c
RW
739 register_syscore_ops(&timekeeping_syscore_ops);
740 return 0;
8524070b 741}
742
e1a85b2c 743device_initcall(timekeeping_init_ops);
8524070b 744
745/*
746 * If the error is already larger, we look ahead even further
747 * to compensate for late or lost adjustments.
748 */
155ec602 749static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 750 s64 *offset)
751{
752 s64 tick_error, i;
753 u32 look_ahead, adj;
754 s32 error2, mult;
755
756 /*
757 * Use the current error value to determine how much to look ahead.
758 * The larger the error the slower we adjust for it to avoid problems
759 * with losing too many ticks, otherwise we would overadjust and
760 * produce an even larger error. The smaller the adjustment the
761 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 762 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 763 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
764 */
155ec602 765 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 766 error2 = abs(error2);
767 for (look_ahead = 0; error2 > 0; look_ahead++)
768 error2 >>= 2;
769
770 /*
771 * Now calculate the error in (1 << look_ahead) ticks, but first
772 * remove the single look ahead already included in the error.
773 */
23ce7211 774 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
155ec602 775 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 776 error = ((error - tick_error) >> look_ahead) + tick_error;
777
778 /* Finally calculate the adjustment shift value. */
779 i = *interval;
780 mult = 1;
781 if (error < 0) {
782 error = -error;
783 *interval = -*interval;
784 *offset = -*offset;
785 mult = -1;
786 }
787 for (adj = 0; error > i; adj++)
788 error >>= 1;
789
790 *interval <<= adj;
791 *offset <<= adj;
792 return mult << adj;
793}
794
795/*
796 * Adjust the multiplier to reduce the error value,
797 * this is optimized for the most common adjustments of -1,0,1,
798 * for other values we can do a bit more work.
799 */
155ec602 800static void timekeeping_adjust(s64 offset)
8524070b 801{
155ec602 802 s64 error, interval = timekeeper.cycle_interval;
8524070b 803 int adj;
804
c2bc1111
JS
805 /*
806 * The point of this is to check if the error is greater then half
807 * an interval.
808 *
809 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
810 *
811 * Note we subtract one in the shift, so that error is really error*2.
812 * This "saves" dividing(shifting) intererval twice, but keeps the
813 * (error > interval) comparision as still measuring if error is
814 * larger then half an interval.
815 *
816 * Note: It does not "save" on aggrivation when reading the code.
817 */
23ce7211 818 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 819 if (error > interval) {
c2bc1111
JS
820 /*
821 * We now divide error by 4(via shift), which checks if
822 * the error is greater then twice the interval.
823 * If it is greater, we need a bigadjust, if its smaller,
824 * we can adjust by 1.
825 */
8524070b 826 error >>= 2;
c2bc1111
JS
827 /*
828 * XXX - In update_wall_time, we round up to the next
829 * nanosecond, and store the amount rounded up into
830 * the error. This causes the likely below to be unlikely.
831 *
832 * The properfix is to avoid rounding up by using
833 * the high precision timekeeper.xtime_nsec instead of
834 * xtime.tv_nsec everywhere. Fixing this will take some
835 * time.
836 */
8524070b 837 if (likely(error <= interval))
838 adj = 1;
839 else
155ec602 840 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 841 } else if (error < -interval) {
c2bc1111 842 /* See comment above, this is just switched for the negative */
8524070b 843 error >>= 2;
844 if (likely(error >= -interval)) {
845 adj = -1;
846 interval = -interval;
847 offset = -offset;
848 } else
155ec602 849 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 850 } else /* No adjustment needed */
8524070b 851 return;
852
d65670a7
JS
853 WARN_ONCE(timekeeper.clock->maxadj &&
854 (timekeeper.mult + adj > timekeeper.clock->mult +
855 timekeeper.clock->maxadj),
856 "Adjusting %s more then 11%% (%ld vs %ld)\n",
857 timekeeper.clock->name, (long)timekeeper.mult + adj,
858 (long)timekeeper.clock->mult +
859 timekeeper.clock->maxadj);
c2bc1111
JS
860 /*
861 * So the following can be confusing.
862 *
863 * To keep things simple, lets assume adj == 1 for now.
864 *
865 * When adj != 1, remember that the interval and offset values
866 * have been appropriately scaled so the math is the same.
867 *
868 * The basic idea here is that we're increasing the multiplier
869 * by one, this causes the xtime_interval to be incremented by
870 * one cycle_interval. This is because:
871 * xtime_interval = cycle_interval * mult
872 * So if mult is being incremented by one:
873 * xtime_interval = cycle_interval * (mult + 1)
874 * Its the same as:
875 * xtime_interval = (cycle_interval * mult) + cycle_interval
876 * Which can be shortened to:
877 * xtime_interval += cycle_interval
878 *
879 * So offset stores the non-accumulated cycles. Thus the current
880 * time (in shifted nanoseconds) is:
881 * now = (offset * adj) + xtime_nsec
882 * Now, even though we're adjusting the clock frequency, we have
883 * to keep time consistent. In other words, we can't jump back
884 * in time, and we also want to avoid jumping forward in time.
885 *
886 * So given the same offset value, we need the time to be the same
887 * both before and after the freq adjustment.
888 * now = (offset * adj_1) + xtime_nsec_1
889 * now = (offset * adj_2) + xtime_nsec_2
890 * So:
891 * (offset * adj_1) + xtime_nsec_1 =
892 * (offset * adj_2) + xtime_nsec_2
893 * And we know:
894 * adj_2 = adj_1 + 1
895 * So:
896 * (offset * adj_1) + xtime_nsec_1 =
897 * (offset * (adj_1+1)) + xtime_nsec_2
898 * (offset * adj_1) + xtime_nsec_1 =
899 * (offset * adj_1) + offset + xtime_nsec_2
900 * Canceling the sides:
901 * xtime_nsec_1 = offset + xtime_nsec_2
902 * Which gives us:
903 * xtime_nsec_2 = xtime_nsec_1 - offset
904 * Which simplfies to:
905 * xtime_nsec -= offset
906 *
907 * XXX - TODO: Doc ntp_error calculation.
908 */
0a544198 909 timekeeper.mult += adj;
155ec602
MS
910 timekeeper.xtime_interval += interval;
911 timekeeper.xtime_nsec -= offset;
912 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 913 timekeeper.ntp_error_shift;
8524070b 914}
915
83f57a11 916
a092ff0f 917/**
918 * logarithmic_accumulation - shifted accumulation of cycles
919 *
920 * This functions accumulates a shifted interval of cycles into
921 * into a shifted interval nanoseconds. Allows for O(log) accumulation
922 * loop.
923 *
924 * Returns the unconsumed cycles.
925 */
926static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
927{
928 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
deda2e81 929 u64 raw_nsecs;
a092ff0f 930
931 /* If the offset is smaller then a shifted interval, do nothing */
932 if (offset < timekeeper.cycle_interval<<shift)
933 return offset;
934
935 /* Accumulate one shifted interval */
936 offset -= timekeeper.cycle_interval << shift;
937 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
938
939 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
940 while (timekeeper.xtime_nsec >= nsecps) {
941 timekeeper.xtime_nsec -= nsecps;
942 xtime.tv_sec++;
943 second_overflow();
944 }
945
deda2e81
JW
946 /* Accumulate raw time */
947 raw_nsecs = timekeeper.raw_interval << shift;
948 raw_nsecs += raw_time.tv_nsec;
c7dcf87a
JS
949 if (raw_nsecs >= NSEC_PER_SEC) {
950 u64 raw_secs = raw_nsecs;
951 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
952 raw_time.tv_sec += raw_secs;
a092ff0f 953 }
deda2e81 954 raw_time.tv_nsec = raw_nsecs;
a092ff0f 955
956 /* Accumulate error between NTP and clock interval */
957 timekeeper.ntp_error += tick_length << shift;
a386b5af
KP
958 timekeeper.ntp_error -=
959 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f 960 (timekeeper.ntp_error_shift + shift);
961
962 return offset;
963}
964
83f57a11 965
8524070b 966/**
967 * update_wall_time - Uses the current clocksource to increment the wall time
968 *
969 * Called from the timer interrupt, must hold a write on xtime_lock.
970 */
871cf1e5 971static void update_wall_time(void)
8524070b 972{
155ec602 973 struct clocksource *clock;
8524070b 974 cycle_t offset;
a092ff0f 975 int shift = 0, maxshift;
8524070b 976
977 /* Make sure we're fully resumed: */
978 if (unlikely(timekeeping_suspended))
979 return;
980
155ec602 981 clock = timekeeper.clock;
592913ec
JS
982
983#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 984 offset = timekeeper.cycle_interval;
592913ec
JS
985#else
986 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 987#endif
23ce7211 988 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
8524070b 989
a092ff0f 990 /*
991 * With NO_HZ we may have to accumulate many cycle_intervals
992 * (think "ticks") worth of time at once. To do this efficiently,
993 * we calculate the largest doubling multiple of cycle_intervals
994 * that is smaller then the offset. We then accumulate that
995 * chunk in one go, and then try to consume the next smaller
996 * doubled multiple.
8524070b 997 */
a092ff0f 998 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
999 shift = max(0, shift);
1000 /* Bound shift to one less then what overflows tick_length */
1001 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
1002 shift = min(shift, maxshift);
155ec602 1003 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1004 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1005 if(offset < timekeeper.cycle_interval<<shift)
1006 shift--;
8524070b 1007 }
1008
1009 /* correct the clock when NTP error is too big */
155ec602 1010 timekeeping_adjust(offset);
8524070b 1011
6c9bacb4 1012 /*
1013 * Since in the loop above, we accumulate any amount of time
1014 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1015 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1016 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 1017 * its possible the required corrective factor to xtime_nsec could
1018 * cause it to underflow.
1019 *
1020 * Now, we cannot simply roll the accumulated second back, since
1021 * the NTP subsystem has been notified via second_overflow. So
1022 * instead we push xtime_nsec forward by the amount we underflowed,
1023 * and add that amount into the error.
1024 *
1025 * We'll correct this error next time through this function, when
1026 * xtime_nsec is not as small.
1027 */
155ec602
MS
1028 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1029 s64 neg = -(s64)timekeeper.xtime_nsec;
1030 timekeeper.xtime_nsec = 0;
23ce7211 1031 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 1032 }
1033
6a867a39
JS
1034
1035 /*
1036 * Store full nanoseconds into xtime after rounding it up and
5cd1c9c5
RZ
1037 * add the remainder to the error difference.
1038 */
23ce7211
MS
1039 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
1040 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
1041 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1042 timekeeper.ntp_error_shift;
8524070b 1043
6a867a39
JS
1044 /*
1045 * Finally, make sure that after the rounding
1046 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1047 */
1048 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
1049 xtime.tv_nsec -= NSEC_PER_SEC;
1050 xtime.tv_sec++;
1051 second_overflow();
1052 }
83f57a11 1053
8524070b 1054 /* check to see if there is a new clocksource to use */
7615856e
JS
1055 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
1056 timekeeper.mult);
8524070b 1057}
7c3f1a57
TJ
1058
1059/**
1060 * getboottime - Return the real time of system boot.
1061 * @ts: pointer to the timespec to be set
1062 *
abb3a4ea 1063 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1064 *
1065 * This is based on the wall_to_monotonic offset and the total suspend
1066 * time. Calls to settimeofday will affect the value returned (which
1067 * basically means that however wrong your real time clock is at boot time,
1068 * you get the right time here).
1069 */
1070void getboottime(struct timespec *ts)
1071{
36d47481
HS
1072 struct timespec boottime = {
1073 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
1074 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
1075 };
d4f587c6 1076
d4f587c6 1077 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1078}
c93d89f3 1079EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1080
abb3a4ea
JS
1081
1082/**
1083 * get_monotonic_boottime - Returns monotonic time since boot
1084 * @ts: pointer to the timespec to be set
1085 *
1086 * Returns the monotonic time since boot in a timespec.
1087 *
1088 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1089 * includes the time spent in suspend.
1090 */
1091void get_monotonic_boottime(struct timespec *ts)
1092{
1093 struct timespec tomono, sleep;
1094 unsigned int seq;
1095 s64 nsecs;
1096
1097 WARN_ON(timekeeping_suspended);
1098
1099 do {
1100 seq = read_seqbegin(&xtime_lock);
1101 *ts = xtime;
1102 tomono = wall_to_monotonic;
1103 sleep = total_sleep_time;
1104 nsecs = timekeeping_get_ns();
1105
1106 } while (read_seqretry(&xtime_lock, seq));
1107
1108 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1109 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1110}
1111EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1112
1113/**
1114 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1115 *
1116 * Returns the monotonic time since boot in a ktime
1117 *
1118 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1119 * includes the time spent in suspend.
1120 */
1121ktime_t ktime_get_boottime(void)
1122{
1123 struct timespec ts;
1124
1125 get_monotonic_boottime(&ts);
1126 return timespec_to_ktime(ts);
1127}
1128EXPORT_SYMBOL_GPL(ktime_get_boottime);
1129
7c3f1a57
TJ
1130/**
1131 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1132 * @ts: pointer to the timespec to be converted
1133 */
1134void monotonic_to_bootbased(struct timespec *ts)
1135{
ce3bf7ab 1136 *ts = timespec_add(*ts, total_sleep_time);
7c3f1a57 1137}
c93d89f3 1138EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1139
17c38b74 1140unsigned long get_seconds(void)
1141{
6a867a39 1142 return xtime.tv_sec;
17c38b74 1143}
1144EXPORT_SYMBOL(get_seconds);
1145
da15cfda 1146struct timespec __current_kernel_time(void)
1147{
6a867a39 1148 return xtime;
da15cfda 1149}
17c38b74 1150
2c6b47de 1151struct timespec current_kernel_time(void)
1152{
1153 struct timespec now;
1154 unsigned long seq;
1155
1156 do {
1157 seq = read_seqbegin(&xtime_lock);
83f57a11 1158
6a867a39 1159 now = xtime;
2c6b47de 1160 } while (read_seqretry(&xtime_lock, seq));
1161
1162 return now;
1163}
2c6b47de 1164EXPORT_SYMBOL(current_kernel_time);
da15cfda 1165
1166struct timespec get_monotonic_coarse(void)
1167{
1168 struct timespec now, mono;
1169 unsigned long seq;
1170
1171 do {
1172 seq = read_seqbegin(&xtime_lock);
83f57a11 1173
6a867a39 1174 now = xtime;
da15cfda 1175 mono = wall_to_monotonic;
1176 } while (read_seqretry(&xtime_lock, seq));
1177
1178 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1179 now.tv_nsec + mono.tv_nsec);
1180 return now;
1181}
871cf1e5
TH
1182
1183/*
1184 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1185 * without sampling the sequence number in xtime_lock.
1186 * jiffies is defined in the linker script...
1187 */
1188void do_timer(unsigned long ticks)
1189{
1190 jiffies_64 += ticks;
1191 update_wall_time();
1192 calc_global_load(ticks);
1193}
48cf76f7
TH
1194
1195/**
314ac371
JS
1196 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1197 * and sleep offsets.
48cf76f7
TH
1198 * @xtim: pointer to timespec to be set with xtime
1199 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1200 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1201 */
314ac371
JS
1202void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1203 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1204{
1205 unsigned long seq;
1206
1207 do {
1208 seq = read_seqbegin(&xtime_lock);
1209 *xtim = xtime;
1210 *wtom = wall_to_monotonic;
314ac371 1211 *sleep = total_sleep_time;
48cf76f7
TH
1212 } while (read_seqretry(&xtime_lock, seq));
1213}
f0af911a 1214
99ee5315
TG
1215/**
1216 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1217 */
1218ktime_t ktime_get_monotonic_offset(void)
1219{
1220 unsigned long seq;
1221 struct timespec wtom;
1222
1223 do {
1224 seq = read_seqbegin(&xtime_lock);
1225 wtom = wall_to_monotonic;
1226 } while (read_seqretry(&xtime_lock, seq));
1227 return timespec_to_ktime(wtom);
1228}
1229
f0af911a
TH
1230/**
1231 * xtime_update() - advances the timekeeping infrastructure
1232 * @ticks: number of ticks, that have elapsed since the last call.
1233 *
1234 * Must be called with interrupts disabled.
1235 */
1236void xtime_update(unsigned long ticks)
1237{
1238 write_seqlock(&xtime_lock);
1239 do_timer(ticks);
1240 write_sequnlock(&xtime_lock);
1241}
This page took 0.483497 seconds and 5 git commands to generate.