nohz: Assign timekeeping duty to a CPU outside the full dynticks range
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1da177e4
LT
44
45#include <asm/uaccess.h>
46#include <asm/unistd.h>
47#include <asm/div64.h>
48#include <asm/timex.h>
49#include <asm/io.h>
50
2b022e3d
XG
51#define CREATE_TRACE_POINTS
52#include <trace/events/timer.h>
53
ecea8d19
TG
54u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55
56EXPORT_SYMBOL(jiffies_64);
57
1da177e4
LT
58/*
59 * per-CPU timer vector definitions:
60 */
1da177e4
LT
61#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
62#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
63#define TVN_SIZE (1 << TVN_BITS)
64#define TVR_SIZE (1 << TVR_BITS)
65#define TVN_MASK (TVN_SIZE - 1)
66#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 67#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 68
a6fa8e5a 69struct tvec {
1da177e4 70 struct list_head vec[TVN_SIZE];
a6fa8e5a 71};
1da177e4 72
a6fa8e5a 73struct tvec_root {
1da177e4 74 struct list_head vec[TVR_SIZE];
a6fa8e5a 75};
1da177e4 76
a6fa8e5a 77struct tvec_base {
3691c519
ON
78 spinlock_t lock;
79 struct timer_list *running_timer;
1da177e4 80 unsigned long timer_jiffies;
97fd9ed4 81 unsigned long next_timer;
99d5f3aa 82 unsigned long active_timers;
a6fa8e5a
PM
83 struct tvec_root tv1;
84 struct tvec tv2;
85 struct tvec tv3;
86 struct tvec tv4;
87 struct tvec tv5;
6e453a67 88} ____cacheline_aligned;
1da177e4 89
a6fa8e5a 90struct tvec_base boot_tvec_bases;
3691c519 91EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 92static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 93
6e453a67 94/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 95static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 96{
e52b1db3 97 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
98}
99
c5f66e99
TH
100static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
101{
102 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
103}
104
a6fa8e5a 105static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 106{
e52b1db3 107 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
108}
109
6e453a67 110static inline void
a6fa8e5a 111timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 112{
e52b1db3
TH
113 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
114
115 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
116}
117
9c133c46
AS
118static unsigned long round_jiffies_common(unsigned long j, int cpu,
119 bool force_up)
4c36a5de
AV
120{
121 int rem;
122 unsigned long original = j;
123
124 /*
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
128 * already did this.
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
131 */
132 j += cpu * 3;
133
134 rem = j % HZ;
135
136 /*
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 141 * But never round down if @force_up is set.
4c36a5de 142 */
9c133c46 143 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
144 j = j - rem;
145 else /* round up */
146 j = j - rem + HZ;
147
148 /* now that we have rounded, subtract the extra skew again */
149 j -= cpu * 3;
150
151 if (j <= jiffies) /* rounding ate our timeout entirely; */
152 return original;
153 return j;
154}
9c133c46
AS
155
156/**
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
160 *
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
165 *
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
169 *
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
173 *
174 * The return value is the rounded version of the @j parameter.
175 */
176unsigned long __round_jiffies(unsigned long j, int cpu)
177{
178 return round_jiffies_common(j, cpu, false);
179}
4c36a5de
AV
180EXPORT_SYMBOL_GPL(__round_jiffies);
181
182/**
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
186 *
72fd4a35 187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
191 *
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
195 *
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
199 *
72fd4a35 200 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
201 */
202unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203{
9c133c46
AS
204 unsigned long j0 = jiffies;
205
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
208}
209EXPORT_SYMBOL_GPL(__round_jiffies_relative);
210
211/**
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
214 *
72fd4a35 215 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
219 *
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
223 *
72fd4a35 224 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
225 */
226unsigned long round_jiffies(unsigned long j)
227{
9c133c46 228 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
229}
230EXPORT_SYMBOL_GPL(round_jiffies);
231
232/**
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
235 *
72fd4a35 236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
240 *
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
244 *
72fd4a35 245 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
246 */
247unsigned long round_jiffies_relative(unsigned long j)
248{
249 return __round_jiffies_relative(j, raw_smp_processor_id());
250}
251EXPORT_SYMBOL_GPL(round_jiffies_relative);
252
9c133c46
AS
253/**
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
257 *
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
261 * early.
262 */
263unsigned long __round_jiffies_up(unsigned long j, int cpu)
264{
265 return round_jiffies_common(j, cpu, true);
266}
267EXPORT_SYMBOL_GPL(__round_jiffies_up);
268
269/**
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
273 *
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
277 * early.
278 */
279unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280{
281 unsigned long j0 = jiffies;
282
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j + j0, cpu, true) - j0;
285}
286EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
287
288/**
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
291 *
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
295 * early.
296 */
297unsigned long round_jiffies_up(unsigned long j)
298{
299 return round_jiffies_common(j, raw_smp_processor_id(), true);
300}
301EXPORT_SYMBOL_GPL(round_jiffies_up);
302
303/**
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
306 *
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
310 * early.
311 */
312unsigned long round_jiffies_up_relative(unsigned long j)
313{
314 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315}
316EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
317
3bbb9ec9
AV
318/**
319 * set_timer_slack - set the allowed slack for a timer
0caa6210 320 * @timer: the timer to be modified
3bbb9ec9
AV
321 * @slack_hz: the amount of time (in jiffies) allowed for rounding
322 *
323 * Set the amount of time, in jiffies, that a certain timer has
324 * in terms of slack. By setting this value, the timer subsystem
325 * will schedule the actual timer somewhere between
326 * the time mod_timer() asks for, and that time plus the slack.
327 *
328 * By setting the slack to -1, a percentage of the delay is used
329 * instead.
330 */
331void set_timer_slack(struct timer_list *timer, int slack_hz)
332{
333 timer->slack = slack_hz;
334}
335EXPORT_SYMBOL_GPL(set_timer_slack);
336
facbb4a7
TG
337static void
338__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
339{
340 unsigned long expires = timer->expires;
341 unsigned long idx = expires - base->timer_jiffies;
342 struct list_head *vec;
343
344 if (idx < TVR_SIZE) {
345 int i = expires & TVR_MASK;
346 vec = base->tv1.vec + i;
347 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
348 int i = (expires >> TVR_BITS) & TVN_MASK;
349 vec = base->tv2.vec + i;
350 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
351 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
352 vec = base->tv3.vec + i;
353 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
354 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
355 vec = base->tv4.vec + i;
356 } else if ((signed long) idx < 0) {
357 /*
358 * Can happen if you add a timer with expires == jiffies,
359 * or you set a timer to go off in the past
360 */
361 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
362 } else {
363 int i;
26cff4e2
HC
364 /* If the timeout is larger than MAX_TVAL (on 64-bit
365 * architectures or with CONFIG_BASE_SMALL=1) then we
366 * use the maximum timeout.
1da177e4 367 */
26cff4e2
HC
368 if (idx > MAX_TVAL) {
369 idx = MAX_TVAL;
1da177e4
LT
370 expires = idx + base->timer_jiffies;
371 }
372 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
373 vec = base->tv5.vec + i;
374 }
375 /*
376 * Timers are FIFO:
377 */
378 list_add_tail(&timer->entry, vec);
379}
380
facbb4a7
TG
381static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
382{
383 __internal_add_timer(base, timer);
384 /*
99d5f3aa 385 * Update base->active_timers and base->next_timer
facbb4a7 386 */
99d5f3aa
TG
387 if (!tbase_get_deferrable(timer->base)) {
388 if (time_before(timer->expires, base->next_timer))
389 base->next_timer = timer->expires;
390 base->active_timers++;
391 }
facbb4a7
TG
392}
393
82f67cd9
IM
394#ifdef CONFIG_TIMER_STATS
395void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
396{
397 if (timer->start_site)
398 return;
399
400 timer->start_site = addr;
401 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
402 timer->start_pid = current->pid;
403}
c5c061b8
VP
404
405static void timer_stats_account_timer(struct timer_list *timer)
406{
407 unsigned int flag = 0;
408
507e1231
HC
409 if (likely(!timer->start_site))
410 return;
c5c061b8
VP
411 if (unlikely(tbase_get_deferrable(timer->base)))
412 flag |= TIMER_STATS_FLAG_DEFERRABLE;
413
414 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
415 timer->function, timer->start_comm, flag);
416}
417
418#else
419static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
420#endif
421
c6f3a97f
TG
422#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
423
424static struct debug_obj_descr timer_debug_descr;
425
99777288
SG
426static void *timer_debug_hint(void *addr)
427{
428 return ((struct timer_list *) addr)->function;
429}
430
c6f3a97f
TG
431/*
432 * fixup_init is called when:
433 * - an active object is initialized
55c888d6 434 */
c6f3a97f
TG
435static int timer_fixup_init(void *addr, enum debug_obj_state state)
436{
437 struct timer_list *timer = addr;
438
439 switch (state) {
440 case ODEBUG_STATE_ACTIVE:
441 del_timer_sync(timer);
442 debug_object_init(timer, &timer_debug_descr);
443 return 1;
444 default:
445 return 0;
446 }
447}
448
fb16b8cf
SB
449/* Stub timer callback for improperly used timers. */
450static void stub_timer(unsigned long data)
451{
452 WARN_ON(1);
453}
454
c6f3a97f
TG
455/*
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
459 */
460static int timer_fixup_activate(void *addr, enum debug_obj_state state)
461{
462 struct timer_list *timer = addr;
463
464 switch (state) {
465
466 case ODEBUG_STATE_NOTAVAILABLE:
467 /*
468 * This is not really a fixup. The timer was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
471 */
472 if (timer->entry.next == NULL &&
473 timer->entry.prev == TIMER_ENTRY_STATIC) {
474 debug_object_init(timer, &timer_debug_descr);
475 debug_object_activate(timer, &timer_debug_descr);
476 return 0;
477 } else {
fb16b8cf
SB
478 setup_timer(timer, stub_timer, 0);
479 return 1;
c6f3a97f
TG
480 }
481 return 0;
482
483 case ODEBUG_STATE_ACTIVE:
484 WARN_ON(1);
485
486 default:
487 return 0;
488 }
489}
490
491/*
492 * fixup_free is called when:
493 * - an active object is freed
494 */
495static int timer_fixup_free(void *addr, enum debug_obj_state state)
496{
497 struct timer_list *timer = addr;
498
499 switch (state) {
500 case ODEBUG_STATE_ACTIVE:
501 del_timer_sync(timer);
502 debug_object_free(timer, &timer_debug_descr);
503 return 1;
504 default:
505 return 0;
506 }
507}
508
dc4218bd
CC
509/*
510 * fixup_assert_init is called when:
511 * - an untracked/uninit-ed object is found
512 */
513static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
514{
515 struct timer_list *timer = addr;
516
517 switch (state) {
518 case ODEBUG_STATE_NOTAVAILABLE:
519 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
520 /*
521 * This is not really a fixup. The timer was
522 * statically initialized. We just make sure that it
523 * is tracked in the object tracker.
524 */
525 debug_object_init(timer, &timer_debug_descr);
526 return 0;
527 } else {
528 setup_timer(timer, stub_timer, 0);
529 return 1;
530 }
531 default:
532 return 0;
533 }
534}
535
c6f3a97f 536static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
537 .name = "timer_list",
538 .debug_hint = timer_debug_hint,
539 .fixup_init = timer_fixup_init,
540 .fixup_activate = timer_fixup_activate,
541 .fixup_free = timer_fixup_free,
542 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
543};
544
545static inline void debug_timer_init(struct timer_list *timer)
546{
547 debug_object_init(timer, &timer_debug_descr);
548}
549
550static inline void debug_timer_activate(struct timer_list *timer)
551{
552 debug_object_activate(timer, &timer_debug_descr);
553}
554
555static inline void debug_timer_deactivate(struct timer_list *timer)
556{
557 debug_object_deactivate(timer, &timer_debug_descr);
558}
559
560static inline void debug_timer_free(struct timer_list *timer)
561{
562 debug_object_free(timer, &timer_debug_descr);
563}
564
dc4218bd
CC
565static inline void debug_timer_assert_init(struct timer_list *timer)
566{
567 debug_object_assert_init(timer, &timer_debug_descr);
568}
569
fc683995
TH
570static void do_init_timer(struct timer_list *timer, unsigned int flags,
571 const char *name, struct lock_class_key *key);
c6f3a97f 572
fc683995
TH
573void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
574 const char *name, struct lock_class_key *key)
c6f3a97f
TG
575{
576 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 577 do_init_timer(timer, flags, name, key);
c6f3a97f 578}
6f2b9b9a 579EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
580
581void destroy_timer_on_stack(struct timer_list *timer)
582{
583 debug_object_free(timer, &timer_debug_descr);
584}
585EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
586
587#else
588static inline void debug_timer_init(struct timer_list *timer) { }
589static inline void debug_timer_activate(struct timer_list *timer) { }
590static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 591static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
592#endif
593
2b022e3d
XG
594static inline void debug_init(struct timer_list *timer)
595{
596 debug_timer_init(timer);
597 trace_timer_init(timer);
598}
599
600static inline void
601debug_activate(struct timer_list *timer, unsigned long expires)
602{
603 debug_timer_activate(timer);
604 trace_timer_start(timer, expires);
605}
606
607static inline void debug_deactivate(struct timer_list *timer)
608{
609 debug_timer_deactivate(timer);
610 trace_timer_cancel(timer);
611}
612
dc4218bd
CC
613static inline void debug_assert_init(struct timer_list *timer)
614{
615 debug_timer_assert_init(timer);
616}
617
fc683995
TH
618static void do_init_timer(struct timer_list *timer, unsigned int flags,
619 const char *name, struct lock_class_key *key)
55c888d6 620{
fc683995
TH
621 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
622
55c888d6 623 timer->entry.next = NULL;
fc683995 624 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 625 timer->slack = -1;
82f67cd9
IM
626#ifdef CONFIG_TIMER_STATS
627 timer->start_site = NULL;
628 timer->start_pid = -1;
629 memset(timer->start_comm, 0, TASK_COMM_LEN);
630#endif
6f2b9b9a 631 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 632}
c6f3a97f
TG
633
634/**
633fe795 635 * init_timer_key - initialize a timer
c6f3a97f 636 * @timer: the timer to be initialized
fc683995 637 * @flags: timer flags
633fe795
RD
638 * @name: name of the timer
639 * @key: lockdep class key of the fake lock used for tracking timer
640 * sync lock dependencies
c6f3a97f 641 *
633fe795 642 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
643 * other timer functions.
644 */
fc683995
TH
645void init_timer_key(struct timer_list *timer, unsigned int flags,
646 const char *name, struct lock_class_key *key)
c6f3a97f 647{
2b022e3d 648 debug_init(timer);
fc683995 649 do_init_timer(timer, flags, name, key);
c6f3a97f 650}
6f2b9b9a 651EXPORT_SYMBOL(init_timer_key);
55c888d6 652
ec44bc7a 653static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
654{
655 struct list_head *entry = &timer->entry;
656
2b022e3d 657 debug_deactivate(timer);
c6f3a97f 658
55c888d6
ON
659 __list_del(entry->prev, entry->next);
660 if (clear_pending)
661 entry->next = NULL;
662 entry->prev = LIST_POISON2;
663}
664
99d5f3aa
TG
665static inline void
666detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
667{
668 detach_timer(timer, true);
669 if (!tbase_get_deferrable(timer->base))
e52b1db3 670 base->active_timers--;
99d5f3aa
TG
671}
672
ec44bc7a
TG
673static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
674 bool clear_pending)
675{
676 if (!timer_pending(timer))
677 return 0;
678
679 detach_timer(timer, clear_pending);
99d5f3aa 680 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 681 base->active_timers--;
99d5f3aa
TG
682 if (timer->expires == base->next_timer)
683 base->next_timer = base->timer_jiffies;
684 }
ec44bc7a
TG
685 return 1;
686}
687
55c888d6 688/*
3691c519 689 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
690 * means that all timers which are tied to this base via timer->base are
691 * locked, and the base itself is locked too.
692 *
693 * So __run_timers/migrate_timers can safely modify all timers which could
694 * be found on ->tvX lists.
695 *
696 * When the timer's base is locked, and the timer removed from list, it is
697 * possible to set timer->base = NULL and drop the lock: the timer remains
698 * locked.
699 */
a6fa8e5a 700static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 701 unsigned long *flags)
89e7e374 702 __acquires(timer->base->lock)
55c888d6 703{
a6fa8e5a 704 struct tvec_base *base;
55c888d6
ON
705
706 for (;;) {
a6fa8e5a 707 struct tvec_base *prelock_base = timer->base;
6e453a67 708 base = tbase_get_base(prelock_base);
55c888d6
ON
709 if (likely(base != NULL)) {
710 spin_lock_irqsave(&base->lock, *flags);
6e453a67 711 if (likely(prelock_base == timer->base))
55c888d6
ON
712 return base;
713 /* The timer has migrated to another CPU */
714 spin_unlock_irqrestore(&base->lock, *flags);
715 }
716 cpu_relax();
717 }
718}
719
74019224 720static inline int
597d0275
AB
721__mod_timer(struct timer_list *timer, unsigned long expires,
722 bool pending_only, int pinned)
1da177e4 723{
a6fa8e5a 724 struct tvec_base *base, *new_base;
1da177e4 725 unsigned long flags;
eea08f32 726 int ret = 0 , cpu;
1da177e4 727
82f67cd9 728 timer_stats_timer_set_start_info(timer);
1da177e4 729 BUG_ON(!timer->function);
1da177e4 730
55c888d6
ON
731 base = lock_timer_base(timer, &flags);
732
ec44bc7a
TG
733 ret = detach_if_pending(timer, base, false);
734 if (!ret && pending_only)
735 goto out_unlock;
55c888d6 736
2b022e3d 737 debug_activate(timer, expires);
c6f3a97f 738
eea08f32
AB
739 cpu = smp_processor_id();
740
741#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
742 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
743 cpu = get_nohz_timer_target();
eea08f32
AB
744#endif
745 new_base = per_cpu(tvec_bases, cpu);
746
3691c519 747 if (base != new_base) {
1da177e4 748 /*
55c888d6
ON
749 * We are trying to schedule the timer on the local CPU.
750 * However we can't change timer's base while it is running,
751 * otherwise del_timer_sync() can't detect that the timer's
752 * handler yet has not finished. This also guarantees that
753 * the timer is serialized wrt itself.
1da177e4 754 */
a2c348fe 755 if (likely(base->running_timer != timer)) {
55c888d6 756 /* See the comment in lock_timer_base() */
6e453a67 757 timer_set_base(timer, NULL);
55c888d6 758 spin_unlock(&base->lock);
a2c348fe
ON
759 base = new_base;
760 spin_lock(&base->lock);
6e453a67 761 timer_set_base(timer, base);
1da177e4
LT
762 }
763 }
764
1da177e4 765 timer->expires = expires;
a2c348fe 766 internal_add_timer(base, timer);
74019224
IM
767
768out_unlock:
a2c348fe 769 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
770
771 return ret;
772}
773
2aae4a10 774/**
74019224
IM
775 * mod_timer_pending - modify a pending timer's timeout
776 * @timer: the pending timer to be modified
777 * @expires: new timeout in jiffies
1da177e4 778 *
74019224
IM
779 * mod_timer_pending() is the same for pending timers as mod_timer(),
780 * but will not re-activate and modify already deleted timers.
781 *
782 * It is useful for unserialized use of timers.
1da177e4 783 */
74019224 784int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 785{
597d0275 786 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 787}
74019224 788EXPORT_SYMBOL(mod_timer_pending);
1da177e4 789
3bbb9ec9
AV
790/*
791 * Decide where to put the timer while taking the slack into account
792 *
793 * Algorithm:
794 * 1) calculate the maximum (absolute) time
795 * 2) calculate the highest bit where the expires and new max are different
796 * 3) use this bit to make a mask
797 * 4) use the bitmask to round down the maximum time, so that all last
798 * bits are zeros
799 */
800static inline
801unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
802{
803 unsigned long expires_limit, mask;
804 int bit;
805
8e63d779 806 if (timer->slack >= 0) {
f00e047e 807 expires_limit = expires + timer->slack;
8e63d779 808 } else {
1c3cc116
SAS
809 long delta = expires - jiffies;
810
811 if (delta < 256)
812 return expires;
3bbb9ec9 813
1c3cc116 814 expires_limit = expires + delta / 256;
8e63d779 815 }
3bbb9ec9 816 mask = expires ^ expires_limit;
3bbb9ec9
AV
817 if (mask == 0)
818 return expires;
819
820 bit = find_last_bit(&mask, BITS_PER_LONG);
821
822 mask = (1 << bit) - 1;
823
824 expires_limit = expires_limit & ~(mask);
825
826 return expires_limit;
827}
828
2aae4a10 829/**
1da177e4
LT
830 * mod_timer - modify a timer's timeout
831 * @timer: the timer to be modified
2aae4a10 832 * @expires: new timeout in jiffies
1da177e4 833 *
72fd4a35 834 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
835 * active timer (if the timer is inactive it will be activated)
836 *
837 * mod_timer(timer, expires) is equivalent to:
838 *
839 * del_timer(timer); timer->expires = expires; add_timer(timer);
840 *
841 * Note that if there are multiple unserialized concurrent users of the
842 * same timer, then mod_timer() is the only safe way to modify the timeout,
843 * since add_timer() cannot modify an already running timer.
844 *
845 * The function returns whether it has modified a pending timer or not.
846 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
847 * active timer returns 1.)
848 */
849int mod_timer(struct timer_list *timer, unsigned long expires)
850{
1c3cc116
SAS
851 expires = apply_slack(timer, expires);
852
1da177e4
LT
853 /*
854 * This is a common optimization triggered by the
855 * networking code - if the timer is re-modified
856 * to be the same thing then just return:
857 */
4841158b 858 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
859 return 1;
860
597d0275 861 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 862}
1da177e4
LT
863EXPORT_SYMBOL(mod_timer);
864
597d0275
AB
865/**
866 * mod_timer_pinned - modify a timer's timeout
867 * @timer: the timer to be modified
868 * @expires: new timeout in jiffies
869 *
870 * mod_timer_pinned() is a way to update the expire field of an
871 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
872 * and to ensure that the timer is scheduled on the current CPU.
873 *
874 * Note that this does not prevent the timer from being migrated
875 * when the current CPU goes offline. If this is a problem for
876 * you, use CPU-hotplug notifiers to handle it correctly, for
877 * example, cancelling the timer when the corresponding CPU goes
878 * offline.
597d0275
AB
879 *
880 * mod_timer_pinned(timer, expires) is equivalent to:
881 *
882 * del_timer(timer); timer->expires = expires; add_timer(timer);
883 */
884int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
885{
886 if (timer->expires == expires && timer_pending(timer))
887 return 1;
888
889 return __mod_timer(timer, expires, false, TIMER_PINNED);
890}
891EXPORT_SYMBOL(mod_timer_pinned);
892
74019224
IM
893/**
894 * add_timer - start a timer
895 * @timer: the timer to be added
896 *
897 * The kernel will do a ->function(->data) callback from the
898 * timer interrupt at the ->expires point in the future. The
899 * current time is 'jiffies'.
900 *
901 * The timer's ->expires, ->function (and if the handler uses it, ->data)
902 * fields must be set prior calling this function.
903 *
904 * Timers with an ->expires field in the past will be executed in the next
905 * timer tick.
906 */
907void add_timer(struct timer_list *timer)
908{
909 BUG_ON(timer_pending(timer));
910 mod_timer(timer, timer->expires);
911}
912EXPORT_SYMBOL(add_timer);
913
914/**
915 * add_timer_on - start a timer on a particular CPU
916 * @timer: the timer to be added
917 * @cpu: the CPU to start it on
918 *
919 * This is not very scalable on SMP. Double adds are not possible.
920 */
921void add_timer_on(struct timer_list *timer, int cpu)
922{
923 struct tvec_base *base = per_cpu(tvec_bases, cpu);
924 unsigned long flags;
925
926 timer_stats_timer_set_start_info(timer);
927 BUG_ON(timer_pending(timer) || !timer->function);
928 spin_lock_irqsave(&base->lock, flags);
929 timer_set_base(timer, base);
2b022e3d 930 debug_activate(timer, timer->expires);
74019224
IM
931 internal_add_timer(base, timer);
932 /*
933 * Check whether the other CPU is idle and needs to be
934 * triggered to reevaluate the timer wheel when nohz is
935 * active. We are protected against the other CPU fiddling
936 * with the timer by holding the timer base lock. This also
937 * makes sure that a CPU on the way to idle can not evaluate
938 * the timer wheel.
939 */
940 wake_up_idle_cpu(cpu);
941 spin_unlock_irqrestore(&base->lock, flags);
942}
a9862e05 943EXPORT_SYMBOL_GPL(add_timer_on);
74019224 944
2aae4a10 945/**
1da177e4
LT
946 * del_timer - deactive a timer.
947 * @timer: the timer to be deactivated
948 *
949 * del_timer() deactivates a timer - this works on both active and inactive
950 * timers.
951 *
952 * The function returns whether it has deactivated a pending timer or not.
953 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
954 * active timer returns 1.)
955 */
956int del_timer(struct timer_list *timer)
957{
a6fa8e5a 958 struct tvec_base *base;
1da177e4 959 unsigned long flags;
55c888d6 960 int ret = 0;
1da177e4 961
dc4218bd
CC
962 debug_assert_init(timer);
963
82f67cd9 964 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
965 if (timer_pending(timer)) {
966 base = lock_timer_base(timer, &flags);
ec44bc7a 967 ret = detach_if_pending(timer, base, true);
1da177e4 968 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 969 }
1da177e4 970
55c888d6 971 return ret;
1da177e4 972}
1da177e4
LT
973EXPORT_SYMBOL(del_timer);
974
2aae4a10
REB
975/**
976 * try_to_del_timer_sync - Try to deactivate a timer
977 * @timer: timer do del
978 *
fd450b73
ON
979 * This function tries to deactivate a timer. Upon successful (ret >= 0)
980 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
981 */
982int try_to_del_timer_sync(struct timer_list *timer)
983{
a6fa8e5a 984 struct tvec_base *base;
fd450b73
ON
985 unsigned long flags;
986 int ret = -1;
987
dc4218bd
CC
988 debug_assert_init(timer);
989
fd450b73
ON
990 base = lock_timer_base(timer, &flags);
991
ec44bc7a
TG
992 if (base->running_timer != timer) {
993 timer_stats_timer_clear_start_info(timer);
994 ret = detach_if_pending(timer, base, true);
fd450b73 995 }
fd450b73
ON
996 spin_unlock_irqrestore(&base->lock, flags);
997
998 return ret;
999}
e19dff1f
DH
1000EXPORT_SYMBOL(try_to_del_timer_sync);
1001
6f1bc451 1002#ifdef CONFIG_SMP
2aae4a10 1003/**
1da177e4
LT
1004 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1005 * @timer: the timer to be deactivated
1006 *
1007 * This function only differs from del_timer() on SMP: besides deactivating
1008 * the timer it also makes sure the handler has finished executing on other
1009 * CPUs.
1010 *
72fd4a35 1011 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1012 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1013 * interrupt contexts unless the timer is an irqsafe one. The caller must
1014 * not hold locks which would prevent completion of the timer's
1015 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1016 * timer is not queued and the handler is not running on any CPU.
1da177e4 1017 *
c5f66e99
TH
1018 * Note: For !irqsafe timers, you must not hold locks that are held in
1019 * interrupt context while calling this function. Even if the lock has
1020 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1021 *
1022 * CPU0 CPU1
1023 * ---- ----
1024 * <SOFTIRQ>
1025 * call_timer_fn();
1026 * base->running_timer = mytimer;
1027 * spin_lock_irq(somelock);
1028 * <IRQ>
1029 * spin_lock(somelock);
1030 * del_timer_sync(mytimer);
1031 * while (base->running_timer == mytimer);
1032 *
1033 * Now del_timer_sync() will never return and never release somelock.
1034 * The interrupt on the other CPU is waiting to grab somelock but
1035 * it has interrupted the softirq that CPU0 is waiting to finish.
1036 *
1da177e4 1037 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1038 */
1039int del_timer_sync(struct timer_list *timer)
1040{
6f2b9b9a 1041#ifdef CONFIG_LOCKDEP
f266a511
PZ
1042 unsigned long flags;
1043
48228f7b
SR
1044 /*
1045 * If lockdep gives a backtrace here, please reference
1046 * the synchronization rules above.
1047 */
7ff20792 1048 local_irq_save(flags);
6f2b9b9a
JB
1049 lock_map_acquire(&timer->lockdep_map);
1050 lock_map_release(&timer->lockdep_map);
7ff20792 1051 local_irq_restore(flags);
6f2b9b9a 1052#endif
466bd303
YZ
1053 /*
1054 * don't use it in hardirq context, because it
1055 * could lead to deadlock.
1056 */
c5f66e99 1057 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
fd450b73
ON
1058 for (;;) {
1059 int ret = try_to_del_timer_sync(timer);
1060 if (ret >= 0)
1061 return ret;
a0009652 1062 cpu_relax();
fd450b73 1063 }
1da177e4 1064}
55c888d6 1065EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1066#endif
1067
a6fa8e5a 1068static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1069{
1070 /* cascade all the timers from tv up one level */
3439dd86
P
1071 struct timer_list *timer, *tmp;
1072 struct list_head tv_list;
1073
1074 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1075
1da177e4 1076 /*
3439dd86
P
1077 * We are removing _all_ timers from the list, so we
1078 * don't have to detach them individually.
1da177e4 1079 */
3439dd86 1080 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1081 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1082 /* No accounting, while moving them */
1083 __internal_add_timer(base, timer);
1da177e4 1084 }
1da177e4
LT
1085
1086 return index;
1087}
1088
576da126
TG
1089static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1090 unsigned long data)
1091{
1092 int preempt_count = preempt_count();
1093
1094#ifdef CONFIG_LOCKDEP
1095 /*
1096 * It is permissible to free the timer from inside the
1097 * function that is called from it, this we need to take into
1098 * account for lockdep too. To avoid bogus "held lock freed"
1099 * warnings as well as problems when looking into
1100 * timer->lockdep_map, make a copy and use that here.
1101 */
4d82a1de
PZ
1102 struct lockdep_map lockdep_map;
1103
1104 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1105#endif
1106 /*
1107 * Couple the lock chain with the lock chain at
1108 * del_timer_sync() by acquiring the lock_map around the fn()
1109 * call here and in del_timer_sync().
1110 */
1111 lock_map_acquire(&lockdep_map);
1112
1113 trace_timer_expire_entry(timer);
1114 fn(data);
1115 trace_timer_expire_exit(timer);
1116
1117 lock_map_release(&lockdep_map);
1118
1119 if (preempt_count != preempt_count()) {
802702e0
TG
1120 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1121 fn, preempt_count, preempt_count());
1122 /*
1123 * Restore the preempt count. That gives us a decent
1124 * chance to survive and extract information. If the
1125 * callback kept a lock held, bad luck, but not worse
1126 * than the BUG() we had.
1127 */
1128 preempt_count() = preempt_count;
576da126
TG
1129 }
1130}
1131
2aae4a10
REB
1132#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1133
1134/**
1da177e4
LT
1135 * __run_timers - run all expired timers (if any) on this CPU.
1136 * @base: the timer vector to be processed.
1137 *
1138 * This function cascades all vectors and executes all expired timer
1139 * vectors.
1140 */
a6fa8e5a 1141static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1142{
1143 struct timer_list *timer;
1144
3691c519 1145 spin_lock_irq(&base->lock);
1da177e4 1146 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1147 struct list_head work_list;
1da177e4 1148 struct list_head *head = &work_list;
6819457d 1149 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1150
1da177e4
LT
1151 /*
1152 * Cascade timers:
1153 */
1154 if (!index &&
1155 (!cascade(base, &base->tv2, INDEX(0))) &&
1156 (!cascade(base, &base->tv3, INDEX(1))) &&
1157 !cascade(base, &base->tv4, INDEX(2)))
1158 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1159 ++base->timer_jiffies;
1160 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1161 while (!list_empty(head)) {
1da177e4
LT
1162 void (*fn)(unsigned long);
1163 unsigned long data;
c5f66e99 1164 bool irqsafe;
1da177e4 1165
b5e61818 1166 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1167 fn = timer->function;
1168 data = timer->data;
c5f66e99 1169 irqsafe = tbase_get_irqsafe(timer->base);
1da177e4 1170
82f67cd9
IM
1171 timer_stats_account_timer(timer);
1172
6f1bc451 1173 base->running_timer = timer;
99d5f3aa 1174 detach_expired_timer(timer, base);
6f2b9b9a 1175
c5f66e99
TH
1176 if (irqsafe) {
1177 spin_unlock(&base->lock);
1178 call_timer_fn(timer, fn, data);
1179 spin_lock(&base->lock);
1180 } else {
1181 spin_unlock_irq(&base->lock);
1182 call_timer_fn(timer, fn, data);
1183 spin_lock_irq(&base->lock);
1184 }
1da177e4
LT
1185 }
1186 }
6f1bc451 1187 base->running_timer = NULL;
3691c519 1188 spin_unlock_irq(&base->lock);
1da177e4
LT
1189}
1190
ee9c5785 1191#ifdef CONFIG_NO_HZ
1da177e4
LT
1192/*
1193 * Find out when the next timer event is due to happen. This
90cba64a
RD
1194 * is used on S/390 to stop all activity when a CPU is idle.
1195 * This function needs to be called with interrupts disabled.
1da177e4 1196 */
a6fa8e5a 1197static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1198{
1cfd6849 1199 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1200 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1201 int index, slot, array, found = 0;
1da177e4 1202 struct timer_list *nte;
a6fa8e5a 1203 struct tvec *varray[4];
1da177e4
LT
1204
1205 /* Look for timer events in tv1. */
1cfd6849 1206 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1207 do {
1cfd6849 1208 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1209 if (tbase_get_deferrable(nte->base))
1210 continue;
6e453a67 1211
1cfd6849 1212 found = 1;
1da177e4 1213 expires = nte->expires;
1cfd6849
TG
1214 /* Look at the cascade bucket(s)? */
1215 if (!index || slot < index)
1216 goto cascade;
1217 return expires;
1da177e4 1218 }
1cfd6849
TG
1219 slot = (slot + 1) & TVR_MASK;
1220 } while (slot != index);
1221
1222cascade:
1223 /* Calculate the next cascade event */
1224 if (index)
1225 timer_jiffies += TVR_SIZE - index;
1226 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1227
1228 /* Check tv2-tv5. */
1229 varray[0] = &base->tv2;
1230 varray[1] = &base->tv3;
1231 varray[2] = &base->tv4;
1232 varray[3] = &base->tv5;
1cfd6849
TG
1233
1234 for (array = 0; array < 4; array++) {
a6fa8e5a 1235 struct tvec *varp = varray[array];
1cfd6849
TG
1236
1237 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1238 do {
1cfd6849 1239 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1240 if (tbase_get_deferrable(nte->base))
1241 continue;
1242
1cfd6849 1243 found = 1;
1da177e4
LT
1244 if (time_before(nte->expires, expires))
1245 expires = nte->expires;
1cfd6849
TG
1246 }
1247 /*
1248 * Do we still search for the first timer or are
1249 * we looking up the cascade buckets ?
1250 */
1251 if (found) {
1252 /* Look at the cascade bucket(s)? */
1253 if (!index || slot < index)
1254 break;
1255 return expires;
1256 }
1257 slot = (slot + 1) & TVN_MASK;
1258 } while (slot != index);
1259
1260 if (index)
1261 timer_jiffies += TVN_SIZE - index;
1262 timer_jiffies >>= TVN_BITS;
1da177e4 1263 }
1cfd6849
TG
1264 return expires;
1265}
69239749 1266
1cfd6849
TG
1267/*
1268 * Check, if the next hrtimer event is before the next timer wheel
1269 * event:
1270 */
1271static unsigned long cmp_next_hrtimer_event(unsigned long now,
1272 unsigned long expires)
1273{
1274 ktime_t hr_delta = hrtimer_get_next_event();
1275 struct timespec tsdelta;
9501b6cf 1276 unsigned long delta;
1cfd6849
TG
1277
1278 if (hr_delta.tv64 == KTIME_MAX)
1279 return expires;
0662b713 1280
9501b6cf
TG
1281 /*
1282 * Expired timer available, let it expire in the next tick
1283 */
1284 if (hr_delta.tv64 <= 0)
1285 return now + 1;
69239749 1286
1cfd6849 1287 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1288 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1289
1290 /*
1291 * Limit the delta to the max value, which is checked in
1292 * tick_nohz_stop_sched_tick():
1293 */
1294 if (delta > NEXT_TIMER_MAX_DELTA)
1295 delta = NEXT_TIMER_MAX_DELTA;
1296
9501b6cf
TG
1297 /*
1298 * Take rounding errors in to account and make sure, that it
1299 * expires in the next tick. Otherwise we go into an endless
1300 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1301 * the timer softirq
1302 */
1303 if (delta < 1)
1304 delta = 1;
1305 now += delta;
1cfd6849
TG
1306 if (time_before(now, expires))
1307 return now;
1da177e4
LT
1308 return expires;
1309}
1cfd6849
TG
1310
1311/**
8dce39c2 1312 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1313 * @now: current time (in jiffies)
1cfd6849 1314 */
fd064b9b 1315unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1316{
7496351a 1317 struct tvec_base *base = __this_cpu_read(tvec_bases);
e40468a5 1318 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1319
dbd87b5a
HC
1320 /*
1321 * Pretend that there is no timer pending if the cpu is offline.
1322 * Possible pending timers will be migrated later to an active cpu.
1323 */
1324 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1325 return expires;
1326
1cfd6849 1327 spin_lock(&base->lock);
e40468a5
TG
1328 if (base->active_timers) {
1329 if (time_before_eq(base->next_timer, base->timer_jiffies))
1330 base->next_timer = __next_timer_interrupt(base);
1331 expires = base->next_timer;
1332 }
1cfd6849
TG
1333 spin_unlock(&base->lock);
1334
1335 if (time_before_eq(expires, now))
1336 return now;
1337
1338 return cmp_next_hrtimer_event(now, expires);
1339}
1da177e4
LT
1340#endif
1341
1da177e4 1342/*
5b4db0c2 1343 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1344 * process. user_tick is 1 if the tick is user time, 0 for system.
1345 */
1346void update_process_times(int user_tick)
1347{
1348 struct task_struct *p = current;
1349 int cpu = smp_processor_id();
1350
1351 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1352 account_process_tick(p, user_tick);
1da177e4 1353 run_local_timers();
a157229c 1354 rcu_check_callbacks(cpu, user_tick);
e360adbe
PZ
1355#ifdef CONFIG_IRQ_WORK
1356 if (in_irq())
1357 irq_work_run();
1358#endif
1da177e4 1359 scheduler_tick();
6819457d 1360 run_posix_cpu_timers(p);
1da177e4
LT
1361}
1362
1da177e4
LT
1363/*
1364 * This function runs timers and the timer-tq in bottom half context.
1365 */
1366static void run_timer_softirq(struct softirq_action *h)
1367{
7496351a 1368 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1369
d3d74453 1370 hrtimer_run_pending();
82f67cd9 1371
1da177e4
LT
1372 if (time_after_eq(jiffies, base->timer_jiffies))
1373 __run_timers(base);
1374}
1375
1376/*
1377 * Called by the local, per-CPU timer interrupt on SMP.
1378 */
1379void run_local_timers(void)
1380{
d3d74453 1381 hrtimer_run_queues();
1da177e4
LT
1382 raise_softirq(TIMER_SOFTIRQ);
1383}
1384
1da177e4
LT
1385#ifdef __ARCH_WANT_SYS_ALARM
1386
1387/*
1388 * For backwards compatibility? This can be done in libc so Alpha
1389 * and all newer ports shouldn't need it.
1390 */
58fd3aa2 1391SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1392{
c08b8a49 1393 return alarm_setitimer(seconds);
1da177e4
LT
1394}
1395
1396#endif
1397
1da177e4
LT
1398/**
1399 * sys_getpid - return the thread group id of the current process
1400 *
1401 * Note, despite the name, this returns the tgid not the pid. The tgid and
1402 * the pid are identical unless CLONE_THREAD was specified on clone() in
1403 * which case the tgid is the same in all threads of the same group.
1404 *
1405 * This is SMP safe as current->tgid does not change.
1406 */
58fd3aa2 1407SYSCALL_DEFINE0(getpid)
1da177e4 1408{
b488893a 1409 return task_tgid_vnr(current);
1da177e4
LT
1410}
1411
1412/*
6997a6fa
KK
1413 * Accessing ->real_parent is not SMP-safe, it could
1414 * change from under us. However, we can use a stale
1415 * value of ->real_parent under rcu_read_lock(), see
1416 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1417 */
dbf040d9 1418SYSCALL_DEFINE0(getppid)
1da177e4
LT
1419{
1420 int pid;
1da177e4 1421
6997a6fa 1422 rcu_read_lock();
031af165 1423 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1424 rcu_read_unlock();
1da177e4 1425
1da177e4
LT
1426 return pid;
1427}
1428
dbf040d9 1429SYSCALL_DEFINE0(getuid)
1da177e4
LT
1430{
1431 /* Only we change this so SMP safe */
a29c33f4 1432 return from_kuid_munged(current_user_ns(), current_uid());
1da177e4
LT
1433}
1434
dbf040d9 1435SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1436{
1437 /* Only we change this so SMP safe */
a29c33f4 1438 return from_kuid_munged(current_user_ns(), current_euid());
1da177e4
LT
1439}
1440
dbf040d9 1441SYSCALL_DEFINE0(getgid)
1da177e4
LT
1442{
1443 /* Only we change this so SMP safe */
a29c33f4 1444 return from_kgid_munged(current_user_ns(), current_gid());
1da177e4
LT
1445}
1446
dbf040d9 1447SYSCALL_DEFINE0(getegid)
1da177e4
LT
1448{
1449 /* Only we change this so SMP safe */
a29c33f4 1450 return from_kgid_munged(current_user_ns(), current_egid());
1da177e4
LT
1451}
1452
1da177e4
LT
1453static void process_timeout(unsigned long __data)
1454{
36c8b586 1455 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1456}
1457
1458/**
1459 * schedule_timeout - sleep until timeout
1460 * @timeout: timeout value in jiffies
1461 *
1462 * Make the current task sleep until @timeout jiffies have
1463 * elapsed. The routine will return immediately unless
1464 * the current task state has been set (see set_current_state()).
1465 *
1466 * You can set the task state as follows -
1467 *
1468 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1469 * pass before the routine returns. The routine will return 0
1470 *
1471 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1472 * delivered to the current task. In this case the remaining time
1473 * in jiffies will be returned, or 0 if the timer expired in time
1474 *
1475 * The current task state is guaranteed to be TASK_RUNNING when this
1476 * routine returns.
1477 *
1478 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1479 * the CPU away without a bound on the timeout. In this case the return
1480 * value will be %MAX_SCHEDULE_TIMEOUT.
1481 *
1482 * In all cases the return value is guaranteed to be non-negative.
1483 */
7ad5b3a5 1484signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1485{
1486 struct timer_list timer;
1487 unsigned long expire;
1488
1489 switch (timeout)
1490 {
1491 case MAX_SCHEDULE_TIMEOUT:
1492 /*
1493 * These two special cases are useful to be comfortable
1494 * in the caller. Nothing more. We could take
1495 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1496 * but I' d like to return a valid offset (>=0) to allow
1497 * the caller to do everything it want with the retval.
1498 */
1499 schedule();
1500 goto out;
1501 default:
1502 /*
1503 * Another bit of PARANOID. Note that the retval will be
1504 * 0 since no piece of kernel is supposed to do a check
1505 * for a negative retval of schedule_timeout() (since it
1506 * should never happens anyway). You just have the printk()
1507 * that will tell you if something is gone wrong and where.
1508 */
5b149bcc 1509 if (timeout < 0) {
1da177e4 1510 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1511 "value %lx\n", timeout);
1512 dump_stack();
1da177e4
LT
1513 current->state = TASK_RUNNING;
1514 goto out;
1515 }
1516 }
1517
1518 expire = timeout + jiffies;
1519
c6f3a97f 1520 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1521 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1522 schedule();
1523 del_singleshot_timer_sync(&timer);
1524
c6f3a97f
TG
1525 /* Remove the timer from the object tracker */
1526 destroy_timer_on_stack(&timer);
1527
1da177e4
LT
1528 timeout = expire - jiffies;
1529
1530 out:
1531 return timeout < 0 ? 0 : timeout;
1532}
1da177e4
LT
1533EXPORT_SYMBOL(schedule_timeout);
1534
8a1c1757
AM
1535/*
1536 * We can use __set_current_state() here because schedule_timeout() calls
1537 * schedule() unconditionally.
1538 */
64ed93a2
NA
1539signed long __sched schedule_timeout_interruptible(signed long timeout)
1540{
a5a0d52c
AM
1541 __set_current_state(TASK_INTERRUPTIBLE);
1542 return schedule_timeout(timeout);
64ed93a2
NA
1543}
1544EXPORT_SYMBOL(schedule_timeout_interruptible);
1545
294d5cc2
MW
1546signed long __sched schedule_timeout_killable(signed long timeout)
1547{
1548 __set_current_state(TASK_KILLABLE);
1549 return schedule_timeout(timeout);
1550}
1551EXPORT_SYMBOL(schedule_timeout_killable);
1552
64ed93a2
NA
1553signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1554{
a5a0d52c
AM
1555 __set_current_state(TASK_UNINTERRUPTIBLE);
1556 return schedule_timeout(timeout);
64ed93a2
NA
1557}
1558EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1559
1da177e4 1560/* Thread ID - the internal kernel "pid" */
58fd3aa2 1561SYSCALL_DEFINE0(gettid)
1da177e4 1562{
b488893a 1563 return task_pid_vnr(current);
1da177e4
LT
1564}
1565
2aae4a10 1566/**
d4d23add 1567 * do_sysinfo - fill in sysinfo struct
2aae4a10 1568 * @info: pointer to buffer to fill
6819457d 1569 */
d4d23add 1570int do_sysinfo(struct sysinfo *info)
1da177e4 1571{
1da177e4
LT
1572 unsigned long mem_total, sav_total;
1573 unsigned int mem_unit, bitcount;
2d02494f 1574 struct timespec tp;
1da177e4 1575
d4d23add 1576 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1577
2d02494f
TG
1578 ktime_get_ts(&tp);
1579 monotonic_to_bootbased(&tp);
1580 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1581
2d02494f 1582 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1583
2d02494f 1584 info->procs = nr_threads;
1da177e4 1585
d4d23add
KM
1586 si_meminfo(info);
1587 si_swapinfo(info);
1da177e4
LT
1588
1589 /*
1590 * If the sum of all the available memory (i.e. ram + swap)
1591 * is less than can be stored in a 32 bit unsigned long then
1592 * we can be binary compatible with 2.2.x kernels. If not,
1593 * well, in that case 2.2.x was broken anyways...
1594 *
1595 * -Erik Andersen <andersee@debian.org>
1596 */
1597
d4d23add
KM
1598 mem_total = info->totalram + info->totalswap;
1599 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1600 goto out;
1601 bitcount = 0;
d4d23add 1602 mem_unit = info->mem_unit;
1da177e4
LT
1603 while (mem_unit > 1) {
1604 bitcount++;
1605 mem_unit >>= 1;
1606 sav_total = mem_total;
1607 mem_total <<= 1;
1608 if (mem_total < sav_total)
1609 goto out;
1610 }
1611
1612 /*
1613 * If mem_total did not overflow, multiply all memory values by
d4d23add 1614 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1615 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1616 * kernels...
1617 */
1618
d4d23add
KM
1619 info->mem_unit = 1;
1620 info->totalram <<= bitcount;
1621 info->freeram <<= bitcount;
1622 info->sharedram <<= bitcount;
1623 info->bufferram <<= bitcount;
1624 info->totalswap <<= bitcount;
1625 info->freeswap <<= bitcount;
1626 info->totalhigh <<= bitcount;
1627 info->freehigh <<= bitcount;
1628
1629out:
1630 return 0;
1631}
1632
1e7bfb21 1633SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1634{
1635 struct sysinfo val;
1636
1637 do_sysinfo(&val);
1da177e4 1638
1da177e4
LT
1639 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1640 return -EFAULT;
1641
1642 return 0;
1643}
1644
b4be6258 1645static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1646{
1647 int j;
a6fa8e5a 1648 struct tvec_base *base;
b4be6258 1649 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1650
ba6edfcd 1651 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1652 static char boot_done;
1653
a4a6198b 1654 if (boot_done) {
ba6edfcd
AM
1655 /*
1656 * The APs use this path later in boot
1657 */
94f6030c
CL
1658 base = kmalloc_node(sizeof(*base),
1659 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1660 cpu_to_node(cpu));
1661 if (!base)
1662 return -ENOMEM;
6e453a67
VP
1663
1664 /* Make sure that tvec_base is 2 byte aligned */
1665 if (tbase_get_deferrable(base)) {
1666 WARN_ON(1);
1667 kfree(base);
1668 return -ENOMEM;
1669 }
ba6edfcd 1670 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1671 } else {
ba6edfcd
AM
1672 /*
1673 * This is for the boot CPU - we use compile-time
1674 * static initialisation because per-cpu memory isn't
1675 * ready yet and because the memory allocators are not
1676 * initialised either.
1677 */
a4a6198b 1678 boot_done = 1;
ba6edfcd 1679 base = &boot_tvec_bases;
a4a6198b 1680 }
ba6edfcd
AM
1681 tvec_base_done[cpu] = 1;
1682 } else {
1683 base = per_cpu(tvec_bases, cpu);
a4a6198b 1684 }
ba6edfcd 1685
3691c519 1686 spin_lock_init(&base->lock);
d730e882 1687
1da177e4
LT
1688 for (j = 0; j < TVN_SIZE; j++) {
1689 INIT_LIST_HEAD(base->tv5.vec + j);
1690 INIT_LIST_HEAD(base->tv4.vec + j);
1691 INIT_LIST_HEAD(base->tv3.vec + j);
1692 INIT_LIST_HEAD(base->tv2.vec + j);
1693 }
1694 for (j = 0; j < TVR_SIZE; j++)
1695 INIT_LIST_HEAD(base->tv1.vec + j);
1696
1697 base->timer_jiffies = jiffies;
97fd9ed4 1698 base->next_timer = base->timer_jiffies;
99d5f3aa 1699 base->active_timers = 0;
a4a6198b 1700 return 0;
1da177e4
LT
1701}
1702
1703#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1704static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1705{
1706 struct timer_list *timer;
1707
1708 while (!list_empty(head)) {
b5e61818 1709 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1710 /* We ignore the accounting on the dying cpu */
ec44bc7a 1711 detach_timer(timer, false);
6e453a67 1712 timer_set_base(timer, new_base);
1da177e4 1713 internal_add_timer(new_base, timer);
1da177e4 1714 }
1da177e4
LT
1715}
1716
48ccf3da 1717static void __cpuinit migrate_timers(int cpu)
1da177e4 1718{
a6fa8e5a
PM
1719 struct tvec_base *old_base;
1720 struct tvec_base *new_base;
1da177e4
LT
1721 int i;
1722
1723 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1724 old_base = per_cpu(tvec_bases, cpu);
1725 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1726 /*
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1729 */
1730 spin_lock_irq(&new_base->lock);
0d180406 1731 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1732
1733 BUG_ON(old_base->running_timer);
1da177e4 1734
1da177e4 1735 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1736 migrate_timer_list(new_base, old_base->tv1.vec + i);
1737 for (i = 0; i < TVN_SIZE; i++) {
1738 migrate_timer_list(new_base, old_base->tv2.vec + i);
1739 migrate_timer_list(new_base, old_base->tv3.vec + i);
1740 migrate_timer_list(new_base, old_base->tv4.vec + i);
1741 migrate_timer_list(new_base, old_base->tv5.vec + i);
1742 }
1743
0d180406 1744 spin_unlock(&old_base->lock);
d82f0b0f 1745 spin_unlock_irq(&new_base->lock);
1da177e4 1746 put_cpu_var(tvec_bases);
1da177e4
LT
1747}
1748#endif /* CONFIG_HOTPLUG_CPU */
1749
8c78f307 1750static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1751 unsigned long action, void *hcpu)
1752{
1753 long cpu = (long)hcpu;
80b5184c
AM
1754 int err;
1755
1da177e4
LT
1756 switch(action) {
1757 case CPU_UP_PREPARE:
8bb78442 1758 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1759 err = init_timers_cpu(cpu);
1760 if (err < 0)
1761 return notifier_from_errno(err);
1da177e4
LT
1762 break;
1763#ifdef CONFIG_HOTPLUG_CPU
1764 case CPU_DEAD:
8bb78442 1765 case CPU_DEAD_FROZEN:
1da177e4
LT
1766 migrate_timers(cpu);
1767 break;
1768#endif
1769 default:
1770 break;
1771 }
1772 return NOTIFY_OK;
1773}
1774
8c78f307 1775static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1776 .notifier_call = timer_cpu_notify,
1777};
1778
1779
1780void __init init_timers(void)
1781{
e52b1db3
TH
1782 int err;
1783
1784 /* ensure there are enough low bits for flags in timer->base pointer */
1785 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1786
e52b1db3
TH
1787 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
82f67cd9
IM
1789 init_timer_stats();
1790
9e506f7a 1791 BUG_ON(err != NOTIFY_OK);
1da177e4 1792 register_cpu_notifier(&timers_nb);
962cf36c 1793 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * msleep - sleep safely even with waitqueue interruptions
1798 * @msecs: Time in milliseconds to sleep for
1799 */
1800void msleep(unsigned int msecs)
1801{
1802 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1803
75bcc8c5
NA
1804 while (timeout)
1805 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1806}
1807
1808EXPORT_SYMBOL(msleep);
1809
1810/**
96ec3efd 1811 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1812 * @msecs: Time in milliseconds to sleep for
1813 */
1814unsigned long msleep_interruptible(unsigned int msecs)
1815{
1816 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1817
75bcc8c5
NA
1818 while (timeout && !signal_pending(current))
1819 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1820 return jiffies_to_msecs(timeout);
1821}
1822
1823EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1824
1825static int __sched do_usleep_range(unsigned long min, unsigned long max)
1826{
1827 ktime_t kmin;
1828 unsigned long delta;
1829
1830 kmin = ktime_set(0, min * NSEC_PER_USEC);
1831 delta = (max - min) * NSEC_PER_USEC;
1832 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1833}
1834
1835/**
1836 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1837 * @min: Minimum time in usecs to sleep
1838 * @max: Maximum time in usecs to sleep
1839 */
1840void usleep_range(unsigned long min, unsigned long max)
1841{
1842 __set_current_state(TASK_UNINTERRUPTIBLE);
1843 do_usleep_range(min, max);
1844}
1845EXPORT_SYMBOL(usleep_range);
This page took 0.744921 seconds and 5 git commands to generate.