timer: Setup uninitialized timer with a stub callback
[deliverable/linux.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
a6fa8e5a 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
334{
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373}
374
82f67cd9
IM
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384}
c5c061b8
VP
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388 unsigned int flag = 0;
389
507e1231
HC
390 if (likely(!timer->start_site))
391 return;
c5c061b8
VP
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
401#endif
402
c6f3a97f
TG
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
99777288
SG
407static void *timer_debug_hint(void *addr)
408{
409 return ((struct timer_list *) addr)->function;
410}
411
c6f3a97f
TG
412/*
413 * fixup_init is called when:
414 * - an active object is initialized
55c888d6 415 */
c6f3a97f
TG
416static int timer_fixup_init(void *addr, enum debug_obj_state state)
417{
418 struct timer_list *timer = addr;
419
420 switch (state) {
421 case ODEBUG_STATE_ACTIVE:
422 del_timer_sync(timer);
423 debug_object_init(timer, &timer_debug_descr);
424 return 1;
425 default:
426 return 0;
427 }
428}
429
fb16b8cf
SB
430/* Stub timer callback for improperly used timers. */
431static void stub_timer(unsigned long data)
432{
433 WARN_ON(1);
434}
435
c6f3a97f
TG
436/*
437 * fixup_activate is called when:
438 * - an active object is activated
439 * - an unknown object is activated (might be a statically initialized object)
440 */
441static int timer_fixup_activate(void *addr, enum debug_obj_state state)
442{
443 struct timer_list *timer = addr;
444
445 switch (state) {
446
447 case ODEBUG_STATE_NOTAVAILABLE:
448 /*
449 * This is not really a fixup. The timer was
450 * statically initialized. We just make sure that it
451 * is tracked in the object tracker.
452 */
453 if (timer->entry.next == NULL &&
454 timer->entry.prev == TIMER_ENTRY_STATIC) {
455 debug_object_init(timer, &timer_debug_descr);
456 debug_object_activate(timer, &timer_debug_descr);
457 return 0;
458 } else {
fb16b8cf
SB
459 setup_timer(timer, stub_timer, 0);
460 return 1;
c6f3a97f
TG
461 }
462 return 0;
463
464 case ODEBUG_STATE_ACTIVE:
465 WARN_ON(1);
466
467 default:
468 return 0;
469 }
470}
471
472/*
473 * fixup_free is called when:
474 * - an active object is freed
475 */
476static int timer_fixup_free(void *addr, enum debug_obj_state state)
477{
478 struct timer_list *timer = addr;
479
480 switch (state) {
481 case ODEBUG_STATE_ACTIVE:
482 del_timer_sync(timer);
483 debug_object_free(timer, &timer_debug_descr);
484 return 1;
485 default:
486 return 0;
487 }
488}
489
490static struct debug_obj_descr timer_debug_descr = {
491 .name = "timer_list",
99777288 492 .debug_hint = timer_debug_hint,
c6f3a97f
TG
493 .fixup_init = timer_fixup_init,
494 .fixup_activate = timer_fixup_activate,
495 .fixup_free = timer_fixup_free,
496};
497
498static inline void debug_timer_init(struct timer_list *timer)
499{
500 debug_object_init(timer, &timer_debug_descr);
501}
502
503static inline void debug_timer_activate(struct timer_list *timer)
504{
505 debug_object_activate(timer, &timer_debug_descr);
506}
507
508static inline void debug_timer_deactivate(struct timer_list *timer)
509{
510 debug_object_deactivate(timer, &timer_debug_descr);
511}
512
513static inline void debug_timer_free(struct timer_list *timer)
514{
515 debug_object_free(timer, &timer_debug_descr);
516}
517
6f2b9b9a
JB
518static void __init_timer(struct timer_list *timer,
519 const char *name,
520 struct lock_class_key *key);
c6f3a97f 521
6f2b9b9a
JB
522void init_timer_on_stack_key(struct timer_list *timer,
523 const char *name,
524 struct lock_class_key *key)
c6f3a97f
TG
525{
526 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 527 __init_timer(timer, name, key);
c6f3a97f 528}
6f2b9b9a 529EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
530
531void destroy_timer_on_stack(struct timer_list *timer)
532{
533 debug_object_free(timer, &timer_debug_descr);
534}
535EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
536
537#else
538static inline void debug_timer_init(struct timer_list *timer) { }
539static inline void debug_timer_activate(struct timer_list *timer) { }
540static inline void debug_timer_deactivate(struct timer_list *timer) { }
541#endif
542
2b022e3d
XG
543static inline void debug_init(struct timer_list *timer)
544{
545 debug_timer_init(timer);
546 trace_timer_init(timer);
547}
548
549static inline void
550debug_activate(struct timer_list *timer, unsigned long expires)
551{
552 debug_timer_activate(timer);
553 trace_timer_start(timer, expires);
554}
555
556static inline void debug_deactivate(struct timer_list *timer)
557{
558 debug_timer_deactivate(timer);
559 trace_timer_cancel(timer);
560}
561
6f2b9b9a
JB
562static void __init_timer(struct timer_list *timer,
563 const char *name,
564 struct lock_class_key *key)
55c888d6
ON
565{
566 timer->entry.next = NULL;
bfe5d834 567 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 568 timer->slack = -1;
82f67cd9
IM
569#ifdef CONFIG_TIMER_STATS
570 timer->start_site = NULL;
571 timer->start_pid = -1;
572 memset(timer->start_comm, 0, TASK_COMM_LEN);
573#endif
6f2b9b9a 574 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 575}
c6f3a97f 576
8cadd283
JB
577void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
578 const char *name,
579 struct lock_class_key *key,
580 void (*function)(unsigned long),
581 unsigned long data)
582{
583 timer->function = function;
584 timer->data = data;
585 init_timer_on_stack_key(timer, name, key);
586 timer_set_deferrable(timer);
587}
588EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
589
c6f3a97f 590/**
633fe795 591 * init_timer_key - initialize a timer
c6f3a97f 592 * @timer: the timer to be initialized
633fe795
RD
593 * @name: name of the timer
594 * @key: lockdep class key of the fake lock used for tracking timer
595 * sync lock dependencies
c6f3a97f 596 *
633fe795 597 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
598 * other timer functions.
599 */
6f2b9b9a
JB
600void init_timer_key(struct timer_list *timer,
601 const char *name,
602 struct lock_class_key *key)
c6f3a97f 603{
2b022e3d 604 debug_init(timer);
6f2b9b9a 605 __init_timer(timer, name, key);
c6f3a97f 606}
6f2b9b9a 607EXPORT_SYMBOL(init_timer_key);
55c888d6 608
6f2b9b9a
JB
609void init_timer_deferrable_key(struct timer_list *timer,
610 const char *name,
611 struct lock_class_key *key)
6e453a67 612{
6f2b9b9a 613 init_timer_key(timer, name, key);
6e453a67
VP
614 timer_set_deferrable(timer);
615}
6f2b9b9a 616EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 617
55c888d6 618static inline void detach_timer(struct timer_list *timer,
82f67cd9 619 int clear_pending)
55c888d6
ON
620{
621 struct list_head *entry = &timer->entry;
622
2b022e3d 623 debug_deactivate(timer);
c6f3a97f 624
55c888d6
ON
625 __list_del(entry->prev, entry->next);
626 if (clear_pending)
627 entry->next = NULL;
628 entry->prev = LIST_POISON2;
629}
630
631/*
3691c519 632 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
633 * means that all timers which are tied to this base via timer->base are
634 * locked, and the base itself is locked too.
635 *
636 * So __run_timers/migrate_timers can safely modify all timers which could
637 * be found on ->tvX lists.
638 *
639 * When the timer's base is locked, and the timer removed from list, it is
640 * possible to set timer->base = NULL and drop the lock: the timer remains
641 * locked.
642 */
a6fa8e5a 643static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 644 unsigned long *flags)
89e7e374 645 __acquires(timer->base->lock)
55c888d6 646{
a6fa8e5a 647 struct tvec_base *base;
55c888d6
ON
648
649 for (;;) {
a6fa8e5a 650 struct tvec_base *prelock_base = timer->base;
6e453a67 651 base = tbase_get_base(prelock_base);
55c888d6
ON
652 if (likely(base != NULL)) {
653 spin_lock_irqsave(&base->lock, *flags);
6e453a67 654 if (likely(prelock_base == timer->base))
55c888d6
ON
655 return base;
656 /* The timer has migrated to another CPU */
657 spin_unlock_irqrestore(&base->lock, *flags);
658 }
659 cpu_relax();
660 }
661}
662
74019224 663static inline int
597d0275
AB
664__mod_timer(struct timer_list *timer, unsigned long expires,
665 bool pending_only, int pinned)
1da177e4 666{
a6fa8e5a 667 struct tvec_base *base, *new_base;
1da177e4 668 unsigned long flags;
eea08f32 669 int ret = 0 , cpu;
1da177e4 670
82f67cd9 671 timer_stats_timer_set_start_info(timer);
1da177e4 672 BUG_ON(!timer->function);
1da177e4 673
55c888d6
ON
674 base = lock_timer_base(timer, &flags);
675
676 if (timer_pending(timer)) {
677 detach_timer(timer, 0);
97fd9ed4
MS
678 if (timer->expires == base->next_timer &&
679 !tbase_get_deferrable(timer->base))
680 base->next_timer = base->timer_jiffies;
55c888d6 681 ret = 1;
74019224
IM
682 } else {
683 if (pending_only)
684 goto out_unlock;
55c888d6
ON
685 }
686
2b022e3d 687 debug_activate(timer, expires);
c6f3a97f 688
eea08f32
AB
689 cpu = smp_processor_id();
690
691#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
692 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
693 cpu = get_nohz_timer_target();
eea08f32
AB
694#endif
695 new_base = per_cpu(tvec_bases, cpu);
696
3691c519 697 if (base != new_base) {
1da177e4 698 /*
55c888d6
ON
699 * We are trying to schedule the timer on the local CPU.
700 * However we can't change timer's base while it is running,
701 * otherwise del_timer_sync() can't detect that the timer's
702 * handler yet has not finished. This also guarantees that
703 * the timer is serialized wrt itself.
1da177e4 704 */
a2c348fe 705 if (likely(base->running_timer != timer)) {
55c888d6 706 /* See the comment in lock_timer_base() */
6e453a67 707 timer_set_base(timer, NULL);
55c888d6 708 spin_unlock(&base->lock);
a2c348fe
ON
709 base = new_base;
710 spin_lock(&base->lock);
6e453a67 711 timer_set_base(timer, base);
1da177e4
LT
712 }
713 }
714
1da177e4 715 timer->expires = expires;
97fd9ed4
MS
716 if (time_before(timer->expires, base->next_timer) &&
717 !tbase_get_deferrable(timer->base))
718 base->next_timer = timer->expires;
a2c348fe 719 internal_add_timer(base, timer);
74019224
IM
720
721out_unlock:
a2c348fe 722 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
723
724 return ret;
725}
726
2aae4a10 727/**
74019224
IM
728 * mod_timer_pending - modify a pending timer's timeout
729 * @timer: the pending timer to be modified
730 * @expires: new timeout in jiffies
1da177e4 731 *
74019224
IM
732 * mod_timer_pending() is the same for pending timers as mod_timer(),
733 * but will not re-activate and modify already deleted timers.
734 *
735 * It is useful for unserialized use of timers.
1da177e4 736 */
74019224 737int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 738{
597d0275 739 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 740}
74019224 741EXPORT_SYMBOL(mod_timer_pending);
1da177e4 742
3bbb9ec9
AV
743/*
744 * Decide where to put the timer while taking the slack into account
745 *
746 * Algorithm:
747 * 1) calculate the maximum (absolute) time
748 * 2) calculate the highest bit where the expires and new max are different
749 * 3) use this bit to make a mask
750 * 4) use the bitmask to round down the maximum time, so that all last
751 * bits are zeros
752 */
753static inline
754unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
755{
756 unsigned long expires_limit, mask;
757 int bit;
758
8e63d779 759 if (timer->slack >= 0) {
f00e047e 760 expires_limit = expires + timer->slack;
8e63d779 761 } else {
1c3cc116
SAS
762 long delta = expires - jiffies;
763
764 if (delta < 256)
765 return expires;
3bbb9ec9 766
1c3cc116 767 expires_limit = expires + delta / 256;
8e63d779 768 }
3bbb9ec9 769 mask = expires ^ expires_limit;
3bbb9ec9
AV
770 if (mask == 0)
771 return expires;
772
773 bit = find_last_bit(&mask, BITS_PER_LONG);
774
775 mask = (1 << bit) - 1;
776
777 expires_limit = expires_limit & ~(mask);
778
779 return expires_limit;
780}
781
2aae4a10 782/**
1da177e4
LT
783 * mod_timer - modify a timer's timeout
784 * @timer: the timer to be modified
2aae4a10 785 * @expires: new timeout in jiffies
1da177e4 786 *
72fd4a35 787 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
788 * active timer (if the timer is inactive it will be activated)
789 *
790 * mod_timer(timer, expires) is equivalent to:
791 *
792 * del_timer(timer); timer->expires = expires; add_timer(timer);
793 *
794 * Note that if there are multiple unserialized concurrent users of the
795 * same timer, then mod_timer() is the only safe way to modify the timeout,
796 * since add_timer() cannot modify an already running timer.
797 *
798 * The function returns whether it has modified a pending timer or not.
799 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
800 * active timer returns 1.)
801 */
802int mod_timer(struct timer_list *timer, unsigned long expires)
803{
1c3cc116
SAS
804 expires = apply_slack(timer, expires);
805
1da177e4
LT
806 /*
807 * This is a common optimization triggered by the
808 * networking code - if the timer is re-modified
809 * to be the same thing then just return:
810 */
4841158b 811 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
812 return 1;
813
597d0275 814 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 815}
1da177e4
LT
816EXPORT_SYMBOL(mod_timer);
817
597d0275
AB
818/**
819 * mod_timer_pinned - modify a timer's timeout
820 * @timer: the timer to be modified
821 * @expires: new timeout in jiffies
822 *
823 * mod_timer_pinned() is a way to update the expire field of an
824 * active timer (if the timer is inactive it will be activated)
825 * and not allow the timer to be migrated to a different CPU.
826 *
827 * mod_timer_pinned(timer, expires) is equivalent to:
828 *
829 * del_timer(timer); timer->expires = expires; add_timer(timer);
830 */
831int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
832{
833 if (timer->expires == expires && timer_pending(timer))
834 return 1;
835
836 return __mod_timer(timer, expires, false, TIMER_PINNED);
837}
838EXPORT_SYMBOL(mod_timer_pinned);
839
74019224
IM
840/**
841 * add_timer - start a timer
842 * @timer: the timer to be added
843 *
844 * The kernel will do a ->function(->data) callback from the
845 * timer interrupt at the ->expires point in the future. The
846 * current time is 'jiffies'.
847 *
848 * The timer's ->expires, ->function (and if the handler uses it, ->data)
849 * fields must be set prior calling this function.
850 *
851 * Timers with an ->expires field in the past will be executed in the next
852 * timer tick.
853 */
854void add_timer(struct timer_list *timer)
855{
856 BUG_ON(timer_pending(timer));
857 mod_timer(timer, timer->expires);
858}
859EXPORT_SYMBOL(add_timer);
860
861/**
862 * add_timer_on - start a timer on a particular CPU
863 * @timer: the timer to be added
864 * @cpu: the CPU to start it on
865 *
866 * This is not very scalable on SMP. Double adds are not possible.
867 */
868void add_timer_on(struct timer_list *timer, int cpu)
869{
870 struct tvec_base *base = per_cpu(tvec_bases, cpu);
871 unsigned long flags;
872
873 timer_stats_timer_set_start_info(timer);
874 BUG_ON(timer_pending(timer) || !timer->function);
875 spin_lock_irqsave(&base->lock, flags);
876 timer_set_base(timer, base);
2b022e3d 877 debug_activate(timer, timer->expires);
97fd9ed4
MS
878 if (time_before(timer->expires, base->next_timer) &&
879 !tbase_get_deferrable(timer->base))
880 base->next_timer = timer->expires;
74019224
IM
881 internal_add_timer(base, timer);
882 /*
883 * Check whether the other CPU is idle and needs to be
884 * triggered to reevaluate the timer wheel when nohz is
885 * active. We are protected against the other CPU fiddling
886 * with the timer by holding the timer base lock. This also
887 * makes sure that a CPU on the way to idle can not evaluate
888 * the timer wheel.
889 */
890 wake_up_idle_cpu(cpu);
891 spin_unlock_irqrestore(&base->lock, flags);
892}
a9862e05 893EXPORT_SYMBOL_GPL(add_timer_on);
74019224 894
2aae4a10 895/**
1da177e4
LT
896 * del_timer - deactive a timer.
897 * @timer: the timer to be deactivated
898 *
899 * del_timer() deactivates a timer - this works on both active and inactive
900 * timers.
901 *
902 * The function returns whether it has deactivated a pending timer or not.
903 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
904 * active timer returns 1.)
905 */
906int del_timer(struct timer_list *timer)
907{
a6fa8e5a 908 struct tvec_base *base;
1da177e4 909 unsigned long flags;
55c888d6 910 int ret = 0;
1da177e4 911
82f67cd9 912 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
913 if (timer_pending(timer)) {
914 base = lock_timer_base(timer, &flags);
915 if (timer_pending(timer)) {
916 detach_timer(timer, 1);
97fd9ed4
MS
917 if (timer->expires == base->next_timer &&
918 !tbase_get_deferrable(timer->base))
919 base->next_timer = base->timer_jiffies;
55c888d6
ON
920 ret = 1;
921 }
1da177e4 922 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 923 }
1da177e4 924
55c888d6 925 return ret;
1da177e4 926}
1da177e4
LT
927EXPORT_SYMBOL(del_timer);
928
2aae4a10
REB
929/**
930 * try_to_del_timer_sync - Try to deactivate a timer
931 * @timer: timer do del
932 *
fd450b73
ON
933 * This function tries to deactivate a timer. Upon successful (ret >= 0)
934 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
935 */
936int try_to_del_timer_sync(struct timer_list *timer)
937{
a6fa8e5a 938 struct tvec_base *base;
fd450b73
ON
939 unsigned long flags;
940 int ret = -1;
941
942 base = lock_timer_base(timer, &flags);
943
944 if (base->running_timer == timer)
945 goto out;
946
829b6c1e 947 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
948 ret = 0;
949 if (timer_pending(timer)) {
950 detach_timer(timer, 1);
97fd9ed4
MS
951 if (timer->expires == base->next_timer &&
952 !tbase_get_deferrable(timer->base))
953 base->next_timer = base->timer_jiffies;
fd450b73
ON
954 ret = 1;
955 }
956out:
957 spin_unlock_irqrestore(&base->lock, flags);
958
959 return ret;
960}
e19dff1f
DH
961EXPORT_SYMBOL(try_to_del_timer_sync);
962
6f1bc451 963#ifdef CONFIG_SMP
2aae4a10 964/**
1da177e4
LT
965 * del_timer_sync - deactivate a timer and wait for the handler to finish.
966 * @timer: the timer to be deactivated
967 *
968 * This function only differs from del_timer() on SMP: besides deactivating
969 * the timer it also makes sure the handler has finished executing on other
970 * CPUs.
971 *
72fd4a35 972 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 973 * otherwise this function is meaningless. It must not be called from
7ff20792 974 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
975 * completion of the timer's handler. The timer's handler must not call
976 * add_timer_on(). Upon exit the timer is not queued and the handler is
977 * not running on any CPU.
1da177e4 978 *
48228f7b
SR
979 * Note: You must not hold locks that are held in interrupt context
980 * while calling this function. Even if the lock has nothing to do
981 * with the timer in question. Here's why:
982 *
983 * CPU0 CPU1
984 * ---- ----
985 * <SOFTIRQ>
986 * call_timer_fn();
987 * base->running_timer = mytimer;
988 * spin_lock_irq(somelock);
989 * <IRQ>
990 * spin_lock(somelock);
991 * del_timer_sync(mytimer);
992 * while (base->running_timer == mytimer);
993 *
994 * Now del_timer_sync() will never return and never release somelock.
995 * The interrupt on the other CPU is waiting to grab somelock but
996 * it has interrupted the softirq that CPU0 is waiting to finish.
997 *
1da177e4 998 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
999 */
1000int del_timer_sync(struct timer_list *timer)
1001{
6f2b9b9a 1002#ifdef CONFIG_LOCKDEP
f266a511
PZ
1003 unsigned long flags;
1004
48228f7b
SR
1005 /*
1006 * If lockdep gives a backtrace here, please reference
1007 * the synchronization rules above.
1008 */
7ff20792 1009 local_irq_save(flags);
6f2b9b9a
JB
1010 lock_map_acquire(&timer->lockdep_map);
1011 lock_map_release(&timer->lockdep_map);
7ff20792 1012 local_irq_restore(flags);
6f2b9b9a 1013#endif
466bd303
YZ
1014 /*
1015 * don't use it in hardirq context, because it
1016 * could lead to deadlock.
1017 */
1018 WARN_ON(in_irq());
fd450b73
ON
1019 for (;;) {
1020 int ret = try_to_del_timer_sync(timer);
1021 if (ret >= 0)
1022 return ret;
a0009652 1023 cpu_relax();
fd450b73 1024 }
1da177e4 1025}
55c888d6 1026EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1027#endif
1028
a6fa8e5a 1029static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1030{
1031 /* cascade all the timers from tv up one level */
3439dd86
P
1032 struct timer_list *timer, *tmp;
1033 struct list_head tv_list;
1034
1035 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1036
1da177e4 1037 /*
3439dd86
P
1038 * We are removing _all_ timers from the list, so we
1039 * don't have to detach them individually.
1da177e4 1040 */
3439dd86 1041 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1042 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1043 internal_add_timer(base, timer);
1da177e4 1044 }
1da177e4
LT
1045
1046 return index;
1047}
1048
576da126
TG
1049static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1050 unsigned long data)
1051{
1052 int preempt_count = preempt_count();
1053
1054#ifdef CONFIG_LOCKDEP
1055 /*
1056 * It is permissible to free the timer from inside the
1057 * function that is called from it, this we need to take into
1058 * account for lockdep too. To avoid bogus "held lock freed"
1059 * warnings as well as problems when looking into
1060 * timer->lockdep_map, make a copy and use that here.
1061 */
1062 struct lockdep_map lockdep_map = timer->lockdep_map;
1063#endif
1064 /*
1065 * Couple the lock chain with the lock chain at
1066 * del_timer_sync() by acquiring the lock_map around the fn()
1067 * call here and in del_timer_sync().
1068 */
1069 lock_map_acquire(&lockdep_map);
1070
1071 trace_timer_expire_entry(timer);
1072 fn(data);
1073 trace_timer_expire_exit(timer);
1074
1075 lock_map_release(&lockdep_map);
1076
1077 if (preempt_count != preempt_count()) {
802702e0
TG
1078 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1079 fn, preempt_count, preempt_count());
1080 /*
1081 * Restore the preempt count. That gives us a decent
1082 * chance to survive and extract information. If the
1083 * callback kept a lock held, bad luck, but not worse
1084 * than the BUG() we had.
1085 */
1086 preempt_count() = preempt_count;
576da126
TG
1087 }
1088}
1089
2aae4a10
REB
1090#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1091
1092/**
1da177e4
LT
1093 * __run_timers - run all expired timers (if any) on this CPU.
1094 * @base: the timer vector to be processed.
1095 *
1096 * This function cascades all vectors and executes all expired timer
1097 * vectors.
1098 */
a6fa8e5a 1099static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1100{
1101 struct timer_list *timer;
1102
3691c519 1103 spin_lock_irq(&base->lock);
1da177e4 1104 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1105 struct list_head work_list;
1da177e4 1106 struct list_head *head = &work_list;
6819457d 1107 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1108
1da177e4
LT
1109 /*
1110 * Cascade timers:
1111 */
1112 if (!index &&
1113 (!cascade(base, &base->tv2, INDEX(0))) &&
1114 (!cascade(base, &base->tv3, INDEX(1))) &&
1115 !cascade(base, &base->tv4, INDEX(2)))
1116 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1117 ++base->timer_jiffies;
1118 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1119 while (!list_empty(head)) {
1da177e4
LT
1120 void (*fn)(unsigned long);
1121 unsigned long data;
1122
b5e61818 1123 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1124 fn = timer->function;
1125 data = timer->data;
1da177e4 1126
82f67cd9
IM
1127 timer_stats_account_timer(timer);
1128
6f1bc451 1129 base->running_timer = timer;
55c888d6 1130 detach_timer(timer, 1);
6f2b9b9a 1131
3691c519 1132 spin_unlock_irq(&base->lock);
576da126 1133 call_timer_fn(timer, fn, data);
3691c519 1134 spin_lock_irq(&base->lock);
1da177e4
LT
1135 }
1136 }
6f1bc451 1137 base->running_timer = NULL;
3691c519 1138 spin_unlock_irq(&base->lock);
1da177e4
LT
1139}
1140
ee9c5785 1141#ifdef CONFIG_NO_HZ
1da177e4
LT
1142/*
1143 * Find out when the next timer event is due to happen. This
90cba64a
RD
1144 * is used on S/390 to stop all activity when a CPU is idle.
1145 * This function needs to be called with interrupts disabled.
1da177e4 1146 */
a6fa8e5a 1147static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1148{
1cfd6849 1149 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1150 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1151 int index, slot, array, found = 0;
1da177e4 1152 struct timer_list *nte;
a6fa8e5a 1153 struct tvec *varray[4];
1da177e4
LT
1154
1155 /* Look for timer events in tv1. */
1cfd6849 1156 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1157 do {
1cfd6849 1158 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1159 if (tbase_get_deferrable(nte->base))
1160 continue;
6e453a67 1161
1cfd6849 1162 found = 1;
1da177e4 1163 expires = nte->expires;
1cfd6849
TG
1164 /* Look at the cascade bucket(s)? */
1165 if (!index || slot < index)
1166 goto cascade;
1167 return expires;
1da177e4 1168 }
1cfd6849
TG
1169 slot = (slot + 1) & TVR_MASK;
1170 } while (slot != index);
1171
1172cascade:
1173 /* Calculate the next cascade event */
1174 if (index)
1175 timer_jiffies += TVR_SIZE - index;
1176 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1177
1178 /* Check tv2-tv5. */
1179 varray[0] = &base->tv2;
1180 varray[1] = &base->tv3;
1181 varray[2] = &base->tv4;
1182 varray[3] = &base->tv5;
1cfd6849
TG
1183
1184 for (array = 0; array < 4; array++) {
a6fa8e5a 1185 struct tvec *varp = varray[array];
1cfd6849
TG
1186
1187 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1188 do {
1cfd6849 1189 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1190 if (tbase_get_deferrable(nte->base))
1191 continue;
1192
1cfd6849 1193 found = 1;
1da177e4
LT
1194 if (time_before(nte->expires, expires))
1195 expires = nte->expires;
1cfd6849
TG
1196 }
1197 /*
1198 * Do we still search for the first timer or are
1199 * we looking up the cascade buckets ?
1200 */
1201 if (found) {
1202 /* Look at the cascade bucket(s)? */
1203 if (!index || slot < index)
1204 break;
1205 return expires;
1206 }
1207 slot = (slot + 1) & TVN_MASK;
1208 } while (slot != index);
1209
1210 if (index)
1211 timer_jiffies += TVN_SIZE - index;
1212 timer_jiffies >>= TVN_BITS;
1da177e4 1213 }
1cfd6849
TG
1214 return expires;
1215}
69239749 1216
1cfd6849
TG
1217/*
1218 * Check, if the next hrtimer event is before the next timer wheel
1219 * event:
1220 */
1221static unsigned long cmp_next_hrtimer_event(unsigned long now,
1222 unsigned long expires)
1223{
1224 ktime_t hr_delta = hrtimer_get_next_event();
1225 struct timespec tsdelta;
9501b6cf 1226 unsigned long delta;
1cfd6849
TG
1227
1228 if (hr_delta.tv64 == KTIME_MAX)
1229 return expires;
0662b713 1230
9501b6cf
TG
1231 /*
1232 * Expired timer available, let it expire in the next tick
1233 */
1234 if (hr_delta.tv64 <= 0)
1235 return now + 1;
69239749 1236
1cfd6849 1237 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1238 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1239
1240 /*
1241 * Limit the delta to the max value, which is checked in
1242 * tick_nohz_stop_sched_tick():
1243 */
1244 if (delta > NEXT_TIMER_MAX_DELTA)
1245 delta = NEXT_TIMER_MAX_DELTA;
1246
9501b6cf
TG
1247 /*
1248 * Take rounding errors in to account and make sure, that it
1249 * expires in the next tick. Otherwise we go into an endless
1250 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1251 * the timer softirq
1252 */
1253 if (delta < 1)
1254 delta = 1;
1255 now += delta;
1cfd6849
TG
1256 if (time_before(now, expires))
1257 return now;
1da177e4
LT
1258 return expires;
1259}
1cfd6849
TG
1260
1261/**
8dce39c2 1262 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1263 * @now: current time (in jiffies)
1cfd6849 1264 */
fd064b9b 1265unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1266{
7496351a 1267 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1268 unsigned long expires;
1cfd6849 1269
dbd87b5a
HC
1270 /*
1271 * Pretend that there is no timer pending if the cpu is offline.
1272 * Possible pending timers will be migrated later to an active cpu.
1273 */
1274 if (cpu_is_offline(smp_processor_id()))
1275 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1276 spin_lock(&base->lock);
97fd9ed4
MS
1277 if (time_before_eq(base->next_timer, base->timer_jiffies))
1278 base->next_timer = __next_timer_interrupt(base);
1279 expires = base->next_timer;
1cfd6849
TG
1280 spin_unlock(&base->lock);
1281
1282 if (time_before_eq(expires, now))
1283 return now;
1284
1285 return cmp_next_hrtimer_event(now, expires);
1286}
1da177e4
LT
1287#endif
1288
1da177e4 1289/*
5b4db0c2 1290 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1291 * process. user_tick is 1 if the tick is user time, 0 for system.
1292 */
1293void update_process_times(int user_tick)
1294{
1295 struct task_struct *p = current;
1296 int cpu = smp_processor_id();
1297
1298 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1299 account_process_tick(p, user_tick);
1da177e4 1300 run_local_timers();
a157229c 1301 rcu_check_callbacks(cpu, user_tick);
b845b517 1302 printk_tick();
e360adbe
PZ
1303#ifdef CONFIG_IRQ_WORK
1304 if (in_irq())
1305 irq_work_run();
1306#endif
1da177e4 1307 scheduler_tick();
6819457d 1308 run_posix_cpu_timers(p);
1da177e4
LT
1309}
1310
1da177e4
LT
1311/*
1312 * This function runs timers and the timer-tq in bottom half context.
1313 */
1314static void run_timer_softirq(struct softirq_action *h)
1315{
7496351a 1316 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1317
d3d74453 1318 hrtimer_run_pending();
82f67cd9 1319
1da177e4
LT
1320 if (time_after_eq(jiffies, base->timer_jiffies))
1321 __run_timers(base);
1322}
1323
1324/*
1325 * Called by the local, per-CPU timer interrupt on SMP.
1326 */
1327void run_local_timers(void)
1328{
d3d74453 1329 hrtimer_run_queues();
1da177e4
LT
1330 raise_softirq(TIMER_SOFTIRQ);
1331}
1332
1da177e4
LT
1333#ifdef __ARCH_WANT_SYS_ALARM
1334
1335/*
1336 * For backwards compatibility? This can be done in libc so Alpha
1337 * and all newer ports shouldn't need it.
1338 */
58fd3aa2 1339SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1340{
c08b8a49 1341 return alarm_setitimer(seconds);
1da177e4
LT
1342}
1343
1344#endif
1345
1346#ifndef __alpha__
1347
1348/*
1349 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1350 * should be moved into arch/i386 instead?
1351 */
1352
1353/**
1354 * sys_getpid - return the thread group id of the current process
1355 *
1356 * Note, despite the name, this returns the tgid not the pid. The tgid and
1357 * the pid are identical unless CLONE_THREAD was specified on clone() in
1358 * which case the tgid is the same in all threads of the same group.
1359 *
1360 * This is SMP safe as current->tgid does not change.
1361 */
58fd3aa2 1362SYSCALL_DEFINE0(getpid)
1da177e4 1363{
b488893a 1364 return task_tgid_vnr(current);
1da177e4
LT
1365}
1366
1367/*
6997a6fa
KK
1368 * Accessing ->real_parent is not SMP-safe, it could
1369 * change from under us. However, we can use a stale
1370 * value of ->real_parent under rcu_read_lock(), see
1371 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1372 */
dbf040d9 1373SYSCALL_DEFINE0(getppid)
1da177e4
LT
1374{
1375 int pid;
1da177e4 1376
6997a6fa 1377 rcu_read_lock();
6c5f3e7b 1378 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1379 rcu_read_unlock();
1da177e4 1380
1da177e4
LT
1381 return pid;
1382}
1383
dbf040d9 1384SYSCALL_DEFINE0(getuid)
1da177e4
LT
1385{
1386 /* Only we change this so SMP safe */
76aac0e9 1387 return current_uid();
1da177e4
LT
1388}
1389
dbf040d9 1390SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1391{
1392 /* Only we change this so SMP safe */
76aac0e9 1393 return current_euid();
1da177e4
LT
1394}
1395
dbf040d9 1396SYSCALL_DEFINE0(getgid)
1da177e4
LT
1397{
1398 /* Only we change this so SMP safe */
76aac0e9 1399 return current_gid();
1da177e4
LT
1400}
1401
dbf040d9 1402SYSCALL_DEFINE0(getegid)
1da177e4
LT
1403{
1404 /* Only we change this so SMP safe */
76aac0e9 1405 return current_egid();
1da177e4
LT
1406}
1407
1408#endif
1409
1410static void process_timeout(unsigned long __data)
1411{
36c8b586 1412 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1413}
1414
1415/**
1416 * schedule_timeout - sleep until timeout
1417 * @timeout: timeout value in jiffies
1418 *
1419 * Make the current task sleep until @timeout jiffies have
1420 * elapsed. The routine will return immediately unless
1421 * the current task state has been set (see set_current_state()).
1422 *
1423 * You can set the task state as follows -
1424 *
1425 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1426 * pass before the routine returns. The routine will return 0
1427 *
1428 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1429 * delivered to the current task. In this case the remaining time
1430 * in jiffies will be returned, or 0 if the timer expired in time
1431 *
1432 * The current task state is guaranteed to be TASK_RUNNING when this
1433 * routine returns.
1434 *
1435 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1436 * the CPU away without a bound on the timeout. In this case the return
1437 * value will be %MAX_SCHEDULE_TIMEOUT.
1438 *
1439 * In all cases the return value is guaranteed to be non-negative.
1440 */
7ad5b3a5 1441signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1442{
1443 struct timer_list timer;
1444 unsigned long expire;
1445
1446 switch (timeout)
1447 {
1448 case MAX_SCHEDULE_TIMEOUT:
1449 /*
1450 * These two special cases are useful to be comfortable
1451 * in the caller. Nothing more. We could take
1452 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1453 * but I' d like to return a valid offset (>=0) to allow
1454 * the caller to do everything it want with the retval.
1455 */
1456 schedule();
1457 goto out;
1458 default:
1459 /*
1460 * Another bit of PARANOID. Note that the retval will be
1461 * 0 since no piece of kernel is supposed to do a check
1462 * for a negative retval of schedule_timeout() (since it
1463 * should never happens anyway). You just have the printk()
1464 * that will tell you if something is gone wrong and where.
1465 */
5b149bcc 1466 if (timeout < 0) {
1da177e4 1467 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1468 "value %lx\n", timeout);
1469 dump_stack();
1da177e4
LT
1470 current->state = TASK_RUNNING;
1471 goto out;
1472 }
1473 }
1474
1475 expire = timeout + jiffies;
1476
c6f3a97f 1477 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1478 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1479 schedule();
1480 del_singleshot_timer_sync(&timer);
1481
c6f3a97f
TG
1482 /* Remove the timer from the object tracker */
1483 destroy_timer_on_stack(&timer);
1484
1da177e4
LT
1485 timeout = expire - jiffies;
1486
1487 out:
1488 return timeout < 0 ? 0 : timeout;
1489}
1da177e4
LT
1490EXPORT_SYMBOL(schedule_timeout);
1491
8a1c1757
AM
1492/*
1493 * We can use __set_current_state() here because schedule_timeout() calls
1494 * schedule() unconditionally.
1495 */
64ed93a2
NA
1496signed long __sched schedule_timeout_interruptible(signed long timeout)
1497{
a5a0d52c
AM
1498 __set_current_state(TASK_INTERRUPTIBLE);
1499 return schedule_timeout(timeout);
64ed93a2
NA
1500}
1501EXPORT_SYMBOL(schedule_timeout_interruptible);
1502
294d5cc2
MW
1503signed long __sched schedule_timeout_killable(signed long timeout)
1504{
1505 __set_current_state(TASK_KILLABLE);
1506 return schedule_timeout(timeout);
1507}
1508EXPORT_SYMBOL(schedule_timeout_killable);
1509
64ed93a2
NA
1510signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1511{
a5a0d52c
AM
1512 __set_current_state(TASK_UNINTERRUPTIBLE);
1513 return schedule_timeout(timeout);
64ed93a2
NA
1514}
1515EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1516
1da177e4 1517/* Thread ID - the internal kernel "pid" */
58fd3aa2 1518SYSCALL_DEFINE0(gettid)
1da177e4 1519{
b488893a 1520 return task_pid_vnr(current);
1da177e4
LT
1521}
1522
2aae4a10 1523/**
d4d23add 1524 * do_sysinfo - fill in sysinfo struct
2aae4a10 1525 * @info: pointer to buffer to fill
6819457d 1526 */
d4d23add 1527int do_sysinfo(struct sysinfo *info)
1da177e4 1528{
1da177e4
LT
1529 unsigned long mem_total, sav_total;
1530 unsigned int mem_unit, bitcount;
2d02494f 1531 struct timespec tp;
1da177e4 1532
d4d23add 1533 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1534
2d02494f
TG
1535 ktime_get_ts(&tp);
1536 monotonic_to_bootbased(&tp);
1537 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1538
2d02494f 1539 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1540
2d02494f 1541 info->procs = nr_threads;
1da177e4 1542
d4d23add
KM
1543 si_meminfo(info);
1544 si_swapinfo(info);
1da177e4
LT
1545
1546 /*
1547 * If the sum of all the available memory (i.e. ram + swap)
1548 * is less than can be stored in a 32 bit unsigned long then
1549 * we can be binary compatible with 2.2.x kernels. If not,
1550 * well, in that case 2.2.x was broken anyways...
1551 *
1552 * -Erik Andersen <andersee@debian.org>
1553 */
1554
d4d23add
KM
1555 mem_total = info->totalram + info->totalswap;
1556 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1557 goto out;
1558 bitcount = 0;
d4d23add 1559 mem_unit = info->mem_unit;
1da177e4
LT
1560 while (mem_unit > 1) {
1561 bitcount++;
1562 mem_unit >>= 1;
1563 sav_total = mem_total;
1564 mem_total <<= 1;
1565 if (mem_total < sav_total)
1566 goto out;
1567 }
1568
1569 /*
1570 * If mem_total did not overflow, multiply all memory values by
d4d23add 1571 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1572 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1573 * kernels...
1574 */
1575
d4d23add
KM
1576 info->mem_unit = 1;
1577 info->totalram <<= bitcount;
1578 info->freeram <<= bitcount;
1579 info->sharedram <<= bitcount;
1580 info->bufferram <<= bitcount;
1581 info->totalswap <<= bitcount;
1582 info->freeswap <<= bitcount;
1583 info->totalhigh <<= bitcount;
1584 info->freehigh <<= bitcount;
1585
1586out:
1587 return 0;
1588}
1589
1e7bfb21 1590SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1591{
1592 struct sysinfo val;
1593
1594 do_sysinfo(&val);
1da177e4 1595
1da177e4
LT
1596 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1597 return -EFAULT;
1598
1599 return 0;
1600}
1601
b4be6258 1602static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1603{
1604 int j;
a6fa8e5a 1605 struct tvec_base *base;
b4be6258 1606 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1607
ba6edfcd 1608 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1609 static char boot_done;
1610
a4a6198b 1611 if (boot_done) {
ba6edfcd
AM
1612 /*
1613 * The APs use this path later in boot
1614 */
94f6030c
CL
1615 base = kmalloc_node(sizeof(*base),
1616 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1617 cpu_to_node(cpu));
1618 if (!base)
1619 return -ENOMEM;
6e453a67
VP
1620
1621 /* Make sure that tvec_base is 2 byte aligned */
1622 if (tbase_get_deferrable(base)) {
1623 WARN_ON(1);
1624 kfree(base);
1625 return -ENOMEM;
1626 }
ba6edfcd 1627 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1628 } else {
ba6edfcd
AM
1629 /*
1630 * This is for the boot CPU - we use compile-time
1631 * static initialisation because per-cpu memory isn't
1632 * ready yet and because the memory allocators are not
1633 * initialised either.
1634 */
a4a6198b 1635 boot_done = 1;
ba6edfcd 1636 base = &boot_tvec_bases;
a4a6198b 1637 }
ba6edfcd
AM
1638 tvec_base_done[cpu] = 1;
1639 } else {
1640 base = per_cpu(tvec_bases, cpu);
a4a6198b 1641 }
ba6edfcd 1642
3691c519 1643 spin_lock_init(&base->lock);
d730e882 1644
1da177e4
LT
1645 for (j = 0; j < TVN_SIZE; j++) {
1646 INIT_LIST_HEAD(base->tv5.vec + j);
1647 INIT_LIST_HEAD(base->tv4.vec + j);
1648 INIT_LIST_HEAD(base->tv3.vec + j);
1649 INIT_LIST_HEAD(base->tv2.vec + j);
1650 }
1651 for (j = 0; j < TVR_SIZE; j++)
1652 INIT_LIST_HEAD(base->tv1.vec + j);
1653
1654 base->timer_jiffies = jiffies;
97fd9ed4 1655 base->next_timer = base->timer_jiffies;
a4a6198b 1656 return 0;
1da177e4
LT
1657}
1658
1659#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1660static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1661{
1662 struct timer_list *timer;
1663
1664 while (!list_empty(head)) {
b5e61818 1665 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1666 detach_timer(timer, 0);
6e453a67 1667 timer_set_base(timer, new_base);
97fd9ed4
MS
1668 if (time_before(timer->expires, new_base->next_timer) &&
1669 !tbase_get_deferrable(timer->base))
1670 new_base->next_timer = timer->expires;
1da177e4 1671 internal_add_timer(new_base, timer);
1da177e4 1672 }
1da177e4
LT
1673}
1674
48ccf3da 1675static void __cpuinit migrate_timers(int cpu)
1da177e4 1676{
a6fa8e5a
PM
1677 struct tvec_base *old_base;
1678 struct tvec_base *new_base;
1da177e4
LT
1679 int i;
1680
1681 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1682 old_base = per_cpu(tvec_bases, cpu);
1683 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1684 /*
1685 * The caller is globally serialized and nobody else
1686 * takes two locks at once, deadlock is not possible.
1687 */
1688 spin_lock_irq(&new_base->lock);
0d180406 1689 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1690
1691 BUG_ON(old_base->running_timer);
1da177e4 1692
1da177e4 1693 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1694 migrate_timer_list(new_base, old_base->tv1.vec + i);
1695 for (i = 0; i < TVN_SIZE; i++) {
1696 migrate_timer_list(new_base, old_base->tv2.vec + i);
1697 migrate_timer_list(new_base, old_base->tv3.vec + i);
1698 migrate_timer_list(new_base, old_base->tv4.vec + i);
1699 migrate_timer_list(new_base, old_base->tv5.vec + i);
1700 }
1701
0d180406 1702 spin_unlock(&old_base->lock);
d82f0b0f 1703 spin_unlock_irq(&new_base->lock);
1da177e4 1704 put_cpu_var(tvec_bases);
1da177e4
LT
1705}
1706#endif /* CONFIG_HOTPLUG_CPU */
1707
8c78f307 1708static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1709 unsigned long action, void *hcpu)
1710{
1711 long cpu = (long)hcpu;
80b5184c
AM
1712 int err;
1713
1da177e4
LT
1714 switch(action) {
1715 case CPU_UP_PREPARE:
8bb78442 1716 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1717 err = init_timers_cpu(cpu);
1718 if (err < 0)
1719 return notifier_from_errno(err);
1da177e4
LT
1720 break;
1721#ifdef CONFIG_HOTPLUG_CPU
1722 case CPU_DEAD:
8bb78442 1723 case CPU_DEAD_FROZEN:
1da177e4
LT
1724 migrate_timers(cpu);
1725 break;
1726#endif
1727 default:
1728 break;
1729 }
1730 return NOTIFY_OK;
1731}
1732
8c78f307 1733static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1734 .notifier_call = timer_cpu_notify,
1735};
1736
1737
1738void __init init_timers(void)
1739{
07dccf33 1740 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1741 (void *)(long)smp_processor_id());
07dccf33 1742
82f67cd9
IM
1743 init_timer_stats();
1744
9e506f7a 1745 BUG_ON(err != NOTIFY_OK);
1da177e4 1746 register_cpu_notifier(&timers_nb);
962cf36c 1747 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1748}
1749
1da177e4
LT
1750/**
1751 * msleep - sleep safely even with waitqueue interruptions
1752 * @msecs: Time in milliseconds to sleep for
1753 */
1754void msleep(unsigned int msecs)
1755{
1756 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1757
75bcc8c5
NA
1758 while (timeout)
1759 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1760}
1761
1762EXPORT_SYMBOL(msleep);
1763
1764/**
96ec3efd 1765 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1766 * @msecs: Time in milliseconds to sleep for
1767 */
1768unsigned long msleep_interruptible(unsigned int msecs)
1769{
1770 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1771
75bcc8c5
NA
1772 while (timeout && !signal_pending(current))
1773 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1774 return jiffies_to_msecs(timeout);
1775}
1776
1777EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1778
1779static int __sched do_usleep_range(unsigned long min, unsigned long max)
1780{
1781 ktime_t kmin;
1782 unsigned long delta;
1783
1784 kmin = ktime_set(0, min * NSEC_PER_USEC);
1785 delta = (max - min) * NSEC_PER_USEC;
1786 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1787}
1788
1789/**
1790 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1791 * @min: Minimum time in usecs to sleep
1792 * @max: Maximum time in usecs to sleep
1793 */
1794void usleep_range(unsigned long min, unsigned long max)
1795{
1796 __set_current_state(TASK_UNINTERRUPTIBLE);
1797 do_usleep_range(min, max);
1798}
1799EXPORT_SYMBOL(usleep_range);
This page took 0.913492 seconds and 5 git commands to generate.