timekeeping: Fix a few minor newline issues.
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b 18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
058892e6
TG
28 /* NTP adjusted clock multiplier */
29 u32 mult;
23ce7211
MS
30 /* The shift value of the current clocksource. */
31 int shift;
155ec602
MS
32
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval;
35 /* Number of clock shifted nano seconds in one NTP interval. */
36 u64 xtime_interval;
a386b5af
KP
37 /* shifted nano seconds left over when rounding cycle_interval */
38 s64 xtime_remainder;
155ec602
MS
39 /* Raw nano seconds accumulated per NTP interval. */
40 u32 raw_interval;
41
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 u64 xtime_nsec;
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
46 s64 ntp_error;
23ce7211
MS
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
49 int ntp_error_shift;
00c5fb77 50
8ff2cb92
JS
51 /* The current time */
52 struct timespec xtime;
d9f7217a
JS
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
00c5fb77
JS
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
01f71b47
JS
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
70471f2f
JS
72
73 /* Seqlock for all timekeeper values */
74 seqlock_t lock;
155ec602
MS
75};
76
afa14e7c 77static struct timekeeper timekeeper;
155ec602 78
8fcce546
JS
79/*
80 * This read-write spinlock protects us from races in SMP while
81 * playing with xtime.
82 */
83__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84
85
86/* flag for if timekeeping is suspended */
87int __read_mostly timekeeping_suspended;
88
89
90
155ec602
MS
91/**
92 * timekeeper_setup_internals - Set up internals to use clocksource clock.
93 *
94 * @clock: Pointer to clocksource.
95 *
96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97 * pair and interval request.
98 *
99 * Unless you're the timekeeping code, you should not be using this!
100 */
101static void timekeeper_setup_internals(struct clocksource *clock)
102{
103 cycle_t interval;
a386b5af 104 u64 tmp, ntpinterval;
155ec602
MS
105
106 timekeeper.clock = clock;
107 clock->cycle_last = clock->read(clock);
108
109 /* Do the ns -> cycle conversion first, using original mult */
110 tmp = NTP_INTERVAL_LENGTH;
111 tmp <<= clock->shift;
a386b5af 112 ntpinterval = tmp;
0a544198
MS
113 tmp += clock->mult/2;
114 do_div(tmp, clock->mult);
155ec602
MS
115 if (tmp == 0)
116 tmp = 1;
117
118 interval = (cycle_t) tmp;
119 timekeeper.cycle_interval = interval;
120
121 /* Go back from cycles -> shifted ns */
122 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 124 timekeeper.raw_interval =
0a544198 125 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
126
127 timekeeper.xtime_nsec = 0;
23ce7211 128 timekeeper.shift = clock->shift;
155ec602
MS
129
130 timekeeper.ntp_error = 0;
23ce7211 131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
132
133 /*
134 * The timekeeper keeps its own mult values for the currently
135 * active clocksource. These value will be adjusted via NTP
136 * to counteract clock drifting.
137 */
138 timekeeper.mult = clock->mult;
155ec602 139}
8524070b 140
2ba2a305
MS
141/* Timekeeper helper functions. */
142static inline s64 timekeeping_get_ns(void)
143{
144 cycle_t cycle_now, cycle_delta;
145 struct clocksource *clock;
146
147 /* read clocksource: */
148 clock = timekeeper.clock;
149 cycle_now = clock->read(clock);
150
151 /* calculate the delta since the last update_wall_time: */
152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154 /* return delta convert to nanoseconds using ntp adjusted mult. */
155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 timekeeper.shift);
157}
158
159static inline s64 timekeeping_get_ns_raw(void)
160{
161 cycle_t cycle_now, cycle_delta;
162 struct clocksource *clock;
163
164 /* read clocksource: */
165 clock = timekeeper.clock;
166 cycle_now = clock->read(clock);
167
168 /* calculate the delta since the last update_wall_time: */
169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170
c9fad429 171 /* return delta convert to nanoseconds. */
2ba2a305
MS
172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173}
174
cc06268c
TG
175/* must hold write on timekeeper.lock */
176static void timekeeping_update(bool clearntp)
177{
178 if (clearntp) {
179 timekeeper.ntp_error = 0;
180 ntp_clear();
181 }
182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 timekeeper.clock, timekeeper.mult);
184}
185
186
8524070b 187/**
155ec602 188 * timekeeping_forward_now - update clock to the current time
8524070b 189 *
9a055117
RZ
190 * Forward the current clock to update its state since the last call to
191 * update_wall_time(). This is useful before significant clock changes,
192 * as it avoids having to deal with this time offset explicitly.
8524070b 193 */
155ec602 194static void timekeeping_forward_now(void)
8524070b 195{
196 cycle_t cycle_now, cycle_delta;
155ec602 197 struct clocksource *clock;
9a055117 198 s64 nsec;
8524070b 199
155ec602 200 clock = timekeeper.clock;
a0f7d48b 201 cycle_now = clock->read(clock);
8524070b 202 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 203 clock->cycle_last = cycle_now;
8524070b 204
0a544198
MS
205 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
206 timekeeper.shift);
7d27558c 207
208 /* If arch requires, add in gettimeoffset() */
209 nsec += arch_gettimeoffset();
210
8ff2cb92 211 timespec_add_ns(&timekeeper.xtime, nsec);
2d42244a 212
0a544198 213 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
01f71b47 214 timespec_add_ns(&timekeeper.raw_time, nsec);
8524070b 215}
216
217/**
efd9ac86 218 * getnstimeofday - Returns the time of day in a timespec
8524070b 219 * @ts: pointer to the timespec to be set
220 *
efd9ac86 221 * Returns the time of day in a timespec.
8524070b 222 */
efd9ac86 223void getnstimeofday(struct timespec *ts)
8524070b 224{
225 unsigned long seq;
226 s64 nsecs;
227
1c5745aa
TG
228 WARN_ON(timekeeping_suspended);
229
8524070b 230 do {
70471f2f 231 seq = read_seqbegin(&timekeeper.lock);
8524070b 232
8ff2cb92 233 *ts = timekeeper.xtime;
2ba2a305 234 nsecs = timekeeping_get_ns();
8524070b 235
7d27558c 236 /* If arch requires, add in gettimeoffset() */
237 nsecs += arch_gettimeoffset();
238
70471f2f 239 } while (read_seqretry(&timekeeper.lock, seq));
8524070b 240
241 timespec_add_ns(ts, nsecs);
242}
8524070b 243EXPORT_SYMBOL(getnstimeofday);
244
951ed4d3
MS
245ktime_t ktime_get(void)
246{
951ed4d3
MS
247 unsigned int seq;
248 s64 secs, nsecs;
249
250 WARN_ON(timekeeping_suspended);
251
252 do {
70471f2f 253 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92
JS
254 secs = timekeeper.xtime.tv_sec +
255 timekeeper.wall_to_monotonic.tv_sec;
256 nsecs = timekeeper.xtime.tv_nsec +
257 timekeeper.wall_to_monotonic.tv_nsec;
2ba2a305 258 nsecs += timekeeping_get_ns();
d004e024
HP
259 /* If arch requires, add in gettimeoffset() */
260 nsecs += arch_gettimeoffset();
951ed4d3 261
70471f2f 262 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
263 /*
264 * Use ktime_set/ktime_add_ns to create a proper ktime on
265 * 32-bit architectures without CONFIG_KTIME_SCALAR.
266 */
267 return ktime_add_ns(ktime_set(secs, 0), nsecs);
268}
269EXPORT_SYMBOL_GPL(ktime_get);
270
271/**
272 * ktime_get_ts - get the monotonic clock in timespec format
273 * @ts: pointer to timespec variable
274 *
275 * The function calculates the monotonic clock from the realtime
276 * clock and the wall_to_monotonic offset and stores the result
277 * in normalized timespec format in the variable pointed to by @ts.
278 */
279void ktime_get_ts(struct timespec *ts)
280{
951ed4d3
MS
281 struct timespec tomono;
282 unsigned int seq;
283 s64 nsecs;
284
285 WARN_ON(timekeeping_suspended);
286
287 do {
70471f2f 288 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 289 *ts = timekeeper.xtime;
d9f7217a 290 tomono = timekeeper.wall_to_monotonic;
2ba2a305 291 nsecs = timekeeping_get_ns();
d004e024
HP
292 /* If arch requires, add in gettimeoffset() */
293 nsecs += arch_gettimeoffset();
951ed4d3 294
70471f2f 295 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
296
297 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
298 ts->tv_nsec + tomono.tv_nsec + nsecs);
299}
300EXPORT_SYMBOL_GPL(ktime_get_ts);
301
e2c18e49
AG
302#ifdef CONFIG_NTP_PPS
303
304/**
305 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
306 * @ts_raw: pointer to the timespec to be set to raw monotonic time
307 * @ts_real: pointer to the timespec to be set to the time of day
308 *
309 * This function reads both the time of day and raw monotonic time at the
310 * same time atomically and stores the resulting timestamps in timespec
311 * format.
312 */
313void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
314{
315 unsigned long seq;
316 s64 nsecs_raw, nsecs_real;
317
318 WARN_ON_ONCE(timekeeping_suspended);
319
320 do {
321 u32 arch_offset;
322
70471f2f 323 seq = read_seqbegin(&timekeeper.lock);
e2c18e49 324
01f71b47 325 *ts_raw = timekeeper.raw_time;
8ff2cb92 326 *ts_real = timekeeper.xtime;
e2c18e49
AG
327
328 nsecs_raw = timekeeping_get_ns_raw();
329 nsecs_real = timekeeping_get_ns();
330
331 /* If arch requires, add in gettimeoffset() */
332 arch_offset = arch_gettimeoffset();
333 nsecs_raw += arch_offset;
334 nsecs_real += arch_offset;
335
70471f2f 336 } while (read_seqretry(&timekeeper.lock, seq));
e2c18e49
AG
337
338 timespec_add_ns(ts_raw, nsecs_raw);
339 timespec_add_ns(ts_real, nsecs_real);
340}
341EXPORT_SYMBOL(getnstime_raw_and_real);
342
343#endif /* CONFIG_NTP_PPS */
344
8524070b 345/**
346 * do_gettimeofday - Returns the time of day in a timeval
347 * @tv: pointer to the timeval to be set
348 *
efd9ac86 349 * NOTE: Users should be converted to using getnstimeofday()
8524070b 350 */
351void do_gettimeofday(struct timeval *tv)
352{
353 struct timespec now;
354
efd9ac86 355 getnstimeofday(&now);
8524070b 356 tv->tv_sec = now.tv_sec;
357 tv->tv_usec = now.tv_nsec/1000;
358}
8524070b 359EXPORT_SYMBOL(do_gettimeofday);
d239f49d 360
8524070b 361/**
362 * do_settimeofday - Sets the time of day
363 * @tv: pointer to the timespec variable containing the new time
364 *
365 * Sets the time of day to the new time and update NTP and notify hrtimers
366 */
1e6d7679 367int do_settimeofday(const struct timespec *tv)
8524070b 368{
9a055117 369 struct timespec ts_delta;
92c1d3ed 370 unsigned long flags;
8524070b 371
372 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
373 return -EINVAL;
374
92c1d3ed 375 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 376
155ec602 377 timekeeping_forward_now();
9a055117 378
8ff2cb92
JS
379 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
380 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
d9f7217a
JS
381 timekeeper.wall_to_monotonic =
382 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 383
8ff2cb92 384 timekeeper.xtime = *tv;
cc06268c 385 timekeeping_update(true);
8524070b 386
92c1d3ed 387 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 388
389 /* signal hrtimers about time change */
390 clock_was_set();
391
392 return 0;
393}
8524070b 394EXPORT_SYMBOL(do_settimeofday);
395
c528f7c6
JS
396
397/**
398 * timekeeping_inject_offset - Adds or subtracts from the current time.
399 * @tv: pointer to the timespec variable containing the offset
400 *
401 * Adds or subtracts an offset value from the current time.
402 */
403int timekeeping_inject_offset(struct timespec *ts)
404{
92c1d3ed 405 unsigned long flags;
c528f7c6
JS
406
407 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
408 return -EINVAL;
409
92c1d3ed 410 write_seqlock_irqsave(&timekeeper.lock, flags);
c528f7c6
JS
411
412 timekeeping_forward_now();
413
8ff2cb92 414 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
d9f7217a
JS
415 timekeeper.wall_to_monotonic =
416 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6 417
cc06268c 418 timekeeping_update(true);
c528f7c6 419
92c1d3ed 420 write_sequnlock_irqrestore(&timekeeper.lock, flags);
c528f7c6
JS
421
422 /* signal hrtimers about time change */
423 clock_was_set();
424
425 return 0;
426}
427EXPORT_SYMBOL(timekeeping_inject_offset);
428
8524070b 429/**
430 * change_clocksource - Swaps clocksources if a new one is available
431 *
432 * Accumulates current time interval and initializes new clocksource
433 */
75c5158f 434static int change_clocksource(void *data)
8524070b 435{
4614e6ad 436 struct clocksource *new, *old;
f695cf94 437 unsigned long flags;
8524070b 438
75c5158f 439 new = (struct clocksource *) data;
8524070b 440
f695cf94
JS
441 write_seqlock_irqsave(&timekeeper.lock, flags);
442
155ec602 443 timekeeping_forward_now();
75c5158f
MS
444 if (!new->enable || new->enable(new) == 0) {
445 old = timekeeper.clock;
446 timekeeper_setup_internals(new);
447 if (old->disable)
448 old->disable(old);
449 }
f695cf94
JS
450 timekeeping_update(true);
451
452 write_sequnlock_irqrestore(&timekeeper.lock, flags);
453
75c5158f
MS
454 return 0;
455}
8524070b 456
75c5158f
MS
457/**
458 * timekeeping_notify - Install a new clock source
459 * @clock: pointer to the clock source
460 *
461 * This function is called from clocksource.c after a new, better clock
462 * source has been registered. The caller holds the clocksource_mutex.
463 */
464void timekeeping_notify(struct clocksource *clock)
465{
466 if (timekeeper.clock == clock)
4614e6ad 467 return;
75c5158f 468 stop_machine(change_clocksource, clock, NULL);
8524070b 469 tick_clock_notify();
8524070b 470}
75c5158f 471
a40f262c
TG
472/**
473 * ktime_get_real - get the real (wall-) time in ktime_t format
474 *
475 * returns the time in ktime_t format
476 */
477ktime_t ktime_get_real(void)
478{
479 struct timespec now;
480
481 getnstimeofday(&now);
482
483 return timespec_to_ktime(now);
484}
485EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 486
2d42244a
JS
487/**
488 * getrawmonotonic - Returns the raw monotonic time in a timespec
489 * @ts: pointer to the timespec to be set
490 *
491 * Returns the raw monotonic time (completely un-modified by ntp)
492 */
493void getrawmonotonic(struct timespec *ts)
494{
495 unsigned long seq;
496 s64 nsecs;
2d42244a
JS
497
498 do {
70471f2f 499 seq = read_seqbegin(&timekeeper.lock);
2ba2a305 500 nsecs = timekeeping_get_ns_raw();
01f71b47 501 *ts = timekeeper.raw_time;
2d42244a 502
70471f2f 503 } while (read_seqretry(&timekeeper.lock, seq));
2d42244a
JS
504
505 timespec_add_ns(ts, nsecs);
506}
507EXPORT_SYMBOL(getrawmonotonic);
508
509
8524070b 510/**
cf4fc6cb 511 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 512 */
cf4fc6cb 513int timekeeping_valid_for_hres(void)
8524070b 514{
515 unsigned long seq;
516 int ret;
517
518 do {
70471f2f 519 seq = read_seqbegin(&timekeeper.lock);
8524070b 520
155ec602 521 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 522
70471f2f 523 } while (read_seqretry(&timekeeper.lock, seq));
8524070b 524
525 return ret;
526}
527
98962465
JH
528/**
529 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
530 */
531u64 timekeeping_max_deferment(void)
532{
70471f2f
JS
533 unsigned long seq;
534 u64 ret;
535 do {
536 seq = read_seqbegin(&timekeeper.lock);
537
538 ret = timekeeper.clock->max_idle_ns;
539
540 } while (read_seqretry(&timekeeper.lock, seq));
541
542 return ret;
98962465
JH
543}
544
8524070b 545/**
d4f587c6 546 * read_persistent_clock - Return time from the persistent clock.
8524070b 547 *
548 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
549 * Reads the time from the battery backed persistent clock.
550 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 551 *
552 * XXX - Do be sure to remove it once all arches implement it.
553 */
d4f587c6 554void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 555{
d4f587c6
MS
556 ts->tv_sec = 0;
557 ts->tv_nsec = 0;
8524070b 558}
559
23970e38
MS
560/**
561 * read_boot_clock - Return time of the system start.
562 *
563 * Weak dummy function for arches that do not yet support it.
564 * Function to read the exact time the system has been started.
565 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
566 *
567 * XXX - Do be sure to remove it once all arches implement it.
568 */
569void __attribute__((weak)) read_boot_clock(struct timespec *ts)
570{
571 ts->tv_sec = 0;
572 ts->tv_nsec = 0;
573}
574
8524070b 575/*
576 * timekeeping_init - Initializes the clocksource and common timekeeping values
577 */
578void __init timekeeping_init(void)
579{
155ec602 580 struct clocksource *clock;
8524070b 581 unsigned long flags;
23970e38 582 struct timespec now, boot;
d4f587c6
MS
583
584 read_persistent_clock(&now);
23970e38 585 read_boot_clock(&boot);
8524070b 586
70471f2f 587 seqlock_init(&timekeeper.lock);
8524070b 588
7dffa3c6 589 ntp_init();
8524070b 590
70471f2f 591 write_seqlock_irqsave(&timekeeper.lock, flags);
f1b82746 592 clock = clocksource_default_clock();
a0f7d48b
MS
593 if (clock->enable)
594 clock->enable(clock);
155ec602 595 timekeeper_setup_internals(clock);
8524070b 596
8ff2cb92
JS
597 timekeeper.xtime.tv_sec = now.tv_sec;
598 timekeeper.xtime.tv_nsec = now.tv_nsec;
01f71b47
JS
599 timekeeper.raw_time.tv_sec = 0;
600 timekeeper.raw_time.tv_nsec = 0;
23970e38 601 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
8ff2cb92
JS
602 boot.tv_sec = timekeeper.xtime.tv_sec;
603 boot.tv_nsec = timekeeper.xtime.tv_nsec;
23970e38 604 }
d9f7217a 605 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 606 -boot.tv_sec, -boot.tv_nsec);
00c5fb77
JS
607 timekeeper.total_sleep_time.tv_sec = 0;
608 timekeeper.total_sleep_time.tv_nsec = 0;
70471f2f 609 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 610}
611
8524070b 612/* time in seconds when suspend began */
d4f587c6 613static struct timespec timekeeping_suspend_time;
8524070b 614
304529b1
JS
615/**
616 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
617 * @delta: pointer to a timespec delta value
618 *
619 * Takes a timespec offset measuring a suspend interval and properly
620 * adds the sleep offset to the timekeeping variables.
621 */
622static void __timekeeping_inject_sleeptime(struct timespec *delta)
623{
cb5de2f8 624 if (!timespec_valid(delta)) {
cbaa5152 625 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
626 "sleep delta value!\n");
627 return;
628 }
629
8ff2cb92 630 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
d9f7217a
JS
631 timekeeper.wall_to_monotonic =
632 timespec_sub(timekeeper.wall_to_monotonic, *delta);
00c5fb77
JS
633 timekeeper.total_sleep_time = timespec_add(
634 timekeeper.total_sleep_time, *delta);
304529b1
JS
635}
636
637
638/**
639 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
640 * @delta: pointer to a timespec delta value
641 *
642 * This hook is for architectures that cannot support read_persistent_clock
643 * because their RTC/persistent clock is only accessible when irqs are enabled.
644 *
645 * This function should only be called by rtc_resume(), and allows
646 * a suspend offset to be injected into the timekeeping values.
647 */
648void timekeeping_inject_sleeptime(struct timespec *delta)
649{
92c1d3ed 650 unsigned long flags;
304529b1
JS
651 struct timespec ts;
652
653 /* Make sure we don't set the clock twice */
654 read_persistent_clock(&ts);
655 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
656 return;
657
92c1d3ed 658 write_seqlock_irqsave(&timekeeper.lock, flags);
70471f2f 659
304529b1
JS
660 timekeeping_forward_now();
661
662 __timekeeping_inject_sleeptime(delta);
663
cc06268c 664 timekeeping_update(true);
304529b1 665
92c1d3ed 666 write_sequnlock_irqrestore(&timekeeper.lock, flags);
304529b1
JS
667
668 /* signal hrtimers about time change */
669 clock_was_set();
670}
671
672
8524070b 673/**
674 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 675 *
676 * This is for the generic clocksource timekeeping.
677 * xtime/wall_to_monotonic/jiffies/etc are
678 * still managed by arch specific suspend/resume code.
679 */
e1a85b2c 680static void timekeeping_resume(void)
8524070b 681{
92c1d3ed 682 unsigned long flags;
d4f587c6
MS
683 struct timespec ts;
684
685 read_persistent_clock(&ts);
8524070b 686
d10ff3fb
TG
687 clocksource_resume();
688
92c1d3ed 689 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 690
d4f587c6
MS
691 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
692 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 693 __timekeeping_inject_sleeptime(&ts);
8524070b 694 }
695 /* re-base the last cycle value */
155ec602
MS
696 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
697 timekeeper.ntp_error = 0;
8524070b 698 timekeeping_suspended = 0;
92c1d3ed 699 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 700
701 touch_softlockup_watchdog();
702
703 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
704
705 /* Resume hrtimers */
b12a03ce 706 hrtimers_resume();
8524070b 707}
708
e1a85b2c 709static int timekeeping_suspend(void)
8524070b 710{
92c1d3ed 711 unsigned long flags;
cb33217b
JS
712 struct timespec delta, delta_delta;
713 static struct timespec old_delta;
8524070b 714
d4f587c6 715 read_persistent_clock(&timekeeping_suspend_time);
3be90950 716
92c1d3ed 717 write_seqlock_irqsave(&timekeeper.lock, flags);
155ec602 718 timekeeping_forward_now();
8524070b 719 timekeeping_suspended = 1;
cb33217b
JS
720
721 /*
722 * To avoid drift caused by repeated suspend/resumes,
723 * which each can add ~1 second drift error,
724 * try to compensate so the difference in system time
725 * and persistent_clock time stays close to constant.
726 */
8ff2cb92 727 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
cb33217b
JS
728 delta_delta = timespec_sub(delta, old_delta);
729 if (abs(delta_delta.tv_sec) >= 2) {
730 /*
731 * if delta_delta is too large, assume time correction
732 * has occured and set old_delta to the current delta.
733 */
734 old_delta = delta;
735 } else {
736 /* Otherwise try to adjust old_system to compensate */
737 timekeeping_suspend_time =
738 timespec_add(timekeeping_suspend_time, delta_delta);
739 }
92c1d3ed 740 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b 741
742 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 743 clocksource_suspend();
8524070b 744
745 return 0;
746}
747
748/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 749static struct syscore_ops timekeeping_syscore_ops = {
8524070b 750 .resume = timekeeping_resume,
751 .suspend = timekeeping_suspend,
8524070b 752};
753
e1a85b2c 754static int __init timekeeping_init_ops(void)
8524070b 755{
e1a85b2c
RW
756 register_syscore_ops(&timekeeping_syscore_ops);
757 return 0;
8524070b 758}
759
e1a85b2c 760device_initcall(timekeeping_init_ops);
8524070b 761
762/*
763 * If the error is already larger, we look ahead even further
764 * to compensate for late or lost adjustments.
765 */
155ec602 766static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 767 s64 *offset)
768{
769 s64 tick_error, i;
770 u32 look_ahead, adj;
771 s32 error2, mult;
772
773 /*
774 * Use the current error value to determine how much to look ahead.
775 * The larger the error the slower we adjust for it to avoid problems
776 * with losing too many ticks, otherwise we would overadjust and
777 * produce an even larger error. The smaller the adjustment the
778 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 779 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 780 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
781 */
155ec602 782 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 783 error2 = abs(error2);
784 for (look_ahead = 0; error2 > 0; look_ahead++)
785 error2 >>= 2;
786
787 /*
788 * Now calculate the error in (1 << look_ahead) ticks, but first
789 * remove the single look ahead already included in the error.
790 */
ea7cf49a 791 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
155ec602 792 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 793 error = ((error - tick_error) >> look_ahead) + tick_error;
794
795 /* Finally calculate the adjustment shift value. */
796 i = *interval;
797 mult = 1;
798 if (error < 0) {
799 error = -error;
800 *interval = -*interval;
801 *offset = -*offset;
802 mult = -1;
803 }
804 for (adj = 0; error > i; adj++)
805 error >>= 1;
806
807 *interval <<= adj;
808 *offset <<= adj;
809 return mult << adj;
810}
811
812/*
813 * Adjust the multiplier to reduce the error value,
814 * this is optimized for the most common adjustments of -1,0,1,
815 * for other values we can do a bit more work.
816 */
155ec602 817static void timekeeping_adjust(s64 offset)
8524070b 818{
155ec602 819 s64 error, interval = timekeeper.cycle_interval;
8524070b 820 int adj;
821
c2bc1111 822 /*
88b28adf 823 * The point of this is to check if the error is greater than half
c2bc1111
JS
824 * an interval.
825 *
826 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
827 *
828 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
829 * This "saves" dividing(shifting) interval twice, but keeps the
830 * (error > interval) comparison as still measuring if error is
88b28adf 831 * larger than half an interval.
c2bc1111 832 *
3f86f28f 833 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 834 */
23ce7211 835 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 836 if (error > interval) {
c2bc1111
JS
837 /*
838 * We now divide error by 4(via shift), which checks if
88b28adf 839 * the error is greater than twice the interval.
c2bc1111
JS
840 * If it is greater, we need a bigadjust, if its smaller,
841 * we can adjust by 1.
842 */
8524070b 843 error >>= 2;
c2bc1111
JS
844 /*
845 * XXX - In update_wall_time, we round up to the next
846 * nanosecond, and store the amount rounded up into
847 * the error. This causes the likely below to be unlikely.
848 *
3f86f28f 849 * The proper fix is to avoid rounding up by using
c2bc1111
JS
850 * the high precision timekeeper.xtime_nsec instead of
851 * xtime.tv_nsec everywhere. Fixing this will take some
852 * time.
853 */
8524070b 854 if (likely(error <= interval))
855 adj = 1;
856 else
155ec602 857 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 858 } else if (error < -interval) {
c2bc1111 859 /* See comment above, this is just switched for the negative */
8524070b 860 error >>= 2;
861 if (likely(error >= -interval)) {
862 adj = -1;
863 interval = -interval;
864 offset = -offset;
865 } else
155ec602 866 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 867 } else /* No adjustment needed */
8524070b 868 return;
869
e919cfd4
JS
870 if (unlikely(timekeeper.clock->maxadj &&
871 (timekeeper.mult + adj >
872 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
873 printk_once(KERN_WARNING
874 "Adjusting %s more than 11%% (%ld vs %ld)\n",
d65670a7
JS
875 timekeeper.clock->name, (long)timekeeper.mult + adj,
876 (long)timekeeper.clock->mult +
877 timekeeper.clock->maxadj);
e919cfd4 878 }
c2bc1111
JS
879 /*
880 * So the following can be confusing.
881 *
882 * To keep things simple, lets assume adj == 1 for now.
883 *
884 * When adj != 1, remember that the interval and offset values
885 * have been appropriately scaled so the math is the same.
886 *
887 * The basic idea here is that we're increasing the multiplier
888 * by one, this causes the xtime_interval to be incremented by
889 * one cycle_interval. This is because:
890 * xtime_interval = cycle_interval * mult
891 * So if mult is being incremented by one:
892 * xtime_interval = cycle_interval * (mult + 1)
893 * Its the same as:
894 * xtime_interval = (cycle_interval * mult) + cycle_interval
895 * Which can be shortened to:
896 * xtime_interval += cycle_interval
897 *
898 * So offset stores the non-accumulated cycles. Thus the current
899 * time (in shifted nanoseconds) is:
900 * now = (offset * adj) + xtime_nsec
901 * Now, even though we're adjusting the clock frequency, we have
902 * to keep time consistent. In other words, we can't jump back
903 * in time, and we also want to avoid jumping forward in time.
904 *
905 * So given the same offset value, we need the time to be the same
906 * both before and after the freq adjustment.
907 * now = (offset * adj_1) + xtime_nsec_1
908 * now = (offset * adj_2) + xtime_nsec_2
909 * So:
910 * (offset * adj_1) + xtime_nsec_1 =
911 * (offset * adj_2) + xtime_nsec_2
912 * And we know:
913 * adj_2 = adj_1 + 1
914 * So:
915 * (offset * adj_1) + xtime_nsec_1 =
916 * (offset * (adj_1+1)) + xtime_nsec_2
917 * (offset * adj_1) + xtime_nsec_1 =
918 * (offset * adj_1) + offset + xtime_nsec_2
919 * Canceling the sides:
920 * xtime_nsec_1 = offset + xtime_nsec_2
921 * Which gives us:
922 * xtime_nsec_2 = xtime_nsec_1 - offset
923 * Which simplfies to:
924 * xtime_nsec -= offset
925 *
926 * XXX - TODO: Doc ntp_error calculation.
927 */
0a544198 928 timekeeper.mult += adj;
155ec602
MS
929 timekeeper.xtime_interval += interval;
930 timekeeper.xtime_nsec -= offset;
931 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 932 timekeeper.ntp_error_shift;
8524070b 933}
934
83f57a11 935
a092ff0f 936/**
937 * logarithmic_accumulation - shifted accumulation of cycles
938 *
939 * This functions accumulates a shifted interval of cycles into
940 * into a shifted interval nanoseconds. Allows for O(log) accumulation
941 * loop.
942 *
943 * Returns the unconsumed cycles.
944 */
945static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
946{
947 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
deda2e81 948 u64 raw_nsecs;
a092ff0f 949
88b28adf 950 /* If the offset is smaller than a shifted interval, do nothing */
a092ff0f 951 if (offset < timekeeper.cycle_interval<<shift)
952 return offset;
953
954 /* Accumulate one shifted interval */
955 offset -= timekeeper.cycle_interval << shift;
956 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
957
958 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
959 while (timekeeper.xtime_nsec >= nsecps) {
6b43ae8a 960 int leap;
a092ff0f 961 timekeeper.xtime_nsec -= nsecps;
8ff2cb92 962 timekeeper.xtime.tv_sec++;
6b43ae8a
JS
963 leap = second_overflow(timekeeper.xtime.tv_sec);
964 timekeeper.xtime.tv_sec += leap;
a092ff0f 965 }
966
deda2e81
JW
967 /* Accumulate raw time */
968 raw_nsecs = timekeeper.raw_interval << shift;
01f71b47 969 raw_nsecs += timekeeper.raw_time.tv_nsec;
c7dcf87a
JS
970 if (raw_nsecs >= NSEC_PER_SEC) {
971 u64 raw_secs = raw_nsecs;
972 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
01f71b47 973 timekeeper.raw_time.tv_sec += raw_secs;
a092ff0f 974 }
01f71b47 975 timekeeper.raw_time.tv_nsec = raw_nsecs;
a092ff0f 976
977 /* Accumulate error between NTP and clock interval */
ea7cf49a 978 timekeeper.ntp_error += ntp_tick_length() << shift;
a386b5af
KP
979 timekeeper.ntp_error -=
980 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f 981 (timekeeper.ntp_error_shift + shift);
982
983 return offset;
984}
985
83f57a11 986
8524070b 987/**
988 * update_wall_time - Uses the current clocksource to increment the wall time
989 *
8524070b 990 */
871cf1e5 991static void update_wall_time(void)
8524070b 992{
155ec602 993 struct clocksource *clock;
8524070b 994 cycle_t offset;
a092ff0f 995 int shift = 0, maxshift;
70471f2f
JS
996 unsigned long flags;
997
998 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 999
1000 /* Make sure we're fully resumed: */
1001 if (unlikely(timekeeping_suspended))
70471f2f 1002 goto out;
8524070b 1003
155ec602 1004 clock = timekeeper.clock;
592913ec
JS
1005
1006#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 1007 offset = timekeeper.cycle_interval;
592913ec
JS
1008#else
1009 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1010#endif
8ff2cb92
JS
1011 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1012 timekeeper.shift;
8524070b 1013
a092ff0f 1014 /*
1015 * With NO_HZ we may have to accumulate many cycle_intervals
1016 * (think "ticks") worth of time at once. To do this efficiently,
1017 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1018 * that is smaller than the offset. We then accumulate that
a092ff0f 1019 * chunk in one go, and then try to consume the next smaller
1020 * doubled multiple.
8524070b 1021 */
a092ff0f 1022 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1023 shift = max(0, shift);
88b28adf 1024 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1025 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1026 shift = min(shift, maxshift);
155ec602 1027 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1028 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1029 if(offset < timekeeper.cycle_interval<<shift)
1030 shift--;
8524070b 1031 }
1032
1033 /* correct the clock when NTP error is too big */
155ec602 1034 timekeeping_adjust(offset);
8524070b 1035
6c9bacb4 1036 /*
1037 * Since in the loop above, we accumulate any amount of time
1038 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1039 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1040 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 1041 * its possible the required corrective factor to xtime_nsec could
1042 * cause it to underflow.
1043 *
1044 * Now, we cannot simply roll the accumulated second back, since
1045 * the NTP subsystem has been notified via second_overflow. So
1046 * instead we push xtime_nsec forward by the amount we underflowed,
1047 * and add that amount into the error.
1048 *
1049 * We'll correct this error next time through this function, when
1050 * xtime_nsec is not as small.
1051 */
155ec602
MS
1052 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1053 s64 neg = -(s64)timekeeper.xtime_nsec;
1054 timekeeper.xtime_nsec = 0;
23ce7211 1055 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 1056 }
1057
6a867a39
JS
1058
1059 /*
1060 * Store full nanoseconds into xtime after rounding it up and
5cd1c9c5
RZ
1061 * add the remainder to the error difference.
1062 */
8ff2cb92
JS
1063 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1064 timekeeper.shift) + 1;
1065 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1066 timekeeper.shift;
23ce7211
MS
1067 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1068 timekeeper.ntp_error_shift;
8524070b 1069
6a867a39
JS
1070 /*
1071 * Finally, make sure that after the rounding
88b28adf 1072 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
6a867a39 1073 */
8ff2cb92 1074 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
6b43ae8a 1075 int leap;
8ff2cb92
JS
1076 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1077 timekeeper.xtime.tv_sec++;
6b43ae8a
JS
1078 leap = second_overflow(timekeeper.xtime.tv_sec);
1079 timekeeper.xtime.tv_sec += leap;
6a867a39 1080 }
83f57a11 1081
cc06268c 1082 timekeeping_update(false);
70471f2f
JS
1083
1084out:
1085 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1086
8524070b 1087}
7c3f1a57
TJ
1088
1089/**
1090 * getboottime - Return the real time of system boot.
1091 * @ts: pointer to the timespec to be set
1092 *
abb3a4ea 1093 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1094 *
1095 * This is based on the wall_to_monotonic offset and the total suspend
1096 * time. Calls to settimeofday will affect the value returned (which
1097 * basically means that however wrong your real time clock is at boot time,
1098 * you get the right time here).
1099 */
1100void getboottime(struct timespec *ts)
1101{
36d47481 1102 struct timespec boottime = {
d9f7217a 1103 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1104 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1105 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1106 timekeeper.total_sleep_time.tv_nsec
36d47481 1107 };
d4f587c6 1108
d4f587c6 1109 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1110}
c93d89f3 1111EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1112
abb3a4ea
JS
1113
1114/**
1115 * get_monotonic_boottime - Returns monotonic time since boot
1116 * @ts: pointer to the timespec to be set
1117 *
1118 * Returns the monotonic time since boot in a timespec.
1119 *
1120 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1121 * includes the time spent in suspend.
1122 */
1123void get_monotonic_boottime(struct timespec *ts)
1124{
1125 struct timespec tomono, sleep;
1126 unsigned int seq;
1127 s64 nsecs;
1128
1129 WARN_ON(timekeeping_suspended);
1130
1131 do {
70471f2f 1132 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 1133 *ts = timekeeper.xtime;
d9f7217a 1134 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1135 sleep = timekeeper.total_sleep_time;
abb3a4ea
JS
1136 nsecs = timekeeping_get_ns();
1137
70471f2f 1138 } while (read_seqretry(&timekeeper.lock, seq));
abb3a4ea
JS
1139
1140 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1141 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1142}
1143EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1144
1145/**
1146 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1147 *
1148 * Returns the monotonic time since boot in a ktime
1149 *
1150 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1151 * includes the time spent in suspend.
1152 */
1153ktime_t ktime_get_boottime(void)
1154{
1155 struct timespec ts;
1156
1157 get_monotonic_boottime(&ts);
1158 return timespec_to_ktime(ts);
1159}
1160EXPORT_SYMBOL_GPL(ktime_get_boottime);
1161
7c3f1a57
TJ
1162/**
1163 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1164 * @ts: pointer to the timespec to be converted
1165 */
1166void monotonic_to_bootbased(struct timespec *ts)
1167{
00c5fb77 1168 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1169}
c93d89f3 1170EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1171
17c38b74 1172unsigned long get_seconds(void)
1173{
8ff2cb92 1174 return timekeeper.xtime.tv_sec;
17c38b74 1175}
1176EXPORT_SYMBOL(get_seconds);
1177
da15cfda 1178struct timespec __current_kernel_time(void)
1179{
8ff2cb92 1180 return timekeeper.xtime;
da15cfda 1181}
17c38b74 1182
2c6b47de 1183struct timespec current_kernel_time(void)
1184{
1185 struct timespec now;
1186 unsigned long seq;
1187
1188 do {
70471f2f 1189 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1190
8ff2cb92 1191 now = timekeeper.xtime;
70471f2f 1192 } while (read_seqretry(&timekeeper.lock, seq));
2c6b47de 1193
1194 return now;
1195}
2c6b47de 1196EXPORT_SYMBOL(current_kernel_time);
da15cfda 1197
1198struct timespec get_monotonic_coarse(void)
1199{
1200 struct timespec now, mono;
1201 unsigned long seq;
1202
1203 do {
70471f2f 1204 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1205
8ff2cb92 1206 now = timekeeper.xtime;
d9f7217a 1207 mono = timekeeper.wall_to_monotonic;
70471f2f 1208 } while (read_seqretry(&timekeeper.lock, seq));
da15cfda 1209
1210 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1211 now.tv_nsec + mono.tv_nsec);
1212 return now;
1213}
871cf1e5
TH
1214
1215/*
1216 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1217 * without sampling the sequence number in xtime_lock.
1218 * jiffies is defined in the linker script...
1219 */
1220void do_timer(unsigned long ticks)
1221{
1222 jiffies_64 += ticks;
1223 update_wall_time();
1224 calc_global_load(ticks);
1225}
48cf76f7
TH
1226
1227/**
314ac371
JS
1228 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1229 * and sleep offsets.
48cf76f7
TH
1230 * @xtim: pointer to timespec to be set with xtime
1231 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1232 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1233 */
314ac371
JS
1234void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1235 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1236{
1237 unsigned long seq;
1238
1239 do {
70471f2f 1240 seq = read_seqbegin(&timekeeper.lock);
8ff2cb92 1241 *xtim = timekeeper.xtime;
d9f7217a 1242 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1243 *sleep = timekeeper.total_sleep_time;
70471f2f 1244 } while (read_seqretry(&timekeeper.lock, seq));
48cf76f7 1245}
f0af911a 1246
99ee5315
TG
1247/**
1248 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1249 */
1250ktime_t ktime_get_monotonic_offset(void)
1251{
1252 unsigned long seq;
1253 struct timespec wtom;
1254
1255 do {
70471f2f 1256 seq = read_seqbegin(&timekeeper.lock);
d9f7217a 1257 wtom = timekeeper.wall_to_monotonic;
70471f2f
JS
1258 } while (read_seqretry(&timekeeper.lock, seq));
1259
99ee5315
TG
1260 return timespec_to_ktime(wtom);
1261}
a80b83b7
JS
1262EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1263
99ee5315 1264
f0af911a
TH
1265/**
1266 * xtime_update() - advances the timekeeping infrastructure
1267 * @ticks: number of ticks, that have elapsed since the last call.
1268 *
1269 * Must be called with interrupts disabled.
1270 */
1271void xtime_update(unsigned long ticks)
1272{
1273 write_seqlock(&xtime_lock);
1274 do_timer(ticks);
1275 write_sequnlock(&xtime_lock);
1276}
This page took 0.458124 seconds and 5 git commands to generate.