[PATCH] i386, apic: clean up the APIC code
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
1da177e4
LT
37
38#include <asm/uaccess.h>
39#include <asm/unistd.h>
40#include <asm/div64.h>
41#include <asm/timex.h>
42#include <asm/io.h>
43
ecea8d19
TG
44u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
45
46EXPORT_SYMBOL(jiffies_64);
47
1da177e4
LT
48/*
49 * per-CPU timer vector definitions:
50 */
1da177e4
LT
51#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53#define TVN_SIZE (1 << TVN_BITS)
54#define TVR_SIZE (1 << TVR_BITS)
55#define TVN_MASK (TVN_SIZE - 1)
56#define TVR_MASK (TVR_SIZE - 1)
57
58typedef struct tvec_s {
59 struct list_head vec[TVN_SIZE];
60} tvec_t;
61
62typedef struct tvec_root_s {
63 struct list_head vec[TVR_SIZE];
64} tvec_root_t;
65
66struct tvec_t_base_s {
3691c519
ON
67 spinlock_t lock;
68 struct timer_list *running_timer;
1da177e4 69 unsigned long timer_jiffies;
1da177e4
LT
70 tvec_root_t tv1;
71 tvec_t tv2;
72 tvec_t tv3;
73 tvec_t tv4;
74 tvec_t tv5;
75} ____cacheline_aligned_in_smp;
76
77typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 78
3691c519
ON
79tvec_base_t boot_tvec_bases;
80EXPORT_SYMBOL(boot_tvec_bases);
51d8c5ed 81static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
1da177e4 82
4c36a5de
AV
83/**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
87 *
72fd4a35 88 * __round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
92 *
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
96 *
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
100 *
72fd4a35 101 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
102 */
103unsigned long __round_jiffies(unsigned long j, int cpu)
104{
105 int rem;
106 unsigned long original = j;
107
108 /*
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
115 */
116 j += cpu * 3;
117
118 rem = j % HZ;
119
120 /*
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
125 */
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
130
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
133
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
137}
138EXPORT_SYMBOL_GPL(__round_jiffies);
139
140/**
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
144 *
72fd4a35 145 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
149 *
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
153 *
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
157 *
72fd4a35 158 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
159 */
160unsigned long __round_jiffies_relative(unsigned long j, int cpu)
161{
162 /*
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
167 */
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
169}
170EXPORT_SYMBOL_GPL(__round_jiffies_relative);
171
172/**
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
175 *
72fd4a35 176 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
180 *
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
184 *
72fd4a35 185 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
186 */
187unsigned long round_jiffies(unsigned long j)
188{
189 return __round_jiffies(j, raw_smp_processor_id());
190}
191EXPORT_SYMBOL_GPL(round_jiffies);
192
193/**
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
196 *
72fd4a35 197 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
72fd4a35 206 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
207 */
208unsigned long round_jiffies_relative(unsigned long j)
209{
210 return __round_jiffies_relative(j, raw_smp_processor_id());
211}
212EXPORT_SYMBOL_GPL(round_jiffies_relative);
213
214
1da177e4
LT
215static inline void set_running_timer(tvec_base_t *base,
216 struct timer_list *timer)
217{
218#ifdef CONFIG_SMP
3691c519 219 base->running_timer = timer;
1da177e4
LT
220#endif
221}
222
1da177e4
LT
223static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
224{
225 unsigned long expires = timer->expires;
226 unsigned long idx = expires - base->timer_jiffies;
227 struct list_head *vec;
228
229 if (idx < TVR_SIZE) {
230 int i = expires & TVR_MASK;
231 vec = base->tv1.vec + i;
232 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
233 int i = (expires >> TVR_BITS) & TVN_MASK;
234 vec = base->tv2.vec + i;
235 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
236 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
237 vec = base->tv3.vec + i;
238 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
239 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
240 vec = base->tv4.vec + i;
241 } else if ((signed long) idx < 0) {
242 /*
243 * Can happen if you add a timer with expires == jiffies,
244 * or you set a timer to go off in the past
245 */
246 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
247 } else {
248 int i;
249 /* If the timeout is larger than 0xffffffff on 64-bit
250 * architectures then we use the maximum timeout:
251 */
252 if (idx > 0xffffffffUL) {
253 idx = 0xffffffffUL;
254 expires = idx + base->timer_jiffies;
255 }
256 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
257 vec = base->tv5.vec + i;
258 }
259 /*
260 * Timers are FIFO:
261 */
262 list_add_tail(&timer->entry, vec);
263}
264
2aae4a10 265/**
55c888d6
ON
266 * init_timer - initialize a timer.
267 * @timer: the timer to be initialized
268 *
269 * init_timer() must be done to a timer prior calling *any* of the
270 * other timer functions.
271 */
272void fastcall init_timer(struct timer_list *timer)
273{
274 timer->entry.next = NULL;
bfe5d834 275 timer->base = __raw_get_cpu_var(tvec_bases);
55c888d6
ON
276}
277EXPORT_SYMBOL(init_timer);
278
279static inline void detach_timer(struct timer_list *timer,
280 int clear_pending)
281{
282 struct list_head *entry = &timer->entry;
283
284 __list_del(entry->prev, entry->next);
285 if (clear_pending)
286 entry->next = NULL;
287 entry->prev = LIST_POISON2;
288}
289
290/*
3691c519 291 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
292 * means that all timers which are tied to this base via timer->base are
293 * locked, and the base itself is locked too.
294 *
295 * So __run_timers/migrate_timers can safely modify all timers which could
296 * be found on ->tvX lists.
297 *
298 * When the timer's base is locked, and the timer removed from list, it is
299 * possible to set timer->base = NULL and drop the lock: the timer remains
300 * locked.
301 */
3691c519 302static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6 303 unsigned long *flags)
89e7e374 304 __acquires(timer->base->lock)
55c888d6 305{
3691c519 306 tvec_base_t *base;
55c888d6
ON
307
308 for (;;) {
309 base = timer->base;
310 if (likely(base != NULL)) {
311 spin_lock_irqsave(&base->lock, *flags);
312 if (likely(base == timer->base))
313 return base;
314 /* The timer has migrated to another CPU */
315 spin_unlock_irqrestore(&base->lock, *flags);
316 }
317 cpu_relax();
318 }
319}
320
1da177e4
LT
321int __mod_timer(struct timer_list *timer, unsigned long expires)
322{
3691c519 323 tvec_base_t *base, *new_base;
1da177e4
LT
324 unsigned long flags;
325 int ret = 0;
326
327 BUG_ON(!timer->function);
1da177e4 328
55c888d6
ON
329 base = lock_timer_base(timer, &flags);
330
331 if (timer_pending(timer)) {
332 detach_timer(timer, 0);
333 ret = 1;
334 }
335
a4a6198b 336 new_base = __get_cpu_var(tvec_bases);
1da177e4 337
3691c519 338 if (base != new_base) {
1da177e4 339 /*
55c888d6
ON
340 * We are trying to schedule the timer on the local CPU.
341 * However we can't change timer's base while it is running,
342 * otherwise del_timer_sync() can't detect that the timer's
343 * handler yet has not finished. This also guarantees that
344 * the timer is serialized wrt itself.
1da177e4 345 */
a2c348fe 346 if (likely(base->running_timer != timer)) {
55c888d6
ON
347 /* See the comment in lock_timer_base() */
348 timer->base = NULL;
349 spin_unlock(&base->lock);
a2c348fe
ON
350 base = new_base;
351 spin_lock(&base->lock);
352 timer->base = base;
1da177e4
LT
353 }
354 }
355
1da177e4 356 timer->expires = expires;
a2c348fe
ON
357 internal_add_timer(base, timer);
358 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
359
360 return ret;
361}
362
363EXPORT_SYMBOL(__mod_timer);
364
2aae4a10 365/**
1da177e4
LT
366 * add_timer_on - start a timer on a particular CPU
367 * @timer: the timer to be added
368 * @cpu: the CPU to start it on
369 *
370 * This is not very scalable on SMP. Double adds are not possible.
371 */
372void add_timer_on(struct timer_list *timer, int cpu)
373{
a4a6198b 374 tvec_base_t *base = per_cpu(tvec_bases, cpu);
1da177e4 375 unsigned long flags;
55c888d6 376
1da177e4 377 BUG_ON(timer_pending(timer) || !timer->function);
3691c519
ON
378 spin_lock_irqsave(&base->lock, flags);
379 timer->base = base;
1da177e4 380 internal_add_timer(base, timer);
3691c519 381 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
382}
383
384
2aae4a10 385/**
1da177e4
LT
386 * mod_timer - modify a timer's timeout
387 * @timer: the timer to be modified
2aae4a10 388 * @expires: new timeout in jiffies
1da177e4 389 *
72fd4a35 390 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
391 * active timer (if the timer is inactive it will be activated)
392 *
393 * mod_timer(timer, expires) is equivalent to:
394 *
395 * del_timer(timer); timer->expires = expires; add_timer(timer);
396 *
397 * Note that if there are multiple unserialized concurrent users of the
398 * same timer, then mod_timer() is the only safe way to modify the timeout,
399 * since add_timer() cannot modify an already running timer.
400 *
401 * The function returns whether it has modified a pending timer or not.
402 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
403 * active timer returns 1.)
404 */
405int mod_timer(struct timer_list *timer, unsigned long expires)
406{
407 BUG_ON(!timer->function);
408
1da177e4
LT
409 /*
410 * This is a common optimization triggered by the
411 * networking code - if the timer is re-modified
412 * to be the same thing then just return:
413 */
414 if (timer->expires == expires && timer_pending(timer))
415 return 1;
416
417 return __mod_timer(timer, expires);
418}
419
420EXPORT_SYMBOL(mod_timer);
421
2aae4a10 422/**
1da177e4
LT
423 * del_timer - deactive a timer.
424 * @timer: the timer to be deactivated
425 *
426 * del_timer() deactivates a timer - this works on both active and inactive
427 * timers.
428 *
429 * The function returns whether it has deactivated a pending timer or not.
430 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
431 * active timer returns 1.)
432 */
433int del_timer(struct timer_list *timer)
434{
3691c519 435 tvec_base_t *base;
1da177e4 436 unsigned long flags;
55c888d6 437 int ret = 0;
1da177e4 438
55c888d6
ON
439 if (timer_pending(timer)) {
440 base = lock_timer_base(timer, &flags);
441 if (timer_pending(timer)) {
442 detach_timer(timer, 1);
443 ret = 1;
444 }
1da177e4 445 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 446 }
1da177e4 447
55c888d6 448 return ret;
1da177e4
LT
449}
450
451EXPORT_SYMBOL(del_timer);
452
453#ifdef CONFIG_SMP
2aae4a10
REB
454/**
455 * try_to_del_timer_sync - Try to deactivate a timer
456 * @timer: timer do del
457 *
fd450b73
ON
458 * This function tries to deactivate a timer. Upon successful (ret >= 0)
459 * exit the timer is not queued and the handler is not running on any CPU.
460 *
461 * It must not be called from interrupt contexts.
462 */
463int try_to_del_timer_sync(struct timer_list *timer)
464{
3691c519 465 tvec_base_t *base;
fd450b73
ON
466 unsigned long flags;
467 int ret = -1;
468
469 base = lock_timer_base(timer, &flags);
470
471 if (base->running_timer == timer)
472 goto out;
473
474 ret = 0;
475 if (timer_pending(timer)) {
476 detach_timer(timer, 1);
477 ret = 1;
478 }
479out:
480 spin_unlock_irqrestore(&base->lock, flags);
481
482 return ret;
483}
484
2aae4a10 485/**
1da177e4
LT
486 * del_timer_sync - deactivate a timer and wait for the handler to finish.
487 * @timer: the timer to be deactivated
488 *
489 * This function only differs from del_timer() on SMP: besides deactivating
490 * the timer it also makes sure the handler has finished executing on other
491 * CPUs.
492 *
72fd4a35 493 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
494 * otherwise this function is meaningless. It must not be called from
495 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
496 * completion of the timer's handler. The timer's handler must not call
497 * add_timer_on(). Upon exit the timer is not queued and the handler is
498 * not running on any CPU.
1da177e4
LT
499 *
500 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
501 */
502int del_timer_sync(struct timer_list *timer)
503{
fd450b73
ON
504 for (;;) {
505 int ret = try_to_del_timer_sync(timer);
506 if (ret >= 0)
507 return ret;
a0009652 508 cpu_relax();
fd450b73 509 }
1da177e4 510}
1da177e4 511
55c888d6 512EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
513#endif
514
515static int cascade(tvec_base_t *base, tvec_t *tv, int index)
516{
517 /* cascade all the timers from tv up one level */
3439dd86
P
518 struct timer_list *timer, *tmp;
519 struct list_head tv_list;
520
521 list_replace_init(tv->vec + index, &tv_list);
1da177e4 522
1da177e4 523 /*
3439dd86
P
524 * We are removing _all_ timers from the list, so we
525 * don't have to detach them individually.
1da177e4 526 */
3439dd86
P
527 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
528 BUG_ON(timer->base != base);
529 internal_add_timer(base, timer);
1da177e4 530 }
1da177e4
LT
531
532 return index;
533}
534
2aae4a10
REB
535#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
536
537/**
1da177e4
LT
538 * __run_timers - run all expired timers (if any) on this CPU.
539 * @base: the timer vector to be processed.
540 *
541 * This function cascades all vectors and executes all expired timer
542 * vectors.
543 */
1da177e4
LT
544static inline void __run_timers(tvec_base_t *base)
545{
546 struct timer_list *timer;
547
3691c519 548 spin_lock_irq(&base->lock);
1da177e4 549 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 550 struct list_head work_list;
1da177e4
LT
551 struct list_head *head = &work_list;
552 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 553
1da177e4
LT
554 /*
555 * Cascade timers:
556 */
557 if (!index &&
558 (!cascade(base, &base->tv2, INDEX(0))) &&
559 (!cascade(base, &base->tv3, INDEX(1))) &&
560 !cascade(base, &base->tv4, INDEX(2)))
561 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
562 ++base->timer_jiffies;
563 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 564 while (!list_empty(head)) {
1da177e4
LT
565 void (*fn)(unsigned long);
566 unsigned long data;
567
568 timer = list_entry(head->next,struct timer_list,entry);
569 fn = timer->function;
570 data = timer->data;
571
1da177e4 572 set_running_timer(base, timer);
55c888d6 573 detach_timer(timer, 1);
3691c519 574 spin_unlock_irq(&base->lock);
1da177e4 575 {
be5b4fbd 576 int preempt_count = preempt_count();
1da177e4
LT
577 fn(data);
578 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
579 printk(KERN_WARNING "huh, entered %p "
580 "with preempt_count %08x, exited"
581 " with %08x?\n",
582 fn, preempt_count,
583 preempt_count());
1da177e4
LT
584 BUG();
585 }
586 }
3691c519 587 spin_lock_irq(&base->lock);
1da177e4
LT
588 }
589 }
590 set_running_timer(base, NULL);
3691c519 591 spin_unlock_irq(&base->lock);
1da177e4
LT
592}
593
fd064b9b 594#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1da177e4
LT
595/*
596 * Find out when the next timer event is due to happen. This
597 * is used on S/390 to stop all activity when a cpus is idle.
598 * This functions needs to be called disabled.
599 */
1cfd6849 600static unsigned long __next_timer_interrupt(tvec_base_t *base)
1da177e4 601{
1cfd6849
TG
602 unsigned long timer_jiffies = base->timer_jiffies;
603 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
604 int index, slot, array, found = 0;
1da177e4 605 struct timer_list *nte;
1da177e4 606 tvec_t *varray[4];
1da177e4
LT
607
608 /* Look for timer events in tv1. */
1cfd6849 609 index = slot = timer_jiffies & TVR_MASK;
1da177e4 610 do {
1cfd6849
TG
611 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
612 found = 1;
1da177e4 613 expires = nte->expires;
1cfd6849
TG
614 /* Look at the cascade bucket(s)? */
615 if (!index || slot < index)
616 goto cascade;
617 return expires;
1da177e4 618 }
1cfd6849
TG
619 slot = (slot + 1) & TVR_MASK;
620 } while (slot != index);
621
622cascade:
623 /* Calculate the next cascade event */
624 if (index)
625 timer_jiffies += TVR_SIZE - index;
626 timer_jiffies >>= TVR_BITS;
1da177e4
LT
627
628 /* Check tv2-tv5. */
629 varray[0] = &base->tv2;
630 varray[1] = &base->tv3;
631 varray[2] = &base->tv4;
632 varray[3] = &base->tv5;
1cfd6849
TG
633
634 for (array = 0; array < 4; array++) {
635 tvec_t *varp = varray[array];
636
637 index = slot = timer_jiffies & TVN_MASK;
1da177e4 638 do {
1cfd6849
TG
639 list_for_each_entry(nte, varp->vec + slot, entry) {
640 found = 1;
1da177e4
LT
641 if (time_before(nte->expires, expires))
642 expires = nte->expires;
1cfd6849
TG
643 }
644 /*
645 * Do we still search for the first timer or are
646 * we looking up the cascade buckets ?
647 */
648 if (found) {
649 /* Look at the cascade bucket(s)? */
650 if (!index || slot < index)
651 break;
652 return expires;
653 }
654 slot = (slot + 1) & TVN_MASK;
655 } while (slot != index);
656
657 if (index)
658 timer_jiffies += TVN_SIZE - index;
659 timer_jiffies >>= TVN_BITS;
1da177e4 660 }
1cfd6849
TG
661 return expires;
662}
69239749 663
1cfd6849
TG
664/*
665 * Check, if the next hrtimer event is before the next timer wheel
666 * event:
667 */
668static unsigned long cmp_next_hrtimer_event(unsigned long now,
669 unsigned long expires)
670{
671 ktime_t hr_delta = hrtimer_get_next_event();
672 struct timespec tsdelta;
673
674 if (hr_delta.tv64 == KTIME_MAX)
675 return expires;
0662b713 676
1cfd6849
TG
677 if (hr_delta.tv64 <= TICK_NSEC)
678 return now;
69239749 679
1cfd6849
TG
680 tsdelta = ktime_to_timespec(hr_delta);
681 now += timespec_to_jiffies(&tsdelta);
682 if (time_before(now, expires))
683 return now;
1da177e4
LT
684 return expires;
685}
1cfd6849
TG
686
687/**
688 * next_timer_interrupt - return the jiffy of the next pending timer
689 */
fd064b9b 690unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849
TG
691{
692 tvec_base_t *base = __get_cpu_var(tvec_bases);
fd064b9b 693 unsigned long expires;
1cfd6849
TG
694
695 spin_lock(&base->lock);
696 expires = __next_timer_interrupt(base);
697 spin_unlock(&base->lock);
698
699 if (time_before_eq(expires, now))
700 return now;
701
702 return cmp_next_hrtimer_event(now, expires);
703}
fd064b9b
TG
704
705#ifdef CONFIG_NO_IDLE_HZ
706unsigned long next_timer_interrupt(void)
707{
708 return get_next_timer_interrupt(jiffies);
709}
710#endif
711
1da177e4
LT
712#endif
713
714/******************************************************************/
715
1da177e4
LT
716/*
717 * The current time
718 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
719 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
720 * at zero at system boot time, so wall_to_monotonic will be negative,
721 * however, we will ALWAYS keep the tv_nsec part positive so we can use
722 * the usual normalization.
723 */
724struct timespec xtime __attribute__ ((aligned (16)));
725struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
726
727EXPORT_SYMBOL(xtime);
728
726c14bf 729
ad596171 730/* XXX - all of this timekeeping code should be later moved to time.c */
731#include <linux/clocksource.h>
732static struct clocksource *clock; /* pointer to current clocksource */
cf3c769b 733
734#ifdef CONFIG_GENERIC_TIME
735/**
736 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
737 *
738 * private function, must hold xtime_lock lock when being
739 * called. Returns the number of nanoseconds since the
740 * last call to update_wall_time() (adjusted by NTP scaling)
741 */
742static inline s64 __get_nsec_offset(void)
743{
744 cycle_t cycle_now, cycle_delta;
745 s64 ns_offset;
746
747 /* read clocksource: */
a2752549 748 cycle_now = clocksource_read(clock);
cf3c769b 749
750 /* calculate the delta since the last update_wall_time: */
19923c19 751 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
cf3c769b 752
753 /* convert to nanoseconds: */
754 ns_offset = cyc2ns(clock, cycle_delta);
755
756 return ns_offset;
757}
758
759/**
760 * __get_realtime_clock_ts - Returns the time of day in a timespec
761 * @ts: pointer to the timespec to be set
762 *
763 * Returns the time of day in a timespec. Used by
764 * do_gettimeofday() and get_realtime_clock_ts().
765 */
766static inline void __get_realtime_clock_ts(struct timespec *ts)
767{
768 unsigned long seq;
769 s64 nsecs;
770
771 do {
772 seq = read_seqbegin(&xtime_lock);
773
774 *ts = xtime;
775 nsecs = __get_nsec_offset();
776
777 } while (read_seqretry(&xtime_lock, seq));
778
779 timespec_add_ns(ts, nsecs);
780}
781
782/**
a2752549 783 * getnstimeofday - Returns the time of day in a timespec
cf3c769b 784 * @ts: pointer to the timespec to be set
785 *
786 * Returns the time of day in a timespec.
787 */
788void getnstimeofday(struct timespec *ts)
789{
790 __get_realtime_clock_ts(ts);
791}
792
793EXPORT_SYMBOL(getnstimeofday);
794
795/**
796 * do_gettimeofday - Returns the time of day in a timeval
797 * @tv: pointer to the timeval to be set
798 *
799 * NOTE: Users should be converted to using get_realtime_clock_ts()
800 */
801void do_gettimeofday(struct timeval *tv)
802{
803 struct timespec now;
804
805 __get_realtime_clock_ts(&now);
806 tv->tv_sec = now.tv_sec;
807 tv->tv_usec = now.tv_nsec/1000;
808}
809
810EXPORT_SYMBOL(do_gettimeofday);
811/**
812 * do_settimeofday - Sets the time of day
813 * @tv: pointer to the timespec variable containing the new time
814 *
815 * Sets the time of day to the new time and update NTP and notify hrtimers
816 */
817int do_settimeofday(struct timespec *tv)
818{
819 unsigned long flags;
820 time_t wtm_sec, sec = tv->tv_sec;
821 long wtm_nsec, nsec = tv->tv_nsec;
822
823 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
824 return -EINVAL;
825
826 write_seqlock_irqsave(&xtime_lock, flags);
827
828 nsec -= __get_nsec_offset();
829
830 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
831 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
832
833 set_normalized_timespec(&xtime, sec, nsec);
834 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
835
e154ff3d 836 clock->error = 0;
cf3c769b 837 ntp_clear();
838
839 write_sequnlock_irqrestore(&xtime_lock, flags);
840
841 /* signal hrtimers about time change */
842 clock_was_set();
843
844 return 0;
845}
846
847EXPORT_SYMBOL(do_settimeofday);
848
849/**
850 * change_clocksource - Swaps clocksources if a new one is available
851 *
852 * Accumulates current time interval and initializes new clocksource
853 */
5d8b34fd 854static void change_clocksource(void)
cf3c769b 855{
856 struct clocksource *new;
857 cycle_t now;
858 u64 nsec;
5d8b34fd 859
a2752549 860 new = clocksource_get_next();
5d8b34fd
TG
861
862 if (clock == new)
863 return;
864
865 now = clocksource_read(new);
866 nsec = __get_nsec_offset();
867 timespec_add_ns(&xtime, nsec);
868
869 clock = new;
870 clock->cycle_last = now;
871
872 clock->error = 0;
873 clock->xtime_nsec = 0;
874 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
875
876 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
877 clock->name);
cf3c769b 878}
879#else
5d8b34fd 880static inline void change_clocksource(void) { }
cf3c769b 881#endif
882
883/**
884 * timeofday_is_continuous - check to see if timekeeping is free running
885 */
886int timekeeping_is_continuous(void)
887{
888 unsigned long seq;
889 int ret;
890
891 do {
892 seq = read_seqbegin(&xtime_lock);
893
5d8b34fd 894 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
cf3c769b 895
896 } while (read_seqretry(&xtime_lock, seq));
897
898 return ret;
899}
900
411187fb
JS
901/**
902 * read_persistent_clock - Return time in seconds from the persistent clock.
903 *
904 * Weak dummy function for arches that do not yet support it.
905 * Returns seconds from epoch using the battery backed persistent clock.
906 * Returns zero if unsupported.
907 *
908 * XXX - Do be sure to remove it once all arches implement it.
909 */
910unsigned long __attribute__((weak)) read_persistent_clock(void)
911{
912 return 0;
913}
914
1da177e4 915/*
ad596171 916 * timekeeping_init - Initializes the clocksource and common timekeeping values
1da177e4 917 */
ad596171 918void __init timekeeping_init(void)
1da177e4 919{
ad596171 920 unsigned long flags;
411187fb 921 unsigned long sec = read_persistent_clock();
ad596171 922
923 write_seqlock_irqsave(&xtime_lock, flags);
b0ee7556
RZ
924
925 ntp_clear();
926
a2752549 927 clock = clocksource_get_next();
f4304ab2 928 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
19923c19 929 clock->cycle_last = clocksource_read(clock);
b0ee7556 930
411187fb
JS
931 xtime.tv_sec = sec;
932 xtime.tv_nsec = 0;
933 set_normalized_timespec(&wall_to_monotonic,
934 -xtime.tv_sec, -xtime.tv_nsec);
935
ad596171 936 write_sequnlock_irqrestore(&xtime_lock, flags);
937}
938
939
411187fb 940/* flag for if timekeeping is suspended */
3e143475 941static int timekeeping_suspended;
411187fb
JS
942/* time in seconds when suspend began */
943static unsigned long timekeeping_suspend_time;
944
2aae4a10 945/**
ad596171 946 * timekeeping_resume - Resumes the generic timekeeping subsystem.
947 * @dev: unused
948 *
949 * This is for the generic clocksource timekeeping.
8ef38609 950 * xtime/wall_to_monotonic/jiffies/etc are
ad596171 951 * still managed by arch specific suspend/resume code.
952 */
953static int timekeeping_resume(struct sys_device *dev)
954{
955 unsigned long flags;
411187fb 956 unsigned long now = read_persistent_clock();
ad596171 957
958 write_seqlock_irqsave(&xtime_lock, flags);
411187fb
JS
959
960 if (now && (now > timekeeping_suspend_time)) {
961 unsigned long sleep_length = now - timekeeping_suspend_time;
962
963 xtime.tv_sec += sleep_length;
964 wall_to_monotonic.tv_sec -= sleep_length;
965 }
966 /* re-base the last cycle value */
19923c19 967 clock->cycle_last = clocksource_read(clock);
3e143475 968 clock->error = 0;
969 timekeeping_suspended = 0;
970 write_sequnlock_irqrestore(&xtime_lock, flags);
411187fb
JS
971
972 touch_softlockup_watchdog();
973 hrtimer_notify_resume();
974
3e143475 975 return 0;
976}
977
978static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
979{
980 unsigned long flags;
981
982 write_seqlock_irqsave(&xtime_lock, flags);
983 timekeeping_suspended = 1;
411187fb 984 timekeeping_suspend_time = read_persistent_clock();
ad596171 985 write_sequnlock_irqrestore(&xtime_lock, flags);
986 return 0;
987}
988
989/* sysfs resume/suspend bits for timekeeping */
990static struct sysdev_class timekeeping_sysclass = {
991 .resume = timekeeping_resume,
3e143475 992 .suspend = timekeeping_suspend,
ad596171 993 set_kset_name("timekeeping"),
994};
995
996static struct sys_device device_timer = {
997 .id = 0,
998 .cls = &timekeeping_sysclass,
999};
1000
1001static int __init timekeeping_init_device(void)
1002{
1003 int error = sysdev_class_register(&timekeeping_sysclass);
1004 if (!error)
1005 error = sysdev_register(&device_timer);
1006 return error;
1007}
1008
1009device_initcall(timekeeping_init_device);
1010
19923c19 1011/*
e154ff3d 1012 * If the error is already larger, we look ahead even further
19923c19
RZ
1013 * to compensate for late or lost adjustments.
1014 */
f5f1a24a
DW
1015static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1016 s64 *offset)
19923c19 1017{
e154ff3d
RZ
1018 s64 tick_error, i;
1019 u32 look_ahead, adj;
1020 s32 error2, mult;
19923c19
RZ
1021
1022 /*
e154ff3d
RZ
1023 * Use the current error value to determine how much to look ahead.
1024 * The larger the error the slower we adjust for it to avoid problems
1025 * with losing too many ticks, otherwise we would overadjust and
1026 * produce an even larger error. The smaller the adjustment the
1027 * faster we try to adjust for it, as lost ticks can do less harm
1028 * here. This is tuned so that an error of about 1 msec is adusted
1029 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
19923c19 1030 */
e154ff3d
RZ
1031 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1032 error2 = abs(error2);
1033 for (look_ahead = 0; error2 > 0; look_ahead++)
1034 error2 >>= 2;
19923c19
RZ
1035
1036 /*
e154ff3d
RZ
1037 * Now calculate the error in (1 << look_ahead) ticks, but first
1038 * remove the single look ahead already included in the error.
19923c19 1039 */
f5f1a24a
DW
1040 tick_error = current_tick_length() >>
1041 (TICK_LENGTH_SHIFT - clock->shift + 1);
e154ff3d
RZ
1042 tick_error -= clock->xtime_interval >> 1;
1043 error = ((error - tick_error) >> look_ahead) + tick_error;
1044
1045 /* Finally calculate the adjustment shift value. */
1046 i = *interval;
1047 mult = 1;
1048 if (error < 0) {
1049 error = -error;
1050 *interval = -*interval;
1051 *offset = -*offset;
1052 mult = -1;
19923c19 1053 }
e154ff3d
RZ
1054 for (adj = 0; error > i; adj++)
1055 error >>= 1;
19923c19
RZ
1056
1057 *interval <<= adj;
1058 *offset <<= adj;
e154ff3d 1059 return mult << adj;
19923c19
RZ
1060}
1061
1062/*
1063 * Adjust the multiplier to reduce the error value,
1064 * this is optimized for the most common adjustments of -1,0,1,
1065 * for other values we can do a bit more work.
1066 */
1067static void clocksource_adjust(struct clocksource *clock, s64 offset)
1068{
1069 s64 error, interval = clock->cycle_interval;
1070 int adj;
1071
1072 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1073 if (error > interval) {
e154ff3d
RZ
1074 error >>= 2;
1075 if (likely(error <= interval))
1076 adj = 1;
1077 else
1078 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19 1079 } else if (error < -interval) {
e154ff3d
RZ
1080 error >>= 2;
1081 if (likely(error >= -interval)) {
1082 adj = -1;
1083 interval = -interval;
1084 offset = -offset;
1085 } else
1086 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19
RZ
1087 } else
1088 return;
1089
1090 clock->mult += adj;
1091 clock->xtime_interval += interval;
1092 clock->xtime_nsec -= offset;
f5f1a24a
DW
1093 clock->error -= (interval - offset) <<
1094 (TICK_LENGTH_SHIFT - clock->shift);
19923c19
RZ
1095}
1096
2aae4a10 1097/**
ad596171 1098 * update_wall_time - Uses the current clocksource to increment the wall time
1099 *
1100 * Called from the timer interrupt, must hold a write on xtime_lock.
1101 */
1102static void update_wall_time(void)
1103{
19923c19 1104 cycle_t offset;
ad596171 1105
3e143475 1106 /* Make sure we're fully resumed: */
1107 if (unlikely(timekeeping_suspended))
1108 return;
5eb6d205 1109
19923c19
RZ
1110#ifdef CONFIG_GENERIC_TIME
1111 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1112#else
1113 offset = clock->cycle_interval;
1114#endif
3e143475 1115 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
ad596171 1116
1117 /* normally this loop will run just once, however in the
1118 * case of lost or late ticks, it will accumulate correctly.
1119 */
19923c19 1120 while (offset >= clock->cycle_interval) {
ad596171 1121 /* accumulate one interval */
19923c19
RZ
1122 clock->xtime_nsec += clock->xtime_interval;
1123 clock->cycle_last += clock->cycle_interval;
1124 offset -= clock->cycle_interval;
1125
1126 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1127 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1128 xtime.tv_sec++;
1129 second_overflow();
1130 }
ad596171 1131
5eb6d205 1132 /* interpolator bits */
19923c19 1133 time_interpolator_update(clock->xtime_interval
5eb6d205 1134 >> clock->shift);
5eb6d205 1135
1136 /* accumulate error between NTP and clock interval */
19923c19
RZ
1137 clock->error += current_tick_length();
1138 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1139 }
5eb6d205 1140
19923c19
RZ
1141 /* correct the clock when NTP error is too big */
1142 clocksource_adjust(clock, offset);
5eb6d205 1143
5eb6d205 1144 /* store full nanoseconds into xtime */
e154ff3d 1145 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
19923c19 1146 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
cf3c769b 1147
1148 /* check to see if there is a new clocksource to use */
5d8b34fd 1149 change_clocksource();
1da177e4
LT
1150}
1151
1152/*
1153 * Called from the timer interrupt handler to charge one tick to the current
1154 * process. user_tick is 1 if the tick is user time, 0 for system.
1155 */
1156void update_process_times(int user_tick)
1157{
1158 struct task_struct *p = current;
1159 int cpu = smp_processor_id();
1160
1161 /* Note: this timer irq context must be accounted for as well. */
1162 if (user_tick)
1163 account_user_time(p, jiffies_to_cputime(1));
1164 else
1165 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1166 run_local_timers();
1167 if (rcu_pending(cpu))
1168 rcu_check_callbacks(cpu, user_tick);
1169 scheduler_tick();
1170 run_posix_cpu_timers(p);
1171}
1172
1173/*
1174 * Nr of active tasks - counted in fixed-point numbers
1175 */
1176static unsigned long count_active_tasks(void)
1177{
db1b1fef 1178 return nr_active() * FIXED_1;
1da177e4
LT
1179}
1180
1181/*
1182 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1183 * imply that avenrun[] is the standard name for this kind of thing.
1184 * Nothing else seems to be standardized: the fractional size etc
1185 * all seem to differ on different machines.
1186 *
1187 * Requires xtime_lock to access.
1188 */
1189unsigned long avenrun[3];
1190
1191EXPORT_SYMBOL(avenrun);
1192
1193/*
1194 * calc_load - given tick count, update the avenrun load estimates.
1195 * This is called while holding a write_lock on xtime_lock.
1196 */
1197static inline void calc_load(unsigned long ticks)
1198{
1199 unsigned long active_tasks; /* fixed-point */
1200 static int count = LOAD_FREQ;
1201
cd7175ed
ED
1202 count -= ticks;
1203 if (unlikely(count < 0)) {
1204 active_tasks = count_active_tasks();
1205 do {
1206 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1207 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1208 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1209 count += LOAD_FREQ;
1210 } while (count < 0);
1da177e4
LT
1211 }
1212}
1213
1da177e4
LT
1214/*
1215 * This read-write spinlock protects us from races in SMP while
1216 * playing with xtime and avenrun.
1217 */
5809f9d4 1218__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1da177e4
LT
1219
1220EXPORT_SYMBOL(xtime_lock);
1da177e4
LT
1221
1222/*
1223 * This function runs timers and the timer-tq in bottom half context.
1224 */
1225static void run_timer_softirq(struct softirq_action *h)
1226{
a4a6198b 1227 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 1228
c0a31329 1229 hrtimer_run_queues();
1da177e4
LT
1230 if (time_after_eq(jiffies, base->timer_jiffies))
1231 __run_timers(base);
1232}
1233
1234/*
1235 * Called by the local, per-CPU timer interrupt on SMP.
1236 */
1237void run_local_timers(void)
1238{
1239 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1240 softlockup_tick();
1da177e4
LT
1241}
1242
1243/*
1244 * Called by the timer interrupt. xtime_lock must already be taken
1245 * by the timer IRQ!
1246 */
3171a030 1247static inline void update_times(unsigned long ticks)
1da177e4 1248{
ad596171 1249 update_wall_time();
1da177e4
LT
1250 calc_load(ticks);
1251}
1252
1253/*
1254 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1255 * without sampling the sequence number in xtime_lock.
1256 * jiffies is defined in the linker script...
1257 */
1258
3171a030 1259void do_timer(unsigned long ticks)
1da177e4 1260{
3171a030
AN
1261 jiffies_64 += ticks;
1262 update_times(ticks);
1da177e4
LT
1263}
1264
1265#ifdef __ARCH_WANT_SYS_ALARM
1266
1267/*
1268 * For backwards compatibility? This can be done in libc so Alpha
1269 * and all newer ports shouldn't need it.
1270 */
1271asmlinkage unsigned long sys_alarm(unsigned int seconds)
1272{
c08b8a49 1273 return alarm_setitimer(seconds);
1da177e4
LT
1274}
1275
1276#endif
1277
1278#ifndef __alpha__
1279
1280/*
1281 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1282 * should be moved into arch/i386 instead?
1283 */
1284
1285/**
1286 * sys_getpid - return the thread group id of the current process
1287 *
1288 * Note, despite the name, this returns the tgid not the pid. The tgid and
1289 * the pid are identical unless CLONE_THREAD was specified on clone() in
1290 * which case the tgid is the same in all threads of the same group.
1291 *
1292 * This is SMP safe as current->tgid does not change.
1293 */
1294asmlinkage long sys_getpid(void)
1295{
1296 return current->tgid;
1297}
1298
1299/*
6997a6fa
KK
1300 * Accessing ->real_parent is not SMP-safe, it could
1301 * change from under us. However, we can use a stale
1302 * value of ->real_parent under rcu_read_lock(), see
1303 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
1304 */
1305asmlinkage long sys_getppid(void)
1306{
1307 int pid;
1da177e4 1308
6997a6fa
KK
1309 rcu_read_lock();
1310 pid = rcu_dereference(current->real_parent)->tgid;
1311 rcu_read_unlock();
1da177e4 1312
1da177e4
LT
1313 return pid;
1314}
1315
1316asmlinkage long sys_getuid(void)
1317{
1318 /* Only we change this so SMP safe */
1319 return current->uid;
1320}
1321
1322asmlinkage long sys_geteuid(void)
1323{
1324 /* Only we change this so SMP safe */
1325 return current->euid;
1326}
1327
1328asmlinkage long sys_getgid(void)
1329{
1330 /* Only we change this so SMP safe */
1331 return current->gid;
1332}
1333
1334asmlinkage long sys_getegid(void)
1335{
1336 /* Only we change this so SMP safe */
1337 return current->egid;
1338}
1339
1340#endif
1341
1342static void process_timeout(unsigned long __data)
1343{
36c8b586 1344 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1345}
1346
1347/**
1348 * schedule_timeout - sleep until timeout
1349 * @timeout: timeout value in jiffies
1350 *
1351 * Make the current task sleep until @timeout jiffies have
1352 * elapsed. The routine will return immediately unless
1353 * the current task state has been set (see set_current_state()).
1354 *
1355 * You can set the task state as follows -
1356 *
1357 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1358 * pass before the routine returns. The routine will return 0
1359 *
1360 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1361 * delivered to the current task. In this case the remaining time
1362 * in jiffies will be returned, or 0 if the timer expired in time
1363 *
1364 * The current task state is guaranteed to be TASK_RUNNING when this
1365 * routine returns.
1366 *
1367 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1368 * the CPU away without a bound on the timeout. In this case the return
1369 * value will be %MAX_SCHEDULE_TIMEOUT.
1370 *
1371 * In all cases the return value is guaranteed to be non-negative.
1372 */
1373fastcall signed long __sched schedule_timeout(signed long timeout)
1374{
1375 struct timer_list timer;
1376 unsigned long expire;
1377
1378 switch (timeout)
1379 {
1380 case MAX_SCHEDULE_TIMEOUT:
1381 /*
1382 * These two special cases are useful to be comfortable
1383 * in the caller. Nothing more. We could take
1384 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1385 * but I' d like to return a valid offset (>=0) to allow
1386 * the caller to do everything it want with the retval.
1387 */
1388 schedule();
1389 goto out;
1390 default:
1391 /*
1392 * Another bit of PARANOID. Note that the retval will be
1393 * 0 since no piece of kernel is supposed to do a check
1394 * for a negative retval of schedule_timeout() (since it
1395 * should never happens anyway). You just have the printk()
1396 * that will tell you if something is gone wrong and where.
1397 */
5b149bcc 1398 if (timeout < 0) {
1da177e4 1399 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1400 "value %lx\n", timeout);
1401 dump_stack();
1da177e4
LT
1402 current->state = TASK_RUNNING;
1403 goto out;
1404 }
1405 }
1406
1407 expire = timeout + jiffies;
1408
a8db2db1
ON
1409 setup_timer(&timer, process_timeout, (unsigned long)current);
1410 __mod_timer(&timer, expire);
1da177e4
LT
1411 schedule();
1412 del_singleshot_timer_sync(&timer);
1413
1414 timeout = expire - jiffies;
1415
1416 out:
1417 return timeout < 0 ? 0 : timeout;
1418}
1da177e4
LT
1419EXPORT_SYMBOL(schedule_timeout);
1420
8a1c1757
AM
1421/*
1422 * We can use __set_current_state() here because schedule_timeout() calls
1423 * schedule() unconditionally.
1424 */
64ed93a2
NA
1425signed long __sched schedule_timeout_interruptible(signed long timeout)
1426{
a5a0d52c
AM
1427 __set_current_state(TASK_INTERRUPTIBLE);
1428 return schedule_timeout(timeout);
64ed93a2
NA
1429}
1430EXPORT_SYMBOL(schedule_timeout_interruptible);
1431
1432signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1433{
a5a0d52c
AM
1434 __set_current_state(TASK_UNINTERRUPTIBLE);
1435 return schedule_timeout(timeout);
64ed93a2
NA
1436}
1437EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1438
1da177e4
LT
1439/* Thread ID - the internal kernel "pid" */
1440asmlinkage long sys_gettid(void)
1441{
1442 return current->pid;
1443}
1444
2aae4a10 1445/**
d4d23add 1446 * do_sysinfo - fill in sysinfo struct
2aae4a10 1447 * @info: pointer to buffer to fill
1da177e4 1448 */
d4d23add 1449int do_sysinfo(struct sysinfo *info)
1da177e4 1450{
1da177e4
LT
1451 unsigned long mem_total, sav_total;
1452 unsigned int mem_unit, bitcount;
1453 unsigned long seq;
1454
d4d23add 1455 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1456
1457 do {
1458 struct timespec tp;
1459 seq = read_seqbegin(&xtime_lock);
1460
1461 /*
1462 * This is annoying. The below is the same thing
1463 * posix_get_clock_monotonic() does, but it wants to
1464 * take the lock which we want to cover the loads stuff
1465 * too.
1466 */
1467
1468 getnstimeofday(&tp);
1469 tp.tv_sec += wall_to_monotonic.tv_sec;
1470 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1471 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1472 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1473 tp.tv_sec++;
1474 }
d4d23add 1475 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1476
d4d23add
KM
1477 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1478 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1479 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1480
d4d23add 1481 info->procs = nr_threads;
1da177e4
LT
1482 } while (read_seqretry(&xtime_lock, seq));
1483
d4d23add
KM
1484 si_meminfo(info);
1485 si_swapinfo(info);
1da177e4
LT
1486
1487 /*
1488 * If the sum of all the available memory (i.e. ram + swap)
1489 * is less than can be stored in a 32 bit unsigned long then
1490 * we can be binary compatible with 2.2.x kernels. If not,
1491 * well, in that case 2.2.x was broken anyways...
1492 *
1493 * -Erik Andersen <andersee@debian.org>
1494 */
1495
d4d23add
KM
1496 mem_total = info->totalram + info->totalswap;
1497 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1498 goto out;
1499 bitcount = 0;
d4d23add 1500 mem_unit = info->mem_unit;
1da177e4
LT
1501 while (mem_unit > 1) {
1502 bitcount++;
1503 mem_unit >>= 1;
1504 sav_total = mem_total;
1505 mem_total <<= 1;
1506 if (mem_total < sav_total)
1507 goto out;
1508 }
1509
1510 /*
1511 * If mem_total did not overflow, multiply all memory values by
d4d23add 1512 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1513 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1514 * kernels...
1515 */
1516
d4d23add
KM
1517 info->mem_unit = 1;
1518 info->totalram <<= bitcount;
1519 info->freeram <<= bitcount;
1520 info->sharedram <<= bitcount;
1521 info->bufferram <<= bitcount;
1522 info->totalswap <<= bitcount;
1523 info->freeswap <<= bitcount;
1524 info->totalhigh <<= bitcount;
1525 info->freehigh <<= bitcount;
1526
1527out:
1528 return 0;
1529}
1530
1531asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1532{
1533 struct sysinfo val;
1534
1535 do_sysinfo(&val);
1da177e4 1536
1da177e4
LT
1537 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1538 return -EFAULT;
1539
1540 return 0;
1541}
1542
d730e882
IM
1543/*
1544 * lockdep: we want to track each per-CPU base as a separate lock-class,
1545 * but timer-bases are kmalloc()-ed, so we need to attach separate
1546 * keys to them:
1547 */
1548static struct lock_class_key base_lock_keys[NR_CPUS];
1549
a4a6198b 1550static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1551{
1552 int j;
1553 tvec_base_t *base;
ba6edfcd 1554 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1555
ba6edfcd 1556 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1557 static char boot_done;
1558
a4a6198b 1559 if (boot_done) {
ba6edfcd
AM
1560 /*
1561 * The APs use this path later in boot
1562 */
a4a6198b
JB
1563 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1564 cpu_to_node(cpu));
1565 if (!base)
1566 return -ENOMEM;
1567 memset(base, 0, sizeof(*base));
ba6edfcd 1568 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1569 } else {
ba6edfcd
AM
1570 /*
1571 * This is for the boot CPU - we use compile-time
1572 * static initialisation because per-cpu memory isn't
1573 * ready yet and because the memory allocators are not
1574 * initialised either.
1575 */
a4a6198b 1576 boot_done = 1;
ba6edfcd 1577 base = &boot_tvec_bases;
a4a6198b 1578 }
ba6edfcd
AM
1579 tvec_base_done[cpu] = 1;
1580 } else {
1581 base = per_cpu(tvec_bases, cpu);
a4a6198b 1582 }
ba6edfcd 1583
3691c519 1584 spin_lock_init(&base->lock);
d730e882
IM
1585 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1586
1da177e4
LT
1587 for (j = 0; j < TVN_SIZE; j++) {
1588 INIT_LIST_HEAD(base->tv5.vec + j);
1589 INIT_LIST_HEAD(base->tv4.vec + j);
1590 INIT_LIST_HEAD(base->tv3.vec + j);
1591 INIT_LIST_HEAD(base->tv2.vec + j);
1592 }
1593 for (j = 0; j < TVR_SIZE; j++)
1594 INIT_LIST_HEAD(base->tv1.vec + j);
1595
1596 base->timer_jiffies = jiffies;
a4a6198b 1597 return 0;
1da177e4
LT
1598}
1599
1600#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1601static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1602{
1603 struct timer_list *timer;
1604
1605 while (!list_empty(head)) {
1606 timer = list_entry(head->next, struct timer_list, entry);
55c888d6 1607 detach_timer(timer, 0);
3691c519 1608 timer->base = new_base;
1da177e4 1609 internal_add_timer(new_base, timer);
1da177e4 1610 }
1da177e4
LT
1611}
1612
1613static void __devinit migrate_timers(int cpu)
1614{
1615 tvec_base_t *old_base;
1616 tvec_base_t *new_base;
1617 int i;
1618
1619 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1620 old_base = per_cpu(tvec_bases, cpu);
1621 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1622
1623 local_irq_disable();
3691c519
ON
1624 spin_lock(&new_base->lock);
1625 spin_lock(&old_base->lock);
1626
1627 BUG_ON(old_base->running_timer);
1da177e4 1628
1da177e4 1629 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1630 migrate_timer_list(new_base, old_base->tv1.vec + i);
1631 for (i = 0; i < TVN_SIZE; i++) {
1632 migrate_timer_list(new_base, old_base->tv2.vec + i);
1633 migrate_timer_list(new_base, old_base->tv3.vec + i);
1634 migrate_timer_list(new_base, old_base->tv4.vec + i);
1635 migrate_timer_list(new_base, old_base->tv5.vec + i);
1636 }
1637
3691c519
ON
1638 spin_unlock(&old_base->lock);
1639 spin_unlock(&new_base->lock);
1da177e4
LT
1640 local_irq_enable();
1641 put_cpu_var(tvec_bases);
1da177e4
LT
1642}
1643#endif /* CONFIG_HOTPLUG_CPU */
1644
8c78f307 1645static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1646 unsigned long action, void *hcpu)
1647{
1648 long cpu = (long)hcpu;
1649 switch(action) {
1650 case CPU_UP_PREPARE:
a4a6198b
JB
1651 if (init_timers_cpu(cpu) < 0)
1652 return NOTIFY_BAD;
1da177e4
LT
1653 break;
1654#ifdef CONFIG_HOTPLUG_CPU
1655 case CPU_DEAD:
1656 migrate_timers(cpu);
1657 break;
1658#endif
1659 default:
1660 break;
1661 }
1662 return NOTIFY_OK;
1663}
1664
8c78f307 1665static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1666 .notifier_call = timer_cpu_notify,
1667};
1668
1669
1670void __init init_timers(void)
1671{
07dccf33 1672 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1673 (void *)(long)smp_processor_id());
07dccf33
AM
1674
1675 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
1676 register_cpu_notifier(&timers_nb);
1677 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1678}
1679
1680#ifdef CONFIG_TIME_INTERPOLATION
1681
67890d70
CL
1682struct time_interpolator *time_interpolator __read_mostly;
1683static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1684static DEFINE_SPINLOCK(time_interpolator_lock);
1685
3db5db4f 1686static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1da177e4
LT
1687{
1688 unsigned long (*x)(void);
1689
1690 switch (src)
1691 {
1692 case TIME_SOURCE_FUNCTION:
1693 x = time_interpolator->addr;
1694 return x();
1695
1696 case TIME_SOURCE_MMIO64 :
685db65e 1697 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1698
1699 case TIME_SOURCE_MMIO32 :
685db65e 1700 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1701
1702 default: return get_cycles();
1703 }
1704}
1705
486d46ae 1706static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1707{
1708 unsigned int src = time_interpolator->source;
1709
1710 if (time_interpolator->jitter)
1711 {
3db5db4f
HD
1712 cycles_t lcycle;
1713 cycles_t now;
1da177e4
LT
1714
1715 do {
1716 lcycle = time_interpolator->last_cycle;
1717 now = time_interpolator_get_cycles(src);
1718 if (lcycle && time_after(lcycle, now))
1719 return lcycle;
486d46ae
AW
1720
1721 /* When holding the xtime write lock, there's no need
1722 * to add the overhead of the cmpxchg. Readers are
1723 * force to retry until the write lock is released.
1724 */
1725 if (writelock) {
1726 time_interpolator->last_cycle = now;
1727 return now;
1728 }
1da177e4
LT
1729 /* Keep track of the last timer value returned. The use of cmpxchg here
1730 * will cause contention in an SMP environment.
1731 */
1732 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1733 return now;
1734 }
1735 else
1736 return time_interpolator_get_cycles(src);
1737}
1738
1739void time_interpolator_reset(void)
1740{
1741 time_interpolator->offset = 0;
486d46ae 1742 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1743}
1744
1745#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1746
1747unsigned long time_interpolator_get_offset(void)
1748{
1749 /* If we do not have a time interpolator set up then just return zero */
1750 if (!time_interpolator)
1751 return 0;
1752
1753 return time_interpolator->offset +
486d46ae 1754 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1755}
1756
1757#define INTERPOLATOR_ADJUST 65536
1758#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1759
4c7ee8de 1760void time_interpolator_update(long delta_nsec)
1da177e4
LT
1761{
1762 u64 counter;
1763 unsigned long offset;
1764
1765 /* If there is no time interpolator set up then do nothing */
1766 if (!time_interpolator)
1767 return;
1768
a5a0d52c
AM
1769 /*
1770 * The interpolator compensates for late ticks by accumulating the late
1771 * time in time_interpolator->offset. A tick earlier than expected will
1772 * lead to a reset of the offset and a corresponding jump of the clock
1773 * forward. Again this only works if the interpolator clock is running
1774 * slightly slower than the regular clock and the tuning logic insures
1775 * that.
1776 */
1da177e4 1777
486d46ae 1778 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1779 offset = time_interpolator->offset +
1780 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1781
1782 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1783 time_interpolator->offset = offset - delta_nsec;
1784 else {
1785 time_interpolator->skips++;
1786 time_interpolator->ns_skipped += delta_nsec - offset;
1787 time_interpolator->offset = 0;
1788 }
1789 time_interpolator->last_counter = counter;
1790
1791 /* Tuning logic for time interpolator invoked every minute or so.
1792 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1793 * Increase interpolator clock speed if we skip too much time.
1794 */
1795 if (jiffies % INTERPOLATOR_ADJUST == 0)
1796 {
b20367a6 1797 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1798 time_interpolator->nsec_per_cyc--;
1799 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1800 time_interpolator->nsec_per_cyc++;
1801 time_interpolator->skips = 0;
1802 time_interpolator->ns_skipped = 0;
1803 }
1804}
1805
1806static inline int
1807is_better_time_interpolator(struct time_interpolator *new)
1808{
1809 if (!time_interpolator)
1810 return 1;
1811 return new->frequency > 2*time_interpolator->frequency ||
1812 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1813}
1814
1815void
1816register_time_interpolator(struct time_interpolator *ti)
1817{
1818 unsigned long flags;
1819
1820 /* Sanity check */
9f31252c 1821 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1822
1823 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1824 spin_lock(&time_interpolator_lock);
1825 write_seqlock_irqsave(&xtime_lock, flags);
1826 if (is_better_time_interpolator(ti)) {
1827 time_interpolator = ti;
1828 time_interpolator_reset();
1829 }
1830 write_sequnlock_irqrestore(&xtime_lock, flags);
1831
1832 ti->next = time_interpolator_list;
1833 time_interpolator_list = ti;
1834 spin_unlock(&time_interpolator_lock);
1835}
1836
1837void
1838unregister_time_interpolator(struct time_interpolator *ti)
1839{
1840 struct time_interpolator *curr, **prev;
1841 unsigned long flags;
1842
1843 spin_lock(&time_interpolator_lock);
1844 prev = &time_interpolator_list;
1845 for (curr = *prev; curr; curr = curr->next) {
1846 if (curr == ti) {
1847 *prev = curr->next;
1848 break;
1849 }
1850 prev = &curr->next;
1851 }
1852
1853 write_seqlock_irqsave(&xtime_lock, flags);
1854 if (ti == time_interpolator) {
1855 /* we lost the best time-interpolator: */
1856 time_interpolator = NULL;
1857 /* find the next-best interpolator */
1858 for (curr = time_interpolator_list; curr; curr = curr->next)
1859 if (is_better_time_interpolator(curr))
1860 time_interpolator = curr;
1861 time_interpolator_reset();
1862 }
1863 write_sequnlock_irqrestore(&xtime_lock, flags);
1864 spin_unlock(&time_interpolator_lock);
1865}
1866#endif /* CONFIG_TIME_INTERPOLATION */
1867
1868/**
1869 * msleep - sleep safely even with waitqueue interruptions
1870 * @msecs: Time in milliseconds to sleep for
1871 */
1872void msleep(unsigned int msecs)
1873{
1874 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1875
75bcc8c5
NA
1876 while (timeout)
1877 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1878}
1879
1880EXPORT_SYMBOL(msleep);
1881
1882/**
96ec3efd 1883 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1884 * @msecs: Time in milliseconds to sleep for
1885 */
1886unsigned long msleep_interruptible(unsigned int msecs)
1887{
1888 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1889
75bcc8c5
NA
1890 while (timeout && !signal_pending(current))
1891 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1892 return jiffies_to_msecs(timeout);
1893}
1894
1895EXPORT_SYMBOL(msleep_interruptible);
This page took 0.296282 seconds and 5 git commands to generate.