Revert "timer: Added usleep[_range] timer"
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
866e2611
BF
93 * base in timer_list is guaranteed to be zero. Use the LSB to
94 * indicate whether the timer is deferrable.
95 *
96 * A deferrable timer will work normally when the system is busy, but
97 * will not cause a CPU to come out of idle just to service it; instead,
98 * the timer will be serviced when the CPU eventually wakes up with a
99 * subsequent non-deferrable timer.
6e453a67
VP
100 */
101#define TBASE_DEFERRABLE_FLAG (0x1)
102
103/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 104static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 105{
e9910846 106 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
107}
108
a6fa8e5a 109static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 110{
a6fa8e5a 111 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
112}
113
114static inline void timer_set_deferrable(struct timer_list *timer)
115{
a6fa8e5a 116 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 117 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
118}
119
120static inline void
a6fa8e5a 121timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 122{
a6fa8e5a 123 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 124 tbase_get_deferrable(timer->base));
6e453a67
VP
125}
126
9c133c46
AS
127static unsigned long round_jiffies_common(unsigned long j, int cpu,
128 bool force_up)
4c36a5de
AV
129{
130 int rem;
131 unsigned long original = j;
132
133 /*
134 * We don't want all cpus firing their timers at once hitting the
135 * same lock or cachelines, so we skew each extra cpu with an extra
136 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
137 * already did this.
138 * The skew is done by adding 3*cpunr, then round, then subtract this
139 * extra offset again.
140 */
141 j += cpu * 3;
142
143 rem = j % HZ;
144
145 /*
146 * If the target jiffie is just after a whole second (which can happen
147 * due to delays of the timer irq, long irq off times etc etc) then
148 * we should round down to the whole second, not up. Use 1/4th second
149 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 150 * But never round down if @force_up is set.
4c36a5de 151 */
9c133c46 152 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
153 j = j - rem;
154 else /* round up */
155 j = j - rem + HZ;
156
157 /* now that we have rounded, subtract the extra skew again */
158 j -= cpu * 3;
159
160 if (j <= jiffies) /* rounding ate our timeout entirely; */
161 return original;
162 return j;
163}
9c133c46
AS
164
165/**
166 * __round_jiffies - function to round jiffies to a full second
167 * @j: the time in (absolute) jiffies that should be rounded
168 * @cpu: the processor number on which the timeout will happen
169 *
170 * __round_jiffies() rounds an absolute time in the future (in jiffies)
171 * up or down to (approximately) full seconds. This is useful for timers
172 * for which the exact time they fire does not matter too much, as long as
173 * they fire approximately every X seconds.
174 *
175 * By rounding these timers to whole seconds, all such timers will fire
176 * at the same time, rather than at various times spread out. The goal
177 * of this is to have the CPU wake up less, which saves power.
178 *
179 * The exact rounding is skewed for each processor to avoid all
180 * processors firing at the exact same time, which could lead
181 * to lock contention or spurious cache line bouncing.
182 *
183 * The return value is the rounded version of the @j parameter.
184 */
185unsigned long __round_jiffies(unsigned long j, int cpu)
186{
187 return round_jiffies_common(j, cpu, false);
188}
4c36a5de
AV
189EXPORT_SYMBOL_GPL(__round_jiffies);
190
191/**
192 * __round_jiffies_relative - function to round jiffies to a full second
193 * @j: the time in (relative) jiffies that should be rounded
194 * @cpu: the processor number on which the timeout will happen
195 *
72fd4a35 196 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
197 * up or down to (approximately) full seconds. This is useful for timers
198 * for which the exact time they fire does not matter too much, as long as
199 * they fire approximately every X seconds.
200 *
201 * By rounding these timers to whole seconds, all such timers will fire
202 * at the same time, rather than at various times spread out. The goal
203 * of this is to have the CPU wake up less, which saves power.
204 *
205 * The exact rounding is skewed for each processor to avoid all
206 * processors firing at the exact same time, which could lead
207 * to lock contention or spurious cache line bouncing.
208 *
72fd4a35 209 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
210 */
211unsigned long __round_jiffies_relative(unsigned long j, int cpu)
212{
9c133c46
AS
213 unsigned long j0 = jiffies;
214
215 /* Use j0 because jiffies might change while we run */
216 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
217}
218EXPORT_SYMBOL_GPL(__round_jiffies_relative);
219
220/**
221 * round_jiffies - function to round jiffies to a full second
222 * @j: the time in (absolute) jiffies that should be rounded
223 *
72fd4a35 224 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
225 * up or down to (approximately) full seconds. This is useful for timers
226 * for which the exact time they fire does not matter too much, as long as
227 * they fire approximately every X seconds.
228 *
229 * By rounding these timers to whole seconds, all such timers will fire
230 * at the same time, rather than at various times spread out. The goal
231 * of this is to have the CPU wake up less, which saves power.
232 *
72fd4a35 233 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
234 */
235unsigned long round_jiffies(unsigned long j)
236{
9c133c46 237 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
238}
239EXPORT_SYMBOL_GPL(round_jiffies);
240
241/**
242 * round_jiffies_relative - function to round jiffies to a full second
243 * @j: the time in (relative) jiffies that should be rounded
244 *
72fd4a35 245 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
246 * up or down to (approximately) full seconds. This is useful for timers
247 * for which the exact time they fire does not matter too much, as long as
248 * they fire approximately every X seconds.
249 *
250 * By rounding these timers to whole seconds, all such timers will fire
251 * at the same time, rather than at various times spread out. The goal
252 * of this is to have the CPU wake up less, which saves power.
253 *
72fd4a35 254 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
255 */
256unsigned long round_jiffies_relative(unsigned long j)
257{
258 return __round_jiffies_relative(j, raw_smp_processor_id());
259}
260EXPORT_SYMBOL_GPL(round_jiffies_relative);
261
9c133c46
AS
262/**
263 * __round_jiffies_up - function to round jiffies up to a full second
264 * @j: the time in (absolute) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
266 *
267 * This is the same as __round_jiffies() except that it will never
268 * round down. This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
270 * early.
271 */
272unsigned long __round_jiffies_up(unsigned long j, int cpu)
273{
274 return round_jiffies_common(j, cpu, true);
275}
276EXPORT_SYMBOL_GPL(__round_jiffies_up);
277
278/**
279 * __round_jiffies_up_relative - function to round jiffies up to a full second
280 * @j: the time in (relative) jiffies that should be rounded
281 * @cpu: the processor number on which the timeout will happen
282 *
283 * This is the same as __round_jiffies_relative() except that it will never
284 * round down. This is useful for timeouts for which the exact time
285 * of firing does not matter too much, as long as they don't fire too
286 * early.
287 */
288unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
289{
290 unsigned long j0 = jiffies;
291
292 /* Use j0 because jiffies might change while we run */
293 return round_jiffies_common(j + j0, cpu, true) - j0;
294}
295EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
296
297/**
298 * round_jiffies_up - function to round jiffies up to a full second
299 * @j: the time in (absolute) jiffies that should be rounded
300 *
301 * This is the same as round_jiffies() except that it will never
302 * round down. This is useful for timeouts for which the exact time
303 * of firing does not matter too much, as long as they don't fire too
304 * early.
305 */
306unsigned long round_jiffies_up(unsigned long j)
307{
308 return round_jiffies_common(j, raw_smp_processor_id(), true);
309}
310EXPORT_SYMBOL_GPL(round_jiffies_up);
311
312/**
313 * round_jiffies_up_relative - function to round jiffies up to a full second
314 * @j: the time in (relative) jiffies that should be rounded
315 *
316 * This is the same as round_jiffies_relative() except that it will never
317 * round down. This is useful for timeouts for which the exact time
318 * of firing does not matter too much, as long as they don't fire too
319 * early.
320 */
321unsigned long round_jiffies_up_relative(unsigned long j)
322{
323 return __round_jiffies_up_relative(j, raw_smp_processor_id());
324}
325EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
326
3bbb9ec9
AV
327/**
328 * set_timer_slack - set the allowed slack for a timer
329 * @slack_hz: the amount of time (in jiffies) allowed for rounding
330 *
331 * Set the amount of time, in jiffies, that a certain timer has
332 * in terms of slack. By setting this value, the timer subsystem
333 * will schedule the actual timer somewhere between
334 * the time mod_timer() asks for, and that time plus the slack.
335 *
336 * By setting the slack to -1, a percentage of the delay is used
337 * instead.
338 */
339void set_timer_slack(struct timer_list *timer, int slack_hz)
340{
341 timer->slack = slack_hz;
342}
343EXPORT_SYMBOL_GPL(set_timer_slack);
344
4c36a5de 345
a6fa8e5a 346static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
347 struct timer_list *timer)
348{
349#ifdef CONFIG_SMP
3691c519 350 base->running_timer = timer;
1da177e4
LT
351#endif
352}
353
a6fa8e5a 354static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
355{
356 unsigned long expires = timer->expires;
357 unsigned long idx = expires - base->timer_jiffies;
358 struct list_head *vec;
359
360 if (idx < TVR_SIZE) {
361 int i = expires & TVR_MASK;
362 vec = base->tv1.vec + i;
363 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
364 int i = (expires >> TVR_BITS) & TVN_MASK;
365 vec = base->tv2.vec + i;
366 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
367 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
368 vec = base->tv3.vec + i;
369 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
370 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
371 vec = base->tv4.vec + i;
372 } else if ((signed long) idx < 0) {
373 /*
374 * Can happen if you add a timer with expires == jiffies,
375 * or you set a timer to go off in the past
376 */
377 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
378 } else {
379 int i;
380 /* If the timeout is larger than 0xffffffff on 64-bit
381 * architectures then we use the maximum timeout:
382 */
383 if (idx > 0xffffffffUL) {
384 idx = 0xffffffffUL;
385 expires = idx + base->timer_jiffies;
386 }
387 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
388 vec = base->tv5.vec + i;
389 }
390 /*
391 * Timers are FIFO:
392 */
393 list_add_tail(&timer->entry, vec);
394}
395
82f67cd9
IM
396#ifdef CONFIG_TIMER_STATS
397void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
398{
399 if (timer->start_site)
400 return;
401
402 timer->start_site = addr;
403 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
404 timer->start_pid = current->pid;
405}
c5c061b8
VP
406
407static void timer_stats_account_timer(struct timer_list *timer)
408{
409 unsigned int flag = 0;
410
507e1231
HC
411 if (likely(!timer->start_site))
412 return;
c5c061b8
VP
413 if (unlikely(tbase_get_deferrable(timer->base)))
414 flag |= TIMER_STATS_FLAG_DEFERRABLE;
415
416 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
417 timer->function, timer->start_comm, flag);
418}
419
420#else
421static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
422#endif
423
c6f3a97f
TG
424#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
425
426static struct debug_obj_descr timer_debug_descr;
427
428/*
429 * fixup_init is called when:
430 * - an active object is initialized
55c888d6 431 */
c6f3a97f
TG
432static int timer_fixup_init(void *addr, enum debug_obj_state state)
433{
434 struct timer_list *timer = addr;
435
436 switch (state) {
437 case ODEBUG_STATE_ACTIVE:
438 del_timer_sync(timer);
439 debug_object_init(timer, &timer_debug_descr);
440 return 1;
441 default:
442 return 0;
443 }
444}
445
446/*
447 * fixup_activate is called when:
448 * - an active object is activated
449 * - an unknown object is activated (might be a statically initialized object)
450 */
451static int timer_fixup_activate(void *addr, enum debug_obj_state state)
452{
453 struct timer_list *timer = addr;
454
455 switch (state) {
456
457 case ODEBUG_STATE_NOTAVAILABLE:
458 /*
459 * This is not really a fixup. The timer was
460 * statically initialized. We just make sure that it
461 * is tracked in the object tracker.
462 */
463 if (timer->entry.next == NULL &&
464 timer->entry.prev == TIMER_ENTRY_STATIC) {
465 debug_object_init(timer, &timer_debug_descr);
466 debug_object_activate(timer, &timer_debug_descr);
467 return 0;
468 } else {
469 WARN_ON_ONCE(1);
470 }
471 return 0;
472
473 case ODEBUG_STATE_ACTIVE:
474 WARN_ON(1);
475
476 default:
477 return 0;
478 }
479}
480
481/*
482 * fixup_free is called when:
483 * - an active object is freed
484 */
485static int timer_fixup_free(void *addr, enum debug_obj_state state)
486{
487 struct timer_list *timer = addr;
488
489 switch (state) {
490 case ODEBUG_STATE_ACTIVE:
491 del_timer_sync(timer);
492 debug_object_free(timer, &timer_debug_descr);
493 return 1;
494 default:
495 return 0;
496 }
497}
498
499static struct debug_obj_descr timer_debug_descr = {
500 .name = "timer_list",
501 .fixup_init = timer_fixup_init,
502 .fixup_activate = timer_fixup_activate,
503 .fixup_free = timer_fixup_free,
504};
505
506static inline void debug_timer_init(struct timer_list *timer)
507{
508 debug_object_init(timer, &timer_debug_descr);
509}
510
511static inline void debug_timer_activate(struct timer_list *timer)
512{
513 debug_object_activate(timer, &timer_debug_descr);
514}
515
516static inline void debug_timer_deactivate(struct timer_list *timer)
517{
518 debug_object_deactivate(timer, &timer_debug_descr);
519}
520
521static inline void debug_timer_free(struct timer_list *timer)
522{
523 debug_object_free(timer, &timer_debug_descr);
524}
525
6f2b9b9a
JB
526static void __init_timer(struct timer_list *timer,
527 const char *name,
528 struct lock_class_key *key);
c6f3a97f 529
6f2b9b9a
JB
530void init_timer_on_stack_key(struct timer_list *timer,
531 const char *name,
532 struct lock_class_key *key)
c6f3a97f
TG
533{
534 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 535 __init_timer(timer, name, key);
c6f3a97f 536}
6f2b9b9a 537EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
538
539void destroy_timer_on_stack(struct timer_list *timer)
540{
541 debug_object_free(timer, &timer_debug_descr);
542}
543EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
544
545#else
546static inline void debug_timer_init(struct timer_list *timer) { }
547static inline void debug_timer_activate(struct timer_list *timer) { }
548static inline void debug_timer_deactivate(struct timer_list *timer) { }
549#endif
550
2b022e3d
XG
551static inline void debug_init(struct timer_list *timer)
552{
553 debug_timer_init(timer);
554 trace_timer_init(timer);
555}
556
557static inline void
558debug_activate(struct timer_list *timer, unsigned long expires)
559{
560 debug_timer_activate(timer);
561 trace_timer_start(timer, expires);
562}
563
564static inline void debug_deactivate(struct timer_list *timer)
565{
566 debug_timer_deactivate(timer);
567 trace_timer_cancel(timer);
568}
569
6f2b9b9a
JB
570static void __init_timer(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
55c888d6
ON
573{
574 timer->entry.next = NULL;
bfe5d834 575 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 576 timer->slack = -1;
82f67cd9
IM
577#ifdef CONFIG_TIMER_STATS
578 timer->start_site = NULL;
579 timer->start_pid = -1;
580 memset(timer->start_comm, 0, TASK_COMM_LEN);
581#endif
6f2b9b9a 582 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 583}
c6f3a97f
TG
584
585/**
633fe795 586 * init_timer_key - initialize a timer
c6f3a97f 587 * @timer: the timer to be initialized
633fe795
RD
588 * @name: name of the timer
589 * @key: lockdep class key of the fake lock used for tracking timer
590 * sync lock dependencies
c6f3a97f 591 *
633fe795 592 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
593 * other timer functions.
594 */
6f2b9b9a
JB
595void init_timer_key(struct timer_list *timer,
596 const char *name,
597 struct lock_class_key *key)
c6f3a97f 598{
2b022e3d 599 debug_init(timer);
6f2b9b9a 600 __init_timer(timer, name, key);
c6f3a97f 601}
6f2b9b9a 602EXPORT_SYMBOL(init_timer_key);
55c888d6 603
6f2b9b9a
JB
604void init_timer_deferrable_key(struct timer_list *timer,
605 const char *name,
606 struct lock_class_key *key)
6e453a67 607{
6f2b9b9a 608 init_timer_key(timer, name, key);
6e453a67
VP
609 timer_set_deferrable(timer);
610}
6f2b9b9a 611EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 612
55c888d6 613static inline void detach_timer(struct timer_list *timer,
82f67cd9 614 int clear_pending)
55c888d6
ON
615{
616 struct list_head *entry = &timer->entry;
617
2b022e3d 618 debug_deactivate(timer);
c6f3a97f 619
55c888d6
ON
620 __list_del(entry->prev, entry->next);
621 if (clear_pending)
622 entry->next = NULL;
623 entry->prev = LIST_POISON2;
624}
625
626/*
3691c519 627 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
628 * means that all timers which are tied to this base via timer->base are
629 * locked, and the base itself is locked too.
630 *
631 * So __run_timers/migrate_timers can safely modify all timers which could
632 * be found on ->tvX lists.
633 *
634 * When the timer's base is locked, and the timer removed from list, it is
635 * possible to set timer->base = NULL and drop the lock: the timer remains
636 * locked.
637 */
a6fa8e5a 638static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 639 unsigned long *flags)
89e7e374 640 __acquires(timer->base->lock)
55c888d6 641{
a6fa8e5a 642 struct tvec_base *base;
55c888d6
ON
643
644 for (;;) {
a6fa8e5a 645 struct tvec_base *prelock_base = timer->base;
6e453a67 646 base = tbase_get_base(prelock_base);
55c888d6
ON
647 if (likely(base != NULL)) {
648 spin_lock_irqsave(&base->lock, *flags);
6e453a67 649 if (likely(prelock_base == timer->base))
55c888d6
ON
650 return base;
651 /* The timer has migrated to another CPU */
652 spin_unlock_irqrestore(&base->lock, *flags);
653 }
654 cpu_relax();
655 }
656}
657
74019224 658static inline int
597d0275
AB
659__mod_timer(struct timer_list *timer, unsigned long expires,
660 bool pending_only, int pinned)
1da177e4 661{
a6fa8e5a 662 struct tvec_base *base, *new_base;
1da177e4 663 unsigned long flags;
eea08f32 664 int ret = 0 , cpu;
1da177e4 665
82f67cd9 666 timer_stats_timer_set_start_info(timer);
1da177e4 667 BUG_ON(!timer->function);
1da177e4 668
55c888d6
ON
669 base = lock_timer_base(timer, &flags);
670
671 if (timer_pending(timer)) {
672 detach_timer(timer, 0);
97fd9ed4
MS
673 if (timer->expires == base->next_timer &&
674 !tbase_get_deferrable(timer->base))
675 base->next_timer = base->timer_jiffies;
55c888d6 676 ret = 1;
74019224
IM
677 } else {
678 if (pending_only)
679 goto out_unlock;
55c888d6
ON
680 }
681
2b022e3d 682 debug_activate(timer, expires);
c6f3a97f 683
eea08f32
AB
684 cpu = smp_processor_id();
685
686#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
687 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
688 int preferred_cpu = get_nohz_load_balancer();
689
690 if (preferred_cpu >= 0)
691 cpu = preferred_cpu;
692 }
693#endif
694 new_base = per_cpu(tvec_bases, cpu);
695
3691c519 696 if (base != new_base) {
1da177e4 697 /*
55c888d6
ON
698 * We are trying to schedule the timer on the local CPU.
699 * However we can't change timer's base while it is running,
700 * otherwise del_timer_sync() can't detect that the timer's
701 * handler yet has not finished. This also guarantees that
702 * the timer is serialized wrt itself.
1da177e4 703 */
a2c348fe 704 if (likely(base->running_timer != timer)) {
55c888d6 705 /* See the comment in lock_timer_base() */
6e453a67 706 timer_set_base(timer, NULL);
55c888d6 707 spin_unlock(&base->lock);
a2c348fe
ON
708 base = new_base;
709 spin_lock(&base->lock);
6e453a67 710 timer_set_base(timer, base);
1da177e4
LT
711 }
712 }
713
1da177e4 714 timer->expires = expires;
97fd9ed4
MS
715 if (time_before(timer->expires, base->next_timer) &&
716 !tbase_get_deferrable(timer->base))
717 base->next_timer = timer->expires;
a2c348fe 718 internal_add_timer(base, timer);
74019224
IM
719
720out_unlock:
a2c348fe 721 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
722
723 return ret;
724}
725
2aae4a10 726/**
74019224
IM
727 * mod_timer_pending - modify a pending timer's timeout
728 * @timer: the pending timer to be modified
729 * @expires: new timeout in jiffies
1da177e4 730 *
74019224
IM
731 * mod_timer_pending() is the same for pending timers as mod_timer(),
732 * but will not re-activate and modify already deleted timers.
733 *
734 * It is useful for unserialized use of timers.
1da177e4 735 */
74019224 736int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 737{
597d0275 738 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 739}
74019224 740EXPORT_SYMBOL(mod_timer_pending);
1da177e4 741
3bbb9ec9
AV
742/*
743 * Decide where to put the timer while taking the slack into account
744 *
745 * Algorithm:
746 * 1) calculate the maximum (absolute) time
747 * 2) calculate the highest bit where the expires and new max are different
748 * 3) use this bit to make a mask
749 * 4) use the bitmask to round down the maximum time, so that all last
750 * bits are zeros
751 */
752static inline
753unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
754{
755 unsigned long expires_limit, mask;
756 int bit;
757
f00e047e 758 expires_limit = expires;
3bbb9ec9 759
8e63d779 760 if (timer->slack >= 0) {
f00e047e 761 expires_limit = expires + timer->slack;
8e63d779 762 } else {
2abfb9e1 763 unsigned long now = jiffies;
3bbb9ec9 764
8e63d779
TG
765 /* No slack, if already expired else auto slack 0.4% */
766 if (time_after(expires, now))
767 expires_limit = expires + (expires - now)/256;
768 }
3bbb9ec9 769 mask = expires ^ expires_limit;
3bbb9ec9
AV
770 if (mask == 0)
771 return expires;
772
773 bit = find_last_bit(&mask, BITS_PER_LONG);
774
775 mask = (1 << bit) - 1;
776
777 expires_limit = expires_limit & ~(mask);
778
779 return expires_limit;
780}
781
2aae4a10 782/**
1da177e4
LT
783 * mod_timer - modify a timer's timeout
784 * @timer: the timer to be modified
2aae4a10 785 * @expires: new timeout in jiffies
1da177e4 786 *
72fd4a35 787 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
788 * active timer (if the timer is inactive it will be activated)
789 *
790 * mod_timer(timer, expires) is equivalent to:
791 *
792 * del_timer(timer); timer->expires = expires; add_timer(timer);
793 *
794 * Note that if there are multiple unserialized concurrent users of the
795 * same timer, then mod_timer() is the only safe way to modify the timeout,
796 * since add_timer() cannot modify an already running timer.
797 *
798 * The function returns whether it has modified a pending timer or not.
799 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
800 * active timer returns 1.)
801 */
802int mod_timer(struct timer_list *timer, unsigned long expires)
803{
1da177e4
LT
804 /*
805 * This is a common optimization triggered by the
806 * networking code - if the timer is re-modified
807 * to be the same thing then just return:
808 */
4841158b 809 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
810 return 1;
811
3bbb9ec9
AV
812 expires = apply_slack(timer, expires);
813
597d0275 814 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 815}
1da177e4
LT
816EXPORT_SYMBOL(mod_timer);
817
597d0275
AB
818/**
819 * mod_timer_pinned - modify a timer's timeout
820 * @timer: the timer to be modified
821 * @expires: new timeout in jiffies
822 *
823 * mod_timer_pinned() is a way to update the expire field of an
824 * active timer (if the timer is inactive it will be activated)
825 * and not allow the timer to be migrated to a different CPU.
826 *
827 * mod_timer_pinned(timer, expires) is equivalent to:
828 *
829 * del_timer(timer); timer->expires = expires; add_timer(timer);
830 */
831int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
832{
833 if (timer->expires == expires && timer_pending(timer))
834 return 1;
835
836 return __mod_timer(timer, expires, false, TIMER_PINNED);
837}
838EXPORT_SYMBOL(mod_timer_pinned);
839
74019224
IM
840/**
841 * add_timer - start a timer
842 * @timer: the timer to be added
843 *
844 * The kernel will do a ->function(->data) callback from the
845 * timer interrupt at the ->expires point in the future. The
846 * current time is 'jiffies'.
847 *
848 * The timer's ->expires, ->function (and if the handler uses it, ->data)
849 * fields must be set prior calling this function.
850 *
851 * Timers with an ->expires field in the past will be executed in the next
852 * timer tick.
853 */
854void add_timer(struct timer_list *timer)
855{
856 BUG_ON(timer_pending(timer));
857 mod_timer(timer, timer->expires);
858}
859EXPORT_SYMBOL(add_timer);
860
861/**
862 * add_timer_on - start a timer on a particular CPU
863 * @timer: the timer to be added
864 * @cpu: the CPU to start it on
865 *
866 * This is not very scalable on SMP. Double adds are not possible.
867 */
868void add_timer_on(struct timer_list *timer, int cpu)
869{
870 struct tvec_base *base = per_cpu(tvec_bases, cpu);
871 unsigned long flags;
872
873 timer_stats_timer_set_start_info(timer);
874 BUG_ON(timer_pending(timer) || !timer->function);
875 spin_lock_irqsave(&base->lock, flags);
876 timer_set_base(timer, base);
2b022e3d 877 debug_activate(timer, timer->expires);
97fd9ed4
MS
878 if (time_before(timer->expires, base->next_timer) &&
879 !tbase_get_deferrable(timer->base))
880 base->next_timer = timer->expires;
74019224
IM
881 internal_add_timer(base, timer);
882 /*
883 * Check whether the other CPU is idle and needs to be
884 * triggered to reevaluate the timer wheel when nohz is
885 * active. We are protected against the other CPU fiddling
886 * with the timer by holding the timer base lock. This also
887 * makes sure that a CPU on the way to idle can not evaluate
888 * the timer wheel.
889 */
890 wake_up_idle_cpu(cpu);
891 spin_unlock_irqrestore(&base->lock, flags);
892}
a9862e05 893EXPORT_SYMBOL_GPL(add_timer_on);
74019224 894
2aae4a10 895/**
1da177e4
LT
896 * del_timer - deactive a timer.
897 * @timer: the timer to be deactivated
898 *
899 * del_timer() deactivates a timer - this works on both active and inactive
900 * timers.
901 *
902 * The function returns whether it has deactivated a pending timer or not.
903 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
904 * active timer returns 1.)
905 */
906int del_timer(struct timer_list *timer)
907{
a6fa8e5a 908 struct tvec_base *base;
1da177e4 909 unsigned long flags;
55c888d6 910 int ret = 0;
1da177e4 911
82f67cd9 912 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
913 if (timer_pending(timer)) {
914 base = lock_timer_base(timer, &flags);
915 if (timer_pending(timer)) {
916 detach_timer(timer, 1);
97fd9ed4
MS
917 if (timer->expires == base->next_timer &&
918 !tbase_get_deferrable(timer->base))
919 base->next_timer = base->timer_jiffies;
55c888d6
ON
920 ret = 1;
921 }
1da177e4 922 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 923 }
1da177e4 924
55c888d6 925 return ret;
1da177e4 926}
1da177e4
LT
927EXPORT_SYMBOL(del_timer);
928
929#ifdef CONFIG_SMP
2aae4a10
REB
930/**
931 * try_to_del_timer_sync - Try to deactivate a timer
932 * @timer: timer do del
933 *
fd450b73
ON
934 * This function tries to deactivate a timer. Upon successful (ret >= 0)
935 * exit the timer is not queued and the handler is not running on any CPU.
936 *
937 * It must not be called from interrupt contexts.
938 */
939int try_to_del_timer_sync(struct timer_list *timer)
940{
a6fa8e5a 941 struct tvec_base *base;
fd450b73
ON
942 unsigned long flags;
943 int ret = -1;
944
945 base = lock_timer_base(timer, &flags);
946
947 if (base->running_timer == timer)
948 goto out;
949
829b6c1e 950 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
951 ret = 0;
952 if (timer_pending(timer)) {
953 detach_timer(timer, 1);
97fd9ed4
MS
954 if (timer->expires == base->next_timer &&
955 !tbase_get_deferrable(timer->base))
956 base->next_timer = base->timer_jiffies;
fd450b73
ON
957 ret = 1;
958 }
959out:
960 spin_unlock_irqrestore(&base->lock, flags);
961
962 return ret;
963}
e19dff1f
DH
964EXPORT_SYMBOL(try_to_del_timer_sync);
965
2aae4a10 966/**
1da177e4
LT
967 * del_timer_sync - deactivate a timer and wait for the handler to finish.
968 * @timer: the timer to be deactivated
969 *
970 * This function only differs from del_timer() on SMP: besides deactivating
971 * the timer it also makes sure the handler has finished executing on other
972 * CPUs.
973 *
72fd4a35 974 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
975 * otherwise this function is meaningless. It must not be called from
976 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
977 * completion of the timer's handler. The timer's handler must not call
978 * add_timer_on(). Upon exit the timer is not queued and the handler is
979 * not running on any CPU.
1da177e4
LT
980 *
981 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
982 */
983int del_timer_sync(struct timer_list *timer)
984{
6f2b9b9a
JB
985#ifdef CONFIG_LOCKDEP
986 unsigned long flags;
987
988 local_irq_save(flags);
989 lock_map_acquire(&timer->lockdep_map);
990 lock_map_release(&timer->lockdep_map);
991 local_irq_restore(flags);
992#endif
993
fd450b73
ON
994 for (;;) {
995 int ret = try_to_del_timer_sync(timer);
996 if (ret >= 0)
997 return ret;
a0009652 998 cpu_relax();
fd450b73 999 }
1da177e4 1000}
55c888d6 1001EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1002#endif
1003
a6fa8e5a 1004static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1005{
1006 /* cascade all the timers from tv up one level */
3439dd86
P
1007 struct timer_list *timer, *tmp;
1008 struct list_head tv_list;
1009
1010 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1011
1da177e4 1012 /*
3439dd86
P
1013 * We are removing _all_ timers from the list, so we
1014 * don't have to detach them individually.
1da177e4 1015 */
3439dd86 1016 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1017 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1018 internal_add_timer(base, timer);
1da177e4 1019 }
1da177e4
LT
1020
1021 return index;
1022}
1023
576da126
TG
1024static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1025 unsigned long data)
1026{
1027 int preempt_count = preempt_count();
1028
1029#ifdef CONFIG_LOCKDEP
1030 /*
1031 * It is permissible to free the timer from inside the
1032 * function that is called from it, this we need to take into
1033 * account for lockdep too. To avoid bogus "held lock freed"
1034 * warnings as well as problems when looking into
1035 * timer->lockdep_map, make a copy and use that here.
1036 */
1037 struct lockdep_map lockdep_map = timer->lockdep_map;
1038#endif
1039 /*
1040 * Couple the lock chain with the lock chain at
1041 * del_timer_sync() by acquiring the lock_map around the fn()
1042 * call here and in del_timer_sync().
1043 */
1044 lock_map_acquire(&lockdep_map);
1045
1046 trace_timer_expire_entry(timer);
1047 fn(data);
1048 trace_timer_expire_exit(timer);
1049
1050 lock_map_release(&lockdep_map);
1051
1052 if (preempt_count != preempt_count()) {
802702e0
TG
1053 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1054 fn, preempt_count, preempt_count());
1055 /*
1056 * Restore the preempt count. That gives us a decent
1057 * chance to survive and extract information. If the
1058 * callback kept a lock held, bad luck, but not worse
1059 * than the BUG() we had.
1060 */
1061 preempt_count() = preempt_count;
576da126
TG
1062 }
1063}
1064
2aae4a10
REB
1065#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1066
1067/**
1da177e4
LT
1068 * __run_timers - run all expired timers (if any) on this CPU.
1069 * @base: the timer vector to be processed.
1070 *
1071 * This function cascades all vectors and executes all expired timer
1072 * vectors.
1073 */
a6fa8e5a 1074static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1075{
1076 struct timer_list *timer;
1077
3691c519 1078 spin_lock_irq(&base->lock);
1da177e4 1079 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1080 struct list_head work_list;
1da177e4 1081 struct list_head *head = &work_list;
6819457d 1082 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1083
1da177e4
LT
1084 /*
1085 * Cascade timers:
1086 */
1087 if (!index &&
1088 (!cascade(base, &base->tv2, INDEX(0))) &&
1089 (!cascade(base, &base->tv3, INDEX(1))) &&
1090 !cascade(base, &base->tv4, INDEX(2)))
1091 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1092 ++base->timer_jiffies;
1093 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1094 while (!list_empty(head)) {
1da177e4
LT
1095 void (*fn)(unsigned long);
1096 unsigned long data;
1097
b5e61818 1098 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1099 fn = timer->function;
1100 data = timer->data;
1da177e4 1101
82f67cd9
IM
1102 timer_stats_account_timer(timer);
1103
1da177e4 1104 set_running_timer(base, timer);
55c888d6 1105 detach_timer(timer, 1);
6f2b9b9a 1106
3691c519 1107 spin_unlock_irq(&base->lock);
576da126 1108 call_timer_fn(timer, fn, data);
3691c519 1109 spin_lock_irq(&base->lock);
1da177e4
LT
1110 }
1111 }
1112 set_running_timer(base, NULL);
3691c519 1113 spin_unlock_irq(&base->lock);
1da177e4
LT
1114}
1115
ee9c5785 1116#ifdef CONFIG_NO_HZ
1da177e4
LT
1117/*
1118 * Find out when the next timer event is due to happen. This
90cba64a
RD
1119 * is used on S/390 to stop all activity when a CPU is idle.
1120 * This function needs to be called with interrupts disabled.
1da177e4 1121 */
a6fa8e5a 1122static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1123{
1cfd6849 1124 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1125 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1126 int index, slot, array, found = 0;
1da177e4 1127 struct timer_list *nte;
a6fa8e5a 1128 struct tvec *varray[4];
1da177e4
LT
1129
1130 /* Look for timer events in tv1. */
1cfd6849 1131 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1132 do {
1cfd6849 1133 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1134 if (tbase_get_deferrable(nte->base))
1135 continue;
6e453a67 1136
1cfd6849 1137 found = 1;
1da177e4 1138 expires = nte->expires;
1cfd6849
TG
1139 /* Look at the cascade bucket(s)? */
1140 if (!index || slot < index)
1141 goto cascade;
1142 return expires;
1da177e4 1143 }
1cfd6849
TG
1144 slot = (slot + 1) & TVR_MASK;
1145 } while (slot != index);
1146
1147cascade:
1148 /* Calculate the next cascade event */
1149 if (index)
1150 timer_jiffies += TVR_SIZE - index;
1151 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1152
1153 /* Check tv2-tv5. */
1154 varray[0] = &base->tv2;
1155 varray[1] = &base->tv3;
1156 varray[2] = &base->tv4;
1157 varray[3] = &base->tv5;
1cfd6849
TG
1158
1159 for (array = 0; array < 4; array++) {
a6fa8e5a 1160 struct tvec *varp = varray[array];
1cfd6849
TG
1161
1162 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1163 do {
1cfd6849 1164 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1165 if (tbase_get_deferrable(nte->base))
1166 continue;
1167
1cfd6849 1168 found = 1;
1da177e4
LT
1169 if (time_before(nte->expires, expires))
1170 expires = nte->expires;
1cfd6849
TG
1171 }
1172 /*
1173 * Do we still search for the first timer or are
1174 * we looking up the cascade buckets ?
1175 */
1176 if (found) {
1177 /* Look at the cascade bucket(s)? */
1178 if (!index || slot < index)
1179 break;
1180 return expires;
1181 }
1182 slot = (slot + 1) & TVN_MASK;
1183 } while (slot != index);
1184
1185 if (index)
1186 timer_jiffies += TVN_SIZE - index;
1187 timer_jiffies >>= TVN_BITS;
1da177e4 1188 }
1cfd6849
TG
1189 return expires;
1190}
69239749 1191
1cfd6849
TG
1192/*
1193 * Check, if the next hrtimer event is before the next timer wheel
1194 * event:
1195 */
1196static unsigned long cmp_next_hrtimer_event(unsigned long now,
1197 unsigned long expires)
1198{
1199 ktime_t hr_delta = hrtimer_get_next_event();
1200 struct timespec tsdelta;
9501b6cf 1201 unsigned long delta;
1cfd6849
TG
1202
1203 if (hr_delta.tv64 == KTIME_MAX)
1204 return expires;
0662b713 1205
9501b6cf
TG
1206 /*
1207 * Expired timer available, let it expire in the next tick
1208 */
1209 if (hr_delta.tv64 <= 0)
1210 return now + 1;
69239749 1211
1cfd6849 1212 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1213 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1214
1215 /*
1216 * Limit the delta to the max value, which is checked in
1217 * tick_nohz_stop_sched_tick():
1218 */
1219 if (delta > NEXT_TIMER_MAX_DELTA)
1220 delta = NEXT_TIMER_MAX_DELTA;
1221
9501b6cf
TG
1222 /*
1223 * Take rounding errors in to account and make sure, that it
1224 * expires in the next tick. Otherwise we go into an endless
1225 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1226 * the timer softirq
1227 */
1228 if (delta < 1)
1229 delta = 1;
1230 now += delta;
1cfd6849
TG
1231 if (time_before(now, expires))
1232 return now;
1da177e4
LT
1233 return expires;
1234}
1cfd6849
TG
1235
1236/**
8dce39c2 1237 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1238 * @now: current time (in jiffies)
1cfd6849 1239 */
fd064b9b 1240unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1241{
a6fa8e5a 1242 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1243 unsigned long expires;
1cfd6849
TG
1244
1245 spin_lock(&base->lock);
97fd9ed4
MS
1246 if (time_before_eq(base->next_timer, base->timer_jiffies))
1247 base->next_timer = __next_timer_interrupt(base);
1248 expires = base->next_timer;
1cfd6849
TG
1249 spin_unlock(&base->lock);
1250
1251 if (time_before_eq(expires, now))
1252 return now;
1253
1254 return cmp_next_hrtimer_event(now, expires);
1255}
1da177e4
LT
1256#endif
1257
1da177e4 1258/*
5b4db0c2 1259 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1260 * process. user_tick is 1 if the tick is user time, 0 for system.
1261 */
1262void update_process_times(int user_tick)
1263{
1264 struct task_struct *p = current;
1265 int cpu = smp_processor_id();
1266
1267 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1268 account_process_tick(p, user_tick);
1da177e4 1269 run_local_timers();
a157229c 1270 rcu_check_callbacks(cpu, user_tick);
b845b517 1271 printk_tick();
fe432200 1272 perf_event_do_pending();
1da177e4 1273 scheduler_tick();
6819457d 1274 run_posix_cpu_timers(p);
1da177e4
LT
1275}
1276
1da177e4
LT
1277/*
1278 * This function runs timers and the timer-tq in bottom half context.
1279 */
1280static void run_timer_softirq(struct softirq_action *h)
1281{
a6fa8e5a 1282 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1283
d3d74453 1284 hrtimer_run_pending();
82f67cd9 1285
1da177e4
LT
1286 if (time_after_eq(jiffies, base->timer_jiffies))
1287 __run_timers(base);
1288}
1289
1290/*
1291 * Called by the local, per-CPU timer interrupt on SMP.
1292 */
1293void run_local_timers(void)
1294{
d3d74453 1295 hrtimer_run_queues();
1da177e4 1296 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1297 softlockup_tick();
1da177e4
LT
1298}
1299
1da177e4
LT
1300/*
1301 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1302 * without sampling the sequence number in xtime_lock.
1303 * jiffies is defined in the linker script...
1304 */
1305
3171a030 1306void do_timer(unsigned long ticks)
1da177e4 1307{
3171a030 1308 jiffies_64 += ticks;
dce48a84
TG
1309 update_wall_time();
1310 calc_global_load();
1da177e4
LT
1311}
1312
1313#ifdef __ARCH_WANT_SYS_ALARM
1314
1315/*
1316 * For backwards compatibility? This can be done in libc so Alpha
1317 * and all newer ports shouldn't need it.
1318 */
58fd3aa2 1319SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1320{
c08b8a49 1321 return alarm_setitimer(seconds);
1da177e4
LT
1322}
1323
1324#endif
1325
1326#ifndef __alpha__
1327
1328/*
1329 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1330 * should be moved into arch/i386 instead?
1331 */
1332
1333/**
1334 * sys_getpid - return the thread group id of the current process
1335 *
1336 * Note, despite the name, this returns the tgid not the pid. The tgid and
1337 * the pid are identical unless CLONE_THREAD was specified on clone() in
1338 * which case the tgid is the same in all threads of the same group.
1339 *
1340 * This is SMP safe as current->tgid does not change.
1341 */
58fd3aa2 1342SYSCALL_DEFINE0(getpid)
1da177e4 1343{
b488893a 1344 return task_tgid_vnr(current);
1da177e4
LT
1345}
1346
1347/*
6997a6fa
KK
1348 * Accessing ->real_parent is not SMP-safe, it could
1349 * change from under us. However, we can use a stale
1350 * value of ->real_parent under rcu_read_lock(), see
1351 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1352 */
dbf040d9 1353SYSCALL_DEFINE0(getppid)
1da177e4
LT
1354{
1355 int pid;
1da177e4 1356
6997a6fa 1357 rcu_read_lock();
6c5f3e7b 1358 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1359 rcu_read_unlock();
1da177e4 1360
1da177e4
LT
1361 return pid;
1362}
1363
dbf040d9 1364SYSCALL_DEFINE0(getuid)
1da177e4
LT
1365{
1366 /* Only we change this so SMP safe */
76aac0e9 1367 return current_uid();
1da177e4
LT
1368}
1369
dbf040d9 1370SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1371{
1372 /* Only we change this so SMP safe */
76aac0e9 1373 return current_euid();
1da177e4
LT
1374}
1375
dbf040d9 1376SYSCALL_DEFINE0(getgid)
1da177e4
LT
1377{
1378 /* Only we change this so SMP safe */
76aac0e9 1379 return current_gid();
1da177e4
LT
1380}
1381
dbf040d9 1382SYSCALL_DEFINE0(getegid)
1da177e4
LT
1383{
1384 /* Only we change this so SMP safe */
76aac0e9 1385 return current_egid();
1da177e4
LT
1386}
1387
1388#endif
1389
1390static void process_timeout(unsigned long __data)
1391{
36c8b586 1392 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1393}
1394
1395/**
1396 * schedule_timeout - sleep until timeout
1397 * @timeout: timeout value in jiffies
1398 *
1399 * Make the current task sleep until @timeout jiffies have
1400 * elapsed. The routine will return immediately unless
1401 * the current task state has been set (see set_current_state()).
1402 *
1403 * You can set the task state as follows -
1404 *
1405 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1406 * pass before the routine returns. The routine will return 0
1407 *
1408 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1409 * delivered to the current task. In this case the remaining time
1410 * in jiffies will be returned, or 0 if the timer expired in time
1411 *
1412 * The current task state is guaranteed to be TASK_RUNNING when this
1413 * routine returns.
1414 *
1415 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1416 * the CPU away without a bound on the timeout. In this case the return
1417 * value will be %MAX_SCHEDULE_TIMEOUT.
1418 *
1419 * In all cases the return value is guaranteed to be non-negative.
1420 */
7ad5b3a5 1421signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1422{
1423 struct timer_list timer;
1424 unsigned long expire;
1425
1426 switch (timeout)
1427 {
1428 case MAX_SCHEDULE_TIMEOUT:
1429 /*
1430 * These two special cases are useful to be comfortable
1431 * in the caller. Nothing more. We could take
1432 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1433 * but I' d like to return a valid offset (>=0) to allow
1434 * the caller to do everything it want with the retval.
1435 */
1436 schedule();
1437 goto out;
1438 default:
1439 /*
1440 * Another bit of PARANOID. Note that the retval will be
1441 * 0 since no piece of kernel is supposed to do a check
1442 * for a negative retval of schedule_timeout() (since it
1443 * should never happens anyway). You just have the printk()
1444 * that will tell you if something is gone wrong and where.
1445 */
5b149bcc 1446 if (timeout < 0) {
1da177e4 1447 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1448 "value %lx\n", timeout);
1449 dump_stack();
1da177e4
LT
1450 current->state = TASK_RUNNING;
1451 goto out;
1452 }
1453 }
1454
1455 expire = timeout + jiffies;
1456
c6f3a97f 1457 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1458 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1459 schedule();
1460 del_singleshot_timer_sync(&timer);
1461
c6f3a97f
TG
1462 /* Remove the timer from the object tracker */
1463 destroy_timer_on_stack(&timer);
1464
1da177e4
LT
1465 timeout = expire - jiffies;
1466
1467 out:
1468 return timeout < 0 ? 0 : timeout;
1469}
1da177e4
LT
1470EXPORT_SYMBOL(schedule_timeout);
1471
8a1c1757
AM
1472/*
1473 * We can use __set_current_state() here because schedule_timeout() calls
1474 * schedule() unconditionally.
1475 */
64ed93a2
NA
1476signed long __sched schedule_timeout_interruptible(signed long timeout)
1477{
a5a0d52c
AM
1478 __set_current_state(TASK_INTERRUPTIBLE);
1479 return schedule_timeout(timeout);
64ed93a2
NA
1480}
1481EXPORT_SYMBOL(schedule_timeout_interruptible);
1482
294d5cc2
MW
1483signed long __sched schedule_timeout_killable(signed long timeout)
1484{
1485 __set_current_state(TASK_KILLABLE);
1486 return schedule_timeout(timeout);
1487}
1488EXPORT_SYMBOL(schedule_timeout_killable);
1489
64ed93a2
NA
1490signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1491{
a5a0d52c
AM
1492 __set_current_state(TASK_UNINTERRUPTIBLE);
1493 return schedule_timeout(timeout);
64ed93a2
NA
1494}
1495EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1496
1da177e4 1497/* Thread ID - the internal kernel "pid" */
58fd3aa2 1498SYSCALL_DEFINE0(gettid)
1da177e4 1499{
b488893a 1500 return task_pid_vnr(current);
1da177e4
LT
1501}
1502
2aae4a10 1503/**
d4d23add 1504 * do_sysinfo - fill in sysinfo struct
2aae4a10 1505 * @info: pointer to buffer to fill
6819457d 1506 */
d4d23add 1507int do_sysinfo(struct sysinfo *info)
1da177e4 1508{
1da177e4
LT
1509 unsigned long mem_total, sav_total;
1510 unsigned int mem_unit, bitcount;
2d02494f 1511 struct timespec tp;
1da177e4 1512
d4d23add 1513 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1514
2d02494f
TG
1515 ktime_get_ts(&tp);
1516 monotonic_to_bootbased(&tp);
1517 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1518
2d02494f 1519 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1520
2d02494f 1521 info->procs = nr_threads;
1da177e4 1522
d4d23add
KM
1523 si_meminfo(info);
1524 si_swapinfo(info);
1da177e4
LT
1525
1526 /*
1527 * If the sum of all the available memory (i.e. ram + swap)
1528 * is less than can be stored in a 32 bit unsigned long then
1529 * we can be binary compatible with 2.2.x kernels. If not,
1530 * well, in that case 2.2.x was broken anyways...
1531 *
1532 * -Erik Andersen <andersee@debian.org>
1533 */
1534
d4d23add
KM
1535 mem_total = info->totalram + info->totalswap;
1536 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1537 goto out;
1538 bitcount = 0;
d4d23add 1539 mem_unit = info->mem_unit;
1da177e4
LT
1540 while (mem_unit > 1) {
1541 bitcount++;
1542 mem_unit >>= 1;
1543 sav_total = mem_total;
1544 mem_total <<= 1;
1545 if (mem_total < sav_total)
1546 goto out;
1547 }
1548
1549 /*
1550 * If mem_total did not overflow, multiply all memory values by
d4d23add 1551 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1552 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1553 * kernels...
1554 */
1555
d4d23add
KM
1556 info->mem_unit = 1;
1557 info->totalram <<= bitcount;
1558 info->freeram <<= bitcount;
1559 info->sharedram <<= bitcount;
1560 info->bufferram <<= bitcount;
1561 info->totalswap <<= bitcount;
1562 info->freeswap <<= bitcount;
1563 info->totalhigh <<= bitcount;
1564 info->freehigh <<= bitcount;
1565
1566out:
1567 return 0;
1568}
1569
1e7bfb21 1570SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1571{
1572 struct sysinfo val;
1573
1574 do_sysinfo(&val);
1da177e4 1575
1da177e4
LT
1576 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1577 return -EFAULT;
1578
1579 return 0;
1580}
1581
b4be6258 1582static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1583{
1584 int j;
a6fa8e5a 1585 struct tvec_base *base;
b4be6258 1586 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1587
ba6edfcd 1588 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1589 static char boot_done;
1590
a4a6198b 1591 if (boot_done) {
ba6edfcd
AM
1592 /*
1593 * The APs use this path later in boot
1594 */
94f6030c
CL
1595 base = kmalloc_node(sizeof(*base),
1596 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1597 cpu_to_node(cpu));
1598 if (!base)
1599 return -ENOMEM;
6e453a67
VP
1600
1601 /* Make sure that tvec_base is 2 byte aligned */
1602 if (tbase_get_deferrable(base)) {
1603 WARN_ON(1);
1604 kfree(base);
1605 return -ENOMEM;
1606 }
ba6edfcd 1607 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1608 } else {
ba6edfcd
AM
1609 /*
1610 * This is for the boot CPU - we use compile-time
1611 * static initialisation because per-cpu memory isn't
1612 * ready yet and because the memory allocators are not
1613 * initialised either.
1614 */
a4a6198b 1615 boot_done = 1;
ba6edfcd 1616 base = &boot_tvec_bases;
a4a6198b 1617 }
ba6edfcd
AM
1618 tvec_base_done[cpu] = 1;
1619 } else {
1620 base = per_cpu(tvec_bases, cpu);
a4a6198b 1621 }
ba6edfcd 1622
3691c519 1623 spin_lock_init(&base->lock);
d730e882 1624
1da177e4
LT
1625 for (j = 0; j < TVN_SIZE; j++) {
1626 INIT_LIST_HEAD(base->tv5.vec + j);
1627 INIT_LIST_HEAD(base->tv4.vec + j);
1628 INIT_LIST_HEAD(base->tv3.vec + j);
1629 INIT_LIST_HEAD(base->tv2.vec + j);
1630 }
1631 for (j = 0; j < TVR_SIZE; j++)
1632 INIT_LIST_HEAD(base->tv1.vec + j);
1633
1634 base->timer_jiffies = jiffies;
97fd9ed4 1635 base->next_timer = base->timer_jiffies;
a4a6198b 1636 return 0;
1da177e4
LT
1637}
1638
1639#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1640static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1641{
1642 struct timer_list *timer;
1643
1644 while (!list_empty(head)) {
b5e61818 1645 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1646 detach_timer(timer, 0);
6e453a67 1647 timer_set_base(timer, new_base);
97fd9ed4
MS
1648 if (time_before(timer->expires, new_base->next_timer) &&
1649 !tbase_get_deferrable(timer->base))
1650 new_base->next_timer = timer->expires;
1da177e4 1651 internal_add_timer(new_base, timer);
1da177e4 1652 }
1da177e4
LT
1653}
1654
48ccf3da 1655static void __cpuinit migrate_timers(int cpu)
1da177e4 1656{
a6fa8e5a
PM
1657 struct tvec_base *old_base;
1658 struct tvec_base *new_base;
1da177e4
LT
1659 int i;
1660
1661 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1662 old_base = per_cpu(tvec_bases, cpu);
1663 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1664 /*
1665 * The caller is globally serialized and nobody else
1666 * takes two locks at once, deadlock is not possible.
1667 */
1668 spin_lock_irq(&new_base->lock);
0d180406 1669 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1670
1671 BUG_ON(old_base->running_timer);
1da177e4 1672
1da177e4 1673 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1674 migrate_timer_list(new_base, old_base->tv1.vec + i);
1675 for (i = 0; i < TVN_SIZE; i++) {
1676 migrate_timer_list(new_base, old_base->tv2.vec + i);
1677 migrate_timer_list(new_base, old_base->tv3.vec + i);
1678 migrate_timer_list(new_base, old_base->tv4.vec + i);
1679 migrate_timer_list(new_base, old_base->tv5.vec + i);
1680 }
1681
0d180406 1682 spin_unlock(&old_base->lock);
d82f0b0f 1683 spin_unlock_irq(&new_base->lock);
1da177e4 1684 put_cpu_var(tvec_bases);
1da177e4
LT
1685}
1686#endif /* CONFIG_HOTPLUG_CPU */
1687
8c78f307 1688static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1689 unsigned long action, void *hcpu)
1690{
1691 long cpu = (long)hcpu;
80b5184c
AM
1692 int err;
1693
1da177e4
LT
1694 switch(action) {
1695 case CPU_UP_PREPARE:
8bb78442 1696 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1697 err = init_timers_cpu(cpu);
1698 if (err < 0)
1699 return notifier_from_errno(err);
1da177e4
LT
1700 break;
1701#ifdef CONFIG_HOTPLUG_CPU
1702 case CPU_DEAD:
8bb78442 1703 case CPU_DEAD_FROZEN:
1da177e4
LT
1704 migrate_timers(cpu);
1705 break;
1706#endif
1707 default:
1708 break;
1709 }
1710 return NOTIFY_OK;
1711}
1712
8c78f307 1713static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1714 .notifier_call = timer_cpu_notify,
1715};
1716
1717
1718void __init init_timers(void)
1719{
07dccf33 1720 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1721 (void *)(long)smp_processor_id());
07dccf33 1722
82f67cd9
IM
1723 init_timer_stats();
1724
9e506f7a 1725 BUG_ON(err != NOTIFY_OK);
1da177e4 1726 register_cpu_notifier(&timers_nb);
962cf36c 1727 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1728}
1729
1da177e4
LT
1730/**
1731 * msleep - sleep safely even with waitqueue interruptions
1732 * @msecs: Time in milliseconds to sleep for
1733 */
1734void msleep(unsigned int msecs)
1735{
1736 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1737
75bcc8c5
NA
1738 while (timeout)
1739 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1740}
1741
1742EXPORT_SYMBOL(msleep);
1743
1744/**
96ec3efd 1745 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1746 * @msecs: Time in milliseconds to sleep for
1747 */
1748unsigned long msleep_interruptible(unsigned int msecs)
1749{
1750 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1751
75bcc8c5
NA
1752 while (timeout && !signal_pending(current))
1753 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1754 return jiffies_to_msecs(timeout);
1755}
1756
1757EXPORT_SYMBOL(msleep_interruptible);
This page took 0.689499 seconds and 5 git commands to generate.