Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
866e2611
BF
93 * base in timer_list is guaranteed to be zero. Use the LSB to
94 * indicate whether the timer is deferrable.
95 *
96 * A deferrable timer will work normally when the system is busy, but
97 * will not cause a CPU to come out of idle just to service it; instead,
98 * the timer will be serviced when the CPU eventually wakes up with a
99 * subsequent non-deferrable timer.
6e453a67
VP
100 */
101#define TBASE_DEFERRABLE_FLAG (0x1)
102
103/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 104static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 105{
e9910846 106 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
107}
108
a6fa8e5a 109static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 110{
a6fa8e5a 111 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
112}
113
114static inline void timer_set_deferrable(struct timer_list *timer)
115{
a6fa8e5a 116 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 117 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
118}
119
120static inline void
a6fa8e5a 121timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 122{
a6fa8e5a 123 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 124 tbase_get_deferrable(timer->base));
6e453a67
VP
125}
126
9c133c46
AS
127static unsigned long round_jiffies_common(unsigned long j, int cpu,
128 bool force_up)
4c36a5de
AV
129{
130 int rem;
131 unsigned long original = j;
132
133 /*
134 * We don't want all cpus firing their timers at once hitting the
135 * same lock or cachelines, so we skew each extra cpu with an extra
136 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
137 * already did this.
138 * The skew is done by adding 3*cpunr, then round, then subtract this
139 * extra offset again.
140 */
141 j += cpu * 3;
142
143 rem = j % HZ;
144
145 /*
146 * If the target jiffie is just after a whole second (which can happen
147 * due to delays of the timer irq, long irq off times etc etc) then
148 * we should round down to the whole second, not up. Use 1/4th second
149 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 150 * But never round down if @force_up is set.
4c36a5de 151 */
9c133c46 152 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
153 j = j - rem;
154 else /* round up */
155 j = j - rem + HZ;
156
157 /* now that we have rounded, subtract the extra skew again */
158 j -= cpu * 3;
159
160 if (j <= jiffies) /* rounding ate our timeout entirely; */
161 return original;
162 return j;
163}
9c133c46
AS
164
165/**
166 * __round_jiffies - function to round jiffies to a full second
167 * @j: the time in (absolute) jiffies that should be rounded
168 * @cpu: the processor number on which the timeout will happen
169 *
170 * __round_jiffies() rounds an absolute time in the future (in jiffies)
171 * up or down to (approximately) full seconds. This is useful for timers
172 * for which the exact time they fire does not matter too much, as long as
173 * they fire approximately every X seconds.
174 *
175 * By rounding these timers to whole seconds, all such timers will fire
176 * at the same time, rather than at various times spread out. The goal
177 * of this is to have the CPU wake up less, which saves power.
178 *
179 * The exact rounding is skewed for each processor to avoid all
180 * processors firing at the exact same time, which could lead
181 * to lock contention or spurious cache line bouncing.
182 *
183 * The return value is the rounded version of the @j parameter.
184 */
185unsigned long __round_jiffies(unsigned long j, int cpu)
186{
187 return round_jiffies_common(j, cpu, false);
188}
4c36a5de
AV
189EXPORT_SYMBOL_GPL(__round_jiffies);
190
191/**
192 * __round_jiffies_relative - function to round jiffies to a full second
193 * @j: the time in (relative) jiffies that should be rounded
194 * @cpu: the processor number on which the timeout will happen
195 *
72fd4a35 196 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
197 * up or down to (approximately) full seconds. This is useful for timers
198 * for which the exact time they fire does not matter too much, as long as
199 * they fire approximately every X seconds.
200 *
201 * By rounding these timers to whole seconds, all such timers will fire
202 * at the same time, rather than at various times spread out. The goal
203 * of this is to have the CPU wake up less, which saves power.
204 *
205 * The exact rounding is skewed for each processor to avoid all
206 * processors firing at the exact same time, which could lead
207 * to lock contention or spurious cache line bouncing.
208 *
72fd4a35 209 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
210 */
211unsigned long __round_jiffies_relative(unsigned long j, int cpu)
212{
9c133c46
AS
213 unsigned long j0 = jiffies;
214
215 /* Use j0 because jiffies might change while we run */
216 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
217}
218EXPORT_SYMBOL_GPL(__round_jiffies_relative);
219
220/**
221 * round_jiffies - function to round jiffies to a full second
222 * @j: the time in (absolute) jiffies that should be rounded
223 *
72fd4a35 224 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
225 * up or down to (approximately) full seconds. This is useful for timers
226 * for which the exact time they fire does not matter too much, as long as
227 * they fire approximately every X seconds.
228 *
229 * By rounding these timers to whole seconds, all such timers will fire
230 * at the same time, rather than at various times spread out. The goal
231 * of this is to have the CPU wake up less, which saves power.
232 *
72fd4a35 233 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
234 */
235unsigned long round_jiffies(unsigned long j)
236{
9c133c46 237 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
238}
239EXPORT_SYMBOL_GPL(round_jiffies);
240
241/**
242 * round_jiffies_relative - function to round jiffies to a full second
243 * @j: the time in (relative) jiffies that should be rounded
244 *
72fd4a35 245 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
246 * up or down to (approximately) full seconds. This is useful for timers
247 * for which the exact time they fire does not matter too much, as long as
248 * they fire approximately every X seconds.
249 *
250 * By rounding these timers to whole seconds, all such timers will fire
251 * at the same time, rather than at various times spread out. The goal
252 * of this is to have the CPU wake up less, which saves power.
253 *
72fd4a35 254 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
255 */
256unsigned long round_jiffies_relative(unsigned long j)
257{
258 return __round_jiffies_relative(j, raw_smp_processor_id());
259}
260EXPORT_SYMBOL_GPL(round_jiffies_relative);
261
9c133c46
AS
262/**
263 * __round_jiffies_up - function to round jiffies up to a full second
264 * @j: the time in (absolute) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
266 *
267 * This is the same as __round_jiffies() except that it will never
268 * round down. This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
270 * early.
271 */
272unsigned long __round_jiffies_up(unsigned long j, int cpu)
273{
274 return round_jiffies_common(j, cpu, true);
275}
276EXPORT_SYMBOL_GPL(__round_jiffies_up);
277
278/**
279 * __round_jiffies_up_relative - function to round jiffies up to a full second
280 * @j: the time in (relative) jiffies that should be rounded
281 * @cpu: the processor number on which the timeout will happen
282 *
283 * This is the same as __round_jiffies_relative() except that it will never
284 * round down. This is useful for timeouts for which the exact time
285 * of firing does not matter too much, as long as they don't fire too
286 * early.
287 */
288unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
289{
290 unsigned long j0 = jiffies;
291
292 /* Use j0 because jiffies might change while we run */
293 return round_jiffies_common(j + j0, cpu, true) - j0;
294}
295EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
296
297/**
298 * round_jiffies_up - function to round jiffies up to a full second
299 * @j: the time in (absolute) jiffies that should be rounded
300 *
301 * This is the same as round_jiffies() except that it will never
302 * round down. This is useful for timeouts for which the exact time
303 * of firing does not matter too much, as long as they don't fire too
304 * early.
305 */
306unsigned long round_jiffies_up(unsigned long j)
307{
308 return round_jiffies_common(j, raw_smp_processor_id(), true);
309}
310EXPORT_SYMBOL_GPL(round_jiffies_up);
311
312/**
313 * round_jiffies_up_relative - function to round jiffies up to a full second
314 * @j: the time in (relative) jiffies that should be rounded
315 *
316 * This is the same as round_jiffies_relative() except that it will never
317 * round down. This is useful for timeouts for which the exact time
318 * of firing does not matter too much, as long as they don't fire too
319 * early.
320 */
321unsigned long round_jiffies_up_relative(unsigned long j)
322{
323 return __round_jiffies_up_relative(j, raw_smp_processor_id());
324}
325EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
326
3bbb9ec9
AV
327/**
328 * set_timer_slack - set the allowed slack for a timer
329 * @slack_hz: the amount of time (in jiffies) allowed for rounding
330 *
331 * Set the amount of time, in jiffies, that a certain timer has
332 * in terms of slack. By setting this value, the timer subsystem
333 * will schedule the actual timer somewhere between
334 * the time mod_timer() asks for, and that time plus the slack.
335 *
336 * By setting the slack to -1, a percentage of the delay is used
337 * instead.
338 */
339void set_timer_slack(struct timer_list *timer, int slack_hz)
340{
341 timer->slack = slack_hz;
342}
343EXPORT_SYMBOL_GPL(set_timer_slack);
344
4c36a5de 345
a6fa8e5a 346static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
347 struct timer_list *timer)
348{
349#ifdef CONFIG_SMP
3691c519 350 base->running_timer = timer;
1da177e4
LT
351#endif
352}
353
a6fa8e5a 354static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
355{
356 unsigned long expires = timer->expires;
357 unsigned long idx = expires - base->timer_jiffies;
358 struct list_head *vec;
359
360 if (idx < TVR_SIZE) {
361 int i = expires & TVR_MASK;
362 vec = base->tv1.vec + i;
363 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
364 int i = (expires >> TVR_BITS) & TVN_MASK;
365 vec = base->tv2.vec + i;
366 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
367 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
368 vec = base->tv3.vec + i;
369 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
370 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
371 vec = base->tv4.vec + i;
372 } else if ((signed long) idx < 0) {
373 /*
374 * Can happen if you add a timer with expires == jiffies,
375 * or you set a timer to go off in the past
376 */
377 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
378 } else {
379 int i;
380 /* If the timeout is larger than 0xffffffff on 64-bit
381 * architectures then we use the maximum timeout:
382 */
383 if (idx > 0xffffffffUL) {
384 idx = 0xffffffffUL;
385 expires = idx + base->timer_jiffies;
386 }
387 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
388 vec = base->tv5.vec + i;
389 }
390 /*
391 * Timers are FIFO:
392 */
393 list_add_tail(&timer->entry, vec);
394}
395
82f67cd9
IM
396#ifdef CONFIG_TIMER_STATS
397void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
398{
399 if (timer->start_site)
400 return;
401
402 timer->start_site = addr;
403 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
404 timer->start_pid = current->pid;
405}
c5c061b8
VP
406
407static void timer_stats_account_timer(struct timer_list *timer)
408{
409 unsigned int flag = 0;
410
507e1231
HC
411 if (likely(!timer->start_site))
412 return;
c5c061b8
VP
413 if (unlikely(tbase_get_deferrable(timer->base)))
414 flag |= TIMER_STATS_FLAG_DEFERRABLE;
415
416 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
417 timer->function, timer->start_comm, flag);
418}
419
420#else
421static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
422#endif
423
c6f3a97f
TG
424#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
425
426static struct debug_obj_descr timer_debug_descr;
427
428/*
429 * fixup_init is called when:
430 * - an active object is initialized
55c888d6 431 */
c6f3a97f
TG
432static int timer_fixup_init(void *addr, enum debug_obj_state state)
433{
434 struct timer_list *timer = addr;
435
436 switch (state) {
437 case ODEBUG_STATE_ACTIVE:
438 del_timer_sync(timer);
439 debug_object_init(timer, &timer_debug_descr);
440 return 1;
441 default:
442 return 0;
443 }
444}
445
446/*
447 * fixup_activate is called when:
448 * - an active object is activated
449 * - an unknown object is activated (might be a statically initialized object)
450 */
451static int timer_fixup_activate(void *addr, enum debug_obj_state state)
452{
453 struct timer_list *timer = addr;
454
455 switch (state) {
456
457 case ODEBUG_STATE_NOTAVAILABLE:
458 /*
459 * This is not really a fixup. The timer was
460 * statically initialized. We just make sure that it
461 * is tracked in the object tracker.
462 */
463 if (timer->entry.next == NULL &&
464 timer->entry.prev == TIMER_ENTRY_STATIC) {
465 debug_object_init(timer, &timer_debug_descr);
466 debug_object_activate(timer, &timer_debug_descr);
467 return 0;
468 } else {
469 WARN_ON_ONCE(1);
470 }
471 return 0;
472
473 case ODEBUG_STATE_ACTIVE:
474 WARN_ON(1);
475
476 default:
477 return 0;
478 }
479}
480
481/*
482 * fixup_free is called when:
483 * - an active object is freed
484 */
485static int timer_fixup_free(void *addr, enum debug_obj_state state)
486{
487 struct timer_list *timer = addr;
488
489 switch (state) {
490 case ODEBUG_STATE_ACTIVE:
491 del_timer_sync(timer);
492 debug_object_free(timer, &timer_debug_descr);
493 return 1;
494 default:
495 return 0;
496 }
497}
498
499static struct debug_obj_descr timer_debug_descr = {
500 .name = "timer_list",
501 .fixup_init = timer_fixup_init,
502 .fixup_activate = timer_fixup_activate,
503 .fixup_free = timer_fixup_free,
504};
505
506static inline void debug_timer_init(struct timer_list *timer)
507{
508 debug_object_init(timer, &timer_debug_descr);
509}
510
511static inline void debug_timer_activate(struct timer_list *timer)
512{
513 debug_object_activate(timer, &timer_debug_descr);
514}
515
516static inline void debug_timer_deactivate(struct timer_list *timer)
517{
518 debug_object_deactivate(timer, &timer_debug_descr);
519}
520
521static inline void debug_timer_free(struct timer_list *timer)
522{
523 debug_object_free(timer, &timer_debug_descr);
524}
525
6f2b9b9a
JB
526static void __init_timer(struct timer_list *timer,
527 const char *name,
528 struct lock_class_key *key);
c6f3a97f 529
6f2b9b9a
JB
530void init_timer_on_stack_key(struct timer_list *timer,
531 const char *name,
532 struct lock_class_key *key)
c6f3a97f
TG
533{
534 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 535 __init_timer(timer, name, key);
c6f3a97f 536}
6f2b9b9a 537EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
538
539void destroy_timer_on_stack(struct timer_list *timer)
540{
541 debug_object_free(timer, &timer_debug_descr);
542}
543EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
544
545#else
546static inline void debug_timer_init(struct timer_list *timer) { }
547static inline void debug_timer_activate(struct timer_list *timer) { }
548static inline void debug_timer_deactivate(struct timer_list *timer) { }
549#endif
550
2b022e3d
XG
551static inline void debug_init(struct timer_list *timer)
552{
553 debug_timer_init(timer);
554 trace_timer_init(timer);
555}
556
557static inline void
558debug_activate(struct timer_list *timer, unsigned long expires)
559{
560 debug_timer_activate(timer);
561 trace_timer_start(timer, expires);
562}
563
564static inline void debug_deactivate(struct timer_list *timer)
565{
566 debug_timer_deactivate(timer);
567 trace_timer_cancel(timer);
568}
569
6f2b9b9a
JB
570static void __init_timer(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
55c888d6
ON
573{
574 timer->entry.next = NULL;
bfe5d834 575 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 576 timer->slack = -1;
82f67cd9
IM
577#ifdef CONFIG_TIMER_STATS
578 timer->start_site = NULL;
579 timer->start_pid = -1;
580 memset(timer->start_comm, 0, TASK_COMM_LEN);
581#endif
6f2b9b9a 582 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 583}
c6f3a97f 584
8cadd283
JB
585void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
586 const char *name,
587 struct lock_class_key *key,
588 void (*function)(unsigned long),
589 unsigned long data)
590{
591 timer->function = function;
592 timer->data = data;
593 init_timer_on_stack_key(timer, name, key);
594 timer_set_deferrable(timer);
595}
596EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
597
c6f3a97f 598/**
633fe795 599 * init_timer_key - initialize a timer
c6f3a97f 600 * @timer: the timer to be initialized
633fe795
RD
601 * @name: name of the timer
602 * @key: lockdep class key of the fake lock used for tracking timer
603 * sync lock dependencies
c6f3a97f 604 *
633fe795 605 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
606 * other timer functions.
607 */
6f2b9b9a
JB
608void init_timer_key(struct timer_list *timer,
609 const char *name,
610 struct lock_class_key *key)
c6f3a97f 611{
2b022e3d 612 debug_init(timer);
6f2b9b9a 613 __init_timer(timer, name, key);
c6f3a97f 614}
6f2b9b9a 615EXPORT_SYMBOL(init_timer_key);
55c888d6 616
6f2b9b9a
JB
617void init_timer_deferrable_key(struct timer_list *timer,
618 const char *name,
619 struct lock_class_key *key)
6e453a67 620{
6f2b9b9a 621 init_timer_key(timer, name, key);
6e453a67
VP
622 timer_set_deferrable(timer);
623}
6f2b9b9a 624EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 625
55c888d6 626static inline void detach_timer(struct timer_list *timer,
82f67cd9 627 int clear_pending)
55c888d6
ON
628{
629 struct list_head *entry = &timer->entry;
630
2b022e3d 631 debug_deactivate(timer);
c6f3a97f 632
55c888d6
ON
633 __list_del(entry->prev, entry->next);
634 if (clear_pending)
635 entry->next = NULL;
636 entry->prev = LIST_POISON2;
637}
638
639/*
3691c519 640 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
641 * means that all timers which are tied to this base via timer->base are
642 * locked, and the base itself is locked too.
643 *
644 * So __run_timers/migrate_timers can safely modify all timers which could
645 * be found on ->tvX lists.
646 *
647 * When the timer's base is locked, and the timer removed from list, it is
648 * possible to set timer->base = NULL and drop the lock: the timer remains
649 * locked.
650 */
a6fa8e5a 651static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 652 unsigned long *flags)
89e7e374 653 __acquires(timer->base->lock)
55c888d6 654{
a6fa8e5a 655 struct tvec_base *base;
55c888d6
ON
656
657 for (;;) {
a6fa8e5a 658 struct tvec_base *prelock_base = timer->base;
6e453a67 659 base = tbase_get_base(prelock_base);
55c888d6
ON
660 if (likely(base != NULL)) {
661 spin_lock_irqsave(&base->lock, *flags);
6e453a67 662 if (likely(prelock_base == timer->base))
55c888d6
ON
663 return base;
664 /* The timer has migrated to another CPU */
665 spin_unlock_irqrestore(&base->lock, *flags);
666 }
667 cpu_relax();
668 }
669}
670
74019224 671static inline int
597d0275
AB
672__mod_timer(struct timer_list *timer, unsigned long expires,
673 bool pending_only, int pinned)
1da177e4 674{
a6fa8e5a 675 struct tvec_base *base, *new_base;
1da177e4 676 unsigned long flags;
eea08f32 677 int ret = 0 , cpu;
1da177e4 678
82f67cd9 679 timer_stats_timer_set_start_info(timer);
1da177e4 680 BUG_ON(!timer->function);
1da177e4 681
55c888d6
ON
682 base = lock_timer_base(timer, &flags);
683
684 if (timer_pending(timer)) {
685 detach_timer(timer, 0);
97fd9ed4
MS
686 if (timer->expires == base->next_timer &&
687 !tbase_get_deferrable(timer->base))
688 base->next_timer = base->timer_jiffies;
55c888d6 689 ret = 1;
74019224
IM
690 } else {
691 if (pending_only)
692 goto out_unlock;
55c888d6
ON
693 }
694
2b022e3d 695 debug_activate(timer, expires);
c6f3a97f 696
eea08f32
AB
697 cpu = smp_processor_id();
698
699#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
700 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
701 cpu = get_nohz_timer_target();
eea08f32
AB
702#endif
703 new_base = per_cpu(tvec_bases, cpu);
704
3691c519 705 if (base != new_base) {
1da177e4 706 /*
55c888d6
ON
707 * We are trying to schedule the timer on the local CPU.
708 * However we can't change timer's base while it is running,
709 * otherwise del_timer_sync() can't detect that the timer's
710 * handler yet has not finished. This also guarantees that
711 * the timer is serialized wrt itself.
1da177e4 712 */
a2c348fe 713 if (likely(base->running_timer != timer)) {
55c888d6 714 /* See the comment in lock_timer_base() */
6e453a67 715 timer_set_base(timer, NULL);
55c888d6 716 spin_unlock(&base->lock);
a2c348fe
ON
717 base = new_base;
718 spin_lock(&base->lock);
6e453a67 719 timer_set_base(timer, base);
1da177e4
LT
720 }
721 }
722
1da177e4 723 timer->expires = expires;
97fd9ed4
MS
724 if (time_before(timer->expires, base->next_timer) &&
725 !tbase_get_deferrable(timer->base))
726 base->next_timer = timer->expires;
a2c348fe 727 internal_add_timer(base, timer);
74019224
IM
728
729out_unlock:
a2c348fe 730 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
731
732 return ret;
733}
734
2aae4a10 735/**
74019224
IM
736 * mod_timer_pending - modify a pending timer's timeout
737 * @timer: the pending timer to be modified
738 * @expires: new timeout in jiffies
1da177e4 739 *
74019224
IM
740 * mod_timer_pending() is the same for pending timers as mod_timer(),
741 * but will not re-activate and modify already deleted timers.
742 *
743 * It is useful for unserialized use of timers.
1da177e4 744 */
74019224 745int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 746{
597d0275 747 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 748}
74019224 749EXPORT_SYMBOL(mod_timer_pending);
1da177e4 750
3bbb9ec9
AV
751/*
752 * Decide where to put the timer while taking the slack into account
753 *
754 * Algorithm:
755 * 1) calculate the maximum (absolute) time
756 * 2) calculate the highest bit where the expires and new max are different
757 * 3) use this bit to make a mask
758 * 4) use the bitmask to round down the maximum time, so that all last
759 * bits are zeros
760 */
761static inline
762unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
763{
764 unsigned long expires_limit, mask;
765 int bit;
766
f00e047e 767 expires_limit = expires;
3bbb9ec9 768
8e63d779 769 if (timer->slack >= 0) {
f00e047e 770 expires_limit = expires + timer->slack;
8e63d779 771 } else {
2abfb9e1 772 unsigned long now = jiffies;
3bbb9ec9 773
8e63d779
TG
774 /* No slack, if already expired else auto slack 0.4% */
775 if (time_after(expires, now))
776 expires_limit = expires + (expires - now)/256;
777 }
3bbb9ec9 778 mask = expires ^ expires_limit;
3bbb9ec9
AV
779 if (mask == 0)
780 return expires;
781
782 bit = find_last_bit(&mask, BITS_PER_LONG);
783
784 mask = (1 << bit) - 1;
785
786 expires_limit = expires_limit & ~(mask);
787
788 return expires_limit;
789}
790
2aae4a10 791/**
1da177e4
LT
792 * mod_timer - modify a timer's timeout
793 * @timer: the timer to be modified
2aae4a10 794 * @expires: new timeout in jiffies
1da177e4 795 *
72fd4a35 796 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
797 * active timer (if the timer is inactive it will be activated)
798 *
799 * mod_timer(timer, expires) is equivalent to:
800 *
801 * del_timer(timer); timer->expires = expires; add_timer(timer);
802 *
803 * Note that if there are multiple unserialized concurrent users of the
804 * same timer, then mod_timer() is the only safe way to modify the timeout,
805 * since add_timer() cannot modify an already running timer.
806 *
807 * The function returns whether it has modified a pending timer or not.
808 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
809 * active timer returns 1.)
810 */
811int mod_timer(struct timer_list *timer, unsigned long expires)
812{
1da177e4
LT
813 /*
814 * This is a common optimization triggered by the
815 * networking code - if the timer is re-modified
816 * to be the same thing then just return:
817 */
4841158b 818 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
819 return 1;
820
3bbb9ec9
AV
821 expires = apply_slack(timer, expires);
822
597d0275 823 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 824}
1da177e4
LT
825EXPORT_SYMBOL(mod_timer);
826
597d0275
AB
827/**
828 * mod_timer_pinned - modify a timer's timeout
829 * @timer: the timer to be modified
830 * @expires: new timeout in jiffies
831 *
832 * mod_timer_pinned() is a way to update the expire field of an
833 * active timer (if the timer is inactive it will be activated)
834 * and not allow the timer to be migrated to a different CPU.
835 *
836 * mod_timer_pinned(timer, expires) is equivalent to:
837 *
838 * del_timer(timer); timer->expires = expires; add_timer(timer);
839 */
840int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
841{
842 if (timer->expires == expires && timer_pending(timer))
843 return 1;
844
845 return __mod_timer(timer, expires, false, TIMER_PINNED);
846}
847EXPORT_SYMBOL(mod_timer_pinned);
848
74019224
IM
849/**
850 * add_timer - start a timer
851 * @timer: the timer to be added
852 *
853 * The kernel will do a ->function(->data) callback from the
854 * timer interrupt at the ->expires point in the future. The
855 * current time is 'jiffies'.
856 *
857 * The timer's ->expires, ->function (and if the handler uses it, ->data)
858 * fields must be set prior calling this function.
859 *
860 * Timers with an ->expires field in the past will be executed in the next
861 * timer tick.
862 */
863void add_timer(struct timer_list *timer)
864{
865 BUG_ON(timer_pending(timer));
866 mod_timer(timer, timer->expires);
867}
868EXPORT_SYMBOL(add_timer);
869
870/**
871 * add_timer_on - start a timer on a particular CPU
872 * @timer: the timer to be added
873 * @cpu: the CPU to start it on
874 *
875 * This is not very scalable on SMP. Double adds are not possible.
876 */
877void add_timer_on(struct timer_list *timer, int cpu)
878{
879 struct tvec_base *base = per_cpu(tvec_bases, cpu);
880 unsigned long flags;
881
882 timer_stats_timer_set_start_info(timer);
883 BUG_ON(timer_pending(timer) || !timer->function);
884 spin_lock_irqsave(&base->lock, flags);
885 timer_set_base(timer, base);
2b022e3d 886 debug_activate(timer, timer->expires);
97fd9ed4
MS
887 if (time_before(timer->expires, base->next_timer) &&
888 !tbase_get_deferrable(timer->base))
889 base->next_timer = timer->expires;
74019224
IM
890 internal_add_timer(base, timer);
891 /*
892 * Check whether the other CPU is idle and needs to be
893 * triggered to reevaluate the timer wheel when nohz is
894 * active. We are protected against the other CPU fiddling
895 * with the timer by holding the timer base lock. This also
896 * makes sure that a CPU on the way to idle can not evaluate
897 * the timer wheel.
898 */
899 wake_up_idle_cpu(cpu);
900 spin_unlock_irqrestore(&base->lock, flags);
901}
a9862e05 902EXPORT_SYMBOL_GPL(add_timer_on);
74019224 903
2aae4a10 904/**
1da177e4
LT
905 * del_timer - deactive a timer.
906 * @timer: the timer to be deactivated
907 *
908 * del_timer() deactivates a timer - this works on both active and inactive
909 * timers.
910 *
911 * The function returns whether it has deactivated a pending timer or not.
912 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
913 * active timer returns 1.)
914 */
915int del_timer(struct timer_list *timer)
916{
a6fa8e5a 917 struct tvec_base *base;
1da177e4 918 unsigned long flags;
55c888d6 919 int ret = 0;
1da177e4 920
82f67cd9 921 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
922 if (timer_pending(timer)) {
923 base = lock_timer_base(timer, &flags);
924 if (timer_pending(timer)) {
925 detach_timer(timer, 1);
97fd9ed4
MS
926 if (timer->expires == base->next_timer &&
927 !tbase_get_deferrable(timer->base))
928 base->next_timer = base->timer_jiffies;
55c888d6
ON
929 ret = 1;
930 }
1da177e4 931 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 932 }
1da177e4 933
55c888d6 934 return ret;
1da177e4 935}
1da177e4
LT
936EXPORT_SYMBOL(del_timer);
937
938#ifdef CONFIG_SMP
2aae4a10
REB
939/**
940 * try_to_del_timer_sync - Try to deactivate a timer
941 * @timer: timer do del
942 *
fd450b73
ON
943 * This function tries to deactivate a timer. Upon successful (ret >= 0)
944 * exit the timer is not queued and the handler is not running on any CPU.
945 *
946 * It must not be called from interrupt contexts.
947 */
948int try_to_del_timer_sync(struct timer_list *timer)
949{
a6fa8e5a 950 struct tvec_base *base;
fd450b73
ON
951 unsigned long flags;
952 int ret = -1;
953
954 base = lock_timer_base(timer, &flags);
955
956 if (base->running_timer == timer)
957 goto out;
958
829b6c1e 959 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
960 ret = 0;
961 if (timer_pending(timer)) {
962 detach_timer(timer, 1);
97fd9ed4
MS
963 if (timer->expires == base->next_timer &&
964 !tbase_get_deferrable(timer->base))
965 base->next_timer = base->timer_jiffies;
fd450b73
ON
966 ret = 1;
967 }
968out:
969 spin_unlock_irqrestore(&base->lock, flags);
970
971 return ret;
972}
e19dff1f
DH
973EXPORT_SYMBOL(try_to_del_timer_sync);
974
2aae4a10 975/**
1da177e4
LT
976 * del_timer_sync - deactivate a timer and wait for the handler to finish.
977 * @timer: the timer to be deactivated
978 *
979 * This function only differs from del_timer() on SMP: besides deactivating
980 * the timer it also makes sure the handler has finished executing on other
981 * CPUs.
982 *
72fd4a35 983 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
984 * otherwise this function is meaningless. It must not be called from
985 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
986 * completion of the timer's handler. The timer's handler must not call
987 * add_timer_on(). Upon exit the timer is not queued and the handler is
988 * not running on any CPU.
1da177e4
LT
989 *
990 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
991 */
992int del_timer_sync(struct timer_list *timer)
993{
6f2b9b9a
JB
994#ifdef CONFIG_LOCKDEP
995 unsigned long flags;
996
997 local_irq_save(flags);
998 lock_map_acquire(&timer->lockdep_map);
999 lock_map_release(&timer->lockdep_map);
1000 local_irq_restore(flags);
1001#endif
1002
fd450b73
ON
1003 for (;;) {
1004 int ret = try_to_del_timer_sync(timer);
1005 if (ret >= 0)
1006 return ret;
a0009652 1007 cpu_relax();
fd450b73 1008 }
1da177e4 1009}
55c888d6 1010EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1011#endif
1012
a6fa8e5a 1013static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1014{
1015 /* cascade all the timers from tv up one level */
3439dd86
P
1016 struct timer_list *timer, *tmp;
1017 struct list_head tv_list;
1018
1019 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1020
1da177e4 1021 /*
3439dd86
P
1022 * We are removing _all_ timers from the list, so we
1023 * don't have to detach them individually.
1da177e4 1024 */
3439dd86 1025 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1026 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1027 internal_add_timer(base, timer);
1da177e4 1028 }
1da177e4
LT
1029
1030 return index;
1031}
1032
576da126
TG
1033static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1034 unsigned long data)
1035{
1036 int preempt_count = preempt_count();
1037
1038#ifdef CONFIG_LOCKDEP
1039 /*
1040 * It is permissible to free the timer from inside the
1041 * function that is called from it, this we need to take into
1042 * account for lockdep too. To avoid bogus "held lock freed"
1043 * warnings as well as problems when looking into
1044 * timer->lockdep_map, make a copy and use that here.
1045 */
1046 struct lockdep_map lockdep_map = timer->lockdep_map;
1047#endif
1048 /*
1049 * Couple the lock chain with the lock chain at
1050 * del_timer_sync() by acquiring the lock_map around the fn()
1051 * call here and in del_timer_sync().
1052 */
1053 lock_map_acquire(&lockdep_map);
1054
1055 trace_timer_expire_entry(timer);
1056 fn(data);
1057 trace_timer_expire_exit(timer);
1058
1059 lock_map_release(&lockdep_map);
1060
1061 if (preempt_count != preempt_count()) {
802702e0
TG
1062 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1063 fn, preempt_count, preempt_count());
1064 /*
1065 * Restore the preempt count. That gives us a decent
1066 * chance to survive and extract information. If the
1067 * callback kept a lock held, bad luck, but not worse
1068 * than the BUG() we had.
1069 */
1070 preempt_count() = preempt_count;
576da126
TG
1071 }
1072}
1073
2aae4a10
REB
1074#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1075
1076/**
1da177e4
LT
1077 * __run_timers - run all expired timers (if any) on this CPU.
1078 * @base: the timer vector to be processed.
1079 *
1080 * This function cascades all vectors and executes all expired timer
1081 * vectors.
1082 */
a6fa8e5a 1083static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1084{
1085 struct timer_list *timer;
1086
3691c519 1087 spin_lock_irq(&base->lock);
1da177e4 1088 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1089 struct list_head work_list;
1da177e4 1090 struct list_head *head = &work_list;
6819457d 1091 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1092
1da177e4
LT
1093 /*
1094 * Cascade timers:
1095 */
1096 if (!index &&
1097 (!cascade(base, &base->tv2, INDEX(0))) &&
1098 (!cascade(base, &base->tv3, INDEX(1))) &&
1099 !cascade(base, &base->tv4, INDEX(2)))
1100 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1101 ++base->timer_jiffies;
1102 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1103 while (!list_empty(head)) {
1da177e4
LT
1104 void (*fn)(unsigned long);
1105 unsigned long data;
1106
b5e61818 1107 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1108 fn = timer->function;
1109 data = timer->data;
1da177e4 1110
82f67cd9
IM
1111 timer_stats_account_timer(timer);
1112
1da177e4 1113 set_running_timer(base, timer);
55c888d6 1114 detach_timer(timer, 1);
6f2b9b9a 1115
3691c519 1116 spin_unlock_irq(&base->lock);
576da126 1117 call_timer_fn(timer, fn, data);
3691c519 1118 spin_lock_irq(&base->lock);
1da177e4
LT
1119 }
1120 }
1121 set_running_timer(base, NULL);
3691c519 1122 spin_unlock_irq(&base->lock);
1da177e4
LT
1123}
1124
ee9c5785 1125#ifdef CONFIG_NO_HZ
1da177e4
LT
1126/*
1127 * Find out when the next timer event is due to happen. This
90cba64a
RD
1128 * is used on S/390 to stop all activity when a CPU is idle.
1129 * This function needs to be called with interrupts disabled.
1da177e4 1130 */
a6fa8e5a 1131static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1132{
1cfd6849 1133 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1134 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1135 int index, slot, array, found = 0;
1da177e4 1136 struct timer_list *nte;
a6fa8e5a 1137 struct tvec *varray[4];
1da177e4
LT
1138
1139 /* Look for timer events in tv1. */
1cfd6849 1140 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1141 do {
1cfd6849 1142 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1143 if (tbase_get_deferrable(nte->base))
1144 continue;
6e453a67 1145
1cfd6849 1146 found = 1;
1da177e4 1147 expires = nte->expires;
1cfd6849
TG
1148 /* Look at the cascade bucket(s)? */
1149 if (!index || slot < index)
1150 goto cascade;
1151 return expires;
1da177e4 1152 }
1cfd6849
TG
1153 slot = (slot + 1) & TVR_MASK;
1154 } while (slot != index);
1155
1156cascade:
1157 /* Calculate the next cascade event */
1158 if (index)
1159 timer_jiffies += TVR_SIZE - index;
1160 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1161
1162 /* Check tv2-tv5. */
1163 varray[0] = &base->tv2;
1164 varray[1] = &base->tv3;
1165 varray[2] = &base->tv4;
1166 varray[3] = &base->tv5;
1cfd6849
TG
1167
1168 for (array = 0; array < 4; array++) {
a6fa8e5a 1169 struct tvec *varp = varray[array];
1cfd6849
TG
1170
1171 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1172 do {
1cfd6849 1173 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1174 if (tbase_get_deferrable(nte->base))
1175 continue;
1176
1cfd6849 1177 found = 1;
1da177e4
LT
1178 if (time_before(nte->expires, expires))
1179 expires = nte->expires;
1cfd6849
TG
1180 }
1181 /*
1182 * Do we still search for the first timer or are
1183 * we looking up the cascade buckets ?
1184 */
1185 if (found) {
1186 /* Look at the cascade bucket(s)? */
1187 if (!index || slot < index)
1188 break;
1189 return expires;
1190 }
1191 slot = (slot + 1) & TVN_MASK;
1192 } while (slot != index);
1193
1194 if (index)
1195 timer_jiffies += TVN_SIZE - index;
1196 timer_jiffies >>= TVN_BITS;
1da177e4 1197 }
1cfd6849
TG
1198 return expires;
1199}
69239749 1200
1cfd6849
TG
1201/*
1202 * Check, if the next hrtimer event is before the next timer wheel
1203 * event:
1204 */
1205static unsigned long cmp_next_hrtimer_event(unsigned long now,
1206 unsigned long expires)
1207{
1208 ktime_t hr_delta = hrtimer_get_next_event();
1209 struct timespec tsdelta;
9501b6cf 1210 unsigned long delta;
1cfd6849
TG
1211
1212 if (hr_delta.tv64 == KTIME_MAX)
1213 return expires;
0662b713 1214
9501b6cf
TG
1215 /*
1216 * Expired timer available, let it expire in the next tick
1217 */
1218 if (hr_delta.tv64 <= 0)
1219 return now + 1;
69239749 1220
1cfd6849 1221 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1222 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1223
1224 /*
1225 * Limit the delta to the max value, which is checked in
1226 * tick_nohz_stop_sched_tick():
1227 */
1228 if (delta > NEXT_TIMER_MAX_DELTA)
1229 delta = NEXT_TIMER_MAX_DELTA;
1230
9501b6cf
TG
1231 /*
1232 * Take rounding errors in to account and make sure, that it
1233 * expires in the next tick. Otherwise we go into an endless
1234 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1235 * the timer softirq
1236 */
1237 if (delta < 1)
1238 delta = 1;
1239 now += delta;
1cfd6849
TG
1240 if (time_before(now, expires))
1241 return now;
1da177e4
LT
1242 return expires;
1243}
1cfd6849
TG
1244
1245/**
8dce39c2 1246 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1247 * @now: current time (in jiffies)
1cfd6849 1248 */
fd064b9b 1249unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1250{
a6fa8e5a 1251 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1252 unsigned long expires;
1cfd6849
TG
1253
1254 spin_lock(&base->lock);
97fd9ed4
MS
1255 if (time_before_eq(base->next_timer, base->timer_jiffies))
1256 base->next_timer = __next_timer_interrupt(base);
1257 expires = base->next_timer;
1cfd6849
TG
1258 spin_unlock(&base->lock);
1259
1260 if (time_before_eq(expires, now))
1261 return now;
1262
1263 return cmp_next_hrtimer_event(now, expires);
1264}
1da177e4
LT
1265#endif
1266
1da177e4 1267/*
5b4db0c2 1268 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1269 * process. user_tick is 1 if the tick is user time, 0 for system.
1270 */
1271void update_process_times(int user_tick)
1272{
1273 struct task_struct *p = current;
1274 int cpu = smp_processor_id();
1275
1276 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1277 account_process_tick(p, user_tick);
1da177e4 1278 run_local_timers();
a157229c 1279 rcu_check_callbacks(cpu, user_tick);
b845b517 1280 printk_tick();
fe432200 1281 perf_event_do_pending();
1da177e4 1282 scheduler_tick();
6819457d 1283 run_posix_cpu_timers(p);
1da177e4
LT
1284}
1285
1da177e4
LT
1286/*
1287 * This function runs timers and the timer-tq in bottom half context.
1288 */
1289static void run_timer_softirq(struct softirq_action *h)
1290{
a6fa8e5a 1291 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1292
d3d74453 1293 hrtimer_run_pending();
82f67cd9 1294
1da177e4
LT
1295 if (time_after_eq(jiffies, base->timer_jiffies))
1296 __run_timers(base);
1297}
1298
1299/*
1300 * Called by the local, per-CPU timer interrupt on SMP.
1301 */
1302void run_local_timers(void)
1303{
d3d74453 1304 hrtimer_run_queues();
1da177e4
LT
1305 raise_softirq(TIMER_SOFTIRQ);
1306}
1307
1da177e4
LT
1308/*
1309 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1310 * without sampling the sequence number in xtime_lock.
1311 * jiffies is defined in the linker script...
1312 */
1313
3171a030 1314void do_timer(unsigned long ticks)
1da177e4 1315{
3171a030 1316 jiffies_64 += ticks;
dce48a84
TG
1317 update_wall_time();
1318 calc_global_load();
1da177e4
LT
1319}
1320
1321#ifdef __ARCH_WANT_SYS_ALARM
1322
1323/*
1324 * For backwards compatibility? This can be done in libc so Alpha
1325 * and all newer ports shouldn't need it.
1326 */
58fd3aa2 1327SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1328{
c08b8a49 1329 return alarm_setitimer(seconds);
1da177e4
LT
1330}
1331
1332#endif
1333
1334#ifndef __alpha__
1335
1336/*
1337 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1338 * should be moved into arch/i386 instead?
1339 */
1340
1341/**
1342 * sys_getpid - return the thread group id of the current process
1343 *
1344 * Note, despite the name, this returns the tgid not the pid. The tgid and
1345 * the pid are identical unless CLONE_THREAD was specified on clone() in
1346 * which case the tgid is the same in all threads of the same group.
1347 *
1348 * This is SMP safe as current->tgid does not change.
1349 */
58fd3aa2 1350SYSCALL_DEFINE0(getpid)
1da177e4 1351{
b488893a 1352 return task_tgid_vnr(current);
1da177e4
LT
1353}
1354
1355/*
6997a6fa
KK
1356 * Accessing ->real_parent is not SMP-safe, it could
1357 * change from under us. However, we can use a stale
1358 * value of ->real_parent under rcu_read_lock(), see
1359 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1360 */
dbf040d9 1361SYSCALL_DEFINE0(getppid)
1da177e4
LT
1362{
1363 int pid;
1da177e4 1364
6997a6fa 1365 rcu_read_lock();
6c5f3e7b 1366 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1367 rcu_read_unlock();
1da177e4 1368
1da177e4
LT
1369 return pid;
1370}
1371
dbf040d9 1372SYSCALL_DEFINE0(getuid)
1da177e4
LT
1373{
1374 /* Only we change this so SMP safe */
76aac0e9 1375 return current_uid();
1da177e4
LT
1376}
1377
dbf040d9 1378SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1379{
1380 /* Only we change this so SMP safe */
76aac0e9 1381 return current_euid();
1da177e4
LT
1382}
1383
dbf040d9 1384SYSCALL_DEFINE0(getgid)
1da177e4
LT
1385{
1386 /* Only we change this so SMP safe */
76aac0e9 1387 return current_gid();
1da177e4
LT
1388}
1389
dbf040d9 1390SYSCALL_DEFINE0(getegid)
1da177e4
LT
1391{
1392 /* Only we change this so SMP safe */
76aac0e9 1393 return current_egid();
1da177e4
LT
1394}
1395
1396#endif
1397
1398static void process_timeout(unsigned long __data)
1399{
36c8b586 1400 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1401}
1402
1403/**
1404 * schedule_timeout - sleep until timeout
1405 * @timeout: timeout value in jiffies
1406 *
1407 * Make the current task sleep until @timeout jiffies have
1408 * elapsed. The routine will return immediately unless
1409 * the current task state has been set (see set_current_state()).
1410 *
1411 * You can set the task state as follows -
1412 *
1413 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1414 * pass before the routine returns. The routine will return 0
1415 *
1416 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1417 * delivered to the current task. In this case the remaining time
1418 * in jiffies will be returned, or 0 if the timer expired in time
1419 *
1420 * The current task state is guaranteed to be TASK_RUNNING when this
1421 * routine returns.
1422 *
1423 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1424 * the CPU away without a bound on the timeout. In this case the return
1425 * value will be %MAX_SCHEDULE_TIMEOUT.
1426 *
1427 * In all cases the return value is guaranteed to be non-negative.
1428 */
7ad5b3a5 1429signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1430{
1431 struct timer_list timer;
1432 unsigned long expire;
1433
1434 switch (timeout)
1435 {
1436 case MAX_SCHEDULE_TIMEOUT:
1437 /*
1438 * These two special cases are useful to be comfortable
1439 * in the caller. Nothing more. We could take
1440 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1441 * but I' d like to return a valid offset (>=0) to allow
1442 * the caller to do everything it want with the retval.
1443 */
1444 schedule();
1445 goto out;
1446 default:
1447 /*
1448 * Another bit of PARANOID. Note that the retval will be
1449 * 0 since no piece of kernel is supposed to do a check
1450 * for a negative retval of schedule_timeout() (since it
1451 * should never happens anyway). You just have the printk()
1452 * that will tell you if something is gone wrong and where.
1453 */
5b149bcc 1454 if (timeout < 0) {
1da177e4 1455 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1456 "value %lx\n", timeout);
1457 dump_stack();
1da177e4
LT
1458 current->state = TASK_RUNNING;
1459 goto out;
1460 }
1461 }
1462
1463 expire = timeout + jiffies;
1464
c6f3a97f 1465 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1466 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1467 schedule();
1468 del_singleshot_timer_sync(&timer);
1469
c6f3a97f
TG
1470 /* Remove the timer from the object tracker */
1471 destroy_timer_on_stack(&timer);
1472
1da177e4
LT
1473 timeout = expire - jiffies;
1474
1475 out:
1476 return timeout < 0 ? 0 : timeout;
1477}
1da177e4
LT
1478EXPORT_SYMBOL(schedule_timeout);
1479
8a1c1757
AM
1480/*
1481 * We can use __set_current_state() here because schedule_timeout() calls
1482 * schedule() unconditionally.
1483 */
64ed93a2
NA
1484signed long __sched schedule_timeout_interruptible(signed long timeout)
1485{
a5a0d52c
AM
1486 __set_current_state(TASK_INTERRUPTIBLE);
1487 return schedule_timeout(timeout);
64ed93a2
NA
1488}
1489EXPORT_SYMBOL(schedule_timeout_interruptible);
1490
294d5cc2
MW
1491signed long __sched schedule_timeout_killable(signed long timeout)
1492{
1493 __set_current_state(TASK_KILLABLE);
1494 return schedule_timeout(timeout);
1495}
1496EXPORT_SYMBOL(schedule_timeout_killable);
1497
64ed93a2
NA
1498signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1499{
a5a0d52c
AM
1500 __set_current_state(TASK_UNINTERRUPTIBLE);
1501 return schedule_timeout(timeout);
64ed93a2
NA
1502}
1503EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1504
1da177e4 1505/* Thread ID - the internal kernel "pid" */
58fd3aa2 1506SYSCALL_DEFINE0(gettid)
1da177e4 1507{
b488893a 1508 return task_pid_vnr(current);
1da177e4
LT
1509}
1510
2aae4a10 1511/**
d4d23add 1512 * do_sysinfo - fill in sysinfo struct
2aae4a10 1513 * @info: pointer to buffer to fill
6819457d 1514 */
d4d23add 1515int do_sysinfo(struct sysinfo *info)
1da177e4 1516{
1da177e4
LT
1517 unsigned long mem_total, sav_total;
1518 unsigned int mem_unit, bitcount;
2d02494f 1519 struct timespec tp;
1da177e4 1520
d4d23add 1521 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1522
2d02494f
TG
1523 ktime_get_ts(&tp);
1524 monotonic_to_bootbased(&tp);
1525 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1526
2d02494f 1527 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1528
2d02494f 1529 info->procs = nr_threads;
1da177e4 1530
d4d23add
KM
1531 si_meminfo(info);
1532 si_swapinfo(info);
1da177e4
LT
1533
1534 /*
1535 * If the sum of all the available memory (i.e. ram + swap)
1536 * is less than can be stored in a 32 bit unsigned long then
1537 * we can be binary compatible with 2.2.x kernels. If not,
1538 * well, in that case 2.2.x was broken anyways...
1539 *
1540 * -Erik Andersen <andersee@debian.org>
1541 */
1542
d4d23add
KM
1543 mem_total = info->totalram + info->totalswap;
1544 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1545 goto out;
1546 bitcount = 0;
d4d23add 1547 mem_unit = info->mem_unit;
1da177e4
LT
1548 while (mem_unit > 1) {
1549 bitcount++;
1550 mem_unit >>= 1;
1551 sav_total = mem_total;
1552 mem_total <<= 1;
1553 if (mem_total < sav_total)
1554 goto out;
1555 }
1556
1557 /*
1558 * If mem_total did not overflow, multiply all memory values by
d4d23add 1559 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1560 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1561 * kernels...
1562 */
1563
d4d23add
KM
1564 info->mem_unit = 1;
1565 info->totalram <<= bitcount;
1566 info->freeram <<= bitcount;
1567 info->sharedram <<= bitcount;
1568 info->bufferram <<= bitcount;
1569 info->totalswap <<= bitcount;
1570 info->freeswap <<= bitcount;
1571 info->totalhigh <<= bitcount;
1572 info->freehigh <<= bitcount;
1573
1574out:
1575 return 0;
1576}
1577
1e7bfb21 1578SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1579{
1580 struct sysinfo val;
1581
1582 do_sysinfo(&val);
1da177e4 1583
1da177e4
LT
1584 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1585 return -EFAULT;
1586
1587 return 0;
1588}
1589
b4be6258 1590static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1591{
1592 int j;
a6fa8e5a 1593 struct tvec_base *base;
b4be6258 1594 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1595
ba6edfcd 1596 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1597 static char boot_done;
1598
a4a6198b 1599 if (boot_done) {
ba6edfcd
AM
1600 /*
1601 * The APs use this path later in boot
1602 */
94f6030c
CL
1603 base = kmalloc_node(sizeof(*base),
1604 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1605 cpu_to_node(cpu));
1606 if (!base)
1607 return -ENOMEM;
6e453a67
VP
1608
1609 /* Make sure that tvec_base is 2 byte aligned */
1610 if (tbase_get_deferrable(base)) {
1611 WARN_ON(1);
1612 kfree(base);
1613 return -ENOMEM;
1614 }
ba6edfcd 1615 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1616 } else {
ba6edfcd
AM
1617 /*
1618 * This is for the boot CPU - we use compile-time
1619 * static initialisation because per-cpu memory isn't
1620 * ready yet and because the memory allocators are not
1621 * initialised either.
1622 */
a4a6198b 1623 boot_done = 1;
ba6edfcd 1624 base = &boot_tvec_bases;
a4a6198b 1625 }
ba6edfcd
AM
1626 tvec_base_done[cpu] = 1;
1627 } else {
1628 base = per_cpu(tvec_bases, cpu);
a4a6198b 1629 }
ba6edfcd 1630
3691c519 1631 spin_lock_init(&base->lock);
d730e882 1632
1da177e4
LT
1633 for (j = 0; j < TVN_SIZE; j++) {
1634 INIT_LIST_HEAD(base->tv5.vec + j);
1635 INIT_LIST_HEAD(base->tv4.vec + j);
1636 INIT_LIST_HEAD(base->tv3.vec + j);
1637 INIT_LIST_HEAD(base->tv2.vec + j);
1638 }
1639 for (j = 0; j < TVR_SIZE; j++)
1640 INIT_LIST_HEAD(base->tv1.vec + j);
1641
1642 base->timer_jiffies = jiffies;
97fd9ed4 1643 base->next_timer = base->timer_jiffies;
a4a6198b 1644 return 0;
1da177e4
LT
1645}
1646
1647#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1648static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1649{
1650 struct timer_list *timer;
1651
1652 while (!list_empty(head)) {
b5e61818 1653 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1654 detach_timer(timer, 0);
6e453a67 1655 timer_set_base(timer, new_base);
97fd9ed4
MS
1656 if (time_before(timer->expires, new_base->next_timer) &&
1657 !tbase_get_deferrable(timer->base))
1658 new_base->next_timer = timer->expires;
1da177e4 1659 internal_add_timer(new_base, timer);
1da177e4 1660 }
1da177e4
LT
1661}
1662
48ccf3da 1663static void __cpuinit migrate_timers(int cpu)
1da177e4 1664{
a6fa8e5a
PM
1665 struct tvec_base *old_base;
1666 struct tvec_base *new_base;
1da177e4
LT
1667 int i;
1668
1669 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1670 old_base = per_cpu(tvec_bases, cpu);
1671 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1672 /*
1673 * The caller is globally serialized and nobody else
1674 * takes two locks at once, deadlock is not possible.
1675 */
1676 spin_lock_irq(&new_base->lock);
0d180406 1677 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1678
1679 BUG_ON(old_base->running_timer);
1da177e4 1680
1da177e4 1681 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1682 migrate_timer_list(new_base, old_base->tv1.vec + i);
1683 for (i = 0; i < TVN_SIZE; i++) {
1684 migrate_timer_list(new_base, old_base->tv2.vec + i);
1685 migrate_timer_list(new_base, old_base->tv3.vec + i);
1686 migrate_timer_list(new_base, old_base->tv4.vec + i);
1687 migrate_timer_list(new_base, old_base->tv5.vec + i);
1688 }
1689
0d180406 1690 spin_unlock(&old_base->lock);
d82f0b0f 1691 spin_unlock_irq(&new_base->lock);
1da177e4 1692 put_cpu_var(tvec_bases);
1da177e4
LT
1693}
1694#endif /* CONFIG_HOTPLUG_CPU */
1695
8c78f307 1696static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1697 unsigned long action, void *hcpu)
1698{
1699 long cpu = (long)hcpu;
80b5184c
AM
1700 int err;
1701
1da177e4
LT
1702 switch(action) {
1703 case CPU_UP_PREPARE:
8bb78442 1704 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1705 err = init_timers_cpu(cpu);
1706 if (err < 0)
1707 return notifier_from_errno(err);
1da177e4
LT
1708 break;
1709#ifdef CONFIG_HOTPLUG_CPU
1710 case CPU_DEAD:
8bb78442 1711 case CPU_DEAD_FROZEN:
1da177e4
LT
1712 migrate_timers(cpu);
1713 break;
1714#endif
1715 default:
1716 break;
1717 }
1718 return NOTIFY_OK;
1719}
1720
8c78f307 1721static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1722 .notifier_call = timer_cpu_notify,
1723};
1724
1725
1726void __init init_timers(void)
1727{
07dccf33 1728 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1729 (void *)(long)smp_processor_id());
07dccf33 1730
82f67cd9
IM
1731 init_timer_stats();
1732
9e506f7a 1733 BUG_ON(err != NOTIFY_OK);
1da177e4 1734 register_cpu_notifier(&timers_nb);
962cf36c 1735 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1736}
1737
1da177e4
LT
1738/**
1739 * msleep - sleep safely even with waitqueue interruptions
1740 * @msecs: Time in milliseconds to sleep for
1741 */
1742void msleep(unsigned int msecs)
1743{
1744 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1745
75bcc8c5
NA
1746 while (timeout)
1747 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1748}
1749
1750EXPORT_SYMBOL(msleep);
1751
1752/**
96ec3efd 1753 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1754 * @msecs: Time in milliseconds to sleep for
1755 */
1756unsigned long msleep_interruptible(unsigned int msecs)
1757{
1758 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1759
75bcc8c5
NA
1760 while (timeout && !signal_pending(current))
1761 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1762 return jiffies_to_msecs(timeout);
1763}
1764
1765EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1766
1767static int __sched do_usleep_range(unsigned long min, unsigned long max)
1768{
1769 ktime_t kmin;
1770 unsigned long delta;
1771
1772 kmin = ktime_set(0, min * NSEC_PER_USEC);
1773 delta = (max - min) * NSEC_PER_USEC;
1774 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1775}
1776
1777/**
1778 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1779 * @min: Minimum time in usecs to sleep
1780 * @max: Maximum time in usecs to sleep
1781 */
1782void usleep_range(unsigned long min, unsigned long max)
1783{
1784 __set_current_state(TASK_UNINTERRUPTIBLE);
1785 do_usleep_range(min, max);
1786}
1787EXPORT_SYMBOL(usleep_range);
This page took 0.858147 seconds and 5 git commands to generate.