perf_counter, x86: Make NMI lockups more robust
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
925d519a 40#include <linux/perf_counter.h>
1da177e4
LT
41
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/div64.h>
45#include <asm/timex.h>
46#include <asm/io.h>
47
ecea8d19
TG
48u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49
50EXPORT_SYMBOL(jiffies_64);
51
1da177e4
LT
52/*
53 * per-CPU timer vector definitions:
54 */
1da177e4
LT
55#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57#define TVN_SIZE (1 << TVN_BITS)
58#define TVR_SIZE (1 << TVR_BITS)
59#define TVN_MASK (TVN_SIZE - 1)
60#define TVR_MASK (TVR_SIZE - 1)
61
a6fa8e5a 62struct tvec {
1da177e4 63 struct list_head vec[TVN_SIZE];
a6fa8e5a 64};
1da177e4 65
a6fa8e5a 66struct tvec_root {
1da177e4 67 struct list_head vec[TVR_SIZE];
a6fa8e5a 68};
1da177e4 69
a6fa8e5a 70struct tvec_base {
3691c519
ON
71 spinlock_t lock;
72 struct timer_list *running_timer;
1da177e4 73 unsigned long timer_jiffies;
a6fa8e5a
PM
74 struct tvec_root tv1;
75 struct tvec tv2;
76 struct tvec tv3;
77 struct tvec tv4;
78 struct tvec tv5;
6e453a67 79} ____cacheline_aligned;
1da177e4 80
a6fa8e5a 81struct tvec_base boot_tvec_bases;
3691c519 82EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 83static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 84
6e453a67 85/*
a6fa8e5a 86 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90#define TBASE_DEFERRABLE_FLAG (0x1)
91
92/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 93static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 94{
e9910846 95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
96}
97
a6fa8e5a 98static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 99{
a6fa8e5a 100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
101}
102
103static inline void timer_set_deferrable(struct timer_list *timer)
104{
a6fa8e5a 105 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 106 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void
a6fa8e5a 110timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 111{
a6fa8e5a 112 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 113 tbase_get_deferrable(timer->base));
6e453a67
VP
114}
115
9c133c46
AS
116static unsigned long round_jiffies_common(unsigned long j, int cpu,
117 bool force_up)
4c36a5de
AV
118{
119 int rem;
120 unsigned long original = j;
121
122 /*
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * already did this.
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
129 */
130 j += cpu * 3;
131
132 rem = j % HZ;
133
134 /*
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 139 * But never round down if @force_up is set.
4c36a5de 140 */
9c133c46 141 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
142 j = j - rem;
143 else /* round up */
144 j = j - rem + HZ;
145
146 /* now that we have rounded, subtract the extra skew again */
147 j -= cpu * 3;
148
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
150 return original;
151 return j;
152}
9c133c46
AS
153
154/**
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
158 *
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
163 *
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
167 *
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
171 *
172 * The return value is the rounded version of the @j parameter.
173 */
174unsigned long __round_jiffies(unsigned long j, int cpu)
175{
176 return round_jiffies_common(j, cpu, false);
177}
4c36a5de
AV
178EXPORT_SYMBOL_GPL(__round_jiffies);
179
180/**
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
184 *
72fd4a35 185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
189 *
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
193 *
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
197 *
72fd4a35 198 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
199 */
200unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201{
9c133c46
AS
202 unsigned long j0 = jiffies;
203
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
206}
207EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208
209/**
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
212 *
72fd4a35 213 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
217 *
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
221 *
72fd4a35 222 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
223 */
224unsigned long round_jiffies(unsigned long j)
225{
9c133c46 226 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
227}
228EXPORT_SYMBOL_GPL(round_jiffies);
229
230/**
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
233 *
72fd4a35 234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
238 *
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
242 *
72fd4a35 243 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
244 */
245unsigned long round_jiffies_relative(unsigned long j)
246{
247 return __round_jiffies_relative(j, raw_smp_processor_id());
248}
249EXPORT_SYMBOL_GPL(round_jiffies_relative);
250
9c133c46
AS
251/**
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261unsigned long __round_jiffies_up(unsigned long j, int cpu)
262{
263 return round_jiffies_common(j, cpu, true);
264}
265EXPORT_SYMBOL_GPL(__round_jiffies_up);
266
267/**
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
271 *
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
275 * early.
276 */
277unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278{
279 unsigned long j0 = jiffies;
280
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
283}
284EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285
286/**
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
289 *
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
293 * early.
294 */
295unsigned long round_jiffies_up(unsigned long j)
296{
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
298}
299EXPORT_SYMBOL_GPL(round_jiffies_up);
300
301/**
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
304 *
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
308 * early.
309 */
310unsigned long round_jiffies_up_relative(unsigned long j)
311{
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313}
314EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315
4c36a5de 316
a6fa8e5a 317static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
318 struct timer_list *timer)
319{
320#ifdef CONFIG_SMP
3691c519 321 base->running_timer = timer;
1da177e4
LT
322#endif
323}
324
a6fa8e5a 325static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
326{
327 unsigned long expires = timer->expires;
328 unsigned long idx = expires - base->timer_jiffies;
329 struct list_head *vec;
330
331 if (idx < TVR_SIZE) {
332 int i = expires & TVR_MASK;
333 vec = base->tv1.vec + i;
334 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
335 int i = (expires >> TVR_BITS) & TVN_MASK;
336 vec = base->tv2.vec + i;
337 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
338 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
339 vec = base->tv3.vec + i;
340 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
341 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
342 vec = base->tv4.vec + i;
343 } else if ((signed long) idx < 0) {
344 /*
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
347 */
348 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
349 } else {
350 int i;
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
353 */
354 if (idx > 0xffffffffUL) {
355 idx = 0xffffffffUL;
356 expires = idx + base->timer_jiffies;
357 }
358 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
359 vec = base->tv5.vec + i;
360 }
361 /*
362 * Timers are FIFO:
363 */
364 list_add_tail(&timer->entry, vec);
365}
366
82f67cd9
IM
367#ifdef CONFIG_TIMER_STATS
368void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369{
370 if (timer->start_site)
371 return;
372
373 timer->start_site = addr;
374 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
375 timer->start_pid = current->pid;
376}
c5c061b8
VP
377
378static void timer_stats_account_timer(struct timer_list *timer)
379{
380 unsigned int flag = 0;
381
382 if (unlikely(tbase_get_deferrable(timer->base)))
383 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384
385 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
386 timer->function, timer->start_comm, flag);
387}
388
389#else
390static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
391#endif
392
c6f3a97f
TG
393#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394
395static struct debug_obj_descr timer_debug_descr;
396
397/*
398 * fixup_init is called when:
399 * - an active object is initialized
55c888d6 400 */
c6f3a97f
TG
401static int timer_fixup_init(void *addr, enum debug_obj_state state)
402{
403 struct timer_list *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 del_timer_sync(timer);
408 debug_object_init(timer, &timer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413}
414
415/*
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
419 */
420static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421{
422 struct timer_list *timer = addr;
423
424 switch (state) {
425
426 case ODEBUG_STATE_NOTAVAILABLE:
427 /*
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
431 */
432 if (timer->entry.next == NULL &&
433 timer->entry.prev == TIMER_ENTRY_STATIC) {
434 debug_object_init(timer, &timer_debug_descr);
435 debug_object_activate(timer, &timer_debug_descr);
436 return 0;
437 } else {
438 WARN_ON_ONCE(1);
439 }
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448}
449
450/*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454static int timer_fixup_free(void *addr, enum debug_obj_state state)
455{
456 struct timer_list *timer = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_free(timer, &timer_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466}
467
468static struct debug_obj_descr timer_debug_descr = {
469 .name = "timer_list",
470 .fixup_init = timer_fixup_init,
471 .fixup_activate = timer_fixup_activate,
472 .fixup_free = timer_fixup_free,
473};
474
475static inline void debug_timer_init(struct timer_list *timer)
476{
477 debug_object_init(timer, &timer_debug_descr);
478}
479
480static inline void debug_timer_activate(struct timer_list *timer)
481{
482 debug_object_activate(timer, &timer_debug_descr);
483}
484
485static inline void debug_timer_deactivate(struct timer_list *timer)
486{
487 debug_object_deactivate(timer, &timer_debug_descr);
488}
489
490static inline void debug_timer_free(struct timer_list *timer)
491{
492 debug_object_free(timer, &timer_debug_descr);
493}
494
6f2b9b9a
JB
495static void __init_timer(struct timer_list *timer,
496 const char *name,
497 struct lock_class_key *key);
c6f3a97f 498
6f2b9b9a
JB
499void init_timer_on_stack_key(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key)
c6f3a97f
TG
502{
503 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 504 __init_timer(timer, name, key);
c6f3a97f 505}
6f2b9b9a 506EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
507
508void destroy_timer_on_stack(struct timer_list *timer)
509{
510 debug_object_free(timer, &timer_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
513
514#else
515static inline void debug_timer_init(struct timer_list *timer) { }
516static inline void debug_timer_activate(struct timer_list *timer) { }
517static inline void debug_timer_deactivate(struct timer_list *timer) { }
518#endif
519
6f2b9b9a
JB
520static void __init_timer(struct timer_list *timer,
521 const char *name,
522 struct lock_class_key *key)
55c888d6
ON
523{
524 timer->entry.next = NULL;
bfe5d834 525 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
526#ifdef CONFIG_TIMER_STATS
527 timer->start_site = NULL;
528 timer->start_pid = -1;
529 memset(timer->start_comm, 0, TASK_COMM_LEN);
530#endif
6f2b9b9a 531 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 532}
c6f3a97f
TG
533
534/**
633fe795 535 * init_timer_key - initialize a timer
c6f3a97f 536 * @timer: the timer to be initialized
633fe795
RD
537 * @name: name of the timer
538 * @key: lockdep class key of the fake lock used for tracking timer
539 * sync lock dependencies
c6f3a97f 540 *
633fe795 541 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
542 * other timer functions.
543 */
6f2b9b9a
JB
544void init_timer_key(struct timer_list *timer,
545 const char *name,
546 struct lock_class_key *key)
c6f3a97f
TG
547{
548 debug_timer_init(timer);
6f2b9b9a 549 __init_timer(timer, name, key);
c6f3a97f 550}
6f2b9b9a 551EXPORT_SYMBOL(init_timer_key);
55c888d6 552
6f2b9b9a
JB
553void init_timer_deferrable_key(struct timer_list *timer,
554 const char *name,
555 struct lock_class_key *key)
6e453a67 556{
6f2b9b9a 557 init_timer_key(timer, name, key);
6e453a67
VP
558 timer_set_deferrable(timer);
559}
6f2b9b9a 560EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 561
55c888d6 562static inline void detach_timer(struct timer_list *timer,
82f67cd9 563 int clear_pending)
55c888d6
ON
564{
565 struct list_head *entry = &timer->entry;
566
c6f3a97f
TG
567 debug_timer_deactivate(timer);
568
55c888d6
ON
569 __list_del(entry->prev, entry->next);
570 if (clear_pending)
571 entry->next = NULL;
572 entry->prev = LIST_POISON2;
573}
574
575/*
3691c519 576 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
577 * means that all timers which are tied to this base via timer->base are
578 * locked, and the base itself is locked too.
579 *
580 * So __run_timers/migrate_timers can safely modify all timers which could
581 * be found on ->tvX lists.
582 *
583 * When the timer's base is locked, and the timer removed from list, it is
584 * possible to set timer->base = NULL and drop the lock: the timer remains
585 * locked.
586 */
a6fa8e5a 587static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 588 unsigned long *flags)
89e7e374 589 __acquires(timer->base->lock)
55c888d6 590{
a6fa8e5a 591 struct tvec_base *base;
55c888d6
ON
592
593 for (;;) {
a6fa8e5a 594 struct tvec_base *prelock_base = timer->base;
6e453a67 595 base = tbase_get_base(prelock_base);
55c888d6
ON
596 if (likely(base != NULL)) {
597 spin_lock_irqsave(&base->lock, *flags);
6e453a67 598 if (likely(prelock_base == timer->base))
55c888d6
ON
599 return base;
600 /* The timer has migrated to another CPU */
601 spin_unlock_irqrestore(&base->lock, *flags);
602 }
603 cpu_relax();
604 }
605}
606
74019224
IM
607static inline int
608__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 609{
a6fa8e5a 610 struct tvec_base *base, *new_base;
1da177e4 611 unsigned long flags;
74019224
IM
612 int ret;
613
614 ret = 0;
1da177e4 615
82f67cd9 616 timer_stats_timer_set_start_info(timer);
1da177e4 617 BUG_ON(!timer->function);
1da177e4 618
55c888d6
ON
619 base = lock_timer_base(timer, &flags);
620
621 if (timer_pending(timer)) {
622 detach_timer(timer, 0);
623 ret = 1;
74019224
IM
624 } else {
625 if (pending_only)
626 goto out_unlock;
55c888d6
ON
627 }
628
c6f3a97f
TG
629 debug_timer_activate(timer);
630
a4a6198b 631 new_base = __get_cpu_var(tvec_bases);
1da177e4 632
3691c519 633 if (base != new_base) {
1da177e4 634 /*
55c888d6
ON
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
1da177e4 640 */
a2c348fe 641 if (likely(base->running_timer != timer)) {
55c888d6 642 /* See the comment in lock_timer_base() */
6e453a67 643 timer_set_base(timer, NULL);
55c888d6 644 spin_unlock(&base->lock);
a2c348fe
ON
645 base = new_base;
646 spin_lock(&base->lock);
6e453a67 647 timer_set_base(timer, base);
1da177e4
LT
648 }
649 }
650
1da177e4 651 timer->expires = expires;
a2c348fe 652 internal_add_timer(base, timer);
74019224
IM
653
654out_unlock:
a2c348fe 655 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
656
657 return ret;
658}
659
2aae4a10 660/**
74019224
IM
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
1da177e4 664 *
74019224
IM
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
667 *
668 * It is useful for unserialized use of timers.
1da177e4 669 */
74019224 670int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 671{
74019224 672 return __mod_timer(timer, expires, true);
1da177e4 673}
74019224 674EXPORT_SYMBOL(mod_timer_pending);
1da177e4 675
2aae4a10 676/**
1da177e4
LT
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
2aae4a10 679 * @expires: new timeout in jiffies
1da177e4 680 *
72fd4a35 681 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
682 * active timer (if the timer is inactive it will be activated)
683 *
684 * mod_timer(timer, expires) is equivalent to:
685 *
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
687 *
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
691 *
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
695 */
696int mod_timer(struct timer_list *timer, unsigned long expires)
697{
1da177e4
LT
698 /*
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
702 */
703 if (timer->expires == expires && timer_pending(timer))
704 return 1;
705
74019224 706 return __mod_timer(timer, expires, false);
1da177e4 707}
1da177e4
LT
708EXPORT_SYMBOL(mod_timer);
709
74019224
IM
710/**
711 * add_timer - start a timer
712 * @timer: the timer to be added
713 *
714 * The kernel will do a ->function(->data) callback from the
715 * timer interrupt at the ->expires point in the future. The
716 * current time is 'jiffies'.
717 *
718 * The timer's ->expires, ->function (and if the handler uses it, ->data)
719 * fields must be set prior calling this function.
720 *
721 * Timers with an ->expires field in the past will be executed in the next
722 * timer tick.
723 */
724void add_timer(struct timer_list *timer)
725{
726 BUG_ON(timer_pending(timer));
727 mod_timer(timer, timer->expires);
728}
729EXPORT_SYMBOL(add_timer);
730
731/**
732 * add_timer_on - start a timer on a particular CPU
733 * @timer: the timer to be added
734 * @cpu: the CPU to start it on
735 *
736 * This is not very scalable on SMP. Double adds are not possible.
737 */
738void add_timer_on(struct timer_list *timer, int cpu)
739{
740 struct tvec_base *base = per_cpu(tvec_bases, cpu);
741 unsigned long flags;
742
743 timer_stats_timer_set_start_info(timer);
744 BUG_ON(timer_pending(timer) || !timer->function);
745 spin_lock_irqsave(&base->lock, flags);
746 timer_set_base(timer, base);
747 debug_timer_activate(timer);
748 internal_add_timer(base, timer);
749 /*
750 * Check whether the other CPU is idle and needs to be
751 * triggered to reevaluate the timer wheel when nohz is
752 * active. We are protected against the other CPU fiddling
753 * with the timer by holding the timer base lock. This also
754 * makes sure that a CPU on the way to idle can not evaluate
755 * the timer wheel.
756 */
757 wake_up_idle_cpu(cpu);
758 spin_unlock_irqrestore(&base->lock, flags);
759}
760
2aae4a10 761/**
1da177e4
LT
762 * del_timer - deactive a timer.
763 * @timer: the timer to be deactivated
764 *
765 * del_timer() deactivates a timer - this works on both active and inactive
766 * timers.
767 *
768 * The function returns whether it has deactivated a pending timer or not.
769 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
770 * active timer returns 1.)
771 */
772int del_timer(struct timer_list *timer)
773{
a6fa8e5a 774 struct tvec_base *base;
1da177e4 775 unsigned long flags;
55c888d6 776 int ret = 0;
1da177e4 777
82f67cd9 778 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
779 if (timer_pending(timer)) {
780 base = lock_timer_base(timer, &flags);
781 if (timer_pending(timer)) {
782 detach_timer(timer, 1);
783 ret = 1;
784 }
1da177e4 785 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 786 }
1da177e4 787
55c888d6 788 return ret;
1da177e4 789}
1da177e4
LT
790EXPORT_SYMBOL(del_timer);
791
792#ifdef CONFIG_SMP
2aae4a10
REB
793/**
794 * try_to_del_timer_sync - Try to deactivate a timer
795 * @timer: timer do del
796 *
fd450b73
ON
797 * This function tries to deactivate a timer. Upon successful (ret >= 0)
798 * exit the timer is not queued and the handler is not running on any CPU.
799 *
800 * It must not be called from interrupt contexts.
801 */
802int try_to_del_timer_sync(struct timer_list *timer)
803{
a6fa8e5a 804 struct tvec_base *base;
fd450b73
ON
805 unsigned long flags;
806 int ret = -1;
807
808 base = lock_timer_base(timer, &flags);
809
810 if (base->running_timer == timer)
811 goto out;
812
813 ret = 0;
814 if (timer_pending(timer)) {
815 detach_timer(timer, 1);
816 ret = 1;
817 }
818out:
819 spin_unlock_irqrestore(&base->lock, flags);
820
821 return ret;
822}
e19dff1f
DH
823EXPORT_SYMBOL(try_to_del_timer_sync);
824
2aae4a10 825/**
1da177e4
LT
826 * del_timer_sync - deactivate a timer and wait for the handler to finish.
827 * @timer: the timer to be deactivated
828 *
829 * This function only differs from del_timer() on SMP: besides deactivating
830 * the timer it also makes sure the handler has finished executing on other
831 * CPUs.
832 *
72fd4a35 833 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
834 * otherwise this function is meaningless. It must not be called from
835 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
836 * completion of the timer's handler. The timer's handler must not call
837 * add_timer_on(). Upon exit the timer is not queued and the handler is
838 * not running on any CPU.
1da177e4
LT
839 *
840 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
841 */
842int del_timer_sync(struct timer_list *timer)
843{
6f2b9b9a
JB
844#ifdef CONFIG_LOCKDEP
845 unsigned long flags;
846
847 local_irq_save(flags);
848 lock_map_acquire(&timer->lockdep_map);
849 lock_map_release(&timer->lockdep_map);
850 local_irq_restore(flags);
851#endif
852
fd450b73
ON
853 for (;;) {
854 int ret = try_to_del_timer_sync(timer);
855 if (ret >= 0)
856 return ret;
a0009652 857 cpu_relax();
fd450b73 858 }
1da177e4 859}
55c888d6 860EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
861#endif
862
a6fa8e5a 863static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
864{
865 /* cascade all the timers from tv up one level */
3439dd86
P
866 struct timer_list *timer, *tmp;
867 struct list_head tv_list;
868
869 list_replace_init(tv->vec + index, &tv_list);
1da177e4 870
1da177e4 871 /*
3439dd86
P
872 * We are removing _all_ timers from the list, so we
873 * don't have to detach them individually.
1da177e4 874 */
3439dd86 875 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 876 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 877 internal_add_timer(base, timer);
1da177e4 878 }
1da177e4
LT
879
880 return index;
881}
882
2aae4a10
REB
883#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
884
885/**
1da177e4
LT
886 * __run_timers - run all expired timers (if any) on this CPU.
887 * @base: the timer vector to be processed.
888 *
889 * This function cascades all vectors and executes all expired timer
890 * vectors.
891 */
a6fa8e5a 892static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
893{
894 struct timer_list *timer;
895
3691c519 896 spin_lock_irq(&base->lock);
1da177e4 897 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 898 struct list_head work_list;
1da177e4 899 struct list_head *head = &work_list;
6819457d 900 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 901
1da177e4
LT
902 /*
903 * Cascade timers:
904 */
905 if (!index &&
906 (!cascade(base, &base->tv2, INDEX(0))) &&
907 (!cascade(base, &base->tv3, INDEX(1))) &&
908 !cascade(base, &base->tv4, INDEX(2)))
909 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
910 ++base->timer_jiffies;
911 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 912 while (!list_empty(head)) {
1da177e4
LT
913 void (*fn)(unsigned long);
914 unsigned long data;
915
b5e61818 916 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
917 fn = timer->function;
918 data = timer->data;
1da177e4 919
82f67cd9
IM
920 timer_stats_account_timer(timer);
921
1da177e4 922 set_running_timer(base, timer);
55c888d6 923 detach_timer(timer, 1);
6f2b9b9a 924
3691c519 925 spin_unlock_irq(&base->lock);
1da177e4 926 {
be5b4fbd 927 int preempt_count = preempt_count();
6f2b9b9a
JB
928
929#ifdef CONFIG_LOCKDEP
930 /*
931 * It is permissible to free the timer from
932 * inside the function that is called from
933 * it, this we need to take into account for
934 * lockdep too. To avoid bogus "held lock
935 * freed" warnings as well as problems when
936 * looking into timer->lockdep_map, make a
937 * copy and use that here.
938 */
939 struct lockdep_map lockdep_map =
940 timer->lockdep_map;
941#endif
942 /*
943 * Couple the lock chain with the lock chain at
944 * del_timer_sync() by acquiring the lock_map
945 * around the fn() call here and in
946 * del_timer_sync().
947 */
948 lock_map_acquire(&lockdep_map);
949
1da177e4 950 fn(data);
6f2b9b9a
JB
951
952 lock_map_release(&lockdep_map);
953
1da177e4 954 if (preempt_count != preempt_count()) {
4c9dc641 955 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
956 "with preempt_count %08x, exited"
957 " with %08x?\n",
958 fn, preempt_count,
959 preempt_count());
1da177e4
LT
960 BUG();
961 }
962 }
3691c519 963 spin_lock_irq(&base->lock);
1da177e4
LT
964 }
965 }
966 set_running_timer(base, NULL);
3691c519 967 spin_unlock_irq(&base->lock);
1da177e4
LT
968}
969
ee9c5785 970#ifdef CONFIG_NO_HZ
1da177e4
LT
971/*
972 * Find out when the next timer event is due to happen. This
973 * is used on S/390 to stop all activity when a cpus is idle.
974 * This functions needs to be called disabled.
975 */
a6fa8e5a 976static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 977{
1cfd6849 978 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 979 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 980 int index, slot, array, found = 0;
1da177e4 981 struct timer_list *nte;
a6fa8e5a 982 struct tvec *varray[4];
1da177e4
LT
983
984 /* Look for timer events in tv1. */
1cfd6849 985 index = slot = timer_jiffies & TVR_MASK;
1da177e4 986 do {
1cfd6849 987 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
988 if (tbase_get_deferrable(nte->base))
989 continue;
6e453a67 990
1cfd6849 991 found = 1;
1da177e4 992 expires = nte->expires;
1cfd6849
TG
993 /* Look at the cascade bucket(s)? */
994 if (!index || slot < index)
995 goto cascade;
996 return expires;
1da177e4 997 }
1cfd6849
TG
998 slot = (slot + 1) & TVR_MASK;
999 } while (slot != index);
1000
1001cascade:
1002 /* Calculate the next cascade event */
1003 if (index)
1004 timer_jiffies += TVR_SIZE - index;
1005 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1006
1007 /* Check tv2-tv5. */
1008 varray[0] = &base->tv2;
1009 varray[1] = &base->tv3;
1010 varray[2] = &base->tv4;
1011 varray[3] = &base->tv5;
1cfd6849
TG
1012
1013 for (array = 0; array < 4; array++) {
a6fa8e5a 1014 struct tvec *varp = varray[array];
1cfd6849
TG
1015
1016 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1017 do {
1cfd6849
TG
1018 list_for_each_entry(nte, varp->vec + slot, entry) {
1019 found = 1;
1da177e4
LT
1020 if (time_before(nte->expires, expires))
1021 expires = nte->expires;
1cfd6849
TG
1022 }
1023 /*
1024 * Do we still search for the first timer or are
1025 * we looking up the cascade buckets ?
1026 */
1027 if (found) {
1028 /* Look at the cascade bucket(s)? */
1029 if (!index || slot < index)
1030 break;
1031 return expires;
1032 }
1033 slot = (slot + 1) & TVN_MASK;
1034 } while (slot != index);
1035
1036 if (index)
1037 timer_jiffies += TVN_SIZE - index;
1038 timer_jiffies >>= TVN_BITS;
1da177e4 1039 }
1cfd6849
TG
1040 return expires;
1041}
69239749 1042
1cfd6849
TG
1043/*
1044 * Check, if the next hrtimer event is before the next timer wheel
1045 * event:
1046 */
1047static unsigned long cmp_next_hrtimer_event(unsigned long now,
1048 unsigned long expires)
1049{
1050 ktime_t hr_delta = hrtimer_get_next_event();
1051 struct timespec tsdelta;
9501b6cf 1052 unsigned long delta;
1cfd6849
TG
1053
1054 if (hr_delta.tv64 == KTIME_MAX)
1055 return expires;
0662b713 1056
9501b6cf
TG
1057 /*
1058 * Expired timer available, let it expire in the next tick
1059 */
1060 if (hr_delta.tv64 <= 0)
1061 return now + 1;
69239749 1062
1cfd6849 1063 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1064 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1065
1066 /*
1067 * Limit the delta to the max value, which is checked in
1068 * tick_nohz_stop_sched_tick():
1069 */
1070 if (delta > NEXT_TIMER_MAX_DELTA)
1071 delta = NEXT_TIMER_MAX_DELTA;
1072
9501b6cf
TG
1073 /*
1074 * Take rounding errors in to account and make sure, that it
1075 * expires in the next tick. Otherwise we go into an endless
1076 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1077 * the timer softirq
1078 */
1079 if (delta < 1)
1080 delta = 1;
1081 now += delta;
1cfd6849
TG
1082 if (time_before(now, expires))
1083 return now;
1da177e4
LT
1084 return expires;
1085}
1cfd6849
TG
1086
1087/**
8dce39c2 1088 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1089 * @now: current time (in jiffies)
1cfd6849 1090 */
fd064b9b 1091unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1092{
a6fa8e5a 1093 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1094 unsigned long expires;
1cfd6849
TG
1095
1096 spin_lock(&base->lock);
1097 expires = __next_timer_interrupt(base);
1098 spin_unlock(&base->lock);
1099
1100 if (time_before_eq(expires, now))
1101 return now;
1102
1103 return cmp_next_hrtimer_event(now, expires);
1104}
1da177e4
LT
1105#endif
1106
1da177e4 1107/*
5b4db0c2 1108 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1109 * process. user_tick is 1 if the tick is user time, 0 for system.
1110 */
1111void update_process_times(int user_tick)
1112{
1113 struct task_struct *p = current;
1114 int cpu = smp_processor_id();
1115
1116 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1117 account_process_tick(p, user_tick);
1da177e4
LT
1118 run_local_timers();
1119 if (rcu_pending(cpu))
1120 rcu_check_callbacks(cpu, user_tick);
b845b517 1121 printk_tick();
1da177e4 1122 scheduler_tick();
6819457d 1123 run_posix_cpu_timers(p);
1da177e4
LT
1124}
1125
1126/*
1127 * Nr of active tasks - counted in fixed-point numbers
1128 */
1129static unsigned long count_active_tasks(void)
1130{
db1b1fef 1131 return nr_active() * FIXED_1;
1da177e4
LT
1132}
1133
1134/*
1135 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1136 * imply that avenrun[] is the standard name for this kind of thing.
1137 * Nothing else seems to be standardized: the fractional size etc
1138 * all seem to differ on different machines.
1139 *
1140 * Requires xtime_lock to access.
1141 */
1142unsigned long avenrun[3];
1143
1144EXPORT_SYMBOL(avenrun);
1145
1146/*
1147 * calc_load - given tick count, update the avenrun load estimates.
1148 * This is called while holding a write_lock on xtime_lock.
1149 */
1150static inline void calc_load(unsigned long ticks)
1151{
1152 unsigned long active_tasks; /* fixed-point */
1153 static int count = LOAD_FREQ;
1154
cd7175ed
ED
1155 count -= ticks;
1156 if (unlikely(count < 0)) {
1157 active_tasks = count_active_tasks();
1158 do {
1159 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1160 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1161 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1162 count += LOAD_FREQ;
1163 } while (count < 0);
1da177e4
LT
1164 }
1165}
1166
1da177e4
LT
1167/*
1168 * This function runs timers and the timer-tq in bottom half context.
1169 */
1170static void run_timer_softirq(struct softirq_action *h)
1171{
a6fa8e5a 1172 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1173
925d519a
PZ
1174 perf_counter_do_pending();
1175
d3d74453 1176 hrtimer_run_pending();
82f67cd9 1177
1da177e4
LT
1178 if (time_after_eq(jiffies, base->timer_jiffies))
1179 __run_timers(base);
1180}
1181
1182/*
1183 * Called by the local, per-CPU timer interrupt on SMP.
1184 */
1185void run_local_timers(void)
1186{
d3d74453 1187 hrtimer_run_queues();
1da177e4 1188 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1189 softlockup_tick();
1da177e4
LT
1190}
1191
1192/*
1193 * Called by the timer interrupt. xtime_lock must already be taken
1194 * by the timer IRQ!
1195 */
3171a030 1196static inline void update_times(unsigned long ticks)
1da177e4 1197{
ad596171 1198 update_wall_time();
1da177e4
LT
1199 calc_load(ticks);
1200}
6819457d 1201
1da177e4
LT
1202/*
1203 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1204 * without sampling the sequence number in xtime_lock.
1205 * jiffies is defined in the linker script...
1206 */
1207
3171a030 1208void do_timer(unsigned long ticks)
1da177e4 1209{
3171a030
AN
1210 jiffies_64 += ticks;
1211 update_times(ticks);
1da177e4
LT
1212}
1213
1214#ifdef __ARCH_WANT_SYS_ALARM
1215
1216/*
1217 * For backwards compatibility? This can be done in libc so Alpha
1218 * and all newer ports shouldn't need it.
1219 */
58fd3aa2 1220SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1221{
c08b8a49 1222 return alarm_setitimer(seconds);
1da177e4
LT
1223}
1224
1225#endif
1226
1227#ifndef __alpha__
1228
1229/*
1230 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1231 * should be moved into arch/i386 instead?
1232 */
1233
1234/**
1235 * sys_getpid - return the thread group id of the current process
1236 *
1237 * Note, despite the name, this returns the tgid not the pid. The tgid and
1238 * the pid are identical unless CLONE_THREAD was specified on clone() in
1239 * which case the tgid is the same in all threads of the same group.
1240 *
1241 * This is SMP safe as current->tgid does not change.
1242 */
58fd3aa2 1243SYSCALL_DEFINE0(getpid)
1da177e4 1244{
b488893a 1245 return task_tgid_vnr(current);
1da177e4
LT
1246}
1247
1248/*
6997a6fa
KK
1249 * Accessing ->real_parent is not SMP-safe, it could
1250 * change from under us. However, we can use a stale
1251 * value of ->real_parent under rcu_read_lock(), see
1252 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1253 */
dbf040d9 1254SYSCALL_DEFINE0(getppid)
1da177e4
LT
1255{
1256 int pid;
1da177e4 1257
6997a6fa 1258 rcu_read_lock();
6c5f3e7b 1259 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1260 rcu_read_unlock();
1da177e4 1261
1da177e4
LT
1262 return pid;
1263}
1264
dbf040d9 1265SYSCALL_DEFINE0(getuid)
1da177e4
LT
1266{
1267 /* Only we change this so SMP safe */
76aac0e9 1268 return current_uid();
1da177e4
LT
1269}
1270
dbf040d9 1271SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1272{
1273 /* Only we change this so SMP safe */
76aac0e9 1274 return current_euid();
1da177e4
LT
1275}
1276
dbf040d9 1277SYSCALL_DEFINE0(getgid)
1da177e4
LT
1278{
1279 /* Only we change this so SMP safe */
76aac0e9 1280 return current_gid();
1da177e4
LT
1281}
1282
dbf040d9 1283SYSCALL_DEFINE0(getegid)
1da177e4
LT
1284{
1285 /* Only we change this so SMP safe */
76aac0e9 1286 return current_egid();
1da177e4
LT
1287}
1288
1289#endif
1290
1291static void process_timeout(unsigned long __data)
1292{
36c8b586 1293 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1294}
1295
1296/**
1297 * schedule_timeout - sleep until timeout
1298 * @timeout: timeout value in jiffies
1299 *
1300 * Make the current task sleep until @timeout jiffies have
1301 * elapsed. The routine will return immediately unless
1302 * the current task state has been set (see set_current_state()).
1303 *
1304 * You can set the task state as follows -
1305 *
1306 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1307 * pass before the routine returns. The routine will return 0
1308 *
1309 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1310 * delivered to the current task. In this case the remaining time
1311 * in jiffies will be returned, or 0 if the timer expired in time
1312 *
1313 * The current task state is guaranteed to be TASK_RUNNING when this
1314 * routine returns.
1315 *
1316 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1317 * the CPU away without a bound on the timeout. In this case the return
1318 * value will be %MAX_SCHEDULE_TIMEOUT.
1319 *
1320 * In all cases the return value is guaranteed to be non-negative.
1321 */
7ad5b3a5 1322signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1323{
1324 struct timer_list timer;
1325 unsigned long expire;
1326
1327 switch (timeout)
1328 {
1329 case MAX_SCHEDULE_TIMEOUT:
1330 /*
1331 * These two special cases are useful to be comfortable
1332 * in the caller. Nothing more. We could take
1333 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1334 * but I' d like to return a valid offset (>=0) to allow
1335 * the caller to do everything it want with the retval.
1336 */
1337 schedule();
1338 goto out;
1339 default:
1340 /*
1341 * Another bit of PARANOID. Note that the retval will be
1342 * 0 since no piece of kernel is supposed to do a check
1343 * for a negative retval of schedule_timeout() (since it
1344 * should never happens anyway). You just have the printk()
1345 * that will tell you if something is gone wrong and where.
1346 */
5b149bcc 1347 if (timeout < 0) {
1da177e4 1348 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1349 "value %lx\n", timeout);
1350 dump_stack();
1da177e4
LT
1351 current->state = TASK_RUNNING;
1352 goto out;
1353 }
1354 }
1355
1356 expire = timeout + jiffies;
1357
c6f3a97f 1358 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
74019224 1359 __mod_timer(&timer, expire, false);
1da177e4
LT
1360 schedule();
1361 del_singleshot_timer_sync(&timer);
1362
c6f3a97f
TG
1363 /* Remove the timer from the object tracker */
1364 destroy_timer_on_stack(&timer);
1365
1da177e4
LT
1366 timeout = expire - jiffies;
1367
1368 out:
1369 return timeout < 0 ? 0 : timeout;
1370}
1da177e4
LT
1371EXPORT_SYMBOL(schedule_timeout);
1372
8a1c1757
AM
1373/*
1374 * We can use __set_current_state() here because schedule_timeout() calls
1375 * schedule() unconditionally.
1376 */
64ed93a2
NA
1377signed long __sched schedule_timeout_interruptible(signed long timeout)
1378{
a5a0d52c
AM
1379 __set_current_state(TASK_INTERRUPTIBLE);
1380 return schedule_timeout(timeout);
64ed93a2
NA
1381}
1382EXPORT_SYMBOL(schedule_timeout_interruptible);
1383
294d5cc2
MW
1384signed long __sched schedule_timeout_killable(signed long timeout)
1385{
1386 __set_current_state(TASK_KILLABLE);
1387 return schedule_timeout(timeout);
1388}
1389EXPORT_SYMBOL(schedule_timeout_killable);
1390
64ed93a2
NA
1391signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1392{
a5a0d52c
AM
1393 __set_current_state(TASK_UNINTERRUPTIBLE);
1394 return schedule_timeout(timeout);
64ed93a2
NA
1395}
1396EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1397
1da177e4 1398/* Thread ID - the internal kernel "pid" */
58fd3aa2 1399SYSCALL_DEFINE0(gettid)
1da177e4 1400{
b488893a 1401 return task_pid_vnr(current);
1da177e4
LT
1402}
1403
2aae4a10 1404/**
d4d23add 1405 * do_sysinfo - fill in sysinfo struct
2aae4a10 1406 * @info: pointer to buffer to fill
6819457d 1407 */
d4d23add 1408int do_sysinfo(struct sysinfo *info)
1da177e4 1409{
1da177e4
LT
1410 unsigned long mem_total, sav_total;
1411 unsigned int mem_unit, bitcount;
1412 unsigned long seq;
1413
d4d23add 1414 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1415
1416 do {
1417 struct timespec tp;
1418 seq = read_seqbegin(&xtime_lock);
1419
1420 /*
1421 * This is annoying. The below is the same thing
1422 * posix_get_clock_monotonic() does, but it wants to
1423 * take the lock which we want to cover the loads stuff
1424 * too.
1425 */
1426
1427 getnstimeofday(&tp);
1428 tp.tv_sec += wall_to_monotonic.tv_sec;
1429 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1430 monotonic_to_bootbased(&tp);
1da177e4
LT
1431 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1432 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1433 tp.tv_sec++;
1434 }
d4d23add 1435 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1436
d4d23add
KM
1437 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1438 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1439 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1440
d4d23add 1441 info->procs = nr_threads;
1da177e4
LT
1442 } while (read_seqretry(&xtime_lock, seq));
1443
d4d23add
KM
1444 si_meminfo(info);
1445 si_swapinfo(info);
1da177e4
LT
1446
1447 /*
1448 * If the sum of all the available memory (i.e. ram + swap)
1449 * is less than can be stored in a 32 bit unsigned long then
1450 * we can be binary compatible with 2.2.x kernels. If not,
1451 * well, in that case 2.2.x was broken anyways...
1452 *
1453 * -Erik Andersen <andersee@debian.org>
1454 */
1455
d4d23add
KM
1456 mem_total = info->totalram + info->totalswap;
1457 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1458 goto out;
1459 bitcount = 0;
d4d23add 1460 mem_unit = info->mem_unit;
1da177e4
LT
1461 while (mem_unit > 1) {
1462 bitcount++;
1463 mem_unit >>= 1;
1464 sav_total = mem_total;
1465 mem_total <<= 1;
1466 if (mem_total < sav_total)
1467 goto out;
1468 }
1469
1470 /*
1471 * If mem_total did not overflow, multiply all memory values by
d4d23add 1472 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1473 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1474 * kernels...
1475 */
1476
d4d23add
KM
1477 info->mem_unit = 1;
1478 info->totalram <<= bitcount;
1479 info->freeram <<= bitcount;
1480 info->sharedram <<= bitcount;
1481 info->bufferram <<= bitcount;
1482 info->totalswap <<= bitcount;
1483 info->freeswap <<= bitcount;
1484 info->totalhigh <<= bitcount;
1485 info->freehigh <<= bitcount;
1486
1487out:
1488 return 0;
1489}
1490
1e7bfb21 1491SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1492{
1493 struct sysinfo val;
1494
1495 do_sysinfo(&val);
1da177e4 1496
1da177e4
LT
1497 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1498 return -EFAULT;
1499
1500 return 0;
1501}
1502
b4be6258 1503static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1504{
1505 int j;
a6fa8e5a 1506 struct tvec_base *base;
b4be6258 1507 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1508
ba6edfcd 1509 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1510 static char boot_done;
1511
a4a6198b 1512 if (boot_done) {
ba6edfcd
AM
1513 /*
1514 * The APs use this path later in boot
1515 */
94f6030c
CL
1516 base = kmalloc_node(sizeof(*base),
1517 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1518 cpu_to_node(cpu));
1519 if (!base)
1520 return -ENOMEM;
6e453a67
VP
1521
1522 /* Make sure that tvec_base is 2 byte aligned */
1523 if (tbase_get_deferrable(base)) {
1524 WARN_ON(1);
1525 kfree(base);
1526 return -ENOMEM;
1527 }
ba6edfcd 1528 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1529 } else {
ba6edfcd
AM
1530 /*
1531 * This is for the boot CPU - we use compile-time
1532 * static initialisation because per-cpu memory isn't
1533 * ready yet and because the memory allocators are not
1534 * initialised either.
1535 */
a4a6198b 1536 boot_done = 1;
ba6edfcd 1537 base = &boot_tvec_bases;
a4a6198b 1538 }
ba6edfcd
AM
1539 tvec_base_done[cpu] = 1;
1540 } else {
1541 base = per_cpu(tvec_bases, cpu);
a4a6198b 1542 }
ba6edfcd 1543
3691c519 1544 spin_lock_init(&base->lock);
d730e882 1545
1da177e4
LT
1546 for (j = 0; j < TVN_SIZE; j++) {
1547 INIT_LIST_HEAD(base->tv5.vec + j);
1548 INIT_LIST_HEAD(base->tv4.vec + j);
1549 INIT_LIST_HEAD(base->tv3.vec + j);
1550 INIT_LIST_HEAD(base->tv2.vec + j);
1551 }
1552 for (j = 0; j < TVR_SIZE; j++)
1553 INIT_LIST_HEAD(base->tv1.vec + j);
1554
1555 base->timer_jiffies = jiffies;
a4a6198b 1556 return 0;
1da177e4
LT
1557}
1558
1559#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1560static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1561{
1562 struct timer_list *timer;
1563
1564 while (!list_empty(head)) {
b5e61818 1565 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1566 detach_timer(timer, 0);
6e453a67 1567 timer_set_base(timer, new_base);
1da177e4 1568 internal_add_timer(new_base, timer);
1da177e4 1569 }
1da177e4
LT
1570}
1571
48ccf3da 1572static void __cpuinit migrate_timers(int cpu)
1da177e4 1573{
a6fa8e5a
PM
1574 struct tvec_base *old_base;
1575 struct tvec_base *new_base;
1da177e4
LT
1576 int i;
1577
1578 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1579 old_base = per_cpu(tvec_bases, cpu);
1580 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1581 /*
1582 * The caller is globally serialized and nobody else
1583 * takes two locks at once, deadlock is not possible.
1584 */
1585 spin_lock_irq(&new_base->lock);
0d180406 1586 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1587
1588 BUG_ON(old_base->running_timer);
1da177e4 1589
1da177e4 1590 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1591 migrate_timer_list(new_base, old_base->tv1.vec + i);
1592 for (i = 0; i < TVN_SIZE; i++) {
1593 migrate_timer_list(new_base, old_base->tv2.vec + i);
1594 migrate_timer_list(new_base, old_base->tv3.vec + i);
1595 migrate_timer_list(new_base, old_base->tv4.vec + i);
1596 migrate_timer_list(new_base, old_base->tv5.vec + i);
1597 }
1598
0d180406 1599 spin_unlock(&old_base->lock);
d82f0b0f 1600 spin_unlock_irq(&new_base->lock);
1da177e4 1601 put_cpu_var(tvec_bases);
1da177e4
LT
1602}
1603#endif /* CONFIG_HOTPLUG_CPU */
1604
8c78f307 1605static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1606 unsigned long action, void *hcpu)
1607{
1608 long cpu = (long)hcpu;
1609 switch(action) {
1610 case CPU_UP_PREPARE:
8bb78442 1611 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1612 if (init_timers_cpu(cpu) < 0)
1613 return NOTIFY_BAD;
1da177e4
LT
1614 break;
1615#ifdef CONFIG_HOTPLUG_CPU
1616 case CPU_DEAD:
8bb78442 1617 case CPU_DEAD_FROZEN:
1da177e4
LT
1618 migrate_timers(cpu);
1619 break;
1620#endif
1621 default:
1622 break;
1623 }
1624 return NOTIFY_OK;
1625}
1626
8c78f307 1627static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1628 .notifier_call = timer_cpu_notify,
1629};
1630
1631
1632void __init init_timers(void)
1633{
07dccf33 1634 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1635 (void *)(long)smp_processor_id());
07dccf33 1636
82f67cd9
IM
1637 init_timer_stats();
1638
07dccf33 1639 BUG_ON(err == NOTIFY_BAD);
1da177e4 1640 register_cpu_notifier(&timers_nb);
962cf36c 1641 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1642}
1643
1da177e4
LT
1644/**
1645 * msleep - sleep safely even with waitqueue interruptions
1646 * @msecs: Time in milliseconds to sleep for
1647 */
1648void msleep(unsigned int msecs)
1649{
1650 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1651
75bcc8c5
NA
1652 while (timeout)
1653 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1654}
1655
1656EXPORT_SYMBOL(msleep);
1657
1658/**
96ec3efd 1659 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1660 * @msecs: Time in milliseconds to sleep for
1661 */
1662unsigned long msleep_interruptible(unsigned int msecs)
1663{
1664 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1665
75bcc8c5
NA
1666 while (timeout && !signal_pending(current))
1667 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1668 return jiffies_to_msecs(timeout);
1669}
1670
1671EXPORT_SYMBOL(msleep_interruptible);
This page took 0.553508 seconds and 5 git commands to generate.