x86, tsc: Skip refined tsc calibration on systems with reliable TSC
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b 18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
058892e6
TG
28 /* NTP adjusted clock multiplier */
29 u32 mult;
23ce7211
MS
30 /* The shift value of the current clocksource. */
31 int shift;
155ec602
MS
32
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval;
35 /* Number of clock shifted nano seconds in one NTP interval. */
36 u64 xtime_interval;
a386b5af
KP
37 /* shifted nano seconds left over when rounding cycle_interval */
38 s64 xtime_remainder;
155ec602
MS
39 /* Raw nano seconds accumulated per NTP interval. */
40 u32 raw_interval;
41
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 u64 xtime_nsec;
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
46 s64 ntp_error;
23ce7211
MS
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
49 int ntp_error_shift;
00c5fb77 50
8ff2cb92
JS
51 /* The current time */
52 struct timespec xtime;
d9f7217a
JS
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
00c5fb77
JS
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
01f71b47
JS
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
70471f2f
JS
72
73 /* Seqlock for all timekeeper values */
74 seqlock_t lock;
155ec602
MS
75};
76
afa14e7c 77static struct timekeeper timekeeper;
155ec602 78
8fcce546
JS
79/*
80 * This read-write spinlock protects us from races in SMP while
81 * playing with xtime.
82 */
83__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84
85
86/* flag for if timekeeping is suspended */
87int __read_mostly timekeeping_suspended;
88
89
90
155ec602
MS
91/**
92 * timekeeper_setup_internals - Set up internals to use clocksource clock.
93 *
94 * @clock: Pointer to clocksource.
95 *
96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97 * pair and interval request.
98 *
99 * Unless you're the timekeeping code, you should not be using this!
100 */
101static void timekeeper_setup_internals(struct clocksource *clock)
102{
103 cycle_t interval;
a386b5af 104 u64 tmp, ntpinterval;
155ec602
MS
105
106 timekeeper.clock = clock;
107 clock->cycle_last = clock->read(clock);
108
109 /* Do the ns -> cycle conversion first, using original mult */
110 tmp = NTP_INTERVAL_LENGTH;
111 tmp <<= clock->shift;
a386b5af 112 ntpinterval = tmp;
0a544198
MS
113 tmp += clock->mult/2;
114 do_div(tmp, clock->mult);
155ec602
MS
115 if (tmp == 0)
116 tmp = 1;
117
118 interval = (cycle_t) tmp;
119 timekeeper.cycle_interval = interval;
120
121 /* Go back from cycles -> shifted ns */
122 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 124 timekeeper.raw_interval =
0a544198 125 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
126
127 timekeeper.xtime_nsec = 0;
23ce7211 128 timekeeper.shift = clock->shift;
155ec602
MS
129
130 timekeeper.ntp_error = 0;
23ce7211 131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
132
133 /*
134 * The timekeeper keeps its own mult values for the currently
135 * active clocksource. These value will be adjusted via NTP
136 * to counteract clock drifting.
137 */
138 timekeeper.mult = clock->mult;
155ec602 139}
8524070b 140
2ba2a305
MS
141/* Timekeeper helper functions. */
142static inline s64 timekeeping_get_ns(void)
143{
144 cycle_t cycle_now, cycle_delta;
145 struct clocksource *clock;
146
147 /* read clocksource: */
148 clock = timekeeper.clock;
149 cycle_now = clock->read(clock);
150
151 /* calculate the delta since the last update_wall_time: */
152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154 /* return delta convert to nanoseconds using ntp adjusted mult. */
155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 timekeeper.shift);
157}
158
159static inline s64 timekeeping_get_ns_raw(void)
160{
161 cycle_t cycle_now, cycle_delta;
162 struct clocksource *clock;
163
164 /* read clocksource: */
165 clock = timekeeper.clock;
166 cycle_now = clock->read(clock);
167
168 /* calculate the delta since the last update_wall_time: */
169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170
c9fad429 171 /* return delta convert to nanoseconds. */
2ba2a305
MS
172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173}
174
cc06268c
TG
175/* must hold write on timekeeper.lock */
176static void timekeeping_update(bool clearntp)
177{
178 if (clearntp) {
179 timekeeper.ntp_error = 0;
180 ntp_clear();
181 }
182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 timekeeper.clock, timekeeper.mult);
184}
185
186
31089c13
JS
187void timekeeping_leap_insert(int leapsecond)
188{
70471f2f
JS
189 unsigned long flags;
190
191 write_seqlock_irqsave(&timekeeper.lock, flags);
8ff2cb92 192 timekeeper.xtime.tv_sec += leapsecond;
d9f7217a 193 timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
cc06268c 194 timekeeping_update(false);
70471f2f
JS
195 write_sequnlock_irqrestore(&timekeeper.lock, flags);
196
31089c13 197}
8524070b 198
8524070b 199/**
155ec602 200 * timekeeping_forward_now - update clock to the current time
8524070b 201 *
9a055117
RZ
202 * Forward the current clock to update its state since the last call to
203 * update_wall_time(). This is useful before significant clock changes,
204 * as it avoids having to deal with this time offset explicitly.
8524070b 205 */
155ec602 206static void timekeeping_forward_now(void)
8524070b 207{
208 cycle_t cycle_now, cycle_delta;
155ec602 209 struct clocksource *clock;
9a055117 210 s64 nsec;
8524070b 211
155ec602 212 clock = timekeeper.clock;
a0f7d48b 213 cycle_now = clock->read(clock);
8524070b 214 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 215 clock->cycle_last = cycle_now;
8524070b 216
0a544198
MS
217 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
218 timekeeper.shift);
7d27558c 219
220 /* If arch requires, add in gettimeoffset() */
221 nsec += arch_gettimeoffset();
222
8ff2cb92 223 timespec_add_ns(&timekeeper.xtime, nsec);
2d42244a 224
0a544198 225 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
01f71b47 226 timespec_add_ns(&timekeeper.raw_time, nsec);
8524070b 227}
228
229/**
efd9ac86 230 * getnstimeofday - Returns the time of day in a timespec
8524070b 231 * @ts: pointer to the timespec to be set
232 *
efd9ac86 233 * Returns the time of day in a timespec.
8524070b 234 */
efd9ac86 235void getnstimeofday(struct timespec *ts)
8524070b 236{
237 unsigned long seq;
238 s64 nsecs;
239
1c5745aa
TG
240 WARN_ON(timekeeping_suspended);
241
8524070b 242 do {
70471f2f 243 seq = read_seqbegin(&timekeeper.lock);
8524070b 244
8ff2cb92 245 *ts = timekeeper.xtime;
2ba2a305 246 nsecs = timekeeping_get_ns();
8524070b 247
7d27558c 248 /* If arch requires, add in gettimeoffset() */
249 nsecs += arch_gettimeoffset();
250
70471f2f 251 } while (read_seqretry(&timekeeper.lock, seq));
8524070b 252
253 timespec_add_ns(ts, nsecs);
254}
255
8524070b 256EXPORT_SYMBOL(getnstimeofday);
257
951ed4d3
MS
258ktime_t ktime_get(void)
259{
951ed4d3
MS
260 unsigned int seq;
261 s64 secs, nsecs;
262
263 WARN_ON(timekeeping_suspended);
264
265 do {
70471f2f 266 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92
JS
267 secs = timekeeper.xtime.tv_sec +
268 timekeeper.wall_to_monotonic.tv_sec;
269 nsecs = timekeeper.xtime.tv_nsec +
270 timekeeper.wall_to_monotonic.tv_nsec;
2ba2a305 271 nsecs += timekeeping_get_ns();
d004e024
HP
272 /* If arch requires, add in gettimeoffset() */
273 nsecs += arch_gettimeoffset();
951ed4d3 274
70471f2f 275 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
276 /*
277 * Use ktime_set/ktime_add_ns to create a proper ktime on
278 * 32-bit architectures without CONFIG_KTIME_SCALAR.
279 */
280 return ktime_add_ns(ktime_set(secs, 0), nsecs);
281}
282EXPORT_SYMBOL_GPL(ktime_get);
283
284/**
285 * ktime_get_ts - get the monotonic clock in timespec format
286 * @ts: pointer to timespec variable
287 *
288 * The function calculates the monotonic clock from the realtime
289 * clock and the wall_to_monotonic offset and stores the result
290 * in normalized timespec format in the variable pointed to by @ts.
291 */
292void ktime_get_ts(struct timespec *ts)
293{
951ed4d3
MS
294 struct timespec tomono;
295 unsigned int seq;
296 s64 nsecs;
297
298 WARN_ON(timekeeping_suspended);
299
300 do {
70471f2f 301 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 302 *ts = timekeeper.xtime;
d9f7217a 303 tomono = timekeeper.wall_to_monotonic;
2ba2a305 304 nsecs = timekeeping_get_ns();
d004e024
HP
305 /* If arch requires, add in gettimeoffset() */
306 nsecs += arch_gettimeoffset();
951ed4d3 307
70471f2f 308 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
309
310 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
311 ts->tv_nsec + tomono.tv_nsec + nsecs);
312}
313EXPORT_SYMBOL_GPL(ktime_get_ts);
314
e2c18e49
AG
315#ifdef CONFIG_NTP_PPS
316
317/**
318 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
319 * @ts_raw: pointer to the timespec to be set to raw monotonic time
320 * @ts_real: pointer to the timespec to be set to the time of day
321 *
322 * This function reads both the time of day and raw monotonic time at the
323 * same time atomically and stores the resulting timestamps in timespec
324 * format.
325 */
326void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
327{
328 unsigned long seq;
329 s64 nsecs_raw, nsecs_real;
330
331 WARN_ON_ONCE(timekeeping_suspended);
332
333 do {
334 u32 arch_offset;
335
70471f2f 336 seq = read_seqbegin(&timekeeper.lock);
e2c18e49 337
01f71b47 338 *ts_raw = timekeeper.raw_time;
8ff2cb92 339 *ts_real = timekeeper.xtime;
e2c18e49
AG
340
341 nsecs_raw = timekeeping_get_ns_raw();
342 nsecs_real = timekeeping_get_ns();
343
344 /* If arch requires, add in gettimeoffset() */
345 arch_offset = arch_gettimeoffset();
346 nsecs_raw += arch_offset;
347 nsecs_real += arch_offset;
348
70471f2f 349 } while (read_seqretry(&timekeeper.lock, seq));
e2c18e49
AG
350
351 timespec_add_ns(ts_raw, nsecs_raw);
352 timespec_add_ns(ts_real, nsecs_real);
353}
354EXPORT_SYMBOL(getnstime_raw_and_real);
355
356#endif /* CONFIG_NTP_PPS */
357
8524070b 358/**
359 * do_gettimeofday - Returns the time of day in a timeval
360 * @tv: pointer to the timeval to be set
361 *
efd9ac86 362 * NOTE: Users should be converted to using getnstimeofday()
8524070b 363 */
364void do_gettimeofday(struct timeval *tv)
365{
366 struct timespec now;
367
efd9ac86 368 getnstimeofday(&now);
8524070b 369 tv->tv_sec = now.tv_sec;
370 tv->tv_usec = now.tv_nsec/1000;
371}
372
373EXPORT_SYMBOL(do_gettimeofday);
374/**
375 * do_settimeofday - Sets the time of day
376 * @tv: pointer to the timespec variable containing the new time
377 *
378 * Sets the time of day to the new time and update NTP and notify hrtimers
379 */
1e6d7679 380int do_settimeofday(const struct timespec *tv)
8524070b 381{
9a055117 382 struct timespec ts_delta;
92c1d3ed 383 unsigned long flags;
8524070b 384
385 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
386 return -EINVAL;
387
92c1d3ed 388 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 389
155ec602 390 timekeeping_forward_now();
9a055117 391
8ff2cb92
JS
392 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
393 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
d9f7217a
JS
394 timekeeper.wall_to_monotonic =
395 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 396
8ff2cb92 397 timekeeper.xtime = *tv;
cc06268c 398 timekeeping_update(true);
8524070b 399
92c1d3ed 400 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 401
402 /* signal hrtimers about time change */
403 clock_was_set();
404
405 return 0;
406}
407
408EXPORT_SYMBOL(do_settimeofday);
409
c528f7c6
JS
410
411/**
412 * timekeeping_inject_offset - Adds or subtracts from the current time.
413 * @tv: pointer to the timespec variable containing the offset
414 *
415 * Adds or subtracts an offset value from the current time.
416 */
417int timekeeping_inject_offset(struct timespec *ts)
418{
92c1d3ed 419 unsigned long flags;
c528f7c6
JS
420
421 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
422 return -EINVAL;
423
92c1d3ed 424 write_seqlock_irqsave(&timekeeper.lock, flags);
c528f7c6
JS
425
426 timekeeping_forward_now();
427
8ff2cb92 428 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
d9f7217a
JS
429 timekeeper.wall_to_monotonic =
430 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6 431
cc06268c 432 timekeeping_update(true);
c528f7c6 433
92c1d3ed 434 write_sequnlock_irqrestore(&timekeeper.lock, flags);
c528f7c6
JS
435
436 /* signal hrtimers about time change */
437 clock_was_set();
438
439 return 0;
440}
441EXPORT_SYMBOL(timekeeping_inject_offset);
442
8524070b 443/**
444 * change_clocksource - Swaps clocksources if a new one is available
445 *
446 * Accumulates current time interval and initializes new clocksource
447 */
75c5158f 448static int change_clocksource(void *data)
8524070b 449{
4614e6ad 450 struct clocksource *new, *old;
f695cf94 451 unsigned long flags;
8524070b 452
75c5158f 453 new = (struct clocksource *) data;
8524070b 454
f695cf94
JS
455 write_seqlock_irqsave(&timekeeper.lock, flags);
456
155ec602 457 timekeeping_forward_now();
75c5158f
MS
458 if (!new->enable || new->enable(new) == 0) {
459 old = timekeeper.clock;
460 timekeeper_setup_internals(new);
461 if (old->disable)
462 old->disable(old);
463 }
f695cf94
JS
464 timekeeping_update(true);
465
466 write_sequnlock_irqrestore(&timekeeper.lock, flags);
467
75c5158f
MS
468 return 0;
469}
8524070b 470
75c5158f
MS
471/**
472 * timekeeping_notify - Install a new clock source
473 * @clock: pointer to the clock source
474 *
475 * This function is called from clocksource.c after a new, better clock
476 * source has been registered. The caller holds the clocksource_mutex.
477 */
478void timekeeping_notify(struct clocksource *clock)
479{
480 if (timekeeper.clock == clock)
4614e6ad 481 return;
75c5158f 482 stop_machine(change_clocksource, clock, NULL);
8524070b 483 tick_clock_notify();
8524070b 484}
75c5158f 485
a40f262c
TG
486/**
487 * ktime_get_real - get the real (wall-) time in ktime_t format
488 *
489 * returns the time in ktime_t format
490 */
491ktime_t ktime_get_real(void)
492{
493 struct timespec now;
494
495 getnstimeofday(&now);
496
497 return timespec_to_ktime(now);
498}
499EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 500
2d42244a
JS
501/**
502 * getrawmonotonic - Returns the raw monotonic time in a timespec
503 * @ts: pointer to the timespec to be set
504 *
505 * Returns the raw monotonic time (completely un-modified by ntp)
506 */
507void getrawmonotonic(struct timespec *ts)
508{
509 unsigned long seq;
510 s64 nsecs;
2d42244a
JS
511
512 do {
70471f2f 513 seq = read_seqbegin(&timekeeper.lock);
2ba2a305 514 nsecs = timekeeping_get_ns_raw();
01f71b47 515 *ts = timekeeper.raw_time;
2d42244a 516
70471f2f 517 } while (read_seqretry(&timekeeper.lock, seq));
2d42244a
JS
518
519 timespec_add_ns(ts, nsecs);
520}
521EXPORT_SYMBOL(getrawmonotonic);
522
523
8524070b 524/**
cf4fc6cb 525 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 526 */
cf4fc6cb 527int timekeeping_valid_for_hres(void)
8524070b 528{
529 unsigned long seq;
530 int ret;
531
532 do {
70471f2f 533 seq = read_seqbegin(&timekeeper.lock);
8524070b 534
155ec602 535 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 536
70471f2f 537 } while (read_seqretry(&timekeeper.lock, seq));
8524070b 538
539 return ret;
540}
541
98962465
JH
542/**
543 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
544 */
545u64 timekeeping_max_deferment(void)
546{
70471f2f
JS
547 unsigned long seq;
548 u64 ret;
549 do {
550 seq = read_seqbegin(&timekeeper.lock);
551
552 ret = timekeeper.clock->max_idle_ns;
553
554 } while (read_seqretry(&timekeeper.lock, seq));
555
556 return ret;
98962465
JH
557}
558
8524070b 559/**
d4f587c6 560 * read_persistent_clock - Return time from the persistent clock.
8524070b 561 *
562 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
563 * Reads the time from the battery backed persistent clock.
564 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 565 *
566 * XXX - Do be sure to remove it once all arches implement it.
567 */
d4f587c6 568void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 569{
d4f587c6
MS
570 ts->tv_sec = 0;
571 ts->tv_nsec = 0;
8524070b 572}
573
23970e38
MS
574/**
575 * read_boot_clock - Return time of the system start.
576 *
577 * Weak dummy function for arches that do not yet support it.
578 * Function to read the exact time the system has been started.
579 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
580 *
581 * XXX - Do be sure to remove it once all arches implement it.
582 */
583void __attribute__((weak)) read_boot_clock(struct timespec *ts)
584{
585 ts->tv_sec = 0;
586 ts->tv_nsec = 0;
587}
588
8524070b 589/*
590 * timekeeping_init - Initializes the clocksource and common timekeeping values
591 */
592void __init timekeeping_init(void)
593{
155ec602 594 struct clocksource *clock;
8524070b 595 unsigned long flags;
23970e38 596 struct timespec now, boot;
d4f587c6
MS
597
598 read_persistent_clock(&now);
23970e38 599 read_boot_clock(&boot);
8524070b 600
70471f2f 601 seqlock_init(&timekeeper.lock);
8524070b 602
7dffa3c6 603 ntp_init();
8524070b 604
70471f2f 605 write_seqlock_irqsave(&timekeeper.lock, flags);
f1b82746 606 clock = clocksource_default_clock();
a0f7d48b
MS
607 if (clock->enable)
608 clock->enable(clock);
155ec602 609 timekeeper_setup_internals(clock);
8524070b 610
8ff2cb92
JS
611 timekeeper.xtime.tv_sec = now.tv_sec;
612 timekeeper.xtime.tv_nsec = now.tv_nsec;
01f71b47
JS
613 timekeeper.raw_time.tv_sec = 0;
614 timekeeper.raw_time.tv_nsec = 0;
23970e38 615 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
8ff2cb92
JS
616 boot.tv_sec = timekeeper.xtime.tv_sec;
617 boot.tv_nsec = timekeeper.xtime.tv_nsec;
23970e38 618 }
d9f7217a 619 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 620 -boot.tv_sec, -boot.tv_nsec);
00c5fb77
JS
621 timekeeper.total_sleep_time.tv_sec = 0;
622 timekeeper.total_sleep_time.tv_nsec = 0;
70471f2f 623 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 624}
625
8524070b 626/* time in seconds when suspend began */
d4f587c6 627static struct timespec timekeeping_suspend_time;
8524070b 628
304529b1
JS
629/**
630 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
631 * @delta: pointer to a timespec delta value
632 *
633 * Takes a timespec offset measuring a suspend interval and properly
634 * adds the sleep offset to the timekeeping variables.
635 */
636static void __timekeeping_inject_sleeptime(struct timespec *delta)
637{
cb5de2f8 638 if (!timespec_valid(delta)) {
cbaa5152 639 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
640 "sleep delta value!\n");
641 return;
642 }
643
8ff2cb92 644 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
d9f7217a
JS
645 timekeeper.wall_to_monotonic =
646 timespec_sub(timekeeper.wall_to_monotonic, *delta);
00c5fb77
JS
647 timekeeper.total_sleep_time = timespec_add(
648 timekeeper.total_sleep_time, *delta);
304529b1
JS
649}
650
651
652/**
653 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
654 * @delta: pointer to a timespec delta value
655 *
656 * This hook is for architectures that cannot support read_persistent_clock
657 * because their RTC/persistent clock is only accessible when irqs are enabled.
658 *
659 * This function should only be called by rtc_resume(), and allows
660 * a suspend offset to be injected into the timekeeping values.
661 */
662void timekeeping_inject_sleeptime(struct timespec *delta)
663{
92c1d3ed 664 unsigned long flags;
304529b1
JS
665 struct timespec ts;
666
667 /* Make sure we don't set the clock twice */
668 read_persistent_clock(&ts);
669 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
670 return;
671
92c1d3ed 672 write_seqlock_irqsave(&timekeeper.lock, flags);
70471f2f 673
304529b1
JS
674 timekeeping_forward_now();
675
676 __timekeeping_inject_sleeptime(delta);
677
cc06268c 678 timekeeping_update(true);
304529b1 679
92c1d3ed 680 write_sequnlock_irqrestore(&timekeeper.lock, flags);
304529b1
JS
681
682 /* signal hrtimers about time change */
683 clock_was_set();
684}
685
686
8524070b 687/**
688 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 689 *
690 * This is for the generic clocksource timekeeping.
691 * xtime/wall_to_monotonic/jiffies/etc are
692 * still managed by arch specific suspend/resume code.
693 */
e1a85b2c 694static void timekeeping_resume(void)
8524070b 695{
92c1d3ed 696 unsigned long flags;
d4f587c6
MS
697 struct timespec ts;
698
699 read_persistent_clock(&ts);
8524070b 700
d10ff3fb
TG
701 clocksource_resume();
702
92c1d3ed 703 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 704
d4f587c6
MS
705 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
706 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 707 __timekeeping_inject_sleeptime(&ts);
8524070b 708 }
709 /* re-base the last cycle value */
155ec602
MS
710 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
711 timekeeper.ntp_error = 0;
8524070b 712 timekeeping_suspended = 0;
92c1d3ed 713 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 714
715 touch_softlockup_watchdog();
716
717 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
718
719 /* Resume hrtimers */
b12a03ce 720 hrtimers_resume();
8524070b 721}
722
e1a85b2c 723static int timekeeping_suspend(void)
8524070b 724{
92c1d3ed 725 unsigned long flags;
cb33217b
JS
726 struct timespec delta, delta_delta;
727 static struct timespec old_delta;
8524070b 728
d4f587c6 729 read_persistent_clock(&timekeeping_suspend_time);
3be90950 730
92c1d3ed 731 write_seqlock_irqsave(&timekeeper.lock, flags);
155ec602 732 timekeeping_forward_now();
8524070b 733 timekeeping_suspended = 1;
cb33217b
JS
734
735 /*
736 * To avoid drift caused by repeated suspend/resumes,
737 * which each can add ~1 second drift error,
738 * try to compensate so the difference in system time
739 * and persistent_clock time stays close to constant.
740 */
8ff2cb92 741 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
cb33217b
JS
742 delta_delta = timespec_sub(delta, old_delta);
743 if (abs(delta_delta.tv_sec) >= 2) {
744 /*
745 * if delta_delta is too large, assume time correction
746 * has occured and set old_delta to the current delta.
747 */
748 old_delta = delta;
749 } else {
750 /* Otherwise try to adjust old_system to compensate */
751 timekeeping_suspend_time =
752 timespec_add(timekeeping_suspend_time, delta_delta);
753 }
92c1d3ed 754 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 755
756 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 757 clocksource_suspend();
8524070b 758
759 return 0;
760}
761
762/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 763static struct syscore_ops timekeeping_syscore_ops = {
8524070b 764 .resume = timekeeping_resume,
765 .suspend = timekeeping_suspend,
8524070b 766};
767
e1a85b2c 768static int __init timekeeping_init_ops(void)
8524070b 769{
e1a85b2c
RW
770 register_syscore_ops(&timekeeping_syscore_ops);
771 return 0;
8524070b 772}
773
e1a85b2c 774device_initcall(timekeeping_init_ops);
8524070b 775
776/*
777 * If the error is already larger, we look ahead even further
778 * to compensate for late or lost adjustments.
779 */
155ec602 780static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 781 s64 *offset)
782{
783 s64 tick_error, i;
784 u32 look_ahead, adj;
785 s32 error2, mult;
786
787 /*
788 * Use the current error value to determine how much to look ahead.
789 * The larger the error the slower we adjust for it to avoid problems
790 * with losing too many ticks, otherwise we would overadjust and
791 * produce an even larger error. The smaller the adjustment the
792 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 793 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 794 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
795 */
155ec602 796 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 797 error2 = abs(error2);
798 for (look_ahead = 0; error2 > 0; look_ahead++)
799 error2 >>= 2;
800
801 /*
802 * Now calculate the error in (1 << look_ahead) ticks, but first
803 * remove the single look ahead already included in the error.
804 */
ea7cf49a 805 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
155ec602 806 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 807 error = ((error - tick_error) >> look_ahead) + tick_error;
808
809 /* Finally calculate the adjustment shift value. */
810 i = *interval;
811 mult = 1;
812 if (error < 0) {
813 error = -error;
814 *interval = -*interval;
815 *offset = -*offset;
816 mult = -1;
817 }
818 for (adj = 0; error > i; adj++)
819 error >>= 1;
820
821 *interval <<= adj;
822 *offset <<= adj;
823 return mult << adj;
824}
825
826/*
827 * Adjust the multiplier to reduce the error value,
828 * this is optimized for the most common adjustments of -1,0,1,
829 * for other values we can do a bit more work.
830 */
155ec602 831static void timekeeping_adjust(s64 offset)
8524070b 832{
155ec602 833 s64 error, interval = timekeeper.cycle_interval;
8524070b 834 int adj;
835
c2bc1111
JS
836 /*
837 * The point of this is to check if the error is greater then half
838 * an interval.
839 *
840 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
841 *
842 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
843 * This "saves" dividing(shifting) interval twice, but keeps the
844 * (error > interval) comparison as still measuring if error is
c2bc1111
JS
845 * larger then half an interval.
846 *
3f86f28f 847 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 848 */
23ce7211 849 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 850 if (error > interval) {
c2bc1111
JS
851 /*
852 * We now divide error by 4(via shift), which checks if
853 * the error is greater then twice the interval.
854 * If it is greater, we need a bigadjust, if its smaller,
855 * we can adjust by 1.
856 */
8524070b 857 error >>= 2;
c2bc1111
JS
858 /*
859 * XXX - In update_wall_time, we round up to the next
860 * nanosecond, and store the amount rounded up into
861 * the error. This causes the likely below to be unlikely.
862 *
3f86f28f 863 * The proper fix is to avoid rounding up by using
c2bc1111
JS
864 * the high precision timekeeper.xtime_nsec instead of
865 * xtime.tv_nsec everywhere. Fixing this will take some
866 * time.
867 */
8524070b 868 if (likely(error <= interval))
869 adj = 1;
870 else
155ec602 871 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 872 } else if (error < -interval) {
c2bc1111 873 /* See comment above, this is just switched for the negative */
8524070b 874 error >>= 2;
875 if (likely(error >= -interval)) {
876 adj = -1;
877 interval = -interval;
878 offset = -offset;
879 } else
155ec602 880 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 881 } else /* No adjustment needed */
8524070b 882 return;
883
d65670a7
JS
884 WARN_ONCE(timekeeper.clock->maxadj &&
885 (timekeeper.mult + adj > timekeeper.clock->mult +
886 timekeeper.clock->maxadj),
887 "Adjusting %s more then 11%% (%ld vs %ld)\n",
888 timekeeper.clock->name, (long)timekeeper.mult + adj,
889 (long)timekeeper.clock->mult +
890 timekeeper.clock->maxadj);
c2bc1111
JS
891 /*
892 * So the following can be confusing.
893 *
894 * To keep things simple, lets assume adj == 1 for now.
895 *
896 * When adj != 1, remember that the interval and offset values
897 * have been appropriately scaled so the math is the same.
898 *
899 * The basic idea here is that we're increasing the multiplier
900 * by one, this causes the xtime_interval to be incremented by
901 * one cycle_interval. This is because:
902 * xtime_interval = cycle_interval * mult
903 * So if mult is being incremented by one:
904 * xtime_interval = cycle_interval * (mult + 1)
905 * Its the same as:
906 * xtime_interval = (cycle_interval * mult) + cycle_interval
907 * Which can be shortened to:
908 * xtime_interval += cycle_interval
909 *
910 * So offset stores the non-accumulated cycles. Thus the current
911 * time (in shifted nanoseconds) is:
912 * now = (offset * adj) + xtime_nsec
913 * Now, even though we're adjusting the clock frequency, we have
914 * to keep time consistent. In other words, we can't jump back
915 * in time, and we also want to avoid jumping forward in time.
916 *
917 * So given the same offset value, we need the time to be the same
918 * both before and after the freq adjustment.
919 * now = (offset * adj_1) + xtime_nsec_1
920 * now = (offset * adj_2) + xtime_nsec_2
921 * So:
922 * (offset * adj_1) + xtime_nsec_1 =
923 * (offset * adj_2) + xtime_nsec_2
924 * And we know:
925 * adj_2 = adj_1 + 1
926 * So:
927 * (offset * adj_1) + xtime_nsec_1 =
928 * (offset * (adj_1+1)) + xtime_nsec_2
929 * (offset * adj_1) + xtime_nsec_1 =
930 * (offset * adj_1) + offset + xtime_nsec_2
931 * Canceling the sides:
932 * xtime_nsec_1 = offset + xtime_nsec_2
933 * Which gives us:
934 * xtime_nsec_2 = xtime_nsec_1 - offset
935 * Which simplfies to:
936 * xtime_nsec -= offset
937 *
938 * XXX - TODO: Doc ntp_error calculation.
939 */
0a544198 940 timekeeper.mult += adj;
155ec602
MS
941 timekeeper.xtime_interval += interval;
942 timekeeper.xtime_nsec -= offset;
943 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 944 timekeeper.ntp_error_shift;
8524070b 945}
946
83f57a11 947
a092ff0f 948/**
949 * logarithmic_accumulation - shifted accumulation of cycles
950 *
951 * This functions accumulates a shifted interval of cycles into
952 * into a shifted interval nanoseconds. Allows for O(log) accumulation
953 * loop.
954 *
955 * Returns the unconsumed cycles.
956 */
957static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
958{
959 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
deda2e81 960 u64 raw_nsecs;
a092ff0f 961
962 /* If the offset is smaller then a shifted interval, do nothing */
963 if (offset < timekeeper.cycle_interval<<shift)
964 return offset;
965
966 /* Accumulate one shifted interval */
967 offset -= timekeeper.cycle_interval << shift;
968 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
969
970 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
971 while (timekeeper.xtime_nsec >= nsecps) {
972 timekeeper.xtime_nsec -= nsecps;
8ff2cb92 973 timekeeper.xtime.tv_sec++;
a092ff0f 974 second_overflow();
975 }
976
deda2e81
JW
977 /* Accumulate raw time */
978 raw_nsecs = timekeeper.raw_interval << shift;
01f71b47 979 raw_nsecs += timekeeper.raw_time.tv_nsec;
c7dcf87a
JS
980 if (raw_nsecs >= NSEC_PER_SEC) {
981 u64 raw_secs = raw_nsecs;
982 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
01f71b47 983 timekeeper.raw_time.tv_sec += raw_secs;
a092ff0f 984 }
01f71b47 985 timekeeper.raw_time.tv_nsec = raw_nsecs;
a092ff0f 986
987 /* Accumulate error between NTP and clock interval */
ea7cf49a 988 timekeeper.ntp_error += ntp_tick_length() << shift;
a386b5af
KP
989 timekeeper.ntp_error -=
990 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f 991 (timekeeper.ntp_error_shift + shift);
992
993 return offset;
994}
995
83f57a11 996
8524070b 997/**
998 * update_wall_time - Uses the current clocksource to increment the wall time
999 *
8524070b 1000 */
871cf1e5 1001static void update_wall_time(void)
8524070b 1002{
155ec602 1003 struct clocksource *clock;
8524070b 1004 cycle_t offset;
a092ff0f 1005 int shift = 0, maxshift;
70471f2f
JS
1006 unsigned long flags;
1007
1008 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 1009
1010 /* Make sure we're fully resumed: */
1011 if (unlikely(timekeeping_suspended))
70471f2f 1012 goto out;
8524070b 1013
155ec602 1014 clock = timekeeper.clock;
592913ec
JS
1015
1016#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 1017 offset = timekeeper.cycle_interval;
592913ec
JS
1018#else
1019 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1020#endif
8ff2cb92
JS
1021 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1022 timekeeper.shift;
8524070b 1023
a092ff0f 1024 /*
1025 * With NO_HZ we may have to accumulate many cycle_intervals
1026 * (think "ticks") worth of time at once. To do this efficiently,
1027 * we calculate the largest doubling multiple of cycle_intervals
1028 * that is smaller then the offset. We then accumulate that
1029 * chunk in one go, and then try to consume the next smaller
1030 * doubled multiple.
8524070b 1031 */
a092ff0f 1032 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1033 shift = max(0, shift);
1034 /* Bound shift to one less then what overflows tick_length */
ea7cf49a 1035 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1036 shift = min(shift, maxshift);
155ec602 1037 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1038 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1039 if(offset < timekeeper.cycle_interval<<shift)
1040 shift--;
8524070b 1041 }
1042
1043 /* correct the clock when NTP error is too big */
155ec602 1044 timekeeping_adjust(offset);
8524070b 1045
6c9bacb4 1046 /*
1047 * Since in the loop above, we accumulate any amount of time
1048 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1049 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1050 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 1051 * its possible the required corrective factor to xtime_nsec could
1052 * cause it to underflow.
1053 *
1054 * Now, we cannot simply roll the accumulated second back, since
1055 * the NTP subsystem has been notified via second_overflow. So
1056 * instead we push xtime_nsec forward by the amount we underflowed,
1057 * and add that amount into the error.
1058 *
1059 * We'll correct this error next time through this function, when
1060 * xtime_nsec is not as small.
1061 */
155ec602
MS
1062 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1063 s64 neg = -(s64)timekeeper.xtime_nsec;
1064 timekeeper.xtime_nsec = 0;
23ce7211 1065 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 1066 }
1067
6a867a39
JS
1068
1069 /*
1070 * Store full nanoseconds into xtime after rounding it up and
5cd1c9c5
RZ
1071 * add the remainder to the error difference.
1072 */
8ff2cb92
JS
1073 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1074 timekeeper.shift) + 1;
1075 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1076 timekeeper.shift;
23ce7211
MS
1077 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1078 timekeeper.ntp_error_shift;
8524070b 1079
6a867a39
JS
1080 /*
1081 * Finally, make sure that after the rounding
1082 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1083 */
8ff2cb92
JS
1084 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1085 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1086 timekeeper.xtime.tv_sec++;
6a867a39
JS
1087 second_overflow();
1088 }
83f57a11 1089
cc06268c 1090 timekeeping_update(false);
70471f2f
JS
1091
1092out:
1093 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1094
8524070b 1095}
7c3f1a57
TJ
1096
1097/**
1098 * getboottime - Return the real time of system boot.
1099 * @ts: pointer to the timespec to be set
1100 *
abb3a4ea 1101 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1102 *
1103 * This is based on the wall_to_monotonic offset and the total suspend
1104 * time. Calls to settimeofday will affect the value returned (which
1105 * basically means that however wrong your real time clock is at boot time,
1106 * you get the right time here).
1107 */
1108void getboottime(struct timespec *ts)
1109{
36d47481 1110 struct timespec boottime = {
d9f7217a 1111 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1112 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1113 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1114 timekeeper.total_sleep_time.tv_nsec
36d47481 1115 };
d4f587c6 1116
d4f587c6 1117 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1118}
c93d89f3 1119EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1120
abb3a4ea
JS
1121
1122/**
1123 * get_monotonic_boottime - Returns monotonic time since boot
1124 * @ts: pointer to the timespec to be set
1125 *
1126 * Returns the monotonic time since boot in a timespec.
1127 *
1128 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1129 * includes the time spent in suspend.
1130 */
1131void get_monotonic_boottime(struct timespec *ts)
1132{
1133 struct timespec tomono, sleep;
1134 unsigned int seq;
1135 s64 nsecs;
1136
1137 WARN_ON(timekeeping_suspended);
1138
1139 do {
70471f2f 1140 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 1141 *ts = timekeeper.xtime;
d9f7217a 1142 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1143 sleep = timekeeper.total_sleep_time;
abb3a4ea
JS
1144 nsecs = timekeeping_get_ns();
1145
70471f2f 1146 } while (read_seqretry(&timekeeper.lock, seq));
abb3a4ea
JS
1147
1148 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1149 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1150}
1151EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1152
1153/**
1154 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1155 *
1156 * Returns the monotonic time since boot in a ktime
1157 *
1158 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1159 * includes the time spent in suspend.
1160 */
1161ktime_t ktime_get_boottime(void)
1162{
1163 struct timespec ts;
1164
1165 get_monotonic_boottime(&ts);
1166 return timespec_to_ktime(ts);
1167}
1168EXPORT_SYMBOL_GPL(ktime_get_boottime);
1169
7c3f1a57
TJ
1170/**
1171 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1172 * @ts: pointer to the timespec to be converted
1173 */
1174void monotonic_to_bootbased(struct timespec *ts)
1175{
00c5fb77 1176 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1177}
c93d89f3 1178EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1179
17c38b74 1180unsigned long get_seconds(void)
1181{
8ff2cb92 1182 return timekeeper.xtime.tv_sec;
17c38b74 1183}
1184EXPORT_SYMBOL(get_seconds);
1185
da15cfda 1186struct timespec __current_kernel_time(void)
1187{
8ff2cb92 1188 return timekeeper.xtime;
da15cfda 1189}
17c38b74 1190
2c6b47de 1191struct timespec current_kernel_time(void)
1192{
1193 struct timespec now;
1194 unsigned long seq;
1195
1196 do {
70471f2f 1197 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1198
8ff2cb92 1199 now = timekeeper.xtime;
70471f2f 1200 } while (read_seqretry(&timekeeper.lock, seq));
2c6b47de 1201
1202 return now;
1203}
2c6b47de 1204EXPORT_SYMBOL(current_kernel_time);
da15cfda 1205
1206struct timespec get_monotonic_coarse(void)
1207{
1208 struct timespec now, mono;
1209 unsigned long seq;
1210
1211 do {
70471f2f 1212 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1213
8ff2cb92 1214 now = timekeeper.xtime;
d9f7217a 1215 mono = timekeeper.wall_to_monotonic;
70471f2f 1216 } while (read_seqretry(&timekeeper.lock, seq));
da15cfda 1217
1218 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1219 now.tv_nsec + mono.tv_nsec);
1220 return now;
1221}
871cf1e5
TH
1222
1223/*
1224 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1225 * without sampling the sequence number in xtime_lock.
1226 * jiffies is defined in the linker script...
1227 */
1228void do_timer(unsigned long ticks)
1229{
1230 jiffies_64 += ticks;
1231 update_wall_time();
1232 calc_global_load(ticks);
1233}
48cf76f7
TH
1234
1235/**
314ac371
JS
1236 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1237 * and sleep offsets.
48cf76f7
TH
1238 * @xtim: pointer to timespec to be set with xtime
1239 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1240 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1241 */
314ac371
JS
1242void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1243 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1244{
1245 unsigned long seq;
1246
1247 do {
70471f2f 1248 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 1249 *xtim = timekeeper.xtime;
d9f7217a 1250 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1251 *sleep = timekeeper.total_sleep_time;
70471f2f 1252 } while (read_seqretry(&timekeeper.lock, seq));
48cf76f7 1253}
f0af911a 1254
99ee5315
TG
1255/**
1256 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1257 */
1258ktime_t ktime_get_monotonic_offset(void)
1259{
1260 unsigned long seq;
1261 struct timespec wtom;
1262
1263 do {
70471f2f 1264 seq = read_seqbegin(&timekeeper.lock);
d9f7217a 1265 wtom = timekeeper.wall_to_monotonic;
70471f2f
JS
1266 } while (read_seqretry(&timekeeper.lock, seq));
1267
99ee5315
TG
1268 return timespec_to_ktime(wtom);
1269}
1270
f0af911a
TH
1271/**
1272 * xtime_update() - advances the timekeeping infrastructure
1273 * @ticks: number of ticks, that have elapsed since the last call.
1274 *
1275 * Must be called with interrupts disabled.
1276 */
1277void xtime_update(unsigned long ticks)
1278{
1279 write_seqlock(&xtime_lock);
1280 do_timer(ticks);
1281 write_sequnlock(&xtime_lock);
1282}
This page took 0.446618 seconds and 5 git commands to generate.