ring-buffer: Make removal of ring buffer pages atomic
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318
VN
475 struct work_struct update_pages_work;
476 struct completion update_completion;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
77ae365e
SR
948 rb_head_page_deactivate(cpu_buffer);
949
3e89c7bb
SR
950 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
951 return -1;
952 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
953 return -1;
7a8e76a3 954
77ae365e
SR
955 if (rb_check_list(cpu_buffer, head))
956 return -1;
957
044fa782 958 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 959 if (RB_WARN_ON(cpu_buffer,
044fa782 960 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
961 return -1;
962 if (RB_WARN_ON(cpu_buffer,
044fa782 963 bpage->list.prev->next != &bpage->list))
3e89c7bb 964 return -1;
77ae365e
SR
965 if (rb_check_list(cpu_buffer, &bpage->list))
966 return -1;
7a8e76a3
SR
967 }
968
77ae365e
SR
969 rb_head_page_activate(cpu_buffer);
970
7a8e76a3
SR
971 return 0;
972}
973
438ced17 974static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 975{
438ced17 976 int i;
044fa782 977 struct buffer_page *bpage, *tmp;
3adc54fa 978
7a8e76a3 979 for (i = 0; i < nr_pages; i++) {
7ea59064 980 struct page *page;
d7ec4bfe
VN
981 /*
982 * __GFP_NORETRY flag makes sure that the allocation fails
983 * gracefully without invoking oom-killer and the system is
984 * not destabilized.
985 */
044fa782 986 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 987 GFP_KERNEL | __GFP_NORETRY,
438ced17 988 cpu_to_node(cpu));
044fa782 989 if (!bpage)
e4c2ce82 990 goto free_pages;
77ae365e 991
438ced17 992 list_add(&bpage->list, pages);
77ae365e 993
438ced17 994 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 995 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 996 if (!page)
7a8e76a3 997 goto free_pages;
7ea59064 998 bpage->page = page_address(page);
044fa782 999 rb_init_page(bpage->page);
7a8e76a3
SR
1000 }
1001
438ced17
VN
1002 return 0;
1003
1004free_pages:
1005 list_for_each_entry_safe(bpage, tmp, pages, list) {
1006 list_del_init(&bpage->list);
1007 free_buffer_page(bpage);
1008 }
1009
1010 return -ENOMEM;
1011}
1012
1013static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1014 unsigned nr_pages)
1015{
1016 LIST_HEAD(pages);
1017
1018 WARN_ON(!nr_pages);
1019
1020 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1021 return -ENOMEM;
1022
3adc54fa
SR
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
7a8e76a3 1030
438ced17
VN
1031 cpu_buffer->nr_pages = nr_pages;
1032
7a8e76a3
SR
1033 rb_check_pages(cpu_buffer);
1034
1035 return 0;
7a8e76a3
SR
1036}
1037
1038static struct ring_buffer_per_cpu *
438ced17 1039rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1040{
1041 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1042 struct buffer_page *bpage;
7ea59064 1043 struct page *page;
7a8e76a3
SR
1044 int ret;
1045
1046 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1047 GFP_KERNEL, cpu_to_node(cpu));
1048 if (!cpu_buffer)
1049 return NULL;
1050
1051 cpu_buffer->cpu = cpu;
1052 cpu_buffer->buffer = buffer;
5389f6fa 1053 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1054 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1055 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318
VN
1056 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1057 init_completion(&cpu_buffer->update_completion);
7a8e76a3 1058
044fa782 1059 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1060 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1061 if (!bpage)
e4c2ce82
SR
1062 goto fail_free_buffer;
1063
77ae365e
SR
1064 rb_check_bpage(cpu_buffer, bpage);
1065
044fa782 1066 cpu_buffer->reader_page = bpage;
7ea59064
VN
1067 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1068 if (!page)
e4c2ce82 1069 goto fail_free_reader;
7ea59064 1070 bpage->page = page_address(page);
044fa782 1071 rb_init_page(bpage->page);
e4c2ce82 1072
d769041f 1073 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1074
438ced17 1075 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1076 if (ret < 0)
d769041f 1077 goto fail_free_reader;
7a8e76a3
SR
1078
1079 cpu_buffer->head_page
3adc54fa 1080 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1081 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1082
77ae365e
SR
1083 rb_head_page_activate(cpu_buffer);
1084
7a8e76a3
SR
1085 return cpu_buffer;
1086
d769041f
SR
1087 fail_free_reader:
1088 free_buffer_page(cpu_buffer->reader_page);
1089
7a8e76a3
SR
1090 fail_free_buffer:
1091 kfree(cpu_buffer);
1092 return NULL;
1093}
1094
1095static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1096{
3adc54fa 1097 struct list_head *head = cpu_buffer->pages;
044fa782 1098 struct buffer_page *bpage, *tmp;
7a8e76a3 1099
d769041f
SR
1100 free_buffer_page(cpu_buffer->reader_page);
1101
77ae365e
SR
1102 rb_head_page_deactivate(cpu_buffer);
1103
3adc54fa
SR
1104 if (head) {
1105 list_for_each_entry_safe(bpage, tmp, head, list) {
1106 list_del_init(&bpage->list);
1107 free_buffer_page(bpage);
1108 }
1109 bpage = list_entry(head, struct buffer_page, list);
044fa782 1110 free_buffer_page(bpage);
7a8e76a3 1111 }
3adc54fa 1112
7a8e76a3
SR
1113 kfree(cpu_buffer);
1114}
1115
59222efe 1116#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1117static int rb_cpu_notify(struct notifier_block *self,
1118 unsigned long action, void *hcpu);
554f786e
SR
1119#endif
1120
7a8e76a3
SR
1121/**
1122 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1123 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1124 * @flags: attributes to set for the ring buffer.
1125 *
1126 * Currently the only flag that is available is the RB_FL_OVERWRITE
1127 * flag. This flag means that the buffer will overwrite old data
1128 * when the buffer wraps. If this flag is not set, the buffer will
1129 * drop data when the tail hits the head.
1130 */
1f8a6a10
PZ
1131struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1132 struct lock_class_key *key)
7a8e76a3
SR
1133{
1134 struct ring_buffer *buffer;
1135 int bsize;
438ced17 1136 int cpu, nr_pages;
7a8e76a3
SR
1137
1138 /* keep it in its own cache line */
1139 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1140 GFP_KERNEL);
1141 if (!buffer)
1142 return NULL;
1143
9e01c1b7
RR
1144 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1145 goto fail_free_buffer;
1146
438ced17 1147 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1148 buffer->flags = flags;
37886f6a 1149 buffer->clock = trace_clock_local;
1f8a6a10 1150 buffer->reader_lock_key = key;
7a8e76a3
SR
1151
1152 /* need at least two pages */
438ced17
VN
1153 if (nr_pages < 2)
1154 nr_pages = 2;
7a8e76a3 1155
3bf832ce
FW
1156 /*
1157 * In case of non-hotplug cpu, if the ring-buffer is allocated
1158 * in early initcall, it will not be notified of secondary cpus.
1159 * In that off case, we need to allocate for all possible cpus.
1160 */
1161#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1162 get_online_cpus();
1163 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1164#else
1165 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1166#endif
7a8e76a3
SR
1167 buffer->cpus = nr_cpu_ids;
1168
1169 bsize = sizeof(void *) * nr_cpu_ids;
1170 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1171 GFP_KERNEL);
1172 if (!buffer->buffers)
9e01c1b7 1173 goto fail_free_cpumask;
7a8e76a3
SR
1174
1175 for_each_buffer_cpu(buffer, cpu) {
1176 buffer->buffers[cpu] =
438ced17 1177 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1178 if (!buffer->buffers[cpu])
1179 goto fail_free_buffers;
1180 }
1181
59222efe 1182#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1183 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1184 buffer->cpu_notify.priority = 0;
1185 register_cpu_notifier(&buffer->cpu_notify);
1186#endif
1187
1188 put_online_cpus();
7a8e76a3
SR
1189 mutex_init(&buffer->mutex);
1190
1191 return buffer;
1192
1193 fail_free_buffers:
1194 for_each_buffer_cpu(buffer, cpu) {
1195 if (buffer->buffers[cpu])
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1197 }
1198 kfree(buffer->buffers);
1199
9e01c1b7
RR
1200 fail_free_cpumask:
1201 free_cpumask_var(buffer->cpumask);
554f786e 1202 put_online_cpus();
9e01c1b7 1203
7a8e76a3
SR
1204 fail_free_buffer:
1205 kfree(buffer);
1206 return NULL;
1207}
1f8a6a10 1208EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1209
1210/**
1211 * ring_buffer_free - free a ring buffer.
1212 * @buffer: the buffer to free.
1213 */
1214void
1215ring_buffer_free(struct ring_buffer *buffer)
1216{
1217 int cpu;
1218
554f786e
SR
1219 get_online_cpus();
1220
59222efe 1221#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1222 unregister_cpu_notifier(&buffer->cpu_notify);
1223#endif
1224
7a8e76a3
SR
1225 for_each_buffer_cpu(buffer, cpu)
1226 rb_free_cpu_buffer(buffer->buffers[cpu]);
1227
554f786e
SR
1228 put_online_cpus();
1229
bd3f0221 1230 kfree(buffer->buffers);
9e01c1b7
RR
1231 free_cpumask_var(buffer->cpumask);
1232
7a8e76a3
SR
1233 kfree(buffer);
1234}
c4f50183 1235EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1236
37886f6a
SR
1237void ring_buffer_set_clock(struct ring_buffer *buffer,
1238 u64 (*clock)(void))
1239{
1240 buffer->clock = clock;
1241}
1242
7a8e76a3
SR
1243static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1244
83f40318
VN
1245static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1246{
1247 return local_read(&bpage->entries) & RB_WRITE_MASK;
1248}
1249
1250static inline unsigned long rb_page_write(struct buffer_page *bpage)
1251{
1252 return local_read(&bpage->write) & RB_WRITE_MASK;
1253}
1254
7a8e76a3 1255static void
83f40318 1256rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1257{
83f40318
VN
1258 struct list_head *tail_page, *to_remove, *next_page;
1259 struct buffer_page *to_remove_page, *tmp_iter_page;
1260 struct buffer_page *last_page, *first_page;
1261 unsigned int nr_removed;
1262 unsigned long head_bit;
1263 int page_entries;
1264
1265 head_bit = 0;
7a8e76a3 1266
5389f6fa 1267 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1268 atomic_inc(&cpu_buffer->record_disabled);
1269 /*
1270 * We don't race with the readers since we have acquired the reader
1271 * lock. We also don't race with writers after disabling recording.
1272 * This makes it easy to figure out the first and the last page to be
1273 * removed from the list. We unlink all the pages in between including
1274 * the first and last pages. This is done in a busy loop so that we
1275 * lose the least number of traces.
1276 * The pages are freed after we restart recording and unlock readers.
1277 */
1278 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1279
83f40318
VN
1280 /*
1281 * tail page might be on reader page, we remove the next page
1282 * from the ring buffer
1283 */
1284 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1285 tail_page = rb_list_head(tail_page->next);
1286 to_remove = tail_page;
1287
1288 /* start of pages to remove */
1289 first_page = list_entry(rb_list_head(to_remove->next),
1290 struct buffer_page, list);
1291
1292 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1293 to_remove = rb_list_head(to_remove)->next;
1294 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1295 }
7a8e76a3 1296
83f40318 1297 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1298
83f40318
VN
1299 /*
1300 * Now we remove all pages between tail_page and next_page.
1301 * Make sure that we have head_bit value preserved for the
1302 * next page
1303 */
1304 tail_page->next = (struct list_head *)((unsigned long)next_page |
1305 head_bit);
1306 next_page = rb_list_head(next_page);
1307 next_page->prev = tail_page;
1308
1309 /* make sure pages points to a valid page in the ring buffer */
1310 cpu_buffer->pages = next_page;
1311
1312 /* update head page */
1313 if (head_bit)
1314 cpu_buffer->head_page = list_entry(next_page,
1315 struct buffer_page, list);
1316
1317 /*
1318 * change read pointer to make sure any read iterators reset
1319 * themselves
1320 */
1321 cpu_buffer->read = 0;
1322
1323 /* pages are removed, resume tracing and then free the pages */
1324 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1325 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1326
1327 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1328
1329 /* last buffer page to remove */
1330 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1331 list);
1332 tmp_iter_page = first_page;
1333
1334 do {
1335 to_remove_page = tmp_iter_page;
1336 rb_inc_page(cpu_buffer, &tmp_iter_page);
1337
1338 /* update the counters */
1339 page_entries = rb_page_entries(to_remove_page);
1340 if (page_entries) {
1341 /*
1342 * If something was added to this page, it was full
1343 * since it is not the tail page. So we deduct the
1344 * bytes consumed in ring buffer from here.
1345 * No need to update overruns, since this page is
1346 * deleted from ring buffer and its entries are
1347 * already accounted for.
1348 */
1349 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1350 }
1351
1352 /*
1353 * We have already removed references to this list item, just
1354 * free up the buffer_page and its page
1355 */
1356 free_buffer_page(to_remove_page);
1357 nr_removed--;
1358
1359 } while (to_remove_page != last_page);
1360
1361 RB_WARN_ON(cpu_buffer, nr_removed);
7a8e76a3
SR
1362}
1363
1364static void
1365rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1366 struct list_head *pages, unsigned nr_pages)
1367{
044fa782 1368 struct buffer_page *bpage;
7a8e76a3
SR
1369 struct list_head *p;
1370 unsigned i;
1371
5389f6fa 1372 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1373 /* stop the writers while inserting pages */
1374 atomic_inc(&cpu_buffer->record_disabled);
77ae365e
SR
1375 rb_head_page_deactivate(cpu_buffer);
1376
7a8e76a3 1377 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1378 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1379 goto out;
7a8e76a3 1380 p = pages->next;
044fa782
SR
1381 bpage = list_entry(p, struct buffer_page, list);
1382 list_del_init(&bpage->list);
3adc54fa 1383 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1384 }
1385 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1386 rb_check_pages(cpu_buffer);
1387
292f60c0 1388out:
83f40318 1389 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1390 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1391}
1392
83f40318 1393static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17
VN
1394{
1395 if (cpu_buffer->nr_pages_to_update > 0)
1396 rb_insert_pages(cpu_buffer, &cpu_buffer->new_pages,
1397 cpu_buffer->nr_pages_to_update);
1398 else
1399 rb_remove_pages(cpu_buffer, -cpu_buffer->nr_pages_to_update);
83f40318 1400
438ced17 1401 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1402}
1403
1404static void update_pages_handler(struct work_struct *work)
1405{
1406 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1407 struct ring_buffer_per_cpu, update_pages_work);
1408 rb_update_pages(cpu_buffer);
1409 complete(&cpu_buffer->update_completion);
438ced17
VN
1410}
1411
7a8e76a3
SR
1412/**
1413 * ring_buffer_resize - resize the ring buffer
1414 * @buffer: the buffer to resize.
1415 * @size: the new size.
1416 *
7a8e76a3
SR
1417 * Minimum size is 2 * BUF_PAGE_SIZE.
1418 *
83f40318 1419 * Returns 0 on success and < 0 on failure.
7a8e76a3 1420 */
438ced17
VN
1421int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1422 int cpu_id)
7a8e76a3
SR
1423{
1424 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1425 unsigned nr_pages;
83f40318 1426 int cpu, err = 0;
7a8e76a3 1427
ee51a1de
IM
1428 /*
1429 * Always succeed at resizing a non-existent buffer:
1430 */
1431 if (!buffer)
1432 return size;
1433
7a8e76a3
SR
1434 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1435 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1436
1437 /* we need a minimum of two pages */
1438 if (size < BUF_PAGE_SIZE * 2)
1439 size = BUF_PAGE_SIZE * 2;
1440
83f40318 1441 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1442
83f40318
VN
1443 /*
1444 * Don't succeed if resizing is disabled, as a reader might be
1445 * manipulating the ring buffer and is expecting a sane state while
1446 * this is true.
1447 */
1448 if (atomic_read(&buffer->resize_disabled))
1449 return -EBUSY;
18421015 1450
83f40318 1451 /* prevent another thread from changing buffer sizes */
7a8e76a3 1452 mutex_lock(&buffer->mutex);
7a8e76a3 1453
438ced17
VN
1454 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1455 /* calculate the pages to update */
7a8e76a3
SR
1456 for_each_buffer_cpu(buffer, cpu) {
1457 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1458
438ced17
VN
1459 cpu_buffer->nr_pages_to_update = nr_pages -
1460 cpu_buffer->nr_pages;
438ced17
VN
1461 /*
1462 * nothing more to do for removing pages or no update
1463 */
1464 if (cpu_buffer->nr_pages_to_update <= 0)
1465 continue;
d7ec4bfe 1466 /*
438ced17
VN
1467 * to add pages, make sure all new pages can be
1468 * allocated without receiving ENOMEM
d7ec4bfe 1469 */
438ced17
VN
1470 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1471 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1472 &cpu_buffer->new_pages, cpu)) {
438ced17 1473 /* not enough memory for new pages */
83f40318
VN
1474 err = -ENOMEM;
1475 goto out_err;
1476 }
1477 }
1478
1479 get_online_cpus();
1480 /*
1481 * Fire off all the required work handlers
1482 * Look out for offline CPUs
1483 */
1484 for_each_buffer_cpu(buffer, cpu) {
1485 cpu_buffer = buffer->buffers[cpu];
1486 if (!cpu_buffer->nr_pages_to_update ||
1487 !cpu_online(cpu))
1488 continue;
1489
1490 schedule_work_on(cpu, &cpu_buffer->update_pages_work);
1491 }
1492 /*
1493 * This loop is for the CPUs that are not online.
1494 * We can't schedule anything on them, but it's not necessary
1495 * since we can change their buffer sizes without any race.
1496 */
1497 for_each_buffer_cpu(buffer, cpu) {
1498 cpu_buffer = buffer->buffers[cpu];
1499 if (!cpu_buffer->nr_pages_to_update ||
1500 cpu_online(cpu))
1501 continue;
1502
1503 rb_update_pages(cpu_buffer);
7a8e76a3 1504 }
7a8e76a3 1505
438ced17
VN
1506 /* wait for all the updates to complete */
1507 for_each_buffer_cpu(buffer, cpu) {
1508 cpu_buffer = buffer->buffers[cpu];
83f40318
VN
1509 if (!cpu_buffer->nr_pages_to_update ||
1510 !cpu_online(cpu))
1511 continue;
1512
1513 wait_for_completion(&cpu_buffer->update_completion);
1514 /* reset this value */
1515 cpu_buffer->nr_pages_to_update = 0;
438ced17 1516 }
83f40318
VN
1517
1518 put_online_cpus();
438ced17
VN
1519 } else {
1520 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1521
438ced17
VN
1522 if (nr_pages == cpu_buffer->nr_pages)
1523 goto out;
7a8e76a3 1524
438ced17
VN
1525 cpu_buffer->nr_pages_to_update = nr_pages -
1526 cpu_buffer->nr_pages;
1527
1528 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1529 if (cpu_buffer->nr_pages_to_update > 0 &&
1530 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1531 &cpu_buffer->new_pages, cpu_id)) {
1532 err = -ENOMEM;
1533 goto out_err;
1534 }
438ced17 1535
83f40318
VN
1536 get_online_cpus();
1537
1538 if (cpu_online(cpu_id)) {
1539 schedule_work_on(cpu_id,
1540 &cpu_buffer->update_pages_work);
1541 wait_for_completion(&cpu_buffer->update_completion);
1542 } else
1543 rb_update_pages(cpu_buffer);
1544
1545 put_online_cpus();
1546 /* reset this value */
1547 cpu_buffer->nr_pages_to_update = 0;
438ced17 1548 }
7a8e76a3
SR
1549
1550 out:
7a8e76a3 1551 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1552 return size;
1553
83f40318 1554 out_err:
438ced17
VN
1555 for_each_buffer_cpu(buffer, cpu) {
1556 struct buffer_page *bpage, *tmp;
83f40318 1557
438ced17 1558 cpu_buffer = buffer->buffers[cpu];
438ced17 1559 cpu_buffer->nr_pages_to_update = 0;
83f40318 1560
438ced17
VN
1561 if (list_empty(&cpu_buffer->new_pages))
1562 continue;
83f40318 1563
438ced17
VN
1564 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1565 list) {
1566 list_del_init(&bpage->list);
1567 free_buffer_page(bpage);
1568 }
7a8e76a3 1569 }
641d2f63 1570 mutex_unlock(&buffer->mutex);
83f40318 1571 return err;
7a8e76a3 1572}
c4f50183 1573EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1574
750912fa
DS
1575void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1576{
1577 mutex_lock(&buffer->mutex);
1578 if (val)
1579 buffer->flags |= RB_FL_OVERWRITE;
1580 else
1581 buffer->flags &= ~RB_FL_OVERWRITE;
1582 mutex_unlock(&buffer->mutex);
1583}
1584EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1585
8789a9e7 1586static inline void *
044fa782 1587__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1588{
044fa782 1589 return bpage->data + index;
8789a9e7
SR
1590}
1591
044fa782 1592static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1593{
044fa782 1594 return bpage->page->data + index;
7a8e76a3
SR
1595}
1596
1597static inline struct ring_buffer_event *
d769041f 1598rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1599{
6f807acd
SR
1600 return __rb_page_index(cpu_buffer->reader_page,
1601 cpu_buffer->reader_page->read);
1602}
1603
7a8e76a3
SR
1604static inline struct ring_buffer_event *
1605rb_iter_head_event(struct ring_buffer_iter *iter)
1606{
6f807acd 1607 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1608}
1609
bf41a158
SR
1610static inline unsigned rb_page_commit(struct buffer_page *bpage)
1611{
abc9b56d 1612 return local_read(&bpage->page->commit);
bf41a158
SR
1613}
1614
25985edc 1615/* Size is determined by what has been committed */
bf41a158
SR
1616static inline unsigned rb_page_size(struct buffer_page *bpage)
1617{
1618 return rb_page_commit(bpage);
1619}
1620
1621static inline unsigned
1622rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1623{
1624 return rb_page_commit(cpu_buffer->commit_page);
1625}
1626
bf41a158
SR
1627static inline unsigned
1628rb_event_index(struct ring_buffer_event *event)
1629{
1630 unsigned long addr = (unsigned long)event;
1631
22f470f8 1632 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1633}
1634
0f0c85fc 1635static inline int
fa743953
SR
1636rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1637 struct ring_buffer_event *event)
bf41a158
SR
1638{
1639 unsigned long addr = (unsigned long)event;
1640 unsigned long index;
1641
1642 index = rb_event_index(event);
1643 addr &= PAGE_MASK;
1644
1645 return cpu_buffer->commit_page->page == (void *)addr &&
1646 rb_commit_index(cpu_buffer) == index;
1647}
1648
34a148bf 1649static void
bf41a158 1650rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1651{
77ae365e
SR
1652 unsigned long max_count;
1653
bf41a158
SR
1654 /*
1655 * We only race with interrupts and NMIs on this CPU.
1656 * If we own the commit event, then we can commit
1657 * all others that interrupted us, since the interruptions
1658 * are in stack format (they finish before they come
1659 * back to us). This allows us to do a simple loop to
1660 * assign the commit to the tail.
1661 */
a8ccf1d6 1662 again:
438ced17 1663 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1664
bf41a158 1665 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1666 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1667 return;
1668 if (RB_WARN_ON(cpu_buffer,
1669 rb_is_reader_page(cpu_buffer->tail_page)))
1670 return;
1671 local_set(&cpu_buffer->commit_page->page->commit,
1672 rb_page_write(cpu_buffer->commit_page));
bf41a158 1673 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1674 cpu_buffer->write_stamp =
1675 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1676 /* add barrier to keep gcc from optimizing too much */
1677 barrier();
1678 }
1679 while (rb_commit_index(cpu_buffer) !=
1680 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1681
1682 local_set(&cpu_buffer->commit_page->page->commit,
1683 rb_page_write(cpu_buffer->commit_page));
1684 RB_WARN_ON(cpu_buffer,
1685 local_read(&cpu_buffer->commit_page->page->commit) &
1686 ~RB_WRITE_MASK);
bf41a158
SR
1687 barrier();
1688 }
a8ccf1d6
SR
1689
1690 /* again, keep gcc from optimizing */
1691 barrier();
1692
1693 /*
1694 * If an interrupt came in just after the first while loop
1695 * and pushed the tail page forward, we will be left with
1696 * a dangling commit that will never go forward.
1697 */
1698 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1699 goto again;
7a8e76a3
SR
1700}
1701
d769041f 1702static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1703{
abc9b56d 1704 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1705 cpu_buffer->reader_page->read = 0;
d769041f
SR
1706}
1707
34a148bf 1708static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1709{
1710 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1711
1712 /*
1713 * The iterator could be on the reader page (it starts there).
1714 * But the head could have moved, since the reader was
1715 * found. Check for this case and assign the iterator
1716 * to the head page instead of next.
1717 */
1718 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1719 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1720 else
1721 rb_inc_page(cpu_buffer, &iter->head_page);
1722
abc9b56d 1723 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1724 iter->head = 0;
1725}
1726
69d1b839
SR
1727/* Slow path, do not inline */
1728static noinline struct ring_buffer_event *
1729rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1730{
1731 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1732
1733 /* Not the first event on the page? */
1734 if (rb_event_index(event)) {
1735 event->time_delta = delta & TS_MASK;
1736 event->array[0] = delta >> TS_SHIFT;
1737 } else {
1738 /* nope, just zero it */
1739 event->time_delta = 0;
1740 event->array[0] = 0;
1741 }
1742
1743 return skip_time_extend(event);
1744}
1745
7a8e76a3
SR
1746/**
1747 * ring_buffer_update_event - update event type and data
1748 * @event: the even to update
1749 * @type: the type of event
1750 * @length: the size of the event field in the ring buffer
1751 *
1752 * Update the type and data fields of the event. The length
1753 * is the actual size that is written to the ring buffer,
1754 * and with this, we can determine what to place into the
1755 * data field.
1756 */
34a148bf 1757static void
69d1b839
SR
1758rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1759 struct ring_buffer_event *event, unsigned length,
1760 int add_timestamp, u64 delta)
7a8e76a3 1761{
69d1b839
SR
1762 /* Only a commit updates the timestamp */
1763 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1764 delta = 0;
7a8e76a3 1765
69d1b839
SR
1766 /*
1767 * If we need to add a timestamp, then we
1768 * add it to the start of the resevered space.
1769 */
1770 if (unlikely(add_timestamp)) {
1771 event = rb_add_time_stamp(event, delta);
1772 length -= RB_LEN_TIME_EXTEND;
1773 delta = 0;
7a8e76a3 1774 }
69d1b839
SR
1775
1776 event->time_delta = delta;
1777 length -= RB_EVNT_HDR_SIZE;
1778 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1779 event->type_len = 0;
1780 event->array[0] = length;
1781 } else
1782 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1783}
1784
77ae365e
SR
1785/*
1786 * rb_handle_head_page - writer hit the head page
1787 *
1788 * Returns: +1 to retry page
1789 * 0 to continue
1790 * -1 on error
1791 */
1792static int
1793rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1794 struct buffer_page *tail_page,
1795 struct buffer_page *next_page)
1796{
1797 struct buffer_page *new_head;
1798 int entries;
1799 int type;
1800 int ret;
1801
1802 entries = rb_page_entries(next_page);
1803
1804 /*
1805 * The hard part is here. We need to move the head
1806 * forward, and protect against both readers on
1807 * other CPUs and writers coming in via interrupts.
1808 */
1809 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1810 RB_PAGE_HEAD);
1811
1812 /*
1813 * type can be one of four:
1814 * NORMAL - an interrupt already moved it for us
1815 * HEAD - we are the first to get here.
1816 * UPDATE - we are the interrupt interrupting
1817 * a current move.
1818 * MOVED - a reader on another CPU moved the next
1819 * pointer to its reader page. Give up
1820 * and try again.
1821 */
1822
1823 switch (type) {
1824 case RB_PAGE_HEAD:
1825 /*
1826 * We changed the head to UPDATE, thus
1827 * it is our responsibility to update
1828 * the counters.
1829 */
1830 local_add(entries, &cpu_buffer->overrun);
c64e148a 1831 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1832
1833 /*
1834 * The entries will be zeroed out when we move the
1835 * tail page.
1836 */
1837
1838 /* still more to do */
1839 break;
1840
1841 case RB_PAGE_UPDATE:
1842 /*
1843 * This is an interrupt that interrupt the
1844 * previous update. Still more to do.
1845 */
1846 break;
1847 case RB_PAGE_NORMAL:
1848 /*
1849 * An interrupt came in before the update
1850 * and processed this for us.
1851 * Nothing left to do.
1852 */
1853 return 1;
1854 case RB_PAGE_MOVED:
1855 /*
1856 * The reader is on another CPU and just did
1857 * a swap with our next_page.
1858 * Try again.
1859 */
1860 return 1;
1861 default:
1862 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1863 return -1;
1864 }
1865
1866 /*
1867 * Now that we are here, the old head pointer is
1868 * set to UPDATE. This will keep the reader from
1869 * swapping the head page with the reader page.
1870 * The reader (on another CPU) will spin till
1871 * we are finished.
1872 *
1873 * We just need to protect against interrupts
1874 * doing the job. We will set the next pointer
1875 * to HEAD. After that, we set the old pointer
1876 * to NORMAL, but only if it was HEAD before.
1877 * otherwise we are an interrupt, and only
1878 * want the outer most commit to reset it.
1879 */
1880 new_head = next_page;
1881 rb_inc_page(cpu_buffer, &new_head);
1882
1883 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1884 RB_PAGE_NORMAL);
1885
1886 /*
1887 * Valid returns are:
1888 * HEAD - an interrupt came in and already set it.
1889 * NORMAL - One of two things:
1890 * 1) We really set it.
1891 * 2) A bunch of interrupts came in and moved
1892 * the page forward again.
1893 */
1894 switch (ret) {
1895 case RB_PAGE_HEAD:
1896 case RB_PAGE_NORMAL:
1897 /* OK */
1898 break;
1899 default:
1900 RB_WARN_ON(cpu_buffer, 1);
1901 return -1;
1902 }
1903
1904 /*
1905 * It is possible that an interrupt came in,
1906 * set the head up, then more interrupts came in
1907 * and moved it again. When we get back here,
1908 * the page would have been set to NORMAL but we
1909 * just set it back to HEAD.
1910 *
1911 * How do you detect this? Well, if that happened
1912 * the tail page would have moved.
1913 */
1914 if (ret == RB_PAGE_NORMAL) {
1915 /*
1916 * If the tail had moved passed next, then we need
1917 * to reset the pointer.
1918 */
1919 if (cpu_buffer->tail_page != tail_page &&
1920 cpu_buffer->tail_page != next_page)
1921 rb_head_page_set_normal(cpu_buffer, new_head,
1922 next_page,
1923 RB_PAGE_HEAD);
1924 }
1925
1926 /*
1927 * If this was the outer most commit (the one that
1928 * changed the original pointer from HEAD to UPDATE),
1929 * then it is up to us to reset it to NORMAL.
1930 */
1931 if (type == RB_PAGE_HEAD) {
1932 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1933 tail_page,
1934 RB_PAGE_UPDATE);
1935 if (RB_WARN_ON(cpu_buffer,
1936 ret != RB_PAGE_UPDATE))
1937 return -1;
1938 }
1939
1940 return 0;
1941}
1942
34a148bf 1943static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1944{
1945 struct ring_buffer_event event; /* Used only for sizeof array */
1946
1947 /* zero length can cause confusions */
1948 if (!length)
1949 length = 1;
1950
2271048d 1951 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1952 length += sizeof(event.array[0]);
1953
1954 length += RB_EVNT_HDR_SIZE;
2271048d 1955 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1956
1957 return length;
1958}
1959
c7b09308
SR
1960static inline void
1961rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1962 struct buffer_page *tail_page,
1963 unsigned long tail, unsigned long length)
1964{
1965 struct ring_buffer_event *event;
1966
1967 /*
1968 * Only the event that crossed the page boundary
1969 * must fill the old tail_page with padding.
1970 */
1971 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1972 /*
1973 * If the page was filled, then we still need
1974 * to update the real_end. Reset it to zero
1975 * and the reader will ignore it.
1976 */
1977 if (tail == BUF_PAGE_SIZE)
1978 tail_page->real_end = 0;
1979
c7b09308
SR
1980 local_sub(length, &tail_page->write);
1981 return;
1982 }
1983
1984 event = __rb_page_index(tail_page, tail);
b0b7065b 1985 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1986
c64e148a
VN
1987 /* account for padding bytes */
1988 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1989
ff0ff84a
SR
1990 /*
1991 * Save the original length to the meta data.
1992 * This will be used by the reader to add lost event
1993 * counter.
1994 */
1995 tail_page->real_end = tail;
1996
c7b09308
SR
1997 /*
1998 * If this event is bigger than the minimum size, then
1999 * we need to be careful that we don't subtract the
2000 * write counter enough to allow another writer to slip
2001 * in on this page.
2002 * We put in a discarded commit instead, to make sure
2003 * that this space is not used again.
2004 *
2005 * If we are less than the minimum size, we don't need to
2006 * worry about it.
2007 */
2008 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2009 /* No room for any events */
2010
2011 /* Mark the rest of the page with padding */
2012 rb_event_set_padding(event);
2013
2014 /* Set the write back to the previous setting */
2015 local_sub(length, &tail_page->write);
2016 return;
2017 }
2018
2019 /* Put in a discarded event */
2020 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2021 event->type_len = RINGBUF_TYPE_PADDING;
2022 /* time delta must be non zero */
2023 event->time_delta = 1;
c7b09308
SR
2024
2025 /* Set write to end of buffer */
2026 length = (tail + length) - BUF_PAGE_SIZE;
2027 local_sub(length, &tail_page->write);
2028}
6634ff26 2029
747e94ae
SR
2030/*
2031 * This is the slow path, force gcc not to inline it.
2032 */
2033static noinline struct ring_buffer_event *
6634ff26
SR
2034rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2035 unsigned long length, unsigned long tail,
e8bc43e8 2036 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2037{
5a50e33c 2038 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2039 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2040 struct buffer_page *next_page;
2041 int ret;
aa20ae84
SR
2042
2043 next_page = tail_page;
2044
aa20ae84
SR
2045 rb_inc_page(cpu_buffer, &next_page);
2046
aa20ae84
SR
2047 /*
2048 * If for some reason, we had an interrupt storm that made
2049 * it all the way around the buffer, bail, and warn
2050 * about it.
2051 */
2052 if (unlikely(next_page == commit_page)) {
77ae365e 2053 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2054 goto out_reset;
2055 }
2056
77ae365e
SR
2057 /*
2058 * This is where the fun begins!
2059 *
2060 * We are fighting against races between a reader that
2061 * could be on another CPU trying to swap its reader
2062 * page with the buffer head.
2063 *
2064 * We are also fighting against interrupts coming in and
2065 * moving the head or tail on us as well.
2066 *
2067 * If the next page is the head page then we have filled
2068 * the buffer, unless the commit page is still on the
2069 * reader page.
2070 */
2071 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2072
77ae365e
SR
2073 /*
2074 * If the commit is not on the reader page, then
2075 * move the header page.
2076 */
2077 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2078 /*
2079 * If we are not in overwrite mode,
2080 * this is easy, just stop here.
2081 */
2082 if (!(buffer->flags & RB_FL_OVERWRITE))
2083 goto out_reset;
2084
2085 ret = rb_handle_head_page(cpu_buffer,
2086 tail_page,
2087 next_page);
2088 if (ret < 0)
2089 goto out_reset;
2090 if (ret)
2091 goto out_again;
2092 } else {
2093 /*
2094 * We need to be careful here too. The
2095 * commit page could still be on the reader
2096 * page. We could have a small buffer, and
2097 * have filled up the buffer with events
2098 * from interrupts and such, and wrapped.
2099 *
2100 * Note, if the tail page is also the on the
2101 * reader_page, we let it move out.
2102 */
2103 if (unlikely((cpu_buffer->commit_page !=
2104 cpu_buffer->tail_page) &&
2105 (cpu_buffer->commit_page ==
2106 cpu_buffer->reader_page))) {
2107 local_inc(&cpu_buffer->commit_overrun);
2108 goto out_reset;
2109 }
aa20ae84
SR
2110 }
2111 }
2112
77ae365e
SR
2113 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2114 if (ret) {
2115 /*
2116 * Nested commits always have zero deltas, so
2117 * just reread the time stamp
2118 */
e8bc43e8
SR
2119 ts = rb_time_stamp(buffer);
2120 next_page->page->time_stamp = ts;
aa20ae84
SR
2121 }
2122
77ae365e 2123 out_again:
aa20ae84 2124
77ae365e 2125 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2126
2127 /* fail and let the caller try again */
2128 return ERR_PTR(-EAGAIN);
2129
45141d46 2130 out_reset:
6f3b3440 2131 /* reset write */
c7b09308 2132 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2133
bf41a158 2134 return NULL;
7a8e76a3
SR
2135}
2136
6634ff26
SR
2137static struct ring_buffer_event *
2138__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2139 unsigned long length, u64 ts,
2140 u64 delta, int add_timestamp)
6634ff26 2141{
5a50e33c 2142 struct buffer_page *tail_page;
6634ff26
SR
2143 struct ring_buffer_event *event;
2144 unsigned long tail, write;
2145
69d1b839
SR
2146 /*
2147 * If the time delta since the last event is too big to
2148 * hold in the time field of the event, then we append a
2149 * TIME EXTEND event ahead of the data event.
2150 */
2151 if (unlikely(add_timestamp))
2152 length += RB_LEN_TIME_EXTEND;
2153
6634ff26
SR
2154 tail_page = cpu_buffer->tail_page;
2155 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2156
2157 /* set write to only the index of the write */
2158 write &= RB_WRITE_MASK;
6634ff26
SR
2159 tail = write - length;
2160
2161 /* See if we shot pass the end of this buffer page */
747e94ae 2162 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2163 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2164 tail_page, ts);
6634ff26
SR
2165
2166 /* We reserved something on the buffer */
2167
6634ff26 2168 event = __rb_page_index(tail_page, tail);
1744a21d 2169 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2170 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2171
69d1b839 2172 local_inc(&tail_page->entries);
6634ff26
SR
2173
2174 /*
fa743953
SR
2175 * If this is the first commit on the page, then update
2176 * its timestamp.
6634ff26 2177 */
fa743953 2178 if (!tail)
e8bc43e8 2179 tail_page->page->time_stamp = ts;
6634ff26 2180
c64e148a
VN
2181 /* account for these added bytes */
2182 local_add(length, &cpu_buffer->entries_bytes);
2183
6634ff26
SR
2184 return event;
2185}
2186
edd813bf
SR
2187static inline int
2188rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2189 struct ring_buffer_event *event)
2190{
2191 unsigned long new_index, old_index;
2192 struct buffer_page *bpage;
2193 unsigned long index;
2194 unsigned long addr;
2195
2196 new_index = rb_event_index(event);
69d1b839 2197 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2198 addr = (unsigned long)event;
2199 addr &= PAGE_MASK;
2200
2201 bpage = cpu_buffer->tail_page;
2202
2203 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2204 unsigned long write_mask =
2205 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2206 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2207 /*
2208 * This is on the tail page. It is possible that
2209 * a write could come in and move the tail page
2210 * and write to the next page. That is fine
2211 * because we just shorten what is on this page.
2212 */
77ae365e
SR
2213 old_index += write_mask;
2214 new_index += write_mask;
edd813bf 2215 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2216 if (index == old_index) {
2217 /* update counters */
2218 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2219 return 1;
c64e148a 2220 }
edd813bf
SR
2221 }
2222
2223 /* could not discard */
2224 return 0;
2225}
2226
fa743953
SR
2227static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2228{
2229 local_inc(&cpu_buffer->committing);
2230 local_inc(&cpu_buffer->commits);
2231}
2232
d9abde21 2233static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2234{
2235 unsigned long commits;
2236
2237 if (RB_WARN_ON(cpu_buffer,
2238 !local_read(&cpu_buffer->committing)))
2239 return;
2240
2241 again:
2242 commits = local_read(&cpu_buffer->commits);
2243 /* synchronize with interrupts */
2244 barrier();
2245 if (local_read(&cpu_buffer->committing) == 1)
2246 rb_set_commit_to_write(cpu_buffer);
2247
2248 local_dec(&cpu_buffer->committing);
2249
2250 /* synchronize with interrupts */
2251 barrier();
2252
2253 /*
2254 * Need to account for interrupts coming in between the
2255 * updating of the commit page and the clearing of the
2256 * committing counter.
2257 */
2258 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2259 !local_read(&cpu_buffer->committing)) {
2260 local_inc(&cpu_buffer->committing);
2261 goto again;
2262 }
2263}
2264
7a8e76a3 2265static struct ring_buffer_event *
62f0b3eb
SR
2266rb_reserve_next_event(struct ring_buffer *buffer,
2267 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2268 unsigned long length)
7a8e76a3
SR
2269{
2270 struct ring_buffer_event *event;
69d1b839 2271 u64 ts, delta;
818e3dd3 2272 int nr_loops = 0;
69d1b839 2273 int add_timestamp;
140ff891 2274 u64 diff;
7a8e76a3 2275
fa743953
SR
2276 rb_start_commit(cpu_buffer);
2277
85bac32c 2278#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2279 /*
2280 * Due to the ability to swap a cpu buffer from a buffer
2281 * it is possible it was swapped before we committed.
2282 * (committing stops a swap). We check for it here and
2283 * if it happened, we have to fail the write.
2284 */
2285 barrier();
2286 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2287 local_dec(&cpu_buffer->committing);
2288 local_dec(&cpu_buffer->commits);
2289 return NULL;
2290 }
85bac32c 2291#endif
62f0b3eb 2292
be957c44 2293 length = rb_calculate_event_length(length);
bf41a158 2294 again:
69d1b839
SR
2295 add_timestamp = 0;
2296 delta = 0;
2297
818e3dd3
SR
2298 /*
2299 * We allow for interrupts to reenter here and do a trace.
2300 * If one does, it will cause this original code to loop
2301 * back here. Even with heavy interrupts happening, this
2302 * should only happen a few times in a row. If this happens
2303 * 1000 times in a row, there must be either an interrupt
2304 * storm or we have something buggy.
2305 * Bail!
2306 */
3e89c7bb 2307 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2308 goto out_fail;
818e3dd3 2309
6d3f1e12 2310 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2311 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2312
140ff891
SR
2313 /* make sure this diff is calculated here */
2314 barrier();
bf41a158 2315
140ff891
SR
2316 /* Did the write stamp get updated already? */
2317 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2318 delta = diff;
2319 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2320 int local_clock_stable = 1;
2321#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2322 local_clock_stable = sched_clock_stable;
2323#endif
69d1b839 2324 WARN_ONCE(delta > (1ULL << 59),
31274d72 2325 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2326 (unsigned long long)delta,
2327 (unsigned long long)ts,
31274d72
JO
2328 (unsigned long long)cpu_buffer->write_stamp,
2329 local_clock_stable ? "" :
2330 "If you just came from a suspend/resume,\n"
2331 "please switch to the trace global clock:\n"
2332 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2333 add_timestamp = 1;
7a8e76a3 2334 }
168b6b1d 2335 }
7a8e76a3 2336
69d1b839
SR
2337 event = __rb_reserve_next(cpu_buffer, length, ts,
2338 delta, add_timestamp);
168b6b1d 2339 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2340 goto again;
2341
fa743953
SR
2342 if (!event)
2343 goto out_fail;
7a8e76a3 2344
7a8e76a3 2345 return event;
fa743953
SR
2346
2347 out_fail:
2348 rb_end_commit(cpu_buffer);
2349 return NULL;
7a8e76a3
SR
2350}
2351
1155de47
PM
2352#ifdef CONFIG_TRACING
2353
aa18efb2 2354#define TRACE_RECURSIVE_DEPTH 16
261842b7 2355
d9abde21
SR
2356/* Keep this code out of the fast path cache */
2357static noinline void trace_recursive_fail(void)
261842b7 2358{
aa18efb2
SR
2359 /* Disable all tracing before we do anything else */
2360 tracing_off_permanent();
261842b7 2361
7d7d2b80 2362 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2363 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2364 trace_recursion_buffer(),
aa18efb2
SR
2365 hardirq_count() >> HARDIRQ_SHIFT,
2366 softirq_count() >> SOFTIRQ_SHIFT,
2367 in_nmi());
261842b7 2368
aa18efb2 2369 WARN_ON_ONCE(1);
d9abde21
SR
2370}
2371
2372static inline int trace_recursive_lock(void)
2373{
b1cff0ad 2374 trace_recursion_inc();
d9abde21 2375
b1cff0ad 2376 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2377 return 0;
2378
2379 trace_recursive_fail();
2380
aa18efb2 2381 return -1;
261842b7
SR
2382}
2383
d9abde21 2384static inline void trace_recursive_unlock(void)
261842b7 2385{
b1cff0ad 2386 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2387
b1cff0ad 2388 trace_recursion_dec();
261842b7
SR
2389}
2390
1155de47
PM
2391#else
2392
2393#define trace_recursive_lock() (0)
2394#define trace_recursive_unlock() do { } while (0)
2395
2396#endif
2397
7a8e76a3
SR
2398/**
2399 * ring_buffer_lock_reserve - reserve a part of the buffer
2400 * @buffer: the ring buffer to reserve from
2401 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2402 *
2403 * Returns a reseverd event on the ring buffer to copy directly to.
2404 * The user of this interface will need to get the body to write into
2405 * and can use the ring_buffer_event_data() interface.
2406 *
2407 * The length is the length of the data needed, not the event length
2408 * which also includes the event header.
2409 *
2410 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2411 * If NULL is returned, then nothing has been allocated or locked.
2412 */
2413struct ring_buffer_event *
0a987751 2414ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2415{
2416 struct ring_buffer_per_cpu *cpu_buffer;
2417 struct ring_buffer_event *event;
5168ae50 2418 int cpu;
7a8e76a3 2419
033601a3 2420 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2421 return NULL;
2422
bf41a158 2423 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2424 preempt_disable_notrace();
bf41a158 2425
52fbe9cd
LJ
2426 if (atomic_read(&buffer->record_disabled))
2427 goto out_nocheck;
2428
261842b7
SR
2429 if (trace_recursive_lock())
2430 goto out_nocheck;
2431
7a8e76a3
SR
2432 cpu = raw_smp_processor_id();
2433
9e01c1b7 2434 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2435 goto out;
7a8e76a3
SR
2436
2437 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2438
2439 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2440 goto out;
7a8e76a3 2441
be957c44 2442 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2443 goto out;
7a8e76a3 2444
62f0b3eb 2445 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2446 if (!event)
d769041f 2447 goto out;
7a8e76a3
SR
2448
2449 return event;
2450
d769041f 2451 out:
261842b7
SR
2452 trace_recursive_unlock();
2453
2454 out_nocheck:
5168ae50 2455 preempt_enable_notrace();
7a8e76a3
SR
2456 return NULL;
2457}
c4f50183 2458EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2459
a1863c21
SR
2460static void
2461rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2462 struct ring_buffer_event *event)
2463{
69d1b839
SR
2464 u64 delta;
2465
fa743953
SR
2466 /*
2467 * The event first in the commit queue updates the
2468 * time stamp.
2469 */
69d1b839
SR
2470 if (rb_event_is_commit(cpu_buffer, event)) {
2471 /*
2472 * A commit event that is first on a page
2473 * updates the write timestamp with the page stamp
2474 */
2475 if (!rb_event_index(event))
2476 cpu_buffer->write_stamp =
2477 cpu_buffer->commit_page->page->time_stamp;
2478 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2479 delta = event->array[0];
2480 delta <<= TS_SHIFT;
2481 delta += event->time_delta;
2482 cpu_buffer->write_stamp += delta;
2483 } else
2484 cpu_buffer->write_stamp += event->time_delta;
2485 }
a1863c21 2486}
bf41a158 2487
a1863c21
SR
2488static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2489 struct ring_buffer_event *event)
2490{
2491 local_inc(&cpu_buffer->entries);
2492 rb_update_write_stamp(cpu_buffer, event);
fa743953 2493 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2494}
2495
2496/**
2497 * ring_buffer_unlock_commit - commit a reserved
2498 * @buffer: The buffer to commit to
2499 * @event: The event pointer to commit.
7a8e76a3
SR
2500 *
2501 * This commits the data to the ring buffer, and releases any locks held.
2502 *
2503 * Must be paired with ring_buffer_lock_reserve.
2504 */
2505int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2506 struct ring_buffer_event *event)
7a8e76a3
SR
2507{
2508 struct ring_buffer_per_cpu *cpu_buffer;
2509 int cpu = raw_smp_processor_id();
2510
2511 cpu_buffer = buffer->buffers[cpu];
2512
7a8e76a3
SR
2513 rb_commit(cpu_buffer, event);
2514
261842b7
SR
2515 trace_recursive_unlock();
2516
5168ae50 2517 preempt_enable_notrace();
7a8e76a3
SR
2518
2519 return 0;
2520}
c4f50183 2521EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2522
f3b9aae1
FW
2523static inline void rb_event_discard(struct ring_buffer_event *event)
2524{
69d1b839
SR
2525 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2526 event = skip_time_extend(event);
2527
334d4169
LJ
2528 /* array[0] holds the actual length for the discarded event */
2529 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2530 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2531 /* time delta must be non zero */
2532 if (!event->time_delta)
2533 event->time_delta = 1;
2534}
2535
a1863c21
SR
2536/*
2537 * Decrement the entries to the page that an event is on.
2538 * The event does not even need to exist, only the pointer
2539 * to the page it is on. This may only be called before the commit
2540 * takes place.
2541 */
2542static inline void
2543rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2544 struct ring_buffer_event *event)
2545{
2546 unsigned long addr = (unsigned long)event;
2547 struct buffer_page *bpage = cpu_buffer->commit_page;
2548 struct buffer_page *start;
2549
2550 addr &= PAGE_MASK;
2551
2552 /* Do the likely case first */
2553 if (likely(bpage->page == (void *)addr)) {
2554 local_dec(&bpage->entries);
2555 return;
2556 }
2557
2558 /*
2559 * Because the commit page may be on the reader page we
2560 * start with the next page and check the end loop there.
2561 */
2562 rb_inc_page(cpu_buffer, &bpage);
2563 start = bpage;
2564 do {
2565 if (bpage->page == (void *)addr) {
2566 local_dec(&bpage->entries);
2567 return;
2568 }
2569 rb_inc_page(cpu_buffer, &bpage);
2570 } while (bpage != start);
2571
2572 /* commit not part of this buffer?? */
2573 RB_WARN_ON(cpu_buffer, 1);
2574}
2575
fa1b47dd
SR
2576/**
2577 * ring_buffer_commit_discard - discard an event that has not been committed
2578 * @buffer: the ring buffer
2579 * @event: non committed event to discard
2580 *
dc892f73
SR
2581 * Sometimes an event that is in the ring buffer needs to be ignored.
2582 * This function lets the user discard an event in the ring buffer
2583 * and then that event will not be read later.
2584 *
2585 * This function only works if it is called before the the item has been
2586 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2587 * if another event has not been added behind it.
2588 *
2589 * If another event has been added behind it, it will set the event
2590 * up as discarded, and perform the commit.
2591 *
2592 * If this function is called, do not call ring_buffer_unlock_commit on
2593 * the event.
2594 */
2595void ring_buffer_discard_commit(struct ring_buffer *buffer,
2596 struct ring_buffer_event *event)
2597{
2598 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2599 int cpu;
2600
2601 /* The event is discarded regardless */
f3b9aae1 2602 rb_event_discard(event);
fa1b47dd 2603
fa743953
SR
2604 cpu = smp_processor_id();
2605 cpu_buffer = buffer->buffers[cpu];
2606
fa1b47dd
SR
2607 /*
2608 * This must only be called if the event has not been
2609 * committed yet. Thus we can assume that preemption
2610 * is still disabled.
2611 */
fa743953 2612 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2613
a1863c21 2614 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2615 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2616 goto out;
fa1b47dd
SR
2617
2618 /*
2619 * The commit is still visible by the reader, so we
a1863c21 2620 * must still update the timestamp.
fa1b47dd 2621 */
a1863c21 2622 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2623 out:
fa743953 2624 rb_end_commit(cpu_buffer);
fa1b47dd 2625
f3b9aae1
FW
2626 trace_recursive_unlock();
2627
5168ae50 2628 preempt_enable_notrace();
fa1b47dd
SR
2629
2630}
2631EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2632
7a8e76a3
SR
2633/**
2634 * ring_buffer_write - write data to the buffer without reserving
2635 * @buffer: The ring buffer to write to.
2636 * @length: The length of the data being written (excluding the event header)
2637 * @data: The data to write to the buffer.
2638 *
2639 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2640 * one function. If you already have the data to write to the buffer, it
2641 * may be easier to simply call this function.
2642 *
2643 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2644 * and not the length of the event which would hold the header.
2645 */
2646int ring_buffer_write(struct ring_buffer *buffer,
2647 unsigned long length,
2648 void *data)
2649{
2650 struct ring_buffer_per_cpu *cpu_buffer;
2651 struct ring_buffer_event *event;
7a8e76a3
SR
2652 void *body;
2653 int ret = -EBUSY;
5168ae50 2654 int cpu;
7a8e76a3 2655
033601a3 2656 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2657 return -EBUSY;
2658
5168ae50 2659 preempt_disable_notrace();
bf41a158 2660
52fbe9cd
LJ
2661 if (atomic_read(&buffer->record_disabled))
2662 goto out;
2663
7a8e76a3
SR
2664 cpu = raw_smp_processor_id();
2665
9e01c1b7 2666 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2667 goto out;
7a8e76a3
SR
2668
2669 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2670
2671 if (atomic_read(&cpu_buffer->record_disabled))
2672 goto out;
2673
be957c44
SR
2674 if (length > BUF_MAX_DATA_SIZE)
2675 goto out;
2676
62f0b3eb 2677 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2678 if (!event)
2679 goto out;
2680
2681 body = rb_event_data(event);
2682
2683 memcpy(body, data, length);
2684
2685 rb_commit(cpu_buffer, event);
2686
2687 ret = 0;
2688 out:
5168ae50 2689 preempt_enable_notrace();
7a8e76a3
SR
2690
2691 return ret;
2692}
c4f50183 2693EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2694
34a148bf 2695static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2696{
2697 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2698 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2699 struct buffer_page *commit = cpu_buffer->commit_page;
2700
77ae365e
SR
2701 /* In case of error, head will be NULL */
2702 if (unlikely(!head))
2703 return 1;
2704
bf41a158
SR
2705 return reader->read == rb_page_commit(reader) &&
2706 (commit == reader ||
2707 (commit == head &&
2708 head->read == rb_page_commit(commit)));
2709}
2710
7a8e76a3
SR
2711/**
2712 * ring_buffer_record_disable - stop all writes into the buffer
2713 * @buffer: The ring buffer to stop writes to.
2714 *
2715 * This prevents all writes to the buffer. Any attempt to write
2716 * to the buffer after this will fail and return NULL.
2717 *
2718 * The caller should call synchronize_sched() after this.
2719 */
2720void ring_buffer_record_disable(struct ring_buffer *buffer)
2721{
2722 atomic_inc(&buffer->record_disabled);
2723}
c4f50183 2724EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2725
2726/**
2727 * ring_buffer_record_enable - enable writes to the buffer
2728 * @buffer: The ring buffer to enable writes
2729 *
2730 * Note, multiple disables will need the same number of enables
c41b20e7 2731 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2732 */
2733void ring_buffer_record_enable(struct ring_buffer *buffer)
2734{
2735 atomic_dec(&buffer->record_disabled);
2736}
c4f50183 2737EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2738
499e5470
SR
2739/**
2740 * ring_buffer_record_off - stop all writes into the buffer
2741 * @buffer: The ring buffer to stop writes to.
2742 *
2743 * This prevents all writes to the buffer. Any attempt to write
2744 * to the buffer after this will fail and return NULL.
2745 *
2746 * This is different than ring_buffer_record_disable() as
2747 * it works like an on/off switch, where as the disable() verison
2748 * must be paired with a enable().
2749 */
2750void ring_buffer_record_off(struct ring_buffer *buffer)
2751{
2752 unsigned int rd;
2753 unsigned int new_rd;
2754
2755 do {
2756 rd = atomic_read(&buffer->record_disabled);
2757 new_rd = rd | RB_BUFFER_OFF;
2758 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2759}
2760EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2761
2762/**
2763 * ring_buffer_record_on - restart writes into the buffer
2764 * @buffer: The ring buffer to start writes to.
2765 *
2766 * This enables all writes to the buffer that was disabled by
2767 * ring_buffer_record_off().
2768 *
2769 * This is different than ring_buffer_record_enable() as
2770 * it works like an on/off switch, where as the enable() verison
2771 * must be paired with a disable().
2772 */
2773void ring_buffer_record_on(struct ring_buffer *buffer)
2774{
2775 unsigned int rd;
2776 unsigned int new_rd;
2777
2778 do {
2779 rd = atomic_read(&buffer->record_disabled);
2780 new_rd = rd & ~RB_BUFFER_OFF;
2781 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2782}
2783EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2784
2785/**
2786 * ring_buffer_record_is_on - return true if the ring buffer can write
2787 * @buffer: The ring buffer to see if write is enabled
2788 *
2789 * Returns true if the ring buffer is in a state that it accepts writes.
2790 */
2791int ring_buffer_record_is_on(struct ring_buffer *buffer)
2792{
2793 return !atomic_read(&buffer->record_disabled);
2794}
2795
7a8e76a3
SR
2796/**
2797 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2798 * @buffer: The ring buffer to stop writes to.
2799 * @cpu: The CPU buffer to stop
2800 *
2801 * This prevents all writes to the buffer. Any attempt to write
2802 * to the buffer after this will fail and return NULL.
2803 *
2804 * The caller should call synchronize_sched() after this.
2805 */
2806void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2807{
2808 struct ring_buffer_per_cpu *cpu_buffer;
2809
9e01c1b7 2810 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2811 return;
7a8e76a3
SR
2812
2813 cpu_buffer = buffer->buffers[cpu];
2814 atomic_inc(&cpu_buffer->record_disabled);
2815}
c4f50183 2816EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2817
2818/**
2819 * ring_buffer_record_enable_cpu - enable writes to the buffer
2820 * @buffer: The ring buffer to enable writes
2821 * @cpu: The CPU to enable.
2822 *
2823 * Note, multiple disables will need the same number of enables
c41b20e7 2824 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2825 */
2826void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2827{
2828 struct ring_buffer_per_cpu *cpu_buffer;
2829
9e01c1b7 2830 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2831 return;
7a8e76a3
SR
2832
2833 cpu_buffer = buffer->buffers[cpu];
2834 atomic_dec(&cpu_buffer->record_disabled);
2835}
c4f50183 2836EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2837
f6195aa0
SR
2838/*
2839 * The total entries in the ring buffer is the running counter
2840 * of entries entered into the ring buffer, minus the sum of
2841 * the entries read from the ring buffer and the number of
2842 * entries that were overwritten.
2843 */
2844static inline unsigned long
2845rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2846{
2847 return local_read(&cpu_buffer->entries) -
2848 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2849}
2850
c64e148a
VN
2851/**
2852 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2853 * @buffer: The ring buffer
2854 * @cpu: The per CPU buffer to read from.
2855 */
2856unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2857{
2858 unsigned long flags;
2859 struct ring_buffer_per_cpu *cpu_buffer;
2860 struct buffer_page *bpage;
2861 unsigned long ret;
2862
2863 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2864 return 0;
2865
2866 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2867 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2868 /*
2869 * if the tail is on reader_page, oldest time stamp is on the reader
2870 * page
2871 */
2872 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2873 bpage = cpu_buffer->reader_page;
2874 else
2875 bpage = rb_set_head_page(cpu_buffer);
2876 ret = bpage->page->time_stamp;
7115e3fc 2877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2878
2879 return ret;
2880}
2881EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2882
2883/**
2884 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2885 * @buffer: The ring buffer
2886 * @cpu: The per CPU buffer to read from.
2887 */
2888unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2889{
2890 struct ring_buffer_per_cpu *cpu_buffer;
2891 unsigned long ret;
2892
2893 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2894 return 0;
2895
2896 cpu_buffer = buffer->buffers[cpu];
2897 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2898
2899 return ret;
2900}
2901EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2902
7a8e76a3
SR
2903/**
2904 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2905 * @buffer: The ring buffer
2906 * @cpu: The per CPU buffer to get the entries from.
2907 */
2908unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2909{
2910 struct ring_buffer_per_cpu *cpu_buffer;
2911
9e01c1b7 2912 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2913 return 0;
7a8e76a3
SR
2914
2915 cpu_buffer = buffer->buffers[cpu];
554f786e 2916
f6195aa0 2917 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2918}
c4f50183 2919EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2920
2921/**
2922 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2923 * @buffer: The ring buffer
2924 * @cpu: The per CPU buffer to get the number of overruns from
2925 */
2926unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2927{
2928 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2929 unsigned long ret;
7a8e76a3 2930
9e01c1b7 2931 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2932 return 0;
7a8e76a3
SR
2933
2934 cpu_buffer = buffer->buffers[cpu];
77ae365e 2935 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2936
2937 return ret;
7a8e76a3 2938}
c4f50183 2939EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2940
f0d2c681
SR
2941/**
2942 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2943 * @buffer: The ring buffer
2944 * @cpu: The per CPU buffer to get the number of overruns from
2945 */
2946unsigned long
2947ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2948{
2949 struct ring_buffer_per_cpu *cpu_buffer;
2950 unsigned long ret;
2951
2952 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2953 return 0;
2954
2955 cpu_buffer = buffer->buffers[cpu];
77ae365e 2956 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2957
2958 return ret;
2959}
2960EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2961
7a8e76a3
SR
2962/**
2963 * ring_buffer_entries - get the number of entries in a buffer
2964 * @buffer: The ring buffer
2965 *
2966 * Returns the total number of entries in the ring buffer
2967 * (all CPU entries)
2968 */
2969unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2970{
2971 struct ring_buffer_per_cpu *cpu_buffer;
2972 unsigned long entries = 0;
2973 int cpu;
2974
2975 /* if you care about this being correct, lock the buffer */
2976 for_each_buffer_cpu(buffer, cpu) {
2977 cpu_buffer = buffer->buffers[cpu];
f6195aa0 2978 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
2979 }
2980
2981 return entries;
2982}
c4f50183 2983EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2984
2985/**
67b394f7 2986 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2987 * @buffer: The ring buffer
2988 *
2989 * Returns the total number of overruns in the ring buffer
2990 * (all CPU entries)
2991 */
2992unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2993{
2994 struct ring_buffer_per_cpu *cpu_buffer;
2995 unsigned long overruns = 0;
2996 int cpu;
2997
2998 /* if you care about this being correct, lock the buffer */
2999 for_each_buffer_cpu(buffer, cpu) {
3000 cpu_buffer = buffer->buffers[cpu];
77ae365e 3001 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3002 }
3003
3004 return overruns;
3005}
c4f50183 3006EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3007
642edba5 3008static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3009{
3010 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3011
d769041f
SR
3012 /* Iterator usage is expected to have record disabled */
3013 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3014 iter->head_page = rb_set_head_page(cpu_buffer);
3015 if (unlikely(!iter->head_page))
3016 return;
3017 iter->head = iter->head_page->read;
d769041f
SR
3018 } else {
3019 iter->head_page = cpu_buffer->reader_page;
6f807acd 3020 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3021 }
3022 if (iter->head)
3023 iter->read_stamp = cpu_buffer->read_stamp;
3024 else
abc9b56d 3025 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3026 iter->cache_reader_page = cpu_buffer->reader_page;
3027 iter->cache_read = cpu_buffer->read;
642edba5 3028}
f83c9d0f 3029
642edba5
SR
3030/**
3031 * ring_buffer_iter_reset - reset an iterator
3032 * @iter: The iterator to reset
3033 *
3034 * Resets the iterator, so that it will start from the beginning
3035 * again.
3036 */
3037void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3038{
554f786e 3039 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3040 unsigned long flags;
3041
554f786e
SR
3042 if (!iter)
3043 return;
3044
3045 cpu_buffer = iter->cpu_buffer;
3046
5389f6fa 3047 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3048 rb_iter_reset(iter);
5389f6fa 3049 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3050}
c4f50183 3051EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3052
3053/**
3054 * ring_buffer_iter_empty - check if an iterator has no more to read
3055 * @iter: The iterator to check
3056 */
3057int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3058{
3059 struct ring_buffer_per_cpu *cpu_buffer;
3060
3061 cpu_buffer = iter->cpu_buffer;
3062
bf41a158
SR
3063 return iter->head_page == cpu_buffer->commit_page &&
3064 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3065}
c4f50183 3066EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3067
3068static void
3069rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3070 struct ring_buffer_event *event)
3071{
3072 u64 delta;
3073
334d4169 3074 switch (event->type_len) {
7a8e76a3
SR
3075 case RINGBUF_TYPE_PADDING:
3076 return;
3077
3078 case RINGBUF_TYPE_TIME_EXTEND:
3079 delta = event->array[0];
3080 delta <<= TS_SHIFT;
3081 delta += event->time_delta;
3082 cpu_buffer->read_stamp += delta;
3083 return;
3084
3085 case RINGBUF_TYPE_TIME_STAMP:
3086 /* FIXME: not implemented */
3087 return;
3088
3089 case RINGBUF_TYPE_DATA:
3090 cpu_buffer->read_stamp += event->time_delta;
3091 return;
3092
3093 default:
3094 BUG();
3095 }
3096 return;
3097}
3098
3099static void
3100rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3101 struct ring_buffer_event *event)
3102{
3103 u64 delta;
3104
334d4169 3105 switch (event->type_len) {
7a8e76a3
SR
3106 case RINGBUF_TYPE_PADDING:
3107 return;
3108
3109 case RINGBUF_TYPE_TIME_EXTEND:
3110 delta = event->array[0];
3111 delta <<= TS_SHIFT;
3112 delta += event->time_delta;
3113 iter->read_stamp += delta;
3114 return;
3115
3116 case RINGBUF_TYPE_TIME_STAMP:
3117 /* FIXME: not implemented */
3118 return;
3119
3120 case RINGBUF_TYPE_DATA:
3121 iter->read_stamp += event->time_delta;
3122 return;
3123
3124 default:
3125 BUG();
3126 }
3127 return;
3128}
3129
d769041f
SR
3130static struct buffer_page *
3131rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3132{
d769041f 3133 struct buffer_page *reader = NULL;
66a8cb95 3134 unsigned long overwrite;
d769041f 3135 unsigned long flags;
818e3dd3 3136 int nr_loops = 0;
77ae365e 3137 int ret;
d769041f 3138
3e03fb7f 3139 local_irq_save(flags);
0199c4e6 3140 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3141
3142 again:
818e3dd3
SR
3143 /*
3144 * This should normally only loop twice. But because the
3145 * start of the reader inserts an empty page, it causes
3146 * a case where we will loop three times. There should be no
3147 * reason to loop four times (that I know of).
3148 */
3e89c7bb 3149 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3150 reader = NULL;
3151 goto out;
3152 }
3153
d769041f
SR
3154 reader = cpu_buffer->reader_page;
3155
3156 /* If there's more to read, return this page */
bf41a158 3157 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3158 goto out;
3159
3160 /* Never should we have an index greater than the size */
3e89c7bb
SR
3161 if (RB_WARN_ON(cpu_buffer,
3162 cpu_buffer->reader_page->read > rb_page_size(reader)))
3163 goto out;
d769041f
SR
3164
3165 /* check if we caught up to the tail */
3166 reader = NULL;
bf41a158 3167 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3168 goto out;
7a8e76a3
SR
3169
3170 /*
d769041f 3171 * Reset the reader page to size zero.
7a8e76a3 3172 */
77ae365e
SR
3173 local_set(&cpu_buffer->reader_page->write, 0);
3174 local_set(&cpu_buffer->reader_page->entries, 0);
3175 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3176 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3177
77ae365e
SR
3178 spin:
3179 /*
3180 * Splice the empty reader page into the list around the head.
3181 */
3182 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3183 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3184 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3185
3adc54fa
SR
3186 /*
3187 * cpu_buffer->pages just needs to point to the buffer, it
3188 * has no specific buffer page to point to. Lets move it out
25985edc 3189 * of our way so we don't accidentally swap it.
3adc54fa
SR
3190 */
3191 cpu_buffer->pages = reader->list.prev;
3192
77ae365e
SR
3193 /* The reader page will be pointing to the new head */
3194 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3195
66a8cb95
SR
3196 /*
3197 * We want to make sure we read the overruns after we set up our
3198 * pointers to the next object. The writer side does a
3199 * cmpxchg to cross pages which acts as the mb on the writer
3200 * side. Note, the reader will constantly fail the swap
3201 * while the writer is updating the pointers, so this
3202 * guarantees that the overwrite recorded here is the one we
3203 * want to compare with the last_overrun.
3204 */
3205 smp_mb();
3206 overwrite = local_read(&(cpu_buffer->overrun));
3207
77ae365e
SR
3208 /*
3209 * Here's the tricky part.
3210 *
3211 * We need to move the pointer past the header page.
3212 * But we can only do that if a writer is not currently
3213 * moving it. The page before the header page has the
3214 * flag bit '1' set if it is pointing to the page we want.
3215 * but if the writer is in the process of moving it
3216 * than it will be '2' or already moved '0'.
3217 */
3218
3219 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3220
3221 /*
77ae365e 3222 * If we did not convert it, then we must try again.
7a8e76a3 3223 */
77ae365e
SR
3224 if (!ret)
3225 goto spin;
7a8e76a3 3226
77ae365e
SR
3227 /*
3228 * Yeah! We succeeded in replacing the page.
3229 *
3230 * Now make the new head point back to the reader page.
3231 */
5ded3dc6 3232 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3233 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3234
3235 /* Finally update the reader page to the new head */
3236 cpu_buffer->reader_page = reader;
3237 rb_reset_reader_page(cpu_buffer);
3238
66a8cb95
SR
3239 if (overwrite != cpu_buffer->last_overrun) {
3240 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3241 cpu_buffer->last_overrun = overwrite;
3242 }
3243
d769041f
SR
3244 goto again;
3245
3246 out:
0199c4e6 3247 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3248 local_irq_restore(flags);
d769041f
SR
3249
3250 return reader;
3251}
3252
3253static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3254{
3255 struct ring_buffer_event *event;
3256 struct buffer_page *reader;
3257 unsigned length;
3258
3259 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3260
d769041f 3261 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3262 if (RB_WARN_ON(cpu_buffer, !reader))
3263 return;
7a8e76a3 3264
d769041f
SR
3265 event = rb_reader_event(cpu_buffer);
3266
a1863c21 3267 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3268 cpu_buffer->read++;
d769041f
SR
3269
3270 rb_update_read_stamp(cpu_buffer, event);
3271
3272 length = rb_event_length(event);
6f807acd 3273 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3274}
3275
3276static void rb_advance_iter(struct ring_buffer_iter *iter)
3277{
7a8e76a3
SR
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 struct ring_buffer_event *event;
3280 unsigned length;
3281
3282 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3283
3284 /*
3285 * Check if we are at the end of the buffer.
3286 */
bf41a158 3287 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3288 /* discarded commits can make the page empty */
3289 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3290 return;
d769041f 3291 rb_inc_iter(iter);
7a8e76a3
SR
3292 return;
3293 }
3294
3295 event = rb_iter_head_event(iter);
3296
3297 length = rb_event_length(event);
3298
3299 /*
3300 * This should not be called to advance the header if we are
3301 * at the tail of the buffer.
3302 */
3e89c7bb 3303 if (RB_WARN_ON(cpu_buffer,
f536aafc 3304 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3305 (iter->head + length > rb_commit_index(cpu_buffer))))
3306 return;
7a8e76a3
SR
3307
3308 rb_update_iter_read_stamp(iter, event);
3309
3310 iter->head += length;
3311
3312 /* check for end of page padding */
bf41a158
SR
3313 if ((iter->head >= rb_page_size(iter->head_page)) &&
3314 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3315 rb_advance_iter(iter);
3316}
3317
66a8cb95
SR
3318static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3319{
3320 return cpu_buffer->lost_events;
3321}
3322
f83c9d0f 3323static struct ring_buffer_event *
66a8cb95
SR
3324rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3325 unsigned long *lost_events)
7a8e76a3 3326{
7a8e76a3 3327 struct ring_buffer_event *event;
d769041f 3328 struct buffer_page *reader;
818e3dd3 3329 int nr_loops = 0;
7a8e76a3 3330
7a8e76a3 3331 again:
818e3dd3 3332 /*
69d1b839
SR
3333 * We repeat when a time extend is encountered.
3334 * Since the time extend is always attached to a data event,
3335 * we should never loop more than once.
3336 * (We never hit the following condition more than twice).
818e3dd3 3337 */
69d1b839 3338 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3339 return NULL;
818e3dd3 3340
d769041f
SR
3341 reader = rb_get_reader_page(cpu_buffer);
3342 if (!reader)
7a8e76a3
SR
3343 return NULL;
3344
d769041f 3345 event = rb_reader_event(cpu_buffer);
7a8e76a3 3346
334d4169 3347 switch (event->type_len) {
7a8e76a3 3348 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3349 if (rb_null_event(event))
3350 RB_WARN_ON(cpu_buffer, 1);
3351 /*
3352 * Because the writer could be discarding every
3353 * event it creates (which would probably be bad)
3354 * if we were to go back to "again" then we may never
3355 * catch up, and will trigger the warn on, or lock
3356 * the box. Return the padding, and we will release
3357 * the current locks, and try again.
3358 */
2d622719 3359 return event;
7a8e76a3
SR
3360
3361 case RINGBUF_TYPE_TIME_EXTEND:
3362 /* Internal data, OK to advance */
d769041f 3363 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3364 goto again;
3365
3366 case RINGBUF_TYPE_TIME_STAMP:
3367 /* FIXME: not implemented */
d769041f 3368 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3369 goto again;
3370
3371 case RINGBUF_TYPE_DATA:
3372 if (ts) {
3373 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3374 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3375 cpu_buffer->cpu, ts);
7a8e76a3 3376 }
66a8cb95
SR
3377 if (lost_events)
3378 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3379 return event;
3380
3381 default:
3382 BUG();
3383 }
3384
3385 return NULL;
3386}
c4f50183 3387EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3388
f83c9d0f
SR
3389static struct ring_buffer_event *
3390rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3391{
3392 struct ring_buffer *buffer;
3393 struct ring_buffer_per_cpu *cpu_buffer;
3394 struct ring_buffer_event *event;
818e3dd3 3395 int nr_loops = 0;
7a8e76a3 3396
7a8e76a3
SR
3397 cpu_buffer = iter->cpu_buffer;
3398 buffer = cpu_buffer->buffer;
3399
492a74f4
SR
3400 /*
3401 * Check if someone performed a consuming read to
3402 * the buffer. A consuming read invalidates the iterator
3403 * and we need to reset the iterator in this case.
3404 */
3405 if (unlikely(iter->cache_read != cpu_buffer->read ||
3406 iter->cache_reader_page != cpu_buffer->reader_page))
3407 rb_iter_reset(iter);
3408
7a8e76a3 3409 again:
3c05d748
SR
3410 if (ring_buffer_iter_empty(iter))
3411 return NULL;
3412
818e3dd3 3413 /*
69d1b839
SR
3414 * We repeat when a time extend is encountered.
3415 * Since the time extend is always attached to a data event,
3416 * we should never loop more than once.
3417 * (We never hit the following condition more than twice).
818e3dd3 3418 */
69d1b839 3419 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3420 return NULL;
818e3dd3 3421
7a8e76a3
SR
3422 if (rb_per_cpu_empty(cpu_buffer))
3423 return NULL;
3424
3c05d748
SR
3425 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3426 rb_inc_iter(iter);
3427 goto again;
3428 }
3429
7a8e76a3
SR
3430 event = rb_iter_head_event(iter);
3431
334d4169 3432 switch (event->type_len) {
7a8e76a3 3433 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3434 if (rb_null_event(event)) {
3435 rb_inc_iter(iter);
3436 goto again;
3437 }
3438 rb_advance_iter(iter);
3439 return event;
7a8e76a3
SR
3440
3441 case RINGBUF_TYPE_TIME_EXTEND:
3442 /* Internal data, OK to advance */
3443 rb_advance_iter(iter);
3444 goto again;
3445
3446 case RINGBUF_TYPE_TIME_STAMP:
3447 /* FIXME: not implemented */
3448 rb_advance_iter(iter);
3449 goto again;
3450
3451 case RINGBUF_TYPE_DATA:
3452 if (ts) {
3453 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3454 ring_buffer_normalize_time_stamp(buffer,
3455 cpu_buffer->cpu, ts);
7a8e76a3
SR
3456 }
3457 return event;
3458
3459 default:
3460 BUG();
3461 }
3462
3463 return NULL;
3464}
c4f50183 3465EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3466
8d707e8e
SR
3467static inline int rb_ok_to_lock(void)
3468{
3469 /*
3470 * If an NMI die dumps out the content of the ring buffer
3471 * do not grab locks. We also permanently disable the ring
3472 * buffer too. A one time deal is all you get from reading
3473 * the ring buffer from an NMI.
3474 */
464e85eb 3475 if (likely(!in_nmi()))
8d707e8e
SR
3476 return 1;
3477
3478 tracing_off_permanent();
3479 return 0;
3480}
3481
f83c9d0f
SR
3482/**
3483 * ring_buffer_peek - peek at the next event to be read
3484 * @buffer: The ring buffer to read
3485 * @cpu: The cpu to peak at
3486 * @ts: The timestamp counter of this event.
66a8cb95 3487 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3488 *
3489 * This will return the event that will be read next, but does
3490 * not consume the data.
3491 */
3492struct ring_buffer_event *
66a8cb95
SR
3493ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3494 unsigned long *lost_events)
f83c9d0f
SR
3495{
3496 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3497 struct ring_buffer_event *event;
f83c9d0f 3498 unsigned long flags;
8d707e8e 3499 int dolock;
f83c9d0f 3500
554f786e 3501 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3502 return NULL;
554f786e 3503
8d707e8e 3504 dolock = rb_ok_to_lock();
2d622719 3505 again:
8d707e8e
SR
3506 local_irq_save(flags);
3507 if (dolock)
5389f6fa 3508 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3509 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3510 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3511 rb_advance_reader(cpu_buffer);
8d707e8e 3512 if (dolock)
5389f6fa 3513 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3514 local_irq_restore(flags);
f83c9d0f 3515
1b959e18 3516 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3517 goto again;
2d622719 3518
f83c9d0f
SR
3519 return event;
3520}
3521
3522/**
3523 * ring_buffer_iter_peek - peek at the next event to be read
3524 * @iter: The ring buffer iterator
3525 * @ts: The timestamp counter of this event.
3526 *
3527 * This will return the event that will be read next, but does
3528 * not increment the iterator.
3529 */
3530struct ring_buffer_event *
3531ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3532{
3533 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3534 struct ring_buffer_event *event;
3535 unsigned long flags;
3536
2d622719 3537 again:
5389f6fa 3538 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3539 event = rb_iter_peek(iter, ts);
5389f6fa 3540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3541
1b959e18 3542 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3543 goto again;
2d622719 3544
f83c9d0f
SR
3545 return event;
3546}
3547
7a8e76a3
SR
3548/**
3549 * ring_buffer_consume - return an event and consume it
3550 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3551 * @cpu: the cpu to read the buffer from
3552 * @ts: a variable to store the timestamp (may be NULL)
3553 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3554 *
3555 * Returns the next event in the ring buffer, and that event is consumed.
3556 * Meaning, that sequential reads will keep returning a different event,
3557 * and eventually empty the ring buffer if the producer is slower.
3558 */
3559struct ring_buffer_event *
66a8cb95
SR
3560ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3561 unsigned long *lost_events)
7a8e76a3 3562{
554f786e
SR
3563 struct ring_buffer_per_cpu *cpu_buffer;
3564 struct ring_buffer_event *event = NULL;
f83c9d0f 3565 unsigned long flags;
8d707e8e
SR
3566 int dolock;
3567
3568 dolock = rb_ok_to_lock();
7a8e76a3 3569
2d622719 3570 again:
554f786e
SR
3571 /* might be called in atomic */
3572 preempt_disable();
3573
9e01c1b7 3574 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3575 goto out;
7a8e76a3 3576
554f786e 3577 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3578 local_irq_save(flags);
3579 if (dolock)
5389f6fa 3580 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3581
66a8cb95
SR
3582 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3583 if (event) {
3584 cpu_buffer->lost_events = 0;
469535a5 3585 rb_advance_reader(cpu_buffer);
66a8cb95 3586 }
7a8e76a3 3587
8d707e8e 3588 if (dolock)
5389f6fa 3589 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3590 local_irq_restore(flags);
f83c9d0f 3591
554f786e
SR
3592 out:
3593 preempt_enable();
3594
1b959e18 3595 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3596 goto again;
2d622719 3597
7a8e76a3
SR
3598 return event;
3599}
c4f50183 3600EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3601
3602/**
72c9ddfd 3603 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3604 * @buffer: The ring buffer to read from
3605 * @cpu: The cpu buffer to iterate over
3606 *
72c9ddfd
DM
3607 * This performs the initial preparations necessary to iterate
3608 * through the buffer. Memory is allocated, buffer recording
3609 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3610 *
72c9ddfd
DM
3611 * Disabling buffer recordng prevents the reading from being
3612 * corrupted. This is not a consuming read, so a producer is not
3613 * expected.
3614 *
3615 * After a sequence of ring_buffer_read_prepare calls, the user is
3616 * expected to make at least one call to ring_buffer_prepare_sync.
3617 * Afterwards, ring_buffer_read_start is invoked to get things going
3618 * for real.
3619 *
3620 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3621 */
3622struct ring_buffer_iter *
72c9ddfd 3623ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3624{
3625 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3626 struct ring_buffer_iter *iter;
7a8e76a3 3627
9e01c1b7 3628 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3629 return NULL;
7a8e76a3
SR
3630
3631 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3632 if (!iter)
8aabee57 3633 return NULL;
7a8e76a3
SR
3634
3635 cpu_buffer = buffer->buffers[cpu];
3636
3637 iter->cpu_buffer = cpu_buffer;
3638
83f40318 3639 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3640 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3641
3642 return iter;
3643}
3644EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3645
3646/**
3647 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3648 *
3649 * All previously invoked ring_buffer_read_prepare calls to prepare
3650 * iterators will be synchronized. Afterwards, read_buffer_read_start
3651 * calls on those iterators are allowed.
3652 */
3653void
3654ring_buffer_read_prepare_sync(void)
3655{
7a8e76a3 3656 synchronize_sched();
72c9ddfd
DM
3657}
3658EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3659
3660/**
3661 * ring_buffer_read_start - start a non consuming read of the buffer
3662 * @iter: The iterator returned by ring_buffer_read_prepare
3663 *
3664 * This finalizes the startup of an iteration through the buffer.
3665 * The iterator comes from a call to ring_buffer_read_prepare and
3666 * an intervening ring_buffer_read_prepare_sync must have been
3667 * performed.
3668 *
3669 * Must be paired with ring_buffer_finish.
3670 */
3671void
3672ring_buffer_read_start(struct ring_buffer_iter *iter)
3673{
3674 struct ring_buffer_per_cpu *cpu_buffer;
3675 unsigned long flags;
3676
3677 if (!iter)
3678 return;
3679
3680 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3681
5389f6fa 3682 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3683 arch_spin_lock(&cpu_buffer->lock);
642edba5 3684 rb_iter_reset(iter);
0199c4e6 3685 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3686 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3687}
c4f50183 3688EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3689
3690/**
3691 * ring_buffer_finish - finish reading the iterator of the buffer
3692 * @iter: The iterator retrieved by ring_buffer_start
3693 *
3694 * This re-enables the recording to the buffer, and frees the
3695 * iterator.
3696 */
3697void
3698ring_buffer_read_finish(struct ring_buffer_iter *iter)
3699{
3700 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3701
3702 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3703 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3704 kfree(iter);
3705}
c4f50183 3706EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3707
3708/**
3709 * ring_buffer_read - read the next item in the ring buffer by the iterator
3710 * @iter: The ring buffer iterator
3711 * @ts: The time stamp of the event read.
3712 *
3713 * This reads the next event in the ring buffer and increments the iterator.
3714 */
3715struct ring_buffer_event *
3716ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3717{
3718 struct ring_buffer_event *event;
f83c9d0f
SR
3719 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3720 unsigned long flags;
7a8e76a3 3721
5389f6fa 3722 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3723 again:
f83c9d0f 3724 event = rb_iter_peek(iter, ts);
7a8e76a3 3725 if (!event)
f83c9d0f 3726 goto out;
7a8e76a3 3727
7e9391cf
SR
3728 if (event->type_len == RINGBUF_TYPE_PADDING)
3729 goto again;
3730
7a8e76a3 3731 rb_advance_iter(iter);
f83c9d0f 3732 out:
5389f6fa 3733 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3734
3735 return event;
3736}
c4f50183 3737EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3738
3739/**
3740 * ring_buffer_size - return the size of the ring buffer (in bytes)
3741 * @buffer: The ring buffer.
3742 */
438ced17 3743unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3744{
438ced17
VN
3745 /*
3746 * Earlier, this method returned
3747 * BUF_PAGE_SIZE * buffer->nr_pages
3748 * Since the nr_pages field is now removed, we have converted this to
3749 * return the per cpu buffer value.
3750 */
3751 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3752 return 0;
3753
3754 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3755}
c4f50183 3756EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3757
3758static void
3759rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3760{
77ae365e
SR
3761 rb_head_page_deactivate(cpu_buffer);
3762
7a8e76a3 3763 cpu_buffer->head_page
3adc54fa 3764 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3765 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3766 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3767 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3768
6f807acd 3769 cpu_buffer->head_page->read = 0;
bf41a158
SR
3770
3771 cpu_buffer->tail_page = cpu_buffer->head_page;
3772 cpu_buffer->commit_page = cpu_buffer->head_page;
3773
3774 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3775 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3776 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3777 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3778 cpu_buffer->reader_page->read = 0;
7a8e76a3 3779
77ae365e 3780 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3781 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3782 local_set(&cpu_buffer->overrun, 0);
e4906eff 3783 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3784 local_set(&cpu_buffer->committing, 0);
3785 local_set(&cpu_buffer->commits, 0);
77ae365e 3786 cpu_buffer->read = 0;
c64e148a 3787 cpu_buffer->read_bytes = 0;
69507c06
SR
3788
3789 cpu_buffer->write_stamp = 0;
3790 cpu_buffer->read_stamp = 0;
77ae365e 3791
66a8cb95
SR
3792 cpu_buffer->lost_events = 0;
3793 cpu_buffer->last_overrun = 0;
3794
77ae365e 3795 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3796}
3797
3798/**
3799 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3800 * @buffer: The ring buffer to reset a per cpu buffer of
3801 * @cpu: The CPU buffer to be reset
3802 */
3803void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3804{
3805 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3806 unsigned long flags;
3807
9e01c1b7 3808 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3809 return;
7a8e76a3 3810
83f40318 3811 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3812 atomic_inc(&cpu_buffer->record_disabled);
3813
83f40318
VN
3814 /* Make sure all commits have finished */
3815 synchronize_sched();
3816
5389f6fa 3817 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3818
41b6a95d
SR
3819 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3820 goto out;
3821
0199c4e6 3822 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3823
3824 rb_reset_cpu(cpu_buffer);
3825
0199c4e6 3826 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3827
41b6a95d 3828 out:
5389f6fa 3829 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3830
3831 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3832 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3833}
c4f50183 3834EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3835
3836/**
3837 * ring_buffer_reset - reset a ring buffer
3838 * @buffer: The ring buffer to reset all cpu buffers
3839 */
3840void ring_buffer_reset(struct ring_buffer *buffer)
3841{
7a8e76a3
SR
3842 int cpu;
3843
7a8e76a3 3844 for_each_buffer_cpu(buffer, cpu)
d769041f 3845 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3846}
c4f50183 3847EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3848
3849/**
3850 * rind_buffer_empty - is the ring buffer empty?
3851 * @buffer: The ring buffer to test
3852 */
3853int ring_buffer_empty(struct ring_buffer *buffer)
3854{
3855 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3856 unsigned long flags;
8d707e8e 3857 int dolock;
7a8e76a3 3858 int cpu;
d4788207 3859 int ret;
7a8e76a3 3860
8d707e8e 3861 dolock = rb_ok_to_lock();
7a8e76a3
SR
3862
3863 /* yes this is racy, but if you don't like the race, lock the buffer */
3864 for_each_buffer_cpu(buffer, cpu) {
3865 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3866 local_irq_save(flags);
3867 if (dolock)
5389f6fa 3868 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3869 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3870 if (dolock)
5389f6fa 3871 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3872 local_irq_restore(flags);
3873
d4788207 3874 if (!ret)
7a8e76a3
SR
3875 return 0;
3876 }
554f786e 3877
7a8e76a3
SR
3878 return 1;
3879}
c4f50183 3880EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3881
3882/**
3883 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3884 * @buffer: The ring buffer
3885 * @cpu: The CPU buffer to test
3886 */
3887int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3888{
3889 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3890 unsigned long flags;
8d707e8e 3891 int dolock;
8aabee57 3892 int ret;
7a8e76a3 3893
9e01c1b7 3894 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3895 return 1;
7a8e76a3 3896
8d707e8e
SR
3897 dolock = rb_ok_to_lock();
3898
7a8e76a3 3899 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3900 local_irq_save(flags);
3901 if (dolock)
5389f6fa 3902 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3903 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3904 if (dolock)
5389f6fa 3905 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3906 local_irq_restore(flags);
554f786e
SR
3907
3908 return ret;
7a8e76a3 3909}
c4f50183 3910EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3911
85bac32c 3912#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3913/**
3914 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3915 * @buffer_a: One buffer to swap with
3916 * @buffer_b: The other buffer to swap with
3917 *
3918 * This function is useful for tracers that want to take a "snapshot"
3919 * of a CPU buffer and has another back up buffer lying around.
3920 * it is expected that the tracer handles the cpu buffer not being
3921 * used at the moment.
3922 */
3923int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3924 struct ring_buffer *buffer_b, int cpu)
3925{
3926 struct ring_buffer_per_cpu *cpu_buffer_a;
3927 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3928 int ret = -EINVAL;
3929
9e01c1b7
RR
3930 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3931 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3932 goto out;
7a8e76a3 3933
438ced17
VN
3934 cpu_buffer_a = buffer_a->buffers[cpu];
3935 cpu_buffer_b = buffer_b->buffers[cpu];
3936
7a8e76a3 3937 /* At least make sure the two buffers are somewhat the same */
438ced17 3938 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
3939 goto out;
3940
3941 ret = -EAGAIN;
7a8e76a3 3942
97b17efe 3943 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3944 goto out;
97b17efe
SR
3945
3946 if (atomic_read(&buffer_a->record_disabled))
554f786e 3947 goto out;
97b17efe
SR
3948
3949 if (atomic_read(&buffer_b->record_disabled))
554f786e 3950 goto out;
97b17efe 3951
97b17efe 3952 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3953 goto out;
97b17efe
SR
3954
3955 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3956 goto out;
97b17efe 3957
7a8e76a3
SR
3958 /*
3959 * We can't do a synchronize_sched here because this
3960 * function can be called in atomic context.
3961 * Normally this will be called from the same CPU as cpu.
3962 * If not it's up to the caller to protect this.
3963 */
3964 atomic_inc(&cpu_buffer_a->record_disabled);
3965 atomic_inc(&cpu_buffer_b->record_disabled);
3966
98277991
SR
3967 ret = -EBUSY;
3968 if (local_read(&cpu_buffer_a->committing))
3969 goto out_dec;
3970 if (local_read(&cpu_buffer_b->committing))
3971 goto out_dec;
3972
7a8e76a3
SR
3973 buffer_a->buffers[cpu] = cpu_buffer_b;
3974 buffer_b->buffers[cpu] = cpu_buffer_a;
3975
3976 cpu_buffer_b->buffer = buffer_a;
3977 cpu_buffer_a->buffer = buffer_b;
3978
98277991
SR
3979 ret = 0;
3980
3981out_dec:
7a8e76a3
SR
3982 atomic_dec(&cpu_buffer_a->record_disabled);
3983 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3984out:
554f786e 3985 return ret;
7a8e76a3 3986}
c4f50183 3987EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3988#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3989
8789a9e7
SR
3990/**
3991 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3992 * @buffer: the buffer to allocate for.
3993 *
3994 * This function is used in conjunction with ring_buffer_read_page.
3995 * When reading a full page from the ring buffer, these functions
3996 * can be used to speed up the process. The calling function should
3997 * allocate a few pages first with this function. Then when it
3998 * needs to get pages from the ring buffer, it passes the result
3999 * of this function into ring_buffer_read_page, which will swap
4000 * the page that was allocated, with the read page of the buffer.
4001 *
4002 * Returns:
4003 * The page allocated, or NULL on error.
4004 */
7ea59064 4005void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4006{
044fa782 4007 struct buffer_data_page *bpage;
7ea59064 4008 struct page *page;
8789a9e7 4009
d7ec4bfe
VN
4010 page = alloc_pages_node(cpu_to_node(cpu),
4011 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4012 if (!page)
8789a9e7
SR
4013 return NULL;
4014
7ea59064 4015 bpage = page_address(page);
8789a9e7 4016
ef7a4a16
SR
4017 rb_init_page(bpage);
4018
044fa782 4019 return bpage;
8789a9e7 4020}
d6ce96da 4021EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4022
4023/**
4024 * ring_buffer_free_read_page - free an allocated read page
4025 * @buffer: the buffer the page was allocate for
4026 * @data: the page to free
4027 *
4028 * Free a page allocated from ring_buffer_alloc_read_page.
4029 */
4030void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4031{
4032 free_page((unsigned long)data);
4033}
d6ce96da 4034EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4035
4036/**
4037 * ring_buffer_read_page - extract a page from the ring buffer
4038 * @buffer: buffer to extract from
4039 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4040 * @len: amount to extract
8789a9e7
SR
4041 * @cpu: the cpu of the buffer to extract
4042 * @full: should the extraction only happen when the page is full.
4043 *
4044 * This function will pull out a page from the ring buffer and consume it.
4045 * @data_page must be the address of the variable that was returned
4046 * from ring_buffer_alloc_read_page. This is because the page might be used
4047 * to swap with a page in the ring buffer.
4048 *
4049 * for example:
b85fa01e 4050 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4051 * if (!rpage)
4052 * return error;
ef7a4a16 4053 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4054 * if (ret >= 0)
4055 * process_page(rpage, ret);
8789a9e7
SR
4056 *
4057 * When @full is set, the function will not return true unless
4058 * the writer is off the reader page.
4059 *
4060 * Note: it is up to the calling functions to handle sleeps and wakeups.
4061 * The ring buffer can be used anywhere in the kernel and can not
4062 * blindly call wake_up. The layer that uses the ring buffer must be
4063 * responsible for that.
4064 *
4065 * Returns:
667d2412
LJ
4066 * >=0 if data has been transferred, returns the offset of consumed data.
4067 * <0 if no data has been transferred.
8789a9e7
SR
4068 */
4069int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4070 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4071{
4072 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4073 struct ring_buffer_event *event;
044fa782 4074 struct buffer_data_page *bpage;
ef7a4a16 4075 struct buffer_page *reader;
ff0ff84a 4076 unsigned long missed_events;
8789a9e7 4077 unsigned long flags;
ef7a4a16 4078 unsigned int commit;
667d2412 4079 unsigned int read;
4f3640f8 4080 u64 save_timestamp;
667d2412 4081 int ret = -1;
8789a9e7 4082
554f786e
SR
4083 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4084 goto out;
4085
474d32b6
SR
4086 /*
4087 * If len is not big enough to hold the page header, then
4088 * we can not copy anything.
4089 */
4090 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4091 goto out;
474d32b6
SR
4092
4093 len -= BUF_PAGE_HDR_SIZE;
4094
8789a9e7 4095 if (!data_page)
554f786e 4096 goto out;
8789a9e7 4097
044fa782
SR
4098 bpage = *data_page;
4099 if (!bpage)
554f786e 4100 goto out;
8789a9e7 4101
5389f6fa 4102 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4103
ef7a4a16
SR
4104 reader = rb_get_reader_page(cpu_buffer);
4105 if (!reader)
554f786e 4106 goto out_unlock;
8789a9e7 4107
ef7a4a16
SR
4108 event = rb_reader_event(cpu_buffer);
4109
4110 read = reader->read;
4111 commit = rb_page_commit(reader);
667d2412 4112
66a8cb95 4113 /* Check if any events were dropped */
ff0ff84a 4114 missed_events = cpu_buffer->lost_events;
66a8cb95 4115
8789a9e7 4116 /*
474d32b6
SR
4117 * If this page has been partially read or
4118 * if len is not big enough to read the rest of the page or
4119 * a writer is still on the page, then
4120 * we must copy the data from the page to the buffer.
4121 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4122 */
474d32b6 4123 if (read || (len < (commit - read)) ||
ef7a4a16 4124 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4125 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4126 unsigned int rpos = read;
4127 unsigned int pos = 0;
ef7a4a16 4128 unsigned int size;
8789a9e7
SR
4129
4130 if (full)
554f786e 4131 goto out_unlock;
8789a9e7 4132
ef7a4a16
SR
4133 if (len > (commit - read))
4134 len = (commit - read);
4135
69d1b839
SR
4136 /* Always keep the time extend and data together */
4137 size = rb_event_ts_length(event);
ef7a4a16
SR
4138
4139 if (len < size)
554f786e 4140 goto out_unlock;
ef7a4a16 4141
4f3640f8
SR
4142 /* save the current timestamp, since the user will need it */
4143 save_timestamp = cpu_buffer->read_stamp;
4144
ef7a4a16
SR
4145 /* Need to copy one event at a time */
4146 do {
e1e35927
DS
4147 /* We need the size of one event, because
4148 * rb_advance_reader only advances by one event,
4149 * whereas rb_event_ts_length may include the size of
4150 * one or two events.
4151 * We have already ensured there's enough space if this
4152 * is a time extend. */
4153 size = rb_event_length(event);
474d32b6 4154 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4155
4156 len -= size;
4157
4158 rb_advance_reader(cpu_buffer);
474d32b6
SR
4159 rpos = reader->read;
4160 pos += size;
ef7a4a16 4161
18fab912
HY
4162 if (rpos >= commit)
4163 break;
4164
ef7a4a16 4165 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4166 /* Always keep the time extend and data together */
4167 size = rb_event_ts_length(event);
e1e35927 4168 } while (len >= size);
667d2412
LJ
4169
4170 /* update bpage */
ef7a4a16 4171 local_set(&bpage->commit, pos);
4f3640f8 4172 bpage->time_stamp = save_timestamp;
ef7a4a16 4173
474d32b6
SR
4174 /* we copied everything to the beginning */
4175 read = 0;
8789a9e7 4176 } else {
afbab76a 4177 /* update the entry counter */
77ae365e 4178 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4179 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4180
8789a9e7 4181 /* swap the pages */
044fa782 4182 rb_init_page(bpage);
ef7a4a16
SR
4183 bpage = reader->page;
4184 reader->page = *data_page;
4185 local_set(&reader->write, 0);
778c55d4 4186 local_set(&reader->entries, 0);
ef7a4a16 4187 reader->read = 0;
044fa782 4188 *data_page = bpage;
ff0ff84a
SR
4189
4190 /*
4191 * Use the real_end for the data size,
4192 * This gives us a chance to store the lost events
4193 * on the page.
4194 */
4195 if (reader->real_end)
4196 local_set(&bpage->commit, reader->real_end);
8789a9e7 4197 }
667d2412 4198 ret = read;
8789a9e7 4199
66a8cb95 4200 cpu_buffer->lost_events = 0;
2711ca23
SR
4201
4202 commit = local_read(&bpage->commit);
66a8cb95
SR
4203 /*
4204 * Set a flag in the commit field if we lost events
4205 */
ff0ff84a 4206 if (missed_events) {
ff0ff84a
SR
4207 /* If there is room at the end of the page to save the
4208 * missed events, then record it there.
4209 */
4210 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4211 memcpy(&bpage->data[commit], &missed_events,
4212 sizeof(missed_events));
4213 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4214 commit += sizeof(missed_events);
ff0ff84a 4215 }
66a8cb95 4216 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4217 }
66a8cb95 4218
2711ca23
SR
4219 /*
4220 * This page may be off to user land. Zero it out here.
4221 */
4222 if (commit < BUF_PAGE_SIZE)
4223 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4224
554f786e 4225 out_unlock:
5389f6fa 4226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4227
554f786e 4228 out:
8789a9e7
SR
4229 return ret;
4230}
d6ce96da 4231EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4232
59222efe 4233#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4234static int rb_cpu_notify(struct notifier_block *self,
4235 unsigned long action, void *hcpu)
554f786e
SR
4236{
4237 struct ring_buffer *buffer =
4238 container_of(self, struct ring_buffer, cpu_notify);
4239 long cpu = (long)hcpu;
438ced17
VN
4240 int cpu_i, nr_pages_same;
4241 unsigned int nr_pages;
554f786e
SR
4242
4243 switch (action) {
4244 case CPU_UP_PREPARE:
4245 case CPU_UP_PREPARE_FROZEN:
3f237a79 4246 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4247 return NOTIFY_OK;
4248
438ced17
VN
4249 nr_pages = 0;
4250 nr_pages_same = 1;
4251 /* check if all cpu sizes are same */
4252 for_each_buffer_cpu(buffer, cpu_i) {
4253 /* fill in the size from first enabled cpu */
4254 if (nr_pages == 0)
4255 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4256 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4257 nr_pages_same = 0;
4258 break;
4259 }
4260 }
4261 /* allocate minimum pages, user can later expand it */
4262 if (!nr_pages_same)
4263 nr_pages = 2;
554f786e 4264 buffer->buffers[cpu] =
438ced17 4265 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4266 if (!buffer->buffers[cpu]) {
4267 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4268 cpu);
4269 return NOTIFY_OK;
4270 }
4271 smp_wmb();
3f237a79 4272 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4273 break;
4274 case CPU_DOWN_PREPARE:
4275 case CPU_DOWN_PREPARE_FROZEN:
4276 /*
4277 * Do nothing.
4278 * If we were to free the buffer, then the user would
4279 * lose any trace that was in the buffer.
4280 */
4281 break;
4282 default:
4283 break;
4284 }
4285 return NOTIFY_OK;
4286}
4287#endif
This page took 0.491622 seconds and 5 git commands to generate.