V4L/DVB (13217): tda18271: handle rf_cal_on_startup properly during attach
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
182e9f5f
SR
23#include "trace.h"
24
d1b182a8
SR
25/*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28int ring_buffer_print_entry_header(struct trace_seq *s)
29{
30 int ret;
31
334d4169
LJ
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
43
44 return ret;
45}
46
5cc98548
SR
47/*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
033601a3
SR
115/*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133/*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147};
148
149enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152};
153
5e39841c 154static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 155
474d32b6
SR
156#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
a3583244
SR
158/**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164void tracing_on(void)
165{
033601a3 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 167}
c4f50183 168EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
169
170/**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178void tracing_off(void)
179{
033601a3
SR
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181}
c4f50183 182EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
183
184/**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
c3706f00 188 * permanently.
033601a3
SR
189 */
190void tracing_off_permanent(void)
191{
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
193}
194
988ae9d6
SR
195/**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198int tracing_is_on(void)
199{
200 return ring_buffer_flags == RB_BUFFERS_ON;
201}
202EXPORT_SYMBOL_GPL(tracing_is_on);
203
e3d6bf0a 204#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 205#define RB_ALIGNMENT 4U
334d4169 206#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 207#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169
LJ
208
209/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
211
212enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215};
216
2d622719
TZ
217static inline int rb_null_event(struct ring_buffer_event *event)
218{
a1863c21 219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
220}
221
222static void rb_event_set_padding(struct ring_buffer_event *event)
223{
a1863c21 224 /* padding has a NULL time_delta */
334d4169 225 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
226 event->time_delta = 0;
227}
228
34a148bf 229static unsigned
2d622719 230rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
231{
232 unsigned length;
233
334d4169
LJ
234 if (event->type_len)
235 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
236 else
237 length = event->array[0];
238 return length + RB_EVNT_HDR_SIZE;
239}
240
241/* inline for ring buffer fast paths */
242static unsigned
243rb_event_length(struct ring_buffer_event *event)
244{
334d4169 245 switch (event->type_len) {
7a8e76a3 246 case RINGBUF_TYPE_PADDING:
2d622719
TZ
247 if (rb_null_event(event))
248 /* undefined */
249 return -1;
334d4169 250 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
251
252 case RINGBUF_TYPE_TIME_EXTEND:
253 return RB_LEN_TIME_EXTEND;
254
255 case RINGBUF_TYPE_TIME_STAMP:
256 return RB_LEN_TIME_STAMP;
257
258 case RINGBUF_TYPE_DATA:
2d622719 259 return rb_event_data_length(event);
7a8e76a3
SR
260 default:
261 BUG();
262 }
263 /* not hit */
264 return 0;
265}
266
267/**
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
270 */
271unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272{
465634ad 273 unsigned length = rb_event_length(event);
334d4169 274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
275 return length;
276 length -= RB_EVNT_HDR_SIZE;
277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278 length -= sizeof(event->array[0]);
279 return length;
7a8e76a3 280}
c4f50183 281EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
282
283/* inline for ring buffer fast paths */
34a148bf 284static void *
7a8e76a3
SR
285rb_event_data(struct ring_buffer_event *event)
286{
334d4169 287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 288 /* If length is in len field, then array[0] has the data */
334d4169 289 if (event->type_len)
7a8e76a3
SR
290 return (void *)&event->array[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event->array[1];
293}
294
295/**
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
298 */
299void *ring_buffer_event_data(struct ring_buffer_event *event)
300{
301 return rb_event_data(event);
302}
c4f50183 303EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
304
305#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 306 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
307
308#define TS_SHIFT 27
309#define TS_MASK ((1ULL << TS_SHIFT) - 1)
310#define TS_DELTA_TEST (~TS_MASK)
311
abc9b56d 312struct buffer_data_page {
e4c2ce82 313 u64 time_stamp; /* page time stamp */
c3706f00 314 local_t commit; /* write committed index */
abc9b56d
SR
315 unsigned char data[]; /* data of buffer page */
316};
317
77ae365e
SR
318/*
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
324 * lockless.
325 */
abc9b56d 326struct buffer_page {
778c55d4 327 struct list_head list; /* list of buffer pages */
abc9b56d 328 local_t write; /* index for next write */
6f807acd 329 unsigned read; /* index for next read */
778c55d4 330 local_t entries; /* entries on this page */
abc9b56d 331 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
332};
333
77ae365e
SR
334/*
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
339 *
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
343 *
344 * The counter is 20 bits, and the state data is 12.
345 */
346#define RB_WRITE_MASK 0xfffff
347#define RB_WRITE_INTCNT (1 << 20)
348
044fa782 349static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 350{
044fa782 351 local_set(&bpage->commit, 0);
abc9b56d
SR
352}
353
474d32b6
SR
354/**
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
357 *
358 * Returns the amount of data on the page, including buffer page header.
359 */
ef7a4a16
SR
360size_t ring_buffer_page_len(void *page)
361{
474d32b6
SR
362 return local_read(&((struct buffer_data_page *)page)->commit)
363 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
364}
365
ed56829c
SR
366/*
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368 * this issue out.
369 */
34a148bf 370static void free_buffer_page(struct buffer_page *bpage)
ed56829c 371{
34a148bf 372 free_page((unsigned long)bpage->page);
e4c2ce82 373 kfree(bpage);
ed56829c
SR
374}
375
7a8e76a3
SR
376/*
377 * We need to fit the time_stamp delta into 27 bits.
378 */
379static inline int test_time_stamp(u64 delta)
380{
381 if (delta & TS_DELTA_TEST)
382 return 1;
383 return 0;
384}
385
474d32b6 386#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 387
be957c44
SR
388/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390
ea05b57c
SR
391/* Max number of timestamps that can fit on a page */
392#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393
d1b182a8
SR
394int ring_buffer_print_page_header(struct trace_seq *s)
395{
396 struct buffer_data_page field;
397 int ret;
398
399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\n",
401 (unsigned int)sizeof(field.time_stamp));
402
403 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404 "offset:%u;\tsize:%u;\n",
405 (unsigned int)offsetof(typeof(field), commit),
406 (unsigned int)sizeof(field.commit));
407
408 ret = trace_seq_printf(s, "\tfield: char data;\t"
409 "offset:%u;\tsize:%u;\n",
410 (unsigned int)offsetof(typeof(field), data),
411 (unsigned int)BUF_PAGE_SIZE);
412
413 return ret;
414}
415
7a8e76a3
SR
416/*
417 * head_page == tail_page && head == tail then buffer is empty.
418 */
419struct ring_buffer_per_cpu {
420 int cpu;
421 struct ring_buffer *buffer;
77ae365e 422 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 423 raw_spinlock_t lock;
7a8e76a3 424 struct lock_class_key lock_key;
3adc54fa 425 struct list_head *pages;
6f807acd
SR
426 struct buffer_page *head_page; /* read from head */
427 struct buffer_page *tail_page; /* write to tail */
c3706f00 428 struct buffer_page *commit_page; /* committed pages */
d769041f 429 struct buffer_page *reader_page;
77ae365e
SR
430 local_t commit_overrun;
431 local_t overrun;
e4906eff 432 local_t entries;
fa743953
SR
433 local_t committing;
434 local_t commits;
77ae365e 435 unsigned long read;
7a8e76a3
SR
436 u64 write_stamp;
437 u64 read_stamp;
438 atomic_t record_disabled;
439};
440
441struct ring_buffer {
7a8e76a3
SR
442 unsigned pages;
443 unsigned flags;
444 int cpus;
7a8e76a3 445 atomic_t record_disabled;
00f62f61 446 cpumask_var_t cpumask;
7a8e76a3 447
1f8a6a10
PZ
448 struct lock_class_key *reader_lock_key;
449
7a8e76a3
SR
450 struct mutex mutex;
451
452 struct ring_buffer_per_cpu **buffers;
554f786e 453
59222efe 454#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
455 struct notifier_block cpu_notify;
456#endif
37886f6a 457 u64 (*clock)(void);
7a8e76a3
SR
458};
459
460struct ring_buffer_iter {
461 struct ring_buffer_per_cpu *cpu_buffer;
462 unsigned long head;
463 struct buffer_page *head_page;
464 u64 read_stamp;
465};
466
f536aafc 467/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
468#define RB_WARN_ON(b, cond) \
469 ({ \
470 int _____ret = unlikely(cond); \
471 if (_____ret) { \
472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 struct ring_buffer_per_cpu *__b = \
474 (void *)b; \
475 atomic_inc(&__b->buffer->record_disabled); \
476 } else \
477 atomic_inc(&b->record_disabled); \
478 WARN_ON(1); \
479 } \
480 _____ret; \
3e89c7bb 481 })
f536aafc 482
37886f6a
SR
483/* Up this if you want to test the TIME_EXTENTS and normalization */
484#define DEBUG_SHIFT 0
485
6d3f1e12 486static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
487{
488 /* shift to debug/test normalization and TIME_EXTENTS */
489 return buffer->clock() << DEBUG_SHIFT;
490}
491
37886f6a
SR
492u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
493{
494 u64 time;
495
496 preempt_disable_notrace();
6d3f1e12 497 time = rb_time_stamp(buffer);
37886f6a
SR
498 preempt_enable_no_resched_notrace();
499
500 return time;
501}
502EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
503
504void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505 int cpu, u64 *ts)
506{
507 /* Just stupid testing the normalize function and deltas */
508 *ts >>= DEBUG_SHIFT;
509}
510EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
511
77ae365e
SR
512/*
513 * Making the ring buffer lockless makes things tricky.
514 * Although writes only happen on the CPU that they are on,
515 * and they only need to worry about interrupts. Reads can
516 * happen on any CPU.
517 *
518 * The reader page is always off the ring buffer, but when the
519 * reader finishes with a page, it needs to swap its page with
520 * a new one from the buffer. The reader needs to take from
521 * the head (writes go to the tail). But if a writer is in overwrite
522 * mode and wraps, it must push the head page forward.
523 *
524 * Here lies the problem.
525 *
526 * The reader must be careful to replace only the head page, and
527 * not another one. As described at the top of the file in the
528 * ASCII art, the reader sets its old page to point to the next
529 * page after head. It then sets the page after head to point to
530 * the old reader page. But if the writer moves the head page
531 * during this operation, the reader could end up with the tail.
532 *
533 * We use cmpxchg to help prevent this race. We also do something
534 * special with the page before head. We set the LSB to 1.
535 *
536 * When the writer must push the page forward, it will clear the
537 * bit that points to the head page, move the head, and then set
538 * the bit that points to the new head page.
539 *
540 * We also don't want an interrupt coming in and moving the head
541 * page on another writer. Thus we use the second LSB to catch
542 * that too. Thus:
543 *
544 * head->list->prev->next bit 1 bit 0
545 * ------- -------
546 * Normal page 0 0
547 * Points to head page 0 1
548 * New head page 1 0
549 *
550 * Note we can not trust the prev pointer of the head page, because:
551 *
552 * +----+ +-----+ +-----+
553 * | |------>| T |---X--->| N |
554 * | |<------| | | |
555 * +----+ +-----+ +-----+
556 * ^ ^ |
557 * | +-----+ | |
558 * +----------| R |----------+ |
559 * | |<-----------+
560 * +-----+
561 *
562 * Key: ---X--> HEAD flag set in pointer
563 * T Tail page
564 * R Reader page
565 * N Next page
566 *
567 * (see __rb_reserve_next() to see where this happens)
568 *
569 * What the above shows is that the reader just swapped out
570 * the reader page with a page in the buffer, but before it
571 * could make the new header point back to the new page added
572 * it was preempted by a writer. The writer moved forward onto
573 * the new page added by the reader and is about to move forward
574 * again.
575 *
576 * You can see, it is legitimate for the previous pointer of
577 * the head (or any page) not to point back to itself. But only
578 * temporarially.
579 */
580
581#define RB_PAGE_NORMAL 0UL
582#define RB_PAGE_HEAD 1UL
583#define RB_PAGE_UPDATE 2UL
584
585
586#define RB_FLAG_MASK 3UL
587
588/* PAGE_MOVED is not part of the mask */
589#define RB_PAGE_MOVED 4UL
590
591/*
592 * rb_list_head - remove any bit
593 */
594static struct list_head *rb_list_head(struct list_head *list)
595{
596 unsigned long val = (unsigned long)list;
597
598 return (struct list_head *)(val & ~RB_FLAG_MASK);
599}
600
601/*
6d3f1e12 602 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
603 *
604 * Because the reader may move the head_page pointer, we can
605 * not trust what the head page is (it may be pointing to
606 * the reader page). But if the next page is a header page,
607 * its flags will be non zero.
608 */
609static int inline
610rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611 struct buffer_page *page, struct list_head *list)
612{
613 unsigned long val;
614
615 val = (unsigned long)list->next;
616
617 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618 return RB_PAGE_MOVED;
619
620 return val & RB_FLAG_MASK;
621}
622
623/*
624 * rb_is_reader_page
625 *
626 * The unique thing about the reader page, is that, if the
627 * writer is ever on it, the previous pointer never points
628 * back to the reader page.
629 */
630static int rb_is_reader_page(struct buffer_page *page)
631{
632 struct list_head *list = page->list.prev;
633
634 return rb_list_head(list->next) != &page->list;
635}
636
637/*
638 * rb_set_list_to_head - set a list_head to be pointing to head.
639 */
640static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641 struct list_head *list)
642{
643 unsigned long *ptr;
644
645 ptr = (unsigned long *)&list->next;
646 *ptr |= RB_PAGE_HEAD;
647 *ptr &= ~RB_PAGE_UPDATE;
648}
649
650/*
651 * rb_head_page_activate - sets up head page
652 */
653static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
654{
655 struct buffer_page *head;
656
657 head = cpu_buffer->head_page;
658 if (!head)
659 return;
660
661 /*
662 * Set the previous list pointer to have the HEAD flag.
663 */
664 rb_set_list_to_head(cpu_buffer, head->list.prev);
665}
666
667static void rb_list_head_clear(struct list_head *list)
668{
669 unsigned long *ptr = (unsigned long *)&list->next;
670
671 *ptr &= ~RB_FLAG_MASK;
672}
673
674/*
675 * rb_head_page_dactivate - clears head page ptr (for free list)
676 */
677static void
678rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
679{
680 struct list_head *hd;
681
682 /* Go through the whole list and clear any pointers found. */
683 rb_list_head_clear(cpu_buffer->pages);
684
685 list_for_each(hd, cpu_buffer->pages)
686 rb_list_head_clear(hd);
687}
688
689static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690 struct buffer_page *head,
691 struct buffer_page *prev,
692 int old_flag, int new_flag)
693{
694 struct list_head *list;
695 unsigned long val = (unsigned long)&head->list;
696 unsigned long ret;
697
698 list = &prev->list;
699
700 val &= ~RB_FLAG_MASK;
701
08a40816
SR
702 ret = cmpxchg((unsigned long *)&list->next,
703 val | old_flag, val | new_flag);
77ae365e
SR
704
705 /* check if the reader took the page */
706 if ((ret & ~RB_FLAG_MASK) != val)
707 return RB_PAGE_MOVED;
708
709 return ret & RB_FLAG_MASK;
710}
711
712static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713 struct buffer_page *head,
714 struct buffer_page *prev,
715 int old_flag)
716{
717 return rb_head_page_set(cpu_buffer, head, prev,
718 old_flag, RB_PAGE_UPDATE);
719}
720
721static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722 struct buffer_page *head,
723 struct buffer_page *prev,
724 int old_flag)
725{
726 return rb_head_page_set(cpu_buffer, head, prev,
727 old_flag, RB_PAGE_HEAD);
728}
729
730static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731 struct buffer_page *head,
732 struct buffer_page *prev,
733 int old_flag)
734{
735 return rb_head_page_set(cpu_buffer, head, prev,
736 old_flag, RB_PAGE_NORMAL);
737}
738
739static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740 struct buffer_page **bpage)
741{
742 struct list_head *p = rb_list_head((*bpage)->list.next);
743
744 *bpage = list_entry(p, struct buffer_page, list);
745}
746
747static struct buffer_page *
748rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
749{
750 struct buffer_page *head;
751 struct buffer_page *page;
752 struct list_head *list;
753 int i;
754
755 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756 return NULL;
757
758 /* sanity check */
759 list = cpu_buffer->pages;
760 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761 return NULL;
762
763 page = head = cpu_buffer->head_page;
764 /*
765 * It is possible that the writer moves the header behind
766 * where we started, and we miss in one loop.
767 * A second loop should grab the header, but we'll do
768 * three loops just because I'm paranoid.
769 */
770 for (i = 0; i < 3; i++) {
771 do {
772 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773 cpu_buffer->head_page = page;
774 return page;
775 }
776 rb_inc_page(cpu_buffer, &page);
777 } while (page != head);
778 }
779
780 RB_WARN_ON(cpu_buffer, 1);
781
782 return NULL;
783}
784
785static int rb_head_page_replace(struct buffer_page *old,
786 struct buffer_page *new)
787{
788 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789 unsigned long val;
790 unsigned long ret;
791
792 val = *ptr & ~RB_FLAG_MASK;
793 val |= RB_PAGE_HEAD;
794
08a40816 795 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
796
797 return ret == val;
798}
799
800/*
801 * rb_tail_page_update - move the tail page forward
802 *
803 * Returns 1 if moved tail page, 0 if someone else did.
804 */
805static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806 struct buffer_page *tail_page,
807 struct buffer_page *next_page)
808{
809 struct buffer_page *old_tail;
810 unsigned long old_entries;
811 unsigned long old_write;
812 int ret = 0;
813
814 /*
815 * The tail page now needs to be moved forward.
816 *
817 * We need to reset the tail page, but without messing
818 * with possible erasing of data brought in by interrupts
819 * that have moved the tail page and are currently on it.
820 *
821 * We add a counter to the write field to denote this.
822 */
823 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
825
826 /*
827 * Just make sure we have seen our old_write and synchronize
828 * with any interrupts that come in.
829 */
830 barrier();
831
832 /*
833 * If the tail page is still the same as what we think
834 * it is, then it is up to us to update the tail
835 * pointer.
836 */
837 if (tail_page == cpu_buffer->tail_page) {
838 /* Zero the write counter */
839 unsigned long val = old_write & ~RB_WRITE_MASK;
840 unsigned long eval = old_entries & ~RB_WRITE_MASK;
841
842 /*
843 * This will only succeed if an interrupt did
844 * not come in and change it. In which case, we
845 * do not want to modify it.
da706d8b
LJ
846 *
847 * We add (void) to let the compiler know that we do not care
848 * about the return value of these functions. We use the
849 * cmpxchg to only update if an interrupt did not already
850 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 851 */
da706d8b
LJ
852 (void)local_cmpxchg(&next_page->write, old_write, val);
853 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
854
855 /*
856 * No need to worry about races with clearing out the commit.
857 * it only can increment when a commit takes place. But that
858 * only happens in the outer most nested commit.
859 */
860 local_set(&next_page->page->commit, 0);
861
862 old_tail = cmpxchg(&cpu_buffer->tail_page,
863 tail_page, next_page);
864
865 if (old_tail == tail_page)
866 ret = 1;
867 }
868
869 return ret;
870}
871
872static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873 struct buffer_page *bpage)
874{
875 unsigned long val = (unsigned long)bpage;
876
877 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878 return 1;
879
880 return 0;
881}
882
883/**
884 * rb_check_list - make sure a pointer to a list has the last bits zero
885 */
886static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887 struct list_head *list)
888{
889 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890 return 1;
891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892 return 1;
893 return 0;
894}
895
7a8e76a3
SR
896/**
897 * check_pages - integrity check of buffer pages
898 * @cpu_buffer: CPU buffer with pages to test
899 *
c3706f00 900 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
901 * been corrupted.
902 */
903static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
904{
3adc54fa 905 struct list_head *head = cpu_buffer->pages;
044fa782 906 struct buffer_page *bpage, *tmp;
7a8e76a3 907
77ae365e
SR
908 rb_head_page_deactivate(cpu_buffer);
909
3e89c7bb
SR
910 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911 return -1;
912 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913 return -1;
7a8e76a3 914
77ae365e
SR
915 if (rb_check_list(cpu_buffer, head))
916 return -1;
917
044fa782 918 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 919 if (RB_WARN_ON(cpu_buffer,
044fa782 920 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
921 return -1;
922 if (RB_WARN_ON(cpu_buffer,
044fa782 923 bpage->list.prev->next != &bpage->list))
3e89c7bb 924 return -1;
77ae365e
SR
925 if (rb_check_list(cpu_buffer, &bpage->list))
926 return -1;
7a8e76a3
SR
927 }
928
77ae365e
SR
929 rb_head_page_activate(cpu_buffer);
930
7a8e76a3
SR
931 return 0;
932}
933
7a8e76a3
SR
934static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935 unsigned nr_pages)
936{
044fa782 937 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
938 unsigned long addr;
939 LIST_HEAD(pages);
940 unsigned i;
941
3adc54fa
SR
942 WARN_ON(!nr_pages);
943
7a8e76a3 944 for (i = 0; i < nr_pages; i++) {
044fa782 945 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 946 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 947 if (!bpage)
e4c2ce82 948 goto free_pages;
77ae365e
SR
949
950 rb_check_bpage(cpu_buffer, bpage);
951
044fa782 952 list_add(&bpage->list, &pages);
e4c2ce82 953
7a8e76a3
SR
954 addr = __get_free_page(GFP_KERNEL);
955 if (!addr)
956 goto free_pages;
044fa782
SR
957 bpage->page = (void *)addr;
958 rb_init_page(bpage->page);
7a8e76a3
SR
959 }
960
3adc54fa
SR
961 /*
962 * The ring buffer page list is a circular list that does not
963 * start and end with a list head. All page list items point to
964 * other pages.
965 */
966 cpu_buffer->pages = pages.next;
967 list_del(&pages);
7a8e76a3
SR
968
969 rb_check_pages(cpu_buffer);
970
971 return 0;
972
973 free_pages:
044fa782
SR
974 list_for_each_entry_safe(bpage, tmp, &pages, list) {
975 list_del_init(&bpage->list);
976 free_buffer_page(bpage);
7a8e76a3
SR
977 }
978 return -ENOMEM;
979}
980
981static struct ring_buffer_per_cpu *
982rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
983{
984 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 985 struct buffer_page *bpage;
d769041f 986 unsigned long addr;
7a8e76a3
SR
987 int ret;
988
989 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990 GFP_KERNEL, cpu_to_node(cpu));
991 if (!cpu_buffer)
992 return NULL;
993
994 cpu_buffer->cpu = cpu;
995 cpu_buffer->buffer = buffer;
f83c9d0f 996 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 997 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
3e03fb7f 998 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3 999
044fa782 1000 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1001 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1002 if (!bpage)
e4c2ce82
SR
1003 goto fail_free_buffer;
1004
77ae365e
SR
1005 rb_check_bpage(cpu_buffer, bpage);
1006
044fa782 1007 cpu_buffer->reader_page = bpage;
d769041f
SR
1008 addr = __get_free_page(GFP_KERNEL);
1009 if (!addr)
e4c2ce82 1010 goto fail_free_reader;
044fa782
SR
1011 bpage->page = (void *)addr;
1012 rb_init_page(bpage->page);
e4c2ce82 1013
d769041f 1014 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1015
7a8e76a3
SR
1016 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017 if (ret < 0)
d769041f 1018 goto fail_free_reader;
7a8e76a3
SR
1019
1020 cpu_buffer->head_page
3adc54fa 1021 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1022 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1023
77ae365e
SR
1024 rb_head_page_activate(cpu_buffer);
1025
7a8e76a3
SR
1026 return cpu_buffer;
1027
d769041f
SR
1028 fail_free_reader:
1029 free_buffer_page(cpu_buffer->reader_page);
1030
7a8e76a3
SR
1031 fail_free_buffer:
1032 kfree(cpu_buffer);
1033 return NULL;
1034}
1035
1036static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1037{
3adc54fa 1038 struct list_head *head = cpu_buffer->pages;
044fa782 1039 struct buffer_page *bpage, *tmp;
7a8e76a3 1040
d769041f
SR
1041 free_buffer_page(cpu_buffer->reader_page);
1042
77ae365e
SR
1043 rb_head_page_deactivate(cpu_buffer);
1044
3adc54fa
SR
1045 if (head) {
1046 list_for_each_entry_safe(bpage, tmp, head, list) {
1047 list_del_init(&bpage->list);
1048 free_buffer_page(bpage);
1049 }
1050 bpage = list_entry(head, struct buffer_page, list);
044fa782 1051 free_buffer_page(bpage);
7a8e76a3 1052 }
3adc54fa 1053
7a8e76a3
SR
1054 kfree(cpu_buffer);
1055}
1056
59222efe 1057#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1058static int rb_cpu_notify(struct notifier_block *self,
1059 unsigned long action, void *hcpu);
554f786e
SR
1060#endif
1061
7a8e76a3
SR
1062/**
1063 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1064 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1065 * @flags: attributes to set for the ring buffer.
1066 *
1067 * Currently the only flag that is available is the RB_FL_OVERWRITE
1068 * flag. This flag means that the buffer will overwrite old data
1069 * when the buffer wraps. If this flag is not set, the buffer will
1070 * drop data when the tail hits the head.
1071 */
1f8a6a10
PZ
1072struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073 struct lock_class_key *key)
7a8e76a3
SR
1074{
1075 struct ring_buffer *buffer;
1076 int bsize;
1077 int cpu;
1078
1079 /* keep it in its own cache line */
1080 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081 GFP_KERNEL);
1082 if (!buffer)
1083 return NULL;
1084
9e01c1b7
RR
1085 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086 goto fail_free_buffer;
1087
7a8e76a3
SR
1088 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089 buffer->flags = flags;
37886f6a 1090 buffer->clock = trace_clock_local;
1f8a6a10 1091 buffer->reader_lock_key = key;
7a8e76a3
SR
1092
1093 /* need at least two pages */
5f78abee
SR
1094 if (buffer->pages < 2)
1095 buffer->pages = 2;
7a8e76a3 1096
3bf832ce
FW
1097 /*
1098 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 * in early initcall, it will not be notified of secondary cpus.
1100 * In that off case, we need to allocate for all possible cpus.
1101 */
1102#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1103 get_online_cpus();
1104 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1105#else
1106 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107#endif
7a8e76a3
SR
1108 buffer->cpus = nr_cpu_ids;
1109
1110 bsize = sizeof(void *) * nr_cpu_ids;
1111 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112 GFP_KERNEL);
1113 if (!buffer->buffers)
9e01c1b7 1114 goto fail_free_cpumask;
7a8e76a3
SR
1115
1116 for_each_buffer_cpu(buffer, cpu) {
1117 buffer->buffers[cpu] =
1118 rb_allocate_cpu_buffer(buffer, cpu);
1119 if (!buffer->buffers[cpu])
1120 goto fail_free_buffers;
1121 }
1122
59222efe 1123#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1124 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125 buffer->cpu_notify.priority = 0;
1126 register_cpu_notifier(&buffer->cpu_notify);
1127#endif
1128
1129 put_online_cpus();
7a8e76a3
SR
1130 mutex_init(&buffer->mutex);
1131
1132 return buffer;
1133
1134 fail_free_buffers:
1135 for_each_buffer_cpu(buffer, cpu) {
1136 if (buffer->buffers[cpu])
1137 rb_free_cpu_buffer(buffer->buffers[cpu]);
1138 }
1139 kfree(buffer->buffers);
1140
9e01c1b7
RR
1141 fail_free_cpumask:
1142 free_cpumask_var(buffer->cpumask);
554f786e 1143 put_online_cpus();
9e01c1b7 1144
7a8e76a3
SR
1145 fail_free_buffer:
1146 kfree(buffer);
1147 return NULL;
1148}
1f8a6a10 1149EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1150
1151/**
1152 * ring_buffer_free - free a ring buffer.
1153 * @buffer: the buffer to free.
1154 */
1155void
1156ring_buffer_free(struct ring_buffer *buffer)
1157{
1158 int cpu;
1159
554f786e
SR
1160 get_online_cpus();
1161
59222efe 1162#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1163 unregister_cpu_notifier(&buffer->cpu_notify);
1164#endif
1165
7a8e76a3
SR
1166 for_each_buffer_cpu(buffer, cpu)
1167 rb_free_cpu_buffer(buffer->buffers[cpu]);
1168
554f786e
SR
1169 put_online_cpus();
1170
bd3f0221 1171 kfree(buffer->buffers);
9e01c1b7
RR
1172 free_cpumask_var(buffer->cpumask);
1173
7a8e76a3
SR
1174 kfree(buffer);
1175}
c4f50183 1176EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1177
37886f6a
SR
1178void ring_buffer_set_clock(struct ring_buffer *buffer,
1179 u64 (*clock)(void))
1180{
1181 buffer->clock = clock;
1182}
1183
7a8e76a3
SR
1184static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1185
1186static void
1187rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1188{
044fa782 1189 struct buffer_page *bpage;
7a8e76a3
SR
1190 struct list_head *p;
1191 unsigned i;
1192
1193 atomic_inc(&cpu_buffer->record_disabled);
1194 synchronize_sched();
1195
f7112949 1196 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1197 rb_head_page_deactivate(cpu_buffer);
1198
7a8e76a3 1199 for (i = 0; i < nr_pages; i++) {
3adc54fa 1200 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1201 return;
3adc54fa 1202 p = cpu_buffer->pages->next;
044fa782
SR
1203 bpage = list_entry(p, struct buffer_page, list);
1204 list_del_init(&bpage->list);
1205 free_buffer_page(bpage);
7a8e76a3 1206 }
3adc54fa 1207 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1208 return;
7a8e76a3
SR
1209
1210 rb_reset_cpu(cpu_buffer);
f7112949 1211 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1212
1213 rb_check_pages(cpu_buffer);
1214
1215 atomic_dec(&cpu_buffer->record_disabled);
1216
1217}
1218
1219static void
1220rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221 struct list_head *pages, unsigned nr_pages)
1222{
044fa782 1223 struct buffer_page *bpage;
7a8e76a3
SR
1224 struct list_head *p;
1225 unsigned i;
1226
1227 atomic_inc(&cpu_buffer->record_disabled);
1228 synchronize_sched();
1229
77ae365e
SR
1230 spin_lock_irq(&cpu_buffer->reader_lock);
1231 rb_head_page_deactivate(cpu_buffer);
1232
7a8e76a3 1233 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
1234 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235 return;
7a8e76a3 1236 p = pages->next;
044fa782
SR
1237 bpage = list_entry(p, struct buffer_page, list);
1238 list_del_init(&bpage->list);
3adc54fa 1239 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1240 }
1241 rb_reset_cpu(cpu_buffer);
77ae365e 1242 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1243
1244 rb_check_pages(cpu_buffer);
1245
1246 atomic_dec(&cpu_buffer->record_disabled);
1247}
1248
1249/**
1250 * ring_buffer_resize - resize the ring buffer
1251 * @buffer: the buffer to resize.
1252 * @size: the new size.
1253 *
1254 * The tracer is responsible for making sure that the buffer is
1255 * not being used while changing the size.
1256 * Note: We may be able to change the above requirement by using
1257 * RCU synchronizations.
1258 *
1259 * Minimum size is 2 * BUF_PAGE_SIZE.
1260 *
1261 * Returns -1 on failure.
1262 */
1263int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264{
1265 struct ring_buffer_per_cpu *cpu_buffer;
1266 unsigned nr_pages, rm_pages, new_pages;
044fa782 1267 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1268 unsigned long buffer_size;
1269 unsigned long addr;
1270 LIST_HEAD(pages);
1271 int i, cpu;
1272
ee51a1de
IM
1273 /*
1274 * Always succeed at resizing a non-existent buffer:
1275 */
1276 if (!buffer)
1277 return size;
1278
7a8e76a3
SR
1279 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280 size *= BUF_PAGE_SIZE;
1281 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282
1283 /* we need a minimum of two pages */
1284 if (size < BUF_PAGE_SIZE * 2)
1285 size = BUF_PAGE_SIZE * 2;
1286
1287 if (size == buffer_size)
1288 return size;
1289
1290 mutex_lock(&buffer->mutex);
554f786e 1291 get_online_cpus();
7a8e76a3
SR
1292
1293 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294
1295 if (size < buffer_size) {
1296
1297 /* easy case, just free pages */
554f786e
SR
1298 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299 goto out_fail;
7a8e76a3
SR
1300
1301 rm_pages = buffer->pages - nr_pages;
1302
1303 for_each_buffer_cpu(buffer, cpu) {
1304 cpu_buffer = buffer->buffers[cpu];
1305 rb_remove_pages(cpu_buffer, rm_pages);
1306 }
1307 goto out;
1308 }
1309
1310 /*
1311 * This is a bit more difficult. We only want to add pages
1312 * when we can allocate enough for all CPUs. We do this
1313 * by allocating all the pages and storing them on a local
1314 * link list. If we succeed in our allocation, then we
1315 * add these pages to the cpu_buffers. Otherwise we just free
1316 * them all and return -ENOMEM;
1317 */
554f786e
SR
1318 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319 goto out_fail;
f536aafc 1320
7a8e76a3
SR
1321 new_pages = nr_pages - buffer->pages;
1322
1323 for_each_buffer_cpu(buffer, cpu) {
1324 for (i = 0; i < new_pages; i++) {
044fa782 1325 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1326 cache_line_size()),
1327 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1328 if (!bpage)
e4c2ce82 1329 goto free_pages;
044fa782 1330 list_add(&bpage->list, &pages);
7a8e76a3
SR
1331 addr = __get_free_page(GFP_KERNEL);
1332 if (!addr)
1333 goto free_pages;
044fa782
SR
1334 bpage->page = (void *)addr;
1335 rb_init_page(bpage->page);
7a8e76a3
SR
1336 }
1337 }
1338
1339 for_each_buffer_cpu(buffer, cpu) {
1340 cpu_buffer = buffer->buffers[cpu];
1341 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342 }
1343
554f786e
SR
1344 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345 goto out_fail;
7a8e76a3
SR
1346
1347 out:
1348 buffer->pages = nr_pages;
554f786e 1349 put_online_cpus();
7a8e76a3
SR
1350 mutex_unlock(&buffer->mutex);
1351
1352 return size;
1353
1354 free_pages:
044fa782
SR
1355 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356 list_del_init(&bpage->list);
1357 free_buffer_page(bpage);
7a8e76a3 1358 }
554f786e 1359 put_online_cpus();
641d2f63 1360 mutex_unlock(&buffer->mutex);
7a8e76a3 1361 return -ENOMEM;
554f786e
SR
1362
1363 /*
1364 * Something went totally wrong, and we are too paranoid
1365 * to even clean up the mess.
1366 */
1367 out_fail:
1368 put_online_cpus();
1369 mutex_unlock(&buffer->mutex);
1370 return -1;
7a8e76a3 1371}
c4f50183 1372EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1373
8789a9e7 1374static inline void *
044fa782 1375__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1376{
044fa782 1377 return bpage->data + index;
8789a9e7
SR
1378}
1379
044fa782 1380static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1381{
044fa782 1382 return bpage->page->data + index;
7a8e76a3
SR
1383}
1384
1385static inline struct ring_buffer_event *
d769041f 1386rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1387{
6f807acd
SR
1388 return __rb_page_index(cpu_buffer->reader_page,
1389 cpu_buffer->reader_page->read);
1390}
1391
7a8e76a3
SR
1392static inline struct ring_buffer_event *
1393rb_iter_head_event(struct ring_buffer_iter *iter)
1394{
6f807acd 1395 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1396}
1397
77ae365e 1398static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1399{
77ae365e 1400 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1401}
1402
1403static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404{
abc9b56d 1405 return local_read(&bpage->page->commit);
bf41a158
SR
1406}
1407
77ae365e
SR
1408static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409{
1410 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411}
1412
bf41a158
SR
1413/* Size is determined by what has been commited */
1414static inline unsigned rb_page_size(struct buffer_page *bpage)
1415{
1416 return rb_page_commit(bpage);
1417}
1418
1419static inline unsigned
1420rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421{
1422 return rb_page_commit(cpu_buffer->commit_page);
1423}
1424
bf41a158
SR
1425static inline unsigned
1426rb_event_index(struct ring_buffer_event *event)
1427{
1428 unsigned long addr = (unsigned long)event;
1429
22f470f8 1430 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1431}
1432
0f0c85fc 1433static inline int
fa743953
SR
1434rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435 struct ring_buffer_event *event)
bf41a158
SR
1436{
1437 unsigned long addr = (unsigned long)event;
1438 unsigned long index;
1439
1440 index = rb_event_index(event);
1441 addr &= PAGE_MASK;
1442
1443 return cpu_buffer->commit_page->page == (void *)addr &&
1444 rb_commit_index(cpu_buffer) == index;
1445}
1446
34a148bf 1447static void
bf41a158 1448rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1449{
77ae365e
SR
1450 unsigned long max_count;
1451
bf41a158
SR
1452 /*
1453 * We only race with interrupts and NMIs on this CPU.
1454 * If we own the commit event, then we can commit
1455 * all others that interrupted us, since the interruptions
1456 * are in stack format (they finish before they come
1457 * back to us). This allows us to do a simple loop to
1458 * assign the commit to the tail.
1459 */
a8ccf1d6 1460 again:
77ae365e
SR
1461 max_count = cpu_buffer->buffer->pages * 100;
1462
bf41a158 1463 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1464 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465 return;
1466 if (RB_WARN_ON(cpu_buffer,
1467 rb_is_reader_page(cpu_buffer->tail_page)))
1468 return;
1469 local_set(&cpu_buffer->commit_page->page->commit,
1470 rb_page_write(cpu_buffer->commit_page));
bf41a158 1471 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1472 cpu_buffer->write_stamp =
1473 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1474 /* add barrier to keep gcc from optimizing too much */
1475 barrier();
1476 }
1477 while (rb_commit_index(cpu_buffer) !=
1478 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1479
1480 local_set(&cpu_buffer->commit_page->page->commit,
1481 rb_page_write(cpu_buffer->commit_page));
1482 RB_WARN_ON(cpu_buffer,
1483 local_read(&cpu_buffer->commit_page->page->commit) &
1484 ~RB_WRITE_MASK);
bf41a158
SR
1485 barrier();
1486 }
a8ccf1d6
SR
1487
1488 /* again, keep gcc from optimizing */
1489 barrier();
1490
1491 /*
1492 * If an interrupt came in just after the first while loop
1493 * and pushed the tail page forward, we will be left with
1494 * a dangling commit that will never go forward.
1495 */
1496 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497 goto again;
7a8e76a3
SR
1498}
1499
d769041f 1500static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1501{
abc9b56d 1502 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1503 cpu_buffer->reader_page->read = 0;
d769041f
SR
1504}
1505
34a148bf 1506static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1507{
1508 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509
1510 /*
1511 * The iterator could be on the reader page (it starts there).
1512 * But the head could have moved, since the reader was
1513 * found. Check for this case and assign the iterator
1514 * to the head page instead of next.
1515 */
1516 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1517 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1518 else
1519 rb_inc_page(cpu_buffer, &iter->head_page);
1520
abc9b56d 1521 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1522 iter->head = 0;
1523}
1524
1525/**
1526 * ring_buffer_update_event - update event type and data
1527 * @event: the even to update
1528 * @type: the type of event
1529 * @length: the size of the event field in the ring buffer
1530 *
1531 * Update the type and data fields of the event. The length
1532 * is the actual size that is written to the ring buffer,
1533 * and with this, we can determine what to place into the
1534 * data field.
1535 */
34a148bf 1536static void
7a8e76a3
SR
1537rb_update_event(struct ring_buffer_event *event,
1538 unsigned type, unsigned length)
1539{
334d4169 1540 event->type_len = type;
7a8e76a3
SR
1541
1542 switch (type) {
1543
1544 case RINGBUF_TYPE_PADDING:
7a8e76a3 1545 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1546 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1547 break;
1548
334d4169 1549 case 0:
7a8e76a3 1550 length -= RB_EVNT_HDR_SIZE;
334d4169 1551 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1552 event->array[0] = length;
334d4169
LJ
1553 else
1554 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1555 break;
1556 default:
1557 BUG();
1558 }
1559}
1560
77ae365e
SR
1561/*
1562 * rb_handle_head_page - writer hit the head page
1563 *
1564 * Returns: +1 to retry page
1565 * 0 to continue
1566 * -1 on error
1567 */
1568static int
1569rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570 struct buffer_page *tail_page,
1571 struct buffer_page *next_page)
1572{
1573 struct buffer_page *new_head;
1574 int entries;
1575 int type;
1576 int ret;
1577
1578 entries = rb_page_entries(next_page);
1579
1580 /*
1581 * The hard part is here. We need to move the head
1582 * forward, and protect against both readers on
1583 * other CPUs and writers coming in via interrupts.
1584 */
1585 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586 RB_PAGE_HEAD);
1587
1588 /*
1589 * type can be one of four:
1590 * NORMAL - an interrupt already moved it for us
1591 * HEAD - we are the first to get here.
1592 * UPDATE - we are the interrupt interrupting
1593 * a current move.
1594 * MOVED - a reader on another CPU moved the next
1595 * pointer to its reader page. Give up
1596 * and try again.
1597 */
1598
1599 switch (type) {
1600 case RB_PAGE_HEAD:
1601 /*
1602 * We changed the head to UPDATE, thus
1603 * it is our responsibility to update
1604 * the counters.
1605 */
1606 local_add(entries, &cpu_buffer->overrun);
1607
1608 /*
1609 * The entries will be zeroed out when we move the
1610 * tail page.
1611 */
1612
1613 /* still more to do */
1614 break;
1615
1616 case RB_PAGE_UPDATE:
1617 /*
1618 * This is an interrupt that interrupt the
1619 * previous update. Still more to do.
1620 */
1621 break;
1622 case RB_PAGE_NORMAL:
1623 /*
1624 * An interrupt came in before the update
1625 * and processed this for us.
1626 * Nothing left to do.
1627 */
1628 return 1;
1629 case RB_PAGE_MOVED:
1630 /*
1631 * The reader is on another CPU and just did
1632 * a swap with our next_page.
1633 * Try again.
1634 */
1635 return 1;
1636 default:
1637 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638 return -1;
1639 }
1640
1641 /*
1642 * Now that we are here, the old head pointer is
1643 * set to UPDATE. This will keep the reader from
1644 * swapping the head page with the reader page.
1645 * The reader (on another CPU) will spin till
1646 * we are finished.
1647 *
1648 * We just need to protect against interrupts
1649 * doing the job. We will set the next pointer
1650 * to HEAD. After that, we set the old pointer
1651 * to NORMAL, but only if it was HEAD before.
1652 * otherwise we are an interrupt, and only
1653 * want the outer most commit to reset it.
1654 */
1655 new_head = next_page;
1656 rb_inc_page(cpu_buffer, &new_head);
1657
1658 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659 RB_PAGE_NORMAL);
1660
1661 /*
1662 * Valid returns are:
1663 * HEAD - an interrupt came in and already set it.
1664 * NORMAL - One of two things:
1665 * 1) We really set it.
1666 * 2) A bunch of interrupts came in and moved
1667 * the page forward again.
1668 */
1669 switch (ret) {
1670 case RB_PAGE_HEAD:
1671 case RB_PAGE_NORMAL:
1672 /* OK */
1673 break;
1674 default:
1675 RB_WARN_ON(cpu_buffer, 1);
1676 return -1;
1677 }
1678
1679 /*
1680 * It is possible that an interrupt came in,
1681 * set the head up, then more interrupts came in
1682 * and moved it again. When we get back here,
1683 * the page would have been set to NORMAL but we
1684 * just set it back to HEAD.
1685 *
1686 * How do you detect this? Well, if that happened
1687 * the tail page would have moved.
1688 */
1689 if (ret == RB_PAGE_NORMAL) {
1690 /*
1691 * If the tail had moved passed next, then we need
1692 * to reset the pointer.
1693 */
1694 if (cpu_buffer->tail_page != tail_page &&
1695 cpu_buffer->tail_page != next_page)
1696 rb_head_page_set_normal(cpu_buffer, new_head,
1697 next_page,
1698 RB_PAGE_HEAD);
1699 }
1700
1701 /*
1702 * If this was the outer most commit (the one that
1703 * changed the original pointer from HEAD to UPDATE),
1704 * then it is up to us to reset it to NORMAL.
1705 */
1706 if (type == RB_PAGE_HEAD) {
1707 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 tail_page,
1709 RB_PAGE_UPDATE);
1710 if (RB_WARN_ON(cpu_buffer,
1711 ret != RB_PAGE_UPDATE))
1712 return -1;
1713 }
1714
1715 return 0;
1716}
1717
34a148bf 1718static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1719{
1720 struct ring_buffer_event event; /* Used only for sizeof array */
1721
1722 /* zero length can cause confusions */
1723 if (!length)
1724 length = 1;
1725
1726 if (length > RB_MAX_SMALL_DATA)
1727 length += sizeof(event.array[0]);
1728
1729 length += RB_EVNT_HDR_SIZE;
1730 length = ALIGN(length, RB_ALIGNMENT);
1731
1732 return length;
1733}
1734
c7b09308
SR
1735static inline void
1736rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737 struct buffer_page *tail_page,
1738 unsigned long tail, unsigned long length)
1739{
1740 struct ring_buffer_event *event;
1741
1742 /*
1743 * Only the event that crossed the page boundary
1744 * must fill the old tail_page with padding.
1745 */
1746 if (tail >= BUF_PAGE_SIZE) {
1747 local_sub(length, &tail_page->write);
1748 return;
1749 }
1750
1751 event = __rb_page_index(tail_page, tail);
b0b7065b 1752 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308
SR
1753
1754 /*
1755 * If this event is bigger than the minimum size, then
1756 * we need to be careful that we don't subtract the
1757 * write counter enough to allow another writer to slip
1758 * in on this page.
1759 * We put in a discarded commit instead, to make sure
1760 * that this space is not used again.
1761 *
1762 * If we are less than the minimum size, we don't need to
1763 * worry about it.
1764 */
1765 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766 /* No room for any events */
1767
1768 /* Mark the rest of the page with padding */
1769 rb_event_set_padding(event);
1770
1771 /* Set the write back to the previous setting */
1772 local_sub(length, &tail_page->write);
1773 return;
1774 }
1775
1776 /* Put in a discarded event */
1777 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778 event->type_len = RINGBUF_TYPE_PADDING;
1779 /* time delta must be non zero */
1780 event->time_delta = 1;
c7b09308
SR
1781
1782 /* Set write to end of buffer */
1783 length = (tail + length) - BUF_PAGE_SIZE;
1784 local_sub(length, &tail_page->write);
1785}
6634ff26 1786
7a8e76a3 1787static struct ring_buffer_event *
6634ff26
SR
1788rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1789 unsigned long length, unsigned long tail,
6634ff26 1790 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1791{
5a50e33c 1792 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1793 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1794 struct buffer_page *next_page;
1795 int ret;
aa20ae84
SR
1796
1797 next_page = tail_page;
1798
aa20ae84
SR
1799 rb_inc_page(cpu_buffer, &next_page);
1800
aa20ae84
SR
1801 /*
1802 * If for some reason, we had an interrupt storm that made
1803 * it all the way around the buffer, bail, and warn
1804 * about it.
1805 */
1806 if (unlikely(next_page == commit_page)) {
77ae365e 1807 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1808 goto out_reset;
1809 }
1810
77ae365e
SR
1811 /*
1812 * This is where the fun begins!
1813 *
1814 * We are fighting against races between a reader that
1815 * could be on another CPU trying to swap its reader
1816 * page with the buffer head.
1817 *
1818 * We are also fighting against interrupts coming in and
1819 * moving the head or tail on us as well.
1820 *
1821 * If the next page is the head page then we have filled
1822 * the buffer, unless the commit page is still on the
1823 * reader page.
1824 */
1825 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1826
77ae365e
SR
1827 /*
1828 * If the commit is not on the reader page, then
1829 * move the header page.
1830 */
1831 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832 /*
1833 * If we are not in overwrite mode,
1834 * this is easy, just stop here.
1835 */
1836 if (!(buffer->flags & RB_FL_OVERWRITE))
1837 goto out_reset;
1838
1839 ret = rb_handle_head_page(cpu_buffer,
1840 tail_page,
1841 next_page);
1842 if (ret < 0)
1843 goto out_reset;
1844 if (ret)
1845 goto out_again;
1846 } else {
1847 /*
1848 * We need to be careful here too. The
1849 * commit page could still be on the reader
1850 * page. We could have a small buffer, and
1851 * have filled up the buffer with events
1852 * from interrupts and such, and wrapped.
1853 *
1854 * Note, if the tail page is also the on the
1855 * reader_page, we let it move out.
1856 */
1857 if (unlikely((cpu_buffer->commit_page !=
1858 cpu_buffer->tail_page) &&
1859 (cpu_buffer->commit_page ==
1860 cpu_buffer->reader_page))) {
1861 local_inc(&cpu_buffer->commit_overrun);
1862 goto out_reset;
1863 }
aa20ae84
SR
1864 }
1865 }
1866
77ae365e
SR
1867 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868 if (ret) {
1869 /*
1870 * Nested commits always have zero deltas, so
1871 * just reread the time stamp
1872 */
6d3f1e12 1873 *ts = rb_time_stamp(buffer);
77ae365e 1874 next_page->page->time_stamp = *ts;
aa20ae84
SR
1875 }
1876
77ae365e 1877 out_again:
aa20ae84 1878
77ae365e 1879 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1880
1881 /* fail and let the caller try again */
1882 return ERR_PTR(-EAGAIN);
1883
45141d46 1884 out_reset:
6f3b3440 1885 /* reset write */
c7b09308 1886 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1887
bf41a158 1888 return NULL;
7a8e76a3
SR
1889}
1890
6634ff26
SR
1891static struct ring_buffer_event *
1892__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1893 unsigned type, unsigned long length, u64 *ts)
1894{
5a50e33c 1895 struct buffer_page *tail_page;
6634ff26
SR
1896 struct ring_buffer_event *event;
1897 unsigned long tail, write;
1898
6634ff26
SR
1899 tail_page = cpu_buffer->tail_page;
1900 write = local_add_return(length, &tail_page->write);
77ae365e
SR
1901
1902 /* set write to only the index of the write */
1903 write &= RB_WRITE_MASK;
6634ff26
SR
1904 tail = write - length;
1905
1906 /* See if we shot pass the end of this buffer page */
1907 if (write > BUF_PAGE_SIZE)
1908 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 1909 tail_page, ts);
6634ff26
SR
1910
1911 /* We reserved something on the buffer */
1912
6634ff26 1913 event = __rb_page_index(tail_page, tail);
1744a21d 1914 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1915 rb_update_event(event, type, length);
1916
1917 /* The passed in type is zero for DATA */
1918 if (likely(!type))
1919 local_inc(&tail_page->entries);
1920
1921 /*
fa743953
SR
1922 * If this is the first commit on the page, then update
1923 * its timestamp.
6634ff26 1924 */
fa743953
SR
1925 if (!tail)
1926 tail_page->page->time_stamp = *ts;
6634ff26
SR
1927
1928 return event;
1929}
1930
edd813bf
SR
1931static inline int
1932rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1933 struct ring_buffer_event *event)
1934{
1935 unsigned long new_index, old_index;
1936 struct buffer_page *bpage;
1937 unsigned long index;
1938 unsigned long addr;
1939
1940 new_index = rb_event_index(event);
1941 old_index = new_index + rb_event_length(event);
1942 addr = (unsigned long)event;
1943 addr &= PAGE_MASK;
1944
1945 bpage = cpu_buffer->tail_page;
1946
1947 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
1948 unsigned long write_mask =
1949 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
1950 /*
1951 * This is on the tail page. It is possible that
1952 * a write could come in and move the tail page
1953 * and write to the next page. That is fine
1954 * because we just shorten what is on this page.
1955 */
77ae365e
SR
1956 old_index += write_mask;
1957 new_index += write_mask;
edd813bf
SR
1958 index = local_cmpxchg(&bpage->write, old_index, new_index);
1959 if (index == old_index)
1960 return 1;
1961 }
1962
1963 /* could not discard */
1964 return 0;
1965}
1966
7a8e76a3
SR
1967static int
1968rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1969 u64 *ts, u64 *delta)
1970{
1971 struct ring_buffer_event *event;
1972 static int once;
bf41a158 1973 int ret;
7a8e76a3
SR
1974
1975 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1976 printk(KERN_WARNING "Delta way too big! %llu"
1977 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1978 (unsigned long long)*delta,
1979 (unsigned long long)*ts,
1980 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1981 WARN_ON(1);
1982 }
1983
1984 /*
1985 * The delta is too big, we to add a
1986 * new timestamp.
1987 */
1988 event = __rb_reserve_next(cpu_buffer,
1989 RINGBUF_TYPE_TIME_EXTEND,
1990 RB_LEN_TIME_EXTEND,
1991 ts);
1992 if (!event)
bf41a158 1993 return -EBUSY;
7a8e76a3 1994
bf41a158
SR
1995 if (PTR_ERR(event) == -EAGAIN)
1996 return -EAGAIN;
1997
1998 /* Only a commited time event can update the write stamp */
fa743953 1999 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 2000 /*
fa743953
SR
2001 * If this is the first on the page, then it was
2002 * updated with the page itself. Try to discard it
2003 * and if we can't just make it zero.
bf41a158
SR
2004 */
2005 if (rb_event_index(event)) {
2006 event->time_delta = *delta & TS_MASK;
2007 event->array[0] = *delta >> TS_SHIFT;
2008 } else {
ea05b57c
SR
2009 /* try to discard, since we do not need this */
2010 if (!rb_try_to_discard(cpu_buffer, event)) {
2011 /* nope, just zero it */
2012 event->time_delta = 0;
2013 event->array[0] = 0;
2014 }
bf41a158 2015 }
7a8e76a3 2016 cpu_buffer->write_stamp = *ts;
bf41a158
SR
2017 /* let the caller know this was the commit */
2018 ret = 1;
2019 } else {
edd813bf
SR
2020 /* Try to discard the event */
2021 if (!rb_try_to_discard(cpu_buffer, event)) {
2022 /* Darn, this is just wasted space */
2023 event->time_delta = 0;
2024 event->array[0] = 0;
edd813bf 2025 }
f57a8a19 2026 ret = 0;
7a8e76a3
SR
2027 }
2028
bf41a158
SR
2029 *delta = 0;
2030
2031 return ret;
7a8e76a3
SR
2032}
2033
fa743953
SR
2034static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2035{
2036 local_inc(&cpu_buffer->committing);
2037 local_inc(&cpu_buffer->commits);
2038}
2039
2040static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2041{
2042 unsigned long commits;
2043
2044 if (RB_WARN_ON(cpu_buffer,
2045 !local_read(&cpu_buffer->committing)))
2046 return;
2047
2048 again:
2049 commits = local_read(&cpu_buffer->commits);
2050 /* synchronize with interrupts */
2051 barrier();
2052 if (local_read(&cpu_buffer->committing) == 1)
2053 rb_set_commit_to_write(cpu_buffer);
2054
2055 local_dec(&cpu_buffer->committing);
2056
2057 /* synchronize with interrupts */
2058 barrier();
2059
2060 /*
2061 * Need to account for interrupts coming in between the
2062 * updating of the commit page and the clearing of the
2063 * committing counter.
2064 */
2065 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2066 !local_read(&cpu_buffer->committing)) {
2067 local_inc(&cpu_buffer->committing);
2068 goto again;
2069 }
2070}
2071
7a8e76a3 2072static struct ring_buffer_event *
62f0b3eb
SR
2073rb_reserve_next_event(struct ring_buffer *buffer,
2074 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2075 unsigned long length)
7a8e76a3
SR
2076{
2077 struct ring_buffer_event *event;
168b6b1d 2078 u64 ts, delta = 0;
bf41a158 2079 int commit = 0;
818e3dd3 2080 int nr_loops = 0;
7a8e76a3 2081
fa743953
SR
2082 rb_start_commit(cpu_buffer);
2083
85bac32c 2084#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2085 /*
2086 * Due to the ability to swap a cpu buffer from a buffer
2087 * it is possible it was swapped before we committed.
2088 * (committing stops a swap). We check for it here and
2089 * if it happened, we have to fail the write.
2090 */
2091 barrier();
2092 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2093 local_dec(&cpu_buffer->committing);
2094 local_dec(&cpu_buffer->commits);
2095 return NULL;
2096 }
85bac32c 2097#endif
62f0b3eb 2098
be957c44 2099 length = rb_calculate_event_length(length);
bf41a158 2100 again:
818e3dd3
SR
2101 /*
2102 * We allow for interrupts to reenter here and do a trace.
2103 * If one does, it will cause this original code to loop
2104 * back here. Even with heavy interrupts happening, this
2105 * should only happen a few times in a row. If this happens
2106 * 1000 times in a row, there must be either an interrupt
2107 * storm or we have something buggy.
2108 * Bail!
2109 */
3e89c7bb 2110 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2111 goto out_fail;
818e3dd3 2112
6d3f1e12 2113 ts = rb_time_stamp(cpu_buffer->buffer);
7a8e76a3 2114
bf41a158
SR
2115 /*
2116 * Only the first commit can update the timestamp.
2117 * Yes there is a race here. If an interrupt comes in
2118 * just after the conditional and it traces too, then it
2119 * will also check the deltas. More than one timestamp may
2120 * also be made. But only the entry that did the actual
2121 * commit will be something other than zero.
2122 */
0f0c85fc
SR
2123 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2124 rb_page_write(cpu_buffer->tail_page) ==
2125 rb_commit_index(cpu_buffer))) {
168b6b1d 2126 u64 diff;
bf41a158 2127
168b6b1d 2128 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2129
168b6b1d 2130 /* make sure this diff is calculated here */
bf41a158
SR
2131 barrier();
2132
2133 /* Did the write stamp get updated already? */
2134 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 2135 goto get_event;
bf41a158 2136
168b6b1d
SR
2137 delta = diff;
2138 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 2139
bf41a158 2140 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 2141 if (commit == -EBUSY)
fa743953 2142 goto out_fail;
bf41a158
SR
2143
2144 if (commit == -EAGAIN)
2145 goto again;
2146
2147 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 2148 }
168b6b1d 2149 }
7a8e76a3 2150
168b6b1d 2151 get_event:
1cd8d735 2152 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 2153 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2154 goto again;
2155
fa743953
SR
2156 if (!event)
2157 goto out_fail;
7a8e76a3 2158
fa743953 2159 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
2160 delta = 0;
2161
2162 event->time_delta = delta;
2163
2164 return event;
fa743953
SR
2165
2166 out_fail:
2167 rb_end_commit(cpu_buffer);
2168 return NULL;
7a8e76a3
SR
2169}
2170
1155de47
PM
2171#ifdef CONFIG_TRACING
2172
aa18efb2 2173#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
2174
2175static int trace_recursive_lock(void)
2176{
aa18efb2 2177 current->trace_recursion++;
261842b7 2178
aa18efb2
SR
2179 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2180 return 0;
e057a5e5 2181
aa18efb2
SR
2182 /* Disable all tracing before we do anything else */
2183 tracing_off_permanent();
261842b7 2184
7d7d2b80 2185 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2186 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2187 current->trace_recursion,
2188 hardirq_count() >> HARDIRQ_SHIFT,
2189 softirq_count() >> SOFTIRQ_SHIFT,
2190 in_nmi());
261842b7 2191
aa18efb2
SR
2192 WARN_ON_ONCE(1);
2193 return -1;
261842b7
SR
2194}
2195
2196static void trace_recursive_unlock(void)
2197{
aa18efb2 2198 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2199
aa18efb2 2200 current->trace_recursion--;
261842b7
SR
2201}
2202
1155de47
PM
2203#else
2204
2205#define trace_recursive_lock() (0)
2206#define trace_recursive_unlock() do { } while (0)
2207
2208#endif
2209
bf41a158
SR
2210static DEFINE_PER_CPU(int, rb_need_resched);
2211
7a8e76a3
SR
2212/**
2213 * ring_buffer_lock_reserve - reserve a part of the buffer
2214 * @buffer: the ring buffer to reserve from
2215 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2216 *
2217 * Returns a reseverd event on the ring buffer to copy directly to.
2218 * The user of this interface will need to get the body to write into
2219 * and can use the ring_buffer_event_data() interface.
2220 *
2221 * The length is the length of the data needed, not the event length
2222 * which also includes the event header.
2223 *
2224 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2225 * If NULL is returned, then nothing has been allocated or locked.
2226 */
2227struct ring_buffer_event *
0a987751 2228ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2229{
2230 struct ring_buffer_per_cpu *cpu_buffer;
2231 struct ring_buffer_event *event;
bf41a158 2232 int cpu, resched;
7a8e76a3 2233
033601a3 2234 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2235 return NULL;
2236
7a8e76a3
SR
2237 if (atomic_read(&buffer->record_disabled))
2238 return NULL;
2239
bf41a158 2240 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 2241 resched = ftrace_preempt_disable();
bf41a158 2242
261842b7
SR
2243 if (trace_recursive_lock())
2244 goto out_nocheck;
2245
7a8e76a3
SR
2246 cpu = raw_smp_processor_id();
2247
9e01c1b7 2248 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2249 goto out;
7a8e76a3
SR
2250
2251 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2252
2253 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2254 goto out;
7a8e76a3 2255
be957c44 2256 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2257 goto out;
7a8e76a3 2258
62f0b3eb 2259 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2260 if (!event)
d769041f 2261 goto out;
7a8e76a3 2262
bf41a158
SR
2263 /*
2264 * Need to store resched state on this cpu.
2265 * Only the first needs to.
2266 */
2267
2268 if (preempt_count() == 1)
2269 per_cpu(rb_need_resched, cpu) = resched;
2270
7a8e76a3
SR
2271 return event;
2272
d769041f 2273 out:
261842b7
SR
2274 trace_recursive_unlock();
2275
2276 out_nocheck:
182e9f5f 2277 ftrace_preempt_enable(resched);
7a8e76a3
SR
2278 return NULL;
2279}
c4f50183 2280EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2281
a1863c21
SR
2282static void
2283rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2284 struct ring_buffer_event *event)
2285{
fa743953
SR
2286 /*
2287 * The event first in the commit queue updates the
2288 * time stamp.
2289 */
2290 if (rb_event_is_commit(cpu_buffer, event))
2291 cpu_buffer->write_stamp += event->time_delta;
a1863c21 2292}
bf41a158 2293
a1863c21
SR
2294static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2295 struct ring_buffer_event *event)
2296{
2297 local_inc(&cpu_buffer->entries);
2298 rb_update_write_stamp(cpu_buffer, event);
fa743953 2299 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2300}
2301
2302/**
2303 * ring_buffer_unlock_commit - commit a reserved
2304 * @buffer: The buffer to commit to
2305 * @event: The event pointer to commit.
7a8e76a3
SR
2306 *
2307 * This commits the data to the ring buffer, and releases any locks held.
2308 *
2309 * Must be paired with ring_buffer_lock_reserve.
2310 */
2311int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2312 struct ring_buffer_event *event)
7a8e76a3
SR
2313{
2314 struct ring_buffer_per_cpu *cpu_buffer;
2315 int cpu = raw_smp_processor_id();
2316
2317 cpu_buffer = buffer->buffers[cpu];
2318
7a8e76a3
SR
2319 rb_commit(cpu_buffer, event);
2320
261842b7
SR
2321 trace_recursive_unlock();
2322
bf41a158
SR
2323 /*
2324 * Only the last preempt count needs to restore preemption.
2325 */
182e9f5f
SR
2326 if (preempt_count() == 1)
2327 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2328 else
bf41a158 2329 preempt_enable_no_resched_notrace();
7a8e76a3
SR
2330
2331 return 0;
2332}
c4f50183 2333EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2334
f3b9aae1
FW
2335static inline void rb_event_discard(struct ring_buffer_event *event)
2336{
334d4169
LJ
2337 /* array[0] holds the actual length for the discarded event */
2338 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2339 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2340 /* time delta must be non zero */
2341 if (!event->time_delta)
2342 event->time_delta = 1;
2343}
2344
a1863c21
SR
2345/*
2346 * Decrement the entries to the page that an event is on.
2347 * The event does not even need to exist, only the pointer
2348 * to the page it is on. This may only be called before the commit
2349 * takes place.
2350 */
2351static inline void
2352rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2353 struct ring_buffer_event *event)
2354{
2355 unsigned long addr = (unsigned long)event;
2356 struct buffer_page *bpage = cpu_buffer->commit_page;
2357 struct buffer_page *start;
2358
2359 addr &= PAGE_MASK;
2360
2361 /* Do the likely case first */
2362 if (likely(bpage->page == (void *)addr)) {
2363 local_dec(&bpage->entries);
2364 return;
2365 }
2366
2367 /*
2368 * Because the commit page may be on the reader page we
2369 * start with the next page and check the end loop there.
2370 */
2371 rb_inc_page(cpu_buffer, &bpage);
2372 start = bpage;
2373 do {
2374 if (bpage->page == (void *)addr) {
2375 local_dec(&bpage->entries);
2376 return;
2377 }
2378 rb_inc_page(cpu_buffer, &bpage);
2379 } while (bpage != start);
2380
2381 /* commit not part of this buffer?? */
2382 RB_WARN_ON(cpu_buffer, 1);
2383}
2384
fa1b47dd
SR
2385/**
2386 * ring_buffer_commit_discard - discard an event that has not been committed
2387 * @buffer: the ring buffer
2388 * @event: non committed event to discard
2389 *
dc892f73
SR
2390 * Sometimes an event that is in the ring buffer needs to be ignored.
2391 * This function lets the user discard an event in the ring buffer
2392 * and then that event will not be read later.
2393 *
2394 * This function only works if it is called before the the item has been
2395 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2396 * if another event has not been added behind it.
2397 *
2398 * If another event has been added behind it, it will set the event
2399 * up as discarded, and perform the commit.
2400 *
2401 * If this function is called, do not call ring_buffer_unlock_commit on
2402 * the event.
2403 */
2404void ring_buffer_discard_commit(struct ring_buffer *buffer,
2405 struct ring_buffer_event *event)
2406{
2407 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2408 int cpu;
2409
2410 /* The event is discarded regardless */
f3b9aae1 2411 rb_event_discard(event);
fa1b47dd 2412
fa743953
SR
2413 cpu = smp_processor_id();
2414 cpu_buffer = buffer->buffers[cpu];
2415
fa1b47dd
SR
2416 /*
2417 * This must only be called if the event has not been
2418 * committed yet. Thus we can assume that preemption
2419 * is still disabled.
2420 */
fa743953 2421 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2422
a1863c21 2423 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2424 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2425 goto out;
fa1b47dd
SR
2426
2427 /*
2428 * The commit is still visible by the reader, so we
a1863c21 2429 * must still update the timestamp.
fa1b47dd 2430 */
a1863c21 2431 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2432 out:
fa743953 2433 rb_end_commit(cpu_buffer);
fa1b47dd 2434
f3b9aae1
FW
2435 trace_recursive_unlock();
2436
fa1b47dd
SR
2437 /*
2438 * Only the last preempt count needs to restore preemption.
2439 */
2440 if (preempt_count() == 1)
2441 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2442 else
2443 preempt_enable_no_resched_notrace();
2444
2445}
2446EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2447
7a8e76a3
SR
2448/**
2449 * ring_buffer_write - write data to the buffer without reserving
2450 * @buffer: The ring buffer to write to.
2451 * @length: The length of the data being written (excluding the event header)
2452 * @data: The data to write to the buffer.
2453 *
2454 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2455 * one function. If you already have the data to write to the buffer, it
2456 * may be easier to simply call this function.
2457 *
2458 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2459 * and not the length of the event which would hold the header.
2460 */
2461int ring_buffer_write(struct ring_buffer *buffer,
2462 unsigned long length,
2463 void *data)
2464{
2465 struct ring_buffer_per_cpu *cpu_buffer;
2466 struct ring_buffer_event *event;
7a8e76a3
SR
2467 void *body;
2468 int ret = -EBUSY;
bf41a158 2469 int cpu, resched;
7a8e76a3 2470
033601a3 2471 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2472 return -EBUSY;
2473
7a8e76a3
SR
2474 if (atomic_read(&buffer->record_disabled))
2475 return -EBUSY;
2476
182e9f5f 2477 resched = ftrace_preempt_disable();
bf41a158 2478
7a8e76a3
SR
2479 cpu = raw_smp_processor_id();
2480
9e01c1b7 2481 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2482 goto out;
7a8e76a3
SR
2483
2484 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2485
2486 if (atomic_read(&cpu_buffer->record_disabled))
2487 goto out;
2488
be957c44
SR
2489 if (length > BUF_MAX_DATA_SIZE)
2490 goto out;
2491
62f0b3eb 2492 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2493 if (!event)
2494 goto out;
2495
2496 body = rb_event_data(event);
2497
2498 memcpy(body, data, length);
2499
2500 rb_commit(cpu_buffer, event);
2501
2502 ret = 0;
2503 out:
182e9f5f 2504 ftrace_preempt_enable(resched);
7a8e76a3
SR
2505
2506 return ret;
2507}
c4f50183 2508EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2509
34a148bf 2510static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2511{
2512 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2513 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2514 struct buffer_page *commit = cpu_buffer->commit_page;
2515
77ae365e
SR
2516 /* In case of error, head will be NULL */
2517 if (unlikely(!head))
2518 return 1;
2519
bf41a158
SR
2520 return reader->read == rb_page_commit(reader) &&
2521 (commit == reader ||
2522 (commit == head &&
2523 head->read == rb_page_commit(commit)));
2524}
2525
7a8e76a3
SR
2526/**
2527 * ring_buffer_record_disable - stop all writes into the buffer
2528 * @buffer: The ring buffer to stop writes to.
2529 *
2530 * This prevents all writes to the buffer. Any attempt to write
2531 * to the buffer after this will fail and return NULL.
2532 *
2533 * The caller should call synchronize_sched() after this.
2534 */
2535void ring_buffer_record_disable(struct ring_buffer *buffer)
2536{
2537 atomic_inc(&buffer->record_disabled);
2538}
c4f50183 2539EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2540
2541/**
2542 * ring_buffer_record_enable - enable writes to the buffer
2543 * @buffer: The ring buffer to enable writes
2544 *
2545 * Note, multiple disables will need the same number of enables
2546 * to truely enable the writing (much like preempt_disable).
2547 */
2548void ring_buffer_record_enable(struct ring_buffer *buffer)
2549{
2550 atomic_dec(&buffer->record_disabled);
2551}
c4f50183 2552EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2553
2554/**
2555 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2556 * @buffer: The ring buffer to stop writes to.
2557 * @cpu: The CPU buffer to stop
2558 *
2559 * This prevents all writes to the buffer. Any attempt to write
2560 * to the buffer after this will fail and return NULL.
2561 *
2562 * The caller should call synchronize_sched() after this.
2563 */
2564void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2565{
2566 struct ring_buffer_per_cpu *cpu_buffer;
2567
9e01c1b7 2568 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2569 return;
7a8e76a3
SR
2570
2571 cpu_buffer = buffer->buffers[cpu];
2572 atomic_inc(&cpu_buffer->record_disabled);
2573}
c4f50183 2574EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2575
2576/**
2577 * ring_buffer_record_enable_cpu - enable writes to the buffer
2578 * @buffer: The ring buffer to enable writes
2579 * @cpu: The CPU to enable.
2580 *
2581 * Note, multiple disables will need the same number of enables
2582 * to truely enable the writing (much like preempt_disable).
2583 */
2584void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2585{
2586 struct ring_buffer_per_cpu *cpu_buffer;
2587
9e01c1b7 2588 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2589 return;
7a8e76a3
SR
2590
2591 cpu_buffer = buffer->buffers[cpu];
2592 atomic_dec(&cpu_buffer->record_disabled);
2593}
c4f50183 2594EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
2595
2596/**
2597 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2598 * @buffer: The ring buffer
2599 * @cpu: The per CPU buffer to get the entries from.
2600 */
2601unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2602{
2603 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2604 unsigned long ret;
7a8e76a3 2605
9e01c1b7 2606 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2607 return 0;
7a8e76a3
SR
2608
2609 cpu_buffer = buffer->buffers[cpu];
77ae365e 2610 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
e4906eff 2611 - cpu_buffer->read;
554f786e
SR
2612
2613 return ret;
7a8e76a3 2614}
c4f50183 2615EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2616
2617/**
2618 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2619 * @buffer: The ring buffer
2620 * @cpu: The per CPU buffer to get the number of overruns from
2621 */
2622unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2623{
2624 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2625 unsigned long ret;
7a8e76a3 2626
9e01c1b7 2627 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2628 return 0;
7a8e76a3
SR
2629
2630 cpu_buffer = buffer->buffers[cpu];
77ae365e 2631 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2632
2633 return ret;
7a8e76a3 2634}
c4f50183 2635EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2636
f0d2c681
SR
2637/**
2638 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2639 * @buffer: The ring buffer
2640 * @cpu: The per CPU buffer to get the number of overruns from
2641 */
2642unsigned long
2643ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2644{
2645 struct ring_buffer_per_cpu *cpu_buffer;
2646 unsigned long ret;
2647
2648 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2649 return 0;
2650
2651 cpu_buffer = buffer->buffers[cpu];
77ae365e 2652 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2657
7a8e76a3
SR
2658/**
2659 * ring_buffer_entries - get the number of entries in a buffer
2660 * @buffer: The ring buffer
2661 *
2662 * Returns the total number of entries in the ring buffer
2663 * (all CPU entries)
2664 */
2665unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2666{
2667 struct ring_buffer_per_cpu *cpu_buffer;
2668 unsigned long entries = 0;
2669 int cpu;
2670
2671 /* if you care about this being correct, lock the buffer */
2672 for_each_buffer_cpu(buffer, cpu) {
2673 cpu_buffer = buffer->buffers[cpu];
e4906eff 2674 entries += (local_read(&cpu_buffer->entries) -
77ae365e 2675 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
7a8e76a3
SR
2676 }
2677
2678 return entries;
2679}
c4f50183 2680EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2681
2682/**
67b394f7 2683 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2684 * @buffer: The ring buffer
2685 *
2686 * Returns the total number of overruns in the ring buffer
2687 * (all CPU entries)
2688 */
2689unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2690{
2691 struct ring_buffer_per_cpu *cpu_buffer;
2692 unsigned long overruns = 0;
2693 int cpu;
2694
2695 /* if you care about this being correct, lock the buffer */
2696 for_each_buffer_cpu(buffer, cpu) {
2697 cpu_buffer = buffer->buffers[cpu];
77ae365e 2698 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2699 }
2700
2701 return overruns;
2702}
c4f50183 2703EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2704
642edba5 2705static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2706{
2707 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2708
d769041f
SR
2709 /* Iterator usage is expected to have record disabled */
2710 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2711 iter->head_page = rb_set_head_page(cpu_buffer);
2712 if (unlikely(!iter->head_page))
2713 return;
2714 iter->head = iter->head_page->read;
d769041f
SR
2715 } else {
2716 iter->head_page = cpu_buffer->reader_page;
6f807acd 2717 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2718 }
2719 if (iter->head)
2720 iter->read_stamp = cpu_buffer->read_stamp;
2721 else
abc9b56d 2722 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2723}
f83c9d0f 2724
642edba5
SR
2725/**
2726 * ring_buffer_iter_reset - reset an iterator
2727 * @iter: The iterator to reset
2728 *
2729 * Resets the iterator, so that it will start from the beginning
2730 * again.
2731 */
2732void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2733{
554f786e 2734 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2735 unsigned long flags;
2736
554f786e
SR
2737 if (!iter)
2738 return;
2739
2740 cpu_buffer = iter->cpu_buffer;
2741
642edba5
SR
2742 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2743 rb_iter_reset(iter);
f83c9d0f 2744 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2745}
c4f50183 2746EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2747
2748/**
2749 * ring_buffer_iter_empty - check if an iterator has no more to read
2750 * @iter: The iterator to check
2751 */
2752int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2753{
2754 struct ring_buffer_per_cpu *cpu_buffer;
2755
2756 cpu_buffer = iter->cpu_buffer;
2757
bf41a158
SR
2758 return iter->head_page == cpu_buffer->commit_page &&
2759 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2760}
c4f50183 2761EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2762
2763static void
2764rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2765 struct ring_buffer_event *event)
2766{
2767 u64 delta;
2768
334d4169 2769 switch (event->type_len) {
7a8e76a3
SR
2770 case RINGBUF_TYPE_PADDING:
2771 return;
2772
2773 case RINGBUF_TYPE_TIME_EXTEND:
2774 delta = event->array[0];
2775 delta <<= TS_SHIFT;
2776 delta += event->time_delta;
2777 cpu_buffer->read_stamp += delta;
2778 return;
2779
2780 case RINGBUF_TYPE_TIME_STAMP:
2781 /* FIXME: not implemented */
2782 return;
2783
2784 case RINGBUF_TYPE_DATA:
2785 cpu_buffer->read_stamp += event->time_delta;
2786 return;
2787
2788 default:
2789 BUG();
2790 }
2791 return;
2792}
2793
2794static void
2795rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2796 struct ring_buffer_event *event)
2797{
2798 u64 delta;
2799
334d4169 2800 switch (event->type_len) {
7a8e76a3
SR
2801 case RINGBUF_TYPE_PADDING:
2802 return;
2803
2804 case RINGBUF_TYPE_TIME_EXTEND:
2805 delta = event->array[0];
2806 delta <<= TS_SHIFT;
2807 delta += event->time_delta;
2808 iter->read_stamp += delta;
2809 return;
2810
2811 case RINGBUF_TYPE_TIME_STAMP:
2812 /* FIXME: not implemented */
2813 return;
2814
2815 case RINGBUF_TYPE_DATA:
2816 iter->read_stamp += event->time_delta;
2817 return;
2818
2819 default:
2820 BUG();
2821 }
2822 return;
2823}
2824
d769041f
SR
2825static struct buffer_page *
2826rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2827{
d769041f
SR
2828 struct buffer_page *reader = NULL;
2829 unsigned long flags;
818e3dd3 2830 int nr_loops = 0;
77ae365e 2831 int ret;
d769041f 2832
3e03fb7f
SR
2833 local_irq_save(flags);
2834 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2835
2836 again:
818e3dd3
SR
2837 /*
2838 * This should normally only loop twice. But because the
2839 * start of the reader inserts an empty page, it causes
2840 * a case where we will loop three times. There should be no
2841 * reason to loop four times (that I know of).
2842 */
3e89c7bb 2843 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2844 reader = NULL;
2845 goto out;
2846 }
2847
d769041f
SR
2848 reader = cpu_buffer->reader_page;
2849
2850 /* If there's more to read, return this page */
bf41a158 2851 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2852 goto out;
2853
2854 /* Never should we have an index greater than the size */
3e89c7bb
SR
2855 if (RB_WARN_ON(cpu_buffer,
2856 cpu_buffer->reader_page->read > rb_page_size(reader)))
2857 goto out;
d769041f
SR
2858
2859 /* check if we caught up to the tail */
2860 reader = NULL;
bf41a158 2861 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2862 goto out;
7a8e76a3
SR
2863
2864 /*
d769041f 2865 * Reset the reader page to size zero.
7a8e76a3 2866 */
77ae365e
SR
2867 local_set(&cpu_buffer->reader_page->write, 0);
2868 local_set(&cpu_buffer->reader_page->entries, 0);
2869 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2870
77ae365e
SR
2871 spin:
2872 /*
2873 * Splice the empty reader page into the list around the head.
2874 */
2875 reader = rb_set_head_page(cpu_buffer);
d769041f
SR
2876 cpu_buffer->reader_page->list.next = reader->list.next;
2877 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2878
3adc54fa
SR
2879 /*
2880 * cpu_buffer->pages just needs to point to the buffer, it
2881 * has no specific buffer page to point to. Lets move it out
2882 * of our way so we don't accidently swap it.
2883 */
2884 cpu_buffer->pages = reader->list.prev;
2885
77ae365e
SR
2886 /* The reader page will be pointing to the new head */
2887 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2888
77ae365e
SR
2889 /*
2890 * Here's the tricky part.
2891 *
2892 * We need to move the pointer past the header page.
2893 * But we can only do that if a writer is not currently
2894 * moving it. The page before the header page has the
2895 * flag bit '1' set if it is pointing to the page we want.
2896 * but if the writer is in the process of moving it
2897 * than it will be '2' or already moved '0'.
2898 */
2899
2900 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2901
2902 /*
77ae365e 2903 * If we did not convert it, then we must try again.
7a8e76a3 2904 */
77ae365e
SR
2905 if (!ret)
2906 goto spin;
7a8e76a3 2907
77ae365e
SR
2908 /*
2909 * Yeah! We succeeded in replacing the page.
2910 *
2911 * Now make the new head point back to the reader page.
2912 */
2913 reader->list.next->prev = &cpu_buffer->reader_page->list;
2914 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2915
2916 /* Finally update the reader page to the new head */
2917 cpu_buffer->reader_page = reader;
2918 rb_reset_reader_page(cpu_buffer);
2919
2920 goto again;
2921
2922 out:
3e03fb7f
SR
2923 __raw_spin_unlock(&cpu_buffer->lock);
2924 local_irq_restore(flags);
d769041f
SR
2925
2926 return reader;
2927}
2928
2929static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2930{
2931 struct ring_buffer_event *event;
2932 struct buffer_page *reader;
2933 unsigned length;
2934
2935 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2936
d769041f 2937 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2938 if (RB_WARN_ON(cpu_buffer, !reader))
2939 return;
7a8e76a3 2940
d769041f
SR
2941 event = rb_reader_event(cpu_buffer);
2942
a1863c21 2943 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 2944 cpu_buffer->read++;
d769041f
SR
2945
2946 rb_update_read_stamp(cpu_buffer, event);
2947
2948 length = rb_event_length(event);
6f807acd 2949 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2950}
2951
2952static void rb_advance_iter(struct ring_buffer_iter *iter)
2953{
2954 struct ring_buffer *buffer;
2955 struct ring_buffer_per_cpu *cpu_buffer;
2956 struct ring_buffer_event *event;
2957 unsigned length;
2958
2959 cpu_buffer = iter->cpu_buffer;
2960 buffer = cpu_buffer->buffer;
2961
2962 /*
2963 * Check if we are at the end of the buffer.
2964 */
bf41a158 2965 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2966 /* discarded commits can make the page empty */
2967 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2968 return;
d769041f 2969 rb_inc_iter(iter);
7a8e76a3
SR
2970 return;
2971 }
2972
2973 event = rb_iter_head_event(iter);
2974
2975 length = rb_event_length(event);
2976
2977 /*
2978 * This should not be called to advance the header if we are
2979 * at the tail of the buffer.
2980 */
3e89c7bb 2981 if (RB_WARN_ON(cpu_buffer,
f536aafc 2982 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2983 (iter->head + length > rb_commit_index(cpu_buffer))))
2984 return;
7a8e76a3
SR
2985
2986 rb_update_iter_read_stamp(iter, event);
2987
2988 iter->head += length;
2989
2990 /* check for end of page padding */
bf41a158
SR
2991 if ((iter->head >= rb_page_size(iter->head_page)) &&
2992 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2993 rb_advance_iter(iter);
2994}
2995
f83c9d0f 2996static struct ring_buffer_event *
d8eeb2d3 2997rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
7a8e76a3 2998{
7a8e76a3 2999 struct ring_buffer_event *event;
d769041f 3000 struct buffer_page *reader;
818e3dd3 3001 int nr_loops = 0;
7a8e76a3 3002
7a8e76a3 3003 again:
818e3dd3
SR
3004 /*
3005 * We repeat when a timestamp is encountered. It is possible
3006 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
3007 * as one timestamp is about to be written, or from discarded
3008 * commits. The most that we can have is the number on a single page.
818e3dd3 3009 */
ea05b57c 3010 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3011 return NULL;
818e3dd3 3012
d769041f
SR
3013 reader = rb_get_reader_page(cpu_buffer);
3014 if (!reader)
7a8e76a3
SR
3015 return NULL;
3016
d769041f 3017 event = rb_reader_event(cpu_buffer);
7a8e76a3 3018
334d4169 3019 switch (event->type_len) {
7a8e76a3 3020 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3021 if (rb_null_event(event))
3022 RB_WARN_ON(cpu_buffer, 1);
3023 /*
3024 * Because the writer could be discarding every
3025 * event it creates (which would probably be bad)
3026 * if we were to go back to "again" then we may never
3027 * catch up, and will trigger the warn on, or lock
3028 * the box. Return the padding, and we will release
3029 * the current locks, and try again.
3030 */
2d622719 3031 return event;
7a8e76a3
SR
3032
3033 case RINGBUF_TYPE_TIME_EXTEND:
3034 /* Internal data, OK to advance */
d769041f 3035 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3036 goto again;
3037
3038 case RINGBUF_TYPE_TIME_STAMP:
3039 /* FIXME: not implemented */
d769041f 3040 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3041 goto again;
3042
3043 case RINGBUF_TYPE_DATA:
3044 if (ts) {
3045 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3046 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3047 cpu_buffer->cpu, ts);
7a8e76a3
SR
3048 }
3049 return event;
3050
3051 default:
3052 BUG();
3053 }
3054
3055 return NULL;
3056}
c4f50183 3057EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3058
f83c9d0f
SR
3059static struct ring_buffer_event *
3060rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3061{
3062 struct ring_buffer *buffer;
3063 struct ring_buffer_per_cpu *cpu_buffer;
3064 struct ring_buffer_event *event;
818e3dd3 3065 int nr_loops = 0;
7a8e76a3
SR
3066
3067 if (ring_buffer_iter_empty(iter))
3068 return NULL;
3069
3070 cpu_buffer = iter->cpu_buffer;
3071 buffer = cpu_buffer->buffer;
3072
3073 again:
818e3dd3 3074 /*
ea05b57c
SR
3075 * We repeat when a timestamp is encountered.
3076 * We can get multiple timestamps by nested interrupts or also
3077 * if filtering is on (discarding commits). Since discarding
3078 * commits can be frequent we can get a lot of timestamps.
3079 * But we limit them by not adding timestamps if they begin
3080 * at the start of a page.
818e3dd3 3081 */
ea05b57c 3082 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3083 return NULL;
818e3dd3 3084
7a8e76a3
SR
3085 if (rb_per_cpu_empty(cpu_buffer))
3086 return NULL;
3087
3088 event = rb_iter_head_event(iter);
3089
334d4169 3090 switch (event->type_len) {
7a8e76a3 3091 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3092 if (rb_null_event(event)) {
3093 rb_inc_iter(iter);
3094 goto again;
3095 }
3096 rb_advance_iter(iter);
3097 return event;
7a8e76a3
SR
3098
3099 case RINGBUF_TYPE_TIME_EXTEND:
3100 /* Internal data, OK to advance */
3101 rb_advance_iter(iter);
3102 goto again;
3103
3104 case RINGBUF_TYPE_TIME_STAMP:
3105 /* FIXME: not implemented */
3106 rb_advance_iter(iter);
3107 goto again;
3108
3109 case RINGBUF_TYPE_DATA:
3110 if (ts) {
3111 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3112 ring_buffer_normalize_time_stamp(buffer,
3113 cpu_buffer->cpu, ts);
7a8e76a3
SR
3114 }
3115 return event;
3116
3117 default:
3118 BUG();
3119 }
3120
3121 return NULL;
3122}
c4f50183 3123EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3124
8d707e8e
SR
3125static inline int rb_ok_to_lock(void)
3126{
3127 /*
3128 * If an NMI die dumps out the content of the ring buffer
3129 * do not grab locks. We also permanently disable the ring
3130 * buffer too. A one time deal is all you get from reading
3131 * the ring buffer from an NMI.
3132 */
464e85eb 3133 if (likely(!in_nmi()))
8d707e8e
SR
3134 return 1;
3135
3136 tracing_off_permanent();
3137 return 0;
3138}
3139
f83c9d0f
SR
3140/**
3141 * ring_buffer_peek - peek at the next event to be read
3142 * @buffer: The ring buffer to read
3143 * @cpu: The cpu to peak at
3144 * @ts: The timestamp counter of this event.
3145 *
3146 * This will return the event that will be read next, but does
3147 * not consume the data.
3148 */
3149struct ring_buffer_event *
3150ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3151{
3152 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3153 struct ring_buffer_event *event;
f83c9d0f 3154 unsigned long flags;
8d707e8e 3155 int dolock;
f83c9d0f 3156
554f786e 3157 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3158 return NULL;
554f786e 3159
8d707e8e 3160 dolock = rb_ok_to_lock();
2d622719 3161 again:
8d707e8e
SR
3162 local_irq_save(flags);
3163 if (dolock)
3164 spin_lock(&cpu_buffer->reader_lock);
d8eeb2d3 3165 event = rb_buffer_peek(cpu_buffer, ts);
469535a5
RR
3166 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3167 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3168 if (dolock)
3169 spin_unlock(&cpu_buffer->reader_lock);
3170 local_irq_restore(flags);
f83c9d0f 3171
1b959e18 3172 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3173 goto again;
2d622719 3174
f83c9d0f
SR
3175 return event;
3176}
3177
3178/**
3179 * ring_buffer_iter_peek - peek at the next event to be read
3180 * @iter: The ring buffer iterator
3181 * @ts: The timestamp counter of this event.
3182 *
3183 * This will return the event that will be read next, but does
3184 * not increment the iterator.
3185 */
3186struct ring_buffer_event *
3187ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3188{
3189 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3190 struct ring_buffer_event *event;
3191 unsigned long flags;
3192
2d622719 3193 again:
f83c9d0f
SR
3194 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3195 event = rb_iter_peek(iter, ts);
3196 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3197
1b959e18 3198 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3199 goto again;
2d622719 3200
f83c9d0f
SR
3201 return event;
3202}
3203
7a8e76a3
SR
3204/**
3205 * ring_buffer_consume - return an event and consume it
3206 * @buffer: The ring buffer to get the next event from
3207 *
3208 * Returns the next event in the ring buffer, and that event is consumed.
3209 * Meaning, that sequential reads will keep returning a different event,
3210 * and eventually empty the ring buffer if the producer is slower.
3211 */
3212struct ring_buffer_event *
3213ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3214{
554f786e
SR
3215 struct ring_buffer_per_cpu *cpu_buffer;
3216 struct ring_buffer_event *event = NULL;
f83c9d0f 3217 unsigned long flags;
8d707e8e
SR
3218 int dolock;
3219
3220 dolock = rb_ok_to_lock();
7a8e76a3 3221
2d622719 3222 again:
554f786e
SR
3223 /* might be called in atomic */
3224 preempt_disable();
3225
9e01c1b7 3226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3227 goto out;
7a8e76a3 3228
554f786e 3229 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3230 local_irq_save(flags);
3231 if (dolock)
3232 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3233
d8eeb2d3 3234 event = rb_buffer_peek(cpu_buffer, ts);
469535a5
RR
3235 if (event)
3236 rb_advance_reader(cpu_buffer);
7a8e76a3 3237
8d707e8e
SR
3238 if (dolock)
3239 spin_unlock(&cpu_buffer->reader_lock);
3240 local_irq_restore(flags);
f83c9d0f 3241
554f786e
SR
3242 out:
3243 preempt_enable();
3244
1b959e18 3245 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3246 goto again;
2d622719 3247
7a8e76a3
SR
3248 return event;
3249}
c4f50183 3250EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3251
3252/**
3253 * ring_buffer_read_start - start a non consuming read of the buffer
3254 * @buffer: The ring buffer to read from
3255 * @cpu: The cpu buffer to iterate over
3256 *
3257 * This starts up an iteration through the buffer. It also disables
3258 * the recording to the buffer until the reading is finished.
3259 * This prevents the reading from being corrupted. This is not
3260 * a consuming read, so a producer is not expected.
3261 *
3262 * Must be paired with ring_buffer_finish.
3263 */
3264struct ring_buffer_iter *
3265ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3266{
3267 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3268 struct ring_buffer_iter *iter;
d769041f 3269 unsigned long flags;
7a8e76a3 3270
9e01c1b7 3271 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3272 return NULL;
7a8e76a3
SR
3273
3274 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3275 if (!iter)
8aabee57 3276 return NULL;
7a8e76a3
SR
3277
3278 cpu_buffer = buffer->buffers[cpu];
3279
3280 iter->cpu_buffer = cpu_buffer;
3281
3282 atomic_inc(&cpu_buffer->record_disabled);
3283 synchronize_sched();
3284
f83c9d0f 3285 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 3286 __raw_spin_lock(&cpu_buffer->lock);
642edba5 3287 rb_iter_reset(iter);
3e03fb7f 3288 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3289 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3290
3291 return iter;
3292}
c4f50183 3293EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3294
3295/**
3296 * ring_buffer_finish - finish reading the iterator of the buffer
3297 * @iter: The iterator retrieved by ring_buffer_start
3298 *
3299 * This re-enables the recording to the buffer, and frees the
3300 * iterator.
3301 */
3302void
3303ring_buffer_read_finish(struct ring_buffer_iter *iter)
3304{
3305 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3306
3307 atomic_dec(&cpu_buffer->record_disabled);
3308 kfree(iter);
3309}
c4f50183 3310EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3311
3312/**
3313 * ring_buffer_read - read the next item in the ring buffer by the iterator
3314 * @iter: The ring buffer iterator
3315 * @ts: The time stamp of the event read.
3316 *
3317 * This reads the next event in the ring buffer and increments the iterator.
3318 */
3319struct ring_buffer_event *
3320ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3321{
3322 struct ring_buffer_event *event;
f83c9d0f
SR
3323 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3324 unsigned long flags;
7a8e76a3 3325
f83c9d0f 3326 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3327 again:
f83c9d0f 3328 event = rb_iter_peek(iter, ts);
7a8e76a3 3329 if (!event)
f83c9d0f 3330 goto out;
7a8e76a3 3331
7e9391cf
SR
3332 if (event->type_len == RINGBUF_TYPE_PADDING)
3333 goto again;
3334
7a8e76a3 3335 rb_advance_iter(iter);
f83c9d0f
SR
3336 out:
3337 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3338
3339 return event;
3340}
c4f50183 3341EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3342
3343/**
3344 * ring_buffer_size - return the size of the ring buffer (in bytes)
3345 * @buffer: The ring buffer.
3346 */
3347unsigned long ring_buffer_size(struct ring_buffer *buffer)
3348{
3349 return BUF_PAGE_SIZE * buffer->pages;
3350}
c4f50183 3351EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3352
3353static void
3354rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3355{
77ae365e
SR
3356 rb_head_page_deactivate(cpu_buffer);
3357
7a8e76a3 3358 cpu_buffer->head_page
3adc54fa 3359 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3360 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3361 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3362 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3363
6f807acd 3364 cpu_buffer->head_page->read = 0;
bf41a158
SR
3365
3366 cpu_buffer->tail_page = cpu_buffer->head_page;
3367 cpu_buffer->commit_page = cpu_buffer->head_page;
3368
3369 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3370 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3371 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3372 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3373 cpu_buffer->reader_page->read = 0;
7a8e76a3 3374
77ae365e
SR
3375 local_set(&cpu_buffer->commit_overrun, 0);
3376 local_set(&cpu_buffer->overrun, 0);
e4906eff 3377 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3378 local_set(&cpu_buffer->committing, 0);
3379 local_set(&cpu_buffer->commits, 0);
77ae365e 3380 cpu_buffer->read = 0;
69507c06
SR
3381
3382 cpu_buffer->write_stamp = 0;
3383 cpu_buffer->read_stamp = 0;
77ae365e
SR
3384
3385 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3386}
3387
3388/**
3389 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3390 * @buffer: The ring buffer to reset a per cpu buffer of
3391 * @cpu: The CPU buffer to be reset
3392 */
3393void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3394{
3395 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3396 unsigned long flags;
3397
9e01c1b7 3398 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3399 return;
7a8e76a3 3400
41ede23e
SR
3401 atomic_inc(&cpu_buffer->record_disabled);
3402
f83c9d0f
SR
3403 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3404
41b6a95d
SR
3405 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3406 goto out;
3407
3e03fb7f 3408 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3409
3410 rb_reset_cpu(cpu_buffer);
3411
3e03fb7f 3412 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3413
41b6a95d 3414 out:
f83c9d0f 3415 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3416
3417 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3418}
c4f50183 3419EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3420
3421/**
3422 * ring_buffer_reset - reset a ring buffer
3423 * @buffer: The ring buffer to reset all cpu buffers
3424 */
3425void ring_buffer_reset(struct ring_buffer *buffer)
3426{
7a8e76a3
SR
3427 int cpu;
3428
7a8e76a3 3429 for_each_buffer_cpu(buffer, cpu)
d769041f 3430 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3431}
c4f50183 3432EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3433
3434/**
3435 * rind_buffer_empty - is the ring buffer empty?
3436 * @buffer: The ring buffer to test
3437 */
3438int ring_buffer_empty(struct ring_buffer *buffer)
3439{
3440 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3441 unsigned long flags;
8d707e8e 3442 int dolock;
7a8e76a3 3443 int cpu;
d4788207 3444 int ret;
7a8e76a3 3445
8d707e8e 3446 dolock = rb_ok_to_lock();
7a8e76a3
SR
3447
3448 /* yes this is racy, but if you don't like the race, lock the buffer */
3449 for_each_buffer_cpu(buffer, cpu) {
3450 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3451 local_irq_save(flags);
3452 if (dolock)
3453 spin_lock(&cpu_buffer->reader_lock);
d4788207 3454 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3455 if (dolock)
3456 spin_unlock(&cpu_buffer->reader_lock);
3457 local_irq_restore(flags);
3458
d4788207 3459 if (!ret)
7a8e76a3
SR
3460 return 0;
3461 }
554f786e 3462
7a8e76a3
SR
3463 return 1;
3464}
c4f50183 3465EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3466
3467/**
3468 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3469 * @buffer: The ring buffer
3470 * @cpu: The CPU buffer to test
3471 */
3472int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3473{
3474 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3475 unsigned long flags;
8d707e8e 3476 int dolock;
8aabee57 3477 int ret;
7a8e76a3 3478
9e01c1b7 3479 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3480 return 1;
7a8e76a3 3481
8d707e8e
SR
3482 dolock = rb_ok_to_lock();
3483
7a8e76a3 3484 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3485 local_irq_save(flags);
3486 if (dolock)
3487 spin_lock(&cpu_buffer->reader_lock);
554f786e 3488 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3489 if (dolock)
3490 spin_unlock(&cpu_buffer->reader_lock);
3491 local_irq_restore(flags);
554f786e
SR
3492
3493 return ret;
7a8e76a3 3494}
c4f50183 3495EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3496
85bac32c 3497#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3498/**
3499 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3500 * @buffer_a: One buffer to swap with
3501 * @buffer_b: The other buffer to swap with
3502 *
3503 * This function is useful for tracers that want to take a "snapshot"
3504 * of a CPU buffer and has another back up buffer lying around.
3505 * it is expected that the tracer handles the cpu buffer not being
3506 * used at the moment.
3507 */
3508int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3509 struct ring_buffer *buffer_b, int cpu)
3510{
3511 struct ring_buffer_per_cpu *cpu_buffer_a;
3512 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3513 int ret = -EINVAL;
3514
9e01c1b7
RR
3515 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3516 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3517 goto out;
7a8e76a3
SR
3518
3519 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3520 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3521 goto out;
3522
3523 ret = -EAGAIN;
7a8e76a3 3524
97b17efe 3525 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3526 goto out;
97b17efe
SR
3527
3528 if (atomic_read(&buffer_a->record_disabled))
554f786e 3529 goto out;
97b17efe
SR
3530
3531 if (atomic_read(&buffer_b->record_disabled))
554f786e 3532 goto out;
97b17efe 3533
7a8e76a3
SR
3534 cpu_buffer_a = buffer_a->buffers[cpu];
3535 cpu_buffer_b = buffer_b->buffers[cpu];
3536
97b17efe 3537 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3538 goto out;
97b17efe
SR
3539
3540 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3541 goto out;
97b17efe 3542
7a8e76a3
SR
3543 /*
3544 * We can't do a synchronize_sched here because this
3545 * function can be called in atomic context.
3546 * Normally this will be called from the same CPU as cpu.
3547 * If not it's up to the caller to protect this.
3548 */
3549 atomic_inc(&cpu_buffer_a->record_disabled);
3550 atomic_inc(&cpu_buffer_b->record_disabled);
3551
98277991
SR
3552 ret = -EBUSY;
3553 if (local_read(&cpu_buffer_a->committing))
3554 goto out_dec;
3555 if (local_read(&cpu_buffer_b->committing))
3556 goto out_dec;
3557
7a8e76a3
SR
3558 buffer_a->buffers[cpu] = cpu_buffer_b;
3559 buffer_b->buffers[cpu] = cpu_buffer_a;
3560
3561 cpu_buffer_b->buffer = buffer_a;
3562 cpu_buffer_a->buffer = buffer_b;
3563
98277991
SR
3564 ret = 0;
3565
3566out_dec:
7a8e76a3
SR
3567 atomic_dec(&cpu_buffer_a->record_disabled);
3568 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3569out:
554f786e 3570 return ret;
7a8e76a3 3571}
c4f50183 3572EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3573#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3574
8789a9e7
SR
3575/**
3576 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3577 * @buffer: the buffer to allocate for.
3578 *
3579 * This function is used in conjunction with ring_buffer_read_page.
3580 * When reading a full page from the ring buffer, these functions
3581 * can be used to speed up the process. The calling function should
3582 * allocate a few pages first with this function. Then when it
3583 * needs to get pages from the ring buffer, it passes the result
3584 * of this function into ring_buffer_read_page, which will swap
3585 * the page that was allocated, with the read page of the buffer.
3586 *
3587 * Returns:
3588 * The page allocated, or NULL on error.
3589 */
3590void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3591{
044fa782 3592 struct buffer_data_page *bpage;
ef7a4a16 3593 unsigned long addr;
8789a9e7
SR
3594
3595 addr = __get_free_page(GFP_KERNEL);
3596 if (!addr)
3597 return NULL;
3598
044fa782 3599 bpage = (void *)addr;
8789a9e7 3600
ef7a4a16
SR
3601 rb_init_page(bpage);
3602
044fa782 3603 return bpage;
8789a9e7 3604}
d6ce96da 3605EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3606
3607/**
3608 * ring_buffer_free_read_page - free an allocated read page
3609 * @buffer: the buffer the page was allocate for
3610 * @data: the page to free
3611 *
3612 * Free a page allocated from ring_buffer_alloc_read_page.
3613 */
3614void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3615{
3616 free_page((unsigned long)data);
3617}
d6ce96da 3618EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3619
3620/**
3621 * ring_buffer_read_page - extract a page from the ring buffer
3622 * @buffer: buffer to extract from
3623 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3624 * @len: amount to extract
8789a9e7
SR
3625 * @cpu: the cpu of the buffer to extract
3626 * @full: should the extraction only happen when the page is full.
3627 *
3628 * This function will pull out a page from the ring buffer and consume it.
3629 * @data_page must be the address of the variable that was returned
3630 * from ring_buffer_alloc_read_page. This is because the page might be used
3631 * to swap with a page in the ring buffer.
3632 *
3633 * for example:
b85fa01e 3634 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3635 * if (!rpage)
3636 * return error;
ef7a4a16 3637 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3638 * if (ret >= 0)
3639 * process_page(rpage, ret);
8789a9e7
SR
3640 *
3641 * When @full is set, the function will not return true unless
3642 * the writer is off the reader page.
3643 *
3644 * Note: it is up to the calling functions to handle sleeps and wakeups.
3645 * The ring buffer can be used anywhere in the kernel and can not
3646 * blindly call wake_up. The layer that uses the ring buffer must be
3647 * responsible for that.
3648 *
3649 * Returns:
667d2412
LJ
3650 * >=0 if data has been transferred, returns the offset of consumed data.
3651 * <0 if no data has been transferred.
8789a9e7
SR
3652 */
3653int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3654 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3655{
3656 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3657 struct ring_buffer_event *event;
044fa782 3658 struct buffer_data_page *bpage;
ef7a4a16 3659 struct buffer_page *reader;
8789a9e7 3660 unsigned long flags;
ef7a4a16 3661 unsigned int commit;
667d2412 3662 unsigned int read;
4f3640f8 3663 u64 save_timestamp;
667d2412 3664 int ret = -1;
8789a9e7 3665
554f786e
SR
3666 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3667 goto out;
3668
474d32b6
SR
3669 /*
3670 * If len is not big enough to hold the page header, then
3671 * we can not copy anything.
3672 */
3673 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3674 goto out;
474d32b6
SR
3675
3676 len -= BUF_PAGE_HDR_SIZE;
3677
8789a9e7 3678 if (!data_page)
554f786e 3679 goto out;
8789a9e7 3680
044fa782
SR
3681 bpage = *data_page;
3682 if (!bpage)
554f786e 3683 goto out;
8789a9e7
SR
3684
3685 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3686
ef7a4a16
SR
3687 reader = rb_get_reader_page(cpu_buffer);
3688 if (!reader)
554f786e 3689 goto out_unlock;
8789a9e7 3690
ef7a4a16
SR
3691 event = rb_reader_event(cpu_buffer);
3692
3693 read = reader->read;
3694 commit = rb_page_commit(reader);
667d2412 3695
8789a9e7 3696 /*
474d32b6
SR
3697 * If this page has been partially read or
3698 * if len is not big enough to read the rest of the page or
3699 * a writer is still on the page, then
3700 * we must copy the data from the page to the buffer.
3701 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3702 */
474d32b6 3703 if (read || (len < (commit - read)) ||
ef7a4a16 3704 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3705 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3706 unsigned int rpos = read;
3707 unsigned int pos = 0;
ef7a4a16 3708 unsigned int size;
8789a9e7
SR
3709
3710 if (full)
554f786e 3711 goto out_unlock;
8789a9e7 3712
ef7a4a16
SR
3713 if (len > (commit - read))
3714 len = (commit - read);
3715
3716 size = rb_event_length(event);
3717
3718 if (len < size)
554f786e 3719 goto out_unlock;
ef7a4a16 3720
4f3640f8
SR
3721 /* save the current timestamp, since the user will need it */
3722 save_timestamp = cpu_buffer->read_stamp;
3723
ef7a4a16
SR
3724 /* Need to copy one event at a time */
3725 do {
474d32b6 3726 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3727
3728 len -= size;
3729
3730 rb_advance_reader(cpu_buffer);
474d32b6
SR
3731 rpos = reader->read;
3732 pos += size;
ef7a4a16
SR
3733
3734 event = rb_reader_event(cpu_buffer);
3735 size = rb_event_length(event);
3736 } while (len > size);
667d2412
LJ
3737
3738 /* update bpage */
ef7a4a16 3739 local_set(&bpage->commit, pos);
4f3640f8 3740 bpage->time_stamp = save_timestamp;
ef7a4a16 3741
474d32b6
SR
3742 /* we copied everything to the beginning */
3743 read = 0;
8789a9e7 3744 } else {
afbab76a 3745 /* update the entry counter */
77ae365e 3746 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3747
8789a9e7 3748 /* swap the pages */
044fa782 3749 rb_init_page(bpage);
ef7a4a16
SR
3750 bpage = reader->page;
3751 reader->page = *data_page;
3752 local_set(&reader->write, 0);
778c55d4 3753 local_set(&reader->entries, 0);
ef7a4a16 3754 reader->read = 0;
044fa782 3755 *data_page = bpage;
8789a9e7 3756 }
667d2412 3757 ret = read;
8789a9e7 3758
554f786e 3759 out_unlock:
8789a9e7
SR
3760 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3761
554f786e 3762 out:
8789a9e7
SR
3763 return ret;
3764}
d6ce96da 3765EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3766
1155de47 3767#ifdef CONFIG_TRACING
a3583244
SR
3768static ssize_t
3769rb_simple_read(struct file *filp, char __user *ubuf,
3770 size_t cnt, loff_t *ppos)
3771{
5e39841c 3772 unsigned long *p = filp->private_data;
a3583244
SR
3773 char buf[64];
3774 int r;
3775
033601a3
SR
3776 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3777 r = sprintf(buf, "permanently disabled\n");
3778 else
3779 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3780
3781 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3782}
3783
3784static ssize_t
3785rb_simple_write(struct file *filp, const char __user *ubuf,
3786 size_t cnt, loff_t *ppos)
3787{
5e39841c 3788 unsigned long *p = filp->private_data;
a3583244 3789 char buf[64];
5e39841c 3790 unsigned long val;
a3583244
SR
3791 int ret;
3792
3793 if (cnt >= sizeof(buf))
3794 return -EINVAL;
3795
3796 if (copy_from_user(&buf, ubuf, cnt))
3797 return -EFAULT;
3798
3799 buf[cnt] = 0;
3800
3801 ret = strict_strtoul(buf, 10, &val);
3802 if (ret < 0)
3803 return ret;
3804
033601a3
SR
3805 if (val)
3806 set_bit(RB_BUFFERS_ON_BIT, p);
3807 else
3808 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3809
3810 (*ppos)++;
3811
3812 return cnt;
3813}
3814
5e2336a0 3815static const struct file_operations rb_simple_fops = {
a3583244
SR
3816 .open = tracing_open_generic,
3817 .read = rb_simple_read,
3818 .write = rb_simple_write,
3819};
3820
3821
3822static __init int rb_init_debugfs(void)
3823{
3824 struct dentry *d_tracer;
a3583244
SR
3825
3826 d_tracer = tracing_init_dentry();
3827
5452af66
FW
3828 trace_create_file("tracing_on", 0644, d_tracer,
3829 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3830
3831 return 0;
3832}
3833
3834fs_initcall(rb_init_debugfs);
1155de47 3835#endif
554f786e 3836
59222efe 3837#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3838static int rb_cpu_notify(struct notifier_block *self,
3839 unsigned long action, void *hcpu)
554f786e
SR
3840{
3841 struct ring_buffer *buffer =
3842 container_of(self, struct ring_buffer, cpu_notify);
3843 long cpu = (long)hcpu;
3844
3845 switch (action) {
3846 case CPU_UP_PREPARE:
3847 case CPU_UP_PREPARE_FROZEN:
3f237a79 3848 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
3849 return NOTIFY_OK;
3850
3851 buffer->buffers[cpu] =
3852 rb_allocate_cpu_buffer(buffer, cpu);
3853 if (!buffer->buffers[cpu]) {
3854 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3855 cpu);
3856 return NOTIFY_OK;
3857 }
3858 smp_wmb();
3f237a79 3859 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
3860 break;
3861 case CPU_DOWN_PREPARE:
3862 case CPU_DOWN_PREPARE_FROZEN:
3863 /*
3864 * Do nothing.
3865 * If we were to free the buffer, then the user would
3866 * lose any trace that was in the buffer.
3867 */
3868 break;
3869 default:
3870 break;
3871 }
3872 return NOTIFY_OK;
3873}
3874#endif
This page took 0.405144 seconds and 5 git commands to generate.