module: Clean up ro/nx after early module load failures
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
146c3442
J
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
d1b182a8
SR
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
8b8b3683 546int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
8b8b3683
SRRH
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
15693458
SRRH
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
8b8b3683 596 return 0;
15693458
SRRH
597}
598
599/**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615{
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
15693458
SRRH
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
6721cb60
SRRH
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
624
15693458
SRRH
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
627 }
628
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
631
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
636}
637
f536aafc 638/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
639#define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
650 } \
651 _____ret; \
3e89c7bb 652 })
f536aafc 653
37886f6a
SR
654/* Up this if you want to test the TIME_EXTENTS and normalization */
655#define DEBUG_SHIFT 0
656
6d3f1e12 657static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
658{
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
661}
662
37886f6a
SR
663u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664{
665 u64 time;
666
667 preempt_disable_notrace();
6d3f1e12 668 time = rb_time_stamp(buffer);
37886f6a
SR
669 preempt_enable_no_resched_notrace();
670
671 return time;
672}
673EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674
675void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
677{
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
680}
681EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682
77ae365e
SR
683/*
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
688 *
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
694 *
695 * Here lies the problem.
696 *
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
703 *
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
706 *
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
710 *
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
714 *
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
720 *
721 * Note we can not trust the prev pointer of the head page, because:
722 *
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
732 *
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
737 *
738 * (see __rb_reserve_next() to see where this happens)
739 *
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
746 *
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
750 */
751
752#define RB_PAGE_NORMAL 0UL
753#define RB_PAGE_HEAD 1UL
754#define RB_PAGE_UPDATE 2UL
755
756
757#define RB_FLAG_MASK 3UL
758
759/* PAGE_MOVED is not part of the mask */
760#define RB_PAGE_MOVED 4UL
761
762/*
763 * rb_list_head - remove any bit
764 */
765static struct list_head *rb_list_head(struct list_head *list)
766{
767 unsigned long val = (unsigned long)list;
768
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
770}
771
772/*
6d3f1e12 773 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
774 *
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
779 */
42b16b3f 780static inline int
77ae365e
SR
781rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
783{
784 unsigned long val;
785
786 val = (unsigned long)list->next;
787
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
790
791 return val & RB_FLAG_MASK;
792}
793
794/*
795 * rb_is_reader_page
796 *
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
800 */
801static int rb_is_reader_page(struct buffer_page *page)
802{
803 struct list_head *list = page->list.prev;
804
805 return rb_list_head(list->next) != &page->list;
806}
807
808/*
809 * rb_set_list_to_head - set a list_head to be pointing to head.
810 */
811static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
813{
814 unsigned long *ptr;
815
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
819}
820
821/*
822 * rb_head_page_activate - sets up head page
823 */
824static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825{
826 struct buffer_page *head;
827
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
831
832 /*
833 * Set the previous list pointer to have the HEAD flag.
834 */
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
836}
837
838static void rb_list_head_clear(struct list_head *list)
839{
840 unsigned long *ptr = (unsigned long *)&list->next;
841
842 *ptr &= ~RB_FLAG_MASK;
843}
844
845/*
846 * rb_head_page_dactivate - clears head page ptr (for free list)
847 */
848static void
849rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850{
851 struct list_head *hd;
852
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
855
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
858}
859
860static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
864{
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
868
869 list = &prev->list;
870
871 val &= ~RB_FLAG_MASK;
872
08a40816
SR
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
77ae365e
SR
875
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
879
880 return ret & RB_FLAG_MASK;
881}
882
883static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
887{
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
890}
891
892static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
896{
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
899}
900
901static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
905{
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
908}
909
910static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
912{
913 struct list_head *p = rb_list_head((*bpage)->list.next);
914
915 *bpage = list_entry(p, struct buffer_page, list);
916}
917
918static struct buffer_page *
919rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920{
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
925
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
928
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
933
934 page = head = cpu_buffer->head_page;
935 /*
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
940 */
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
946 }
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
949 }
950
951 RB_WARN_ON(cpu_buffer, 1);
952
953 return NULL;
954}
955
956static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
958{
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
962
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
965
08a40816 966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
967
968 return ret == val;
969}
970
971/*
972 * rb_tail_page_update - move the tail page forward
973 *
974 * Returns 1 if moved tail page, 0 if someone else did.
975 */
976static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
979{
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
984
985 /*
986 * The tail page now needs to be moved forward.
987 *
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
991 *
992 * We add a counter to the write field to denote this.
993 */
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996
997 /*
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1000 */
1001 barrier();
1002
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013 /*
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
da706d8b
LJ
1017 *
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1022 */
da706d8b
LJ
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1025
1026 /*
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1030 */
1031 local_set(&next_page->page->commit, 0);
1032
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1035
1036 if (old_tail == tail_page)
1037 ret = 1;
1038 }
1039
1040 return ret;
1041}
1042
1043static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1045{
1046 unsigned long val = (unsigned long)bpage;
1047
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1050
1051 return 0;
1052}
1053
1054/**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1059{
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1065}
1066
7a8e76a3 1067/**
d611851b 1068 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
c3706f00 1071 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1072 * been corrupted.
1073 */
1074static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075{
3adc54fa 1076 struct list_head *head = cpu_buffer->pages;
044fa782 1077 struct buffer_page *bpage, *tmp;
7a8e76a3 1078
308f7eeb
SR
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1082
77ae365e
SR
1083 rb_head_page_deactivate(cpu_buffer);
1084
3e89c7bb
SR
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
7a8e76a3 1089
77ae365e
SR
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1092
044fa782 1093 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1094 if (RB_WARN_ON(cpu_buffer,
044fa782 1095 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
044fa782 1098 bpage->list.prev->next != &bpage->list))
3e89c7bb 1099 return -1;
77ae365e
SR
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
7a8e76a3
SR
1102 }
1103
77ae365e
SR
1104 rb_head_page_activate(cpu_buffer);
1105
7a8e76a3
SR
1106 return 0;
1107}
1108
438ced17 1109static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1110{
438ced17 1111 int i;
044fa782 1112 struct buffer_page *bpage, *tmp;
3adc54fa 1113
7a8e76a3 1114 for (i = 0; i < nr_pages; i++) {
7ea59064 1115 struct page *page;
d7ec4bfe
VN
1116 /*
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1120 */
044fa782 1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1122 GFP_KERNEL | __GFP_NORETRY,
438ced17 1123 cpu_to_node(cpu));
044fa782 1124 if (!bpage)
e4c2ce82 1125 goto free_pages;
77ae365e 1126
438ced17 1127 list_add(&bpage->list, pages);
77ae365e 1128
438ced17 1129 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1130 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1131 if (!page)
7a8e76a3 1132 goto free_pages;
7ea59064 1133 bpage->page = page_address(page);
044fa782 1134 rb_init_page(bpage->page);
7a8e76a3
SR
1135 }
1136
438ced17
VN
1137 return 0;
1138
1139free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1143 }
1144
1145 return -ENOMEM;
1146}
1147
1148static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1150{
1151 LIST_HEAD(pages);
1152
1153 WARN_ON(!nr_pages);
1154
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1157
3adc54fa
SR
1158 /*
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1162 */
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
7a8e76a3 1165
438ced17
VN
1166 cpu_buffer->nr_pages = nr_pages;
1167
7a8e76a3
SR
1168 rb_check_pages(cpu_buffer);
1169
1170 return 0;
7a8e76a3
SR
1171}
1172
1173static struct ring_buffer_per_cpu *
438ced17 1174rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1175{
1176 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1177 struct buffer_page *bpage;
7ea59064 1178 struct page *page;
7a8e76a3
SR
1179 int ret;
1180
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1185
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
5389f6fa 1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1192 init_completion(&cpu_buffer->update_done);
15693458 1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1195
044fa782 1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1197 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1198 if (!bpage)
e4c2ce82
SR
1199 goto fail_free_buffer;
1200
77ae365e
SR
1201 rb_check_bpage(cpu_buffer, bpage);
1202
044fa782 1203 cpu_buffer->reader_page = bpage;
7ea59064
VN
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
e4c2ce82 1206 goto fail_free_reader;
7ea59064 1207 bpage->page = page_address(page);
044fa782 1208 rb_init_page(bpage->page);
e4c2ce82 1209
d769041f 1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1212
438ced17 1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1214 if (ret < 0)
d769041f 1215 goto fail_free_reader;
7a8e76a3
SR
1216
1217 cpu_buffer->head_page
3adc54fa 1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1220
77ae365e
SR
1221 rb_head_page_activate(cpu_buffer);
1222
7a8e76a3
SR
1223 return cpu_buffer;
1224
d769041f
SR
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1227
7a8e76a3
SR
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1231}
1232
1233static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234{
3adc54fa 1235 struct list_head *head = cpu_buffer->pages;
044fa782 1236 struct buffer_page *bpage, *tmp;
7a8e76a3 1237
d769041f
SR
1238 free_buffer_page(cpu_buffer->reader_page);
1239
77ae365e
SR
1240 rb_head_page_deactivate(cpu_buffer);
1241
3adc54fa
SR
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1246 }
1247 bpage = list_entry(head, struct buffer_page, list);
044fa782 1248 free_buffer_page(bpage);
7a8e76a3 1249 }
3adc54fa 1250
7a8e76a3
SR
1251 kfree(cpu_buffer);
1252}
1253
59222efe 1254#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1255static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
554f786e
SR
1257#endif
1258
7a8e76a3 1259/**
d611851b 1260 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1261 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1f8a6a10
PZ
1269struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
7a8e76a3
SR
1271{
1272 struct ring_buffer *buffer;
1273 int bsize;
438ced17 1274 int cpu, nr_pages;
7a8e76a3
SR
1275
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1281
9e01c1b7
RR
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1284
438ced17 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1286 buffer->flags = flags;
37886f6a 1287 buffer->clock = trace_clock_local;
1f8a6a10 1288 buffer->reader_lock_key = key;
7a8e76a3 1289
15693458 1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1291 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1292
7a8e76a3 1293 /* need at least two pages */
438ced17
VN
1294 if (nr_pages < 2)
1295 nr_pages = 2;
7a8e76a3 1296
3bf832ce
FW
1297 /*
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1301 */
1302#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1303 cpu_notifier_register_begin();
554f786e 1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1305#else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307#endif
7a8e76a3
SR
1308 buffer->cpus = nr_cpu_ids;
1309
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
9e01c1b7 1314 goto fail_free_cpumask;
7a8e76a3
SR
1315
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
438ced17 1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1321 }
1322
59222efe 1323#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
d39ad278
SB
1326 __register_cpu_notifier(&buffer->cpu_notify);
1327 cpu_notifier_register_done();
554f786e
SR
1328#endif
1329
7a8e76a3
SR
1330 mutex_init(&buffer->mutex);
1331
1332 return buffer;
1333
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 }
1339 kfree(buffer->buffers);
1340
9e01c1b7
RR
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1343#ifdef CONFIG_HOTPLUG_CPU
1344 cpu_notifier_register_done();
1345#endif
9e01c1b7 1346
7a8e76a3
SR
1347 fail_free_buffer:
1348 kfree(buffer);
1349 return NULL;
1350}
1f8a6a10 1351EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1352
1353/**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357void
1358ring_buffer_free(struct ring_buffer *buffer)
1359{
1360 int cpu;
1361
59222efe 1362#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1363 cpu_notifier_register_begin();
1364 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1365#endif
1366
7a8e76a3
SR
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
d39ad278
SB
1370#ifdef CONFIG_HOTPLUG_CPU
1371 cpu_notifier_register_done();
1372#endif
554f786e 1373
bd3f0221 1374 kfree(buffer->buffers);
9e01c1b7
RR
1375 free_cpumask_var(buffer->cpumask);
1376
7a8e76a3
SR
1377 kfree(buffer);
1378}
c4f50183 1379EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1380
37886f6a
SR
1381void ring_buffer_set_clock(struct ring_buffer *buffer,
1382 u64 (*clock)(void))
1383{
1384 buffer->clock = clock;
1385}
1386
7a8e76a3
SR
1387static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388
83f40318
VN
1389static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390{
1391 return local_read(&bpage->entries) & RB_WRITE_MASK;
1392}
1393
1394static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395{
1396 return local_read(&bpage->write) & RB_WRITE_MASK;
1397}
1398
5040b4b7 1399static int
83f40318 1400rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1401{
83f40318
VN
1402 struct list_head *tail_page, *to_remove, *next_page;
1403 struct buffer_page *to_remove_page, *tmp_iter_page;
1404 struct buffer_page *last_page, *first_page;
1405 unsigned int nr_removed;
1406 unsigned long head_bit;
1407 int page_entries;
1408
1409 head_bit = 0;
7a8e76a3 1410
5389f6fa 1411 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1412 atomic_inc(&cpu_buffer->record_disabled);
1413 /*
1414 * We don't race with the readers since we have acquired the reader
1415 * lock. We also don't race with writers after disabling recording.
1416 * This makes it easy to figure out the first and the last page to be
1417 * removed from the list. We unlink all the pages in between including
1418 * the first and last pages. This is done in a busy loop so that we
1419 * lose the least number of traces.
1420 * The pages are freed after we restart recording and unlock readers.
1421 */
1422 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1423
83f40318
VN
1424 /*
1425 * tail page might be on reader page, we remove the next page
1426 * from the ring buffer
1427 */
1428 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429 tail_page = rb_list_head(tail_page->next);
1430 to_remove = tail_page;
1431
1432 /* start of pages to remove */
1433 first_page = list_entry(rb_list_head(to_remove->next),
1434 struct buffer_page, list);
1435
1436 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437 to_remove = rb_list_head(to_remove)->next;
1438 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1439 }
7a8e76a3 1440
83f40318 1441 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1442
83f40318
VN
1443 /*
1444 * Now we remove all pages between tail_page and next_page.
1445 * Make sure that we have head_bit value preserved for the
1446 * next page
1447 */
1448 tail_page->next = (struct list_head *)((unsigned long)next_page |
1449 head_bit);
1450 next_page = rb_list_head(next_page);
1451 next_page->prev = tail_page;
1452
1453 /* make sure pages points to a valid page in the ring buffer */
1454 cpu_buffer->pages = next_page;
1455
1456 /* update head page */
1457 if (head_bit)
1458 cpu_buffer->head_page = list_entry(next_page,
1459 struct buffer_page, list);
1460
1461 /*
1462 * change read pointer to make sure any read iterators reset
1463 * themselves
1464 */
1465 cpu_buffer->read = 0;
1466
1467 /* pages are removed, resume tracing and then free the pages */
1468 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1469 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1470
1471 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472
1473 /* last buffer page to remove */
1474 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475 list);
1476 tmp_iter_page = first_page;
1477
1478 do {
1479 to_remove_page = tmp_iter_page;
1480 rb_inc_page(cpu_buffer, &tmp_iter_page);
1481
1482 /* update the counters */
1483 page_entries = rb_page_entries(to_remove_page);
1484 if (page_entries) {
1485 /*
1486 * If something was added to this page, it was full
1487 * since it is not the tail page. So we deduct the
1488 * bytes consumed in ring buffer from here.
48fdc72f 1489 * Increment overrun to account for the lost events.
83f40318 1490 */
48fdc72f 1491 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1492 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 }
1494
1495 /*
1496 * We have already removed references to this list item, just
1497 * free up the buffer_page and its page
1498 */
1499 free_buffer_page(to_remove_page);
1500 nr_removed--;
1501
1502 } while (to_remove_page != last_page);
1503
1504 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1505
1506 return nr_removed == 0;
7a8e76a3
SR
1507}
1508
5040b4b7
VN
1509static int
1510rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1511{
5040b4b7
VN
1512 struct list_head *pages = &cpu_buffer->new_pages;
1513 int retries, success;
7a8e76a3 1514
5389f6fa 1515 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1516 /*
1517 * We are holding the reader lock, so the reader page won't be swapped
1518 * in the ring buffer. Now we are racing with the writer trying to
1519 * move head page and the tail page.
1520 * We are going to adapt the reader page update process where:
1521 * 1. We first splice the start and end of list of new pages between
1522 * the head page and its previous page.
1523 * 2. We cmpxchg the prev_page->next to point from head page to the
1524 * start of new pages list.
1525 * 3. Finally, we update the head->prev to the end of new list.
1526 *
1527 * We will try this process 10 times, to make sure that we don't keep
1528 * spinning.
1529 */
1530 retries = 10;
1531 success = 0;
1532 while (retries--) {
1533 struct list_head *head_page, *prev_page, *r;
1534 struct list_head *last_page, *first_page;
1535 struct list_head *head_page_with_bit;
77ae365e 1536
5040b4b7 1537 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1538 if (!head_page)
1539 break;
5040b4b7
VN
1540 prev_page = head_page->prev;
1541
1542 first_page = pages->next;
1543 last_page = pages->prev;
1544
1545 head_page_with_bit = (struct list_head *)
1546 ((unsigned long)head_page | RB_PAGE_HEAD);
1547
1548 last_page->next = head_page_with_bit;
1549 first_page->prev = prev_page;
1550
1551 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552
1553 if (r == head_page_with_bit) {
1554 /*
1555 * yay, we replaced the page pointer to our new list,
1556 * now, we just have to update to head page's prev
1557 * pointer to point to end of list
1558 */
1559 head_page->prev = last_page;
1560 success = 1;
1561 break;
1562 }
7a8e76a3 1563 }
7a8e76a3 1564
5040b4b7
VN
1565 if (success)
1566 INIT_LIST_HEAD(pages);
1567 /*
1568 * If we weren't successful in adding in new pages, warn and stop
1569 * tracing
1570 */
1571 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1573
1574 /* free pages if they weren't inserted */
1575 if (!success) {
1576 struct buffer_page *bpage, *tmp;
1577 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578 list) {
1579 list_del_init(&bpage->list);
1580 free_buffer_page(bpage);
1581 }
1582 }
1583 return success;
7a8e76a3
SR
1584}
1585
83f40318 1586static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1587{
5040b4b7
VN
1588 int success;
1589
438ced17 1590 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1591 success = rb_insert_pages(cpu_buffer);
438ced17 1592 else
5040b4b7
VN
1593 success = rb_remove_pages(cpu_buffer,
1594 -cpu_buffer->nr_pages_to_update);
83f40318 1595
5040b4b7
VN
1596 if (success)
1597 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1598}
1599
1600static void update_pages_handler(struct work_struct *work)
1601{
1602 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603 struct ring_buffer_per_cpu, update_pages_work);
1604 rb_update_pages(cpu_buffer);
05fdd70d 1605 complete(&cpu_buffer->update_done);
438ced17
VN
1606}
1607
7a8e76a3
SR
1608/**
1609 * ring_buffer_resize - resize the ring buffer
1610 * @buffer: the buffer to resize.
1611 * @size: the new size.
d611851b 1612 * @cpu_id: the cpu buffer to resize
7a8e76a3 1613 *
7a8e76a3
SR
1614 * Minimum size is 2 * BUF_PAGE_SIZE.
1615 *
83f40318 1616 * Returns 0 on success and < 0 on failure.
7a8e76a3 1617 */
438ced17
VN
1618int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 int cpu_id)
7a8e76a3
SR
1620{
1621 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1622 unsigned nr_pages;
83f40318 1623 int cpu, err = 0;
7a8e76a3 1624
ee51a1de
IM
1625 /*
1626 * Always succeed at resizing a non-existent buffer:
1627 */
1628 if (!buffer)
1629 return size;
1630
6a31e1f1
SR
1631 /* Make sure the requested buffer exists */
1632 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 return size;
1635
7a8e76a3
SR
1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1638
1639 /* we need a minimum of two pages */
1640 if (size < BUF_PAGE_SIZE * 2)
1641 size = BUF_PAGE_SIZE * 2;
1642
83f40318 1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1644
83f40318
VN
1645 /*
1646 * Don't succeed if resizing is disabled, as a reader might be
1647 * manipulating the ring buffer and is expecting a sane state while
1648 * this is true.
1649 */
1650 if (atomic_read(&buffer->resize_disabled))
1651 return -EBUSY;
18421015 1652
83f40318 1653 /* prevent another thread from changing buffer sizes */
7a8e76a3 1654 mutex_lock(&buffer->mutex);
7a8e76a3 1655
438ced17
VN
1656 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 /* calculate the pages to update */
7a8e76a3
SR
1658 for_each_buffer_cpu(buffer, cpu) {
1659 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1660
438ced17
VN
1661 cpu_buffer->nr_pages_to_update = nr_pages -
1662 cpu_buffer->nr_pages;
438ced17
VN
1663 /*
1664 * nothing more to do for removing pages or no update
1665 */
1666 if (cpu_buffer->nr_pages_to_update <= 0)
1667 continue;
d7ec4bfe 1668 /*
438ced17
VN
1669 * to add pages, make sure all new pages can be
1670 * allocated without receiving ENOMEM
d7ec4bfe 1671 */
438ced17
VN
1672 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1674 &cpu_buffer->new_pages, cpu)) {
438ced17 1675 /* not enough memory for new pages */
83f40318
VN
1676 err = -ENOMEM;
1677 goto out_err;
1678 }
1679 }
1680
1681 get_online_cpus();
1682 /*
1683 * Fire off all the required work handlers
05fdd70d 1684 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1685 * since we can change their buffer sizes without any race.
1686 */
1687 for_each_buffer_cpu(buffer, cpu) {
1688 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1689 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1690 continue;
1691
021c5b34
CM
1692 /* Can't run something on an offline CPU. */
1693 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1694 rb_update_pages(cpu_buffer);
1695 cpu_buffer->nr_pages_to_update = 0;
1696 } else {
05fdd70d
VN
1697 schedule_work_on(cpu,
1698 &cpu_buffer->update_pages_work);
f5eb5588 1699 }
7a8e76a3 1700 }
7a8e76a3 1701
438ced17
VN
1702 /* wait for all the updates to complete */
1703 for_each_buffer_cpu(buffer, cpu) {
1704 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1705 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1706 continue;
1707
05fdd70d
VN
1708 if (cpu_online(cpu))
1709 wait_for_completion(&cpu_buffer->update_done);
83f40318 1710 cpu_buffer->nr_pages_to_update = 0;
438ced17 1711 }
83f40318
VN
1712
1713 put_online_cpus();
438ced17 1714 } else {
8e49f418
VN
1715 /* Make sure this CPU has been intitialized */
1716 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1717 goto out;
1718
438ced17 1719 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1720
438ced17
VN
1721 if (nr_pages == cpu_buffer->nr_pages)
1722 goto out;
7a8e76a3 1723
438ced17
VN
1724 cpu_buffer->nr_pages_to_update = nr_pages -
1725 cpu_buffer->nr_pages;
1726
1727 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 if (cpu_buffer->nr_pages_to_update > 0 &&
1729 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1730 &cpu_buffer->new_pages, cpu_id)) {
1731 err = -ENOMEM;
1732 goto out_err;
1733 }
438ced17 1734
83f40318
VN
1735 get_online_cpus();
1736
021c5b34
CM
1737 /* Can't run something on an offline CPU. */
1738 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1739 rb_update_pages(cpu_buffer);
1740 else {
83f40318
VN
1741 schedule_work_on(cpu_id,
1742 &cpu_buffer->update_pages_work);
05fdd70d 1743 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1744 }
83f40318 1745
83f40318 1746 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1747 put_online_cpus();
438ced17 1748 }
7a8e76a3
SR
1749
1750 out:
659f451f
SR
1751 /*
1752 * The ring buffer resize can happen with the ring buffer
1753 * enabled, so that the update disturbs the tracing as little
1754 * as possible. But if the buffer is disabled, we do not need
1755 * to worry about that, and we can take the time to verify
1756 * that the buffer is not corrupt.
1757 */
1758 if (atomic_read(&buffer->record_disabled)) {
1759 atomic_inc(&buffer->record_disabled);
1760 /*
1761 * Even though the buffer was disabled, we must make sure
1762 * that it is truly disabled before calling rb_check_pages.
1763 * There could have been a race between checking
1764 * record_disable and incrementing it.
1765 */
1766 synchronize_sched();
1767 for_each_buffer_cpu(buffer, cpu) {
1768 cpu_buffer = buffer->buffers[cpu];
1769 rb_check_pages(cpu_buffer);
1770 }
1771 atomic_dec(&buffer->record_disabled);
1772 }
1773
7a8e76a3 1774 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1775 return size;
1776
83f40318 1777 out_err:
438ced17
VN
1778 for_each_buffer_cpu(buffer, cpu) {
1779 struct buffer_page *bpage, *tmp;
83f40318 1780
438ced17 1781 cpu_buffer = buffer->buffers[cpu];
438ced17 1782 cpu_buffer->nr_pages_to_update = 0;
83f40318 1783
438ced17
VN
1784 if (list_empty(&cpu_buffer->new_pages))
1785 continue;
83f40318 1786
438ced17
VN
1787 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1788 list) {
1789 list_del_init(&bpage->list);
1790 free_buffer_page(bpage);
1791 }
7a8e76a3 1792 }
641d2f63 1793 mutex_unlock(&buffer->mutex);
83f40318 1794 return err;
7a8e76a3 1795}
c4f50183 1796EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1797
750912fa
DS
1798void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1799{
1800 mutex_lock(&buffer->mutex);
1801 if (val)
1802 buffer->flags |= RB_FL_OVERWRITE;
1803 else
1804 buffer->flags &= ~RB_FL_OVERWRITE;
1805 mutex_unlock(&buffer->mutex);
1806}
1807EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1808
8789a9e7 1809static inline void *
044fa782 1810__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1811{
044fa782 1812 return bpage->data + index;
8789a9e7
SR
1813}
1814
044fa782 1815static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1816{
044fa782 1817 return bpage->page->data + index;
7a8e76a3
SR
1818}
1819
1820static inline struct ring_buffer_event *
d769041f 1821rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1822{
6f807acd
SR
1823 return __rb_page_index(cpu_buffer->reader_page,
1824 cpu_buffer->reader_page->read);
1825}
1826
7a8e76a3
SR
1827static inline struct ring_buffer_event *
1828rb_iter_head_event(struct ring_buffer_iter *iter)
1829{
6f807acd 1830 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1831}
1832
bf41a158
SR
1833static inline unsigned rb_page_commit(struct buffer_page *bpage)
1834{
abc9b56d 1835 return local_read(&bpage->page->commit);
bf41a158
SR
1836}
1837
25985edc 1838/* Size is determined by what has been committed */
bf41a158
SR
1839static inline unsigned rb_page_size(struct buffer_page *bpage)
1840{
1841 return rb_page_commit(bpage);
1842}
1843
1844static inline unsigned
1845rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1846{
1847 return rb_page_commit(cpu_buffer->commit_page);
1848}
1849
bf41a158
SR
1850static inline unsigned
1851rb_event_index(struct ring_buffer_event *event)
1852{
1853 unsigned long addr = (unsigned long)event;
1854
22f470f8 1855 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1856}
1857
0f0c85fc 1858static inline int
fa743953
SR
1859rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1860 struct ring_buffer_event *event)
bf41a158
SR
1861{
1862 unsigned long addr = (unsigned long)event;
1863 unsigned long index;
1864
1865 index = rb_event_index(event);
1866 addr &= PAGE_MASK;
1867
1868 return cpu_buffer->commit_page->page == (void *)addr &&
1869 rb_commit_index(cpu_buffer) == index;
1870}
1871
34a148bf 1872static void
bf41a158 1873rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1874{
77ae365e
SR
1875 unsigned long max_count;
1876
bf41a158
SR
1877 /*
1878 * We only race with interrupts and NMIs on this CPU.
1879 * If we own the commit event, then we can commit
1880 * all others that interrupted us, since the interruptions
1881 * are in stack format (they finish before they come
1882 * back to us). This allows us to do a simple loop to
1883 * assign the commit to the tail.
1884 */
a8ccf1d6 1885 again:
438ced17 1886 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1887
bf41a158 1888 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1889 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1890 return;
1891 if (RB_WARN_ON(cpu_buffer,
1892 rb_is_reader_page(cpu_buffer->tail_page)))
1893 return;
1894 local_set(&cpu_buffer->commit_page->page->commit,
1895 rb_page_write(cpu_buffer->commit_page));
bf41a158 1896 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1897 cpu_buffer->write_stamp =
1898 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1899 /* add barrier to keep gcc from optimizing too much */
1900 barrier();
1901 }
1902 while (rb_commit_index(cpu_buffer) !=
1903 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1904
1905 local_set(&cpu_buffer->commit_page->page->commit,
1906 rb_page_write(cpu_buffer->commit_page));
1907 RB_WARN_ON(cpu_buffer,
1908 local_read(&cpu_buffer->commit_page->page->commit) &
1909 ~RB_WRITE_MASK);
bf41a158
SR
1910 barrier();
1911 }
a8ccf1d6
SR
1912
1913 /* again, keep gcc from optimizing */
1914 barrier();
1915
1916 /*
1917 * If an interrupt came in just after the first while loop
1918 * and pushed the tail page forward, we will be left with
1919 * a dangling commit that will never go forward.
1920 */
1921 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1922 goto again;
7a8e76a3
SR
1923}
1924
d769041f 1925static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1926{
abc9b56d 1927 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1928 cpu_buffer->reader_page->read = 0;
d769041f
SR
1929}
1930
34a148bf 1931static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1932{
1933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1934
1935 /*
1936 * The iterator could be on the reader page (it starts there).
1937 * But the head could have moved, since the reader was
1938 * found. Check for this case and assign the iterator
1939 * to the head page instead of next.
1940 */
1941 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1942 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1943 else
1944 rb_inc_page(cpu_buffer, &iter->head_page);
1945
abc9b56d 1946 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1947 iter->head = 0;
1948}
1949
69d1b839
SR
1950/* Slow path, do not inline */
1951static noinline struct ring_buffer_event *
1952rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1953{
1954 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1955
1956 /* Not the first event on the page? */
1957 if (rb_event_index(event)) {
1958 event->time_delta = delta & TS_MASK;
1959 event->array[0] = delta >> TS_SHIFT;
1960 } else {
1961 /* nope, just zero it */
1962 event->time_delta = 0;
1963 event->array[0] = 0;
1964 }
1965
1966 return skip_time_extend(event);
1967}
1968
7a8e76a3 1969/**
01e3e710 1970 * rb_update_event - update event type and data
021de3d9 1971 * @event: the event to update
7a8e76a3
SR
1972 * @type: the type of event
1973 * @length: the size of the event field in the ring buffer
1974 *
1975 * Update the type and data fields of the event. The length
1976 * is the actual size that is written to the ring buffer,
1977 * and with this, we can determine what to place into the
1978 * data field.
1979 */
34a148bf 1980static void
69d1b839
SR
1981rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1982 struct ring_buffer_event *event, unsigned length,
1983 int add_timestamp, u64 delta)
7a8e76a3 1984{
69d1b839
SR
1985 /* Only a commit updates the timestamp */
1986 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1987 delta = 0;
7a8e76a3 1988
69d1b839
SR
1989 /*
1990 * If we need to add a timestamp, then we
1991 * add it to the start of the resevered space.
1992 */
1993 if (unlikely(add_timestamp)) {
1994 event = rb_add_time_stamp(event, delta);
1995 length -= RB_LEN_TIME_EXTEND;
1996 delta = 0;
7a8e76a3 1997 }
69d1b839
SR
1998
1999 event->time_delta = delta;
2000 length -= RB_EVNT_HDR_SIZE;
2001 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2002 event->type_len = 0;
2003 event->array[0] = length;
2004 } else
2005 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2006}
2007
77ae365e
SR
2008/*
2009 * rb_handle_head_page - writer hit the head page
2010 *
2011 * Returns: +1 to retry page
2012 * 0 to continue
2013 * -1 on error
2014 */
2015static int
2016rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2017 struct buffer_page *tail_page,
2018 struct buffer_page *next_page)
2019{
2020 struct buffer_page *new_head;
2021 int entries;
2022 int type;
2023 int ret;
2024
2025 entries = rb_page_entries(next_page);
2026
2027 /*
2028 * The hard part is here. We need to move the head
2029 * forward, and protect against both readers on
2030 * other CPUs and writers coming in via interrupts.
2031 */
2032 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2033 RB_PAGE_HEAD);
2034
2035 /*
2036 * type can be one of four:
2037 * NORMAL - an interrupt already moved it for us
2038 * HEAD - we are the first to get here.
2039 * UPDATE - we are the interrupt interrupting
2040 * a current move.
2041 * MOVED - a reader on another CPU moved the next
2042 * pointer to its reader page. Give up
2043 * and try again.
2044 */
2045
2046 switch (type) {
2047 case RB_PAGE_HEAD:
2048 /*
2049 * We changed the head to UPDATE, thus
2050 * it is our responsibility to update
2051 * the counters.
2052 */
2053 local_add(entries, &cpu_buffer->overrun);
c64e148a 2054 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2055
2056 /*
2057 * The entries will be zeroed out when we move the
2058 * tail page.
2059 */
2060
2061 /* still more to do */
2062 break;
2063
2064 case RB_PAGE_UPDATE:
2065 /*
2066 * This is an interrupt that interrupt the
2067 * previous update. Still more to do.
2068 */
2069 break;
2070 case RB_PAGE_NORMAL:
2071 /*
2072 * An interrupt came in before the update
2073 * and processed this for us.
2074 * Nothing left to do.
2075 */
2076 return 1;
2077 case RB_PAGE_MOVED:
2078 /*
2079 * The reader is on another CPU and just did
2080 * a swap with our next_page.
2081 * Try again.
2082 */
2083 return 1;
2084 default:
2085 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2086 return -1;
2087 }
2088
2089 /*
2090 * Now that we are here, the old head pointer is
2091 * set to UPDATE. This will keep the reader from
2092 * swapping the head page with the reader page.
2093 * The reader (on another CPU) will spin till
2094 * we are finished.
2095 *
2096 * We just need to protect against interrupts
2097 * doing the job. We will set the next pointer
2098 * to HEAD. After that, we set the old pointer
2099 * to NORMAL, but only if it was HEAD before.
2100 * otherwise we are an interrupt, and only
2101 * want the outer most commit to reset it.
2102 */
2103 new_head = next_page;
2104 rb_inc_page(cpu_buffer, &new_head);
2105
2106 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2107 RB_PAGE_NORMAL);
2108
2109 /*
2110 * Valid returns are:
2111 * HEAD - an interrupt came in and already set it.
2112 * NORMAL - One of two things:
2113 * 1) We really set it.
2114 * 2) A bunch of interrupts came in and moved
2115 * the page forward again.
2116 */
2117 switch (ret) {
2118 case RB_PAGE_HEAD:
2119 case RB_PAGE_NORMAL:
2120 /* OK */
2121 break;
2122 default:
2123 RB_WARN_ON(cpu_buffer, 1);
2124 return -1;
2125 }
2126
2127 /*
2128 * It is possible that an interrupt came in,
2129 * set the head up, then more interrupts came in
2130 * and moved it again. When we get back here,
2131 * the page would have been set to NORMAL but we
2132 * just set it back to HEAD.
2133 *
2134 * How do you detect this? Well, if that happened
2135 * the tail page would have moved.
2136 */
2137 if (ret == RB_PAGE_NORMAL) {
2138 /*
2139 * If the tail had moved passed next, then we need
2140 * to reset the pointer.
2141 */
2142 if (cpu_buffer->tail_page != tail_page &&
2143 cpu_buffer->tail_page != next_page)
2144 rb_head_page_set_normal(cpu_buffer, new_head,
2145 next_page,
2146 RB_PAGE_HEAD);
2147 }
2148
2149 /*
2150 * If this was the outer most commit (the one that
2151 * changed the original pointer from HEAD to UPDATE),
2152 * then it is up to us to reset it to NORMAL.
2153 */
2154 if (type == RB_PAGE_HEAD) {
2155 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2156 tail_page,
2157 RB_PAGE_UPDATE);
2158 if (RB_WARN_ON(cpu_buffer,
2159 ret != RB_PAGE_UPDATE))
2160 return -1;
2161 }
2162
2163 return 0;
2164}
2165
34a148bf 2166static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2167{
2168 struct ring_buffer_event event; /* Used only for sizeof array */
2169
2170 /* zero length can cause confusions */
2171 if (!length)
2172 length = 1;
2173
2271048d 2174 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2175 length += sizeof(event.array[0]);
2176
2177 length += RB_EVNT_HDR_SIZE;
2271048d 2178 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2179
2180 return length;
2181}
2182
c7b09308
SR
2183static inline void
2184rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2185 struct buffer_page *tail_page,
2186 unsigned long tail, unsigned long length)
2187{
2188 struct ring_buffer_event *event;
2189
2190 /*
2191 * Only the event that crossed the page boundary
2192 * must fill the old tail_page with padding.
2193 */
2194 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2195 /*
2196 * If the page was filled, then we still need
2197 * to update the real_end. Reset it to zero
2198 * and the reader will ignore it.
2199 */
2200 if (tail == BUF_PAGE_SIZE)
2201 tail_page->real_end = 0;
2202
c7b09308
SR
2203 local_sub(length, &tail_page->write);
2204 return;
2205 }
2206
2207 event = __rb_page_index(tail_page, tail);
b0b7065b 2208 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2209
c64e148a
VN
2210 /* account for padding bytes */
2211 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2212
ff0ff84a
SR
2213 /*
2214 * Save the original length to the meta data.
2215 * This will be used by the reader to add lost event
2216 * counter.
2217 */
2218 tail_page->real_end = tail;
2219
c7b09308
SR
2220 /*
2221 * If this event is bigger than the minimum size, then
2222 * we need to be careful that we don't subtract the
2223 * write counter enough to allow another writer to slip
2224 * in on this page.
2225 * We put in a discarded commit instead, to make sure
2226 * that this space is not used again.
2227 *
2228 * If we are less than the minimum size, we don't need to
2229 * worry about it.
2230 */
2231 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2232 /* No room for any events */
2233
2234 /* Mark the rest of the page with padding */
2235 rb_event_set_padding(event);
2236
2237 /* Set the write back to the previous setting */
2238 local_sub(length, &tail_page->write);
2239 return;
2240 }
2241
2242 /* Put in a discarded event */
2243 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2244 event->type_len = RINGBUF_TYPE_PADDING;
2245 /* time delta must be non zero */
2246 event->time_delta = 1;
c7b09308
SR
2247
2248 /* Set write to end of buffer */
2249 length = (tail + length) - BUF_PAGE_SIZE;
2250 local_sub(length, &tail_page->write);
2251}
6634ff26 2252
747e94ae
SR
2253/*
2254 * This is the slow path, force gcc not to inline it.
2255 */
2256static noinline struct ring_buffer_event *
6634ff26
SR
2257rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2258 unsigned long length, unsigned long tail,
e8bc43e8 2259 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2260{
5a50e33c 2261 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2262 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2263 struct buffer_page *next_page;
2264 int ret;
aa20ae84
SR
2265
2266 next_page = tail_page;
2267
aa20ae84
SR
2268 rb_inc_page(cpu_buffer, &next_page);
2269
aa20ae84
SR
2270 /*
2271 * If for some reason, we had an interrupt storm that made
2272 * it all the way around the buffer, bail, and warn
2273 * about it.
2274 */
2275 if (unlikely(next_page == commit_page)) {
77ae365e 2276 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2277 goto out_reset;
2278 }
2279
77ae365e
SR
2280 /*
2281 * This is where the fun begins!
2282 *
2283 * We are fighting against races between a reader that
2284 * could be on another CPU trying to swap its reader
2285 * page with the buffer head.
2286 *
2287 * We are also fighting against interrupts coming in and
2288 * moving the head or tail on us as well.
2289 *
2290 * If the next page is the head page then we have filled
2291 * the buffer, unless the commit page is still on the
2292 * reader page.
2293 */
2294 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2295
77ae365e
SR
2296 /*
2297 * If the commit is not on the reader page, then
2298 * move the header page.
2299 */
2300 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2301 /*
2302 * If we are not in overwrite mode,
2303 * this is easy, just stop here.
2304 */
884bfe89
SP
2305 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2306 local_inc(&cpu_buffer->dropped_events);
77ae365e 2307 goto out_reset;
884bfe89 2308 }
77ae365e
SR
2309
2310 ret = rb_handle_head_page(cpu_buffer,
2311 tail_page,
2312 next_page);
2313 if (ret < 0)
2314 goto out_reset;
2315 if (ret)
2316 goto out_again;
2317 } else {
2318 /*
2319 * We need to be careful here too. The
2320 * commit page could still be on the reader
2321 * page. We could have a small buffer, and
2322 * have filled up the buffer with events
2323 * from interrupts and such, and wrapped.
2324 *
2325 * Note, if the tail page is also the on the
2326 * reader_page, we let it move out.
2327 */
2328 if (unlikely((cpu_buffer->commit_page !=
2329 cpu_buffer->tail_page) &&
2330 (cpu_buffer->commit_page ==
2331 cpu_buffer->reader_page))) {
2332 local_inc(&cpu_buffer->commit_overrun);
2333 goto out_reset;
2334 }
aa20ae84
SR
2335 }
2336 }
2337
77ae365e
SR
2338 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2339 if (ret) {
2340 /*
2341 * Nested commits always have zero deltas, so
2342 * just reread the time stamp
2343 */
e8bc43e8
SR
2344 ts = rb_time_stamp(buffer);
2345 next_page->page->time_stamp = ts;
aa20ae84
SR
2346 }
2347
77ae365e 2348 out_again:
aa20ae84 2349
77ae365e 2350 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2351
2352 /* fail and let the caller try again */
2353 return ERR_PTR(-EAGAIN);
2354
45141d46 2355 out_reset:
6f3b3440 2356 /* reset write */
c7b09308 2357 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2358
bf41a158 2359 return NULL;
7a8e76a3
SR
2360}
2361
6634ff26
SR
2362static struct ring_buffer_event *
2363__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2364 unsigned long length, u64 ts,
2365 u64 delta, int add_timestamp)
6634ff26 2366{
5a50e33c 2367 struct buffer_page *tail_page;
6634ff26
SR
2368 struct ring_buffer_event *event;
2369 unsigned long tail, write;
2370
69d1b839
SR
2371 /*
2372 * If the time delta since the last event is too big to
2373 * hold in the time field of the event, then we append a
2374 * TIME EXTEND event ahead of the data event.
2375 */
2376 if (unlikely(add_timestamp))
2377 length += RB_LEN_TIME_EXTEND;
2378
6634ff26
SR
2379 tail_page = cpu_buffer->tail_page;
2380 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2381
2382 /* set write to only the index of the write */
2383 write &= RB_WRITE_MASK;
6634ff26
SR
2384 tail = write - length;
2385
d651aa1d
SRRH
2386 /*
2387 * If this is the first commit on the page, then it has the same
2388 * timestamp as the page itself.
2389 */
2390 if (!tail)
2391 delta = 0;
2392
6634ff26 2393 /* See if we shot pass the end of this buffer page */
747e94ae 2394 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2395 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2396 tail_page, ts);
6634ff26
SR
2397
2398 /* We reserved something on the buffer */
2399
6634ff26 2400 event = __rb_page_index(tail_page, tail);
1744a21d 2401 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2402 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2403
69d1b839 2404 local_inc(&tail_page->entries);
6634ff26
SR
2405
2406 /*
fa743953
SR
2407 * If this is the first commit on the page, then update
2408 * its timestamp.
6634ff26 2409 */
fa743953 2410 if (!tail)
e8bc43e8 2411 tail_page->page->time_stamp = ts;
6634ff26 2412
c64e148a
VN
2413 /* account for these added bytes */
2414 local_add(length, &cpu_buffer->entries_bytes);
2415
6634ff26
SR
2416 return event;
2417}
2418
edd813bf
SR
2419static inline int
2420rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2421 struct ring_buffer_event *event)
2422{
2423 unsigned long new_index, old_index;
2424 struct buffer_page *bpage;
2425 unsigned long index;
2426 unsigned long addr;
2427
2428 new_index = rb_event_index(event);
69d1b839 2429 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2430 addr = (unsigned long)event;
2431 addr &= PAGE_MASK;
2432
2433 bpage = cpu_buffer->tail_page;
2434
2435 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2436 unsigned long write_mask =
2437 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2438 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2439 /*
2440 * This is on the tail page. It is possible that
2441 * a write could come in and move the tail page
2442 * and write to the next page. That is fine
2443 * because we just shorten what is on this page.
2444 */
77ae365e
SR
2445 old_index += write_mask;
2446 new_index += write_mask;
edd813bf 2447 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2448 if (index == old_index) {
2449 /* update counters */
2450 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2451 return 1;
c64e148a 2452 }
edd813bf
SR
2453 }
2454
2455 /* could not discard */
2456 return 0;
2457}
2458
fa743953
SR
2459static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2460{
2461 local_inc(&cpu_buffer->committing);
2462 local_inc(&cpu_buffer->commits);
2463}
2464
d9abde21 2465static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2466{
2467 unsigned long commits;
2468
2469 if (RB_WARN_ON(cpu_buffer,
2470 !local_read(&cpu_buffer->committing)))
2471 return;
2472
2473 again:
2474 commits = local_read(&cpu_buffer->commits);
2475 /* synchronize with interrupts */
2476 barrier();
2477 if (local_read(&cpu_buffer->committing) == 1)
2478 rb_set_commit_to_write(cpu_buffer);
2479
2480 local_dec(&cpu_buffer->committing);
2481
2482 /* synchronize with interrupts */
2483 barrier();
2484
2485 /*
2486 * Need to account for interrupts coming in between the
2487 * updating of the commit page and the clearing of the
2488 * committing counter.
2489 */
2490 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2491 !local_read(&cpu_buffer->committing)) {
2492 local_inc(&cpu_buffer->committing);
2493 goto again;
2494 }
2495}
2496
7a8e76a3 2497static struct ring_buffer_event *
62f0b3eb
SR
2498rb_reserve_next_event(struct ring_buffer *buffer,
2499 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2500 unsigned long length)
7a8e76a3
SR
2501{
2502 struct ring_buffer_event *event;
69d1b839 2503 u64 ts, delta;
818e3dd3 2504 int nr_loops = 0;
69d1b839 2505 int add_timestamp;
140ff891 2506 u64 diff;
7a8e76a3 2507
fa743953
SR
2508 rb_start_commit(cpu_buffer);
2509
85bac32c 2510#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2511 /*
2512 * Due to the ability to swap a cpu buffer from a buffer
2513 * it is possible it was swapped before we committed.
2514 * (committing stops a swap). We check for it here and
2515 * if it happened, we have to fail the write.
2516 */
2517 barrier();
2518 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2519 local_dec(&cpu_buffer->committing);
2520 local_dec(&cpu_buffer->commits);
2521 return NULL;
2522 }
85bac32c 2523#endif
62f0b3eb 2524
be957c44 2525 length = rb_calculate_event_length(length);
bf41a158 2526 again:
69d1b839
SR
2527 add_timestamp = 0;
2528 delta = 0;
2529
818e3dd3
SR
2530 /*
2531 * We allow for interrupts to reenter here and do a trace.
2532 * If one does, it will cause this original code to loop
2533 * back here. Even with heavy interrupts happening, this
2534 * should only happen a few times in a row. If this happens
2535 * 1000 times in a row, there must be either an interrupt
2536 * storm or we have something buggy.
2537 * Bail!
2538 */
3e89c7bb 2539 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2540 goto out_fail;
818e3dd3 2541
6d3f1e12 2542 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2543 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2544
140ff891
SR
2545 /* make sure this diff is calculated here */
2546 barrier();
bf41a158 2547
140ff891
SR
2548 /* Did the write stamp get updated already? */
2549 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2550 delta = diff;
2551 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2552 int local_clock_stable = 1;
2553#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2554 local_clock_stable = sched_clock_stable();
31274d72 2555#endif
69d1b839 2556 WARN_ONCE(delta > (1ULL << 59),
31274d72 2557 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2558 (unsigned long long)delta,
2559 (unsigned long long)ts,
31274d72
JO
2560 (unsigned long long)cpu_buffer->write_stamp,
2561 local_clock_stable ? "" :
2562 "If you just came from a suspend/resume,\n"
2563 "please switch to the trace global clock:\n"
2564 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2565 add_timestamp = 1;
7a8e76a3 2566 }
168b6b1d 2567 }
7a8e76a3 2568
69d1b839
SR
2569 event = __rb_reserve_next(cpu_buffer, length, ts,
2570 delta, add_timestamp);
168b6b1d 2571 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2572 goto again;
2573
fa743953
SR
2574 if (!event)
2575 goto out_fail;
7a8e76a3 2576
7a8e76a3 2577 return event;
fa743953
SR
2578
2579 out_fail:
2580 rb_end_commit(cpu_buffer);
2581 return NULL;
7a8e76a3
SR
2582}
2583
1155de47
PM
2584#ifdef CONFIG_TRACING
2585
567cd4da
SR
2586/*
2587 * The lock and unlock are done within a preempt disable section.
2588 * The current_context per_cpu variable can only be modified
2589 * by the current task between lock and unlock. But it can
2590 * be modified more than once via an interrupt. To pass this
2591 * information from the lock to the unlock without having to
2592 * access the 'in_interrupt()' functions again (which do show
2593 * a bit of overhead in something as critical as function tracing,
2594 * we use a bitmask trick.
2595 *
2596 * bit 0 = NMI context
2597 * bit 1 = IRQ context
2598 * bit 2 = SoftIRQ context
2599 * bit 3 = normal context.
2600 *
2601 * This works because this is the order of contexts that can
2602 * preempt other contexts. A SoftIRQ never preempts an IRQ
2603 * context.
2604 *
2605 * When the context is determined, the corresponding bit is
2606 * checked and set (if it was set, then a recursion of that context
2607 * happened).
2608 *
2609 * On unlock, we need to clear this bit. To do so, just subtract
2610 * 1 from the current_context and AND it to itself.
2611 *
2612 * (binary)
2613 * 101 - 1 = 100
2614 * 101 & 100 = 100 (clearing bit zero)
2615 *
2616 * 1010 - 1 = 1001
2617 * 1010 & 1001 = 1000 (clearing bit 1)
2618 *
2619 * The least significant bit can be cleared this way, and it
2620 * just so happens that it is the same bit corresponding to
2621 * the current context.
2622 */
2623static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2624
567cd4da 2625static __always_inline int trace_recursive_lock(void)
261842b7 2626{
567cd4da
SR
2627 unsigned int val = this_cpu_read(current_context);
2628 int bit;
d9abde21 2629
567cd4da
SR
2630 if (in_interrupt()) {
2631 if (in_nmi())
2632 bit = 0;
2633 else if (in_irq())
2634 bit = 1;
2635 else
2636 bit = 2;
2637 } else
2638 bit = 3;
d9abde21 2639
567cd4da
SR
2640 if (unlikely(val & (1 << bit)))
2641 return 1;
d9abde21 2642
567cd4da
SR
2643 val |= (1 << bit);
2644 this_cpu_write(current_context, val);
d9abde21 2645
567cd4da 2646 return 0;
261842b7
SR
2647}
2648
567cd4da 2649static __always_inline void trace_recursive_unlock(void)
261842b7 2650{
567cd4da 2651 unsigned int val = this_cpu_read(current_context);
261842b7 2652
567cd4da
SR
2653 val--;
2654 val &= this_cpu_read(current_context);
2655 this_cpu_write(current_context, val);
261842b7
SR
2656}
2657
1155de47
PM
2658#else
2659
2660#define trace_recursive_lock() (0)
2661#define trace_recursive_unlock() do { } while (0)
2662
2663#endif
2664
7a8e76a3
SR
2665/**
2666 * ring_buffer_lock_reserve - reserve a part of the buffer
2667 * @buffer: the ring buffer to reserve from
2668 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2669 *
2670 * Returns a reseverd event on the ring buffer to copy directly to.
2671 * The user of this interface will need to get the body to write into
2672 * and can use the ring_buffer_event_data() interface.
2673 *
2674 * The length is the length of the data needed, not the event length
2675 * which also includes the event header.
2676 *
2677 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2678 * If NULL is returned, then nothing has been allocated or locked.
2679 */
2680struct ring_buffer_event *
0a987751 2681ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2682{
2683 struct ring_buffer_per_cpu *cpu_buffer;
2684 struct ring_buffer_event *event;
5168ae50 2685 int cpu;
7a8e76a3 2686
033601a3 2687 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2688 return NULL;
2689
bf41a158 2690 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2691 preempt_disable_notrace();
bf41a158 2692
52fbe9cd
LJ
2693 if (atomic_read(&buffer->record_disabled))
2694 goto out_nocheck;
2695
261842b7
SR
2696 if (trace_recursive_lock())
2697 goto out_nocheck;
2698
7a8e76a3
SR
2699 cpu = raw_smp_processor_id();
2700
9e01c1b7 2701 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2702 goto out;
7a8e76a3
SR
2703
2704 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2705
2706 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2707 goto out;
7a8e76a3 2708
be957c44 2709 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2710 goto out;
7a8e76a3 2711
62f0b3eb 2712 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2713 if (!event)
d769041f 2714 goto out;
7a8e76a3
SR
2715
2716 return event;
2717
d769041f 2718 out:
261842b7
SR
2719 trace_recursive_unlock();
2720
2721 out_nocheck:
5168ae50 2722 preempt_enable_notrace();
7a8e76a3
SR
2723 return NULL;
2724}
c4f50183 2725EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2726
a1863c21
SR
2727static void
2728rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2729 struct ring_buffer_event *event)
2730{
69d1b839
SR
2731 u64 delta;
2732
fa743953
SR
2733 /*
2734 * The event first in the commit queue updates the
2735 * time stamp.
2736 */
69d1b839
SR
2737 if (rb_event_is_commit(cpu_buffer, event)) {
2738 /*
2739 * A commit event that is first on a page
2740 * updates the write timestamp with the page stamp
2741 */
2742 if (!rb_event_index(event))
2743 cpu_buffer->write_stamp =
2744 cpu_buffer->commit_page->page->time_stamp;
2745 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2746 delta = event->array[0];
2747 delta <<= TS_SHIFT;
2748 delta += event->time_delta;
2749 cpu_buffer->write_stamp += delta;
2750 } else
2751 cpu_buffer->write_stamp += event->time_delta;
2752 }
a1863c21 2753}
bf41a158 2754
a1863c21
SR
2755static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2756 struct ring_buffer_event *event)
2757{
2758 local_inc(&cpu_buffer->entries);
2759 rb_update_write_stamp(cpu_buffer, event);
fa743953 2760 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2761}
2762
15693458
SRRH
2763static __always_inline void
2764rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2765{
2766 if (buffer->irq_work.waiters_pending) {
2767 buffer->irq_work.waiters_pending = false;
2768 /* irq_work_queue() supplies it's own memory barriers */
2769 irq_work_queue(&buffer->irq_work.work);
2770 }
2771
2772 if (cpu_buffer->irq_work.waiters_pending) {
2773 cpu_buffer->irq_work.waiters_pending = false;
2774 /* irq_work_queue() supplies it's own memory barriers */
2775 irq_work_queue(&cpu_buffer->irq_work.work);
2776 }
2777}
2778
7a8e76a3
SR
2779/**
2780 * ring_buffer_unlock_commit - commit a reserved
2781 * @buffer: The buffer to commit to
2782 * @event: The event pointer to commit.
7a8e76a3
SR
2783 *
2784 * This commits the data to the ring buffer, and releases any locks held.
2785 *
2786 * Must be paired with ring_buffer_lock_reserve.
2787 */
2788int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2789 struct ring_buffer_event *event)
7a8e76a3
SR
2790{
2791 struct ring_buffer_per_cpu *cpu_buffer;
2792 int cpu = raw_smp_processor_id();
2793
2794 cpu_buffer = buffer->buffers[cpu];
2795
7a8e76a3
SR
2796 rb_commit(cpu_buffer, event);
2797
15693458
SRRH
2798 rb_wakeups(buffer, cpu_buffer);
2799
261842b7
SR
2800 trace_recursive_unlock();
2801
5168ae50 2802 preempt_enable_notrace();
7a8e76a3
SR
2803
2804 return 0;
2805}
c4f50183 2806EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2807
f3b9aae1
FW
2808static inline void rb_event_discard(struct ring_buffer_event *event)
2809{
69d1b839
SR
2810 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2811 event = skip_time_extend(event);
2812
334d4169
LJ
2813 /* array[0] holds the actual length for the discarded event */
2814 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2815 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2816 /* time delta must be non zero */
2817 if (!event->time_delta)
2818 event->time_delta = 1;
2819}
2820
a1863c21
SR
2821/*
2822 * Decrement the entries to the page that an event is on.
2823 * The event does not even need to exist, only the pointer
2824 * to the page it is on. This may only be called before the commit
2825 * takes place.
2826 */
2827static inline void
2828rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2829 struct ring_buffer_event *event)
2830{
2831 unsigned long addr = (unsigned long)event;
2832 struct buffer_page *bpage = cpu_buffer->commit_page;
2833 struct buffer_page *start;
2834
2835 addr &= PAGE_MASK;
2836
2837 /* Do the likely case first */
2838 if (likely(bpage->page == (void *)addr)) {
2839 local_dec(&bpage->entries);
2840 return;
2841 }
2842
2843 /*
2844 * Because the commit page may be on the reader page we
2845 * start with the next page and check the end loop there.
2846 */
2847 rb_inc_page(cpu_buffer, &bpage);
2848 start = bpage;
2849 do {
2850 if (bpage->page == (void *)addr) {
2851 local_dec(&bpage->entries);
2852 return;
2853 }
2854 rb_inc_page(cpu_buffer, &bpage);
2855 } while (bpage != start);
2856
2857 /* commit not part of this buffer?? */
2858 RB_WARN_ON(cpu_buffer, 1);
2859}
2860
fa1b47dd
SR
2861/**
2862 * ring_buffer_commit_discard - discard an event that has not been committed
2863 * @buffer: the ring buffer
2864 * @event: non committed event to discard
2865 *
dc892f73
SR
2866 * Sometimes an event that is in the ring buffer needs to be ignored.
2867 * This function lets the user discard an event in the ring buffer
2868 * and then that event will not be read later.
2869 *
2870 * This function only works if it is called before the the item has been
2871 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2872 * if another event has not been added behind it.
2873 *
2874 * If another event has been added behind it, it will set the event
2875 * up as discarded, and perform the commit.
2876 *
2877 * If this function is called, do not call ring_buffer_unlock_commit on
2878 * the event.
2879 */
2880void ring_buffer_discard_commit(struct ring_buffer *buffer,
2881 struct ring_buffer_event *event)
2882{
2883 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2884 int cpu;
2885
2886 /* The event is discarded regardless */
f3b9aae1 2887 rb_event_discard(event);
fa1b47dd 2888
fa743953
SR
2889 cpu = smp_processor_id();
2890 cpu_buffer = buffer->buffers[cpu];
2891
fa1b47dd
SR
2892 /*
2893 * This must only be called if the event has not been
2894 * committed yet. Thus we can assume that preemption
2895 * is still disabled.
2896 */
fa743953 2897 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2898
a1863c21 2899 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2900 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2901 goto out;
fa1b47dd
SR
2902
2903 /*
2904 * The commit is still visible by the reader, so we
a1863c21 2905 * must still update the timestamp.
fa1b47dd 2906 */
a1863c21 2907 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2908 out:
fa743953 2909 rb_end_commit(cpu_buffer);
fa1b47dd 2910
f3b9aae1
FW
2911 trace_recursive_unlock();
2912
5168ae50 2913 preempt_enable_notrace();
fa1b47dd
SR
2914
2915}
2916EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2917
7a8e76a3
SR
2918/**
2919 * ring_buffer_write - write data to the buffer without reserving
2920 * @buffer: The ring buffer to write to.
2921 * @length: The length of the data being written (excluding the event header)
2922 * @data: The data to write to the buffer.
2923 *
2924 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2925 * one function. If you already have the data to write to the buffer, it
2926 * may be easier to simply call this function.
2927 *
2928 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2929 * and not the length of the event which would hold the header.
2930 */
2931int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2932 unsigned long length,
2933 void *data)
7a8e76a3
SR
2934{
2935 struct ring_buffer_per_cpu *cpu_buffer;
2936 struct ring_buffer_event *event;
7a8e76a3
SR
2937 void *body;
2938 int ret = -EBUSY;
5168ae50 2939 int cpu;
7a8e76a3 2940
033601a3 2941 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2942 return -EBUSY;
2943
5168ae50 2944 preempt_disable_notrace();
bf41a158 2945
52fbe9cd
LJ
2946 if (atomic_read(&buffer->record_disabled))
2947 goto out;
2948
7a8e76a3
SR
2949 cpu = raw_smp_processor_id();
2950
9e01c1b7 2951 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2952 goto out;
7a8e76a3
SR
2953
2954 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2955
2956 if (atomic_read(&cpu_buffer->record_disabled))
2957 goto out;
2958
be957c44
SR
2959 if (length > BUF_MAX_DATA_SIZE)
2960 goto out;
2961
62f0b3eb 2962 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2963 if (!event)
2964 goto out;
2965
2966 body = rb_event_data(event);
2967
2968 memcpy(body, data, length);
2969
2970 rb_commit(cpu_buffer, event);
2971
15693458
SRRH
2972 rb_wakeups(buffer, cpu_buffer);
2973
7a8e76a3
SR
2974 ret = 0;
2975 out:
5168ae50 2976 preempt_enable_notrace();
7a8e76a3
SR
2977
2978 return ret;
2979}
c4f50183 2980EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2981
34a148bf 2982static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2983{
2984 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2985 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2986 struct buffer_page *commit = cpu_buffer->commit_page;
2987
77ae365e
SR
2988 /* In case of error, head will be NULL */
2989 if (unlikely(!head))
2990 return 1;
2991
bf41a158
SR
2992 return reader->read == rb_page_commit(reader) &&
2993 (commit == reader ||
2994 (commit == head &&
2995 head->read == rb_page_commit(commit)));
2996}
2997
7a8e76a3
SR
2998/**
2999 * ring_buffer_record_disable - stop all writes into the buffer
3000 * @buffer: The ring buffer to stop writes to.
3001 *
3002 * This prevents all writes to the buffer. Any attempt to write
3003 * to the buffer after this will fail and return NULL.
3004 *
3005 * The caller should call synchronize_sched() after this.
3006 */
3007void ring_buffer_record_disable(struct ring_buffer *buffer)
3008{
3009 atomic_inc(&buffer->record_disabled);
3010}
c4f50183 3011EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3012
3013/**
3014 * ring_buffer_record_enable - enable writes to the buffer
3015 * @buffer: The ring buffer to enable writes
3016 *
3017 * Note, multiple disables will need the same number of enables
c41b20e7 3018 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3019 */
3020void ring_buffer_record_enable(struct ring_buffer *buffer)
3021{
3022 atomic_dec(&buffer->record_disabled);
3023}
c4f50183 3024EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3025
499e5470
SR
3026/**
3027 * ring_buffer_record_off - stop all writes into the buffer
3028 * @buffer: The ring buffer to stop writes to.
3029 *
3030 * This prevents all writes to the buffer. Any attempt to write
3031 * to the buffer after this will fail and return NULL.
3032 *
3033 * This is different than ring_buffer_record_disable() as
87abb3b1 3034 * it works like an on/off switch, where as the disable() version
499e5470
SR
3035 * must be paired with a enable().
3036 */
3037void ring_buffer_record_off(struct ring_buffer *buffer)
3038{
3039 unsigned int rd;
3040 unsigned int new_rd;
3041
3042 do {
3043 rd = atomic_read(&buffer->record_disabled);
3044 new_rd = rd | RB_BUFFER_OFF;
3045 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3046}
3047EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3048
3049/**
3050 * ring_buffer_record_on - restart writes into the buffer
3051 * @buffer: The ring buffer to start writes to.
3052 *
3053 * This enables all writes to the buffer that was disabled by
3054 * ring_buffer_record_off().
3055 *
3056 * This is different than ring_buffer_record_enable() as
87abb3b1 3057 * it works like an on/off switch, where as the enable() version
499e5470
SR
3058 * must be paired with a disable().
3059 */
3060void ring_buffer_record_on(struct ring_buffer *buffer)
3061{
3062 unsigned int rd;
3063 unsigned int new_rd;
3064
3065 do {
3066 rd = atomic_read(&buffer->record_disabled);
3067 new_rd = rd & ~RB_BUFFER_OFF;
3068 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069}
3070EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3071
3072/**
3073 * ring_buffer_record_is_on - return true if the ring buffer can write
3074 * @buffer: The ring buffer to see if write is enabled
3075 *
3076 * Returns true if the ring buffer is in a state that it accepts writes.
3077 */
3078int ring_buffer_record_is_on(struct ring_buffer *buffer)
3079{
3080 return !atomic_read(&buffer->record_disabled);
3081}
3082
7a8e76a3
SR
3083/**
3084 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3085 * @buffer: The ring buffer to stop writes to.
3086 * @cpu: The CPU buffer to stop
3087 *
3088 * This prevents all writes to the buffer. Any attempt to write
3089 * to the buffer after this will fail and return NULL.
3090 *
3091 * The caller should call synchronize_sched() after this.
3092 */
3093void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3094{
3095 struct ring_buffer_per_cpu *cpu_buffer;
3096
9e01c1b7 3097 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3098 return;
7a8e76a3
SR
3099
3100 cpu_buffer = buffer->buffers[cpu];
3101 atomic_inc(&cpu_buffer->record_disabled);
3102}
c4f50183 3103EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3104
3105/**
3106 * ring_buffer_record_enable_cpu - enable writes to the buffer
3107 * @buffer: The ring buffer to enable writes
3108 * @cpu: The CPU to enable.
3109 *
3110 * Note, multiple disables will need the same number of enables
c41b20e7 3111 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3112 */
3113void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3114{
3115 struct ring_buffer_per_cpu *cpu_buffer;
3116
9e01c1b7 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3118 return;
7a8e76a3
SR
3119
3120 cpu_buffer = buffer->buffers[cpu];
3121 atomic_dec(&cpu_buffer->record_disabled);
3122}
c4f50183 3123EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3124
f6195aa0
SR
3125/*
3126 * The total entries in the ring buffer is the running counter
3127 * of entries entered into the ring buffer, minus the sum of
3128 * the entries read from the ring buffer and the number of
3129 * entries that were overwritten.
3130 */
3131static inline unsigned long
3132rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3133{
3134 return local_read(&cpu_buffer->entries) -
3135 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3136}
3137
c64e148a
VN
3138/**
3139 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3140 * @buffer: The ring buffer
3141 * @cpu: The per CPU buffer to read from.
3142 */
50ecf2c3 3143u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3144{
3145 unsigned long flags;
3146 struct ring_buffer_per_cpu *cpu_buffer;
3147 struct buffer_page *bpage;
da830e58 3148 u64 ret = 0;
c64e148a
VN
3149
3150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3151 return 0;
3152
3153 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3155 /*
3156 * if the tail is on reader_page, oldest time stamp is on the reader
3157 * page
3158 */
3159 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3160 bpage = cpu_buffer->reader_page;
3161 else
3162 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3163 if (bpage)
3164 ret = bpage->page->time_stamp;
7115e3fc 3165 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3166
3167 return ret;
3168}
3169EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3170
3171/**
3172 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3173 * @buffer: The ring buffer
3174 * @cpu: The per CPU buffer to read from.
3175 */
3176unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3177{
3178 struct ring_buffer_per_cpu *cpu_buffer;
3179 unsigned long ret;
3180
3181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182 return 0;
3183
3184 cpu_buffer = buffer->buffers[cpu];
3185 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3186
3187 return ret;
3188}
3189EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3190
7a8e76a3
SR
3191/**
3192 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to get the entries from.
3195 */
3196unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3197{
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199
9e01c1b7 3200 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3201 return 0;
7a8e76a3
SR
3202
3203 cpu_buffer = buffer->buffers[cpu];
554f786e 3204
f6195aa0 3205 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3206}
c4f50183 3207EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3208
3209/**
884bfe89
SP
3210 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3211 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3212 * @buffer: The ring buffer
3213 * @cpu: The per CPU buffer to get the number of overruns from
3214 */
3215unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3216{
3217 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3218 unsigned long ret;
7a8e76a3 3219
9e01c1b7 3220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3221 return 0;
7a8e76a3
SR
3222
3223 cpu_buffer = buffer->buffers[cpu];
77ae365e 3224 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3225
3226 return ret;
7a8e76a3 3227}
c4f50183 3228EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3229
f0d2c681 3230/**
884bfe89
SP
3231 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3232 * commits failing due to the buffer wrapping around while there are uncommitted
3233 * events, such as during an interrupt storm.
f0d2c681
SR
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237unsigned long
3238ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241 unsigned long ret;
3242
3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 return 0;
3245
3246 cpu_buffer = buffer->buffers[cpu];
77ae365e 3247 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3248
3249 return ret;
3250}
3251EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3252
884bfe89
SP
3253/**
3254 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3255 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the number of overruns from
3258 */
3259unsigned long
3260ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3261{
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 unsigned long ret;
3264
3265 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 return 0;
3267
3268 cpu_buffer = buffer->buffers[cpu];
3269 ret = local_read(&cpu_buffer->dropped_events);
3270
3271 return ret;
3272}
3273EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3274
ad964704
SRRH
3275/**
3276 * ring_buffer_read_events_cpu - get the number of events successfully read
3277 * @buffer: The ring buffer
3278 * @cpu: The per CPU buffer to get the number of events read
3279 */
3280unsigned long
3281ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3282{
3283 struct ring_buffer_per_cpu *cpu_buffer;
3284
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 return 0;
3287
3288 cpu_buffer = buffer->buffers[cpu];
3289 return cpu_buffer->read;
3290}
3291EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3292
7a8e76a3
SR
3293/**
3294 * ring_buffer_entries - get the number of entries in a buffer
3295 * @buffer: The ring buffer
3296 *
3297 * Returns the total number of entries in the ring buffer
3298 * (all CPU entries)
3299 */
3300unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3301{
3302 struct ring_buffer_per_cpu *cpu_buffer;
3303 unsigned long entries = 0;
3304 int cpu;
3305
3306 /* if you care about this being correct, lock the buffer */
3307 for_each_buffer_cpu(buffer, cpu) {
3308 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3309 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3310 }
3311
3312 return entries;
3313}
c4f50183 3314EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3315
3316/**
67b394f7 3317 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3318 * @buffer: The ring buffer
3319 *
3320 * Returns the total number of overruns in the ring buffer
3321 * (all CPU entries)
3322 */
3323unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3324{
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326 unsigned long overruns = 0;
3327 int cpu;
3328
3329 /* if you care about this being correct, lock the buffer */
3330 for_each_buffer_cpu(buffer, cpu) {
3331 cpu_buffer = buffer->buffers[cpu];
77ae365e 3332 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3333 }
3334
3335 return overruns;
3336}
c4f50183 3337EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3338
642edba5 3339static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3340{
3341 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3342
d769041f 3343 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3344 iter->head_page = cpu_buffer->reader_page;
3345 iter->head = cpu_buffer->reader_page->read;
3346
3347 iter->cache_reader_page = iter->head_page;
3348 iter->cache_read = iter->head;
3349
d769041f
SR
3350 if (iter->head)
3351 iter->read_stamp = cpu_buffer->read_stamp;
3352 else
abc9b56d 3353 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3354}
f83c9d0f 3355
642edba5
SR
3356/**
3357 * ring_buffer_iter_reset - reset an iterator
3358 * @iter: The iterator to reset
3359 *
3360 * Resets the iterator, so that it will start from the beginning
3361 * again.
3362 */
3363void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3364{
554f786e 3365 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3366 unsigned long flags;
3367
554f786e
SR
3368 if (!iter)
3369 return;
3370
3371 cpu_buffer = iter->cpu_buffer;
3372
5389f6fa 3373 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3374 rb_iter_reset(iter);
5389f6fa 3375 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3376}
c4f50183 3377EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3378
3379/**
3380 * ring_buffer_iter_empty - check if an iterator has no more to read
3381 * @iter: The iterator to check
3382 */
3383int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3384{
3385 struct ring_buffer_per_cpu *cpu_buffer;
3386
3387 cpu_buffer = iter->cpu_buffer;
3388
bf41a158
SR
3389 return iter->head_page == cpu_buffer->commit_page &&
3390 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3391}
c4f50183 3392EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3393
3394static void
3395rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3396 struct ring_buffer_event *event)
3397{
3398 u64 delta;
3399
334d4169 3400 switch (event->type_len) {
7a8e76a3
SR
3401 case RINGBUF_TYPE_PADDING:
3402 return;
3403
3404 case RINGBUF_TYPE_TIME_EXTEND:
3405 delta = event->array[0];
3406 delta <<= TS_SHIFT;
3407 delta += event->time_delta;
3408 cpu_buffer->read_stamp += delta;
3409 return;
3410
3411 case RINGBUF_TYPE_TIME_STAMP:
3412 /* FIXME: not implemented */
3413 return;
3414
3415 case RINGBUF_TYPE_DATA:
3416 cpu_buffer->read_stamp += event->time_delta;
3417 return;
3418
3419 default:
3420 BUG();
3421 }
3422 return;
3423}
3424
3425static void
3426rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3427 struct ring_buffer_event *event)
3428{
3429 u64 delta;
3430
334d4169 3431 switch (event->type_len) {
7a8e76a3
SR
3432 case RINGBUF_TYPE_PADDING:
3433 return;
3434
3435 case RINGBUF_TYPE_TIME_EXTEND:
3436 delta = event->array[0];
3437 delta <<= TS_SHIFT;
3438 delta += event->time_delta;
3439 iter->read_stamp += delta;
3440 return;
3441
3442 case RINGBUF_TYPE_TIME_STAMP:
3443 /* FIXME: not implemented */
3444 return;
3445
3446 case RINGBUF_TYPE_DATA:
3447 iter->read_stamp += event->time_delta;
3448 return;
3449
3450 default:
3451 BUG();
3452 }
3453 return;
3454}
3455
d769041f
SR
3456static struct buffer_page *
3457rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3458{
d769041f 3459 struct buffer_page *reader = NULL;
66a8cb95 3460 unsigned long overwrite;
d769041f 3461 unsigned long flags;
818e3dd3 3462 int nr_loops = 0;
77ae365e 3463 int ret;
d769041f 3464
3e03fb7f 3465 local_irq_save(flags);
0199c4e6 3466 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3467
3468 again:
818e3dd3
SR
3469 /*
3470 * This should normally only loop twice. But because the
3471 * start of the reader inserts an empty page, it causes
3472 * a case where we will loop three times. There should be no
3473 * reason to loop four times (that I know of).
3474 */
3e89c7bb 3475 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3476 reader = NULL;
3477 goto out;
3478 }
3479
d769041f
SR
3480 reader = cpu_buffer->reader_page;
3481
3482 /* If there's more to read, return this page */
bf41a158 3483 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3484 goto out;
3485
3486 /* Never should we have an index greater than the size */
3e89c7bb
SR
3487 if (RB_WARN_ON(cpu_buffer,
3488 cpu_buffer->reader_page->read > rb_page_size(reader)))
3489 goto out;
d769041f
SR
3490
3491 /* check if we caught up to the tail */
3492 reader = NULL;
bf41a158 3493 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3494 goto out;
7a8e76a3 3495
a5fb8331
SR
3496 /* Don't bother swapping if the ring buffer is empty */
3497 if (rb_num_of_entries(cpu_buffer) == 0)
3498 goto out;
3499
7a8e76a3 3500 /*
d769041f 3501 * Reset the reader page to size zero.
7a8e76a3 3502 */
77ae365e
SR
3503 local_set(&cpu_buffer->reader_page->write, 0);
3504 local_set(&cpu_buffer->reader_page->entries, 0);
3505 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3506 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3507
77ae365e
SR
3508 spin:
3509 /*
3510 * Splice the empty reader page into the list around the head.
3511 */
3512 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3513 if (!reader)
3514 goto out;
0e1ff5d7 3515 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3516 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3517
3adc54fa
SR
3518 /*
3519 * cpu_buffer->pages just needs to point to the buffer, it
3520 * has no specific buffer page to point to. Lets move it out
25985edc 3521 * of our way so we don't accidentally swap it.
3adc54fa
SR
3522 */
3523 cpu_buffer->pages = reader->list.prev;
3524
77ae365e
SR
3525 /* The reader page will be pointing to the new head */
3526 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3527
66a8cb95
SR
3528 /*
3529 * We want to make sure we read the overruns after we set up our
3530 * pointers to the next object. The writer side does a
3531 * cmpxchg to cross pages which acts as the mb on the writer
3532 * side. Note, the reader will constantly fail the swap
3533 * while the writer is updating the pointers, so this
3534 * guarantees that the overwrite recorded here is the one we
3535 * want to compare with the last_overrun.
3536 */
3537 smp_mb();
3538 overwrite = local_read(&(cpu_buffer->overrun));
3539
77ae365e
SR
3540 /*
3541 * Here's the tricky part.
3542 *
3543 * We need to move the pointer past the header page.
3544 * But we can only do that if a writer is not currently
3545 * moving it. The page before the header page has the
3546 * flag bit '1' set if it is pointing to the page we want.
3547 * but if the writer is in the process of moving it
3548 * than it will be '2' or already moved '0'.
3549 */
3550
3551 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3552
3553 /*
77ae365e 3554 * If we did not convert it, then we must try again.
7a8e76a3 3555 */
77ae365e
SR
3556 if (!ret)
3557 goto spin;
7a8e76a3 3558
77ae365e
SR
3559 /*
3560 * Yeah! We succeeded in replacing the page.
3561 *
3562 * Now make the new head point back to the reader page.
3563 */
5ded3dc6 3564 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3565 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3566
3567 /* Finally update the reader page to the new head */
3568 cpu_buffer->reader_page = reader;
3569 rb_reset_reader_page(cpu_buffer);
3570
66a8cb95
SR
3571 if (overwrite != cpu_buffer->last_overrun) {
3572 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3573 cpu_buffer->last_overrun = overwrite;
3574 }
3575
d769041f
SR
3576 goto again;
3577
3578 out:
0199c4e6 3579 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3580 local_irq_restore(flags);
d769041f
SR
3581
3582 return reader;
3583}
3584
3585static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3586{
3587 struct ring_buffer_event *event;
3588 struct buffer_page *reader;
3589 unsigned length;
3590
3591 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3592
d769041f 3593 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3594 if (RB_WARN_ON(cpu_buffer, !reader))
3595 return;
7a8e76a3 3596
d769041f
SR
3597 event = rb_reader_event(cpu_buffer);
3598
a1863c21 3599 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3600 cpu_buffer->read++;
d769041f
SR
3601
3602 rb_update_read_stamp(cpu_buffer, event);
3603
3604 length = rb_event_length(event);
6f807acd 3605 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3606}
3607
3608static void rb_advance_iter(struct ring_buffer_iter *iter)
3609{
7a8e76a3
SR
3610 struct ring_buffer_per_cpu *cpu_buffer;
3611 struct ring_buffer_event *event;
3612 unsigned length;
3613
3614 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3615
3616 /*
3617 * Check if we are at the end of the buffer.
3618 */
bf41a158 3619 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3620 /* discarded commits can make the page empty */
3621 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3622 return;
d769041f 3623 rb_inc_iter(iter);
7a8e76a3
SR
3624 return;
3625 }
3626
3627 event = rb_iter_head_event(iter);
3628
3629 length = rb_event_length(event);
3630
3631 /*
3632 * This should not be called to advance the header if we are
3633 * at the tail of the buffer.
3634 */
3e89c7bb 3635 if (RB_WARN_ON(cpu_buffer,
f536aafc 3636 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3637 (iter->head + length > rb_commit_index(cpu_buffer))))
3638 return;
7a8e76a3
SR
3639
3640 rb_update_iter_read_stamp(iter, event);
3641
3642 iter->head += length;
3643
3644 /* check for end of page padding */
bf41a158
SR
3645 if ((iter->head >= rb_page_size(iter->head_page)) &&
3646 (iter->head_page != cpu_buffer->commit_page))
771e0384 3647 rb_inc_iter(iter);
7a8e76a3
SR
3648}
3649
66a8cb95
SR
3650static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3651{
3652 return cpu_buffer->lost_events;
3653}
3654
f83c9d0f 3655static struct ring_buffer_event *
66a8cb95
SR
3656rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3657 unsigned long *lost_events)
7a8e76a3 3658{
7a8e76a3 3659 struct ring_buffer_event *event;
d769041f 3660 struct buffer_page *reader;
818e3dd3 3661 int nr_loops = 0;
7a8e76a3 3662
7a8e76a3 3663 again:
818e3dd3 3664 /*
69d1b839
SR
3665 * We repeat when a time extend is encountered.
3666 * Since the time extend is always attached to a data event,
3667 * we should never loop more than once.
3668 * (We never hit the following condition more than twice).
818e3dd3 3669 */
69d1b839 3670 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3671 return NULL;
818e3dd3 3672
d769041f
SR
3673 reader = rb_get_reader_page(cpu_buffer);
3674 if (!reader)
7a8e76a3
SR
3675 return NULL;
3676
d769041f 3677 event = rb_reader_event(cpu_buffer);
7a8e76a3 3678
334d4169 3679 switch (event->type_len) {
7a8e76a3 3680 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3681 if (rb_null_event(event))
3682 RB_WARN_ON(cpu_buffer, 1);
3683 /*
3684 * Because the writer could be discarding every
3685 * event it creates (which would probably be bad)
3686 * if we were to go back to "again" then we may never
3687 * catch up, and will trigger the warn on, or lock
3688 * the box. Return the padding, and we will release
3689 * the current locks, and try again.
3690 */
2d622719 3691 return event;
7a8e76a3
SR
3692
3693 case RINGBUF_TYPE_TIME_EXTEND:
3694 /* Internal data, OK to advance */
d769041f 3695 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3696 goto again;
3697
3698 case RINGBUF_TYPE_TIME_STAMP:
3699 /* FIXME: not implemented */
d769041f 3700 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3701 goto again;
3702
3703 case RINGBUF_TYPE_DATA:
3704 if (ts) {
3705 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3706 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3707 cpu_buffer->cpu, ts);
7a8e76a3 3708 }
66a8cb95
SR
3709 if (lost_events)
3710 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3711 return event;
3712
3713 default:
3714 BUG();
3715 }
3716
3717 return NULL;
3718}
c4f50183 3719EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3720
f83c9d0f
SR
3721static struct ring_buffer_event *
3722rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3723{
3724 struct ring_buffer *buffer;
3725 struct ring_buffer_per_cpu *cpu_buffer;
3726 struct ring_buffer_event *event;
818e3dd3 3727 int nr_loops = 0;
7a8e76a3 3728
7a8e76a3
SR
3729 cpu_buffer = iter->cpu_buffer;
3730 buffer = cpu_buffer->buffer;
3731
492a74f4
SR
3732 /*
3733 * Check if someone performed a consuming read to
3734 * the buffer. A consuming read invalidates the iterator
3735 * and we need to reset the iterator in this case.
3736 */
3737 if (unlikely(iter->cache_read != cpu_buffer->read ||
3738 iter->cache_reader_page != cpu_buffer->reader_page))
3739 rb_iter_reset(iter);
3740
7a8e76a3 3741 again:
3c05d748
SR
3742 if (ring_buffer_iter_empty(iter))
3743 return NULL;
3744
818e3dd3 3745 /*
021de3d9
SRRH
3746 * We repeat when a time extend is encountered or we hit
3747 * the end of the page. Since the time extend is always attached
3748 * to a data event, we should never loop more than three times.
3749 * Once for going to next page, once on time extend, and
3750 * finally once to get the event.
3751 * (We never hit the following condition more than thrice).
818e3dd3 3752 */
021de3d9 3753 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3754 return NULL;
818e3dd3 3755
7a8e76a3
SR
3756 if (rb_per_cpu_empty(cpu_buffer))
3757 return NULL;
3758
10e83fd0 3759 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3760 rb_inc_iter(iter);
3761 goto again;
3762 }
3763
7a8e76a3
SR
3764 event = rb_iter_head_event(iter);
3765
334d4169 3766 switch (event->type_len) {
7a8e76a3 3767 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3768 if (rb_null_event(event)) {
3769 rb_inc_iter(iter);
3770 goto again;
3771 }
3772 rb_advance_iter(iter);
3773 return event;
7a8e76a3
SR
3774
3775 case RINGBUF_TYPE_TIME_EXTEND:
3776 /* Internal data, OK to advance */
3777 rb_advance_iter(iter);
3778 goto again;
3779
3780 case RINGBUF_TYPE_TIME_STAMP:
3781 /* FIXME: not implemented */
3782 rb_advance_iter(iter);
3783 goto again;
3784
3785 case RINGBUF_TYPE_DATA:
3786 if (ts) {
3787 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3788 ring_buffer_normalize_time_stamp(buffer,
3789 cpu_buffer->cpu, ts);
7a8e76a3
SR
3790 }
3791 return event;
3792
3793 default:
3794 BUG();
3795 }
3796
3797 return NULL;
3798}
c4f50183 3799EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3800
8d707e8e
SR
3801static inline int rb_ok_to_lock(void)
3802{
3803 /*
3804 * If an NMI die dumps out the content of the ring buffer
3805 * do not grab locks. We also permanently disable the ring
3806 * buffer too. A one time deal is all you get from reading
3807 * the ring buffer from an NMI.
3808 */
464e85eb 3809 if (likely(!in_nmi()))
8d707e8e
SR
3810 return 1;
3811
3812 tracing_off_permanent();
3813 return 0;
3814}
3815
f83c9d0f
SR
3816/**
3817 * ring_buffer_peek - peek at the next event to be read
3818 * @buffer: The ring buffer to read
3819 * @cpu: The cpu to peak at
3820 * @ts: The timestamp counter of this event.
66a8cb95 3821 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3822 *
3823 * This will return the event that will be read next, but does
3824 * not consume the data.
3825 */
3826struct ring_buffer_event *
66a8cb95
SR
3827ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3828 unsigned long *lost_events)
f83c9d0f
SR
3829{
3830 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3831 struct ring_buffer_event *event;
f83c9d0f 3832 unsigned long flags;
8d707e8e 3833 int dolock;
f83c9d0f 3834
554f786e 3835 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3836 return NULL;
554f786e 3837
8d707e8e 3838 dolock = rb_ok_to_lock();
2d622719 3839 again:
8d707e8e
SR
3840 local_irq_save(flags);
3841 if (dolock)
5389f6fa 3842 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3843 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3844 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3845 rb_advance_reader(cpu_buffer);
8d707e8e 3846 if (dolock)
5389f6fa 3847 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3848 local_irq_restore(flags);
f83c9d0f 3849
1b959e18 3850 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3851 goto again;
2d622719 3852
f83c9d0f
SR
3853 return event;
3854}
3855
3856/**
3857 * ring_buffer_iter_peek - peek at the next event to be read
3858 * @iter: The ring buffer iterator
3859 * @ts: The timestamp counter of this event.
3860 *
3861 * This will return the event that will be read next, but does
3862 * not increment the iterator.
3863 */
3864struct ring_buffer_event *
3865ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3866{
3867 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3868 struct ring_buffer_event *event;
3869 unsigned long flags;
3870
2d622719 3871 again:
5389f6fa 3872 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3873 event = rb_iter_peek(iter, ts);
5389f6fa 3874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3875
1b959e18 3876 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3877 goto again;
2d622719 3878
f83c9d0f
SR
3879 return event;
3880}
3881
7a8e76a3
SR
3882/**
3883 * ring_buffer_consume - return an event and consume it
3884 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3885 * @cpu: the cpu to read the buffer from
3886 * @ts: a variable to store the timestamp (may be NULL)
3887 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3888 *
3889 * Returns the next event in the ring buffer, and that event is consumed.
3890 * Meaning, that sequential reads will keep returning a different event,
3891 * and eventually empty the ring buffer if the producer is slower.
3892 */
3893struct ring_buffer_event *
66a8cb95
SR
3894ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3895 unsigned long *lost_events)
7a8e76a3 3896{
554f786e
SR
3897 struct ring_buffer_per_cpu *cpu_buffer;
3898 struct ring_buffer_event *event = NULL;
f83c9d0f 3899 unsigned long flags;
8d707e8e
SR
3900 int dolock;
3901
3902 dolock = rb_ok_to_lock();
7a8e76a3 3903
2d622719 3904 again:
554f786e
SR
3905 /* might be called in atomic */
3906 preempt_disable();
3907
9e01c1b7 3908 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3909 goto out;
7a8e76a3 3910
554f786e 3911 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3912 local_irq_save(flags);
3913 if (dolock)
5389f6fa 3914 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3915
66a8cb95
SR
3916 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3917 if (event) {
3918 cpu_buffer->lost_events = 0;
469535a5 3919 rb_advance_reader(cpu_buffer);
66a8cb95 3920 }
7a8e76a3 3921
8d707e8e 3922 if (dolock)
5389f6fa 3923 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3924 local_irq_restore(flags);
f83c9d0f 3925
554f786e
SR
3926 out:
3927 preempt_enable();
3928
1b959e18 3929 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3930 goto again;
2d622719 3931
7a8e76a3
SR
3932 return event;
3933}
c4f50183 3934EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3935
3936/**
72c9ddfd 3937 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3938 * @buffer: The ring buffer to read from
3939 * @cpu: The cpu buffer to iterate over
3940 *
72c9ddfd
DM
3941 * This performs the initial preparations necessary to iterate
3942 * through the buffer. Memory is allocated, buffer recording
3943 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3944 *
72c9ddfd
DM
3945 * Disabling buffer recordng prevents the reading from being
3946 * corrupted. This is not a consuming read, so a producer is not
3947 * expected.
3948 *
3949 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3950 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3951 * Afterwards, ring_buffer_read_start is invoked to get things going
3952 * for real.
3953 *
d611851b 3954 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3955 */
3956struct ring_buffer_iter *
72c9ddfd 3957ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3958{
3959 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3960 struct ring_buffer_iter *iter;
7a8e76a3 3961
9e01c1b7 3962 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3963 return NULL;
7a8e76a3
SR
3964
3965 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3966 if (!iter)
8aabee57 3967 return NULL;
7a8e76a3
SR
3968
3969 cpu_buffer = buffer->buffers[cpu];
3970
3971 iter->cpu_buffer = cpu_buffer;
3972
83f40318 3973 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3974 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3975
3976 return iter;
3977}
3978EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3979
3980/**
3981 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3982 *
3983 * All previously invoked ring_buffer_read_prepare calls to prepare
3984 * iterators will be synchronized. Afterwards, read_buffer_read_start
3985 * calls on those iterators are allowed.
3986 */
3987void
3988ring_buffer_read_prepare_sync(void)
3989{
7a8e76a3 3990 synchronize_sched();
72c9ddfd
DM
3991}
3992EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3993
3994/**
3995 * ring_buffer_read_start - start a non consuming read of the buffer
3996 * @iter: The iterator returned by ring_buffer_read_prepare
3997 *
3998 * This finalizes the startup of an iteration through the buffer.
3999 * The iterator comes from a call to ring_buffer_read_prepare and
4000 * an intervening ring_buffer_read_prepare_sync must have been
4001 * performed.
4002 *
d611851b 4003 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4004 */
4005void
4006ring_buffer_read_start(struct ring_buffer_iter *iter)
4007{
4008 struct ring_buffer_per_cpu *cpu_buffer;
4009 unsigned long flags;
4010
4011 if (!iter)
4012 return;
4013
4014 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4015
5389f6fa 4016 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4017 arch_spin_lock(&cpu_buffer->lock);
642edba5 4018 rb_iter_reset(iter);
0199c4e6 4019 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4020 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4021}
c4f50183 4022EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4023
4024/**
d611851b 4025 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4026 * @iter: The iterator retrieved by ring_buffer_start
4027 *
4028 * This re-enables the recording to the buffer, and frees the
4029 * iterator.
4030 */
4031void
4032ring_buffer_read_finish(struct ring_buffer_iter *iter)
4033{
4034 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4035 unsigned long flags;
7a8e76a3 4036
659f451f
SR
4037 /*
4038 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4039 * to check the integrity of the ring buffer.
4040 * Must prevent readers from trying to read, as the check
4041 * clears the HEAD page and readers require it.
659f451f 4042 */
9366c1ba 4043 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4044 rb_check_pages(cpu_buffer);
9366c1ba 4045 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4046
7a8e76a3 4047 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4048 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4049 kfree(iter);
4050}
c4f50183 4051EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4052
4053/**
4054 * ring_buffer_read - read the next item in the ring buffer by the iterator
4055 * @iter: The ring buffer iterator
4056 * @ts: The time stamp of the event read.
4057 *
4058 * This reads the next event in the ring buffer and increments the iterator.
4059 */
4060struct ring_buffer_event *
4061ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4062{
4063 struct ring_buffer_event *event;
f83c9d0f
SR
4064 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4065 unsigned long flags;
7a8e76a3 4066
5389f6fa 4067 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4068 again:
f83c9d0f 4069 event = rb_iter_peek(iter, ts);
7a8e76a3 4070 if (!event)
f83c9d0f 4071 goto out;
7a8e76a3 4072
7e9391cf
SR
4073 if (event->type_len == RINGBUF_TYPE_PADDING)
4074 goto again;
4075
7a8e76a3 4076 rb_advance_iter(iter);
f83c9d0f 4077 out:
5389f6fa 4078 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4079
4080 return event;
4081}
c4f50183 4082EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4083
4084/**
4085 * ring_buffer_size - return the size of the ring buffer (in bytes)
4086 * @buffer: The ring buffer.
4087 */
438ced17 4088unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4089{
438ced17
VN
4090 /*
4091 * Earlier, this method returned
4092 * BUF_PAGE_SIZE * buffer->nr_pages
4093 * Since the nr_pages field is now removed, we have converted this to
4094 * return the per cpu buffer value.
4095 */
4096 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4097 return 0;
4098
4099 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4100}
c4f50183 4101EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4102
4103static void
4104rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4105{
77ae365e
SR
4106 rb_head_page_deactivate(cpu_buffer);
4107
7a8e76a3 4108 cpu_buffer->head_page
3adc54fa 4109 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4110 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4111 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4112 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4113
6f807acd 4114 cpu_buffer->head_page->read = 0;
bf41a158
SR
4115
4116 cpu_buffer->tail_page = cpu_buffer->head_page;
4117 cpu_buffer->commit_page = cpu_buffer->head_page;
4118
4119 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4120 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4121 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4122 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4123 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4124 cpu_buffer->reader_page->read = 0;
7a8e76a3 4125
c64e148a 4126 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4127 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4128 local_set(&cpu_buffer->commit_overrun, 0);
4129 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4130 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4131 local_set(&cpu_buffer->committing, 0);
4132 local_set(&cpu_buffer->commits, 0);
77ae365e 4133 cpu_buffer->read = 0;
c64e148a 4134 cpu_buffer->read_bytes = 0;
69507c06
SR
4135
4136 cpu_buffer->write_stamp = 0;
4137 cpu_buffer->read_stamp = 0;
77ae365e 4138
66a8cb95
SR
4139 cpu_buffer->lost_events = 0;
4140 cpu_buffer->last_overrun = 0;
4141
77ae365e 4142 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4143}
4144
4145/**
4146 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4147 * @buffer: The ring buffer to reset a per cpu buffer of
4148 * @cpu: The CPU buffer to be reset
4149 */
4150void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4151{
4152 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4153 unsigned long flags;
4154
9e01c1b7 4155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4156 return;
7a8e76a3 4157
83f40318 4158 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4159 atomic_inc(&cpu_buffer->record_disabled);
4160
83f40318
VN
4161 /* Make sure all commits have finished */
4162 synchronize_sched();
4163
5389f6fa 4164 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4165
41b6a95d
SR
4166 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4167 goto out;
4168
0199c4e6 4169 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4170
4171 rb_reset_cpu(cpu_buffer);
4172
0199c4e6 4173 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4174
41b6a95d 4175 out:
5389f6fa 4176 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4177
4178 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4179 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4180}
c4f50183 4181EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4182
4183/**
4184 * ring_buffer_reset - reset a ring buffer
4185 * @buffer: The ring buffer to reset all cpu buffers
4186 */
4187void ring_buffer_reset(struct ring_buffer *buffer)
4188{
7a8e76a3
SR
4189 int cpu;
4190
7a8e76a3 4191 for_each_buffer_cpu(buffer, cpu)
d769041f 4192 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4193}
c4f50183 4194EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4195
4196/**
4197 * rind_buffer_empty - is the ring buffer empty?
4198 * @buffer: The ring buffer to test
4199 */
4200int ring_buffer_empty(struct ring_buffer *buffer)
4201{
4202 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4203 unsigned long flags;
8d707e8e 4204 int dolock;
7a8e76a3 4205 int cpu;
d4788207 4206 int ret;
7a8e76a3 4207
8d707e8e 4208 dolock = rb_ok_to_lock();
7a8e76a3
SR
4209
4210 /* yes this is racy, but if you don't like the race, lock the buffer */
4211 for_each_buffer_cpu(buffer, cpu) {
4212 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4213 local_irq_save(flags);
4214 if (dolock)
5389f6fa 4215 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4216 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4217 if (dolock)
5389f6fa 4218 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4219 local_irq_restore(flags);
4220
d4788207 4221 if (!ret)
7a8e76a3
SR
4222 return 0;
4223 }
554f786e 4224
7a8e76a3
SR
4225 return 1;
4226}
c4f50183 4227EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4228
4229/**
4230 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4231 * @buffer: The ring buffer
4232 * @cpu: The CPU buffer to test
4233 */
4234int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4235{
4236 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4237 unsigned long flags;
8d707e8e 4238 int dolock;
8aabee57 4239 int ret;
7a8e76a3 4240
9e01c1b7 4241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4242 return 1;
7a8e76a3 4243
8d707e8e
SR
4244 dolock = rb_ok_to_lock();
4245
7a8e76a3 4246 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4247 local_irq_save(flags);
4248 if (dolock)
5389f6fa 4249 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4250 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4251 if (dolock)
5389f6fa 4252 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4253 local_irq_restore(flags);
554f786e
SR
4254
4255 return ret;
7a8e76a3 4256}
c4f50183 4257EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4258
85bac32c 4259#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4260/**
4261 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4262 * @buffer_a: One buffer to swap with
4263 * @buffer_b: The other buffer to swap with
4264 *
4265 * This function is useful for tracers that want to take a "snapshot"
4266 * of a CPU buffer and has another back up buffer lying around.
4267 * it is expected that the tracer handles the cpu buffer not being
4268 * used at the moment.
4269 */
4270int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4271 struct ring_buffer *buffer_b, int cpu)
4272{
4273 struct ring_buffer_per_cpu *cpu_buffer_a;
4274 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4275 int ret = -EINVAL;
4276
9e01c1b7
RR
4277 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4278 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4279 goto out;
7a8e76a3 4280
438ced17
VN
4281 cpu_buffer_a = buffer_a->buffers[cpu];
4282 cpu_buffer_b = buffer_b->buffers[cpu];
4283
7a8e76a3 4284 /* At least make sure the two buffers are somewhat the same */
438ced17 4285 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4286 goto out;
4287
4288 ret = -EAGAIN;
7a8e76a3 4289
97b17efe 4290 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4291 goto out;
97b17efe
SR
4292
4293 if (atomic_read(&buffer_a->record_disabled))
554f786e 4294 goto out;
97b17efe
SR
4295
4296 if (atomic_read(&buffer_b->record_disabled))
554f786e 4297 goto out;
97b17efe 4298
97b17efe 4299 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4300 goto out;
97b17efe
SR
4301
4302 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4303 goto out;
97b17efe 4304
7a8e76a3
SR
4305 /*
4306 * We can't do a synchronize_sched here because this
4307 * function can be called in atomic context.
4308 * Normally this will be called from the same CPU as cpu.
4309 * If not it's up to the caller to protect this.
4310 */
4311 atomic_inc(&cpu_buffer_a->record_disabled);
4312 atomic_inc(&cpu_buffer_b->record_disabled);
4313
98277991
SR
4314 ret = -EBUSY;
4315 if (local_read(&cpu_buffer_a->committing))
4316 goto out_dec;
4317 if (local_read(&cpu_buffer_b->committing))
4318 goto out_dec;
4319
7a8e76a3
SR
4320 buffer_a->buffers[cpu] = cpu_buffer_b;
4321 buffer_b->buffers[cpu] = cpu_buffer_a;
4322
4323 cpu_buffer_b->buffer = buffer_a;
4324 cpu_buffer_a->buffer = buffer_b;
4325
98277991
SR
4326 ret = 0;
4327
4328out_dec:
7a8e76a3
SR
4329 atomic_dec(&cpu_buffer_a->record_disabled);
4330 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4331out:
554f786e 4332 return ret;
7a8e76a3 4333}
c4f50183 4334EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4335#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4336
8789a9e7
SR
4337/**
4338 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4339 * @buffer: the buffer to allocate for.
d611851b 4340 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4341 *
4342 * This function is used in conjunction with ring_buffer_read_page.
4343 * When reading a full page from the ring buffer, these functions
4344 * can be used to speed up the process. The calling function should
4345 * allocate a few pages first with this function. Then when it
4346 * needs to get pages from the ring buffer, it passes the result
4347 * of this function into ring_buffer_read_page, which will swap
4348 * the page that was allocated, with the read page of the buffer.
4349 *
4350 * Returns:
4351 * The page allocated, or NULL on error.
4352 */
7ea59064 4353void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4354{
044fa782 4355 struct buffer_data_page *bpage;
7ea59064 4356 struct page *page;
8789a9e7 4357
d7ec4bfe
VN
4358 page = alloc_pages_node(cpu_to_node(cpu),
4359 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4360 if (!page)
8789a9e7
SR
4361 return NULL;
4362
7ea59064 4363 bpage = page_address(page);
8789a9e7 4364
ef7a4a16
SR
4365 rb_init_page(bpage);
4366
044fa782 4367 return bpage;
8789a9e7 4368}
d6ce96da 4369EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4370
4371/**
4372 * ring_buffer_free_read_page - free an allocated read page
4373 * @buffer: the buffer the page was allocate for
4374 * @data: the page to free
4375 *
4376 * Free a page allocated from ring_buffer_alloc_read_page.
4377 */
4378void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4379{
4380 free_page((unsigned long)data);
4381}
d6ce96da 4382EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4383
4384/**
4385 * ring_buffer_read_page - extract a page from the ring buffer
4386 * @buffer: buffer to extract from
4387 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4388 * @len: amount to extract
8789a9e7
SR
4389 * @cpu: the cpu of the buffer to extract
4390 * @full: should the extraction only happen when the page is full.
4391 *
4392 * This function will pull out a page from the ring buffer and consume it.
4393 * @data_page must be the address of the variable that was returned
4394 * from ring_buffer_alloc_read_page. This is because the page might be used
4395 * to swap with a page in the ring buffer.
4396 *
4397 * for example:
d611851b 4398 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4399 * if (!rpage)
4400 * return error;
ef7a4a16 4401 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4402 * if (ret >= 0)
4403 * process_page(rpage, ret);
8789a9e7
SR
4404 *
4405 * When @full is set, the function will not return true unless
4406 * the writer is off the reader page.
4407 *
4408 * Note: it is up to the calling functions to handle sleeps and wakeups.
4409 * The ring buffer can be used anywhere in the kernel and can not
4410 * blindly call wake_up. The layer that uses the ring buffer must be
4411 * responsible for that.
4412 *
4413 * Returns:
667d2412
LJ
4414 * >=0 if data has been transferred, returns the offset of consumed data.
4415 * <0 if no data has been transferred.
8789a9e7
SR
4416 */
4417int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4418 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4419{
4420 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4421 struct ring_buffer_event *event;
044fa782 4422 struct buffer_data_page *bpage;
ef7a4a16 4423 struct buffer_page *reader;
ff0ff84a 4424 unsigned long missed_events;
8789a9e7 4425 unsigned long flags;
ef7a4a16 4426 unsigned int commit;
667d2412 4427 unsigned int read;
4f3640f8 4428 u64 save_timestamp;
667d2412 4429 int ret = -1;
8789a9e7 4430
554f786e
SR
4431 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4432 goto out;
4433
474d32b6
SR
4434 /*
4435 * If len is not big enough to hold the page header, then
4436 * we can not copy anything.
4437 */
4438 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4439 goto out;
474d32b6
SR
4440
4441 len -= BUF_PAGE_HDR_SIZE;
4442
8789a9e7 4443 if (!data_page)
554f786e 4444 goto out;
8789a9e7 4445
044fa782
SR
4446 bpage = *data_page;
4447 if (!bpage)
554f786e 4448 goto out;
8789a9e7 4449
5389f6fa 4450 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4451
ef7a4a16
SR
4452 reader = rb_get_reader_page(cpu_buffer);
4453 if (!reader)
554f786e 4454 goto out_unlock;
8789a9e7 4455
ef7a4a16
SR
4456 event = rb_reader_event(cpu_buffer);
4457
4458 read = reader->read;
4459 commit = rb_page_commit(reader);
667d2412 4460
66a8cb95 4461 /* Check if any events were dropped */
ff0ff84a 4462 missed_events = cpu_buffer->lost_events;
66a8cb95 4463
8789a9e7 4464 /*
474d32b6
SR
4465 * If this page has been partially read or
4466 * if len is not big enough to read the rest of the page or
4467 * a writer is still on the page, then
4468 * we must copy the data from the page to the buffer.
4469 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4470 */
474d32b6 4471 if (read || (len < (commit - read)) ||
ef7a4a16 4472 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4473 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4474 unsigned int rpos = read;
4475 unsigned int pos = 0;
ef7a4a16 4476 unsigned int size;
8789a9e7
SR
4477
4478 if (full)
554f786e 4479 goto out_unlock;
8789a9e7 4480
ef7a4a16
SR
4481 if (len > (commit - read))
4482 len = (commit - read);
4483
69d1b839
SR
4484 /* Always keep the time extend and data together */
4485 size = rb_event_ts_length(event);
ef7a4a16
SR
4486
4487 if (len < size)
554f786e 4488 goto out_unlock;
ef7a4a16 4489
4f3640f8
SR
4490 /* save the current timestamp, since the user will need it */
4491 save_timestamp = cpu_buffer->read_stamp;
4492
ef7a4a16
SR
4493 /* Need to copy one event at a time */
4494 do {
e1e35927
DS
4495 /* We need the size of one event, because
4496 * rb_advance_reader only advances by one event,
4497 * whereas rb_event_ts_length may include the size of
4498 * one or two events.
4499 * We have already ensured there's enough space if this
4500 * is a time extend. */
4501 size = rb_event_length(event);
474d32b6 4502 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4503
4504 len -= size;
4505
4506 rb_advance_reader(cpu_buffer);
474d32b6
SR
4507 rpos = reader->read;
4508 pos += size;
ef7a4a16 4509
18fab912
HY
4510 if (rpos >= commit)
4511 break;
4512
ef7a4a16 4513 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4514 /* Always keep the time extend and data together */
4515 size = rb_event_ts_length(event);
e1e35927 4516 } while (len >= size);
667d2412
LJ
4517
4518 /* update bpage */
ef7a4a16 4519 local_set(&bpage->commit, pos);
4f3640f8 4520 bpage->time_stamp = save_timestamp;
ef7a4a16 4521
474d32b6
SR
4522 /* we copied everything to the beginning */
4523 read = 0;
8789a9e7 4524 } else {
afbab76a 4525 /* update the entry counter */
77ae365e 4526 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4527 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4528
8789a9e7 4529 /* swap the pages */
044fa782 4530 rb_init_page(bpage);
ef7a4a16
SR
4531 bpage = reader->page;
4532 reader->page = *data_page;
4533 local_set(&reader->write, 0);
778c55d4 4534 local_set(&reader->entries, 0);
ef7a4a16 4535 reader->read = 0;
044fa782 4536 *data_page = bpage;
ff0ff84a
SR
4537
4538 /*
4539 * Use the real_end for the data size,
4540 * This gives us a chance to store the lost events
4541 * on the page.
4542 */
4543 if (reader->real_end)
4544 local_set(&bpage->commit, reader->real_end);
8789a9e7 4545 }
667d2412 4546 ret = read;
8789a9e7 4547
66a8cb95 4548 cpu_buffer->lost_events = 0;
2711ca23
SR
4549
4550 commit = local_read(&bpage->commit);
66a8cb95
SR
4551 /*
4552 * Set a flag in the commit field if we lost events
4553 */
ff0ff84a 4554 if (missed_events) {
ff0ff84a
SR
4555 /* If there is room at the end of the page to save the
4556 * missed events, then record it there.
4557 */
4558 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4559 memcpy(&bpage->data[commit], &missed_events,
4560 sizeof(missed_events));
4561 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4562 commit += sizeof(missed_events);
ff0ff84a 4563 }
66a8cb95 4564 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4565 }
66a8cb95 4566
2711ca23
SR
4567 /*
4568 * This page may be off to user land. Zero it out here.
4569 */
4570 if (commit < BUF_PAGE_SIZE)
4571 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4572
554f786e 4573 out_unlock:
5389f6fa 4574 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4575
554f786e 4576 out:
8789a9e7
SR
4577 return ret;
4578}
d6ce96da 4579EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4580
59222efe 4581#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4582static int rb_cpu_notify(struct notifier_block *self,
4583 unsigned long action, void *hcpu)
554f786e
SR
4584{
4585 struct ring_buffer *buffer =
4586 container_of(self, struct ring_buffer, cpu_notify);
4587 long cpu = (long)hcpu;
438ced17
VN
4588 int cpu_i, nr_pages_same;
4589 unsigned int nr_pages;
554f786e
SR
4590
4591 switch (action) {
4592 case CPU_UP_PREPARE:
4593 case CPU_UP_PREPARE_FROZEN:
3f237a79 4594 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4595 return NOTIFY_OK;
4596
438ced17
VN
4597 nr_pages = 0;
4598 nr_pages_same = 1;
4599 /* check if all cpu sizes are same */
4600 for_each_buffer_cpu(buffer, cpu_i) {
4601 /* fill in the size from first enabled cpu */
4602 if (nr_pages == 0)
4603 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4604 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4605 nr_pages_same = 0;
4606 break;
4607 }
4608 }
4609 /* allocate minimum pages, user can later expand it */
4610 if (!nr_pages_same)
4611 nr_pages = 2;
554f786e 4612 buffer->buffers[cpu] =
438ced17 4613 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4614 if (!buffer->buffers[cpu]) {
4615 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4616 cpu);
4617 return NOTIFY_OK;
4618 }
4619 smp_wmb();
3f237a79 4620 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4621 break;
4622 case CPU_DOWN_PREPARE:
4623 case CPU_DOWN_PREPARE_FROZEN:
4624 /*
4625 * Do nothing.
4626 * If we were to free the buffer, then the user would
4627 * lose any trace that was in the buffer.
4628 */
4629 break;
4630 default:
4631 break;
4632 }
4633 return NOTIFY_OK;
4634}
4635#endif
6c43e554
SRRH
4636
4637#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4638/*
4639 * This is a basic integrity check of the ring buffer.
4640 * Late in the boot cycle this test will run when configured in.
4641 * It will kick off a thread per CPU that will go into a loop
4642 * writing to the per cpu ring buffer various sizes of data.
4643 * Some of the data will be large items, some small.
4644 *
4645 * Another thread is created that goes into a spin, sending out
4646 * IPIs to the other CPUs to also write into the ring buffer.
4647 * this is to test the nesting ability of the buffer.
4648 *
4649 * Basic stats are recorded and reported. If something in the
4650 * ring buffer should happen that's not expected, a big warning
4651 * is displayed and all ring buffers are disabled.
4652 */
4653static struct task_struct *rb_threads[NR_CPUS] __initdata;
4654
4655struct rb_test_data {
4656 struct ring_buffer *buffer;
4657 unsigned long events;
4658 unsigned long bytes_written;
4659 unsigned long bytes_alloc;
4660 unsigned long bytes_dropped;
4661 unsigned long events_nested;
4662 unsigned long bytes_written_nested;
4663 unsigned long bytes_alloc_nested;
4664 unsigned long bytes_dropped_nested;
4665 int min_size_nested;
4666 int max_size_nested;
4667 int max_size;
4668 int min_size;
4669 int cpu;
4670 int cnt;
4671};
4672
4673static struct rb_test_data rb_data[NR_CPUS] __initdata;
4674
4675/* 1 meg per cpu */
4676#define RB_TEST_BUFFER_SIZE 1048576
4677
4678static char rb_string[] __initdata =
4679 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4680 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4681 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4682
4683static bool rb_test_started __initdata;
4684
4685struct rb_item {
4686 int size;
4687 char str[];
4688};
4689
4690static __init int rb_write_something(struct rb_test_data *data, bool nested)
4691{
4692 struct ring_buffer_event *event;
4693 struct rb_item *item;
4694 bool started;
4695 int event_len;
4696 int size;
4697 int len;
4698 int cnt;
4699
4700 /* Have nested writes different that what is written */
4701 cnt = data->cnt + (nested ? 27 : 0);
4702
4703 /* Multiply cnt by ~e, to make some unique increment */
4704 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4705
4706 len = size + sizeof(struct rb_item);
4707
4708 started = rb_test_started;
4709 /* read rb_test_started before checking buffer enabled */
4710 smp_rmb();
4711
4712 event = ring_buffer_lock_reserve(data->buffer, len);
4713 if (!event) {
4714 /* Ignore dropped events before test starts. */
4715 if (started) {
4716 if (nested)
4717 data->bytes_dropped += len;
4718 else
4719 data->bytes_dropped_nested += len;
4720 }
4721 return len;
4722 }
4723
4724 event_len = ring_buffer_event_length(event);
4725
4726 if (RB_WARN_ON(data->buffer, event_len < len))
4727 goto out;
4728
4729 item = ring_buffer_event_data(event);
4730 item->size = size;
4731 memcpy(item->str, rb_string, size);
4732
4733 if (nested) {
4734 data->bytes_alloc_nested += event_len;
4735 data->bytes_written_nested += len;
4736 data->events_nested++;
4737 if (!data->min_size_nested || len < data->min_size_nested)
4738 data->min_size_nested = len;
4739 if (len > data->max_size_nested)
4740 data->max_size_nested = len;
4741 } else {
4742 data->bytes_alloc += event_len;
4743 data->bytes_written += len;
4744 data->events++;
4745 if (!data->min_size || len < data->min_size)
4746 data->max_size = len;
4747 if (len > data->max_size)
4748 data->max_size = len;
4749 }
4750
4751 out:
4752 ring_buffer_unlock_commit(data->buffer, event);
4753
4754 return 0;
4755}
4756
4757static __init int rb_test(void *arg)
4758{
4759 struct rb_test_data *data = arg;
4760
4761 while (!kthread_should_stop()) {
4762 rb_write_something(data, false);
4763 data->cnt++;
4764
4765 set_current_state(TASK_INTERRUPTIBLE);
4766 /* Now sleep between a min of 100-300us and a max of 1ms */
4767 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4768 }
4769
4770 return 0;
4771}
4772
4773static __init void rb_ipi(void *ignore)
4774{
4775 struct rb_test_data *data;
4776 int cpu = smp_processor_id();
4777
4778 data = &rb_data[cpu];
4779 rb_write_something(data, true);
4780}
4781
4782static __init int rb_hammer_test(void *arg)
4783{
4784 while (!kthread_should_stop()) {
4785
4786 /* Send an IPI to all cpus to write data! */
4787 smp_call_function(rb_ipi, NULL, 1);
4788 /* No sleep, but for non preempt, let others run */
4789 schedule();
4790 }
4791
4792 return 0;
4793}
4794
4795static __init int test_ringbuffer(void)
4796{
4797 struct task_struct *rb_hammer;
4798 struct ring_buffer *buffer;
4799 int cpu;
4800 int ret = 0;
4801
4802 pr_info("Running ring buffer tests...\n");
4803
4804 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4805 if (WARN_ON(!buffer))
4806 return 0;
4807
4808 /* Disable buffer so that threads can't write to it yet */
4809 ring_buffer_record_off(buffer);
4810
4811 for_each_online_cpu(cpu) {
4812 rb_data[cpu].buffer = buffer;
4813 rb_data[cpu].cpu = cpu;
4814 rb_data[cpu].cnt = cpu;
4815 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4816 "rbtester/%d", cpu);
4817 if (WARN_ON(!rb_threads[cpu])) {
4818 pr_cont("FAILED\n");
4819 ret = -1;
4820 goto out_free;
4821 }
4822
4823 kthread_bind(rb_threads[cpu], cpu);
4824 wake_up_process(rb_threads[cpu]);
4825 }
4826
4827 /* Now create the rb hammer! */
4828 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4829 if (WARN_ON(!rb_hammer)) {
4830 pr_cont("FAILED\n");
4831 ret = -1;
4832 goto out_free;
4833 }
4834
4835 ring_buffer_record_on(buffer);
4836 /*
4837 * Show buffer is enabled before setting rb_test_started.
4838 * Yes there's a small race window where events could be
4839 * dropped and the thread wont catch it. But when a ring
4840 * buffer gets enabled, there will always be some kind of
4841 * delay before other CPUs see it. Thus, we don't care about
4842 * those dropped events. We care about events dropped after
4843 * the threads see that the buffer is active.
4844 */
4845 smp_wmb();
4846 rb_test_started = true;
4847
4848 set_current_state(TASK_INTERRUPTIBLE);
4849 /* Just run for 10 seconds */;
4850 schedule_timeout(10 * HZ);
4851
4852 kthread_stop(rb_hammer);
4853
4854 out_free:
4855 for_each_online_cpu(cpu) {
4856 if (!rb_threads[cpu])
4857 break;
4858 kthread_stop(rb_threads[cpu]);
4859 }
4860 if (ret) {
4861 ring_buffer_free(buffer);
4862 return ret;
4863 }
4864
4865 /* Report! */
4866 pr_info("finished\n");
4867 for_each_online_cpu(cpu) {
4868 struct ring_buffer_event *event;
4869 struct rb_test_data *data = &rb_data[cpu];
4870 struct rb_item *item;
4871 unsigned long total_events;
4872 unsigned long total_dropped;
4873 unsigned long total_written;
4874 unsigned long total_alloc;
4875 unsigned long total_read = 0;
4876 unsigned long total_size = 0;
4877 unsigned long total_len = 0;
4878 unsigned long total_lost = 0;
4879 unsigned long lost;
4880 int big_event_size;
4881 int small_event_size;
4882
4883 ret = -1;
4884
4885 total_events = data->events + data->events_nested;
4886 total_written = data->bytes_written + data->bytes_written_nested;
4887 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4888 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4889
4890 big_event_size = data->max_size + data->max_size_nested;
4891 small_event_size = data->min_size + data->min_size_nested;
4892
4893 pr_info("CPU %d:\n", cpu);
4894 pr_info(" events: %ld\n", total_events);
4895 pr_info(" dropped bytes: %ld\n", total_dropped);
4896 pr_info(" alloced bytes: %ld\n", total_alloc);
4897 pr_info(" written bytes: %ld\n", total_written);
4898 pr_info(" biggest event: %d\n", big_event_size);
4899 pr_info(" smallest event: %d\n", small_event_size);
4900
4901 if (RB_WARN_ON(buffer, total_dropped))
4902 break;
4903
4904 ret = 0;
4905
4906 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4907 total_lost += lost;
4908 item = ring_buffer_event_data(event);
4909 total_len += ring_buffer_event_length(event);
4910 total_size += item->size + sizeof(struct rb_item);
4911 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4912 pr_info("FAILED!\n");
4913 pr_info("buffer had: %.*s\n", item->size, item->str);
4914 pr_info("expected: %.*s\n", item->size, rb_string);
4915 RB_WARN_ON(buffer, 1);
4916 ret = -1;
4917 break;
4918 }
4919 total_read++;
4920 }
4921 if (ret)
4922 break;
4923
4924 ret = -1;
4925
4926 pr_info(" read events: %ld\n", total_read);
4927 pr_info(" lost events: %ld\n", total_lost);
4928 pr_info(" total events: %ld\n", total_lost + total_read);
4929 pr_info(" recorded len bytes: %ld\n", total_len);
4930 pr_info(" recorded size bytes: %ld\n", total_size);
4931 if (total_lost)
4932 pr_info(" With dropped events, record len and size may not match\n"
4933 " alloced and written from above\n");
4934 if (!total_lost) {
4935 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4936 total_size != total_written))
4937 break;
4938 }
4939 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4940 break;
4941
4942 ret = 0;
4943 }
4944 if (!ret)
4945 pr_info("Ring buffer PASSED!\n");
4946
4947 ring_buffer_free(buffer);
4948 return 0;
4949}
4950
4951late_initcall(test_ringbuffer);
4952#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 1.035552 seconds and 5 git commands to generate.