ftrace: type cast filter+verifier
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
7#include <linux/spinlock.h>
8#include <linux/debugfs.h>
9#include <linux/uaccess.h>
10#include <linux/module.h>
11#include <linux/percpu.h>
12#include <linux/mutex.h>
13#include <linux/sched.h> /* used for sched_clock() (for now) */
14#include <linux/init.h>
15#include <linux/hash.h>
16#include <linux/list.h>
17#include <linux/fs.h>
18
19/* Up this if you want to test the TIME_EXTENTS and normalization */
20#define DEBUG_SHIFT 0
21
22/* FIXME!!! */
23u64 ring_buffer_time_stamp(int cpu)
24{
25 /* shift to debug/test normalization and TIME_EXTENTS */
26 return sched_clock() << DEBUG_SHIFT;
27}
28
29void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30{
31 /* Just stupid testing the normalize function and deltas */
32 *ts >>= DEBUG_SHIFT;
33}
34
35#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36#define RB_ALIGNMENT_SHIFT 2
37#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
38#define RB_MAX_SMALL_DATA 28
39
40enum {
41 RB_LEN_TIME_EXTEND = 8,
42 RB_LEN_TIME_STAMP = 16,
43};
44
45/* inline for ring buffer fast paths */
46static inline unsigned
47rb_event_length(struct ring_buffer_event *event)
48{
49 unsigned length;
50
51 switch (event->type) {
52 case RINGBUF_TYPE_PADDING:
53 /* undefined */
54 return -1;
55
56 case RINGBUF_TYPE_TIME_EXTEND:
57 return RB_LEN_TIME_EXTEND;
58
59 case RINGBUF_TYPE_TIME_STAMP:
60 return RB_LEN_TIME_STAMP;
61
62 case RINGBUF_TYPE_DATA:
63 if (event->len)
64 length = event->len << RB_ALIGNMENT_SHIFT;
65 else
66 length = event->array[0];
67 return length + RB_EVNT_HDR_SIZE;
68 default:
69 BUG();
70 }
71 /* not hit */
72 return 0;
73}
74
75/**
76 * ring_buffer_event_length - return the length of the event
77 * @event: the event to get the length of
78 */
79unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80{
81 return rb_event_length(event);
82}
83
84/* inline for ring buffer fast paths */
85static inline void *
86rb_event_data(struct ring_buffer_event *event)
87{
88 BUG_ON(event->type != RINGBUF_TYPE_DATA);
89 /* If length is in len field, then array[0] has the data */
90 if (event->len)
91 return (void *)&event->array[0];
92 /* Otherwise length is in array[0] and array[1] has the data */
93 return (void *)&event->array[1];
94}
95
96/**
97 * ring_buffer_event_data - return the data of the event
98 * @event: the event to get the data from
99 */
100void *ring_buffer_event_data(struct ring_buffer_event *event)
101{
102 return rb_event_data(event);
103}
104
105#define for_each_buffer_cpu(buffer, cpu) \
106 for_each_cpu_mask(cpu, buffer->cpumask)
107
108#define TS_SHIFT 27
109#define TS_MASK ((1ULL << TS_SHIFT) - 1)
110#define TS_DELTA_TEST (~TS_MASK)
111
112/*
113 * This hack stolen from mm/slob.c.
114 * We can store per page timing information in the page frame of the page.
115 * Thanks to Peter Zijlstra for suggesting this idea.
116 */
117struct buffer_page {
118 union {
119 struct {
120 unsigned long flags; /* mandatory */
121 atomic_t _count; /* mandatory */
122 u64 time_stamp; /* page time stamp */
123 unsigned size; /* size of page data */
124 struct list_head list; /* list of free pages */
125 };
126 struct page page;
127 };
128};
129
ed56829c
SR
130/*
131 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
132 * this issue out.
133 */
134static inline void free_buffer_page(struct buffer_page *bpage)
135{
136 reset_page_mapcount(&bpage->page);
137 bpage->page.mapping = NULL;
138 __free_page(&bpage->page);
139}
140
7a8e76a3
SR
141/*
142 * We need to fit the time_stamp delta into 27 bits.
143 */
144static inline int test_time_stamp(u64 delta)
145{
146 if (delta & TS_DELTA_TEST)
147 return 1;
148 return 0;
149}
150
151#define BUF_PAGE_SIZE PAGE_SIZE
152
153/*
154 * head_page == tail_page && head == tail then buffer is empty.
155 */
156struct ring_buffer_per_cpu {
157 int cpu;
158 struct ring_buffer *buffer;
159 spinlock_t lock;
160 struct lock_class_key lock_key;
161 struct list_head pages;
162 unsigned long head; /* read from head */
163 unsigned long tail; /* write to tail */
d769041f 164 unsigned long reader;
7a8e76a3
SR
165 struct buffer_page *head_page;
166 struct buffer_page *tail_page;
d769041f 167 struct buffer_page *reader_page;
7a8e76a3
SR
168 unsigned long overrun;
169 unsigned long entries;
170 u64 write_stamp;
171 u64 read_stamp;
172 atomic_t record_disabled;
173};
174
175struct ring_buffer {
176 unsigned long size;
177 unsigned pages;
178 unsigned flags;
179 int cpus;
180 cpumask_t cpumask;
181 atomic_t record_disabled;
182
183 struct mutex mutex;
184
185 struct ring_buffer_per_cpu **buffers;
186};
187
188struct ring_buffer_iter {
189 struct ring_buffer_per_cpu *cpu_buffer;
190 unsigned long head;
191 struct buffer_page *head_page;
192 u64 read_stamp;
193};
194
195#define RB_WARN_ON(buffer, cond) \
196 if (unlikely(cond)) { \
197 atomic_inc(&buffer->record_disabled); \
198 WARN_ON(1); \
199 return -1; \
200 }
201
202/**
203 * check_pages - integrity check of buffer pages
204 * @cpu_buffer: CPU buffer with pages to test
205 *
206 * As a safty measure we check to make sure the data pages have not
207 * been corrupted.
208 */
209static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
210{
211 struct list_head *head = &cpu_buffer->pages;
212 struct buffer_page *page, *tmp;
213
214 RB_WARN_ON(cpu_buffer, head->next->prev != head);
215 RB_WARN_ON(cpu_buffer, head->prev->next != head);
216
217 list_for_each_entry_safe(page, tmp, head, list) {
218 RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
219 RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
220 }
221
222 return 0;
223}
224
225static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
226{
227 return cpu_buffer->head_page->size;
228}
229
230static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
231 unsigned nr_pages)
232{
233 struct list_head *head = &cpu_buffer->pages;
234 struct buffer_page *page, *tmp;
235 unsigned long addr;
236 LIST_HEAD(pages);
237 unsigned i;
238
239 for (i = 0; i < nr_pages; i++) {
240 addr = __get_free_page(GFP_KERNEL);
241 if (!addr)
242 goto free_pages;
243 page = (struct buffer_page *)virt_to_page(addr);
244 list_add(&page->list, &pages);
245 }
246
247 list_splice(&pages, head);
248
249 rb_check_pages(cpu_buffer);
250
251 return 0;
252
253 free_pages:
254 list_for_each_entry_safe(page, tmp, &pages, list) {
255 list_del_init(&page->list);
ed56829c 256 free_buffer_page(page);
7a8e76a3
SR
257 }
258 return -ENOMEM;
259}
260
261static struct ring_buffer_per_cpu *
262rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
263{
264 struct ring_buffer_per_cpu *cpu_buffer;
d769041f 265 unsigned long addr;
7a8e76a3
SR
266 int ret;
267
268 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
269 GFP_KERNEL, cpu_to_node(cpu));
270 if (!cpu_buffer)
271 return NULL;
272
273 cpu_buffer->cpu = cpu;
274 cpu_buffer->buffer = buffer;
275 spin_lock_init(&cpu_buffer->lock);
276 INIT_LIST_HEAD(&cpu_buffer->pages);
277
d769041f
SR
278 addr = __get_free_page(GFP_KERNEL);
279 if (!addr)
280 goto fail_free_buffer;
281 cpu_buffer->reader_page = (struct buffer_page *)virt_to_page(addr);
282 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
283 cpu_buffer->reader_page->size = 0;
284
7a8e76a3
SR
285 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
286 if (ret < 0)
d769041f 287 goto fail_free_reader;
7a8e76a3
SR
288
289 cpu_buffer->head_page
290 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
291 cpu_buffer->tail_page
292 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
293
294 return cpu_buffer;
295
d769041f
SR
296 fail_free_reader:
297 free_buffer_page(cpu_buffer->reader_page);
298
7a8e76a3
SR
299 fail_free_buffer:
300 kfree(cpu_buffer);
301 return NULL;
302}
303
304static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
305{
306 struct list_head *head = &cpu_buffer->pages;
307 struct buffer_page *page, *tmp;
308
d769041f
SR
309 list_del_init(&cpu_buffer->reader_page->list);
310 free_buffer_page(cpu_buffer->reader_page);
311
7a8e76a3
SR
312 list_for_each_entry_safe(page, tmp, head, list) {
313 list_del_init(&page->list);
ed56829c 314 free_buffer_page(page);
7a8e76a3
SR
315 }
316 kfree(cpu_buffer);
317}
318
a7b13743
SR
319/*
320 * Causes compile errors if the struct buffer_page gets bigger
321 * than the struct page.
322 */
323extern int ring_buffer_page_too_big(void);
324
7a8e76a3
SR
325/**
326 * ring_buffer_alloc - allocate a new ring_buffer
327 * @size: the size in bytes that is needed.
328 * @flags: attributes to set for the ring buffer.
329 *
330 * Currently the only flag that is available is the RB_FL_OVERWRITE
331 * flag. This flag means that the buffer will overwrite old data
332 * when the buffer wraps. If this flag is not set, the buffer will
333 * drop data when the tail hits the head.
334 */
335struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
336{
337 struct ring_buffer *buffer;
338 int bsize;
339 int cpu;
340
a7b13743
SR
341 /* Paranoid! Optimizes out when all is well */
342 if (sizeof(struct buffer_page) > sizeof(struct page))
343 ring_buffer_page_too_big();
344
345
7a8e76a3
SR
346 /* keep it in its own cache line */
347 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
348 GFP_KERNEL);
349 if (!buffer)
350 return NULL;
351
352 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
353 buffer->flags = flags;
354
355 /* need at least two pages */
356 if (buffer->pages == 1)
357 buffer->pages++;
358
359 buffer->cpumask = cpu_possible_map;
360 buffer->cpus = nr_cpu_ids;
361
362 bsize = sizeof(void *) * nr_cpu_ids;
363 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
364 GFP_KERNEL);
365 if (!buffer->buffers)
366 goto fail_free_buffer;
367
368 for_each_buffer_cpu(buffer, cpu) {
369 buffer->buffers[cpu] =
370 rb_allocate_cpu_buffer(buffer, cpu);
371 if (!buffer->buffers[cpu])
372 goto fail_free_buffers;
373 }
374
375 mutex_init(&buffer->mutex);
376
377 return buffer;
378
379 fail_free_buffers:
380 for_each_buffer_cpu(buffer, cpu) {
381 if (buffer->buffers[cpu])
382 rb_free_cpu_buffer(buffer->buffers[cpu]);
383 }
384 kfree(buffer->buffers);
385
386 fail_free_buffer:
387 kfree(buffer);
388 return NULL;
389}
390
391/**
392 * ring_buffer_free - free a ring buffer.
393 * @buffer: the buffer to free.
394 */
395void
396ring_buffer_free(struct ring_buffer *buffer)
397{
398 int cpu;
399
400 for_each_buffer_cpu(buffer, cpu)
401 rb_free_cpu_buffer(buffer->buffers[cpu]);
402
403 kfree(buffer);
404}
405
406static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
407
408static void
409rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
410{
411 struct buffer_page *page;
412 struct list_head *p;
413 unsigned i;
414
415 atomic_inc(&cpu_buffer->record_disabled);
416 synchronize_sched();
417
418 for (i = 0; i < nr_pages; i++) {
419 BUG_ON(list_empty(&cpu_buffer->pages));
420 p = cpu_buffer->pages.next;
421 page = list_entry(p, struct buffer_page, list);
422 list_del_init(&page->list);
ed56829c 423 free_buffer_page(page);
7a8e76a3
SR
424 }
425 BUG_ON(list_empty(&cpu_buffer->pages));
426
427 rb_reset_cpu(cpu_buffer);
428
429 rb_check_pages(cpu_buffer);
430
431 atomic_dec(&cpu_buffer->record_disabled);
432
433}
434
435static void
436rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
437 struct list_head *pages, unsigned nr_pages)
438{
439 struct buffer_page *page;
440 struct list_head *p;
441 unsigned i;
442
443 atomic_inc(&cpu_buffer->record_disabled);
444 synchronize_sched();
445
446 for (i = 0; i < nr_pages; i++) {
447 BUG_ON(list_empty(pages));
448 p = pages->next;
449 page = list_entry(p, struct buffer_page, list);
450 list_del_init(&page->list);
451 list_add_tail(&page->list, &cpu_buffer->pages);
452 }
453 rb_reset_cpu(cpu_buffer);
454
455 rb_check_pages(cpu_buffer);
456
457 atomic_dec(&cpu_buffer->record_disabled);
458}
459
460/**
461 * ring_buffer_resize - resize the ring buffer
462 * @buffer: the buffer to resize.
463 * @size: the new size.
464 *
465 * The tracer is responsible for making sure that the buffer is
466 * not being used while changing the size.
467 * Note: We may be able to change the above requirement by using
468 * RCU synchronizations.
469 *
470 * Minimum size is 2 * BUF_PAGE_SIZE.
471 *
472 * Returns -1 on failure.
473 */
474int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
475{
476 struct ring_buffer_per_cpu *cpu_buffer;
477 unsigned nr_pages, rm_pages, new_pages;
478 struct buffer_page *page, *tmp;
479 unsigned long buffer_size;
480 unsigned long addr;
481 LIST_HEAD(pages);
482 int i, cpu;
483
484 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
485 size *= BUF_PAGE_SIZE;
486 buffer_size = buffer->pages * BUF_PAGE_SIZE;
487
488 /* we need a minimum of two pages */
489 if (size < BUF_PAGE_SIZE * 2)
490 size = BUF_PAGE_SIZE * 2;
491
492 if (size == buffer_size)
493 return size;
494
495 mutex_lock(&buffer->mutex);
496
497 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
498
499 if (size < buffer_size) {
500
501 /* easy case, just free pages */
502 BUG_ON(nr_pages >= buffer->pages);
503
504 rm_pages = buffer->pages - nr_pages;
505
506 for_each_buffer_cpu(buffer, cpu) {
507 cpu_buffer = buffer->buffers[cpu];
508 rb_remove_pages(cpu_buffer, rm_pages);
509 }
510 goto out;
511 }
512
513 /*
514 * This is a bit more difficult. We only want to add pages
515 * when we can allocate enough for all CPUs. We do this
516 * by allocating all the pages and storing them on a local
517 * link list. If we succeed in our allocation, then we
518 * add these pages to the cpu_buffers. Otherwise we just free
519 * them all and return -ENOMEM;
520 */
521 BUG_ON(nr_pages <= buffer->pages);
522 new_pages = nr_pages - buffer->pages;
523
524 for_each_buffer_cpu(buffer, cpu) {
525 for (i = 0; i < new_pages; i++) {
526 addr = __get_free_page(GFP_KERNEL);
527 if (!addr)
528 goto free_pages;
529 page = (struct buffer_page *)virt_to_page(addr);
530 list_add(&page->list, &pages);
531 }
532 }
533
534 for_each_buffer_cpu(buffer, cpu) {
535 cpu_buffer = buffer->buffers[cpu];
536 rb_insert_pages(cpu_buffer, &pages, new_pages);
537 }
538
539 BUG_ON(!list_empty(&pages));
540
541 out:
542 buffer->pages = nr_pages;
543 mutex_unlock(&buffer->mutex);
544
545 return size;
546
547 free_pages:
548 list_for_each_entry_safe(page, tmp, &pages, list) {
549 list_del_init(&page->list);
ed56829c 550 free_buffer_page(page);
7a8e76a3
SR
551 }
552 return -ENOMEM;
553}
554
555static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
556{
d769041f
SR
557 return (cpu_buffer->reader == cpu_buffer->reader_page->size &&
558 (cpu_buffer->tail_page == cpu_buffer->reader_page ||
559 (cpu_buffer->tail_page == cpu_buffer->head_page &&
560 cpu_buffer->head == cpu_buffer->tail)));
7a8e76a3
SR
561}
562
563static inline int rb_null_event(struct ring_buffer_event *event)
564{
565 return event->type == RINGBUF_TYPE_PADDING;
566}
567
568static inline void *rb_page_index(struct buffer_page *page, unsigned index)
569{
570 void *addr = page_address(&page->page);
571
572 return addr + index;
573}
574
575static inline struct ring_buffer_event *
d769041f 576rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 577{
d769041f
SR
578 return rb_page_index(cpu_buffer->reader_page,
579 cpu_buffer->reader);
7a8e76a3
SR
580}
581
582static inline struct ring_buffer_event *
583rb_iter_head_event(struct ring_buffer_iter *iter)
584{
585 return rb_page_index(iter->head_page,
586 iter->head);
587}
588
589/*
590 * When the tail hits the head and the buffer is in overwrite mode,
591 * the head jumps to the next page and all content on the previous
592 * page is discarded. But before doing so, we update the overrun
593 * variable of the buffer.
594 */
595static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
596{
597 struct ring_buffer_event *event;
598 unsigned long head;
599
600 for (head = 0; head < rb_head_size(cpu_buffer);
601 head += rb_event_length(event)) {
602
603 event = rb_page_index(cpu_buffer->head_page, head);
604 BUG_ON(rb_null_event(event));
605 /* Only count data entries */
606 if (event->type != RINGBUF_TYPE_DATA)
607 continue;
608 cpu_buffer->overrun++;
609 cpu_buffer->entries--;
610 }
611}
612
613static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
614 struct buffer_page **page)
615{
616 struct list_head *p = (*page)->list.next;
617
618 if (p == &cpu_buffer->pages)
619 p = p->next;
620
621 *page = list_entry(p, struct buffer_page, list);
622}
623
624static inline void
625rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
626{
627 cpu_buffer->tail_page->time_stamp = *ts;
628 cpu_buffer->write_stamp = *ts;
629}
630
d769041f 631static void rb_reset_head_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 632{
7a8e76a3
SR
633 cpu_buffer->head = 0;
634}
635
d769041f 636static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 637{
d769041f
SR
638 cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
639 cpu_buffer->reader = 0;
640}
641
642static inline void rb_inc_iter(struct ring_buffer_iter *iter)
643{
644 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
645
646 /*
647 * The iterator could be on the reader page (it starts there).
648 * But the head could have moved, since the reader was
649 * found. Check for this case and assign the iterator
650 * to the head page instead of next.
651 */
652 if (iter->head_page == cpu_buffer->reader_page)
653 iter->head_page = cpu_buffer->head_page;
654 else
655 rb_inc_page(cpu_buffer, &iter->head_page);
656
7a8e76a3
SR
657 iter->read_stamp = iter->head_page->time_stamp;
658 iter->head = 0;
659}
660
661/**
662 * ring_buffer_update_event - update event type and data
663 * @event: the even to update
664 * @type: the type of event
665 * @length: the size of the event field in the ring buffer
666 *
667 * Update the type and data fields of the event. The length
668 * is the actual size that is written to the ring buffer,
669 * and with this, we can determine what to place into the
670 * data field.
671 */
672static inline void
673rb_update_event(struct ring_buffer_event *event,
674 unsigned type, unsigned length)
675{
676 event->type = type;
677
678 switch (type) {
679
680 case RINGBUF_TYPE_PADDING:
681 break;
682
683 case RINGBUF_TYPE_TIME_EXTEND:
684 event->len =
685 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
686 >> RB_ALIGNMENT_SHIFT;
687 break;
688
689 case RINGBUF_TYPE_TIME_STAMP:
690 event->len =
691 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
692 >> RB_ALIGNMENT_SHIFT;
693 break;
694
695 case RINGBUF_TYPE_DATA:
696 length -= RB_EVNT_HDR_SIZE;
697 if (length > RB_MAX_SMALL_DATA) {
698 event->len = 0;
699 event->array[0] = length;
700 } else
701 event->len =
702 (length + (RB_ALIGNMENT-1))
703 >> RB_ALIGNMENT_SHIFT;
704 break;
705 default:
706 BUG();
707 }
708}
709
710static inline unsigned rb_calculate_event_length(unsigned length)
711{
712 struct ring_buffer_event event; /* Used only for sizeof array */
713
714 /* zero length can cause confusions */
715 if (!length)
716 length = 1;
717
718 if (length > RB_MAX_SMALL_DATA)
719 length += sizeof(event.array[0]);
720
721 length += RB_EVNT_HDR_SIZE;
722 length = ALIGN(length, RB_ALIGNMENT);
723
724 return length;
725}
726
727static struct ring_buffer_event *
728__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
729 unsigned type, unsigned long length, u64 *ts)
730{
d769041f 731 struct buffer_page *tail_page, *head_page, *reader_page;
7a8e76a3
SR
732 unsigned long tail;
733 struct ring_buffer *buffer = cpu_buffer->buffer;
734 struct ring_buffer_event *event;
735
d769041f 736 /* No locking needed for tail page */
7a8e76a3 737 tail_page = cpu_buffer->tail_page;
7a8e76a3
SR
738 tail = cpu_buffer->tail;
739
740 if (tail + length > BUF_PAGE_SIZE) {
741 struct buffer_page *next_page = tail_page;
742
d769041f 743 spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
744 rb_inc_page(cpu_buffer, &next_page);
745
d769041f
SR
746 head_page = cpu_buffer->head_page;
747 reader_page = cpu_buffer->reader_page;
748
749 /* we grabbed the lock before incrementing */
750 WARN_ON(next_page == reader_page);
751
7a8e76a3 752 if (next_page == head_page) {
d769041f
SR
753 if (!(buffer->flags & RB_FL_OVERWRITE)) {
754 spin_unlock(&cpu_buffer->lock);
7a8e76a3 755 return NULL;
d769041f 756 }
7a8e76a3
SR
757
758 /* count overflows */
759 rb_update_overflow(cpu_buffer);
760
761 rb_inc_page(cpu_buffer, &head_page);
762 cpu_buffer->head_page = head_page;
d769041f 763 rb_reset_head_page(cpu_buffer);
7a8e76a3
SR
764 }
765
766 if (tail != BUF_PAGE_SIZE) {
767 event = rb_page_index(tail_page, tail);
768 /* page padding */
769 event->type = RINGBUF_TYPE_PADDING;
770 }
771
772 tail_page->size = tail;
773 tail_page = next_page;
774 tail_page->size = 0;
775 tail = 0;
776 cpu_buffer->tail_page = tail_page;
777 cpu_buffer->tail = tail;
778 rb_add_stamp(cpu_buffer, ts);
d769041f 779 spin_unlock(&cpu_buffer->lock);
7a8e76a3
SR
780 }
781
782 BUG_ON(tail + length > BUF_PAGE_SIZE);
783
784 event = rb_page_index(tail_page, tail);
785 rb_update_event(event, type, length);
786
787 return event;
788}
789
790static int
791rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
792 u64 *ts, u64 *delta)
793{
794 struct ring_buffer_event *event;
795 static int once;
796
797 if (unlikely(*delta > (1ULL << 59) && !once++)) {
798 printk(KERN_WARNING "Delta way too big! %llu"
799 " ts=%llu write stamp = %llu\n",
800 *delta, *ts, cpu_buffer->write_stamp);
801 WARN_ON(1);
802 }
803
804 /*
805 * The delta is too big, we to add a
806 * new timestamp.
807 */
808 event = __rb_reserve_next(cpu_buffer,
809 RINGBUF_TYPE_TIME_EXTEND,
810 RB_LEN_TIME_EXTEND,
811 ts);
812 if (!event)
813 return -1;
814
815 /* check to see if we went to the next page */
816 if (cpu_buffer->tail) {
817 /* Still on same page, update timestamp */
818 event->time_delta = *delta & TS_MASK;
819 event->array[0] = *delta >> TS_SHIFT;
820 /* commit the time event */
821 cpu_buffer->tail +=
822 rb_event_length(event);
823 cpu_buffer->write_stamp = *ts;
824 *delta = 0;
825 }
826
827 return 0;
828}
829
830static struct ring_buffer_event *
831rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
832 unsigned type, unsigned long length)
833{
834 struct ring_buffer_event *event;
835 u64 ts, delta;
836
837 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
838
839 if (cpu_buffer->tail) {
840 delta = ts - cpu_buffer->write_stamp;
841
842 if (test_time_stamp(delta)) {
843 int ret;
844
845 ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
846 if (ret < 0)
847 return NULL;
848 }
849 } else {
d769041f 850 spin_lock(&cpu_buffer->lock);
7a8e76a3 851 rb_add_stamp(cpu_buffer, &ts);
d769041f 852 spin_unlock(&cpu_buffer->lock);
7a8e76a3
SR
853 delta = 0;
854 }
855
856 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
857 if (!event)
858 return NULL;
859
860 /* If the reserve went to the next page, our delta is zero */
861 if (!cpu_buffer->tail)
862 delta = 0;
863
864 event->time_delta = delta;
865
866 return event;
867}
868
869/**
870 * ring_buffer_lock_reserve - reserve a part of the buffer
871 * @buffer: the ring buffer to reserve from
872 * @length: the length of the data to reserve (excluding event header)
873 * @flags: a pointer to save the interrupt flags
874 *
875 * Returns a reseverd event on the ring buffer to copy directly to.
876 * The user of this interface will need to get the body to write into
877 * and can use the ring_buffer_event_data() interface.
878 *
879 * The length is the length of the data needed, not the event length
880 * which also includes the event header.
881 *
882 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
883 * If NULL is returned, then nothing has been allocated or locked.
884 */
885struct ring_buffer_event *
886ring_buffer_lock_reserve(struct ring_buffer *buffer,
887 unsigned long length,
888 unsigned long *flags)
889{
890 struct ring_buffer_per_cpu *cpu_buffer;
891 struct ring_buffer_event *event;
892 int cpu;
893
894 if (atomic_read(&buffer->record_disabled))
895 return NULL;
896
70255b5e 897 local_irq_save(*flags);
7a8e76a3
SR
898 cpu = raw_smp_processor_id();
899
900 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 901 goto out;
7a8e76a3
SR
902
903 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
904
905 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 906 goto out;
7a8e76a3
SR
907
908 length = rb_calculate_event_length(length);
909 if (length > BUF_PAGE_SIZE)
910 return NULL;
911
912 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
913 if (!event)
d769041f 914 goto out;
7a8e76a3
SR
915
916 return event;
917
d769041f 918 out:
7a8e76a3
SR
919 local_irq_restore(*flags);
920 return NULL;
921}
922
923static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
924 struct ring_buffer_event *event)
925{
926 cpu_buffer->tail += rb_event_length(event);
927 cpu_buffer->tail_page->size = cpu_buffer->tail;
928 cpu_buffer->write_stamp += event->time_delta;
929 cpu_buffer->entries++;
930}
931
932/**
933 * ring_buffer_unlock_commit - commit a reserved
934 * @buffer: The buffer to commit to
935 * @event: The event pointer to commit.
936 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
937 *
938 * This commits the data to the ring buffer, and releases any locks held.
939 *
940 * Must be paired with ring_buffer_lock_reserve.
941 */
942int ring_buffer_unlock_commit(struct ring_buffer *buffer,
943 struct ring_buffer_event *event,
944 unsigned long flags)
945{
946 struct ring_buffer_per_cpu *cpu_buffer;
947 int cpu = raw_smp_processor_id();
948
949 cpu_buffer = buffer->buffers[cpu];
950
7a8e76a3
SR
951 rb_commit(cpu_buffer, event);
952
70255b5e 953 local_irq_restore(flags);
7a8e76a3
SR
954
955 return 0;
956}
957
958/**
959 * ring_buffer_write - write data to the buffer without reserving
960 * @buffer: The ring buffer to write to.
961 * @length: The length of the data being written (excluding the event header)
962 * @data: The data to write to the buffer.
963 *
964 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
965 * one function. If you already have the data to write to the buffer, it
966 * may be easier to simply call this function.
967 *
968 * Note, like ring_buffer_lock_reserve, the length is the length of the data
969 * and not the length of the event which would hold the header.
970 */
971int ring_buffer_write(struct ring_buffer *buffer,
972 unsigned long length,
973 void *data)
974{
975 struct ring_buffer_per_cpu *cpu_buffer;
976 struct ring_buffer_event *event;
977 unsigned long event_length, flags;
978 void *body;
979 int ret = -EBUSY;
980 int cpu;
981
982 if (atomic_read(&buffer->record_disabled))
983 return -EBUSY;
984
985 local_irq_save(flags);
986 cpu = raw_smp_processor_id();
987
988 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 989 goto out;
7a8e76a3
SR
990
991 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
992
993 if (atomic_read(&cpu_buffer->record_disabled))
994 goto out;
995
996 event_length = rb_calculate_event_length(length);
997 event = rb_reserve_next_event(cpu_buffer,
998 RINGBUF_TYPE_DATA, event_length);
999 if (!event)
1000 goto out;
1001
1002 body = rb_event_data(event);
1003
1004 memcpy(body, data, length);
1005
1006 rb_commit(cpu_buffer, event);
1007
1008 ret = 0;
1009 out:
7a8e76a3
SR
1010 local_irq_restore(flags);
1011
1012 return ret;
1013}
1014
7a8e76a3
SR
1015/**
1016 * ring_buffer_record_disable - stop all writes into the buffer
1017 * @buffer: The ring buffer to stop writes to.
1018 *
1019 * This prevents all writes to the buffer. Any attempt to write
1020 * to the buffer after this will fail and return NULL.
1021 *
1022 * The caller should call synchronize_sched() after this.
1023 */
1024void ring_buffer_record_disable(struct ring_buffer *buffer)
1025{
1026 atomic_inc(&buffer->record_disabled);
1027}
1028
1029/**
1030 * ring_buffer_record_enable - enable writes to the buffer
1031 * @buffer: The ring buffer to enable writes
1032 *
1033 * Note, multiple disables will need the same number of enables
1034 * to truely enable the writing (much like preempt_disable).
1035 */
1036void ring_buffer_record_enable(struct ring_buffer *buffer)
1037{
1038 atomic_dec(&buffer->record_disabled);
1039}
1040
1041/**
1042 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1043 * @buffer: The ring buffer to stop writes to.
1044 * @cpu: The CPU buffer to stop
1045 *
1046 * This prevents all writes to the buffer. Any attempt to write
1047 * to the buffer after this will fail and return NULL.
1048 *
1049 * The caller should call synchronize_sched() after this.
1050 */
1051void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1052{
1053 struct ring_buffer_per_cpu *cpu_buffer;
1054
1055 if (!cpu_isset(cpu, buffer->cpumask))
1056 return;
1057
1058 cpu_buffer = buffer->buffers[cpu];
1059 atomic_inc(&cpu_buffer->record_disabled);
1060}
1061
1062/**
1063 * ring_buffer_record_enable_cpu - enable writes to the buffer
1064 * @buffer: The ring buffer to enable writes
1065 * @cpu: The CPU to enable.
1066 *
1067 * Note, multiple disables will need the same number of enables
1068 * to truely enable the writing (much like preempt_disable).
1069 */
1070void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1071{
1072 struct ring_buffer_per_cpu *cpu_buffer;
1073
1074 if (!cpu_isset(cpu, buffer->cpumask))
1075 return;
1076
1077 cpu_buffer = buffer->buffers[cpu];
1078 atomic_dec(&cpu_buffer->record_disabled);
1079}
1080
1081/**
1082 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1083 * @buffer: The ring buffer
1084 * @cpu: The per CPU buffer to get the entries from.
1085 */
1086unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1087{
1088 struct ring_buffer_per_cpu *cpu_buffer;
1089
1090 if (!cpu_isset(cpu, buffer->cpumask))
1091 return 0;
1092
1093 cpu_buffer = buffer->buffers[cpu];
1094 return cpu_buffer->entries;
1095}
1096
1097/**
1098 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1099 * @buffer: The ring buffer
1100 * @cpu: The per CPU buffer to get the number of overruns from
1101 */
1102unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1103{
1104 struct ring_buffer_per_cpu *cpu_buffer;
1105
1106 if (!cpu_isset(cpu, buffer->cpumask))
1107 return 0;
1108
1109 cpu_buffer = buffer->buffers[cpu];
1110 return cpu_buffer->overrun;
1111}
1112
1113/**
1114 * ring_buffer_entries - get the number of entries in a buffer
1115 * @buffer: The ring buffer
1116 *
1117 * Returns the total number of entries in the ring buffer
1118 * (all CPU entries)
1119 */
1120unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1121{
1122 struct ring_buffer_per_cpu *cpu_buffer;
1123 unsigned long entries = 0;
1124 int cpu;
1125
1126 /* if you care about this being correct, lock the buffer */
1127 for_each_buffer_cpu(buffer, cpu) {
1128 cpu_buffer = buffer->buffers[cpu];
1129 entries += cpu_buffer->entries;
1130 }
1131
1132 return entries;
1133}
1134
1135/**
1136 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1137 * @buffer: The ring buffer
1138 *
1139 * Returns the total number of overruns in the ring buffer
1140 * (all CPU entries)
1141 */
1142unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1143{
1144 struct ring_buffer_per_cpu *cpu_buffer;
1145 unsigned long overruns = 0;
1146 int cpu;
1147
1148 /* if you care about this being correct, lock the buffer */
1149 for_each_buffer_cpu(buffer, cpu) {
1150 cpu_buffer = buffer->buffers[cpu];
1151 overruns += cpu_buffer->overrun;
1152 }
1153
1154 return overruns;
1155}
1156
1157/**
1158 * ring_buffer_iter_reset - reset an iterator
1159 * @iter: The iterator to reset
1160 *
1161 * Resets the iterator, so that it will start from the beginning
1162 * again.
1163 */
1164void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1165{
1166 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1167
d769041f
SR
1168 /* Iterator usage is expected to have record disabled */
1169 if (list_empty(&cpu_buffer->reader_page->list)) {
1170 iter->head_page = cpu_buffer->head_page;
1171 iter->head = cpu_buffer->head;
1172 } else {
1173 iter->head_page = cpu_buffer->reader_page;
1174 iter->head = cpu_buffer->reader;
1175 }
1176 if (iter->head)
1177 iter->read_stamp = cpu_buffer->read_stamp;
1178 else
1179 iter->read_stamp = iter->head_page->time_stamp;
7a8e76a3
SR
1180}
1181
1182/**
1183 * ring_buffer_iter_empty - check if an iterator has no more to read
1184 * @iter: The iterator to check
1185 */
1186int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1187{
1188 struct ring_buffer_per_cpu *cpu_buffer;
1189
1190 cpu_buffer = iter->cpu_buffer;
1191
1192 return iter->head_page == cpu_buffer->tail_page &&
1193 iter->head == cpu_buffer->tail;
1194}
1195
1196static void
1197rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1198 struct ring_buffer_event *event)
1199{
1200 u64 delta;
1201
1202 switch (event->type) {
1203 case RINGBUF_TYPE_PADDING:
1204 return;
1205
1206 case RINGBUF_TYPE_TIME_EXTEND:
1207 delta = event->array[0];
1208 delta <<= TS_SHIFT;
1209 delta += event->time_delta;
1210 cpu_buffer->read_stamp += delta;
1211 return;
1212
1213 case RINGBUF_TYPE_TIME_STAMP:
1214 /* FIXME: not implemented */
1215 return;
1216
1217 case RINGBUF_TYPE_DATA:
1218 cpu_buffer->read_stamp += event->time_delta;
1219 return;
1220
1221 default:
1222 BUG();
1223 }
1224 return;
1225}
1226
1227static void
1228rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1229 struct ring_buffer_event *event)
1230{
1231 u64 delta;
1232
1233 switch (event->type) {
1234 case RINGBUF_TYPE_PADDING:
1235 return;
1236
1237 case RINGBUF_TYPE_TIME_EXTEND:
1238 delta = event->array[0];
1239 delta <<= TS_SHIFT;
1240 delta += event->time_delta;
1241 iter->read_stamp += delta;
1242 return;
1243
1244 case RINGBUF_TYPE_TIME_STAMP:
1245 /* FIXME: not implemented */
1246 return;
1247
1248 case RINGBUF_TYPE_DATA:
1249 iter->read_stamp += event->time_delta;
1250 return;
1251
1252 default:
1253 BUG();
1254 }
1255 return;
1256}
1257
d769041f
SR
1258static struct buffer_page *
1259rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1260{
d769041f
SR
1261 struct buffer_page *reader = NULL;
1262 unsigned long flags;
1263
1264 spin_lock_irqsave(&cpu_buffer->lock, flags);
1265
1266 again:
1267 reader = cpu_buffer->reader_page;
1268
1269 /* If there's more to read, return this page */
1270 if (cpu_buffer->reader < reader->size)
1271 goto out;
1272
1273 /* Never should we have an index greater than the size */
1274 WARN_ON(cpu_buffer->reader > reader->size);
1275
1276 /* check if we caught up to the tail */
1277 reader = NULL;
1278 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1279 goto out;
7a8e76a3
SR
1280
1281 /*
d769041f
SR
1282 * Splice the empty reader page into the list around the head.
1283 * Reset the reader page to size zero.
7a8e76a3 1284 */
7a8e76a3 1285
d769041f
SR
1286 reader = cpu_buffer->head_page;
1287 cpu_buffer->reader_page->list.next = reader->list.next;
1288 cpu_buffer->reader_page->list.prev = reader->list.prev;
1289 cpu_buffer->reader_page->size = 0;
7a8e76a3 1290
d769041f
SR
1291 /* Make the reader page now replace the head */
1292 reader->list.prev->next = &cpu_buffer->reader_page->list;
1293 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1294
1295 /*
d769041f
SR
1296 * If the tail is on the reader, then we must set the head
1297 * to the inserted page, otherwise we set it one before.
7a8e76a3 1298 */
d769041f 1299 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1300
d769041f
SR
1301 if (cpu_buffer->tail_page != reader)
1302 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1303
1304 /* Finally update the reader page to the new head */
1305 cpu_buffer->reader_page = reader;
1306 rb_reset_reader_page(cpu_buffer);
1307
1308 goto again;
1309
1310 out:
1311 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1312
1313 return reader;
1314}
1315
1316static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1317{
1318 struct ring_buffer_event *event;
1319 struct buffer_page *reader;
1320 unsigned length;
1321
1322 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1323
d769041f
SR
1324 /* This function should not be called when buffer is empty */
1325 BUG_ON(!reader);
7a8e76a3 1326
d769041f
SR
1327 event = rb_reader_event(cpu_buffer);
1328
1329 if (event->type == RINGBUF_TYPE_DATA)
1330 cpu_buffer->entries--;
1331
1332 rb_update_read_stamp(cpu_buffer, event);
1333
1334 length = rb_event_length(event);
1335 cpu_buffer->reader += length;
7a8e76a3
SR
1336}
1337
1338static void rb_advance_iter(struct ring_buffer_iter *iter)
1339{
1340 struct ring_buffer *buffer;
1341 struct ring_buffer_per_cpu *cpu_buffer;
1342 struct ring_buffer_event *event;
1343 unsigned length;
1344
1345 cpu_buffer = iter->cpu_buffer;
1346 buffer = cpu_buffer->buffer;
1347
1348 /*
1349 * Check if we are at the end of the buffer.
1350 */
1351 if (iter->head >= iter->head_page->size) {
1352 BUG_ON(iter->head_page == cpu_buffer->tail_page);
d769041f 1353 rb_inc_iter(iter);
7a8e76a3
SR
1354 return;
1355 }
1356
1357 event = rb_iter_head_event(iter);
1358
1359 length = rb_event_length(event);
1360
1361 /*
1362 * This should not be called to advance the header if we are
1363 * at the tail of the buffer.
1364 */
1365 BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
1366 (iter->head + length > cpu_buffer->tail));
1367
1368 rb_update_iter_read_stamp(iter, event);
1369
1370 iter->head += length;
1371
1372 /* check for end of page padding */
1373 if ((iter->head >= iter->head_page->size) &&
1374 (iter->head_page != cpu_buffer->tail_page))
1375 rb_advance_iter(iter);
1376}
1377
1378/**
1379 * ring_buffer_peek - peek at the next event to be read
1380 * @buffer: The ring buffer to read
1381 * @cpu: The cpu to peak at
1382 * @ts: The timestamp counter of this event.
1383 *
1384 * This will return the event that will be read next, but does
1385 * not consume the data.
1386 */
1387struct ring_buffer_event *
1388ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1389{
1390 struct ring_buffer_per_cpu *cpu_buffer;
1391 struct ring_buffer_event *event;
d769041f 1392 struct buffer_page *reader;
7a8e76a3
SR
1393
1394 if (!cpu_isset(cpu, buffer->cpumask))
1395 return NULL;
1396
1397 cpu_buffer = buffer->buffers[cpu];
1398
1399 again:
d769041f
SR
1400 reader = rb_get_reader_page(cpu_buffer);
1401 if (!reader)
7a8e76a3
SR
1402 return NULL;
1403
d769041f 1404 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1405
1406 switch (event->type) {
1407 case RINGBUF_TYPE_PADDING:
d769041f
SR
1408 WARN_ON(1);
1409 rb_advance_reader(cpu_buffer);
1410 return NULL;
7a8e76a3
SR
1411
1412 case RINGBUF_TYPE_TIME_EXTEND:
1413 /* Internal data, OK to advance */
d769041f 1414 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1415 goto again;
1416
1417 case RINGBUF_TYPE_TIME_STAMP:
1418 /* FIXME: not implemented */
d769041f 1419 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1420 goto again;
1421
1422 case RINGBUF_TYPE_DATA:
1423 if (ts) {
1424 *ts = cpu_buffer->read_stamp + event->time_delta;
1425 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1426 }
1427 return event;
1428
1429 default:
1430 BUG();
1431 }
1432
1433 return NULL;
1434}
1435
1436/**
1437 * ring_buffer_iter_peek - peek at the next event to be read
1438 * @iter: The ring buffer iterator
1439 * @ts: The timestamp counter of this event.
1440 *
1441 * This will return the event that will be read next, but does
1442 * not increment the iterator.
1443 */
1444struct ring_buffer_event *
1445ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1446{
1447 struct ring_buffer *buffer;
1448 struct ring_buffer_per_cpu *cpu_buffer;
1449 struct ring_buffer_event *event;
1450
1451 if (ring_buffer_iter_empty(iter))
1452 return NULL;
1453
1454 cpu_buffer = iter->cpu_buffer;
1455 buffer = cpu_buffer->buffer;
1456
1457 again:
1458 if (rb_per_cpu_empty(cpu_buffer))
1459 return NULL;
1460
1461 event = rb_iter_head_event(iter);
1462
1463 switch (event->type) {
1464 case RINGBUF_TYPE_PADDING:
d769041f 1465 rb_inc_iter(iter);
7a8e76a3
SR
1466 goto again;
1467
1468 case RINGBUF_TYPE_TIME_EXTEND:
1469 /* Internal data, OK to advance */
1470 rb_advance_iter(iter);
1471 goto again;
1472
1473 case RINGBUF_TYPE_TIME_STAMP:
1474 /* FIXME: not implemented */
1475 rb_advance_iter(iter);
1476 goto again;
1477
1478 case RINGBUF_TYPE_DATA:
1479 if (ts) {
1480 *ts = iter->read_stamp + event->time_delta;
1481 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1482 }
1483 return event;
1484
1485 default:
1486 BUG();
1487 }
1488
1489 return NULL;
1490}
1491
1492/**
1493 * ring_buffer_consume - return an event and consume it
1494 * @buffer: The ring buffer to get the next event from
1495 *
1496 * Returns the next event in the ring buffer, and that event is consumed.
1497 * Meaning, that sequential reads will keep returning a different event,
1498 * and eventually empty the ring buffer if the producer is slower.
1499 */
1500struct ring_buffer_event *
1501ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1502{
1503 struct ring_buffer_per_cpu *cpu_buffer;
1504 struct ring_buffer_event *event;
1505
1506 if (!cpu_isset(cpu, buffer->cpumask))
1507 return NULL;
1508
1509 event = ring_buffer_peek(buffer, cpu, ts);
1510 if (!event)
1511 return NULL;
1512
1513 cpu_buffer = buffer->buffers[cpu];
d769041f 1514 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1515
1516 return event;
1517}
1518
1519/**
1520 * ring_buffer_read_start - start a non consuming read of the buffer
1521 * @buffer: The ring buffer to read from
1522 * @cpu: The cpu buffer to iterate over
1523 *
1524 * This starts up an iteration through the buffer. It also disables
1525 * the recording to the buffer until the reading is finished.
1526 * This prevents the reading from being corrupted. This is not
1527 * a consuming read, so a producer is not expected.
1528 *
1529 * Must be paired with ring_buffer_finish.
1530 */
1531struct ring_buffer_iter *
1532ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1533{
1534 struct ring_buffer_per_cpu *cpu_buffer;
1535 struct ring_buffer_iter *iter;
d769041f 1536 unsigned long flags;
7a8e76a3
SR
1537
1538 if (!cpu_isset(cpu, buffer->cpumask))
1539 return NULL;
1540
1541 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1542 if (!iter)
1543 return NULL;
1544
1545 cpu_buffer = buffer->buffers[cpu];
1546
1547 iter->cpu_buffer = cpu_buffer;
1548
1549 atomic_inc(&cpu_buffer->record_disabled);
1550 synchronize_sched();
1551
d769041f
SR
1552 spin_lock_irqsave(&cpu_buffer->lock, flags);
1553 ring_buffer_iter_reset(iter);
1554 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
7a8e76a3
SR
1555
1556 return iter;
1557}
1558
1559/**
1560 * ring_buffer_finish - finish reading the iterator of the buffer
1561 * @iter: The iterator retrieved by ring_buffer_start
1562 *
1563 * This re-enables the recording to the buffer, and frees the
1564 * iterator.
1565 */
1566void
1567ring_buffer_read_finish(struct ring_buffer_iter *iter)
1568{
1569 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1570
1571 atomic_dec(&cpu_buffer->record_disabled);
1572 kfree(iter);
1573}
1574
1575/**
1576 * ring_buffer_read - read the next item in the ring buffer by the iterator
1577 * @iter: The ring buffer iterator
1578 * @ts: The time stamp of the event read.
1579 *
1580 * This reads the next event in the ring buffer and increments the iterator.
1581 */
1582struct ring_buffer_event *
1583ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1584{
1585 struct ring_buffer_event *event;
1586
1587 event = ring_buffer_iter_peek(iter, ts);
1588 if (!event)
1589 return NULL;
1590
1591 rb_advance_iter(iter);
1592
1593 return event;
1594}
1595
1596/**
1597 * ring_buffer_size - return the size of the ring buffer (in bytes)
1598 * @buffer: The ring buffer.
1599 */
1600unsigned long ring_buffer_size(struct ring_buffer *buffer)
1601{
1602 return BUF_PAGE_SIZE * buffer->pages;
1603}
1604
1605static void
1606rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1607{
1608 cpu_buffer->head_page
1609 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
d769041f
SR
1610 cpu_buffer->head_page->size = 0;
1611 cpu_buffer->tail_page = cpu_buffer->head_page;
1612 cpu_buffer->tail_page->size = 0;
1613 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1614 cpu_buffer->reader_page->size = 0;
1615
1616 cpu_buffer->head = cpu_buffer->tail = cpu_buffer->reader = 0;
7a8e76a3 1617
7a8e76a3
SR
1618 cpu_buffer->overrun = 0;
1619 cpu_buffer->entries = 0;
1620}
1621
1622/**
1623 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1624 * @buffer: The ring buffer to reset a per cpu buffer of
1625 * @cpu: The CPU buffer to be reset
1626 */
1627void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1628{
1629 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1630 unsigned long flags;
1631
1632 if (!cpu_isset(cpu, buffer->cpumask))
1633 return;
1634
d769041f 1635 spin_lock_irqsave(&cpu_buffer->lock, flags);
7a8e76a3
SR
1636
1637 rb_reset_cpu(cpu_buffer);
1638
d769041f 1639 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
7a8e76a3
SR
1640}
1641
1642/**
1643 * ring_buffer_reset - reset a ring buffer
1644 * @buffer: The ring buffer to reset all cpu buffers
1645 */
1646void ring_buffer_reset(struct ring_buffer *buffer)
1647{
7a8e76a3
SR
1648 int cpu;
1649
7a8e76a3 1650 for_each_buffer_cpu(buffer, cpu)
d769041f 1651 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3
SR
1652}
1653
1654/**
1655 * rind_buffer_empty - is the ring buffer empty?
1656 * @buffer: The ring buffer to test
1657 */
1658int ring_buffer_empty(struct ring_buffer *buffer)
1659{
1660 struct ring_buffer_per_cpu *cpu_buffer;
1661 int cpu;
1662
1663 /* yes this is racy, but if you don't like the race, lock the buffer */
1664 for_each_buffer_cpu(buffer, cpu) {
1665 cpu_buffer = buffer->buffers[cpu];
1666 if (!rb_per_cpu_empty(cpu_buffer))
1667 return 0;
1668 }
1669 return 1;
1670}
1671
1672/**
1673 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
1674 * @buffer: The ring buffer
1675 * @cpu: The CPU buffer to test
1676 */
1677int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
1678{
1679 struct ring_buffer_per_cpu *cpu_buffer;
1680
1681 if (!cpu_isset(cpu, buffer->cpumask))
1682 return 1;
1683
1684 cpu_buffer = buffer->buffers[cpu];
1685 return rb_per_cpu_empty(cpu_buffer);
1686}
1687
1688/**
1689 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
1690 * @buffer_a: One buffer to swap with
1691 * @buffer_b: The other buffer to swap with
1692 *
1693 * This function is useful for tracers that want to take a "snapshot"
1694 * of a CPU buffer and has another back up buffer lying around.
1695 * it is expected that the tracer handles the cpu buffer not being
1696 * used at the moment.
1697 */
1698int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
1699 struct ring_buffer *buffer_b, int cpu)
1700{
1701 struct ring_buffer_per_cpu *cpu_buffer_a;
1702 struct ring_buffer_per_cpu *cpu_buffer_b;
1703
1704 if (!cpu_isset(cpu, buffer_a->cpumask) ||
1705 !cpu_isset(cpu, buffer_b->cpumask))
1706 return -EINVAL;
1707
1708 /* At least make sure the two buffers are somewhat the same */
1709 if (buffer_a->size != buffer_b->size ||
1710 buffer_a->pages != buffer_b->pages)
1711 return -EINVAL;
1712
1713 cpu_buffer_a = buffer_a->buffers[cpu];
1714 cpu_buffer_b = buffer_b->buffers[cpu];
1715
1716 /*
1717 * We can't do a synchronize_sched here because this
1718 * function can be called in atomic context.
1719 * Normally this will be called from the same CPU as cpu.
1720 * If not it's up to the caller to protect this.
1721 */
1722 atomic_inc(&cpu_buffer_a->record_disabled);
1723 atomic_inc(&cpu_buffer_b->record_disabled);
1724
1725 buffer_a->buffers[cpu] = cpu_buffer_b;
1726 buffer_b->buffers[cpu] = cpu_buffer_a;
1727
1728 cpu_buffer_b->buffer = buffer_a;
1729 cpu_buffer_a->buffer = buffer_b;
1730
1731 atomic_dec(&cpu_buffer_a->record_disabled);
1732 atomic_dec(&cpu_buffer_b->record_disabled);
1733
1734 return 0;
1735}
1736
This page took 0.089432 seconds and 5 git commands to generate.