nohz: Prevent clocksource wrapping during idle
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/sysdev.h>
17#include <linux/clocksource.h>
18#include <linux/jiffies.h>
19#include <linux/time.h>
20#include <linux/tick.h>
75c5158f 21#include <linux/stop_machine.h>
8524070b 22
155ec602
MS
23/* Structure holding internal timekeeping values. */
24struct timekeeper {
25 /* Current clocksource used for timekeeping. */
26 struct clocksource *clock;
23ce7211
MS
27 /* The shift value of the current clocksource. */
28 int shift;
155ec602
MS
29
30 /* Number of clock cycles in one NTP interval. */
31 cycle_t cycle_interval;
32 /* Number of clock shifted nano seconds in one NTP interval. */
33 u64 xtime_interval;
34 /* Raw nano seconds accumulated per NTP interval. */
35 u32 raw_interval;
36
37 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
38 u64 xtime_nsec;
39 /* Difference between accumulated time and NTP time in ntp
40 * shifted nano seconds. */
41 s64 ntp_error;
23ce7211
MS
42 /* Shift conversion between clock shifted nano seconds and
43 * ntp shifted nano seconds. */
44 int ntp_error_shift;
0a544198
MS
45 /* NTP adjusted clock multiplier */
46 u32 mult;
155ec602
MS
47};
48
49struct timekeeper timekeeper;
50
51/**
52 * timekeeper_setup_internals - Set up internals to use clocksource clock.
53 *
54 * @clock: Pointer to clocksource.
55 *
56 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
57 * pair and interval request.
58 *
59 * Unless you're the timekeeping code, you should not be using this!
60 */
61static void timekeeper_setup_internals(struct clocksource *clock)
62{
63 cycle_t interval;
64 u64 tmp;
65
66 timekeeper.clock = clock;
67 clock->cycle_last = clock->read(clock);
68
69 /* Do the ns -> cycle conversion first, using original mult */
70 tmp = NTP_INTERVAL_LENGTH;
71 tmp <<= clock->shift;
0a544198
MS
72 tmp += clock->mult/2;
73 do_div(tmp, clock->mult);
155ec602
MS
74 if (tmp == 0)
75 tmp = 1;
76
77 interval = (cycle_t) tmp;
78 timekeeper.cycle_interval = interval;
79
80 /* Go back from cycles -> shifted ns */
81 timekeeper.xtime_interval = (u64) interval * clock->mult;
82 timekeeper.raw_interval =
0a544198 83 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
84
85 timekeeper.xtime_nsec = 0;
23ce7211 86 timekeeper.shift = clock->shift;
155ec602
MS
87
88 timekeeper.ntp_error = 0;
23ce7211 89 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
90
91 /*
92 * The timekeeper keeps its own mult values for the currently
93 * active clocksource. These value will be adjusted via NTP
94 * to counteract clock drifting.
95 */
96 timekeeper.mult = clock->mult;
155ec602 97}
8524070b 98
2ba2a305
MS
99/* Timekeeper helper functions. */
100static inline s64 timekeeping_get_ns(void)
101{
102 cycle_t cycle_now, cycle_delta;
103 struct clocksource *clock;
104
105 /* read clocksource: */
106 clock = timekeeper.clock;
107 cycle_now = clock->read(clock);
108
109 /* calculate the delta since the last update_wall_time: */
110 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
111
112 /* return delta convert to nanoseconds using ntp adjusted mult. */
113 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
114 timekeeper.shift);
115}
116
117static inline s64 timekeeping_get_ns_raw(void)
118{
119 cycle_t cycle_now, cycle_delta;
120 struct clocksource *clock;
121
122 /* read clocksource: */
123 clock = timekeeper.clock;
124 cycle_now = clock->read(clock);
125
126 /* calculate the delta since the last update_wall_time: */
127 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
128
129 /* return delta convert to nanoseconds using ntp adjusted mult. */
130 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
131}
132
8524070b 133/*
134 * This read-write spinlock protects us from races in SMP while
dce48a84 135 * playing with xtime.
8524070b 136 */
ba2a631b 137__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
8524070b 138
139
140/*
141 * The current time
142 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
143 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
144 * at zero at system boot time, so wall_to_monotonic will be negative,
145 * however, we will ALWAYS keep the tv_nsec part positive so we can use
146 * the usual normalization.
7c3f1a57
TJ
147 *
148 * wall_to_monotonic is moved after resume from suspend for the monotonic
149 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
150 * to get the real boot based time offset.
151 *
152 * - wall_to_monotonic is no longer the boot time, getboottime must be
153 * used instead.
8524070b 154 */
155struct timespec xtime __attribute__ ((aligned (16)));
156struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
d4f587c6 157static struct timespec total_sleep_time;
8524070b 158
155ec602
MS
159/*
160 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
161 */
162struct timespec raw_time;
163
1c5745aa
TG
164/* flag for if timekeeping is suspended */
165int __read_mostly timekeeping_suspended;
166
31089c13
JS
167/* must hold xtime_lock */
168void timekeeping_leap_insert(int leapsecond)
169{
170 xtime.tv_sec += leapsecond;
171 wall_to_monotonic.tv_sec -= leapsecond;
155ec602 172 update_vsyscall(&xtime, timekeeper.clock);
31089c13 173}
8524070b 174
175#ifdef CONFIG_GENERIC_TIME
75c5158f 176
8524070b 177/**
155ec602 178 * timekeeping_forward_now - update clock to the current time
8524070b 179 *
9a055117
RZ
180 * Forward the current clock to update its state since the last call to
181 * update_wall_time(). This is useful before significant clock changes,
182 * as it avoids having to deal with this time offset explicitly.
8524070b 183 */
155ec602 184static void timekeeping_forward_now(void)
8524070b 185{
186 cycle_t cycle_now, cycle_delta;
155ec602 187 struct clocksource *clock;
9a055117 188 s64 nsec;
8524070b 189
155ec602 190 clock = timekeeper.clock;
a0f7d48b 191 cycle_now = clock->read(clock);
8524070b 192 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 193 clock->cycle_last = cycle_now;
8524070b 194
0a544198
MS
195 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
196 timekeeper.shift);
7d27558c 197
198 /* If arch requires, add in gettimeoffset() */
199 nsec += arch_gettimeoffset();
200
9a055117 201 timespec_add_ns(&xtime, nsec);
2d42244a 202
0a544198 203 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
155ec602 204 timespec_add_ns(&raw_time, nsec);
8524070b 205}
206
207/**
efd9ac86 208 * getnstimeofday - Returns the time of day in a timespec
8524070b 209 * @ts: pointer to the timespec to be set
210 *
efd9ac86 211 * Returns the time of day in a timespec.
8524070b 212 */
efd9ac86 213void getnstimeofday(struct timespec *ts)
8524070b 214{
215 unsigned long seq;
216 s64 nsecs;
217
1c5745aa
TG
218 WARN_ON(timekeeping_suspended);
219
8524070b 220 do {
221 seq = read_seqbegin(&xtime_lock);
222
223 *ts = xtime;
2ba2a305 224 nsecs = timekeeping_get_ns();
8524070b 225
7d27558c 226 /* If arch requires, add in gettimeoffset() */
227 nsecs += arch_gettimeoffset();
228
8524070b 229 } while (read_seqretry(&xtime_lock, seq));
230
231 timespec_add_ns(ts, nsecs);
232}
233
8524070b 234EXPORT_SYMBOL(getnstimeofday);
235
951ed4d3
MS
236ktime_t ktime_get(void)
237{
951ed4d3
MS
238 unsigned int seq;
239 s64 secs, nsecs;
240
241 WARN_ON(timekeeping_suspended);
242
243 do {
244 seq = read_seqbegin(&xtime_lock);
245 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
246 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
2ba2a305 247 nsecs += timekeeping_get_ns();
951ed4d3
MS
248
249 } while (read_seqretry(&xtime_lock, seq));
250 /*
251 * Use ktime_set/ktime_add_ns to create a proper ktime on
252 * 32-bit architectures without CONFIG_KTIME_SCALAR.
253 */
254 return ktime_add_ns(ktime_set(secs, 0), nsecs);
255}
256EXPORT_SYMBOL_GPL(ktime_get);
257
258/**
259 * ktime_get_ts - get the monotonic clock in timespec format
260 * @ts: pointer to timespec variable
261 *
262 * The function calculates the monotonic clock from the realtime
263 * clock and the wall_to_monotonic offset and stores the result
264 * in normalized timespec format in the variable pointed to by @ts.
265 */
266void ktime_get_ts(struct timespec *ts)
267{
951ed4d3
MS
268 struct timespec tomono;
269 unsigned int seq;
270 s64 nsecs;
271
272 WARN_ON(timekeeping_suspended);
273
274 do {
275 seq = read_seqbegin(&xtime_lock);
276 *ts = xtime;
277 tomono = wall_to_monotonic;
2ba2a305 278 nsecs = timekeeping_get_ns();
951ed4d3
MS
279
280 } while (read_seqretry(&xtime_lock, seq));
281
282 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
283 ts->tv_nsec + tomono.tv_nsec + nsecs);
284}
285EXPORT_SYMBOL_GPL(ktime_get_ts);
286
8524070b 287/**
288 * do_gettimeofday - Returns the time of day in a timeval
289 * @tv: pointer to the timeval to be set
290 *
efd9ac86 291 * NOTE: Users should be converted to using getnstimeofday()
8524070b 292 */
293void do_gettimeofday(struct timeval *tv)
294{
295 struct timespec now;
296
efd9ac86 297 getnstimeofday(&now);
8524070b 298 tv->tv_sec = now.tv_sec;
299 tv->tv_usec = now.tv_nsec/1000;
300}
301
302EXPORT_SYMBOL(do_gettimeofday);
303/**
304 * do_settimeofday - Sets the time of day
305 * @tv: pointer to the timespec variable containing the new time
306 *
307 * Sets the time of day to the new time and update NTP and notify hrtimers
308 */
309int do_settimeofday(struct timespec *tv)
310{
9a055117 311 struct timespec ts_delta;
8524070b 312 unsigned long flags;
8524070b 313
314 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
315 return -EINVAL;
316
317 write_seqlock_irqsave(&xtime_lock, flags);
318
155ec602 319 timekeeping_forward_now();
9a055117
RZ
320
321 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
322 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
323 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
8524070b 324
9a055117 325 xtime = *tv;
8524070b 326
155ec602 327 timekeeper.ntp_error = 0;
8524070b 328 ntp_clear();
329
155ec602 330 update_vsyscall(&xtime, timekeeper.clock);
8524070b 331
332 write_sequnlock_irqrestore(&xtime_lock, flags);
333
334 /* signal hrtimers about time change */
335 clock_was_set();
336
337 return 0;
338}
339
340EXPORT_SYMBOL(do_settimeofday);
341
342/**
343 * change_clocksource - Swaps clocksources if a new one is available
344 *
345 * Accumulates current time interval and initializes new clocksource
346 */
75c5158f 347static int change_clocksource(void *data)
8524070b 348{
4614e6ad 349 struct clocksource *new, *old;
8524070b 350
75c5158f 351 new = (struct clocksource *) data;
8524070b 352
155ec602 353 timekeeping_forward_now();
75c5158f
MS
354 if (!new->enable || new->enable(new) == 0) {
355 old = timekeeper.clock;
356 timekeeper_setup_internals(new);
357 if (old->disable)
358 old->disable(old);
359 }
360 return 0;
361}
8524070b 362
75c5158f
MS
363/**
364 * timekeeping_notify - Install a new clock source
365 * @clock: pointer to the clock source
366 *
367 * This function is called from clocksource.c after a new, better clock
368 * source has been registered. The caller holds the clocksource_mutex.
369 */
370void timekeeping_notify(struct clocksource *clock)
371{
372 if (timekeeper.clock == clock)
4614e6ad 373 return;
75c5158f 374 stop_machine(change_clocksource, clock, NULL);
8524070b 375 tick_clock_notify();
8524070b 376}
75c5158f 377
a40f262c 378#else /* GENERIC_TIME */
75c5158f 379
155ec602 380static inline void timekeeping_forward_now(void) { }
a40f262c
TG
381
382/**
383 * ktime_get - get the monotonic time in ktime_t format
384 *
385 * returns the time in ktime_t format
386 */
387ktime_t ktime_get(void)
388{
389 struct timespec now;
390
391 ktime_get_ts(&now);
392
393 return timespec_to_ktime(now);
394}
395EXPORT_SYMBOL_GPL(ktime_get);
396
397/**
398 * ktime_get_ts - get the monotonic clock in timespec format
399 * @ts: pointer to timespec variable
400 *
401 * The function calculates the monotonic clock from the realtime
402 * clock and the wall_to_monotonic offset and stores the result
403 * in normalized timespec format in the variable pointed to by @ts.
404 */
405void ktime_get_ts(struct timespec *ts)
406{
407 struct timespec tomono;
408 unsigned long seq;
409
410 do {
411 seq = read_seqbegin(&xtime_lock);
412 getnstimeofday(ts);
413 tomono = wall_to_monotonic;
414
415 } while (read_seqretry(&xtime_lock, seq));
416
417 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
418 ts->tv_nsec + tomono.tv_nsec);
419}
420EXPORT_SYMBOL_GPL(ktime_get_ts);
75c5158f 421
a40f262c
TG
422#endif /* !GENERIC_TIME */
423
424/**
425 * ktime_get_real - get the real (wall-) time in ktime_t format
426 *
427 * returns the time in ktime_t format
428 */
429ktime_t ktime_get_real(void)
430{
431 struct timespec now;
432
433 getnstimeofday(&now);
434
435 return timespec_to_ktime(now);
436}
437EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 438
2d42244a
JS
439/**
440 * getrawmonotonic - Returns the raw monotonic time in a timespec
441 * @ts: pointer to the timespec to be set
442 *
443 * Returns the raw monotonic time (completely un-modified by ntp)
444 */
445void getrawmonotonic(struct timespec *ts)
446{
447 unsigned long seq;
448 s64 nsecs;
2d42244a
JS
449
450 do {
451 seq = read_seqbegin(&xtime_lock);
2ba2a305 452 nsecs = timekeeping_get_ns_raw();
155ec602 453 *ts = raw_time;
2d42244a
JS
454
455 } while (read_seqretry(&xtime_lock, seq));
456
457 timespec_add_ns(ts, nsecs);
458}
459EXPORT_SYMBOL(getrawmonotonic);
460
461
8524070b 462/**
cf4fc6cb 463 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 464 */
cf4fc6cb 465int timekeeping_valid_for_hres(void)
8524070b 466{
467 unsigned long seq;
468 int ret;
469
470 do {
471 seq = read_seqbegin(&xtime_lock);
472
155ec602 473 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 474
475 } while (read_seqretry(&xtime_lock, seq));
476
477 return ret;
478}
479
98962465
JH
480/**
481 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
482 *
483 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
484 * ensure that the clocksource does not change!
485 */
486u64 timekeeping_max_deferment(void)
487{
488 return timekeeper.clock->max_idle_ns;
489}
490
8524070b 491/**
d4f587c6 492 * read_persistent_clock - Return time from the persistent clock.
8524070b 493 *
494 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
495 * Reads the time from the battery backed persistent clock.
496 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 497 *
498 * XXX - Do be sure to remove it once all arches implement it.
499 */
d4f587c6 500void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 501{
d4f587c6
MS
502 ts->tv_sec = 0;
503 ts->tv_nsec = 0;
8524070b 504}
505
23970e38
MS
506/**
507 * read_boot_clock - Return time of the system start.
508 *
509 * Weak dummy function for arches that do not yet support it.
510 * Function to read the exact time the system has been started.
511 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
512 *
513 * XXX - Do be sure to remove it once all arches implement it.
514 */
515void __attribute__((weak)) read_boot_clock(struct timespec *ts)
516{
517 ts->tv_sec = 0;
518 ts->tv_nsec = 0;
519}
520
8524070b 521/*
522 * timekeeping_init - Initializes the clocksource and common timekeeping values
523 */
524void __init timekeeping_init(void)
525{
155ec602 526 struct clocksource *clock;
8524070b 527 unsigned long flags;
23970e38 528 struct timespec now, boot;
d4f587c6
MS
529
530 read_persistent_clock(&now);
23970e38 531 read_boot_clock(&boot);
8524070b 532
533 write_seqlock_irqsave(&xtime_lock, flags);
534
7dffa3c6 535 ntp_init();
8524070b 536
f1b82746 537 clock = clocksource_default_clock();
a0f7d48b
MS
538 if (clock->enable)
539 clock->enable(clock);
155ec602 540 timekeeper_setup_internals(clock);
8524070b 541
d4f587c6
MS
542 xtime.tv_sec = now.tv_sec;
543 xtime.tv_nsec = now.tv_nsec;
155ec602
MS
544 raw_time.tv_sec = 0;
545 raw_time.tv_nsec = 0;
23970e38
MS
546 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
547 boot.tv_sec = xtime.tv_sec;
548 boot.tv_nsec = xtime.tv_nsec;
549 }
8524070b 550 set_normalized_timespec(&wall_to_monotonic,
23970e38 551 -boot.tv_sec, -boot.tv_nsec);
d4f587c6
MS
552 total_sleep_time.tv_sec = 0;
553 total_sleep_time.tv_nsec = 0;
8524070b 554 write_sequnlock_irqrestore(&xtime_lock, flags);
555}
556
8524070b 557/* time in seconds when suspend began */
d4f587c6 558static struct timespec timekeeping_suspend_time;
8524070b 559
560/**
561 * timekeeping_resume - Resumes the generic timekeeping subsystem.
562 * @dev: unused
563 *
564 * This is for the generic clocksource timekeeping.
565 * xtime/wall_to_monotonic/jiffies/etc are
566 * still managed by arch specific suspend/resume code.
567 */
568static int timekeeping_resume(struct sys_device *dev)
569{
570 unsigned long flags;
d4f587c6
MS
571 struct timespec ts;
572
573 read_persistent_clock(&ts);
8524070b 574
d10ff3fb
TG
575 clocksource_resume();
576
8524070b 577 write_seqlock_irqsave(&xtime_lock, flags);
578
d4f587c6
MS
579 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
580 ts = timespec_sub(ts, timekeeping_suspend_time);
581 xtime = timespec_add_safe(xtime, ts);
582 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
583 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
8524070b 584 }
585 /* re-base the last cycle value */
155ec602
MS
586 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
587 timekeeper.ntp_error = 0;
8524070b 588 timekeeping_suspended = 0;
589 write_sequnlock_irqrestore(&xtime_lock, flags);
590
591 touch_softlockup_watchdog();
592
593 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
594
595 /* Resume hrtimers */
596 hres_timers_resume();
597
598 return 0;
599}
600
601static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
602{
603 unsigned long flags;
604
d4f587c6 605 read_persistent_clock(&timekeeping_suspend_time);
3be90950 606
8524070b 607 write_seqlock_irqsave(&xtime_lock, flags);
155ec602 608 timekeeping_forward_now();
8524070b 609 timekeeping_suspended = 1;
8524070b 610 write_sequnlock_irqrestore(&xtime_lock, flags);
611
612 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
613
614 return 0;
615}
616
617/* sysfs resume/suspend bits for timekeeping */
618static struct sysdev_class timekeeping_sysclass = {
af5ca3f4 619 .name = "timekeeping",
8524070b 620 .resume = timekeeping_resume,
621 .suspend = timekeeping_suspend,
8524070b 622};
623
624static struct sys_device device_timer = {
625 .id = 0,
626 .cls = &timekeeping_sysclass,
627};
628
629static int __init timekeeping_init_device(void)
630{
631 int error = sysdev_class_register(&timekeeping_sysclass);
632 if (!error)
633 error = sysdev_register(&device_timer);
634 return error;
635}
636
637device_initcall(timekeeping_init_device);
638
639/*
640 * If the error is already larger, we look ahead even further
641 * to compensate for late or lost adjustments.
642 */
155ec602 643static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 644 s64 *offset)
645{
646 s64 tick_error, i;
647 u32 look_ahead, adj;
648 s32 error2, mult;
649
650 /*
651 * Use the current error value to determine how much to look ahead.
652 * The larger the error the slower we adjust for it to avoid problems
653 * with losing too many ticks, otherwise we would overadjust and
654 * produce an even larger error. The smaller the adjustment the
655 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 656 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 657 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
658 */
155ec602 659 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 660 error2 = abs(error2);
661 for (look_ahead = 0; error2 > 0; look_ahead++)
662 error2 >>= 2;
663
664 /*
665 * Now calculate the error in (1 << look_ahead) ticks, but first
666 * remove the single look ahead already included in the error.
667 */
23ce7211 668 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
155ec602 669 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 670 error = ((error - tick_error) >> look_ahead) + tick_error;
671
672 /* Finally calculate the adjustment shift value. */
673 i = *interval;
674 mult = 1;
675 if (error < 0) {
676 error = -error;
677 *interval = -*interval;
678 *offset = -*offset;
679 mult = -1;
680 }
681 for (adj = 0; error > i; adj++)
682 error >>= 1;
683
684 *interval <<= adj;
685 *offset <<= adj;
686 return mult << adj;
687}
688
689/*
690 * Adjust the multiplier to reduce the error value,
691 * this is optimized for the most common adjustments of -1,0,1,
692 * for other values we can do a bit more work.
693 */
155ec602 694static void timekeeping_adjust(s64 offset)
8524070b 695{
155ec602 696 s64 error, interval = timekeeper.cycle_interval;
8524070b 697 int adj;
698
23ce7211 699 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 700 if (error > interval) {
701 error >>= 2;
702 if (likely(error <= interval))
703 adj = 1;
704 else
155ec602 705 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 706 } else if (error < -interval) {
707 error >>= 2;
708 if (likely(error >= -interval)) {
709 adj = -1;
710 interval = -interval;
711 offset = -offset;
712 } else
155ec602 713 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 714 } else
715 return;
716
0a544198 717 timekeeper.mult += adj;
155ec602
MS
718 timekeeper.xtime_interval += interval;
719 timekeeper.xtime_nsec -= offset;
720 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 721 timekeeper.ntp_error_shift;
8524070b 722}
723
a092ff0f 724/**
725 * logarithmic_accumulation - shifted accumulation of cycles
726 *
727 * This functions accumulates a shifted interval of cycles into
728 * into a shifted interval nanoseconds. Allows for O(log) accumulation
729 * loop.
730 *
731 * Returns the unconsumed cycles.
732 */
733static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
734{
735 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
736
737 /* If the offset is smaller then a shifted interval, do nothing */
738 if (offset < timekeeper.cycle_interval<<shift)
739 return offset;
740
741 /* Accumulate one shifted interval */
742 offset -= timekeeper.cycle_interval << shift;
743 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
744
745 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
746 while (timekeeper.xtime_nsec >= nsecps) {
747 timekeeper.xtime_nsec -= nsecps;
748 xtime.tv_sec++;
749 second_overflow();
750 }
751
752 /* Accumulate into raw time */
753 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
754 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
755 raw_time.tv_nsec -= NSEC_PER_SEC;
756 raw_time.tv_sec++;
757 }
758
759 /* Accumulate error between NTP and clock interval */
760 timekeeper.ntp_error += tick_length << shift;
761 timekeeper.ntp_error -= timekeeper.xtime_interval <<
762 (timekeeper.ntp_error_shift + shift);
763
764 return offset;
765}
766
8524070b 767/**
768 * update_wall_time - Uses the current clocksource to increment the wall time
769 *
770 * Called from the timer interrupt, must hold a write on xtime_lock.
771 */
772void update_wall_time(void)
773{
155ec602 774 struct clocksource *clock;
8524070b 775 cycle_t offset;
a092ff0f 776 int shift = 0, maxshift;
8524070b 777
778 /* Make sure we're fully resumed: */
779 if (unlikely(timekeeping_suspended))
780 return;
781
155ec602 782 clock = timekeeper.clock;
8524070b 783#ifdef CONFIG_GENERIC_TIME
a0f7d48b 784 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 785#else
155ec602 786 offset = timekeeper.cycle_interval;
8524070b 787#endif
23ce7211 788 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
8524070b 789
a092ff0f 790 /*
791 * With NO_HZ we may have to accumulate many cycle_intervals
792 * (think "ticks") worth of time at once. To do this efficiently,
793 * we calculate the largest doubling multiple of cycle_intervals
794 * that is smaller then the offset. We then accumulate that
795 * chunk in one go, and then try to consume the next smaller
796 * doubled multiple.
8524070b 797 */
a092ff0f 798 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
799 shift = max(0, shift);
800 /* Bound shift to one less then what overflows tick_length */
801 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
802 shift = min(shift, maxshift);
155ec602 803 while (offset >= timekeeper.cycle_interval) {
a092ff0f 804 offset = logarithmic_accumulation(offset, shift);
805 shift--;
8524070b 806 }
807
808 /* correct the clock when NTP error is too big */
155ec602 809 timekeeping_adjust(offset);
8524070b 810
6c9bacb4 811 /*
812 * Since in the loop above, we accumulate any amount of time
813 * in xtime_nsec over a second into xtime.tv_sec, its possible for
814 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 815 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 816 * its possible the required corrective factor to xtime_nsec could
817 * cause it to underflow.
818 *
819 * Now, we cannot simply roll the accumulated second back, since
820 * the NTP subsystem has been notified via second_overflow. So
821 * instead we push xtime_nsec forward by the amount we underflowed,
822 * and add that amount into the error.
823 *
824 * We'll correct this error next time through this function, when
825 * xtime_nsec is not as small.
826 */
155ec602
MS
827 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
828 s64 neg = -(s64)timekeeper.xtime_nsec;
829 timekeeper.xtime_nsec = 0;
23ce7211 830 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 831 }
832
5cd1c9c5
RZ
833 /* store full nanoseconds into xtime after rounding it up and
834 * add the remainder to the error difference.
835 */
23ce7211
MS
836 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
837 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
838 timekeeper.ntp_error += timekeeper.xtime_nsec <<
839 timekeeper.ntp_error_shift;
8524070b 840
841 /* check to see if there is a new clocksource to use */
155ec602 842 update_vsyscall(&xtime, timekeeper.clock);
8524070b 843}
7c3f1a57
TJ
844
845/**
846 * getboottime - Return the real time of system boot.
847 * @ts: pointer to the timespec to be set
848 *
849 * Returns the time of day in a timespec.
850 *
851 * This is based on the wall_to_monotonic offset and the total suspend
852 * time. Calls to settimeofday will affect the value returned (which
853 * basically means that however wrong your real time clock is at boot time,
854 * you get the right time here).
855 */
856void getboottime(struct timespec *ts)
857{
36d47481
HS
858 struct timespec boottime = {
859 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
860 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
861 };
d4f587c6 862
d4f587c6 863 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57
TJ
864}
865
866/**
867 * monotonic_to_bootbased - Convert the monotonic time to boot based.
868 * @ts: pointer to the timespec to be converted
869 */
870void monotonic_to_bootbased(struct timespec *ts)
871{
d4f587c6 872 *ts = timespec_add_safe(*ts, total_sleep_time);
7c3f1a57 873}
2c6b47de 874
17c38b74 875unsigned long get_seconds(void)
876{
7bc7d637 877 return xtime.tv_sec;
17c38b74 878}
879EXPORT_SYMBOL(get_seconds);
880
da15cfda 881struct timespec __current_kernel_time(void)
882{
7bc7d637 883 return xtime;
da15cfda 884}
17c38b74 885
2c6b47de 886struct timespec current_kernel_time(void)
887{
888 struct timespec now;
889 unsigned long seq;
890
891 do {
892 seq = read_seqbegin(&xtime_lock);
7bc7d637 893 now = xtime;
2c6b47de 894 } while (read_seqretry(&xtime_lock, seq));
895
896 return now;
897}
2c6b47de 898EXPORT_SYMBOL(current_kernel_time);
da15cfda 899
900struct timespec get_monotonic_coarse(void)
901{
902 struct timespec now, mono;
903 unsigned long seq;
904
905 do {
906 seq = read_seqbegin(&xtime_lock);
7bc7d637 907 now = xtime;
da15cfda 908 mono = wall_to_monotonic;
909 } while (read_seqretry(&xtime_lock, seq));
910
911 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
912 now.tv_nsec + mono.tv_nsec);
913 return now;
914}
This page took 0.41267 seconds and 5 git commands to generate.