time: Move wall_to_monotonic into the timekeeper structure
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b 18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
23ce7211
MS
28 /* The shift value of the current clocksource. */
29 int shift;
155ec602
MS
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
a386b5af
KP
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
155ec602
MS
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
39
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
23ce7211
MS
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
0a544198
MS
48 /* NTP adjusted clock multiplier */
49 u32 mult;
00c5fb77 50
d9f7217a
JS
51 /*
52 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
53 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
54 * at zero at system boot time, so wall_to_monotonic will be negative,
55 * however, we will ALWAYS keep the tv_nsec part positive so we can use
56 * the usual normalization.
57 *
58 * wall_to_monotonic is moved after resume from suspend for the
59 * monotonic time not to jump. We need to add total_sleep_time to
60 * wall_to_monotonic to get the real boot based time offset.
61 *
62 * - wall_to_monotonic is no longer the boot time, getboottime must be
63 * used instead.
64 */
65 struct timespec wall_to_monotonic;
00c5fb77
JS
66 /* time spent in suspend */
67 struct timespec total_sleep_time;
68
155ec602
MS
69};
70
afa14e7c 71static struct timekeeper timekeeper;
155ec602
MS
72
73/**
74 * timekeeper_setup_internals - Set up internals to use clocksource clock.
75 *
76 * @clock: Pointer to clocksource.
77 *
78 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
79 * pair and interval request.
80 *
81 * Unless you're the timekeeping code, you should not be using this!
82 */
83static void timekeeper_setup_internals(struct clocksource *clock)
84{
85 cycle_t interval;
a386b5af 86 u64 tmp, ntpinterval;
155ec602
MS
87
88 timekeeper.clock = clock;
89 clock->cycle_last = clock->read(clock);
90
91 /* Do the ns -> cycle conversion first, using original mult */
92 tmp = NTP_INTERVAL_LENGTH;
93 tmp <<= clock->shift;
a386b5af 94 ntpinterval = tmp;
0a544198
MS
95 tmp += clock->mult/2;
96 do_div(tmp, clock->mult);
155ec602
MS
97 if (tmp == 0)
98 tmp = 1;
99
100 interval = (cycle_t) tmp;
101 timekeeper.cycle_interval = interval;
102
103 /* Go back from cycles -> shifted ns */
104 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 105 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 106 timekeeper.raw_interval =
0a544198 107 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
108
109 timekeeper.xtime_nsec = 0;
23ce7211 110 timekeeper.shift = clock->shift;
155ec602
MS
111
112 timekeeper.ntp_error = 0;
23ce7211 113 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
114
115 /*
116 * The timekeeper keeps its own mult values for the currently
117 * active clocksource. These value will be adjusted via NTP
118 * to counteract clock drifting.
119 */
120 timekeeper.mult = clock->mult;
155ec602 121}
8524070b 122
2ba2a305
MS
123/* Timekeeper helper functions. */
124static inline s64 timekeeping_get_ns(void)
125{
126 cycle_t cycle_now, cycle_delta;
127 struct clocksource *clock;
128
129 /* read clocksource: */
130 clock = timekeeper.clock;
131 cycle_now = clock->read(clock);
132
133 /* calculate the delta since the last update_wall_time: */
134 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
135
136 /* return delta convert to nanoseconds using ntp adjusted mult. */
137 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
138 timekeeper.shift);
139}
140
141static inline s64 timekeeping_get_ns_raw(void)
142{
143 cycle_t cycle_now, cycle_delta;
144 struct clocksource *clock;
145
146 /* read clocksource: */
147 clock = timekeeper.clock;
148 cycle_now = clock->read(clock);
149
150 /* calculate the delta since the last update_wall_time: */
151 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
152
c9fad429 153 /* return delta convert to nanoseconds. */
2ba2a305
MS
154 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
155}
156
8524070b 157/*
158 * This read-write spinlock protects us from races in SMP while
dce48a84 159 * playing with xtime.
8524070b 160 */
ba2a631b 161__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
8524070b 162
163
164/*
165 * The current time
8524070b 166 */
0fb86b06 167static struct timespec xtime __attribute__ ((aligned (16)));
8524070b 168
155ec602
MS
169/*
170 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
171 */
afa14e7c 172static struct timespec raw_time;
155ec602 173
1c5745aa
TG
174/* flag for if timekeeping is suspended */
175int __read_mostly timekeeping_suspended;
176
31089c13
JS
177/* must hold xtime_lock */
178void timekeeping_leap_insert(int leapsecond)
179{
180 xtime.tv_sec += leapsecond;
d9f7217a
JS
181 timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
182 update_vsyscall(&xtime, &timekeeper.wall_to_monotonic, timekeeper.clock,
7615856e 183 timekeeper.mult);
31089c13 184}
8524070b 185
8524070b 186/**
155ec602 187 * timekeeping_forward_now - update clock to the current time
8524070b 188 *
9a055117
RZ
189 * Forward the current clock to update its state since the last call to
190 * update_wall_time(). This is useful before significant clock changes,
191 * as it avoids having to deal with this time offset explicitly.
8524070b 192 */
155ec602 193static void timekeeping_forward_now(void)
8524070b 194{
195 cycle_t cycle_now, cycle_delta;
155ec602 196 struct clocksource *clock;
9a055117 197 s64 nsec;
8524070b 198
155ec602 199 clock = timekeeper.clock;
a0f7d48b 200 cycle_now = clock->read(clock);
8524070b 201 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 202 clock->cycle_last = cycle_now;
8524070b 203
0a544198
MS
204 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
205 timekeeper.shift);
7d27558c 206
207 /* If arch requires, add in gettimeoffset() */
208 nsec += arch_gettimeoffset();
209
9a055117 210 timespec_add_ns(&xtime, nsec);
2d42244a 211
0a544198 212 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
155ec602 213 timespec_add_ns(&raw_time, nsec);
8524070b 214}
215
216/**
efd9ac86 217 * getnstimeofday - Returns the time of day in a timespec
8524070b 218 * @ts: pointer to the timespec to be set
219 *
efd9ac86 220 * Returns the time of day in a timespec.
8524070b 221 */
efd9ac86 222void getnstimeofday(struct timespec *ts)
8524070b 223{
224 unsigned long seq;
225 s64 nsecs;
226
1c5745aa
TG
227 WARN_ON(timekeeping_suspended);
228
8524070b 229 do {
230 seq = read_seqbegin(&xtime_lock);
231
232 *ts = xtime;
2ba2a305 233 nsecs = timekeeping_get_ns();
8524070b 234
7d27558c 235 /* If arch requires, add in gettimeoffset() */
236 nsecs += arch_gettimeoffset();
237
8524070b 238 } while (read_seqretry(&xtime_lock, seq));
239
240 timespec_add_ns(ts, nsecs);
241}
242
8524070b 243EXPORT_SYMBOL(getnstimeofday);
244
951ed4d3
MS
245ktime_t ktime_get(void)
246{
951ed4d3
MS
247 unsigned int seq;
248 s64 secs, nsecs;
249
250 WARN_ON(timekeeping_suspended);
251
252 do {
253 seq = read_seqbegin(&xtime_lock);
d9f7217a
JS
254 secs = xtime.tv_sec + timekeeper.wall_to_monotonic.tv_sec;
255 nsecs = xtime.tv_nsec + timekeeper.wall_to_monotonic.tv_nsec;
2ba2a305 256 nsecs += timekeeping_get_ns();
d004e024
HP
257 /* If arch requires, add in gettimeoffset() */
258 nsecs += arch_gettimeoffset();
951ed4d3
MS
259
260 } while (read_seqretry(&xtime_lock, seq));
261 /*
262 * Use ktime_set/ktime_add_ns to create a proper ktime on
263 * 32-bit architectures without CONFIG_KTIME_SCALAR.
264 */
265 return ktime_add_ns(ktime_set(secs, 0), nsecs);
266}
267EXPORT_SYMBOL_GPL(ktime_get);
268
269/**
270 * ktime_get_ts - get the monotonic clock in timespec format
271 * @ts: pointer to timespec variable
272 *
273 * The function calculates the monotonic clock from the realtime
274 * clock and the wall_to_monotonic offset and stores the result
275 * in normalized timespec format in the variable pointed to by @ts.
276 */
277void ktime_get_ts(struct timespec *ts)
278{
951ed4d3
MS
279 struct timespec tomono;
280 unsigned int seq;
281 s64 nsecs;
282
283 WARN_ON(timekeeping_suspended);
284
285 do {
286 seq = read_seqbegin(&xtime_lock);
287 *ts = xtime;
d9f7217a 288 tomono = timekeeper.wall_to_monotonic;
2ba2a305 289 nsecs = timekeeping_get_ns();
d004e024
HP
290 /* If arch requires, add in gettimeoffset() */
291 nsecs += arch_gettimeoffset();
951ed4d3
MS
292
293 } while (read_seqretry(&xtime_lock, seq));
294
295 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
296 ts->tv_nsec + tomono.tv_nsec + nsecs);
297}
298EXPORT_SYMBOL_GPL(ktime_get_ts);
299
e2c18e49
AG
300#ifdef CONFIG_NTP_PPS
301
302/**
303 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
304 * @ts_raw: pointer to the timespec to be set to raw monotonic time
305 * @ts_real: pointer to the timespec to be set to the time of day
306 *
307 * This function reads both the time of day and raw monotonic time at the
308 * same time atomically and stores the resulting timestamps in timespec
309 * format.
310 */
311void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
312{
313 unsigned long seq;
314 s64 nsecs_raw, nsecs_real;
315
316 WARN_ON_ONCE(timekeeping_suspended);
317
318 do {
319 u32 arch_offset;
320
321 seq = read_seqbegin(&xtime_lock);
322
323 *ts_raw = raw_time;
324 *ts_real = xtime;
325
326 nsecs_raw = timekeeping_get_ns_raw();
327 nsecs_real = timekeeping_get_ns();
328
329 /* If arch requires, add in gettimeoffset() */
330 arch_offset = arch_gettimeoffset();
331 nsecs_raw += arch_offset;
332 nsecs_real += arch_offset;
333
334 } while (read_seqretry(&xtime_lock, seq));
335
336 timespec_add_ns(ts_raw, nsecs_raw);
337 timespec_add_ns(ts_real, nsecs_real);
338}
339EXPORT_SYMBOL(getnstime_raw_and_real);
340
341#endif /* CONFIG_NTP_PPS */
342
8524070b 343/**
344 * do_gettimeofday - Returns the time of day in a timeval
345 * @tv: pointer to the timeval to be set
346 *
efd9ac86 347 * NOTE: Users should be converted to using getnstimeofday()
8524070b 348 */
349void do_gettimeofday(struct timeval *tv)
350{
351 struct timespec now;
352
efd9ac86 353 getnstimeofday(&now);
8524070b 354 tv->tv_sec = now.tv_sec;
355 tv->tv_usec = now.tv_nsec/1000;
356}
357
358EXPORT_SYMBOL(do_gettimeofday);
359/**
360 * do_settimeofday - Sets the time of day
361 * @tv: pointer to the timespec variable containing the new time
362 *
363 * Sets the time of day to the new time and update NTP and notify hrtimers
364 */
1e6d7679 365int do_settimeofday(const struct timespec *tv)
8524070b 366{
9a055117 367 struct timespec ts_delta;
8524070b 368 unsigned long flags;
8524070b 369
370 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
371 return -EINVAL;
372
373 write_seqlock_irqsave(&xtime_lock, flags);
374
155ec602 375 timekeeping_forward_now();
9a055117
RZ
376
377 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
378 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
d9f7217a
JS
379 timekeeper.wall_to_monotonic =
380 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 381
9a055117 382 xtime = *tv;
8524070b 383
155ec602 384 timekeeper.ntp_error = 0;
8524070b 385 ntp_clear();
386
d9f7217a 387 update_vsyscall(&xtime, &timekeeper.wall_to_monotonic, timekeeper.clock,
7615856e 388 timekeeper.mult);
8524070b 389
390 write_sequnlock_irqrestore(&xtime_lock, flags);
391
392 /* signal hrtimers about time change */
393 clock_was_set();
394
395 return 0;
396}
397
398EXPORT_SYMBOL(do_settimeofday);
399
c528f7c6
JS
400
401/**
402 * timekeeping_inject_offset - Adds or subtracts from the current time.
403 * @tv: pointer to the timespec variable containing the offset
404 *
405 * Adds or subtracts an offset value from the current time.
406 */
407int timekeeping_inject_offset(struct timespec *ts)
408{
409 unsigned long flags;
410
411 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
412 return -EINVAL;
413
414 write_seqlock_irqsave(&xtime_lock, flags);
415
416 timekeeping_forward_now();
417
418 xtime = timespec_add(xtime, *ts);
d9f7217a
JS
419 timekeeper.wall_to_monotonic =
420 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6
JS
421
422 timekeeper.ntp_error = 0;
423 ntp_clear();
424
d9f7217a 425 update_vsyscall(&xtime, &timekeeper.wall_to_monotonic, timekeeper.clock,
c528f7c6
JS
426 timekeeper.mult);
427
428 write_sequnlock_irqrestore(&xtime_lock, flags);
429
430 /* signal hrtimers about time change */
431 clock_was_set();
432
433 return 0;
434}
435EXPORT_SYMBOL(timekeeping_inject_offset);
436
8524070b 437/**
438 * change_clocksource - Swaps clocksources if a new one is available
439 *
440 * Accumulates current time interval and initializes new clocksource
441 */
75c5158f 442static int change_clocksource(void *data)
8524070b 443{
4614e6ad 444 struct clocksource *new, *old;
8524070b 445
75c5158f 446 new = (struct clocksource *) data;
8524070b 447
155ec602 448 timekeeping_forward_now();
75c5158f
MS
449 if (!new->enable || new->enable(new) == 0) {
450 old = timekeeper.clock;
451 timekeeper_setup_internals(new);
452 if (old->disable)
453 old->disable(old);
454 }
455 return 0;
456}
8524070b 457
75c5158f
MS
458/**
459 * timekeeping_notify - Install a new clock source
460 * @clock: pointer to the clock source
461 *
462 * This function is called from clocksource.c after a new, better clock
463 * source has been registered. The caller holds the clocksource_mutex.
464 */
465void timekeeping_notify(struct clocksource *clock)
466{
467 if (timekeeper.clock == clock)
4614e6ad 468 return;
75c5158f 469 stop_machine(change_clocksource, clock, NULL);
8524070b 470 tick_clock_notify();
8524070b 471}
75c5158f 472
a40f262c
TG
473/**
474 * ktime_get_real - get the real (wall-) time in ktime_t format
475 *
476 * returns the time in ktime_t format
477 */
478ktime_t ktime_get_real(void)
479{
480 struct timespec now;
481
482 getnstimeofday(&now);
483
484 return timespec_to_ktime(now);
485}
486EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 487
2d42244a
JS
488/**
489 * getrawmonotonic - Returns the raw monotonic time in a timespec
490 * @ts: pointer to the timespec to be set
491 *
492 * Returns the raw monotonic time (completely un-modified by ntp)
493 */
494void getrawmonotonic(struct timespec *ts)
495{
496 unsigned long seq;
497 s64 nsecs;
2d42244a
JS
498
499 do {
500 seq = read_seqbegin(&xtime_lock);
2ba2a305 501 nsecs = timekeeping_get_ns_raw();
155ec602 502 *ts = raw_time;
2d42244a
JS
503
504 } while (read_seqretry(&xtime_lock, seq));
505
506 timespec_add_ns(ts, nsecs);
507}
508EXPORT_SYMBOL(getrawmonotonic);
509
510
8524070b 511/**
cf4fc6cb 512 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 513 */
cf4fc6cb 514int timekeeping_valid_for_hres(void)
8524070b 515{
516 unsigned long seq;
517 int ret;
518
519 do {
520 seq = read_seqbegin(&xtime_lock);
521
155ec602 522 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 523
524 } while (read_seqretry(&xtime_lock, seq));
525
526 return ret;
527}
528
98962465
JH
529/**
530 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
531 *
532 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
533 * ensure that the clocksource does not change!
534 */
535u64 timekeeping_max_deferment(void)
536{
537 return timekeeper.clock->max_idle_ns;
538}
539
8524070b 540/**
d4f587c6 541 * read_persistent_clock - Return time from the persistent clock.
8524070b 542 *
543 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
544 * Reads the time from the battery backed persistent clock.
545 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 546 *
547 * XXX - Do be sure to remove it once all arches implement it.
548 */
d4f587c6 549void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 550{
d4f587c6
MS
551 ts->tv_sec = 0;
552 ts->tv_nsec = 0;
8524070b 553}
554
23970e38
MS
555/**
556 * read_boot_clock - Return time of the system start.
557 *
558 * Weak dummy function for arches that do not yet support it.
559 * Function to read the exact time the system has been started.
560 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
561 *
562 * XXX - Do be sure to remove it once all arches implement it.
563 */
564void __attribute__((weak)) read_boot_clock(struct timespec *ts)
565{
566 ts->tv_sec = 0;
567 ts->tv_nsec = 0;
568}
569
8524070b 570/*
571 * timekeeping_init - Initializes the clocksource and common timekeeping values
572 */
573void __init timekeeping_init(void)
574{
155ec602 575 struct clocksource *clock;
8524070b 576 unsigned long flags;
23970e38 577 struct timespec now, boot;
d4f587c6
MS
578
579 read_persistent_clock(&now);
23970e38 580 read_boot_clock(&boot);
8524070b 581
582 write_seqlock_irqsave(&xtime_lock, flags);
583
7dffa3c6 584 ntp_init();
8524070b 585
f1b82746 586 clock = clocksource_default_clock();
a0f7d48b
MS
587 if (clock->enable)
588 clock->enable(clock);
155ec602 589 timekeeper_setup_internals(clock);
8524070b 590
d4f587c6
MS
591 xtime.tv_sec = now.tv_sec;
592 xtime.tv_nsec = now.tv_nsec;
155ec602
MS
593 raw_time.tv_sec = 0;
594 raw_time.tv_nsec = 0;
23970e38
MS
595 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
596 boot.tv_sec = xtime.tv_sec;
597 boot.tv_nsec = xtime.tv_nsec;
598 }
d9f7217a 599 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 600 -boot.tv_sec, -boot.tv_nsec);
00c5fb77
JS
601 timekeeper.total_sleep_time.tv_sec = 0;
602 timekeeper.total_sleep_time.tv_nsec = 0;
8524070b 603 write_sequnlock_irqrestore(&xtime_lock, flags);
604}
605
8524070b 606/* time in seconds when suspend began */
d4f587c6 607static struct timespec timekeeping_suspend_time;
8524070b 608
304529b1
JS
609/**
610 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
611 * @delta: pointer to a timespec delta value
612 *
613 * Takes a timespec offset measuring a suspend interval and properly
614 * adds the sleep offset to the timekeeping variables.
615 */
616static void __timekeeping_inject_sleeptime(struct timespec *delta)
617{
cb5de2f8 618 if (!timespec_valid(delta)) {
cbaa5152 619 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
620 "sleep delta value!\n");
621 return;
622 }
623
304529b1 624 xtime = timespec_add(xtime, *delta);
d9f7217a
JS
625 timekeeper.wall_to_monotonic =
626 timespec_sub(timekeeper.wall_to_monotonic, *delta);
00c5fb77
JS
627 timekeeper.total_sleep_time = timespec_add(
628 timekeeper.total_sleep_time, *delta);
304529b1
JS
629}
630
631
632/**
633 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
634 * @delta: pointer to a timespec delta value
635 *
636 * This hook is for architectures that cannot support read_persistent_clock
637 * because their RTC/persistent clock is only accessible when irqs are enabled.
638 *
639 * This function should only be called by rtc_resume(), and allows
640 * a suspend offset to be injected into the timekeeping values.
641 */
642void timekeeping_inject_sleeptime(struct timespec *delta)
643{
644 unsigned long flags;
645 struct timespec ts;
646
647 /* Make sure we don't set the clock twice */
648 read_persistent_clock(&ts);
649 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
650 return;
651
652 write_seqlock_irqsave(&xtime_lock, flags);
653 timekeeping_forward_now();
654
655 __timekeeping_inject_sleeptime(delta);
656
657 timekeeper.ntp_error = 0;
658 ntp_clear();
d9f7217a 659 update_vsyscall(&xtime, &timekeeper.wall_to_monotonic, timekeeper.clock,
304529b1
JS
660 timekeeper.mult);
661
662 write_sequnlock_irqrestore(&xtime_lock, flags);
663
664 /* signal hrtimers about time change */
665 clock_was_set();
666}
667
668
8524070b 669/**
670 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 671 *
672 * This is for the generic clocksource timekeeping.
673 * xtime/wall_to_monotonic/jiffies/etc are
674 * still managed by arch specific suspend/resume code.
675 */
e1a85b2c 676static void timekeeping_resume(void)
8524070b 677{
678 unsigned long flags;
d4f587c6
MS
679 struct timespec ts;
680
681 read_persistent_clock(&ts);
8524070b 682
d10ff3fb
TG
683 clocksource_resume();
684
8524070b 685 write_seqlock_irqsave(&xtime_lock, flags);
686
d4f587c6
MS
687 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
688 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 689 __timekeeping_inject_sleeptime(&ts);
8524070b 690 }
691 /* re-base the last cycle value */
155ec602
MS
692 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
693 timekeeper.ntp_error = 0;
8524070b 694 timekeeping_suspended = 0;
695 write_sequnlock_irqrestore(&xtime_lock, flags);
696
697 touch_softlockup_watchdog();
698
699 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
700
701 /* Resume hrtimers */
b12a03ce 702 hrtimers_resume();
8524070b 703}
704
e1a85b2c 705static int timekeeping_suspend(void)
8524070b 706{
707 unsigned long flags;
cb33217b
JS
708 struct timespec delta, delta_delta;
709 static struct timespec old_delta;
8524070b 710
d4f587c6 711 read_persistent_clock(&timekeeping_suspend_time);
3be90950 712
8524070b 713 write_seqlock_irqsave(&xtime_lock, flags);
155ec602 714 timekeeping_forward_now();
8524070b 715 timekeeping_suspended = 1;
cb33217b
JS
716
717 /*
718 * To avoid drift caused by repeated suspend/resumes,
719 * which each can add ~1 second drift error,
720 * try to compensate so the difference in system time
721 * and persistent_clock time stays close to constant.
722 */
723 delta = timespec_sub(xtime, timekeeping_suspend_time);
724 delta_delta = timespec_sub(delta, old_delta);
725 if (abs(delta_delta.tv_sec) >= 2) {
726 /*
727 * if delta_delta is too large, assume time correction
728 * has occured and set old_delta to the current delta.
729 */
730 old_delta = delta;
731 } else {
732 /* Otherwise try to adjust old_system to compensate */
733 timekeeping_suspend_time =
734 timespec_add(timekeeping_suspend_time, delta_delta);
735 }
8524070b 736 write_sequnlock_irqrestore(&xtime_lock, flags);
737
738 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 739 clocksource_suspend();
8524070b 740
741 return 0;
742}
743
744/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 745static struct syscore_ops timekeeping_syscore_ops = {
8524070b 746 .resume = timekeeping_resume,
747 .suspend = timekeeping_suspend,
8524070b 748};
749
e1a85b2c 750static int __init timekeeping_init_ops(void)
8524070b 751{
e1a85b2c
RW
752 register_syscore_ops(&timekeeping_syscore_ops);
753 return 0;
8524070b 754}
755
e1a85b2c 756device_initcall(timekeeping_init_ops);
8524070b 757
758/*
759 * If the error is already larger, we look ahead even further
760 * to compensate for late or lost adjustments.
761 */
155ec602 762static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 763 s64 *offset)
764{
765 s64 tick_error, i;
766 u32 look_ahead, adj;
767 s32 error2, mult;
768
769 /*
770 * Use the current error value to determine how much to look ahead.
771 * The larger the error the slower we adjust for it to avoid problems
772 * with losing too many ticks, otherwise we would overadjust and
773 * produce an even larger error. The smaller the adjustment the
774 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 775 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 776 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
777 */
155ec602 778 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 779 error2 = abs(error2);
780 for (look_ahead = 0; error2 > 0; look_ahead++)
781 error2 >>= 2;
782
783 /*
784 * Now calculate the error in (1 << look_ahead) ticks, but first
785 * remove the single look ahead already included in the error.
786 */
23ce7211 787 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
155ec602 788 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 789 error = ((error - tick_error) >> look_ahead) + tick_error;
790
791 /* Finally calculate the adjustment shift value. */
792 i = *interval;
793 mult = 1;
794 if (error < 0) {
795 error = -error;
796 *interval = -*interval;
797 *offset = -*offset;
798 mult = -1;
799 }
800 for (adj = 0; error > i; adj++)
801 error >>= 1;
802
803 *interval <<= adj;
804 *offset <<= adj;
805 return mult << adj;
806}
807
808/*
809 * Adjust the multiplier to reduce the error value,
810 * this is optimized for the most common adjustments of -1,0,1,
811 * for other values we can do a bit more work.
812 */
155ec602 813static void timekeeping_adjust(s64 offset)
8524070b 814{
155ec602 815 s64 error, interval = timekeeper.cycle_interval;
8524070b 816 int adj;
817
c2bc1111
JS
818 /*
819 * The point of this is to check if the error is greater then half
820 * an interval.
821 *
822 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
823 *
824 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
825 * This "saves" dividing(shifting) interval twice, but keeps the
826 * (error > interval) comparison as still measuring if error is
c2bc1111
JS
827 * larger then half an interval.
828 *
3f86f28f 829 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 830 */
23ce7211 831 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 832 if (error > interval) {
c2bc1111
JS
833 /*
834 * We now divide error by 4(via shift), which checks if
835 * the error is greater then twice the interval.
836 * If it is greater, we need a bigadjust, if its smaller,
837 * we can adjust by 1.
838 */
8524070b 839 error >>= 2;
c2bc1111
JS
840 /*
841 * XXX - In update_wall_time, we round up to the next
842 * nanosecond, and store the amount rounded up into
843 * the error. This causes the likely below to be unlikely.
844 *
3f86f28f 845 * The proper fix is to avoid rounding up by using
c2bc1111
JS
846 * the high precision timekeeper.xtime_nsec instead of
847 * xtime.tv_nsec everywhere. Fixing this will take some
848 * time.
849 */
8524070b 850 if (likely(error <= interval))
851 adj = 1;
852 else
155ec602 853 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 854 } else if (error < -interval) {
c2bc1111 855 /* See comment above, this is just switched for the negative */
8524070b 856 error >>= 2;
857 if (likely(error >= -interval)) {
858 adj = -1;
859 interval = -interval;
860 offset = -offset;
861 } else
155ec602 862 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 863 } else /* No adjustment needed */
8524070b 864 return;
865
d65670a7
JS
866 WARN_ONCE(timekeeper.clock->maxadj &&
867 (timekeeper.mult + adj > timekeeper.clock->mult +
868 timekeeper.clock->maxadj),
869 "Adjusting %s more then 11%% (%ld vs %ld)\n",
870 timekeeper.clock->name, (long)timekeeper.mult + adj,
871 (long)timekeeper.clock->mult +
872 timekeeper.clock->maxadj);
c2bc1111
JS
873 /*
874 * So the following can be confusing.
875 *
876 * To keep things simple, lets assume adj == 1 for now.
877 *
878 * When adj != 1, remember that the interval and offset values
879 * have been appropriately scaled so the math is the same.
880 *
881 * The basic idea here is that we're increasing the multiplier
882 * by one, this causes the xtime_interval to be incremented by
883 * one cycle_interval. This is because:
884 * xtime_interval = cycle_interval * mult
885 * So if mult is being incremented by one:
886 * xtime_interval = cycle_interval * (mult + 1)
887 * Its the same as:
888 * xtime_interval = (cycle_interval * mult) + cycle_interval
889 * Which can be shortened to:
890 * xtime_interval += cycle_interval
891 *
892 * So offset stores the non-accumulated cycles. Thus the current
893 * time (in shifted nanoseconds) is:
894 * now = (offset * adj) + xtime_nsec
895 * Now, even though we're adjusting the clock frequency, we have
896 * to keep time consistent. In other words, we can't jump back
897 * in time, and we also want to avoid jumping forward in time.
898 *
899 * So given the same offset value, we need the time to be the same
900 * both before and after the freq adjustment.
901 * now = (offset * adj_1) + xtime_nsec_1
902 * now = (offset * adj_2) + xtime_nsec_2
903 * So:
904 * (offset * adj_1) + xtime_nsec_1 =
905 * (offset * adj_2) + xtime_nsec_2
906 * And we know:
907 * adj_2 = adj_1 + 1
908 * So:
909 * (offset * adj_1) + xtime_nsec_1 =
910 * (offset * (adj_1+1)) + xtime_nsec_2
911 * (offset * adj_1) + xtime_nsec_1 =
912 * (offset * adj_1) + offset + xtime_nsec_2
913 * Canceling the sides:
914 * xtime_nsec_1 = offset + xtime_nsec_2
915 * Which gives us:
916 * xtime_nsec_2 = xtime_nsec_1 - offset
917 * Which simplfies to:
918 * xtime_nsec -= offset
919 *
920 * XXX - TODO: Doc ntp_error calculation.
921 */
0a544198 922 timekeeper.mult += adj;
155ec602
MS
923 timekeeper.xtime_interval += interval;
924 timekeeper.xtime_nsec -= offset;
925 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 926 timekeeper.ntp_error_shift;
8524070b 927}
928
83f57a11 929
a092ff0f 930/**
931 * logarithmic_accumulation - shifted accumulation of cycles
932 *
933 * This functions accumulates a shifted interval of cycles into
934 * into a shifted interval nanoseconds. Allows for O(log) accumulation
935 * loop.
936 *
937 * Returns the unconsumed cycles.
938 */
939static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
940{
941 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
deda2e81 942 u64 raw_nsecs;
a092ff0f 943
944 /* If the offset is smaller then a shifted interval, do nothing */
945 if (offset < timekeeper.cycle_interval<<shift)
946 return offset;
947
948 /* Accumulate one shifted interval */
949 offset -= timekeeper.cycle_interval << shift;
950 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
951
952 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
953 while (timekeeper.xtime_nsec >= nsecps) {
954 timekeeper.xtime_nsec -= nsecps;
955 xtime.tv_sec++;
956 second_overflow();
957 }
958
deda2e81
JW
959 /* Accumulate raw time */
960 raw_nsecs = timekeeper.raw_interval << shift;
961 raw_nsecs += raw_time.tv_nsec;
c7dcf87a
JS
962 if (raw_nsecs >= NSEC_PER_SEC) {
963 u64 raw_secs = raw_nsecs;
964 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
965 raw_time.tv_sec += raw_secs;
a092ff0f 966 }
deda2e81 967 raw_time.tv_nsec = raw_nsecs;
a092ff0f 968
969 /* Accumulate error between NTP and clock interval */
970 timekeeper.ntp_error += tick_length << shift;
a386b5af
KP
971 timekeeper.ntp_error -=
972 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f 973 (timekeeper.ntp_error_shift + shift);
974
975 return offset;
976}
977
83f57a11 978
8524070b 979/**
980 * update_wall_time - Uses the current clocksource to increment the wall time
981 *
982 * Called from the timer interrupt, must hold a write on xtime_lock.
983 */
871cf1e5 984static void update_wall_time(void)
8524070b 985{
155ec602 986 struct clocksource *clock;
8524070b 987 cycle_t offset;
a092ff0f 988 int shift = 0, maxshift;
8524070b 989
990 /* Make sure we're fully resumed: */
991 if (unlikely(timekeeping_suspended))
992 return;
993
155ec602 994 clock = timekeeper.clock;
592913ec
JS
995
996#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 997 offset = timekeeper.cycle_interval;
592913ec
JS
998#else
999 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1000#endif
23ce7211 1001 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
8524070b 1002
a092ff0f 1003 /*
1004 * With NO_HZ we may have to accumulate many cycle_intervals
1005 * (think "ticks") worth of time at once. To do this efficiently,
1006 * we calculate the largest doubling multiple of cycle_intervals
1007 * that is smaller then the offset. We then accumulate that
1008 * chunk in one go, and then try to consume the next smaller
1009 * doubled multiple.
8524070b 1010 */
a092ff0f 1011 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1012 shift = max(0, shift);
1013 /* Bound shift to one less then what overflows tick_length */
1014 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
1015 shift = min(shift, maxshift);
155ec602 1016 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1017 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1018 if(offset < timekeeper.cycle_interval<<shift)
1019 shift--;
8524070b 1020 }
1021
1022 /* correct the clock when NTP error is too big */
155ec602 1023 timekeeping_adjust(offset);
8524070b 1024
6c9bacb4 1025 /*
1026 * Since in the loop above, we accumulate any amount of time
1027 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1028 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1029 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 1030 * its possible the required corrective factor to xtime_nsec could
1031 * cause it to underflow.
1032 *
1033 * Now, we cannot simply roll the accumulated second back, since
1034 * the NTP subsystem has been notified via second_overflow. So
1035 * instead we push xtime_nsec forward by the amount we underflowed,
1036 * and add that amount into the error.
1037 *
1038 * We'll correct this error next time through this function, when
1039 * xtime_nsec is not as small.
1040 */
155ec602
MS
1041 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1042 s64 neg = -(s64)timekeeper.xtime_nsec;
1043 timekeeper.xtime_nsec = 0;
23ce7211 1044 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 1045 }
1046
6a867a39
JS
1047
1048 /*
1049 * Store full nanoseconds into xtime after rounding it up and
5cd1c9c5
RZ
1050 * add the remainder to the error difference.
1051 */
23ce7211
MS
1052 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
1053 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
1054 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1055 timekeeper.ntp_error_shift;
8524070b 1056
6a867a39
JS
1057 /*
1058 * Finally, make sure that after the rounding
1059 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1060 */
1061 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
1062 xtime.tv_nsec -= NSEC_PER_SEC;
1063 xtime.tv_sec++;
1064 second_overflow();
1065 }
83f57a11 1066
8524070b 1067 /* check to see if there is a new clocksource to use */
d9f7217a 1068 update_vsyscall(&xtime, &timekeeper.wall_to_monotonic, timekeeper.clock,
7615856e 1069 timekeeper.mult);
8524070b 1070}
7c3f1a57
TJ
1071
1072/**
1073 * getboottime - Return the real time of system boot.
1074 * @ts: pointer to the timespec to be set
1075 *
abb3a4ea 1076 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1077 *
1078 * This is based on the wall_to_monotonic offset and the total suspend
1079 * time. Calls to settimeofday will affect the value returned (which
1080 * basically means that however wrong your real time clock is at boot time,
1081 * you get the right time here).
1082 */
1083void getboottime(struct timespec *ts)
1084{
36d47481 1085 struct timespec boottime = {
d9f7217a 1086 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1087 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1088 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1089 timekeeper.total_sleep_time.tv_nsec
36d47481 1090 };
d4f587c6 1091
d4f587c6 1092 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1093}
c93d89f3 1094EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1095
abb3a4ea
JS
1096
1097/**
1098 * get_monotonic_boottime - Returns monotonic time since boot
1099 * @ts: pointer to the timespec to be set
1100 *
1101 * Returns the monotonic time since boot in a timespec.
1102 *
1103 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1104 * includes the time spent in suspend.
1105 */
1106void get_monotonic_boottime(struct timespec *ts)
1107{
1108 struct timespec tomono, sleep;
1109 unsigned int seq;
1110 s64 nsecs;
1111
1112 WARN_ON(timekeeping_suspended);
1113
1114 do {
1115 seq = read_seqbegin(&xtime_lock);
1116 *ts = xtime;
d9f7217a 1117 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1118 sleep = timekeeper.total_sleep_time;
abb3a4ea
JS
1119 nsecs = timekeeping_get_ns();
1120
1121 } while (read_seqretry(&xtime_lock, seq));
1122
1123 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1124 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1125}
1126EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1127
1128/**
1129 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1130 *
1131 * Returns the monotonic time since boot in a ktime
1132 *
1133 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1134 * includes the time spent in suspend.
1135 */
1136ktime_t ktime_get_boottime(void)
1137{
1138 struct timespec ts;
1139
1140 get_monotonic_boottime(&ts);
1141 return timespec_to_ktime(ts);
1142}
1143EXPORT_SYMBOL_GPL(ktime_get_boottime);
1144
7c3f1a57
TJ
1145/**
1146 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1147 * @ts: pointer to the timespec to be converted
1148 */
1149void monotonic_to_bootbased(struct timespec *ts)
1150{
00c5fb77 1151 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1152}
c93d89f3 1153EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1154
17c38b74 1155unsigned long get_seconds(void)
1156{
6a867a39 1157 return xtime.tv_sec;
17c38b74 1158}
1159EXPORT_SYMBOL(get_seconds);
1160
da15cfda 1161struct timespec __current_kernel_time(void)
1162{
6a867a39 1163 return xtime;
da15cfda 1164}
17c38b74 1165
2c6b47de 1166struct timespec current_kernel_time(void)
1167{
1168 struct timespec now;
1169 unsigned long seq;
1170
1171 do {
1172 seq = read_seqbegin(&xtime_lock);
83f57a11 1173
6a867a39 1174 now = xtime;
2c6b47de 1175 } while (read_seqretry(&xtime_lock, seq));
1176
1177 return now;
1178}
2c6b47de 1179EXPORT_SYMBOL(current_kernel_time);
da15cfda 1180
1181struct timespec get_monotonic_coarse(void)
1182{
1183 struct timespec now, mono;
1184 unsigned long seq;
1185
1186 do {
1187 seq = read_seqbegin(&xtime_lock);
83f57a11 1188
6a867a39 1189 now = xtime;
d9f7217a 1190 mono = timekeeper.wall_to_monotonic;
da15cfda 1191 } while (read_seqretry(&xtime_lock, seq));
1192
1193 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1194 now.tv_nsec + mono.tv_nsec);
1195 return now;
1196}
871cf1e5
TH
1197
1198/*
1199 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1200 * without sampling the sequence number in xtime_lock.
1201 * jiffies is defined in the linker script...
1202 */
1203void do_timer(unsigned long ticks)
1204{
1205 jiffies_64 += ticks;
1206 update_wall_time();
1207 calc_global_load(ticks);
1208}
48cf76f7
TH
1209
1210/**
314ac371
JS
1211 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1212 * and sleep offsets.
48cf76f7
TH
1213 * @xtim: pointer to timespec to be set with xtime
1214 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1215 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1216 */
314ac371
JS
1217void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1218 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1219{
1220 unsigned long seq;
1221
1222 do {
1223 seq = read_seqbegin(&xtime_lock);
1224 *xtim = xtime;
d9f7217a 1225 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1226 *sleep = timekeeper.total_sleep_time;
48cf76f7
TH
1227 } while (read_seqretry(&xtime_lock, seq));
1228}
f0af911a 1229
99ee5315
TG
1230/**
1231 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1232 */
1233ktime_t ktime_get_monotonic_offset(void)
1234{
1235 unsigned long seq;
1236 struct timespec wtom;
1237
1238 do {
1239 seq = read_seqbegin(&xtime_lock);
d9f7217a 1240 wtom = timekeeper.wall_to_monotonic;
99ee5315
TG
1241 } while (read_seqretry(&xtime_lock, seq));
1242 return timespec_to_ktime(wtom);
1243}
1244
f0af911a
TH
1245/**
1246 * xtime_update() - advances the timekeeping infrastructure
1247 * @ticks: number of ticks, that have elapsed since the last call.
1248 *
1249 * Must be called with interrupts disabled.
1250 */
1251void xtime_update(unsigned long ticks)
1252{
1253 write_seqlock(&xtime_lock);
1254 do_timer(ticks);
1255 write_sequnlock(&xtime_lock);
1256}
This page took 0.467543 seconds and 5 git commands to generate.