ARM: tegra: timer: Add idle and suspend support to timers
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
a6fa8e5a 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
334{
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373}
374
82f67cd9
IM
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384}
c5c061b8
VP
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388 unsigned int flag = 0;
389
507e1231
HC
390 if (likely(!timer->start_site))
391 return;
c5c061b8
VP
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
401#endif
402
c6f3a97f
TG
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
407/*
408 * fixup_init is called when:
409 * - an active object is initialized
55c888d6 410 */
c6f3a97f
TG
411static int timer_fixup_init(void *addr, enum debug_obj_state state)
412{
413 struct timer_list *timer = addr;
414
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 del_timer_sync(timer);
418 debug_object_init(timer, &timer_debug_descr);
419 return 1;
420 default:
421 return 0;
422 }
423}
424
425/*
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
429 */
430static int timer_fixup_activate(void *addr, enum debug_obj_state state)
431{
432 struct timer_list *timer = addr;
433
434 switch (state) {
435
436 case ODEBUG_STATE_NOTAVAILABLE:
437 /*
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
441 */
442 if (timer->entry.next == NULL &&
443 timer->entry.prev == TIMER_ENTRY_STATIC) {
444 debug_object_init(timer, &timer_debug_descr);
445 debug_object_activate(timer, &timer_debug_descr);
446 return 0;
447 } else {
448 WARN_ON_ONCE(1);
449 }
450 return 0;
451
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
454
455 default:
456 return 0;
457 }
458}
459
460/*
461 * fixup_free is called when:
462 * - an active object is freed
463 */
464static int timer_fixup_free(void *addr, enum debug_obj_state state)
465{
466 struct timer_list *timer = addr;
467
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 del_timer_sync(timer);
471 debug_object_free(timer, &timer_debug_descr);
472 return 1;
473 default:
474 return 0;
475 }
476}
477
478static struct debug_obj_descr timer_debug_descr = {
479 .name = "timer_list",
480 .fixup_init = timer_fixup_init,
481 .fixup_activate = timer_fixup_activate,
482 .fixup_free = timer_fixup_free,
483};
484
485static inline void debug_timer_init(struct timer_list *timer)
486{
487 debug_object_init(timer, &timer_debug_descr);
488}
489
490static inline void debug_timer_activate(struct timer_list *timer)
491{
492 debug_object_activate(timer, &timer_debug_descr);
493}
494
495static inline void debug_timer_deactivate(struct timer_list *timer)
496{
497 debug_object_deactivate(timer, &timer_debug_descr);
498}
499
500static inline void debug_timer_free(struct timer_list *timer)
501{
502 debug_object_free(timer, &timer_debug_descr);
503}
504
6f2b9b9a
JB
505static void __init_timer(struct timer_list *timer,
506 const char *name,
507 struct lock_class_key *key);
c6f3a97f 508
6f2b9b9a
JB
509void init_timer_on_stack_key(struct timer_list *timer,
510 const char *name,
511 struct lock_class_key *key)
c6f3a97f
TG
512{
513 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 514 __init_timer(timer, name, key);
c6f3a97f 515}
6f2b9b9a 516EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
517
518void destroy_timer_on_stack(struct timer_list *timer)
519{
520 debug_object_free(timer, &timer_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
523
524#else
525static inline void debug_timer_init(struct timer_list *timer) { }
526static inline void debug_timer_activate(struct timer_list *timer) { }
527static inline void debug_timer_deactivate(struct timer_list *timer) { }
528#endif
529
2b022e3d
XG
530static inline void debug_init(struct timer_list *timer)
531{
532 debug_timer_init(timer);
533 trace_timer_init(timer);
534}
535
536static inline void
537debug_activate(struct timer_list *timer, unsigned long expires)
538{
539 debug_timer_activate(timer);
540 trace_timer_start(timer, expires);
541}
542
543static inline void debug_deactivate(struct timer_list *timer)
544{
545 debug_timer_deactivate(timer);
546 trace_timer_cancel(timer);
547}
548
6f2b9b9a
JB
549static void __init_timer(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
55c888d6
ON
552{
553 timer->entry.next = NULL;
bfe5d834 554 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 555 timer->slack = -1;
82f67cd9
IM
556#ifdef CONFIG_TIMER_STATS
557 timer->start_site = NULL;
558 timer->start_pid = -1;
559 memset(timer->start_comm, 0, TASK_COMM_LEN);
560#endif
6f2b9b9a 561 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 562}
c6f3a97f 563
8cadd283
JB
564void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key,
567 void (*function)(unsigned long),
568 unsigned long data)
569{
570 timer->function = function;
571 timer->data = data;
572 init_timer_on_stack_key(timer, name, key);
573 timer_set_deferrable(timer);
574}
575EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
576
c6f3a97f 577/**
633fe795 578 * init_timer_key - initialize a timer
c6f3a97f 579 * @timer: the timer to be initialized
633fe795
RD
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
c6f3a97f 583 *
633fe795 584 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
585 * other timer functions.
586 */
6f2b9b9a
JB
587void init_timer_key(struct timer_list *timer,
588 const char *name,
589 struct lock_class_key *key)
c6f3a97f 590{
2b022e3d 591 debug_init(timer);
6f2b9b9a 592 __init_timer(timer, name, key);
c6f3a97f 593}
6f2b9b9a 594EXPORT_SYMBOL(init_timer_key);
55c888d6 595
6f2b9b9a
JB
596void init_timer_deferrable_key(struct timer_list *timer,
597 const char *name,
598 struct lock_class_key *key)
6e453a67 599{
6f2b9b9a 600 init_timer_key(timer, name, key);
6e453a67
VP
601 timer_set_deferrable(timer);
602}
6f2b9b9a 603EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 604
55c888d6 605static inline void detach_timer(struct timer_list *timer,
82f67cd9 606 int clear_pending)
55c888d6
ON
607{
608 struct list_head *entry = &timer->entry;
609
2b022e3d 610 debug_deactivate(timer);
c6f3a97f 611
55c888d6
ON
612 __list_del(entry->prev, entry->next);
613 if (clear_pending)
614 entry->next = NULL;
615 entry->prev = LIST_POISON2;
616}
617
618/*
3691c519 619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
622 *
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
625 *
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
629 */
a6fa8e5a 630static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 631 unsigned long *flags)
89e7e374 632 __acquires(timer->base->lock)
55c888d6 633{
a6fa8e5a 634 struct tvec_base *base;
55c888d6
ON
635
636 for (;;) {
a6fa8e5a 637 struct tvec_base *prelock_base = timer->base;
6e453a67 638 base = tbase_get_base(prelock_base);
55c888d6
ON
639 if (likely(base != NULL)) {
640 spin_lock_irqsave(&base->lock, *flags);
6e453a67 641 if (likely(prelock_base == timer->base))
55c888d6
ON
642 return base;
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base->lock, *flags);
645 }
646 cpu_relax();
647 }
648}
649
74019224 650static inline int
597d0275
AB
651__mod_timer(struct timer_list *timer, unsigned long expires,
652 bool pending_only, int pinned)
1da177e4 653{
a6fa8e5a 654 struct tvec_base *base, *new_base;
1da177e4 655 unsigned long flags;
eea08f32 656 int ret = 0 , cpu;
1da177e4 657
82f67cd9 658 timer_stats_timer_set_start_info(timer);
1da177e4 659 BUG_ON(!timer->function);
1da177e4 660
55c888d6
ON
661 base = lock_timer_base(timer, &flags);
662
663 if (timer_pending(timer)) {
664 detach_timer(timer, 0);
97fd9ed4
MS
665 if (timer->expires == base->next_timer &&
666 !tbase_get_deferrable(timer->base))
667 base->next_timer = base->timer_jiffies;
55c888d6 668 ret = 1;
74019224
IM
669 } else {
670 if (pending_only)
671 goto out_unlock;
55c888d6
ON
672 }
673
2b022e3d 674 debug_activate(timer, expires);
c6f3a97f 675
eea08f32
AB
676 cpu = smp_processor_id();
677
678#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
679 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680 cpu = get_nohz_timer_target();
eea08f32
AB
681#endif
682 new_base = per_cpu(tvec_bases, cpu);
683
3691c519 684 if (base != new_base) {
1da177e4 685 /*
55c888d6
ON
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
1da177e4 691 */
a2c348fe 692 if (likely(base->running_timer != timer)) {
55c888d6 693 /* See the comment in lock_timer_base() */
6e453a67 694 timer_set_base(timer, NULL);
55c888d6 695 spin_unlock(&base->lock);
a2c348fe
ON
696 base = new_base;
697 spin_lock(&base->lock);
6e453a67 698 timer_set_base(timer, base);
1da177e4
LT
699 }
700 }
701
1da177e4 702 timer->expires = expires;
97fd9ed4
MS
703 if (time_before(timer->expires, base->next_timer) &&
704 !tbase_get_deferrable(timer->base))
705 base->next_timer = timer->expires;
a2c348fe 706 internal_add_timer(base, timer);
74019224
IM
707
708out_unlock:
a2c348fe 709 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
710
711 return ret;
712}
713
2aae4a10 714/**
74019224
IM
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
1da177e4 718 *
74019224
IM
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
721 *
722 * It is useful for unserialized use of timers.
1da177e4 723 */
74019224 724int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 725{
597d0275 726 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 727}
74019224 728EXPORT_SYMBOL(mod_timer_pending);
1da177e4 729
3bbb9ec9
AV
730/*
731 * Decide where to put the timer while taking the slack into account
732 *
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
739 */
740static inline
741unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
742{
743 unsigned long expires_limit, mask;
744 int bit;
745
f00e047e 746 expires_limit = expires;
3bbb9ec9 747
8e63d779 748 if (timer->slack >= 0) {
f00e047e 749 expires_limit = expires + timer->slack;
8e63d779 750 } else {
2abfb9e1 751 unsigned long now = jiffies;
3bbb9ec9 752
8e63d779
TG
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires, now))
755 expires_limit = expires + (expires - now)/256;
756 }
3bbb9ec9 757 mask = expires ^ expires_limit;
3bbb9ec9
AV
758 if (mask == 0)
759 return expires;
760
761 bit = find_last_bit(&mask, BITS_PER_LONG);
762
763 mask = (1 << bit) - 1;
764
765 expires_limit = expires_limit & ~(mask);
766
767 return expires_limit;
768}
769
2aae4a10 770/**
1da177e4
LT
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
2aae4a10 773 * @expires: new timeout in jiffies
1da177e4 774 *
72fd4a35 775 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
776 * active timer (if the timer is inactive it will be activated)
777 *
778 * mod_timer(timer, expires) is equivalent to:
779 *
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
781 *
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
785 *
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
789 */
790int mod_timer(struct timer_list *timer, unsigned long expires)
791{
1da177e4
LT
792 /*
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
796 */
4841158b 797 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
798 return 1;
799
3bbb9ec9
AV
800 expires = apply_slack(timer, expires);
801
597d0275 802 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 803}
1da177e4
LT
804EXPORT_SYMBOL(mod_timer);
805
597d0275
AB
806/**
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
810 *
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
814 *
815 * mod_timer_pinned(timer, expires) is equivalent to:
816 *
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
818 */
819int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
820{
821 if (timer->expires == expires && timer_pending(timer))
822 return 1;
823
824 return __mod_timer(timer, expires, false, TIMER_PINNED);
825}
826EXPORT_SYMBOL(mod_timer_pinned);
827
74019224
IM
828/**
829 * add_timer - start a timer
830 * @timer: the timer to be added
831 *
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
835 *
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
838 *
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
841 */
842void add_timer(struct timer_list *timer)
843{
844 BUG_ON(timer_pending(timer));
845 mod_timer(timer, timer->expires);
846}
847EXPORT_SYMBOL(add_timer);
848
849/**
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
853 *
854 * This is not very scalable on SMP. Double adds are not possible.
855 */
856void add_timer_on(struct timer_list *timer, int cpu)
857{
858 struct tvec_base *base = per_cpu(tvec_bases, cpu);
859 unsigned long flags;
860
861 timer_stats_timer_set_start_info(timer);
862 BUG_ON(timer_pending(timer) || !timer->function);
863 spin_lock_irqsave(&base->lock, flags);
864 timer_set_base(timer, base);
2b022e3d 865 debug_activate(timer, timer->expires);
97fd9ed4
MS
866 if (time_before(timer->expires, base->next_timer) &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = timer->expires;
74019224
IM
869 internal_add_timer(base, timer);
870 /*
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
876 * the timer wheel.
877 */
878 wake_up_idle_cpu(cpu);
879 spin_unlock_irqrestore(&base->lock, flags);
880}
a9862e05 881EXPORT_SYMBOL_GPL(add_timer_on);
74019224 882
2aae4a10 883/**
1da177e4
LT
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
886 *
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
889 *
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
893 */
894int del_timer(struct timer_list *timer)
895{
a6fa8e5a 896 struct tvec_base *base;
1da177e4 897 unsigned long flags;
55c888d6 898 int ret = 0;
1da177e4 899
82f67cd9 900 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
901 if (timer_pending(timer)) {
902 base = lock_timer_base(timer, &flags);
903 if (timer_pending(timer)) {
904 detach_timer(timer, 1);
97fd9ed4
MS
905 if (timer->expires == base->next_timer &&
906 !tbase_get_deferrable(timer->base))
907 base->next_timer = base->timer_jiffies;
55c888d6
ON
908 ret = 1;
909 }
1da177e4 910 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 911 }
1da177e4 912
55c888d6 913 return ret;
1da177e4 914}
1da177e4
LT
915EXPORT_SYMBOL(del_timer);
916
2aae4a10
REB
917/**
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
920 *
fd450b73
ON
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
923 */
924int try_to_del_timer_sync(struct timer_list *timer)
925{
a6fa8e5a 926 struct tvec_base *base;
fd450b73
ON
927 unsigned long flags;
928 int ret = -1;
929
930 base = lock_timer_base(timer, &flags);
931
932 if (base->running_timer == timer)
933 goto out;
934
829b6c1e 935 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
936 ret = 0;
937 if (timer_pending(timer)) {
938 detach_timer(timer, 1);
97fd9ed4
MS
939 if (timer->expires == base->next_timer &&
940 !tbase_get_deferrable(timer->base))
941 base->next_timer = base->timer_jiffies;
fd450b73
ON
942 ret = 1;
943 }
944out:
945 spin_unlock_irqrestore(&base->lock, flags);
946
947 return ret;
948}
e19dff1f
DH
949EXPORT_SYMBOL(try_to_del_timer_sync);
950
6f1bc451 951#ifdef CONFIG_SMP
2aae4a10 952/**
1da177e4
LT
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
955 *
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
959 *
72fd4a35 960 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 961 * otherwise this function is meaningless. It must not be called from
1118e2cd 962 * hardirq contexts. The caller must not hold locks which would prevent
55c888d6
ON
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
1da177e4
LT
966 *
967 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
968 */
969int del_timer_sync(struct timer_list *timer)
970{
6f2b9b9a 971#ifdef CONFIG_LOCKDEP
f266a511
PZ
972 unsigned long flags;
973
974 raw_local_irq_save(flags);
1118e2cd 975 local_bh_disable();
6f2b9b9a
JB
976 lock_map_acquire(&timer->lockdep_map);
977 lock_map_release(&timer->lockdep_map);
f266a511
PZ
978 _local_bh_enable();
979 raw_local_irq_restore(flags);
6f2b9b9a 980#endif
466bd303
YZ
981 /*
982 * don't use it in hardirq context, because it
983 * could lead to deadlock.
984 */
985 WARN_ON(in_irq());
fd450b73
ON
986 for (;;) {
987 int ret = try_to_del_timer_sync(timer);
988 if (ret >= 0)
989 return ret;
a0009652 990 cpu_relax();
fd450b73 991 }
1da177e4 992}
55c888d6 993EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
994#endif
995
a6fa8e5a 996static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
997{
998 /* cascade all the timers from tv up one level */
3439dd86
P
999 struct timer_list *timer, *tmp;
1000 struct list_head tv_list;
1001
1002 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1003
1da177e4 1004 /*
3439dd86
P
1005 * We are removing _all_ timers from the list, so we
1006 * don't have to detach them individually.
1da177e4 1007 */
3439dd86 1008 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1009 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1010 internal_add_timer(base, timer);
1da177e4 1011 }
1da177e4
LT
1012
1013 return index;
1014}
1015
576da126
TG
1016static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1017 unsigned long data)
1018{
1019 int preempt_count = preempt_count();
1020
1021#ifdef CONFIG_LOCKDEP
1022 /*
1023 * It is permissible to free the timer from inside the
1024 * function that is called from it, this we need to take into
1025 * account for lockdep too. To avoid bogus "held lock freed"
1026 * warnings as well as problems when looking into
1027 * timer->lockdep_map, make a copy and use that here.
1028 */
1029 struct lockdep_map lockdep_map = timer->lockdep_map;
1030#endif
1031 /*
1032 * Couple the lock chain with the lock chain at
1033 * del_timer_sync() by acquiring the lock_map around the fn()
1034 * call here and in del_timer_sync().
1035 */
1036 lock_map_acquire(&lockdep_map);
1037
1038 trace_timer_expire_entry(timer);
1039 fn(data);
1040 trace_timer_expire_exit(timer);
1041
1042 lock_map_release(&lockdep_map);
1043
1044 if (preempt_count != preempt_count()) {
802702e0
TG
1045 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1046 fn, preempt_count, preempt_count());
1047 /*
1048 * Restore the preempt count. That gives us a decent
1049 * chance to survive and extract information. If the
1050 * callback kept a lock held, bad luck, but not worse
1051 * than the BUG() we had.
1052 */
1053 preempt_count() = preempt_count;
576da126
TG
1054 }
1055}
1056
2aae4a10
REB
1057#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1058
1059/**
1da177e4
LT
1060 * __run_timers - run all expired timers (if any) on this CPU.
1061 * @base: the timer vector to be processed.
1062 *
1063 * This function cascades all vectors and executes all expired timer
1064 * vectors.
1065 */
a6fa8e5a 1066static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1067{
1068 struct timer_list *timer;
1069
3691c519 1070 spin_lock_irq(&base->lock);
1da177e4 1071 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1072 struct list_head work_list;
1da177e4 1073 struct list_head *head = &work_list;
6819457d 1074 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1075
1da177e4
LT
1076 /*
1077 * Cascade timers:
1078 */
1079 if (!index &&
1080 (!cascade(base, &base->tv2, INDEX(0))) &&
1081 (!cascade(base, &base->tv3, INDEX(1))) &&
1082 !cascade(base, &base->tv4, INDEX(2)))
1083 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1084 ++base->timer_jiffies;
1085 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1086 while (!list_empty(head)) {
1da177e4
LT
1087 void (*fn)(unsigned long);
1088 unsigned long data;
1089
b5e61818 1090 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1091 fn = timer->function;
1092 data = timer->data;
1da177e4 1093
82f67cd9
IM
1094 timer_stats_account_timer(timer);
1095
6f1bc451 1096 base->running_timer = timer;
55c888d6 1097 detach_timer(timer, 1);
6f2b9b9a 1098
3691c519 1099 spin_unlock_irq(&base->lock);
576da126 1100 call_timer_fn(timer, fn, data);
3691c519 1101 spin_lock_irq(&base->lock);
1da177e4
LT
1102 }
1103 }
6f1bc451 1104 base->running_timer = NULL;
3691c519 1105 spin_unlock_irq(&base->lock);
1da177e4
LT
1106}
1107
ee9c5785 1108#ifdef CONFIG_NO_HZ
1da177e4
LT
1109/*
1110 * Find out when the next timer event is due to happen. This
90cba64a
RD
1111 * is used on S/390 to stop all activity when a CPU is idle.
1112 * This function needs to be called with interrupts disabled.
1da177e4 1113 */
a6fa8e5a 1114static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1115{
1cfd6849 1116 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1117 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1118 int index, slot, array, found = 0;
1da177e4 1119 struct timer_list *nte;
a6fa8e5a 1120 struct tvec *varray[4];
1da177e4
LT
1121
1122 /* Look for timer events in tv1. */
1cfd6849 1123 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1124 do {
1cfd6849 1125 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1126 if (tbase_get_deferrable(nte->base))
1127 continue;
6e453a67 1128
1cfd6849 1129 found = 1;
1da177e4 1130 expires = nte->expires;
1cfd6849
TG
1131 /* Look at the cascade bucket(s)? */
1132 if (!index || slot < index)
1133 goto cascade;
1134 return expires;
1da177e4 1135 }
1cfd6849
TG
1136 slot = (slot + 1) & TVR_MASK;
1137 } while (slot != index);
1138
1139cascade:
1140 /* Calculate the next cascade event */
1141 if (index)
1142 timer_jiffies += TVR_SIZE - index;
1143 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1144
1145 /* Check tv2-tv5. */
1146 varray[0] = &base->tv2;
1147 varray[1] = &base->tv3;
1148 varray[2] = &base->tv4;
1149 varray[3] = &base->tv5;
1cfd6849
TG
1150
1151 for (array = 0; array < 4; array++) {
a6fa8e5a 1152 struct tvec *varp = varray[array];
1cfd6849
TG
1153
1154 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1155 do {
1cfd6849 1156 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1157 if (tbase_get_deferrable(nte->base))
1158 continue;
1159
1cfd6849 1160 found = 1;
1da177e4
LT
1161 if (time_before(nte->expires, expires))
1162 expires = nte->expires;
1cfd6849
TG
1163 }
1164 /*
1165 * Do we still search for the first timer or are
1166 * we looking up the cascade buckets ?
1167 */
1168 if (found) {
1169 /* Look at the cascade bucket(s)? */
1170 if (!index || slot < index)
1171 break;
1172 return expires;
1173 }
1174 slot = (slot + 1) & TVN_MASK;
1175 } while (slot != index);
1176
1177 if (index)
1178 timer_jiffies += TVN_SIZE - index;
1179 timer_jiffies >>= TVN_BITS;
1da177e4 1180 }
1cfd6849
TG
1181 return expires;
1182}
69239749 1183
1cfd6849
TG
1184/*
1185 * Check, if the next hrtimer event is before the next timer wheel
1186 * event:
1187 */
1188static unsigned long cmp_next_hrtimer_event(unsigned long now,
1189 unsigned long expires)
1190{
1191 ktime_t hr_delta = hrtimer_get_next_event();
1192 struct timespec tsdelta;
9501b6cf 1193 unsigned long delta;
1cfd6849
TG
1194
1195 if (hr_delta.tv64 == KTIME_MAX)
1196 return expires;
0662b713 1197
9501b6cf
TG
1198 /*
1199 * Expired timer available, let it expire in the next tick
1200 */
1201 if (hr_delta.tv64 <= 0)
1202 return now + 1;
69239749 1203
1cfd6849 1204 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1205 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1206
1207 /*
1208 * Limit the delta to the max value, which is checked in
1209 * tick_nohz_stop_sched_tick():
1210 */
1211 if (delta > NEXT_TIMER_MAX_DELTA)
1212 delta = NEXT_TIMER_MAX_DELTA;
1213
9501b6cf
TG
1214 /*
1215 * Take rounding errors in to account and make sure, that it
1216 * expires in the next tick. Otherwise we go into an endless
1217 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1218 * the timer softirq
1219 */
1220 if (delta < 1)
1221 delta = 1;
1222 now += delta;
1cfd6849
TG
1223 if (time_before(now, expires))
1224 return now;
1da177e4
LT
1225 return expires;
1226}
1cfd6849
TG
1227
1228/**
8dce39c2 1229 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1230 * @now: current time (in jiffies)
1cfd6849 1231 */
fd064b9b 1232unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1233{
7496351a 1234 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1235 unsigned long expires;
1cfd6849 1236
dbd87b5a
HC
1237 /*
1238 * Pretend that there is no timer pending if the cpu is offline.
1239 * Possible pending timers will be migrated later to an active cpu.
1240 */
1241 if (cpu_is_offline(smp_processor_id()))
1242 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1243 spin_lock(&base->lock);
97fd9ed4
MS
1244 if (time_before_eq(base->next_timer, base->timer_jiffies))
1245 base->next_timer = __next_timer_interrupt(base);
1246 expires = base->next_timer;
1cfd6849
TG
1247 spin_unlock(&base->lock);
1248
1249 if (time_before_eq(expires, now))
1250 return now;
1251
1252 return cmp_next_hrtimer_event(now, expires);
1253}
1da177e4
LT
1254#endif
1255
1da177e4 1256/*
5b4db0c2 1257 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1258 * process. user_tick is 1 if the tick is user time, 0 for system.
1259 */
1260void update_process_times(int user_tick)
1261{
1262 struct task_struct *p = current;
1263 int cpu = smp_processor_id();
1264
1265 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1266 account_process_tick(p, user_tick);
1da177e4 1267 run_local_timers();
a157229c 1268 rcu_check_callbacks(cpu, user_tick);
b845b517 1269 printk_tick();
e360adbe
PZ
1270#ifdef CONFIG_IRQ_WORK
1271 if (in_irq())
1272 irq_work_run();
1273#endif
1da177e4 1274 scheduler_tick();
6819457d 1275 run_posix_cpu_timers(p);
1da177e4
LT
1276}
1277
1da177e4
LT
1278/*
1279 * This function runs timers and the timer-tq in bottom half context.
1280 */
1281static void run_timer_softirq(struct softirq_action *h)
1282{
7496351a 1283 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1284
d3d74453 1285 hrtimer_run_pending();
82f67cd9 1286
1da177e4
LT
1287 if (time_after_eq(jiffies, base->timer_jiffies))
1288 __run_timers(base);
1289}
1290
1291/*
1292 * Called by the local, per-CPU timer interrupt on SMP.
1293 */
1294void run_local_timers(void)
1295{
d3d74453 1296 hrtimer_run_queues();
1da177e4
LT
1297 raise_softirq(TIMER_SOFTIRQ);
1298}
1299
1da177e4
LT
1300/*
1301 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1302 * without sampling the sequence number in xtime_lock.
1303 * jiffies is defined in the linker script...
1304 */
1305
3171a030 1306void do_timer(unsigned long ticks)
1da177e4 1307{
3171a030 1308 jiffies_64 += ticks;
dce48a84 1309 update_wall_time();
0f004f5a 1310 calc_global_load(ticks);
1da177e4
LT
1311}
1312
1313#ifdef __ARCH_WANT_SYS_ALARM
1314
1315/*
1316 * For backwards compatibility? This can be done in libc so Alpha
1317 * and all newer ports shouldn't need it.
1318 */
58fd3aa2 1319SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1320{
c08b8a49 1321 return alarm_setitimer(seconds);
1da177e4
LT
1322}
1323
1324#endif
1325
1326#ifndef __alpha__
1327
1328/*
1329 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1330 * should be moved into arch/i386 instead?
1331 */
1332
1333/**
1334 * sys_getpid - return the thread group id of the current process
1335 *
1336 * Note, despite the name, this returns the tgid not the pid. The tgid and
1337 * the pid are identical unless CLONE_THREAD was specified on clone() in
1338 * which case the tgid is the same in all threads of the same group.
1339 *
1340 * This is SMP safe as current->tgid does not change.
1341 */
58fd3aa2 1342SYSCALL_DEFINE0(getpid)
1da177e4 1343{
b488893a 1344 return task_tgid_vnr(current);
1da177e4
LT
1345}
1346
1347/*
6997a6fa
KK
1348 * Accessing ->real_parent is not SMP-safe, it could
1349 * change from under us. However, we can use a stale
1350 * value of ->real_parent under rcu_read_lock(), see
1351 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1352 */
dbf040d9 1353SYSCALL_DEFINE0(getppid)
1da177e4
LT
1354{
1355 int pid;
1da177e4 1356
6997a6fa 1357 rcu_read_lock();
6c5f3e7b 1358 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1359 rcu_read_unlock();
1da177e4 1360
1da177e4
LT
1361 return pid;
1362}
1363
dbf040d9 1364SYSCALL_DEFINE0(getuid)
1da177e4
LT
1365{
1366 /* Only we change this so SMP safe */
76aac0e9 1367 return current_uid();
1da177e4
LT
1368}
1369
dbf040d9 1370SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1371{
1372 /* Only we change this so SMP safe */
76aac0e9 1373 return current_euid();
1da177e4
LT
1374}
1375
dbf040d9 1376SYSCALL_DEFINE0(getgid)
1da177e4
LT
1377{
1378 /* Only we change this so SMP safe */
76aac0e9 1379 return current_gid();
1da177e4
LT
1380}
1381
dbf040d9 1382SYSCALL_DEFINE0(getegid)
1da177e4
LT
1383{
1384 /* Only we change this so SMP safe */
76aac0e9 1385 return current_egid();
1da177e4
LT
1386}
1387
1388#endif
1389
1390static void process_timeout(unsigned long __data)
1391{
36c8b586 1392 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1393}
1394
1395/**
1396 * schedule_timeout - sleep until timeout
1397 * @timeout: timeout value in jiffies
1398 *
1399 * Make the current task sleep until @timeout jiffies have
1400 * elapsed. The routine will return immediately unless
1401 * the current task state has been set (see set_current_state()).
1402 *
1403 * You can set the task state as follows -
1404 *
1405 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1406 * pass before the routine returns. The routine will return 0
1407 *
1408 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1409 * delivered to the current task. In this case the remaining time
1410 * in jiffies will be returned, or 0 if the timer expired in time
1411 *
1412 * The current task state is guaranteed to be TASK_RUNNING when this
1413 * routine returns.
1414 *
1415 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1416 * the CPU away without a bound on the timeout. In this case the return
1417 * value will be %MAX_SCHEDULE_TIMEOUT.
1418 *
1419 * In all cases the return value is guaranteed to be non-negative.
1420 */
7ad5b3a5 1421signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1422{
1423 struct timer_list timer;
1424 unsigned long expire;
1425
1426 switch (timeout)
1427 {
1428 case MAX_SCHEDULE_TIMEOUT:
1429 /*
1430 * These two special cases are useful to be comfortable
1431 * in the caller. Nothing more. We could take
1432 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1433 * but I' d like to return a valid offset (>=0) to allow
1434 * the caller to do everything it want with the retval.
1435 */
1436 schedule();
1437 goto out;
1438 default:
1439 /*
1440 * Another bit of PARANOID. Note that the retval will be
1441 * 0 since no piece of kernel is supposed to do a check
1442 * for a negative retval of schedule_timeout() (since it
1443 * should never happens anyway). You just have the printk()
1444 * that will tell you if something is gone wrong and where.
1445 */
5b149bcc 1446 if (timeout < 0) {
1da177e4 1447 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1448 "value %lx\n", timeout);
1449 dump_stack();
1da177e4
LT
1450 current->state = TASK_RUNNING;
1451 goto out;
1452 }
1453 }
1454
1455 expire = timeout + jiffies;
1456
c6f3a97f 1457 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1458 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1459 schedule();
1460 del_singleshot_timer_sync(&timer);
1461
c6f3a97f
TG
1462 /* Remove the timer from the object tracker */
1463 destroy_timer_on_stack(&timer);
1464
1da177e4
LT
1465 timeout = expire - jiffies;
1466
1467 out:
1468 return timeout < 0 ? 0 : timeout;
1469}
1da177e4
LT
1470EXPORT_SYMBOL(schedule_timeout);
1471
8a1c1757
AM
1472/*
1473 * We can use __set_current_state() here because schedule_timeout() calls
1474 * schedule() unconditionally.
1475 */
64ed93a2
NA
1476signed long __sched schedule_timeout_interruptible(signed long timeout)
1477{
a5a0d52c
AM
1478 __set_current_state(TASK_INTERRUPTIBLE);
1479 return schedule_timeout(timeout);
64ed93a2
NA
1480}
1481EXPORT_SYMBOL(schedule_timeout_interruptible);
1482
294d5cc2
MW
1483signed long __sched schedule_timeout_killable(signed long timeout)
1484{
1485 __set_current_state(TASK_KILLABLE);
1486 return schedule_timeout(timeout);
1487}
1488EXPORT_SYMBOL(schedule_timeout_killable);
1489
64ed93a2
NA
1490signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1491{
a5a0d52c
AM
1492 __set_current_state(TASK_UNINTERRUPTIBLE);
1493 return schedule_timeout(timeout);
64ed93a2
NA
1494}
1495EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1496
1da177e4 1497/* Thread ID - the internal kernel "pid" */
58fd3aa2 1498SYSCALL_DEFINE0(gettid)
1da177e4 1499{
b488893a 1500 return task_pid_vnr(current);
1da177e4
LT
1501}
1502
2aae4a10 1503/**
d4d23add 1504 * do_sysinfo - fill in sysinfo struct
2aae4a10 1505 * @info: pointer to buffer to fill
6819457d 1506 */
d4d23add 1507int do_sysinfo(struct sysinfo *info)
1da177e4 1508{
1da177e4
LT
1509 unsigned long mem_total, sav_total;
1510 unsigned int mem_unit, bitcount;
2d02494f 1511 struct timespec tp;
1da177e4 1512
d4d23add 1513 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1514
2d02494f
TG
1515 ktime_get_ts(&tp);
1516 monotonic_to_bootbased(&tp);
1517 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1518
2d02494f 1519 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1520
2d02494f 1521 info->procs = nr_threads;
1da177e4 1522
d4d23add
KM
1523 si_meminfo(info);
1524 si_swapinfo(info);
1da177e4
LT
1525
1526 /*
1527 * If the sum of all the available memory (i.e. ram + swap)
1528 * is less than can be stored in a 32 bit unsigned long then
1529 * we can be binary compatible with 2.2.x kernels. If not,
1530 * well, in that case 2.2.x was broken anyways...
1531 *
1532 * -Erik Andersen <andersee@debian.org>
1533 */
1534
d4d23add
KM
1535 mem_total = info->totalram + info->totalswap;
1536 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1537 goto out;
1538 bitcount = 0;
d4d23add 1539 mem_unit = info->mem_unit;
1da177e4
LT
1540 while (mem_unit > 1) {
1541 bitcount++;
1542 mem_unit >>= 1;
1543 sav_total = mem_total;
1544 mem_total <<= 1;
1545 if (mem_total < sav_total)
1546 goto out;
1547 }
1548
1549 /*
1550 * If mem_total did not overflow, multiply all memory values by
d4d23add 1551 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1552 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1553 * kernels...
1554 */
1555
d4d23add
KM
1556 info->mem_unit = 1;
1557 info->totalram <<= bitcount;
1558 info->freeram <<= bitcount;
1559 info->sharedram <<= bitcount;
1560 info->bufferram <<= bitcount;
1561 info->totalswap <<= bitcount;
1562 info->freeswap <<= bitcount;
1563 info->totalhigh <<= bitcount;
1564 info->freehigh <<= bitcount;
1565
1566out:
1567 return 0;
1568}
1569
1e7bfb21 1570SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1571{
1572 struct sysinfo val;
1573
1574 do_sysinfo(&val);
1da177e4 1575
1da177e4
LT
1576 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1577 return -EFAULT;
1578
1579 return 0;
1580}
1581
b4be6258 1582static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1583{
1584 int j;
a6fa8e5a 1585 struct tvec_base *base;
b4be6258 1586 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1587
ba6edfcd 1588 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1589 static char boot_done;
1590
a4a6198b 1591 if (boot_done) {
ba6edfcd
AM
1592 /*
1593 * The APs use this path later in boot
1594 */
94f6030c
CL
1595 base = kmalloc_node(sizeof(*base),
1596 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1597 cpu_to_node(cpu));
1598 if (!base)
1599 return -ENOMEM;
6e453a67
VP
1600
1601 /* Make sure that tvec_base is 2 byte aligned */
1602 if (tbase_get_deferrable(base)) {
1603 WARN_ON(1);
1604 kfree(base);
1605 return -ENOMEM;
1606 }
ba6edfcd 1607 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1608 } else {
ba6edfcd
AM
1609 /*
1610 * This is for the boot CPU - we use compile-time
1611 * static initialisation because per-cpu memory isn't
1612 * ready yet and because the memory allocators are not
1613 * initialised either.
1614 */
a4a6198b 1615 boot_done = 1;
ba6edfcd 1616 base = &boot_tvec_bases;
a4a6198b 1617 }
ba6edfcd
AM
1618 tvec_base_done[cpu] = 1;
1619 } else {
1620 base = per_cpu(tvec_bases, cpu);
a4a6198b 1621 }
ba6edfcd 1622
3691c519 1623 spin_lock_init(&base->lock);
d730e882 1624
1da177e4
LT
1625 for (j = 0; j < TVN_SIZE; j++) {
1626 INIT_LIST_HEAD(base->tv5.vec + j);
1627 INIT_LIST_HEAD(base->tv4.vec + j);
1628 INIT_LIST_HEAD(base->tv3.vec + j);
1629 INIT_LIST_HEAD(base->tv2.vec + j);
1630 }
1631 for (j = 0; j < TVR_SIZE; j++)
1632 INIT_LIST_HEAD(base->tv1.vec + j);
1633
1634 base->timer_jiffies = jiffies;
97fd9ed4 1635 base->next_timer = base->timer_jiffies;
a4a6198b 1636 return 0;
1da177e4
LT
1637}
1638
1639#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1640static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1641{
1642 struct timer_list *timer;
1643
1644 while (!list_empty(head)) {
b5e61818 1645 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1646 detach_timer(timer, 0);
6e453a67 1647 timer_set_base(timer, new_base);
97fd9ed4
MS
1648 if (time_before(timer->expires, new_base->next_timer) &&
1649 !tbase_get_deferrable(timer->base))
1650 new_base->next_timer = timer->expires;
1da177e4 1651 internal_add_timer(new_base, timer);
1da177e4 1652 }
1da177e4
LT
1653}
1654
48ccf3da 1655static void __cpuinit migrate_timers(int cpu)
1da177e4 1656{
a6fa8e5a
PM
1657 struct tvec_base *old_base;
1658 struct tvec_base *new_base;
1da177e4
LT
1659 int i;
1660
1661 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1662 old_base = per_cpu(tvec_bases, cpu);
1663 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1664 /*
1665 * The caller is globally serialized and nobody else
1666 * takes two locks at once, deadlock is not possible.
1667 */
1668 spin_lock_irq(&new_base->lock);
0d180406 1669 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1670
1671 BUG_ON(old_base->running_timer);
1da177e4 1672
1da177e4 1673 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1674 migrate_timer_list(new_base, old_base->tv1.vec + i);
1675 for (i = 0; i < TVN_SIZE; i++) {
1676 migrate_timer_list(new_base, old_base->tv2.vec + i);
1677 migrate_timer_list(new_base, old_base->tv3.vec + i);
1678 migrate_timer_list(new_base, old_base->tv4.vec + i);
1679 migrate_timer_list(new_base, old_base->tv5.vec + i);
1680 }
1681
0d180406 1682 spin_unlock(&old_base->lock);
d82f0b0f 1683 spin_unlock_irq(&new_base->lock);
1da177e4 1684 put_cpu_var(tvec_bases);
1da177e4
LT
1685}
1686#endif /* CONFIG_HOTPLUG_CPU */
1687
8c78f307 1688static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1689 unsigned long action, void *hcpu)
1690{
1691 long cpu = (long)hcpu;
80b5184c
AM
1692 int err;
1693
1da177e4
LT
1694 switch(action) {
1695 case CPU_UP_PREPARE:
8bb78442 1696 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1697 err = init_timers_cpu(cpu);
1698 if (err < 0)
1699 return notifier_from_errno(err);
1da177e4
LT
1700 break;
1701#ifdef CONFIG_HOTPLUG_CPU
1702 case CPU_DEAD:
8bb78442 1703 case CPU_DEAD_FROZEN:
1da177e4
LT
1704 migrate_timers(cpu);
1705 break;
1706#endif
1707 default:
1708 break;
1709 }
1710 return NOTIFY_OK;
1711}
1712
8c78f307 1713static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1714 .notifier_call = timer_cpu_notify,
1715};
1716
1717
1718void __init init_timers(void)
1719{
07dccf33 1720 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1721 (void *)(long)smp_processor_id());
07dccf33 1722
82f67cd9
IM
1723 init_timer_stats();
1724
9e506f7a 1725 BUG_ON(err != NOTIFY_OK);
1da177e4 1726 register_cpu_notifier(&timers_nb);
962cf36c 1727 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1728}
1729
1da177e4
LT
1730/**
1731 * msleep - sleep safely even with waitqueue interruptions
1732 * @msecs: Time in milliseconds to sleep for
1733 */
1734void msleep(unsigned int msecs)
1735{
1736 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1737
75bcc8c5
NA
1738 while (timeout)
1739 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1740}
1741
1742EXPORT_SYMBOL(msleep);
1743
1744/**
96ec3efd 1745 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1746 * @msecs: Time in milliseconds to sleep for
1747 */
1748unsigned long msleep_interruptible(unsigned int msecs)
1749{
1750 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1751
75bcc8c5
NA
1752 while (timeout && !signal_pending(current))
1753 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1754 return jiffies_to_msecs(timeout);
1755}
1756
1757EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1758
1759static int __sched do_usleep_range(unsigned long min, unsigned long max)
1760{
1761 ktime_t kmin;
1762 unsigned long delta;
1763
1764 kmin = ktime_set(0, min * NSEC_PER_USEC);
1765 delta = (max - min) * NSEC_PER_USEC;
1766 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1767}
1768
1769/**
1770 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1771 * @min: Minimum time in usecs to sleep
1772 * @max: Maximum time in usecs to sleep
1773 */
1774void usleep_range(unsigned long min, unsigned long max)
1775{
1776 __set_current_state(TASK_UNINTERRUPTIBLE);
1777 do_usleep_range(min, max);
1778}
1779EXPORT_SYMBOL(usleep_range);
This page took 0.700366 seconds and 5 git commands to generate.