tracing: Fix unmapping loop in tracing_mark_write
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
649508f6 180#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
649508f6
JH
188#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
189
334d4169
LJ
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
192
193enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196};
197
69d1b839
SR
198#define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
2d622719
TZ
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
a1863c21 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
a1863c21 208 /* padding has a NULL time_delta */
334d4169 209 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
210 event->time_delta = 0;
211}
212
34a148bf 213static unsigned
2d622719 214rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
215{
216 unsigned length;
217
334d4169
LJ
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223}
224
69d1b839
SR
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
2d622719
TZ
231rb_event_length(struct ring_buffer_event *event)
232{
334d4169 233 switch (event->type_len) {
7a8e76a3 234 case RINGBUF_TYPE_PADDING:
2d622719
TZ
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
334d4169 238 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
2d622719 247 return rb_event_data_length(event);
7a8e76a3
SR
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253}
254
69d1b839
SR
255/*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270}
271
7a8e76a3
SR
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
69d1b839
SR
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
7a8e76a3
SR
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
69d1b839
SR
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
334d4169 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
7a8e76a3 296}
c4f50183 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
298
299/* inline for ring buffer fast paths */
34a148bf 300static void *
7a8e76a3
SR
301rb_event_data(struct ring_buffer_event *event)
302{
69d1b839
SR
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
334d4169 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 306 /* If length is in len field, then array[0] has the data */
334d4169 307 if (event->type_len)
7a8e76a3
SR
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319 return rb_event_data(event);
320}
c4f50183 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
322
323#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 324 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
325
326#define TS_SHIFT 27
327#define TS_MASK ((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST (~TS_MASK)
329
66a8cb95
SR
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
332/* Missed count stored at end */
333#define RB_MISSED_STORED (1 << 30)
66a8cb95 334
abc9b56d 335struct buffer_data_page {
e4c2ce82 336 u64 time_stamp; /* page time stamp */
c3706f00 337 local_t commit; /* write committed index */
649508f6 338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
339};
340
77ae365e
SR
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
abc9b56d 349struct buffer_page {
778c55d4 350 struct list_head list; /* list of buffer pages */
abc9b56d 351 local_t write; /* index for next write */
6f807acd 352 unsigned read; /* index for next read */
778c55d4 353 local_t entries; /* entries on this page */
ff0ff84a 354 unsigned long real_end; /* real end of data */
abc9b56d 355 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
356};
357
77ae365e
SR
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK 0xfffff
371#define RB_WRITE_INTCNT (1 << 20)
372
044fa782 373static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 374{
044fa782 375 local_set(&bpage->commit, 0);
abc9b56d
SR
376}
377
474d32b6
SR
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ef7a4a16
SR
384size_t ring_buffer_page_len(void *page)
385{
474d32b6
SR
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
388}
389
ed56829c
SR
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
34a148bf 394static void free_buffer_page(struct buffer_page *bpage)
ed56829c 395{
34a148bf 396 free_page((unsigned long)bpage->page);
e4c2ce82 397 kfree(bpage);
ed56829c
SR
398}
399
7a8e76a3
SR
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408}
409
474d32b6 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 411
be957c44
SR
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
d1b182a8
SR
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417 struct buffer_data_page field;
c0cd93aa
SRRH
418
419 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field.time_stamp),
422 (unsigned int)is_signed_type(u64));
423
424 trace_seq_printf(s, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field), commit),
427 (unsigned int)sizeof(field.commit),
428 (unsigned int)is_signed_type(long));
429
430 trace_seq_printf(s, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field), commit),
433 1,
434 (unsigned int)is_signed_type(long));
435
436 trace_seq_printf(s, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field), data),
439 (unsigned int)BUF_PAGE_SIZE,
440 (unsigned int)is_signed_type(char));
441
442 return !trace_seq_has_overflowed(s);
d1b182a8
SR
443}
444
15693458
SRRH
445struct rb_irq_work {
446 struct irq_work work;
447 wait_queue_head_t waiters;
448 bool waiters_pending;
449};
450
7a8e76a3
SR
451/*
452 * head_page == tail_page && head == tail then buffer is empty.
453 */
454struct ring_buffer_per_cpu {
455 int cpu;
985023de 456 atomic_t record_disabled;
7a8e76a3 457 struct ring_buffer *buffer;
5389f6fa 458 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 459 arch_spinlock_t lock;
7a8e76a3 460 struct lock_class_key lock_key;
438ced17 461 unsigned int nr_pages;
3adc54fa 462 struct list_head *pages;
6f807acd
SR
463 struct buffer_page *head_page; /* read from head */
464 struct buffer_page *tail_page; /* write to tail */
c3706f00 465 struct buffer_page *commit_page; /* committed pages */
d769041f 466 struct buffer_page *reader_page;
66a8cb95
SR
467 unsigned long lost_events;
468 unsigned long last_overrun;
c64e148a 469 local_t entries_bytes;
e4906eff 470 local_t entries;
884bfe89
SP
471 local_t overrun;
472 local_t commit_overrun;
473 local_t dropped_events;
fa743953
SR
474 local_t committing;
475 local_t commits;
77ae365e 476 unsigned long read;
c64e148a 477 unsigned long read_bytes;
7a8e76a3
SR
478 u64 write_stamp;
479 u64 read_stamp;
438ced17
VN
480 /* ring buffer pages to update, > 0 to add, < 0 to remove */
481 int nr_pages_to_update;
482 struct list_head new_pages; /* new pages to add */
83f40318 483 struct work_struct update_pages_work;
05fdd70d 484 struct completion update_done;
15693458
SRRH
485
486 struct rb_irq_work irq_work;
7a8e76a3
SR
487};
488
489struct ring_buffer {
7a8e76a3
SR
490 unsigned flags;
491 int cpus;
7a8e76a3 492 atomic_t record_disabled;
83f40318 493 atomic_t resize_disabled;
00f62f61 494 cpumask_var_t cpumask;
7a8e76a3 495
1f8a6a10
PZ
496 struct lock_class_key *reader_lock_key;
497
7a8e76a3
SR
498 struct mutex mutex;
499
500 struct ring_buffer_per_cpu **buffers;
554f786e 501
59222efe 502#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
503 struct notifier_block cpu_notify;
504#endif
37886f6a 505 u64 (*clock)(void);
15693458
SRRH
506
507 struct rb_irq_work irq_work;
7a8e76a3
SR
508};
509
510struct ring_buffer_iter {
511 struct ring_buffer_per_cpu *cpu_buffer;
512 unsigned long head;
513 struct buffer_page *head_page;
492a74f4
SR
514 struct buffer_page *cache_reader_page;
515 unsigned long cache_read;
7a8e76a3
SR
516 u64 read_stamp;
517};
518
15693458
SRRH
519/*
520 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
521 *
522 * Schedules a delayed work to wake up any task that is blocked on the
523 * ring buffer waiters queue.
524 */
525static void rb_wake_up_waiters(struct irq_work *work)
526{
527 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
528
529 wake_up_all(&rbwork->waiters);
530}
531
532/**
533 * ring_buffer_wait - wait for input to the ring buffer
534 * @buffer: buffer to wait on
535 * @cpu: the cpu buffer to wait on
e30f53aa 536 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
537 *
538 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539 * as data is added to any of the @buffer's cpu buffers. Otherwise
540 * it will wait for data to be added to a specific cpu buffer.
541 */
e30f53aa 542int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 543{
e30f53aa 544 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
545 DEFINE_WAIT(wait);
546 struct rb_irq_work *work;
e30f53aa 547 int ret = 0;
15693458
SRRH
548
549 /*
550 * Depending on what the caller is waiting for, either any
551 * data in any cpu buffer, or a specific buffer, put the
552 * caller on the appropriate wait queue.
553 */
554 if (cpu == RING_BUFFER_ALL_CPUS)
555 work = &buffer->irq_work;
556 else {
8b8b3683
SRRH
557 if (!cpumask_test_cpu(cpu, buffer->cpumask))
558 return -ENODEV;
15693458
SRRH
559 cpu_buffer = buffer->buffers[cpu];
560 work = &cpu_buffer->irq_work;
561 }
562
563
e30f53aa
RV
564 while (true) {
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if (signal_pending(current)) {
590 ret = -EINTR;
591 break;
592 }
593
594 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
595 break;
596
597 if (cpu != RING_BUFFER_ALL_CPUS &&
598 !ring_buffer_empty_cpu(buffer, cpu)) {
599 unsigned long flags;
600 bool pagebusy;
601
602 if (!full)
603 break;
604
605 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
606 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
607 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
608
609 if (!pagebusy)
610 break;
611 }
15693458 612
15693458 613 schedule();
e30f53aa 614 }
15693458
SRRH
615
616 finish_wait(&work->waiters, &wait);
e30f53aa
RV
617
618 return ret;
15693458
SRRH
619}
620
621/**
622 * ring_buffer_poll_wait - poll on buffer input
623 * @buffer: buffer to wait on
624 * @cpu: the cpu buffer to wait on
625 * @filp: the file descriptor
626 * @poll_table: The poll descriptor
627 *
628 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
629 * as data is added to any of the @buffer's cpu buffers. Otherwise
630 * it will wait for data to be added to a specific cpu buffer.
631 *
632 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
633 * zero otherwise.
634 */
635int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
636 struct file *filp, poll_table *poll_table)
637{
638 struct ring_buffer_per_cpu *cpu_buffer;
639 struct rb_irq_work *work;
640
15693458
SRRH
641 if (cpu == RING_BUFFER_ALL_CPUS)
642 work = &buffer->irq_work;
643 else {
6721cb60
SRRH
644 if (!cpumask_test_cpu(cpu, buffer->cpumask))
645 return -EINVAL;
646
15693458
SRRH
647 cpu_buffer = buffer->buffers[cpu];
648 work = &cpu_buffer->irq_work;
649 }
650
15693458 651 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
652 work->waiters_pending = true;
653 /*
654 * There's a tight race between setting the waiters_pending and
655 * checking if the ring buffer is empty. Once the waiters_pending bit
656 * is set, the next event will wake the task up, but we can get stuck
657 * if there's only a single event in.
658 *
659 * FIXME: Ideally, we need a memory barrier on the writer side as well,
660 * but adding a memory barrier to all events will cause too much of a
661 * performance hit in the fast path. We only need a memory barrier when
662 * the buffer goes from empty to having content. But as this race is
663 * extremely small, and it's not a problem if another event comes in, we
664 * will fix it later.
665 */
666 smp_mb();
15693458
SRRH
667
668 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
669 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
670 return POLLIN | POLLRDNORM;
671 return 0;
672}
673
f536aafc 674/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
675#define RB_WARN_ON(b, cond) \
676 ({ \
677 int _____ret = unlikely(cond); \
678 if (_____ret) { \
679 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
680 struct ring_buffer_per_cpu *__b = \
681 (void *)b; \
682 atomic_inc(&__b->buffer->record_disabled); \
683 } else \
684 atomic_inc(&b->record_disabled); \
685 WARN_ON(1); \
686 } \
687 _____ret; \
3e89c7bb 688 })
f536aafc 689
37886f6a
SR
690/* Up this if you want to test the TIME_EXTENTS and normalization */
691#define DEBUG_SHIFT 0
692
6d3f1e12 693static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
694{
695 /* shift to debug/test normalization and TIME_EXTENTS */
696 return buffer->clock() << DEBUG_SHIFT;
697}
698
37886f6a
SR
699u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
700{
701 u64 time;
702
703 preempt_disable_notrace();
6d3f1e12 704 time = rb_time_stamp(buffer);
37886f6a
SR
705 preempt_enable_no_resched_notrace();
706
707 return time;
708}
709EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
710
711void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
712 int cpu, u64 *ts)
713{
714 /* Just stupid testing the normalize function and deltas */
715 *ts >>= DEBUG_SHIFT;
716}
717EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
718
77ae365e
SR
719/*
720 * Making the ring buffer lockless makes things tricky.
721 * Although writes only happen on the CPU that they are on,
722 * and they only need to worry about interrupts. Reads can
723 * happen on any CPU.
724 *
725 * The reader page is always off the ring buffer, but when the
726 * reader finishes with a page, it needs to swap its page with
727 * a new one from the buffer. The reader needs to take from
728 * the head (writes go to the tail). But if a writer is in overwrite
729 * mode and wraps, it must push the head page forward.
730 *
731 * Here lies the problem.
732 *
733 * The reader must be careful to replace only the head page, and
734 * not another one. As described at the top of the file in the
735 * ASCII art, the reader sets its old page to point to the next
736 * page after head. It then sets the page after head to point to
737 * the old reader page. But if the writer moves the head page
738 * during this operation, the reader could end up with the tail.
739 *
740 * We use cmpxchg to help prevent this race. We also do something
741 * special with the page before head. We set the LSB to 1.
742 *
743 * When the writer must push the page forward, it will clear the
744 * bit that points to the head page, move the head, and then set
745 * the bit that points to the new head page.
746 *
747 * We also don't want an interrupt coming in and moving the head
748 * page on another writer. Thus we use the second LSB to catch
749 * that too. Thus:
750 *
751 * head->list->prev->next bit 1 bit 0
752 * ------- -------
753 * Normal page 0 0
754 * Points to head page 0 1
755 * New head page 1 0
756 *
757 * Note we can not trust the prev pointer of the head page, because:
758 *
759 * +----+ +-----+ +-----+
760 * | |------>| T |---X--->| N |
761 * | |<------| | | |
762 * +----+ +-----+ +-----+
763 * ^ ^ |
764 * | +-----+ | |
765 * +----------| R |----------+ |
766 * | |<-----------+
767 * +-----+
768 *
769 * Key: ---X--> HEAD flag set in pointer
770 * T Tail page
771 * R Reader page
772 * N Next page
773 *
774 * (see __rb_reserve_next() to see where this happens)
775 *
776 * What the above shows is that the reader just swapped out
777 * the reader page with a page in the buffer, but before it
778 * could make the new header point back to the new page added
779 * it was preempted by a writer. The writer moved forward onto
780 * the new page added by the reader and is about to move forward
781 * again.
782 *
783 * You can see, it is legitimate for the previous pointer of
784 * the head (or any page) not to point back to itself. But only
785 * temporarially.
786 */
787
788#define RB_PAGE_NORMAL 0UL
789#define RB_PAGE_HEAD 1UL
790#define RB_PAGE_UPDATE 2UL
791
792
793#define RB_FLAG_MASK 3UL
794
795/* PAGE_MOVED is not part of the mask */
796#define RB_PAGE_MOVED 4UL
797
798/*
799 * rb_list_head - remove any bit
800 */
801static struct list_head *rb_list_head(struct list_head *list)
802{
803 unsigned long val = (unsigned long)list;
804
805 return (struct list_head *)(val & ~RB_FLAG_MASK);
806}
807
808/*
6d3f1e12 809 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
810 *
811 * Because the reader may move the head_page pointer, we can
812 * not trust what the head page is (it may be pointing to
813 * the reader page). But if the next page is a header page,
814 * its flags will be non zero.
815 */
42b16b3f 816static inline int
77ae365e
SR
817rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
818 struct buffer_page *page, struct list_head *list)
819{
820 unsigned long val;
821
822 val = (unsigned long)list->next;
823
824 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
825 return RB_PAGE_MOVED;
826
827 return val & RB_FLAG_MASK;
828}
829
830/*
831 * rb_is_reader_page
832 *
833 * The unique thing about the reader page, is that, if the
834 * writer is ever on it, the previous pointer never points
835 * back to the reader page.
836 */
837static int rb_is_reader_page(struct buffer_page *page)
838{
839 struct list_head *list = page->list.prev;
840
841 return rb_list_head(list->next) != &page->list;
842}
843
844/*
845 * rb_set_list_to_head - set a list_head to be pointing to head.
846 */
847static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
848 struct list_head *list)
849{
850 unsigned long *ptr;
851
852 ptr = (unsigned long *)&list->next;
853 *ptr |= RB_PAGE_HEAD;
854 *ptr &= ~RB_PAGE_UPDATE;
855}
856
857/*
858 * rb_head_page_activate - sets up head page
859 */
860static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
861{
862 struct buffer_page *head;
863
864 head = cpu_buffer->head_page;
865 if (!head)
866 return;
867
868 /*
869 * Set the previous list pointer to have the HEAD flag.
870 */
871 rb_set_list_to_head(cpu_buffer, head->list.prev);
872}
873
874static void rb_list_head_clear(struct list_head *list)
875{
876 unsigned long *ptr = (unsigned long *)&list->next;
877
878 *ptr &= ~RB_FLAG_MASK;
879}
880
881/*
882 * rb_head_page_dactivate - clears head page ptr (for free list)
883 */
884static void
885rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
886{
887 struct list_head *hd;
888
889 /* Go through the whole list and clear any pointers found. */
890 rb_list_head_clear(cpu_buffer->pages);
891
892 list_for_each(hd, cpu_buffer->pages)
893 rb_list_head_clear(hd);
894}
895
896static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
897 struct buffer_page *head,
898 struct buffer_page *prev,
899 int old_flag, int new_flag)
900{
901 struct list_head *list;
902 unsigned long val = (unsigned long)&head->list;
903 unsigned long ret;
904
905 list = &prev->list;
906
907 val &= ~RB_FLAG_MASK;
908
08a40816
SR
909 ret = cmpxchg((unsigned long *)&list->next,
910 val | old_flag, val | new_flag);
77ae365e
SR
911
912 /* check if the reader took the page */
913 if ((ret & ~RB_FLAG_MASK) != val)
914 return RB_PAGE_MOVED;
915
916 return ret & RB_FLAG_MASK;
917}
918
919static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
920 struct buffer_page *head,
921 struct buffer_page *prev,
922 int old_flag)
923{
924 return rb_head_page_set(cpu_buffer, head, prev,
925 old_flag, RB_PAGE_UPDATE);
926}
927
928static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
929 struct buffer_page *head,
930 struct buffer_page *prev,
931 int old_flag)
932{
933 return rb_head_page_set(cpu_buffer, head, prev,
934 old_flag, RB_PAGE_HEAD);
935}
936
937static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
938 struct buffer_page *head,
939 struct buffer_page *prev,
940 int old_flag)
941{
942 return rb_head_page_set(cpu_buffer, head, prev,
943 old_flag, RB_PAGE_NORMAL);
944}
945
946static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
947 struct buffer_page **bpage)
948{
949 struct list_head *p = rb_list_head((*bpage)->list.next);
950
951 *bpage = list_entry(p, struct buffer_page, list);
952}
953
954static struct buffer_page *
955rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
956{
957 struct buffer_page *head;
958 struct buffer_page *page;
959 struct list_head *list;
960 int i;
961
962 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
963 return NULL;
964
965 /* sanity check */
966 list = cpu_buffer->pages;
967 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
968 return NULL;
969
970 page = head = cpu_buffer->head_page;
971 /*
972 * It is possible that the writer moves the header behind
973 * where we started, and we miss in one loop.
974 * A second loop should grab the header, but we'll do
975 * three loops just because I'm paranoid.
976 */
977 for (i = 0; i < 3; i++) {
978 do {
979 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
980 cpu_buffer->head_page = page;
981 return page;
982 }
983 rb_inc_page(cpu_buffer, &page);
984 } while (page != head);
985 }
986
987 RB_WARN_ON(cpu_buffer, 1);
988
989 return NULL;
990}
991
992static int rb_head_page_replace(struct buffer_page *old,
993 struct buffer_page *new)
994{
995 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
996 unsigned long val;
997 unsigned long ret;
998
999 val = *ptr & ~RB_FLAG_MASK;
1000 val |= RB_PAGE_HEAD;
1001
08a40816 1002 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1003
1004 return ret == val;
1005}
1006
1007/*
1008 * rb_tail_page_update - move the tail page forward
1009 *
1010 * Returns 1 if moved tail page, 0 if someone else did.
1011 */
1012static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1013 struct buffer_page *tail_page,
1014 struct buffer_page *next_page)
1015{
1016 struct buffer_page *old_tail;
1017 unsigned long old_entries;
1018 unsigned long old_write;
1019 int ret = 0;
1020
1021 /*
1022 * The tail page now needs to be moved forward.
1023 *
1024 * We need to reset the tail page, but without messing
1025 * with possible erasing of data brought in by interrupts
1026 * that have moved the tail page and are currently on it.
1027 *
1028 * We add a counter to the write field to denote this.
1029 */
1030 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1031 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1032
1033 /*
1034 * Just make sure we have seen our old_write and synchronize
1035 * with any interrupts that come in.
1036 */
1037 barrier();
1038
1039 /*
1040 * If the tail page is still the same as what we think
1041 * it is, then it is up to us to update the tail
1042 * pointer.
1043 */
1044 if (tail_page == cpu_buffer->tail_page) {
1045 /* Zero the write counter */
1046 unsigned long val = old_write & ~RB_WRITE_MASK;
1047 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1048
1049 /*
1050 * This will only succeed if an interrupt did
1051 * not come in and change it. In which case, we
1052 * do not want to modify it.
da706d8b
LJ
1053 *
1054 * We add (void) to let the compiler know that we do not care
1055 * about the return value of these functions. We use the
1056 * cmpxchg to only update if an interrupt did not already
1057 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1058 */
da706d8b
LJ
1059 (void)local_cmpxchg(&next_page->write, old_write, val);
1060 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1061
1062 /*
1063 * No need to worry about races with clearing out the commit.
1064 * it only can increment when a commit takes place. But that
1065 * only happens in the outer most nested commit.
1066 */
1067 local_set(&next_page->page->commit, 0);
1068
1069 old_tail = cmpxchg(&cpu_buffer->tail_page,
1070 tail_page, next_page);
1071
1072 if (old_tail == tail_page)
1073 ret = 1;
1074 }
1075
1076 return ret;
1077}
1078
1079static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct buffer_page *bpage)
1081{
1082 unsigned long val = (unsigned long)bpage;
1083
1084 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1085 return 1;
1086
1087 return 0;
1088}
1089
1090/**
1091 * rb_check_list - make sure a pointer to a list has the last bits zero
1092 */
1093static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1094 struct list_head *list)
1095{
1096 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1097 return 1;
1098 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1099 return 1;
1100 return 0;
1101}
1102
7a8e76a3 1103/**
d611851b 1104 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1105 * @cpu_buffer: CPU buffer with pages to test
1106 *
c3706f00 1107 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1108 * been corrupted.
1109 */
1110static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1111{
3adc54fa 1112 struct list_head *head = cpu_buffer->pages;
044fa782 1113 struct buffer_page *bpage, *tmp;
7a8e76a3 1114
308f7eeb
SR
1115 /* Reset the head page if it exists */
1116 if (cpu_buffer->head_page)
1117 rb_set_head_page(cpu_buffer);
1118
77ae365e
SR
1119 rb_head_page_deactivate(cpu_buffer);
1120
3e89c7bb
SR
1121 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1122 return -1;
1123 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1124 return -1;
7a8e76a3 1125
77ae365e
SR
1126 if (rb_check_list(cpu_buffer, head))
1127 return -1;
1128
044fa782 1129 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1130 if (RB_WARN_ON(cpu_buffer,
044fa782 1131 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1132 return -1;
1133 if (RB_WARN_ON(cpu_buffer,
044fa782 1134 bpage->list.prev->next != &bpage->list))
3e89c7bb 1135 return -1;
77ae365e
SR
1136 if (rb_check_list(cpu_buffer, &bpage->list))
1137 return -1;
7a8e76a3
SR
1138 }
1139
77ae365e
SR
1140 rb_head_page_activate(cpu_buffer);
1141
7a8e76a3
SR
1142 return 0;
1143}
1144
438ced17 1145static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1146{
438ced17 1147 int i;
044fa782 1148 struct buffer_page *bpage, *tmp;
3adc54fa 1149
7a8e76a3 1150 for (i = 0; i < nr_pages; i++) {
7ea59064 1151 struct page *page;
d7ec4bfe
VN
1152 /*
1153 * __GFP_NORETRY flag makes sure that the allocation fails
1154 * gracefully without invoking oom-killer and the system is
1155 * not destabilized.
1156 */
044fa782 1157 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1158 GFP_KERNEL | __GFP_NORETRY,
438ced17 1159 cpu_to_node(cpu));
044fa782 1160 if (!bpage)
e4c2ce82 1161 goto free_pages;
77ae365e 1162
438ced17 1163 list_add(&bpage->list, pages);
77ae365e 1164
438ced17 1165 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1166 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1167 if (!page)
7a8e76a3 1168 goto free_pages;
7ea59064 1169 bpage->page = page_address(page);
044fa782 1170 rb_init_page(bpage->page);
7a8e76a3
SR
1171 }
1172
438ced17
VN
1173 return 0;
1174
1175free_pages:
1176 list_for_each_entry_safe(bpage, tmp, pages, list) {
1177 list_del_init(&bpage->list);
1178 free_buffer_page(bpage);
1179 }
1180
1181 return -ENOMEM;
1182}
1183
1184static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1185 unsigned nr_pages)
1186{
1187 LIST_HEAD(pages);
1188
1189 WARN_ON(!nr_pages);
1190
1191 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1192 return -ENOMEM;
1193
3adc54fa
SR
1194 /*
1195 * The ring buffer page list is a circular list that does not
1196 * start and end with a list head. All page list items point to
1197 * other pages.
1198 */
1199 cpu_buffer->pages = pages.next;
1200 list_del(&pages);
7a8e76a3 1201
438ced17
VN
1202 cpu_buffer->nr_pages = nr_pages;
1203
7a8e76a3
SR
1204 rb_check_pages(cpu_buffer);
1205
1206 return 0;
7a8e76a3
SR
1207}
1208
1209static struct ring_buffer_per_cpu *
438ced17 1210rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1211{
1212 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1213 struct buffer_page *bpage;
7ea59064 1214 struct page *page;
7a8e76a3
SR
1215 int ret;
1216
1217 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1218 GFP_KERNEL, cpu_to_node(cpu));
1219 if (!cpu_buffer)
1220 return NULL;
1221
1222 cpu_buffer->cpu = cpu;
1223 cpu_buffer->buffer = buffer;
5389f6fa 1224 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1225 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1226 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1227 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1228 init_completion(&cpu_buffer->update_done);
15693458 1229 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1230 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1231
044fa782 1232 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1233 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1234 if (!bpage)
e4c2ce82
SR
1235 goto fail_free_buffer;
1236
77ae365e
SR
1237 rb_check_bpage(cpu_buffer, bpage);
1238
044fa782 1239 cpu_buffer->reader_page = bpage;
7ea59064
VN
1240 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1241 if (!page)
e4c2ce82 1242 goto fail_free_reader;
7ea59064 1243 bpage->page = page_address(page);
044fa782 1244 rb_init_page(bpage->page);
e4c2ce82 1245
d769041f 1246 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1247 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1248
438ced17 1249 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1250 if (ret < 0)
d769041f 1251 goto fail_free_reader;
7a8e76a3
SR
1252
1253 cpu_buffer->head_page
3adc54fa 1254 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1255 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1256
77ae365e
SR
1257 rb_head_page_activate(cpu_buffer);
1258
7a8e76a3
SR
1259 return cpu_buffer;
1260
d769041f
SR
1261 fail_free_reader:
1262 free_buffer_page(cpu_buffer->reader_page);
1263
7a8e76a3
SR
1264 fail_free_buffer:
1265 kfree(cpu_buffer);
1266 return NULL;
1267}
1268
1269static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1270{
3adc54fa 1271 struct list_head *head = cpu_buffer->pages;
044fa782 1272 struct buffer_page *bpage, *tmp;
7a8e76a3 1273
d769041f
SR
1274 free_buffer_page(cpu_buffer->reader_page);
1275
77ae365e
SR
1276 rb_head_page_deactivate(cpu_buffer);
1277
3adc54fa
SR
1278 if (head) {
1279 list_for_each_entry_safe(bpage, tmp, head, list) {
1280 list_del_init(&bpage->list);
1281 free_buffer_page(bpage);
1282 }
1283 bpage = list_entry(head, struct buffer_page, list);
044fa782 1284 free_buffer_page(bpage);
7a8e76a3 1285 }
3adc54fa 1286
7a8e76a3
SR
1287 kfree(cpu_buffer);
1288}
1289
59222efe 1290#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1291static int rb_cpu_notify(struct notifier_block *self,
1292 unsigned long action, void *hcpu);
554f786e
SR
1293#endif
1294
7a8e76a3 1295/**
d611851b 1296 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1297 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1298 * @flags: attributes to set for the ring buffer.
1299 *
1300 * Currently the only flag that is available is the RB_FL_OVERWRITE
1301 * flag. This flag means that the buffer will overwrite old data
1302 * when the buffer wraps. If this flag is not set, the buffer will
1303 * drop data when the tail hits the head.
1304 */
1f8a6a10
PZ
1305struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1306 struct lock_class_key *key)
7a8e76a3
SR
1307{
1308 struct ring_buffer *buffer;
1309 int bsize;
438ced17 1310 int cpu, nr_pages;
7a8e76a3
SR
1311
1312 /* keep it in its own cache line */
1313 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1314 GFP_KERNEL);
1315 if (!buffer)
1316 return NULL;
1317
9e01c1b7
RR
1318 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1319 goto fail_free_buffer;
1320
438ced17 1321 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1322 buffer->flags = flags;
37886f6a 1323 buffer->clock = trace_clock_local;
1f8a6a10 1324 buffer->reader_lock_key = key;
7a8e76a3 1325
15693458 1326 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1327 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1328
7a8e76a3 1329 /* need at least two pages */
438ced17
VN
1330 if (nr_pages < 2)
1331 nr_pages = 2;
7a8e76a3 1332
3bf832ce
FW
1333 /*
1334 * In case of non-hotplug cpu, if the ring-buffer is allocated
1335 * in early initcall, it will not be notified of secondary cpus.
1336 * In that off case, we need to allocate for all possible cpus.
1337 */
1338#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1339 cpu_notifier_register_begin();
554f786e 1340 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1341#else
1342 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1343#endif
7a8e76a3
SR
1344 buffer->cpus = nr_cpu_ids;
1345
1346 bsize = sizeof(void *) * nr_cpu_ids;
1347 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1348 GFP_KERNEL);
1349 if (!buffer->buffers)
9e01c1b7 1350 goto fail_free_cpumask;
7a8e76a3
SR
1351
1352 for_each_buffer_cpu(buffer, cpu) {
1353 buffer->buffers[cpu] =
438ced17 1354 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1355 if (!buffer->buffers[cpu])
1356 goto fail_free_buffers;
1357 }
1358
59222efe 1359#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1360 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1361 buffer->cpu_notify.priority = 0;
d39ad278
SB
1362 __register_cpu_notifier(&buffer->cpu_notify);
1363 cpu_notifier_register_done();
554f786e
SR
1364#endif
1365
7a8e76a3
SR
1366 mutex_init(&buffer->mutex);
1367
1368 return buffer;
1369
1370 fail_free_buffers:
1371 for_each_buffer_cpu(buffer, cpu) {
1372 if (buffer->buffers[cpu])
1373 rb_free_cpu_buffer(buffer->buffers[cpu]);
1374 }
1375 kfree(buffer->buffers);
1376
9e01c1b7
RR
1377 fail_free_cpumask:
1378 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1379#ifdef CONFIG_HOTPLUG_CPU
1380 cpu_notifier_register_done();
1381#endif
9e01c1b7 1382
7a8e76a3
SR
1383 fail_free_buffer:
1384 kfree(buffer);
1385 return NULL;
1386}
1f8a6a10 1387EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1388
1389/**
1390 * ring_buffer_free - free a ring buffer.
1391 * @buffer: the buffer to free.
1392 */
1393void
1394ring_buffer_free(struct ring_buffer *buffer)
1395{
1396 int cpu;
1397
59222efe 1398#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1399 cpu_notifier_register_begin();
1400 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1401#endif
1402
7a8e76a3
SR
1403 for_each_buffer_cpu(buffer, cpu)
1404 rb_free_cpu_buffer(buffer->buffers[cpu]);
1405
d39ad278
SB
1406#ifdef CONFIG_HOTPLUG_CPU
1407 cpu_notifier_register_done();
1408#endif
554f786e 1409
bd3f0221 1410 kfree(buffer->buffers);
9e01c1b7
RR
1411 free_cpumask_var(buffer->cpumask);
1412
7a8e76a3
SR
1413 kfree(buffer);
1414}
c4f50183 1415EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1416
37886f6a
SR
1417void ring_buffer_set_clock(struct ring_buffer *buffer,
1418 u64 (*clock)(void))
1419{
1420 buffer->clock = clock;
1421}
1422
7a8e76a3
SR
1423static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1424
83f40318
VN
1425static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1426{
1427 return local_read(&bpage->entries) & RB_WRITE_MASK;
1428}
1429
1430static inline unsigned long rb_page_write(struct buffer_page *bpage)
1431{
1432 return local_read(&bpage->write) & RB_WRITE_MASK;
1433}
1434
5040b4b7 1435static int
83f40318 1436rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1437{
83f40318
VN
1438 struct list_head *tail_page, *to_remove, *next_page;
1439 struct buffer_page *to_remove_page, *tmp_iter_page;
1440 struct buffer_page *last_page, *first_page;
1441 unsigned int nr_removed;
1442 unsigned long head_bit;
1443 int page_entries;
1444
1445 head_bit = 0;
7a8e76a3 1446
5389f6fa 1447 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1448 atomic_inc(&cpu_buffer->record_disabled);
1449 /*
1450 * We don't race with the readers since we have acquired the reader
1451 * lock. We also don't race with writers after disabling recording.
1452 * This makes it easy to figure out the first and the last page to be
1453 * removed from the list. We unlink all the pages in between including
1454 * the first and last pages. This is done in a busy loop so that we
1455 * lose the least number of traces.
1456 * The pages are freed after we restart recording and unlock readers.
1457 */
1458 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1459
83f40318
VN
1460 /*
1461 * tail page might be on reader page, we remove the next page
1462 * from the ring buffer
1463 */
1464 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1465 tail_page = rb_list_head(tail_page->next);
1466 to_remove = tail_page;
1467
1468 /* start of pages to remove */
1469 first_page = list_entry(rb_list_head(to_remove->next),
1470 struct buffer_page, list);
1471
1472 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1473 to_remove = rb_list_head(to_remove)->next;
1474 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1475 }
7a8e76a3 1476
83f40318 1477 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1478
83f40318
VN
1479 /*
1480 * Now we remove all pages between tail_page and next_page.
1481 * Make sure that we have head_bit value preserved for the
1482 * next page
1483 */
1484 tail_page->next = (struct list_head *)((unsigned long)next_page |
1485 head_bit);
1486 next_page = rb_list_head(next_page);
1487 next_page->prev = tail_page;
1488
1489 /* make sure pages points to a valid page in the ring buffer */
1490 cpu_buffer->pages = next_page;
1491
1492 /* update head page */
1493 if (head_bit)
1494 cpu_buffer->head_page = list_entry(next_page,
1495 struct buffer_page, list);
1496
1497 /*
1498 * change read pointer to make sure any read iterators reset
1499 * themselves
1500 */
1501 cpu_buffer->read = 0;
1502
1503 /* pages are removed, resume tracing and then free the pages */
1504 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1505 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1506
1507 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1508
1509 /* last buffer page to remove */
1510 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1511 list);
1512 tmp_iter_page = first_page;
1513
1514 do {
1515 to_remove_page = tmp_iter_page;
1516 rb_inc_page(cpu_buffer, &tmp_iter_page);
1517
1518 /* update the counters */
1519 page_entries = rb_page_entries(to_remove_page);
1520 if (page_entries) {
1521 /*
1522 * If something was added to this page, it was full
1523 * since it is not the tail page. So we deduct the
1524 * bytes consumed in ring buffer from here.
48fdc72f 1525 * Increment overrun to account for the lost events.
83f40318 1526 */
48fdc72f 1527 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1528 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1529 }
1530
1531 /*
1532 * We have already removed references to this list item, just
1533 * free up the buffer_page and its page
1534 */
1535 free_buffer_page(to_remove_page);
1536 nr_removed--;
1537
1538 } while (to_remove_page != last_page);
1539
1540 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1541
1542 return nr_removed == 0;
7a8e76a3
SR
1543}
1544
5040b4b7
VN
1545static int
1546rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1547{
5040b4b7
VN
1548 struct list_head *pages = &cpu_buffer->new_pages;
1549 int retries, success;
7a8e76a3 1550
5389f6fa 1551 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1552 /*
1553 * We are holding the reader lock, so the reader page won't be swapped
1554 * in the ring buffer. Now we are racing with the writer trying to
1555 * move head page and the tail page.
1556 * We are going to adapt the reader page update process where:
1557 * 1. We first splice the start and end of list of new pages between
1558 * the head page and its previous page.
1559 * 2. We cmpxchg the prev_page->next to point from head page to the
1560 * start of new pages list.
1561 * 3. Finally, we update the head->prev to the end of new list.
1562 *
1563 * We will try this process 10 times, to make sure that we don't keep
1564 * spinning.
1565 */
1566 retries = 10;
1567 success = 0;
1568 while (retries--) {
1569 struct list_head *head_page, *prev_page, *r;
1570 struct list_head *last_page, *first_page;
1571 struct list_head *head_page_with_bit;
77ae365e 1572
5040b4b7 1573 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1574 if (!head_page)
1575 break;
5040b4b7
VN
1576 prev_page = head_page->prev;
1577
1578 first_page = pages->next;
1579 last_page = pages->prev;
1580
1581 head_page_with_bit = (struct list_head *)
1582 ((unsigned long)head_page | RB_PAGE_HEAD);
1583
1584 last_page->next = head_page_with_bit;
1585 first_page->prev = prev_page;
1586
1587 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1588
1589 if (r == head_page_with_bit) {
1590 /*
1591 * yay, we replaced the page pointer to our new list,
1592 * now, we just have to update to head page's prev
1593 * pointer to point to end of list
1594 */
1595 head_page->prev = last_page;
1596 success = 1;
1597 break;
1598 }
7a8e76a3 1599 }
7a8e76a3 1600
5040b4b7
VN
1601 if (success)
1602 INIT_LIST_HEAD(pages);
1603 /*
1604 * If we weren't successful in adding in new pages, warn and stop
1605 * tracing
1606 */
1607 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1608 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1609
1610 /* free pages if they weren't inserted */
1611 if (!success) {
1612 struct buffer_page *bpage, *tmp;
1613 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1614 list) {
1615 list_del_init(&bpage->list);
1616 free_buffer_page(bpage);
1617 }
1618 }
1619 return success;
7a8e76a3
SR
1620}
1621
83f40318 1622static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1623{
5040b4b7
VN
1624 int success;
1625
438ced17 1626 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1627 success = rb_insert_pages(cpu_buffer);
438ced17 1628 else
5040b4b7
VN
1629 success = rb_remove_pages(cpu_buffer,
1630 -cpu_buffer->nr_pages_to_update);
83f40318 1631
5040b4b7
VN
1632 if (success)
1633 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1634}
1635
1636static void update_pages_handler(struct work_struct *work)
1637{
1638 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1639 struct ring_buffer_per_cpu, update_pages_work);
1640 rb_update_pages(cpu_buffer);
05fdd70d 1641 complete(&cpu_buffer->update_done);
438ced17
VN
1642}
1643
7a8e76a3
SR
1644/**
1645 * ring_buffer_resize - resize the ring buffer
1646 * @buffer: the buffer to resize.
1647 * @size: the new size.
d611851b 1648 * @cpu_id: the cpu buffer to resize
7a8e76a3 1649 *
7a8e76a3
SR
1650 * Minimum size is 2 * BUF_PAGE_SIZE.
1651 *
83f40318 1652 * Returns 0 on success and < 0 on failure.
7a8e76a3 1653 */
438ced17
VN
1654int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1655 int cpu_id)
7a8e76a3
SR
1656{
1657 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1658 unsigned nr_pages;
83f40318 1659 int cpu, err = 0;
7a8e76a3 1660
ee51a1de
IM
1661 /*
1662 * Always succeed at resizing a non-existent buffer:
1663 */
1664 if (!buffer)
1665 return size;
1666
6a31e1f1
SR
1667 /* Make sure the requested buffer exists */
1668 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1669 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1670 return size;
1671
7a8e76a3
SR
1672 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1673 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1674
1675 /* we need a minimum of two pages */
1676 if (size < BUF_PAGE_SIZE * 2)
1677 size = BUF_PAGE_SIZE * 2;
1678
83f40318 1679 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1680
83f40318
VN
1681 /*
1682 * Don't succeed if resizing is disabled, as a reader might be
1683 * manipulating the ring buffer and is expecting a sane state while
1684 * this is true.
1685 */
1686 if (atomic_read(&buffer->resize_disabled))
1687 return -EBUSY;
18421015 1688
83f40318 1689 /* prevent another thread from changing buffer sizes */
7a8e76a3 1690 mutex_lock(&buffer->mutex);
7a8e76a3 1691
438ced17
VN
1692 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1693 /* calculate the pages to update */
7a8e76a3
SR
1694 for_each_buffer_cpu(buffer, cpu) {
1695 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1696
438ced17
VN
1697 cpu_buffer->nr_pages_to_update = nr_pages -
1698 cpu_buffer->nr_pages;
438ced17
VN
1699 /*
1700 * nothing more to do for removing pages or no update
1701 */
1702 if (cpu_buffer->nr_pages_to_update <= 0)
1703 continue;
d7ec4bfe 1704 /*
438ced17
VN
1705 * to add pages, make sure all new pages can be
1706 * allocated without receiving ENOMEM
d7ec4bfe 1707 */
438ced17
VN
1708 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1709 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1710 &cpu_buffer->new_pages, cpu)) {
438ced17 1711 /* not enough memory for new pages */
83f40318
VN
1712 err = -ENOMEM;
1713 goto out_err;
1714 }
1715 }
1716
1717 get_online_cpus();
1718 /*
1719 * Fire off all the required work handlers
05fdd70d 1720 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1721 * since we can change their buffer sizes without any race.
1722 */
1723 for_each_buffer_cpu(buffer, cpu) {
1724 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1725 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1726 continue;
1727
021c5b34
CM
1728 /* Can't run something on an offline CPU. */
1729 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1730 rb_update_pages(cpu_buffer);
1731 cpu_buffer->nr_pages_to_update = 0;
1732 } else {
05fdd70d
VN
1733 schedule_work_on(cpu,
1734 &cpu_buffer->update_pages_work);
f5eb5588 1735 }
7a8e76a3 1736 }
7a8e76a3 1737
438ced17
VN
1738 /* wait for all the updates to complete */
1739 for_each_buffer_cpu(buffer, cpu) {
1740 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1741 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1742 continue;
1743
05fdd70d
VN
1744 if (cpu_online(cpu))
1745 wait_for_completion(&cpu_buffer->update_done);
83f40318 1746 cpu_buffer->nr_pages_to_update = 0;
438ced17 1747 }
83f40318
VN
1748
1749 put_online_cpus();
438ced17 1750 } else {
8e49f418
VN
1751 /* Make sure this CPU has been intitialized */
1752 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1753 goto out;
1754
438ced17 1755 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1756
438ced17
VN
1757 if (nr_pages == cpu_buffer->nr_pages)
1758 goto out;
7a8e76a3 1759
438ced17
VN
1760 cpu_buffer->nr_pages_to_update = nr_pages -
1761 cpu_buffer->nr_pages;
1762
1763 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1764 if (cpu_buffer->nr_pages_to_update > 0 &&
1765 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1766 &cpu_buffer->new_pages, cpu_id)) {
1767 err = -ENOMEM;
1768 goto out_err;
1769 }
438ced17 1770
83f40318
VN
1771 get_online_cpus();
1772
021c5b34
CM
1773 /* Can't run something on an offline CPU. */
1774 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1775 rb_update_pages(cpu_buffer);
1776 else {
83f40318
VN
1777 schedule_work_on(cpu_id,
1778 &cpu_buffer->update_pages_work);
05fdd70d 1779 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1780 }
83f40318 1781
83f40318 1782 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1783 put_online_cpus();
438ced17 1784 }
7a8e76a3
SR
1785
1786 out:
659f451f
SR
1787 /*
1788 * The ring buffer resize can happen with the ring buffer
1789 * enabled, so that the update disturbs the tracing as little
1790 * as possible. But if the buffer is disabled, we do not need
1791 * to worry about that, and we can take the time to verify
1792 * that the buffer is not corrupt.
1793 */
1794 if (atomic_read(&buffer->record_disabled)) {
1795 atomic_inc(&buffer->record_disabled);
1796 /*
1797 * Even though the buffer was disabled, we must make sure
1798 * that it is truly disabled before calling rb_check_pages.
1799 * There could have been a race between checking
1800 * record_disable and incrementing it.
1801 */
1802 synchronize_sched();
1803 for_each_buffer_cpu(buffer, cpu) {
1804 cpu_buffer = buffer->buffers[cpu];
1805 rb_check_pages(cpu_buffer);
1806 }
1807 atomic_dec(&buffer->record_disabled);
1808 }
1809
7a8e76a3 1810 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1811 return size;
1812
83f40318 1813 out_err:
438ced17
VN
1814 for_each_buffer_cpu(buffer, cpu) {
1815 struct buffer_page *bpage, *tmp;
83f40318 1816
438ced17 1817 cpu_buffer = buffer->buffers[cpu];
438ced17 1818 cpu_buffer->nr_pages_to_update = 0;
83f40318 1819
438ced17
VN
1820 if (list_empty(&cpu_buffer->new_pages))
1821 continue;
83f40318 1822
438ced17
VN
1823 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1824 list) {
1825 list_del_init(&bpage->list);
1826 free_buffer_page(bpage);
1827 }
7a8e76a3 1828 }
641d2f63 1829 mutex_unlock(&buffer->mutex);
83f40318 1830 return err;
7a8e76a3 1831}
c4f50183 1832EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1833
750912fa
DS
1834void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1835{
1836 mutex_lock(&buffer->mutex);
1837 if (val)
1838 buffer->flags |= RB_FL_OVERWRITE;
1839 else
1840 buffer->flags &= ~RB_FL_OVERWRITE;
1841 mutex_unlock(&buffer->mutex);
1842}
1843EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1844
8789a9e7 1845static inline void *
044fa782 1846__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1847{
044fa782 1848 return bpage->data + index;
8789a9e7
SR
1849}
1850
044fa782 1851static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1852{
044fa782 1853 return bpage->page->data + index;
7a8e76a3
SR
1854}
1855
1856static inline struct ring_buffer_event *
d769041f 1857rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1858{
6f807acd
SR
1859 return __rb_page_index(cpu_buffer->reader_page,
1860 cpu_buffer->reader_page->read);
1861}
1862
7a8e76a3
SR
1863static inline struct ring_buffer_event *
1864rb_iter_head_event(struct ring_buffer_iter *iter)
1865{
6f807acd 1866 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1867}
1868
bf41a158
SR
1869static inline unsigned rb_page_commit(struct buffer_page *bpage)
1870{
abc9b56d 1871 return local_read(&bpage->page->commit);
bf41a158
SR
1872}
1873
25985edc 1874/* Size is determined by what has been committed */
bf41a158
SR
1875static inline unsigned rb_page_size(struct buffer_page *bpage)
1876{
1877 return rb_page_commit(bpage);
1878}
1879
1880static inline unsigned
1881rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1882{
1883 return rb_page_commit(cpu_buffer->commit_page);
1884}
1885
bf41a158
SR
1886static inline unsigned
1887rb_event_index(struct ring_buffer_event *event)
1888{
1889 unsigned long addr = (unsigned long)event;
1890
22f470f8 1891 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1892}
1893
0f0c85fc 1894static inline int
fa743953
SR
1895rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1896 struct ring_buffer_event *event)
bf41a158
SR
1897{
1898 unsigned long addr = (unsigned long)event;
1899 unsigned long index;
1900
1901 index = rb_event_index(event);
1902 addr &= PAGE_MASK;
1903
1904 return cpu_buffer->commit_page->page == (void *)addr &&
1905 rb_commit_index(cpu_buffer) == index;
1906}
1907
34a148bf 1908static void
bf41a158 1909rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1910{
77ae365e
SR
1911 unsigned long max_count;
1912
bf41a158
SR
1913 /*
1914 * We only race with interrupts and NMIs on this CPU.
1915 * If we own the commit event, then we can commit
1916 * all others that interrupted us, since the interruptions
1917 * are in stack format (they finish before they come
1918 * back to us). This allows us to do a simple loop to
1919 * assign the commit to the tail.
1920 */
a8ccf1d6 1921 again:
438ced17 1922 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1923
bf41a158 1924 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1925 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1926 return;
1927 if (RB_WARN_ON(cpu_buffer,
1928 rb_is_reader_page(cpu_buffer->tail_page)))
1929 return;
1930 local_set(&cpu_buffer->commit_page->page->commit,
1931 rb_page_write(cpu_buffer->commit_page));
bf41a158 1932 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1933 cpu_buffer->write_stamp =
1934 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1935 /* add barrier to keep gcc from optimizing too much */
1936 barrier();
1937 }
1938 while (rb_commit_index(cpu_buffer) !=
1939 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1940
1941 local_set(&cpu_buffer->commit_page->page->commit,
1942 rb_page_write(cpu_buffer->commit_page));
1943 RB_WARN_ON(cpu_buffer,
1944 local_read(&cpu_buffer->commit_page->page->commit) &
1945 ~RB_WRITE_MASK);
bf41a158
SR
1946 barrier();
1947 }
a8ccf1d6
SR
1948
1949 /* again, keep gcc from optimizing */
1950 barrier();
1951
1952 /*
1953 * If an interrupt came in just after the first while loop
1954 * and pushed the tail page forward, we will be left with
1955 * a dangling commit that will never go forward.
1956 */
1957 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1958 goto again;
7a8e76a3
SR
1959}
1960
d769041f 1961static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1962{
abc9b56d 1963 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1964 cpu_buffer->reader_page->read = 0;
d769041f
SR
1965}
1966
34a148bf 1967static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1968{
1969 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1970
1971 /*
1972 * The iterator could be on the reader page (it starts there).
1973 * But the head could have moved, since the reader was
1974 * found. Check for this case and assign the iterator
1975 * to the head page instead of next.
1976 */
1977 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1978 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1979 else
1980 rb_inc_page(cpu_buffer, &iter->head_page);
1981
abc9b56d 1982 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1983 iter->head = 0;
1984}
1985
69d1b839
SR
1986/* Slow path, do not inline */
1987static noinline struct ring_buffer_event *
1988rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1989{
1990 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1991
1992 /* Not the first event on the page? */
1993 if (rb_event_index(event)) {
1994 event->time_delta = delta & TS_MASK;
1995 event->array[0] = delta >> TS_SHIFT;
1996 } else {
1997 /* nope, just zero it */
1998 event->time_delta = 0;
1999 event->array[0] = 0;
2000 }
2001
2002 return skip_time_extend(event);
2003}
2004
7a8e76a3 2005/**
01e3e710 2006 * rb_update_event - update event type and data
021de3d9 2007 * @event: the event to update
7a8e76a3
SR
2008 * @type: the type of event
2009 * @length: the size of the event field in the ring buffer
2010 *
2011 * Update the type and data fields of the event. The length
2012 * is the actual size that is written to the ring buffer,
2013 * and with this, we can determine what to place into the
2014 * data field.
2015 */
34a148bf 2016static void
69d1b839
SR
2017rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2018 struct ring_buffer_event *event, unsigned length,
2019 int add_timestamp, u64 delta)
7a8e76a3 2020{
69d1b839
SR
2021 /* Only a commit updates the timestamp */
2022 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2023 delta = 0;
7a8e76a3 2024
69d1b839
SR
2025 /*
2026 * If we need to add a timestamp, then we
2027 * add it to the start of the resevered space.
2028 */
2029 if (unlikely(add_timestamp)) {
2030 event = rb_add_time_stamp(event, delta);
2031 length -= RB_LEN_TIME_EXTEND;
2032 delta = 0;
7a8e76a3 2033 }
69d1b839
SR
2034
2035 event->time_delta = delta;
2036 length -= RB_EVNT_HDR_SIZE;
2037 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2038 event->type_len = 0;
2039 event->array[0] = length;
2040 } else
2041 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2042}
2043
77ae365e
SR
2044/*
2045 * rb_handle_head_page - writer hit the head page
2046 *
2047 * Returns: +1 to retry page
2048 * 0 to continue
2049 * -1 on error
2050 */
2051static int
2052rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2053 struct buffer_page *tail_page,
2054 struct buffer_page *next_page)
2055{
2056 struct buffer_page *new_head;
2057 int entries;
2058 int type;
2059 int ret;
2060
2061 entries = rb_page_entries(next_page);
2062
2063 /*
2064 * The hard part is here. We need to move the head
2065 * forward, and protect against both readers on
2066 * other CPUs and writers coming in via interrupts.
2067 */
2068 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2069 RB_PAGE_HEAD);
2070
2071 /*
2072 * type can be one of four:
2073 * NORMAL - an interrupt already moved it for us
2074 * HEAD - we are the first to get here.
2075 * UPDATE - we are the interrupt interrupting
2076 * a current move.
2077 * MOVED - a reader on another CPU moved the next
2078 * pointer to its reader page. Give up
2079 * and try again.
2080 */
2081
2082 switch (type) {
2083 case RB_PAGE_HEAD:
2084 /*
2085 * We changed the head to UPDATE, thus
2086 * it is our responsibility to update
2087 * the counters.
2088 */
2089 local_add(entries, &cpu_buffer->overrun);
c64e148a 2090 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2091
2092 /*
2093 * The entries will be zeroed out when we move the
2094 * tail page.
2095 */
2096
2097 /* still more to do */
2098 break;
2099
2100 case RB_PAGE_UPDATE:
2101 /*
2102 * This is an interrupt that interrupt the
2103 * previous update. Still more to do.
2104 */
2105 break;
2106 case RB_PAGE_NORMAL:
2107 /*
2108 * An interrupt came in before the update
2109 * and processed this for us.
2110 * Nothing left to do.
2111 */
2112 return 1;
2113 case RB_PAGE_MOVED:
2114 /*
2115 * The reader is on another CPU and just did
2116 * a swap with our next_page.
2117 * Try again.
2118 */
2119 return 1;
2120 default:
2121 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2122 return -1;
2123 }
2124
2125 /*
2126 * Now that we are here, the old head pointer is
2127 * set to UPDATE. This will keep the reader from
2128 * swapping the head page with the reader page.
2129 * The reader (on another CPU) will spin till
2130 * we are finished.
2131 *
2132 * We just need to protect against interrupts
2133 * doing the job. We will set the next pointer
2134 * to HEAD. After that, we set the old pointer
2135 * to NORMAL, but only if it was HEAD before.
2136 * otherwise we are an interrupt, and only
2137 * want the outer most commit to reset it.
2138 */
2139 new_head = next_page;
2140 rb_inc_page(cpu_buffer, &new_head);
2141
2142 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2143 RB_PAGE_NORMAL);
2144
2145 /*
2146 * Valid returns are:
2147 * HEAD - an interrupt came in and already set it.
2148 * NORMAL - One of two things:
2149 * 1) We really set it.
2150 * 2) A bunch of interrupts came in and moved
2151 * the page forward again.
2152 */
2153 switch (ret) {
2154 case RB_PAGE_HEAD:
2155 case RB_PAGE_NORMAL:
2156 /* OK */
2157 break;
2158 default:
2159 RB_WARN_ON(cpu_buffer, 1);
2160 return -1;
2161 }
2162
2163 /*
2164 * It is possible that an interrupt came in,
2165 * set the head up, then more interrupts came in
2166 * and moved it again. When we get back here,
2167 * the page would have been set to NORMAL but we
2168 * just set it back to HEAD.
2169 *
2170 * How do you detect this? Well, if that happened
2171 * the tail page would have moved.
2172 */
2173 if (ret == RB_PAGE_NORMAL) {
2174 /*
2175 * If the tail had moved passed next, then we need
2176 * to reset the pointer.
2177 */
2178 if (cpu_buffer->tail_page != tail_page &&
2179 cpu_buffer->tail_page != next_page)
2180 rb_head_page_set_normal(cpu_buffer, new_head,
2181 next_page,
2182 RB_PAGE_HEAD);
2183 }
2184
2185 /*
2186 * If this was the outer most commit (the one that
2187 * changed the original pointer from HEAD to UPDATE),
2188 * then it is up to us to reset it to NORMAL.
2189 */
2190 if (type == RB_PAGE_HEAD) {
2191 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2192 tail_page,
2193 RB_PAGE_UPDATE);
2194 if (RB_WARN_ON(cpu_buffer,
2195 ret != RB_PAGE_UPDATE))
2196 return -1;
2197 }
2198
2199 return 0;
2200}
2201
34a148bf 2202static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2203{
2204 struct ring_buffer_event event; /* Used only for sizeof array */
2205
2206 /* zero length can cause confusions */
2207 if (!length)
2208 length = 1;
2209
2271048d 2210 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2211 length += sizeof(event.array[0]);
2212
2213 length += RB_EVNT_HDR_SIZE;
2271048d 2214 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2215
2216 return length;
2217}
2218
c7b09308
SR
2219static inline void
2220rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2221 struct buffer_page *tail_page,
2222 unsigned long tail, unsigned long length)
2223{
2224 struct ring_buffer_event *event;
2225
2226 /*
2227 * Only the event that crossed the page boundary
2228 * must fill the old tail_page with padding.
2229 */
2230 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2231 /*
2232 * If the page was filled, then we still need
2233 * to update the real_end. Reset it to zero
2234 * and the reader will ignore it.
2235 */
2236 if (tail == BUF_PAGE_SIZE)
2237 tail_page->real_end = 0;
2238
c7b09308
SR
2239 local_sub(length, &tail_page->write);
2240 return;
2241 }
2242
2243 event = __rb_page_index(tail_page, tail);
b0b7065b 2244 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2245
c64e148a
VN
2246 /* account for padding bytes */
2247 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2248
ff0ff84a
SR
2249 /*
2250 * Save the original length to the meta data.
2251 * This will be used by the reader to add lost event
2252 * counter.
2253 */
2254 tail_page->real_end = tail;
2255
c7b09308
SR
2256 /*
2257 * If this event is bigger than the minimum size, then
2258 * we need to be careful that we don't subtract the
2259 * write counter enough to allow another writer to slip
2260 * in on this page.
2261 * We put in a discarded commit instead, to make sure
2262 * that this space is not used again.
2263 *
2264 * If we are less than the minimum size, we don't need to
2265 * worry about it.
2266 */
2267 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2268 /* No room for any events */
2269
2270 /* Mark the rest of the page with padding */
2271 rb_event_set_padding(event);
2272
2273 /* Set the write back to the previous setting */
2274 local_sub(length, &tail_page->write);
2275 return;
2276 }
2277
2278 /* Put in a discarded event */
2279 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2280 event->type_len = RINGBUF_TYPE_PADDING;
2281 /* time delta must be non zero */
2282 event->time_delta = 1;
c7b09308
SR
2283
2284 /* Set write to end of buffer */
2285 length = (tail + length) - BUF_PAGE_SIZE;
2286 local_sub(length, &tail_page->write);
2287}
6634ff26 2288
747e94ae
SR
2289/*
2290 * This is the slow path, force gcc not to inline it.
2291 */
2292static noinline struct ring_buffer_event *
6634ff26
SR
2293rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2294 unsigned long length, unsigned long tail,
e8bc43e8 2295 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2296{
5a50e33c 2297 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2298 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2299 struct buffer_page *next_page;
2300 int ret;
aa20ae84
SR
2301
2302 next_page = tail_page;
2303
aa20ae84
SR
2304 rb_inc_page(cpu_buffer, &next_page);
2305
aa20ae84
SR
2306 /*
2307 * If for some reason, we had an interrupt storm that made
2308 * it all the way around the buffer, bail, and warn
2309 * about it.
2310 */
2311 if (unlikely(next_page == commit_page)) {
77ae365e 2312 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2313 goto out_reset;
2314 }
2315
77ae365e
SR
2316 /*
2317 * This is where the fun begins!
2318 *
2319 * We are fighting against races between a reader that
2320 * could be on another CPU trying to swap its reader
2321 * page with the buffer head.
2322 *
2323 * We are also fighting against interrupts coming in and
2324 * moving the head or tail on us as well.
2325 *
2326 * If the next page is the head page then we have filled
2327 * the buffer, unless the commit page is still on the
2328 * reader page.
2329 */
2330 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2331
77ae365e
SR
2332 /*
2333 * If the commit is not on the reader page, then
2334 * move the header page.
2335 */
2336 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2337 /*
2338 * If we are not in overwrite mode,
2339 * this is easy, just stop here.
2340 */
884bfe89
SP
2341 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2342 local_inc(&cpu_buffer->dropped_events);
77ae365e 2343 goto out_reset;
884bfe89 2344 }
77ae365e
SR
2345
2346 ret = rb_handle_head_page(cpu_buffer,
2347 tail_page,
2348 next_page);
2349 if (ret < 0)
2350 goto out_reset;
2351 if (ret)
2352 goto out_again;
2353 } else {
2354 /*
2355 * We need to be careful here too. The
2356 * commit page could still be on the reader
2357 * page. We could have a small buffer, and
2358 * have filled up the buffer with events
2359 * from interrupts and such, and wrapped.
2360 *
2361 * Note, if the tail page is also the on the
2362 * reader_page, we let it move out.
2363 */
2364 if (unlikely((cpu_buffer->commit_page !=
2365 cpu_buffer->tail_page) &&
2366 (cpu_buffer->commit_page ==
2367 cpu_buffer->reader_page))) {
2368 local_inc(&cpu_buffer->commit_overrun);
2369 goto out_reset;
2370 }
aa20ae84
SR
2371 }
2372 }
2373
77ae365e
SR
2374 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2375 if (ret) {
2376 /*
2377 * Nested commits always have zero deltas, so
2378 * just reread the time stamp
2379 */
e8bc43e8
SR
2380 ts = rb_time_stamp(buffer);
2381 next_page->page->time_stamp = ts;
aa20ae84
SR
2382 }
2383
77ae365e 2384 out_again:
aa20ae84 2385
77ae365e 2386 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2387
2388 /* fail and let the caller try again */
2389 return ERR_PTR(-EAGAIN);
2390
45141d46 2391 out_reset:
6f3b3440 2392 /* reset write */
c7b09308 2393 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2394
bf41a158 2395 return NULL;
7a8e76a3
SR
2396}
2397
6634ff26
SR
2398static struct ring_buffer_event *
2399__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2400 unsigned long length, u64 ts,
2401 u64 delta, int add_timestamp)
6634ff26 2402{
5a50e33c 2403 struct buffer_page *tail_page;
6634ff26
SR
2404 struct ring_buffer_event *event;
2405 unsigned long tail, write;
2406
69d1b839
SR
2407 /*
2408 * If the time delta since the last event is too big to
2409 * hold in the time field of the event, then we append a
2410 * TIME EXTEND event ahead of the data event.
2411 */
2412 if (unlikely(add_timestamp))
2413 length += RB_LEN_TIME_EXTEND;
2414
6634ff26
SR
2415 tail_page = cpu_buffer->tail_page;
2416 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2417
2418 /* set write to only the index of the write */
2419 write &= RB_WRITE_MASK;
6634ff26
SR
2420 tail = write - length;
2421
d651aa1d
SRRH
2422 /*
2423 * If this is the first commit on the page, then it has the same
2424 * timestamp as the page itself.
2425 */
2426 if (!tail)
2427 delta = 0;
2428
6634ff26 2429 /* See if we shot pass the end of this buffer page */
747e94ae 2430 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2431 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2432 tail_page, ts);
6634ff26
SR
2433
2434 /* We reserved something on the buffer */
2435
6634ff26 2436 event = __rb_page_index(tail_page, tail);
1744a21d 2437 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2438 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2439
69d1b839 2440 local_inc(&tail_page->entries);
6634ff26
SR
2441
2442 /*
fa743953
SR
2443 * If this is the first commit on the page, then update
2444 * its timestamp.
6634ff26 2445 */
fa743953 2446 if (!tail)
e8bc43e8 2447 tail_page->page->time_stamp = ts;
6634ff26 2448
c64e148a
VN
2449 /* account for these added bytes */
2450 local_add(length, &cpu_buffer->entries_bytes);
2451
6634ff26
SR
2452 return event;
2453}
2454
edd813bf
SR
2455static inline int
2456rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2457 struct ring_buffer_event *event)
2458{
2459 unsigned long new_index, old_index;
2460 struct buffer_page *bpage;
2461 unsigned long index;
2462 unsigned long addr;
2463
2464 new_index = rb_event_index(event);
69d1b839 2465 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2466 addr = (unsigned long)event;
2467 addr &= PAGE_MASK;
2468
2469 bpage = cpu_buffer->tail_page;
2470
2471 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2472 unsigned long write_mask =
2473 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2474 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2475 /*
2476 * This is on the tail page. It is possible that
2477 * a write could come in and move the tail page
2478 * and write to the next page. That is fine
2479 * because we just shorten what is on this page.
2480 */
77ae365e
SR
2481 old_index += write_mask;
2482 new_index += write_mask;
edd813bf 2483 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2484 if (index == old_index) {
2485 /* update counters */
2486 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2487 return 1;
c64e148a 2488 }
edd813bf
SR
2489 }
2490
2491 /* could not discard */
2492 return 0;
2493}
2494
fa743953
SR
2495static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2496{
2497 local_inc(&cpu_buffer->committing);
2498 local_inc(&cpu_buffer->commits);
2499}
2500
d9abde21 2501static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2502{
2503 unsigned long commits;
2504
2505 if (RB_WARN_ON(cpu_buffer,
2506 !local_read(&cpu_buffer->committing)))
2507 return;
2508
2509 again:
2510 commits = local_read(&cpu_buffer->commits);
2511 /* synchronize with interrupts */
2512 barrier();
2513 if (local_read(&cpu_buffer->committing) == 1)
2514 rb_set_commit_to_write(cpu_buffer);
2515
2516 local_dec(&cpu_buffer->committing);
2517
2518 /* synchronize with interrupts */
2519 barrier();
2520
2521 /*
2522 * Need to account for interrupts coming in between the
2523 * updating of the commit page and the clearing of the
2524 * committing counter.
2525 */
2526 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2527 !local_read(&cpu_buffer->committing)) {
2528 local_inc(&cpu_buffer->committing);
2529 goto again;
2530 }
2531}
2532
7a8e76a3 2533static struct ring_buffer_event *
62f0b3eb
SR
2534rb_reserve_next_event(struct ring_buffer *buffer,
2535 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2536 unsigned long length)
7a8e76a3
SR
2537{
2538 struct ring_buffer_event *event;
69d1b839 2539 u64 ts, delta;
818e3dd3 2540 int nr_loops = 0;
69d1b839 2541 int add_timestamp;
140ff891 2542 u64 diff;
7a8e76a3 2543
fa743953
SR
2544 rb_start_commit(cpu_buffer);
2545
85bac32c 2546#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2547 /*
2548 * Due to the ability to swap a cpu buffer from a buffer
2549 * it is possible it was swapped before we committed.
2550 * (committing stops a swap). We check for it here and
2551 * if it happened, we have to fail the write.
2552 */
2553 barrier();
2554 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2555 local_dec(&cpu_buffer->committing);
2556 local_dec(&cpu_buffer->commits);
2557 return NULL;
2558 }
85bac32c 2559#endif
62f0b3eb 2560
be957c44 2561 length = rb_calculate_event_length(length);
bf41a158 2562 again:
69d1b839
SR
2563 add_timestamp = 0;
2564 delta = 0;
2565
818e3dd3
SR
2566 /*
2567 * We allow for interrupts to reenter here and do a trace.
2568 * If one does, it will cause this original code to loop
2569 * back here. Even with heavy interrupts happening, this
2570 * should only happen a few times in a row. If this happens
2571 * 1000 times in a row, there must be either an interrupt
2572 * storm or we have something buggy.
2573 * Bail!
2574 */
3e89c7bb 2575 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2576 goto out_fail;
818e3dd3 2577
6d3f1e12 2578 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2579 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2580
140ff891
SR
2581 /* make sure this diff is calculated here */
2582 barrier();
bf41a158 2583
140ff891
SR
2584 /* Did the write stamp get updated already? */
2585 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2586 delta = diff;
2587 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2588 int local_clock_stable = 1;
2589#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2590 local_clock_stable = sched_clock_stable();
31274d72 2591#endif
69d1b839 2592 WARN_ONCE(delta > (1ULL << 59),
31274d72 2593 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2594 (unsigned long long)delta,
2595 (unsigned long long)ts,
31274d72
JO
2596 (unsigned long long)cpu_buffer->write_stamp,
2597 local_clock_stable ? "" :
2598 "If you just came from a suspend/resume,\n"
2599 "please switch to the trace global clock:\n"
2600 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2601 add_timestamp = 1;
7a8e76a3 2602 }
168b6b1d 2603 }
7a8e76a3 2604
69d1b839
SR
2605 event = __rb_reserve_next(cpu_buffer, length, ts,
2606 delta, add_timestamp);
168b6b1d 2607 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2608 goto again;
2609
fa743953
SR
2610 if (!event)
2611 goto out_fail;
7a8e76a3 2612
7a8e76a3 2613 return event;
fa743953
SR
2614
2615 out_fail:
2616 rb_end_commit(cpu_buffer);
2617 return NULL;
7a8e76a3
SR
2618}
2619
1155de47
PM
2620#ifdef CONFIG_TRACING
2621
567cd4da
SR
2622/*
2623 * The lock and unlock are done within a preempt disable section.
2624 * The current_context per_cpu variable can only be modified
2625 * by the current task between lock and unlock. But it can
2626 * be modified more than once via an interrupt. To pass this
2627 * information from the lock to the unlock without having to
2628 * access the 'in_interrupt()' functions again (which do show
2629 * a bit of overhead in something as critical as function tracing,
2630 * we use a bitmask trick.
2631 *
2632 * bit 0 = NMI context
2633 * bit 1 = IRQ context
2634 * bit 2 = SoftIRQ context
2635 * bit 3 = normal context.
2636 *
2637 * This works because this is the order of contexts that can
2638 * preempt other contexts. A SoftIRQ never preempts an IRQ
2639 * context.
2640 *
2641 * When the context is determined, the corresponding bit is
2642 * checked and set (if it was set, then a recursion of that context
2643 * happened).
2644 *
2645 * On unlock, we need to clear this bit. To do so, just subtract
2646 * 1 from the current_context and AND it to itself.
2647 *
2648 * (binary)
2649 * 101 - 1 = 100
2650 * 101 & 100 = 100 (clearing bit zero)
2651 *
2652 * 1010 - 1 = 1001
2653 * 1010 & 1001 = 1000 (clearing bit 1)
2654 *
2655 * The least significant bit can be cleared this way, and it
2656 * just so happens that it is the same bit corresponding to
2657 * the current context.
2658 */
2659static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2660
567cd4da 2661static __always_inline int trace_recursive_lock(void)
261842b7 2662{
567cd4da
SR
2663 unsigned int val = this_cpu_read(current_context);
2664 int bit;
d9abde21 2665
567cd4da
SR
2666 if (in_interrupt()) {
2667 if (in_nmi())
2668 bit = 0;
2669 else if (in_irq())
2670 bit = 1;
2671 else
2672 bit = 2;
2673 } else
2674 bit = 3;
d9abde21 2675
567cd4da
SR
2676 if (unlikely(val & (1 << bit)))
2677 return 1;
d9abde21 2678
567cd4da
SR
2679 val |= (1 << bit);
2680 this_cpu_write(current_context, val);
d9abde21 2681
567cd4da 2682 return 0;
261842b7
SR
2683}
2684
567cd4da 2685static __always_inline void trace_recursive_unlock(void)
261842b7 2686{
567cd4da 2687 unsigned int val = this_cpu_read(current_context);
261842b7 2688
567cd4da
SR
2689 val--;
2690 val &= this_cpu_read(current_context);
2691 this_cpu_write(current_context, val);
261842b7
SR
2692}
2693
1155de47
PM
2694#else
2695
2696#define trace_recursive_lock() (0)
2697#define trace_recursive_unlock() do { } while (0)
2698
2699#endif
2700
7a8e76a3
SR
2701/**
2702 * ring_buffer_lock_reserve - reserve a part of the buffer
2703 * @buffer: the ring buffer to reserve from
2704 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2705 *
2706 * Returns a reseverd event on the ring buffer to copy directly to.
2707 * The user of this interface will need to get the body to write into
2708 * and can use the ring_buffer_event_data() interface.
2709 *
2710 * The length is the length of the data needed, not the event length
2711 * which also includes the event header.
2712 *
2713 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2714 * If NULL is returned, then nothing has been allocated or locked.
2715 */
2716struct ring_buffer_event *
0a987751 2717ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2718{
2719 struct ring_buffer_per_cpu *cpu_buffer;
2720 struct ring_buffer_event *event;
5168ae50 2721 int cpu;
7a8e76a3 2722
033601a3 2723 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2724 return NULL;
2725
bf41a158 2726 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2727 preempt_disable_notrace();
bf41a158 2728
52fbe9cd
LJ
2729 if (atomic_read(&buffer->record_disabled))
2730 goto out_nocheck;
2731
261842b7
SR
2732 if (trace_recursive_lock())
2733 goto out_nocheck;
2734
7a8e76a3
SR
2735 cpu = raw_smp_processor_id();
2736
9e01c1b7 2737 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2738 goto out;
7a8e76a3
SR
2739
2740 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2741
2742 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2743 goto out;
7a8e76a3 2744
be957c44 2745 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2746 goto out;
7a8e76a3 2747
62f0b3eb 2748 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2749 if (!event)
d769041f 2750 goto out;
7a8e76a3
SR
2751
2752 return event;
2753
d769041f 2754 out:
261842b7
SR
2755 trace_recursive_unlock();
2756
2757 out_nocheck:
5168ae50 2758 preempt_enable_notrace();
7a8e76a3
SR
2759 return NULL;
2760}
c4f50183 2761EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2762
a1863c21
SR
2763static void
2764rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2765 struct ring_buffer_event *event)
2766{
69d1b839
SR
2767 u64 delta;
2768
fa743953
SR
2769 /*
2770 * The event first in the commit queue updates the
2771 * time stamp.
2772 */
69d1b839
SR
2773 if (rb_event_is_commit(cpu_buffer, event)) {
2774 /*
2775 * A commit event that is first on a page
2776 * updates the write timestamp with the page stamp
2777 */
2778 if (!rb_event_index(event))
2779 cpu_buffer->write_stamp =
2780 cpu_buffer->commit_page->page->time_stamp;
2781 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2782 delta = event->array[0];
2783 delta <<= TS_SHIFT;
2784 delta += event->time_delta;
2785 cpu_buffer->write_stamp += delta;
2786 } else
2787 cpu_buffer->write_stamp += event->time_delta;
2788 }
a1863c21 2789}
bf41a158 2790
a1863c21
SR
2791static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2792 struct ring_buffer_event *event)
2793{
2794 local_inc(&cpu_buffer->entries);
2795 rb_update_write_stamp(cpu_buffer, event);
fa743953 2796 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2797}
2798
15693458
SRRH
2799static __always_inline void
2800rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2801{
2802 if (buffer->irq_work.waiters_pending) {
2803 buffer->irq_work.waiters_pending = false;
2804 /* irq_work_queue() supplies it's own memory barriers */
2805 irq_work_queue(&buffer->irq_work.work);
2806 }
2807
2808 if (cpu_buffer->irq_work.waiters_pending) {
2809 cpu_buffer->irq_work.waiters_pending = false;
2810 /* irq_work_queue() supplies it's own memory barriers */
2811 irq_work_queue(&cpu_buffer->irq_work.work);
2812 }
2813}
2814
7a8e76a3
SR
2815/**
2816 * ring_buffer_unlock_commit - commit a reserved
2817 * @buffer: The buffer to commit to
2818 * @event: The event pointer to commit.
7a8e76a3
SR
2819 *
2820 * This commits the data to the ring buffer, and releases any locks held.
2821 *
2822 * Must be paired with ring_buffer_lock_reserve.
2823 */
2824int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2825 struct ring_buffer_event *event)
7a8e76a3
SR
2826{
2827 struct ring_buffer_per_cpu *cpu_buffer;
2828 int cpu = raw_smp_processor_id();
2829
2830 cpu_buffer = buffer->buffers[cpu];
2831
7a8e76a3
SR
2832 rb_commit(cpu_buffer, event);
2833
15693458
SRRH
2834 rb_wakeups(buffer, cpu_buffer);
2835
261842b7
SR
2836 trace_recursive_unlock();
2837
5168ae50 2838 preempt_enable_notrace();
7a8e76a3
SR
2839
2840 return 0;
2841}
c4f50183 2842EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2843
f3b9aae1
FW
2844static inline void rb_event_discard(struct ring_buffer_event *event)
2845{
69d1b839
SR
2846 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2847 event = skip_time_extend(event);
2848
334d4169
LJ
2849 /* array[0] holds the actual length for the discarded event */
2850 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2851 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2852 /* time delta must be non zero */
2853 if (!event->time_delta)
2854 event->time_delta = 1;
2855}
2856
a1863c21
SR
2857/*
2858 * Decrement the entries to the page that an event is on.
2859 * The event does not even need to exist, only the pointer
2860 * to the page it is on. This may only be called before the commit
2861 * takes place.
2862 */
2863static inline void
2864rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2865 struct ring_buffer_event *event)
2866{
2867 unsigned long addr = (unsigned long)event;
2868 struct buffer_page *bpage = cpu_buffer->commit_page;
2869 struct buffer_page *start;
2870
2871 addr &= PAGE_MASK;
2872
2873 /* Do the likely case first */
2874 if (likely(bpage->page == (void *)addr)) {
2875 local_dec(&bpage->entries);
2876 return;
2877 }
2878
2879 /*
2880 * Because the commit page may be on the reader page we
2881 * start with the next page and check the end loop there.
2882 */
2883 rb_inc_page(cpu_buffer, &bpage);
2884 start = bpage;
2885 do {
2886 if (bpage->page == (void *)addr) {
2887 local_dec(&bpage->entries);
2888 return;
2889 }
2890 rb_inc_page(cpu_buffer, &bpage);
2891 } while (bpage != start);
2892
2893 /* commit not part of this buffer?? */
2894 RB_WARN_ON(cpu_buffer, 1);
2895}
2896
fa1b47dd
SR
2897/**
2898 * ring_buffer_commit_discard - discard an event that has not been committed
2899 * @buffer: the ring buffer
2900 * @event: non committed event to discard
2901 *
dc892f73
SR
2902 * Sometimes an event that is in the ring buffer needs to be ignored.
2903 * This function lets the user discard an event in the ring buffer
2904 * and then that event will not be read later.
2905 *
2906 * This function only works if it is called before the the item has been
2907 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2908 * if another event has not been added behind it.
2909 *
2910 * If another event has been added behind it, it will set the event
2911 * up as discarded, and perform the commit.
2912 *
2913 * If this function is called, do not call ring_buffer_unlock_commit on
2914 * the event.
2915 */
2916void ring_buffer_discard_commit(struct ring_buffer *buffer,
2917 struct ring_buffer_event *event)
2918{
2919 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2920 int cpu;
2921
2922 /* The event is discarded regardless */
f3b9aae1 2923 rb_event_discard(event);
fa1b47dd 2924
fa743953
SR
2925 cpu = smp_processor_id();
2926 cpu_buffer = buffer->buffers[cpu];
2927
fa1b47dd
SR
2928 /*
2929 * This must only be called if the event has not been
2930 * committed yet. Thus we can assume that preemption
2931 * is still disabled.
2932 */
fa743953 2933 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2934
a1863c21 2935 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2936 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2937 goto out;
fa1b47dd
SR
2938
2939 /*
2940 * The commit is still visible by the reader, so we
a1863c21 2941 * must still update the timestamp.
fa1b47dd 2942 */
a1863c21 2943 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2944 out:
fa743953 2945 rb_end_commit(cpu_buffer);
fa1b47dd 2946
f3b9aae1
FW
2947 trace_recursive_unlock();
2948
5168ae50 2949 preempt_enable_notrace();
fa1b47dd
SR
2950
2951}
2952EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2953
7a8e76a3
SR
2954/**
2955 * ring_buffer_write - write data to the buffer without reserving
2956 * @buffer: The ring buffer to write to.
2957 * @length: The length of the data being written (excluding the event header)
2958 * @data: The data to write to the buffer.
2959 *
2960 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2961 * one function. If you already have the data to write to the buffer, it
2962 * may be easier to simply call this function.
2963 *
2964 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2965 * and not the length of the event which would hold the header.
2966 */
2967int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2968 unsigned long length,
2969 void *data)
7a8e76a3
SR
2970{
2971 struct ring_buffer_per_cpu *cpu_buffer;
2972 struct ring_buffer_event *event;
7a8e76a3
SR
2973 void *body;
2974 int ret = -EBUSY;
5168ae50 2975 int cpu;
7a8e76a3 2976
033601a3 2977 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2978 return -EBUSY;
2979
5168ae50 2980 preempt_disable_notrace();
bf41a158 2981
52fbe9cd
LJ
2982 if (atomic_read(&buffer->record_disabled))
2983 goto out;
2984
7a8e76a3
SR
2985 cpu = raw_smp_processor_id();
2986
9e01c1b7 2987 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2988 goto out;
7a8e76a3
SR
2989
2990 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2991
2992 if (atomic_read(&cpu_buffer->record_disabled))
2993 goto out;
2994
be957c44
SR
2995 if (length > BUF_MAX_DATA_SIZE)
2996 goto out;
2997
62f0b3eb 2998 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2999 if (!event)
3000 goto out;
3001
3002 body = rb_event_data(event);
3003
3004 memcpy(body, data, length);
3005
3006 rb_commit(cpu_buffer, event);
3007
15693458
SRRH
3008 rb_wakeups(buffer, cpu_buffer);
3009
7a8e76a3
SR
3010 ret = 0;
3011 out:
5168ae50 3012 preempt_enable_notrace();
7a8e76a3
SR
3013
3014 return ret;
3015}
c4f50183 3016EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3017
34a148bf 3018static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3019{
3020 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3021 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3022 struct buffer_page *commit = cpu_buffer->commit_page;
3023
77ae365e
SR
3024 /* In case of error, head will be NULL */
3025 if (unlikely(!head))
3026 return 1;
3027
bf41a158
SR
3028 return reader->read == rb_page_commit(reader) &&
3029 (commit == reader ||
3030 (commit == head &&
3031 head->read == rb_page_commit(commit)));
3032}
3033
7a8e76a3
SR
3034/**
3035 * ring_buffer_record_disable - stop all writes into the buffer
3036 * @buffer: The ring buffer to stop writes to.
3037 *
3038 * This prevents all writes to the buffer. Any attempt to write
3039 * to the buffer after this will fail and return NULL.
3040 *
3041 * The caller should call synchronize_sched() after this.
3042 */
3043void ring_buffer_record_disable(struct ring_buffer *buffer)
3044{
3045 atomic_inc(&buffer->record_disabled);
3046}
c4f50183 3047EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3048
3049/**
3050 * ring_buffer_record_enable - enable writes to the buffer
3051 * @buffer: The ring buffer to enable writes
3052 *
3053 * Note, multiple disables will need the same number of enables
c41b20e7 3054 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3055 */
3056void ring_buffer_record_enable(struct ring_buffer *buffer)
3057{
3058 atomic_dec(&buffer->record_disabled);
3059}
c4f50183 3060EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3061
499e5470
SR
3062/**
3063 * ring_buffer_record_off - stop all writes into the buffer
3064 * @buffer: The ring buffer to stop writes to.
3065 *
3066 * This prevents all writes to the buffer. Any attempt to write
3067 * to the buffer after this will fail and return NULL.
3068 *
3069 * This is different than ring_buffer_record_disable() as
87abb3b1 3070 * it works like an on/off switch, where as the disable() version
499e5470
SR
3071 * must be paired with a enable().
3072 */
3073void ring_buffer_record_off(struct ring_buffer *buffer)
3074{
3075 unsigned int rd;
3076 unsigned int new_rd;
3077
3078 do {
3079 rd = atomic_read(&buffer->record_disabled);
3080 new_rd = rd | RB_BUFFER_OFF;
3081 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3082}
3083EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3084
3085/**
3086 * ring_buffer_record_on - restart writes into the buffer
3087 * @buffer: The ring buffer to start writes to.
3088 *
3089 * This enables all writes to the buffer that was disabled by
3090 * ring_buffer_record_off().
3091 *
3092 * This is different than ring_buffer_record_enable() as
87abb3b1 3093 * it works like an on/off switch, where as the enable() version
499e5470
SR
3094 * must be paired with a disable().
3095 */
3096void ring_buffer_record_on(struct ring_buffer *buffer)
3097{
3098 unsigned int rd;
3099 unsigned int new_rd;
3100
3101 do {
3102 rd = atomic_read(&buffer->record_disabled);
3103 new_rd = rd & ~RB_BUFFER_OFF;
3104 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3105}
3106EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3107
3108/**
3109 * ring_buffer_record_is_on - return true if the ring buffer can write
3110 * @buffer: The ring buffer to see if write is enabled
3111 *
3112 * Returns true if the ring buffer is in a state that it accepts writes.
3113 */
3114int ring_buffer_record_is_on(struct ring_buffer *buffer)
3115{
3116 return !atomic_read(&buffer->record_disabled);
3117}
3118
7a8e76a3
SR
3119/**
3120 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3121 * @buffer: The ring buffer to stop writes to.
3122 * @cpu: The CPU buffer to stop
3123 *
3124 * This prevents all writes to the buffer. Any attempt to write
3125 * to the buffer after this will fail and return NULL.
3126 *
3127 * The caller should call synchronize_sched() after this.
3128 */
3129void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3130{
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132
9e01c1b7 3133 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3134 return;
7a8e76a3
SR
3135
3136 cpu_buffer = buffer->buffers[cpu];
3137 atomic_inc(&cpu_buffer->record_disabled);
3138}
c4f50183 3139EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3140
3141/**
3142 * ring_buffer_record_enable_cpu - enable writes to the buffer
3143 * @buffer: The ring buffer to enable writes
3144 * @cpu: The CPU to enable.
3145 *
3146 * Note, multiple disables will need the same number of enables
c41b20e7 3147 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3148 */
3149void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3150{
3151 struct ring_buffer_per_cpu *cpu_buffer;
3152
9e01c1b7 3153 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3154 return;
7a8e76a3
SR
3155
3156 cpu_buffer = buffer->buffers[cpu];
3157 atomic_dec(&cpu_buffer->record_disabled);
3158}
c4f50183 3159EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3160
f6195aa0
SR
3161/*
3162 * The total entries in the ring buffer is the running counter
3163 * of entries entered into the ring buffer, minus the sum of
3164 * the entries read from the ring buffer and the number of
3165 * entries that were overwritten.
3166 */
3167static inline unsigned long
3168rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3169{
3170 return local_read(&cpu_buffer->entries) -
3171 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3172}
3173
c64e148a
VN
3174/**
3175 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3176 * @buffer: The ring buffer
3177 * @cpu: The per CPU buffer to read from.
3178 */
50ecf2c3 3179u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3180{
3181 unsigned long flags;
3182 struct ring_buffer_per_cpu *cpu_buffer;
3183 struct buffer_page *bpage;
da830e58 3184 u64 ret = 0;
c64e148a
VN
3185
3186 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3187 return 0;
3188
3189 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3190 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3191 /*
3192 * if the tail is on reader_page, oldest time stamp is on the reader
3193 * page
3194 */
3195 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3196 bpage = cpu_buffer->reader_page;
3197 else
3198 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3199 if (bpage)
3200 ret = bpage->page->time_stamp;
7115e3fc 3201 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3202
3203 return ret;
3204}
3205EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3206
3207/**
3208 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3209 * @buffer: The ring buffer
3210 * @cpu: The per CPU buffer to read from.
3211 */
3212unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3213{
3214 struct ring_buffer_per_cpu *cpu_buffer;
3215 unsigned long ret;
3216
3217 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218 return 0;
3219
3220 cpu_buffer = buffer->buffers[cpu];
3221 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3222
3223 return ret;
3224}
3225EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3226
7a8e76a3
SR
3227/**
3228 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the entries from.
3231 */
3232unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3233{
3234 struct ring_buffer_per_cpu *cpu_buffer;
3235
9e01c1b7 3236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3237 return 0;
7a8e76a3
SR
3238
3239 cpu_buffer = buffer->buffers[cpu];
554f786e 3240
f6195aa0 3241 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3242}
c4f50183 3243EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3244
3245/**
884bfe89
SP
3246 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3247 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3248 * @buffer: The ring buffer
3249 * @cpu: The per CPU buffer to get the number of overruns from
3250 */
3251unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3252{
3253 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3254 unsigned long ret;
7a8e76a3 3255
9e01c1b7 3256 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3257 return 0;
7a8e76a3
SR
3258
3259 cpu_buffer = buffer->buffers[cpu];
77ae365e 3260 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3261
3262 return ret;
7a8e76a3 3263}
c4f50183 3264EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3265
f0d2c681 3266/**
884bfe89
SP
3267 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3268 * commits failing due to the buffer wrapping around while there are uncommitted
3269 * events, such as during an interrupt storm.
f0d2c681
SR
3270 * @buffer: The ring buffer
3271 * @cpu: The per CPU buffer to get the number of overruns from
3272 */
3273unsigned long
3274ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3275{
3276 struct ring_buffer_per_cpu *cpu_buffer;
3277 unsigned long ret;
3278
3279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280 return 0;
3281
3282 cpu_buffer = buffer->buffers[cpu];
77ae365e 3283 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3284
3285 return ret;
3286}
3287EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3288
884bfe89
SP
3289/**
3290 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3291 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3292 * @buffer: The ring buffer
3293 * @cpu: The per CPU buffer to get the number of overruns from
3294 */
3295unsigned long
3296ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3297{
3298 struct ring_buffer_per_cpu *cpu_buffer;
3299 unsigned long ret;
3300
3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 return 0;
3303
3304 cpu_buffer = buffer->buffers[cpu];
3305 ret = local_read(&cpu_buffer->dropped_events);
3306
3307 return ret;
3308}
3309EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3310
ad964704
SRRH
3311/**
3312 * ring_buffer_read_events_cpu - get the number of events successfully read
3313 * @buffer: The ring buffer
3314 * @cpu: The per CPU buffer to get the number of events read
3315 */
3316unsigned long
3317ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320
3321 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322 return 0;
3323
3324 cpu_buffer = buffer->buffers[cpu];
3325 return cpu_buffer->read;
3326}
3327EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3328
7a8e76a3
SR
3329/**
3330 * ring_buffer_entries - get the number of entries in a buffer
3331 * @buffer: The ring buffer
3332 *
3333 * Returns the total number of entries in the ring buffer
3334 * (all CPU entries)
3335 */
3336unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3337{
3338 struct ring_buffer_per_cpu *cpu_buffer;
3339 unsigned long entries = 0;
3340 int cpu;
3341
3342 /* if you care about this being correct, lock the buffer */
3343 for_each_buffer_cpu(buffer, cpu) {
3344 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3345 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3346 }
3347
3348 return entries;
3349}
c4f50183 3350EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3351
3352/**
67b394f7 3353 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3354 * @buffer: The ring buffer
3355 *
3356 * Returns the total number of overruns in the ring buffer
3357 * (all CPU entries)
3358 */
3359unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3360{
3361 struct ring_buffer_per_cpu *cpu_buffer;
3362 unsigned long overruns = 0;
3363 int cpu;
3364
3365 /* if you care about this being correct, lock the buffer */
3366 for_each_buffer_cpu(buffer, cpu) {
3367 cpu_buffer = buffer->buffers[cpu];
77ae365e 3368 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3369 }
3370
3371 return overruns;
3372}
c4f50183 3373EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3374
642edba5 3375static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3376{
3377 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3378
d769041f 3379 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3380 iter->head_page = cpu_buffer->reader_page;
3381 iter->head = cpu_buffer->reader_page->read;
3382
3383 iter->cache_reader_page = iter->head_page;
24607f11 3384 iter->cache_read = cpu_buffer->read;
651e22f2 3385
d769041f
SR
3386 if (iter->head)
3387 iter->read_stamp = cpu_buffer->read_stamp;
3388 else
abc9b56d 3389 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3390}
f83c9d0f 3391
642edba5
SR
3392/**
3393 * ring_buffer_iter_reset - reset an iterator
3394 * @iter: The iterator to reset
3395 *
3396 * Resets the iterator, so that it will start from the beginning
3397 * again.
3398 */
3399void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3400{
554f786e 3401 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3402 unsigned long flags;
3403
554f786e
SR
3404 if (!iter)
3405 return;
3406
3407 cpu_buffer = iter->cpu_buffer;
3408
5389f6fa 3409 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3410 rb_iter_reset(iter);
5389f6fa 3411 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3412}
c4f50183 3413EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3414
3415/**
3416 * ring_buffer_iter_empty - check if an iterator has no more to read
3417 * @iter: The iterator to check
3418 */
3419int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3420{
3421 struct ring_buffer_per_cpu *cpu_buffer;
3422
3423 cpu_buffer = iter->cpu_buffer;
3424
bf41a158
SR
3425 return iter->head_page == cpu_buffer->commit_page &&
3426 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3427}
c4f50183 3428EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3429
3430static void
3431rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3432 struct ring_buffer_event *event)
3433{
3434 u64 delta;
3435
334d4169 3436 switch (event->type_len) {
7a8e76a3
SR
3437 case RINGBUF_TYPE_PADDING:
3438 return;
3439
3440 case RINGBUF_TYPE_TIME_EXTEND:
3441 delta = event->array[0];
3442 delta <<= TS_SHIFT;
3443 delta += event->time_delta;
3444 cpu_buffer->read_stamp += delta;
3445 return;
3446
3447 case RINGBUF_TYPE_TIME_STAMP:
3448 /* FIXME: not implemented */
3449 return;
3450
3451 case RINGBUF_TYPE_DATA:
3452 cpu_buffer->read_stamp += event->time_delta;
3453 return;
3454
3455 default:
3456 BUG();
3457 }
3458 return;
3459}
3460
3461static void
3462rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3463 struct ring_buffer_event *event)
3464{
3465 u64 delta;
3466
334d4169 3467 switch (event->type_len) {
7a8e76a3
SR
3468 case RINGBUF_TYPE_PADDING:
3469 return;
3470
3471 case RINGBUF_TYPE_TIME_EXTEND:
3472 delta = event->array[0];
3473 delta <<= TS_SHIFT;
3474 delta += event->time_delta;
3475 iter->read_stamp += delta;
3476 return;
3477
3478 case RINGBUF_TYPE_TIME_STAMP:
3479 /* FIXME: not implemented */
3480 return;
3481
3482 case RINGBUF_TYPE_DATA:
3483 iter->read_stamp += event->time_delta;
3484 return;
3485
3486 default:
3487 BUG();
3488 }
3489 return;
3490}
3491
d769041f
SR
3492static struct buffer_page *
3493rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3494{
d769041f 3495 struct buffer_page *reader = NULL;
66a8cb95 3496 unsigned long overwrite;
d769041f 3497 unsigned long flags;
818e3dd3 3498 int nr_loops = 0;
77ae365e 3499 int ret;
d769041f 3500
3e03fb7f 3501 local_irq_save(flags);
0199c4e6 3502 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3503
3504 again:
818e3dd3
SR
3505 /*
3506 * This should normally only loop twice. But because the
3507 * start of the reader inserts an empty page, it causes
3508 * a case where we will loop three times. There should be no
3509 * reason to loop four times (that I know of).
3510 */
3e89c7bb 3511 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3512 reader = NULL;
3513 goto out;
3514 }
3515
d769041f
SR
3516 reader = cpu_buffer->reader_page;
3517
3518 /* If there's more to read, return this page */
bf41a158 3519 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3520 goto out;
3521
3522 /* Never should we have an index greater than the size */
3e89c7bb
SR
3523 if (RB_WARN_ON(cpu_buffer,
3524 cpu_buffer->reader_page->read > rb_page_size(reader)))
3525 goto out;
d769041f
SR
3526
3527 /* check if we caught up to the tail */
3528 reader = NULL;
bf41a158 3529 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3530 goto out;
7a8e76a3 3531
a5fb8331
SR
3532 /* Don't bother swapping if the ring buffer is empty */
3533 if (rb_num_of_entries(cpu_buffer) == 0)
3534 goto out;
3535
7a8e76a3 3536 /*
d769041f 3537 * Reset the reader page to size zero.
7a8e76a3 3538 */
77ae365e
SR
3539 local_set(&cpu_buffer->reader_page->write, 0);
3540 local_set(&cpu_buffer->reader_page->entries, 0);
3541 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3542 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3543
77ae365e
SR
3544 spin:
3545 /*
3546 * Splice the empty reader page into the list around the head.
3547 */
3548 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3549 if (!reader)
3550 goto out;
0e1ff5d7 3551 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3552 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3553
3adc54fa
SR
3554 /*
3555 * cpu_buffer->pages just needs to point to the buffer, it
3556 * has no specific buffer page to point to. Lets move it out
25985edc 3557 * of our way so we don't accidentally swap it.
3adc54fa
SR
3558 */
3559 cpu_buffer->pages = reader->list.prev;
3560
77ae365e
SR
3561 /* The reader page will be pointing to the new head */
3562 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3563
66a8cb95
SR
3564 /*
3565 * We want to make sure we read the overruns after we set up our
3566 * pointers to the next object. The writer side does a
3567 * cmpxchg to cross pages which acts as the mb on the writer
3568 * side. Note, the reader will constantly fail the swap
3569 * while the writer is updating the pointers, so this
3570 * guarantees that the overwrite recorded here is the one we
3571 * want to compare with the last_overrun.
3572 */
3573 smp_mb();
3574 overwrite = local_read(&(cpu_buffer->overrun));
3575
77ae365e
SR
3576 /*
3577 * Here's the tricky part.
3578 *
3579 * We need to move the pointer past the header page.
3580 * But we can only do that if a writer is not currently
3581 * moving it. The page before the header page has the
3582 * flag bit '1' set if it is pointing to the page we want.
3583 * but if the writer is in the process of moving it
3584 * than it will be '2' or already moved '0'.
3585 */
3586
3587 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3588
3589 /*
77ae365e 3590 * If we did not convert it, then we must try again.
7a8e76a3 3591 */
77ae365e
SR
3592 if (!ret)
3593 goto spin;
7a8e76a3 3594
77ae365e
SR
3595 /*
3596 * Yeah! We succeeded in replacing the page.
3597 *
3598 * Now make the new head point back to the reader page.
3599 */
5ded3dc6 3600 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3601 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3602
3603 /* Finally update the reader page to the new head */
3604 cpu_buffer->reader_page = reader;
3605 rb_reset_reader_page(cpu_buffer);
3606
66a8cb95
SR
3607 if (overwrite != cpu_buffer->last_overrun) {
3608 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3609 cpu_buffer->last_overrun = overwrite;
3610 }
3611
d769041f
SR
3612 goto again;
3613
3614 out:
0199c4e6 3615 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3616 local_irq_restore(flags);
d769041f
SR
3617
3618 return reader;
3619}
3620
3621static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3622{
3623 struct ring_buffer_event *event;
3624 struct buffer_page *reader;
3625 unsigned length;
3626
3627 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3628
d769041f 3629 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3630 if (RB_WARN_ON(cpu_buffer, !reader))
3631 return;
7a8e76a3 3632
d769041f
SR
3633 event = rb_reader_event(cpu_buffer);
3634
a1863c21 3635 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3636 cpu_buffer->read++;
d769041f
SR
3637
3638 rb_update_read_stamp(cpu_buffer, event);
3639
3640 length = rb_event_length(event);
6f807acd 3641 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3642}
3643
3644static void rb_advance_iter(struct ring_buffer_iter *iter)
3645{
7a8e76a3
SR
3646 struct ring_buffer_per_cpu *cpu_buffer;
3647 struct ring_buffer_event *event;
3648 unsigned length;
3649
3650 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3651
3652 /*
3653 * Check if we are at the end of the buffer.
3654 */
bf41a158 3655 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3656 /* discarded commits can make the page empty */
3657 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3658 return;
d769041f 3659 rb_inc_iter(iter);
7a8e76a3
SR
3660 return;
3661 }
3662
3663 event = rb_iter_head_event(iter);
3664
3665 length = rb_event_length(event);
3666
3667 /*
3668 * This should not be called to advance the header if we are
3669 * at the tail of the buffer.
3670 */
3e89c7bb 3671 if (RB_WARN_ON(cpu_buffer,
f536aafc 3672 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3673 (iter->head + length > rb_commit_index(cpu_buffer))))
3674 return;
7a8e76a3
SR
3675
3676 rb_update_iter_read_stamp(iter, event);
3677
3678 iter->head += length;
3679
3680 /* check for end of page padding */
bf41a158
SR
3681 if ((iter->head >= rb_page_size(iter->head_page)) &&
3682 (iter->head_page != cpu_buffer->commit_page))
771e0384 3683 rb_inc_iter(iter);
7a8e76a3
SR
3684}
3685
66a8cb95
SR
3686static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3687{
3688 return cpu_buffer->lost_events;
3689}
3690
f83c9d0f 3691static struct ring_buffer_event *
66a8cb95
SR
3692rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3693 unsigned long *lost_events)
7a8e76a3 3694{
7a8e76a3 3695 struct ring_buffer_event *event;
d769041f 3696 struct buffer_page *reader;
818e3dd3 3697 int nr_loops = 0;
7a8e76a3 3698
7a8e76a3 3699 again:
818e3dd3 3700 /*
69d1b839
SR
3701 * We repeat when a time extend is encountered.
3702 * Since the time extend is always attached to a data event,
3703 * we should never loop more than once.
3704 * (We never hit the following condition more than twice).
818e3dd3 3705 */
69d1b839 3706 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3707 return NULL;
818e3dd3 3708
d769041f
SR
3709 reader = rb_get_reader_page(cpu_buffer);
3710 if (!reader)
7a8e76a3
SR
3711 return NULL;
3712
d769041f 3713 event = rb_reader_event(cpu_buffer);
7a8e76a3 3714
334d4169 3715 switch (event->type_len) {
7a8e76a3 3716 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3717 if (rb_null_event(event))
3718 RB_WARN_ON(cpu_buffer, 1);
3719 /*
3720 * Because the writer could be discarding every
3721 * event it creates (which would probably be bad)
3722 * if we were to go back to "again" then we may never
3723 * catch up, and will trigger the warn on, or lock
3724 * the box. Return the padding, and we will release
3725 * the current locks, and try again.
3726 */
2d622719 3727 return event;
7a8e76a3
SR
3728
3729 case RINGBUF_TYPE_TIME_EXTEND:
3730 /* Internal data, OK to advance */
d769041f 3731 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3732 goto again;
3733
3734 case RINGBUF_TYPE_TIME_STAMP:
3735 /* FIXME: not implemented */
d769041f 3736 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3737 goto again;
3738
3739 case RINGBUF_TYPE_DATA:
3740 if (ts) {
3741 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3742 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3743 cpu_buffer->cpu, ts);
7a8e76a3 3744 }
66a8cb95
SR
3745 if (lost_events)
3746 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3747 return event;
3748
3749 default:
3750 BUG();
3751 }
3752
3753 return NULL;
3754}
c4f50183 3755EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3756
f83c9d0f
SR
3757static struct ring_buffer_event *
3758rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3759{
3760 struct ring_buffer *buffer;
3761 struct ring_buffer_per_cpu *cpu_buffer;
3762 struct ring_buffer_event *event;
818e3dd3 3763 int nr_loops = 0;
7a8e76a3 3764
7a8e76a3
SR
3765 cpu_buffer = iter->cpu_buffer;
3766 buffer = cpu_buffer->buffer;
3767
492a74f4
SR
3768 /*
3769 * Check if someone performed a consuming read to
3770 * the buffer. A consuming read invalidates the iterator
3771 * and we need to reset the iterator in this case.
3772 */
3773 if (unlikely(iter->cache_read != cpu_buffer->read ||
3774 iter->cache_reader_page != cpu_buffer->reader_page))
3775 rb_iter_reset(iter);
3776
7a8e76a3 3777 again:
3c05d748
SR
3778 if (ring_buffer_iter_empty(iter))
3779 return NULL;
3780
818e3dd3 3781 /*
021de3d9
SRRH
3782 * We repeat when a time extend is encountered or we hit
3783 * the end of the page. Since the time extend is always attached
3784 * to a data event, we should never loop more than three times.
3785 * Once for going to next page, once on time extend, and
3786 * finally once to get the event.
3787 * (We never hit the following condition more than thrice).
818e3dd3 3788 */
021de3d9 3789 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3790 return NULL;
818e3dd3 3791
7a8e76a3
SR
3792 if (rb_per_cpu_empty(cpu_buffer))
3793 return NULL;
3794
10e83fd0 3795 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3796 rb_inc_iter(iter);
3797 goto again;
3798 }
3799
7a8e76a3
SR
3800 event = rb_iter_head_event(iter);
3801
334d4169 3802 switch (event->type_len) {
7a8e76a3 3803 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3804 if (rb_null_event(event)) {
3805 rb_inc_iter(iter);
3806 goto again;
3807 }
3808 rb_advance_iter(iter);
3809 return event;
7a8e76a3
SR
3810
3811 case RINGBUF_TYPE_TIME_EXTEND:
3812 /* Internal data, OK to advance */
3813 rb_advance_iter(iter);
3814 goto again;
3815
3816 case RINGBUF_TYPE_TIME_STAMP:
3817 /* FIXME: not implemented */
3818 rb_advance_iter(iter);
3819 goto again;
3820
3821 case RINGBUF_TYPE_DATA:
3822 if (ts) {
3823 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3824 ring_buffer_normalize_time_stamp(buffer,
3825 cpu_buffer->cpu, ts);
7a8e76a3
SR
3826 }
3827 return event;
3828
3829 default:
3830 BUG();
3831 }
3832
3833 return NULL;
3834}
c4f50183 3835EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3836
8d707e8e
SR
3837static inline int rb_ok_to_lock(void)
3838{
3839 /*
3840 * If an NMI die dumps out the content of the ring buffer
3841 * do not grab locks. We also permanently disable the ring
3842 * buffer too. A one time deal is all you get from reading
3843 * the ring buffer from an NMI.
3844 */
464e85eb 3845 if (likely(!in_nmi()))
8d707e8e
SR
3846 return 1;
3847
3848 tracing_off_permanent();
3849 return 0;
3850}
3851
f83c9d0f
SR
3852/**
3853 * ring_buffer_peek - peek at the next event to be read
3854 * @buffer: The ring buffer to read
3855 * @cpu: The cpu to peak at
3856 * @ts: The timestamp counter of this event.
66a8cb95 3857 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3858 *
3859 * This will return the event that will be read next, but does
3860 * not consume the data.
3861 */
3862struct ring_buffer_event *
66a8cb95
SR
3863ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3864 unsigned long *lost_events)
f83c9d0f
SR
3865{
3866 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3867 struct ring_buffer_event *event;
f83c9d0f 3868 unsigned long flags;
8d707e8e 3869 int dolock;
f83c9d0f 3870
554f786e 3871 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3872 return NULL;
554f786e 3873
8d707e8e 3874 dolock = rb_ok_to_lock();
2d622719 3875 again:
8d707e8e
SR
3876 local_irq_save(flags);
3877 if (dolock)
5389f6fa 3878 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3879 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3880 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3881 rb_advance_reader(cpu_buffer);
8d707e8e 3882 if (dolock)
5389f6fa 3883 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3884 local_irq_restore(flags);
f83c9d0f 3885
1b959e18 3886 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3887 goto again;
2d622719 3888
f83c9d0f
SR
3889 return event;
3890}
3891
3892/**
3893 * ring_buffer_iter_peek - peek at the next event to be read
3894 * @iter: The ring buffer iterator
3895 * @ts: The timestamp counter of this event.
3896 *
3897 * This will return the event that will be read next, but does
3898 * not increment the iterator.
3899 */
3900struct ring_buffer_event *
3901ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3902{
3903 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3904 struct ring_buffer_event *event;
3905 unsigned long flags;
3906
2d622719 3907 again:
5389f6fa 3908 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3909 event = rb_iter_peek(iter, ts);
5389f6fa 3910 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3911
1b959e18 3912 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3913 goto again;
2d622719 3914
f83c9d0f
SR
3915 return event;
3916}
3917
7a8e76a3
SR
3918/**
3919 * ring_buffer_consume - return an event and consume it
3920 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3921 * @cpu: the cpu to read the buffer from
3922 * @ts: a variable to store the timestamp (may be NULL)
3923 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3924 *
3925 * Returns the next event in the ring buffer, and that event is consumed.
3926 * Meaning, that sequential reads will keep returning a different event,
3927 * and eventually empty the ring buffer if the producer is slower.
3928 */
3929struct ring_buffer_event *
66a8cb95
SR
3930ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3931 unsigned long *lost_events)
7a8e76a3 3932{
554f786e
SR
3933 struct ring_buffer_per_cpu *cpu_buffer;
3934 struct ring_buffer_event *event = NULL;
f83c9d0f 3935 unsigned long flags;
8d707e8e
SR
3936 int dolock;
3937
3938 dolock = rb_ok_to_lock();
7a8e76a3 3939
2d622719 3940 again:
554f786e
SR
3941 /* might be called in atomic */
3942 preempt_disable();
3943
9e01c1b7 3944 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3945 goto out;
7a8e76a3 3946
554f786e 3947 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3948 local_irq_save(flags);
3949 if (dolock)
5389f6fa 3950 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3951
66a8cb95
SR
3952 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3953 if (event) {
3954 cpu_buffer->lost_events = 0;
469535a5 3955 rb_advance_reader(cpu_buffer);
66a8cb95 3956 }
7a8e76a3 3957
8d707e8e 3958 if (dolock)
5389f6fa 3959 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3960 local_irq_restore(flags);
f83c9d0f 3961
554f786e
SR
3962 out:
3963 preempt_enable();
3964
1b959e18 3965 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3966 goto again;
2d622719 3967
7a8e76a3
SR
3968 return event;
3969}
c4f50183 3970EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3971
3972/**
72c9ddfd 3973 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3974 * @buffer: The ring buffer to read from
3975 * @cpu: The cpu buffer to iterate over
3976 *
72c9ddfd
DM
3977 * This performs the initial preparations necessary to iterate
3978 * through the buffer. Memory is allocated, buffer recording
3979 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3980 *
72c9ddfd
DM
3981 * Disabling buffer recordng prevents the reading from being
3982 * corrupted. This is not a consuming read, so a producer is not
3983 * expected.
3984 *
3985 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3986 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3987 * Afterwards, ring_buffer_read_start is invoked to get things going
3988 * for real.
3989 *
d611851b 3990 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3991 */
3992struct ring_buffer_iter *
72c9ddfd 3993ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3994{
3995 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3996 struct ring_buffer_iter *iter;
7a8e76a3 3997
9e01c1b7 3998 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3999 return NULL;
7a8e76a3
SR
4000
4001 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4002 if (!iter)
8aabee57 4003 return NULL;
7a8e76a3
SR
4004
4005 cpu_buffer = buffer->buffers[cpu];
4006
4007 iter->cpu_buffer = cpu_buffer;
4008
83f40318 4009 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4010 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4011
4012 return iter;
4013}
4014EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4015
4016/**
4017 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4018 *
4019 * All previously invoked ring_buffer_read_prepare calls to prepare
4020 * iterators will be synchronized. Afterwards, read_buffer_read_start
4021 * calls on those iterators are allowed.
4022 */
4023void
4024ring_buffer_read_prepare_sync(void)
4025{
7a8e76a3 4026 synchronize_sched();
72c9ddfd
DM
4027}
4028EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4029
4030/**
4031 * ring_buffer_read_start - start a non consuming read of the buffer
4032 * @iter: The iterator returned by ring_buffer_read_prepare
4033 *
4034 * This finalizes the startup of an iteration through the buffer.
4035 * The iterator comes from a call to ring_buffer_read_prepare and
4036 * an intervening ring_buffer_read_prepare_sync must have been
4037 * performed.
4038 *
d611851b 4039 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4040 */
4041void
4042ring_buffer_read_start(struct ring_buffer_iter *iter)
4043{
4044 struct ring_buffer_per_cpu *cpu_buffer;
4045 unsigned long flags;
4046
4047 if (!iter)
4048 return;
4049
4050 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4051
5389f6fa 4052 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4053 arch_spin_lock(&cpu_buffer->lock);
642edba5 4054 rb_iter_reset(iter);
0199c4e6 4055 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4056 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4057}
c4f50183 4058EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4059
4060/**
d611851b 4061 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4062 * @iter: The iterator retrieved by ring_buffer_start
4063 *
4064 * This re-enables the recording to the buffer, and frees the
4065 * iterator.
4066 */
4067void
4068ring_buffer_read_finish(struct ring_buffer_iter *iter)
4069{
4070 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4071 unsigned long flags;
7a8e76a3 4072
659f451f
SR
4073 /*
4074 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4075 * to check the integrity of the ring buffer.
4076 * Must prevent readers from trying to read, as the check
4077 * clears the HEAD page and readers require it.
659f451f 4078 */
9366c1ba 4079 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4080 rb_check_pages(cpu_buffer);
9366c1ba 4081 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4082
7a8e76a3 4083 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4084 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4085 kfree(iter);
4086}
c4f50183 4087EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4088
4089/**
4090 * ring_buffer_read - read the next item in the ring buffer by the iterator
4091 * @iter: The ring buffer iterator
4092 * @ts: The time stamp of the event read.
4093 *
4094 * This reads the next event in the ring buffer and increments the iterator.
4095 */
4096struct ring_buffer_event *
4097ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4098{
4099 struct ring_buffer_event *event;
f83c9d0f
SR
4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101 unsigned long flags;
7a8e76a3 4102
5389f6fa 4103 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4104 again:
f83c9d0f 4105 event = rb_iter_peek(iter, ts);
7a8e76a3 4106 if (!event)
f83c9d0f 4107 goto out;
7a8e76a3 4108
7e9391cf
SR
4109 if (event->type_len == RINGBUF_TYPE_PADDING)
4110 goto again;
4111
7a8e76a3 4112 rb_advance_iter(iter);
f83c9d0f 4113 out:
5389f6fa 4114 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4115
4116 return event;
4117}
c4f50183 4118EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4119
4120/**
4121 * ring_buffer_size - return the size of the ring buffer (in bytes)
4122 * @buffer: The ring buffer.
4123 */
438ced17 4124unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4125{
438ced17
VN
4126 /*
4127 * Earlier, this method returned
4128 * BUF_PAGE_SIZE * buffer->nr_pages
4129 * Since the nr_pages field is now removed, we have converted this to
4130 * return the per cpu buffer value.
4131 */
4132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 return 0;
4134
4135 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4136}
c4f50183 4137EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4138
4139static void
4140rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4141{
77ae365e
SR
4142 rb_head_page_deactivate(cpu_buffer);
4143
7a8e76a3 4144 cpu_buffer->head_page
3adc54fa 4145 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4146 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4147 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4148 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4149
6f807acd 4150 cpu_buffer->head_page->read = 0;
bf41a158
SR
4151
4152 cpu_buffer->tail_page = cpu_buffer->head_page;
4153 cpu_buffer->commit_page = cpu_buffer->head_page;
4154
4155 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4156 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4157 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4158 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4159 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4160 cpu_buffer->reader_page->read = 0;
7a8e76a3 4161
c64e148a 4162 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4163 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4164 local_set(&cpu_buffer->commit_overrun, 0);
4165 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4166 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4167 local_set(&cpu_buffer->committing, 0);
4168 local_set(&cpu_buffer->commits, 0);
77ae365e 4169 cpu_buffer->read = 0;
c64e148a 4170 cpu_buffer->read_bytes = 0;
69507c06
SR
4171
4172 cpu_buffer->write_stamp = 0;
4173 cpu_buffer->read_stamp = 0;
77ae365e 4174
66a8cb95
SR
4175 cpu_buffer->lost_events = 0;
4176 cpu_buffer->last_overrun = 0;
4177
77ae365e 4178 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4179}
4180
4181/**
4182 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4183 * @buffer: The ring buffer to reset a per cpu buffer of
4184 * @cpu: The CPU buffer to be reset
4185 */
4186void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4187{
4188 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4189 unsigned long flags;
4190
9e01c1b7 4191 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4192 return;
7a8e76a3 4193
83f40318 4194 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4195 atomic_inc(&cpu_buffer->record_disabled);
4196
83f40318
VN
4197 /* Make sure all commits have finished */
4198 synchronize_sched();
4199
5389f6fa 4200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4201
41b6a95d
SR
4202 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4203 goto out;
4204
0199c4e6 4205 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4206
4207 rb_reset_cpu(cpu_buffer);
4208
0199c4e6 4209 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4210
41b6a95d 4211 out:
5389f6fa 4212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4213
4214 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4215 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4216}
c4f50183 4217EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4218
4219/**
4220 * ring_buffer_reset - reset a ring buffer
4221 * @buffer: The ring buffer to reset all cpu buffers
4222 */
4223void ring_buffer_reset(struct ring_buffer *buffer)
4224{
7a8e76a3
SR
4225 int cpu;
4226
7a8e76a3 4227 for_each_buffer_cpu(buffer, cpu)
d769041f 4228 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4229}
c4f50183 4230EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4231
4232/**
4233 * rind_buffer_empty - is the ring buffer empty?
4234 * @buffer: The ring buffer to test
4235 */
4236int ring_buffer_empty(struct ring_buffer *buffer)
4237{
4238 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4239 unsigned long flags;
8d707e8e 4240 int dolock;
7a8e76a3 4241 int cpu;
d4788207 4242 int ret;
7a8e76a3 4243
8d707e8e 4244 dolock = rb_ok_to_lock();
7a8e76a3
SR
4245
4246 /* yes this is racy, but if you don't like the race, lock the buffer */
4247 for_each_buffer_cpu(buffer, cpu) {
4248 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4249 local_irq_save(flags);
4250 if (dolock)
5389f6fa 4251 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4252 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4253 if (dolock)
5389f6fa 4254 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4255 local_irq_restore(flags);
4256
d4788207 4257 if (!ret)
7a8e76a3
SR
4258 return 0;
4259 }
554f786e 4260
7a8e76a3
SR
4261 return 1;
4262}
c4f50183 4263EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4264
4265/**
4266 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4267 * @buffer: The ring buffer
4268 * @cpu: The CPU buffer to test
4269 */
4270int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4271{
4272 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4273 unsigned long flags;
8d707e8e 4274 int dolock;
8aabee57 4275 int ret;
7a8e76a3 4276
9e01c1b7 4277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4278 return 1;
7a8e76a3 4279
8d707e8e
SR
4280 dolock = rb_ok_to_lock();
4281
7a8e76a3 4282 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4283 local_irq_save(flags);
4284 if (dolock)
5389f6fa 4285 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4286 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4287 if (dolock)
5389f6fa 4288 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4289 local_irq_restore(flags);
554f786e
SR
4290
4291 return ret;
7a8e76a3 4292}
c4f50183 4293EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4294
85bac32c 4295#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4296/**
4297 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4298 * @buffer_a: One buffer to swap with
4299 * @buffer_b: The other buffer to swap with
4300 *
4301 * This function is useful for tracers that want to take a "snapshot"
4302 * of a CPU buffer and has another back up buffer lying around.
4303 * it is expected that the tracer handles the cpu buffer not being
4304 * used at the moment.
4305 */
4306int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4307 struct ring_buffer *buffer_b, int cpu)
4308{
4309 struct ring_buffer_per_cpu *cpu_buffer_a;
4310 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4311 int ret = -EINVAL;
4312
9e01c1b7
RR
4313 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4314 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4315 goto out;
7a8e76a3 4316
438ced17
VN
4317 cpu_buffer_a = buffer_a->buffers[cpu];
4318 cpu_buffer_b = buffer_b->buffers[cpu];
4319
7a8e76a3 4320 /* At least make sure the two buffers are somewhat the same */
438ced17 4321 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4322 goto out;
4323
4324 ret = -EAGAIN;
7a8e76a3 4325
97b17efe 4326 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4327 goto out;
97b17efe
SR
4328
4329 if (atomic_read(&buffer_a->record_disabled))
554f786e 4330 goto out;
97b17efe
SR
4331
4332 if (atomic_read(&buffer_b->record_disabled))
554f786e 4333 goto out;
97b17efe 4334
97b17efe 4335 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4336 goto out;
97b17efe
SR
4337
4338 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4339 goto out;
97b17efe 4340
7a8e76a3
SR
4341 /*
4342 * We can't do a synchronize_sched here because this
4343 * function can be called in atomic context.
4344 * Normally this will be called from the same CPU as cpu.
4345 * If not it's up to the caller to protect this.
4346 */
4347 atomic_inc(&cpu_buffer_a->record_disabled);
4348 atomic_inc(&cpu_buffer_b->record_disabled);
4349
98277991
SR
4350 ret = -EBUSY;
4351 if (local_read(&cpu_buffer_a->committing))
4352 goto out_dec;
4353 if (local_read(&cpu_buffer_b->committing))
4354 goto out_dec;
4355
7a8e76a3
SR
4356 buffer_a->buffers[cpu] = cpu_buffer_b;
4357 buffer_b->buffers[cpu] = cpu_buffer_a;
4358
4359 cpu_buffer_b->buffer = buffer_a;
4360 cpu_buffer_a->buffer = buffer_b;
4361
98277991
SR
4362 ret = 0;
4363
4364out_dec:
7a8e76a3
SR
4365 atomic_dec(&cpu_buffer_a->record_disabled);
4366 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4367out:
554f786e 4368 return ret;
7a8e76a3 4369}
c4f50183 4370EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4371#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4372
8789a9e7
SR
4373/**
4374 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4375 * @buffer: the buffer to allocate for.
d611851b 4376 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4377 *
4378 * This function is used in conjunction with ring_buffer_read_page.
4379 * When reading a full page from the ring buffer, these functions
4380 * can be used to speed up the process. The calling function should
4381 * allocate a few pages first with this function. Then when it
4382 * needs to get pages from the ring buffer, it passes the result
4383 * of this function into ring_buffer_read_page, which will swap
4384 * the page that was allocated, with the read page of the buffer.
4385 *
4386 * Returns:
4387 * The page allocated, or NULL on error.
4388 */
7ea59064 4389void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4390{
044fa782 4391 struct buffer_data_page *bpage;
7ea59064 4392 struct page *page;
8789a9e7 4393
d7ec4bfe
VN
4394 page = alloc_pages_node(cpu_to_node(cpu),
4395 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4396 if (!page)
8789a9e7
SR
4397 return NULL;
4398
7ea59064 4399 bpage = page_address(page);
8789a9e7 4400
ef7a4a16
SR
4401 rb_init_page(bpage);
4402
044fa782 4403 return bpage;
8789a9e7 4404}
d6ce96da 4405EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4406
4407/**
4408 * ring_buffer_free_read_page - free an allocated read page
4409 * @buffer: the buffer the page was allocate for
4410 * @data: the page to free
4411 *
4412 * Free a page allocated from ring_buffer_alloc_read_page.
4413 */
4414void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4415{
4416 free_page((unsigned long)data);
4417}
d6ce96da 4418EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4419
4420/**
4421 * ring_buffer_read_page - extract a page from the ring buffer
4422 * @buffer: buffer to extract from
4423 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4424 * @len: amount to extract
8789a9e7
SR
4425 * @cpu: the cpu of the buffer to extract
4426 * @full: should the extraction only happen when the page is full.
4427 *
4428 * This function will pull out a page from the ring buffer and consume it.
4429 * @data_page must be the address of the variable that was returned
4430 * from ring_buffer_alloc_read_page. This is because the page might be used
4431 * to swap with a page in the ring buffer.
4432 *
4433 * for example:
d611851b 4434 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4435 * if (!rpage)
4436 * return error;
ef7a4a16 4437 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4438 * if (ret >= 0)
4439 * process_page(rpage, ret);
8789a9e7
SR
4440 *
4441 * When @full is set, the function will not return true unless
4442 * the writer is off the reader page.
4443 *
4444 * Note: it is up to the calling functions to handle sleeps and wakeups.
4445 * The ring buffer can be used anywhere in the kernel and can not
4446 * blindly call wake_up. The layer that uses the ring buffer must be
4447 * responsible for that.
4448 *
4449 * Returns:
667d2412
LJ
4450 * >=0 if data has been transferred, returns the offset of consumed data.
4451 * <0 if no data has been transferred.
8789a9e7
SR
4452 */
4453int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4454 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4455{
4456 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457 struct ring_buffer_event *event;
044fa782 4458 struct buffer_data_page *bpage;
ef7a4a16 4459 struct buffer_page *reader;
ff0ff84a 4460 unsigned long missed_events;
8789a9e7 4461 unsigned long flags;
ef7a4a16 4462 unsigned int commit;
667d2412 4463 unsigned int read;
4f3640f8 4464 u64 save_timestamp;
667d2412 4465 int ret = -1;
8789a9e7 4466
554f786e
SR
4467 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4468 goto out;
4469
474d32b6
SR
4470 /*
4471 * If len is not big enough to hold the page header, then
4472 * we can not copy anything.
4473 */
4474 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4475 goto out;
474d32b6
SR
4476
4477 len -= BUF_PAGE_HDR_SIZE;
4478
8789a9e7 4479 if (!data_page)
554f786e 4480 goto out;
8789a9e7 4481
044fa782
SR
4482 bpage = *data_page;
4483 if (!bpage)
554f786e 4484 goto out;
8789a9e7 4485
5389f6fa 4486 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4487
ef7a4a16
SR
4488 reader = rb_get_reader_page(cpu_buffer);
4489 if (!reader)
554f786e 4490 goto out_unlock;
8789a9e7 4491
ef7a4a16
SR
4492 event = rb_reader_event(cpu_buffer);
4493
4494 read = reader->read;
4495 commit = rb_page_commit(reader);
667d2412 4496
66a8cb95 4497 /* Check if any events were dropped */
ff0ff84a 4498 missed_events = cpu_buffer->lost_events;
66a8cb95 4499
8789a9e7 4500 /*
474d32b6
SR
4501 * If this page has been partially read or
4502 * if len is not big enough to read the rest of the page or
4503 * a writer is still on the page, then
4504 * we must copy the data from the page to the buffer.
4505 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4506 */
474d32b6 4507 if (read || (len < (commit - read)) ||
ef7a4a16 4508 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4509 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4510 unsigned int rpos = read;
4511 unsigned int pos = 0;
ef7a4a16 4512 unsigned int size;
8789a9e7
SR
4513
4514 if (full)
554f786e 4515 goto out_unlock;
8789a9e7 4516
ef7a4a16
SR
4517 if (len > (commit - read))
4518 len = (commit - read);
4519
69d1b839
SR
4520 /* Always keep the time extend and data together */
4521 size = rb_event_ts_length(event);
ef7a4a16
SR
4522
4523 if (len < size)
554f786e 4524 goto out_unlock;
ef7a4a16 4525
4f3640f8
SR
4526 /* save the current timestamp, since the user will need it */
4527 save_timestamp = cpu_buffer->read_stamp;
4528
ef7a4a16
SR
4529 /* Need to copy one event at a time */
4530 do {
e1e35927
DS
4531 /* We need the size of one event, because
4532 * rb_advance_reader only advances by one event,
4533 * whereas rb_event_ts_length may include the size of
4534 * one or two events.
4535 * We have already ensured there's enough space if this
4536 * is a time extend. */
4537 size = rb_event_length(event);
474d32b6 4538 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4539
4540 len -= size;
4541
4542 rb_advance_reader(cpu_buffer);
474d32b6
SR
4543 rpos = reader->read;
4544 pos += size;
ef7a4a16 4545
18fab912
HY
4546 if (rpos >= commit)
4547 break;
4548
ef7a4a16 4549 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4550 /* Always keep the time extend and data together */
4551 size = rb_event_ts_length(event);
e1e35927 4552 } while (len >= size);
667d2412
LJ
4553
4554 /* update bpage */
ef7a4a16 4555 local_set(&bpage->commit, pos);
4f3640f8 4556 bpage->time_stamp = save_timestamp;
ef7a4a16 4557
474d32b6
SR
4558 /* we copied everything to the beginning */
4559 read = 0;
8789a9e7 4560 } else {
afbab76a 4561 /* update the entry counter */
77ae365e 4562 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4563 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4564
8789a9e7 4565 /* swap the pages */
044fa782 4566 rb_init_page(bpage);
ef7a4a16
SR
4567 bpage = reader->page;
4568 reader->page = *data_page;
4569 local_set(&reader->write, 0);
778c55d4 4570 local_set(&reader->entries, 0);
ef7a4a16 4571 reader->read = 0;
044fa782 4572 *data_page = bpage;
ff0ff84a
SR
4573
4574 /*
4575 * Use the real_end for the data size,
4576 * This gives us a chance to store the lost events
4577 * on the page.
4578 */
4579 if (reader->real_end)
4580 local_set(&bpage->commit, reader->real_end);
8789a9e7 4581 }
667d2412 4582 ret = read;
8789a9e7 4583
66a8cb95 4584 cpu_buffer->lost_events = 0;
2711ca23
SR
4585
4586 commit = local_read(&bpage->commit);
66a8cb95
SR
4587 /*
4588 * Set a flag in the commit field if we lost events
4589 */
ff0ff84a 4590 if (missed_events) {
ff0ff84a
SR
4591 /* If there is room at the end of the page to save the
4592 * missed events, then record it there.
4593 */
4594 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4595 memcpy(&bpage->data[commit], &missed_events,
4596 sizeof(missed_events));
4597 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4598 commit += sizeof(missed_events);
ff0ff84a 4599 }
66a8cb95 4600 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4601 }
66a8cb95 4602
2711ca23
SR
4603 /*
4604 * This page may be off to user land. Zero it out here.
4605 */
4606 if (commit < BUF_PAGE_SIZE)
4607 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4608
554f786e 4609 out_unlock:
5389f6fa 4610 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4611
554f786e 4612 out:
8789a9e7
SR
4613 return ret;
4614}
d6ce96da 4615EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4616
59222efe 4617#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4618static int rb_cpu_notify(struct notifier_block *self,
4619 unsigned long action, void *hcpu)
554f786e
SR
4620{
4621 struct ring_buffer *buffer =
4622 container_of(self, struct ring_buffer, cpu_notify);
4623 long cpu = (long)hcpu;
438ced17
VN
4624 int cpu_i, nr_pages_same;
4625 unsigned int nr_pages;
554f786e
SR
4626
4627 switch (action) {
4628 case CPU_UP_PREPARE:
4629 case CPU_UP_PREPARE_FROZEN:
3f237a79 4630 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4631 return NOTIFY_OK;
4632
438ced17
VN
4633 nr_pages = 0;
4634 nr_pages_same = 1;
4635 /* check if all cpu sizes are same */
4636 for_each_buffer_cpu(buffer, cpu_i) {
4637 /* fill in the size from first enabled cpu */
4638 if (nr_pages == 0)
4639 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4640 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4641 nr_pages_same = 0;
4642 break;
4643 }
4644 }
4645 /* allocate minimum pages, user can later expand it */
4646 if (!nr_pages_same)
4647 nr_pages = 2;
554f786e 4648 buffer->buffers[cpu] =
438ced17 4649 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4650 if (!buffer->buffers[cpu]) {
4651 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4652 cpu);
4653 return NOTIFY_OK;
4654 }
4655 smp_wmb();
3f237a79 4656 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4657 break;
4658 case CPU_DOWN_PREPARE:
4659 case CPU_DOWN_PREPARE_FROZEN:
4660 /*
4661 * Do nothing.
4662 * If we were to free the buffer, then the user would
4663 * lose any trace that was in the buffer.
4664 */
4665 break;
4666 default:
4667 break;
4668 }
4669 return NOTIFY_OK;
4670}
4671#endif
6c43e554
SRRH
4672
4673#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4674/*
4675 * This is a basic integrity check of the ring buffer.
4676 * Late in the boot cycle this test will run when configured in.
4677 * It will kick off a thread per CPU that will go into a loop
4678 * writing to the per cpu ring buffer various sizes of data.
4679 * Some of the data will be large items, some small.
4680 *
4681 * Another thread is created that goes into a spin, sending out
4682 * IPIs to the other CPUs to also write into the ring buffer.
4683 * this is to test the nesting ability of the buffer.
4684 *
4685 * Basic stats are recorded and reported. If something in the
4686 * ring buffer should happen that's not expected, a big warning
4687 * is displayed and all ring buffers are disabled.
4688 */
4689static struct task_struct *rb_threads[NR_CPUS] __initdata;
4690
4691struct rb_test_data {
4692 struct ring_buffer *buffer;
4693 unsigned long events;
4694 unsigned long bytes_written;
4695 unsigned long bytes_alloc;
4696 unsigned long bytes_dropped;
4697 unsigned long events_nested;
4698 unsigned long bytes_written_nested;
4699 unsigned long bytes_alloc_nested;
4700 unsigned long bytes_dropped_nested;
4701 int min_size_nested;
4702 int max_size_nested;
4703 int max_size;
4704 int min_size;
4705 int cpu;
4706 int cnt;
4707};
4708
4709static struct rb_test_data rb_data[NR_CPUS] __initdata;
4710
4711/* 1 meg per cpu */
4712#define RB_TEST_BUFFER_SIZE 1048576
4713
4714static char rb_string[] __initdata =
4715 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4716 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4717 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4718
4719static bool rb_test_started __initdata;
4720
4721struct rb_item {
4722 int size;
4723 char str[];
4724};
4725
4726static __init int rb_write_something(struct rb_test_data *data, bool nested)
4727{
4728 struct ring_buffer_event *event;
4729 struct rb_item *item;
4730 bool started;
4731 int event_len;
4732 int size;
4733 int len;
4734 int cnt;
4735
4736 /* Have nested writes different that what is written */
4737 cnt = data->cnt + (nested ? 27 : 0);
4738
4739 /* Multiply cnt by ~e, to make some unique increment */
4740 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4741
4742 len = size + sizeof(struct rb_item);
4743
4744 started = rb_test_started;
4745 /* read rb_test_started before checking buffer enabled */
4746 smp_rmb();
4747
4748 event = ring_buffer_lock_reserve(data->buffer, len);
4749 if (!event) {
4750 /* Ignore dropped events before test starts. */
4751 if (started) {
4752 if (nested)
4753 data->bytes_dropped += len;
4754 else
4755 data->bytes_dropped_nested += len;
4756 }
4757 return len;
4758 }
4759
4760 event_len = ring_buffer_event_length(event);
4761
4762 if (RB_WARN_ON(data->buffer, event_len < len))
4763 goto out;
4764
4765 item = ring_buffer_event_data(event);
4766 item->size = size;
4767 memcpy(item->str, rb_string, size);
4768
4769 if (nested) {
4770 data->bytes_alloc_nested += event_len;
4771 data->bytes_written_nested += len;
4772 data->events_nested++;
4773 if (!data->min_size_nested || len < data->min_size_nested)
4774 data->min_size_nested = len;
4775 if (len > data->max_size_nested)
4776 data->max_size_nested = len;
4777 } else {
4778 data->bytes_alloc += event_len;
4779 data->bytes_written += len;
4780 data->events++;
4781 if (!data->min_size || len < data->min_size)
4782 data->max_size = len;
4783 if (len > data->max_size)
4784 data->max_size = len;
4785 }
4786
4787 out:
4788 ring_buffer_unlock_commit(data->buffer, event);
4789
4790 return 0;
4791}
4792
4793static __init int rb_test(void *arg)
4794{
4795 struct rb_test_data *data = arg;
4796
4797 while (!kthread_should_stop()) {
4798 rb_write_something(data, false);
4799 data->cnt++;
4800
4801 set_current_state(TASK_INTERRUPTIBLE);
4802 /* Now sleep between a min of 100-300us and a max of 1ms */
4803 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4804 }
4805
4806 return 0;
4807}
4808
4809static __init void rb_ipi(void *ignore)
4810{
4811 struct rb_test_data *data;
4812 int cpu = smp_processor_id();
4813
4814 data = &rb_data[cpu];
4815 rb_write_something(data, true);
4816}
4817
4818static __init int rb_hammer_test(void *arg)
4819{
4820 while (!kthread_should_stop()) {
4821
4822 /* Send an IPI to all cpus to write data! */
4823 smp_call_function(rb_ipi, NULL, 1);
4824 /* No sleep, but for non preempt, let others run */
4825 schedule();
4826 }
4827
4828 return 0;
4829}
4830
4831static __init int test_ringbuffer(void)
4832{
4833 struct task_struct *rb_hammer;
4834 struct ring_buffer *buffer;
4835 int cpu;
4836 int ret = 0;
4837
4838 pr_info("Running ring buffer tests...\n");
4839
4840 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4841 if (WARN_ON(!buffer))
4842 return 0;
4843
4844 /* Disable buffer so that threads can't write to it yet */
4845 ring_buffer_record_off(buffer);
4846
4847 for_each_online_cpu(cpu) {
4848 rb_data[cpu].buffer = buffer;
4849 rb_data[cpu].cpu = cpu;
4850 rb_data[cpu].cnt = cpu;
4851 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4852 "rbtester/%d", cpu);
4853 if (WARN_ON(!rb_threads[cpu])) {
4854 pr_cont("FAILED\n");
4855 ret = -1;
4856 goto out_free;
4857 }
4858
4859 kthread_bind(rb_threads[cpu], cpu);
4860 wake_up_process(rb_threads[cpu]);
4861 }
4862
4863 /* Now create the rb hammer! */
4864 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4865 if (WARN_ON(!rb_hammer)) {
4866 pr_cont("FAILED\n");
4867 ret = -1;
4868 goto out_free;
4869 }
4870
4871 ring_buffer_record_on(buffer);
4872 /*
4873 * Show buffer is enabled before setting rb_test_started.
4874 * Yes there's a small race window where events could be
4875 * dropped and the thread wont catch it. But when a ring
4876 * buffer gets enabled, there will always be some kind of
4877 * delay before other CPUs see it. Thus, we don't care about
4878 * those dropped events. We care about events dropped after
4879 * the threads see that the buffer is active.
4880 */
4881 smp_wmb();
4882 rb_test_started = true;
4883
4884 set_current_state(TASK_INTERRUPTIBLE);
4885 /* Just run for 10 seconds */;
4886 schedule_timeout(10 * HZ);
4887
4888 kthread_stop(rb_hammer);
4889
4890 out_free:
4891 for_each_online_cpu(cpu) {
4892 if (!rb_threads[cpu])
4893 break;
4894 kthread_stop(rb_threads[cpu]);
4895 }
4896 if (ret) {
4897 ring_buffer_free(buffer);
4898 return ret;
4899 }
4900
4901 /* Report! */
4902 pr_info("finished\n");
4903 for_each_online_cpu(cpu) {
4904 struct ring_buffer_event *event;
4905 struct rb_test_data *data = &rb_data[cpu];
4906 struct rb_item *item;
4907 unsigned long total_events;
4908 unsigned long total_dropped;
4909 unsigned long total_written;
4910 unsigned long total_alloc;
4911 unsigned long total_read = 0;
4912 unsigned long total_size = 0;
4913 unsigned long total_len = 0;
4914 unsigned long total_lost = 0;
4915 unsigned long lost;
4916 int big_event_size;
4917 int small_event_size;
4918
4919 ret = -1;
4920
4921 total_events = data->events + data->events_nested;
4922 total_written = data->bytes_written + data->bytes_written_nested;
4923 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4924 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4925
4926 big_event_size = data->max_size + data->max_size_nested;
4927 small_event_size = data->min_size + data->min_size_nested;
4928
4929 pr_info("CPU %d:\n", cpu);
4930 pr_info(" events: %ld\n", total_events);
4931 pr_info(" dropped bytes: %ld\n", total_dropped);
4932 pr_info(" alloced bytes: %ld\n", total_alloc);
4933 pr_info(" written bytes: %ld\n", total_written);
4934 pr_info(" biggest event: %d\n", big_event_size);
4935 pr_info(" smallest event: %d\n", small_event_size);
4936
4937 if (RB_WARN_ON(buffer, total_dropped))
4938 break;
4939
4940 ret = 0;
4941
4942 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4943 total_lost += lost;
4944 item = ring_buffer_event_data(event);
4945 total_len += ring_buffer_event_length(event);
4946 total_size += item->size + sizeof(struct rb_item);
4947 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4948 pr_info("FAILED!\n");
4949 pr_info("buffer had: %.*s\n", item->size, item->str);
4950 pr_info("expected: %.*s\n", item->size, rb_string);
4951 RB_WARN_ON(buffer, 1);
4952 ret = -1;
4953 break;
4954 }
4955 total_read++;
4956 }
4957 if (ret)
4958 break;
4959
4960 ret = -1;
4961
4962 pr_info(" read events: %ld\n", total_read);
4963 pr_info(" lost events: %ld\n", total_lost);
4964 pr_info(" total events: %ld\n", total_lost + total_read);
4965 pr_info(" recorded len bytes: %ld\n", total_len);
4966 pr_info(" recorded size bytes: %ld\n", total_size);
4967 if (total_lost)
4968 pr_info(" With dropped events, record len and size may not match\n"
4969 " alloced and written from above\n");
4970 if (!total_lost) {
4971 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4972 total_size != total_written))
4973 break;
4974 }
4975 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4976 break;
4977
4978 ret = 0;
4979 }
4980 if (!ret)
4981 pr_info("Ring buffer PASSED!\n");
4982
4983 ring_buffer_free(buffer);
4984 return 0;
4985}
4986
4987late_initcall(test_ringbuffer);
4988#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.577396 seconds and 5 git commands to generate.