tracing: Bring Documentation/trace/ftrace.txt up to date
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
5a0e3ad6 19#include <linux/slab.h>
7a8e76a3
SR
20#include <linux/init.h>
21#include <linux/hash.h>
22#include <linux/list.h>
554f786e 23#include <linux/cpu.h>
7a8e76a3
SR
24#include <linux/fs.h>
25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35 int ret;
36
334d4169
LJ
37 ret = trace_seq_printf(s, "# compressed entry header\n");
38 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
39 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
40 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
41 ret = trace_seq_printf(s, "\n");
42 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
46 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
47 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
48
49 return ret;
50}
51
5cc98548
SR
52/*
53 * The ring buffer is made up of a list of pages. A separate list of pages is
54 * allocated for each CPU. A writer may only write to a buffer that is
55 * associated with the CPU it is currently executing on. A reader may read
56 * from any per cpu buffer.
57 *
58 * The reader is special. For each per cpu buffer, the reader has its own
59 * reader page. When a reader has read the entire reader page, this reader
60 * page is swapped with another page in the ring buffer.
61 *
62 * Now, as long as the writer is off the reader page, the reader can do what
63 * ever it wants with that page. The writer will never write to that page
64 * again (as long as it is out of the ring buffer).
65 *
66 * Here's some silly ASCII art.
67 *
68 * +------+
69 * |reader| RING BUFFER
70 * |page |
71 * +------+ +---+ +---+ +---+
72 * | |-->| |-->| |
73 * +---+ +---+ +---+
74 * ^ |
75 * | |
76 * +---------------+
77 *
78 *
79 * +------+
80 * |reader| RING BUFFER
81 * |page |------------------v
82 * +------+ +---+ +---+ +---+
83 * | |-->| |-->| |
84 * +---+ +---+ +---+
85 * ^ |
86 * | |
87 * +---------------+
88 *
89 *
90 * +------+
91 * |reader| RING BUFFER
92 * |page |------------------v
93 * +------+ +---+ +---+ +---+
94 * ^ | |-->| |-->| |
95 * | +---+ +---+ +---+
96 * | |
97 * | |
98 * +------------------------------+
99 *
100 *
101 * +------+
102 * |buffer| RING BUFFER
103 * |page |------------------v
104 * +------+ +---+ +---+ +---+
105 * ^ | | | |-->| |
106 * | New +---+ +---+ +---+
107 * | Reader------^ |
108 * | page |
109 * +------------------------------+
110 *
111 *
112 * After we make this swap, the reader can hand this page off to the splice
113 * code and be done with it. It can even allocate a new page if it needs to
114 * and swap that into the ring buffer.
115 *
116 * We will be using cmpxchg soon to make all this lockless.
117 *
118 */
119
033601a3
SR
120/*
121 * A fast way to enable or disable all ring buffers is to
122 * call tracing_on or tracing_off. Turning off the ring buffers
123 * prevents all ring buffers from being recorded to.
124 * Turning this switch on, makes it OK to write to the
125 * ring buffer, if the ring buffer is enabled itself.
126 *
127 * There's three layers that must be on in order to write
128 * to the ring buffer.
129 *
130 * 1) This global flag must be set.
131 * 2) The ring buffer must be enabled for recording.
132 * 3) The per cpu buffer must be enabled for recording.
133 *
134 * In case of an anomaly, this global flag has a bit set that
135 * will permantly disable all ring buffers.
136 */
137
138/*
139 * Global flag to disable all recording to ring buffers
140 * This has two bits: ON, DISABLED
141 *
142 * ON DISABLED
143 * ---- ----------
144 * 0 0 : ring buffers are off
145 * 1 0 : ring buffers are on
146 * X 1 : ring buffers are permanently disabled
147 */
148
149enum {
150 RB_BUFFERS_ON_BIT = 0,
151 RB_BUFFERS_DISABLED_BIT = 1,
152};
153
154enum {
155 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
156 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
157};
158
5e39841c 159static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 160
499e5470
SR
161/* Used for individual buffers (after the counter) */
162#define RB_BUFFER_OFF (1 << 20)
a3583244 163
499e5470 164#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
165
166/**
167 * tracing_off_permanent - permanently disable ring buffers
168 *
169 * This function, once called, will disable all ring buffers
c3706f00 170 * permanently.
033601a3
SR
171 */
172void tracing_off_permanent(void)
173{
174 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
175}
176
e3d6bf0a 177#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 178#define RB_ALIGNMENT 4U
334d4169 179#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 180#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 181
2271048d
SR
182#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
183# define RB_FORCE_8BYTE_ALIGNMENT 0
184# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
185#else
186# define RB_FORCE_8BYTE_ALIGNMENT 1
187# define RB_ARCH_ALIGNMENT 8U
188#endif
189
334d4169
LJ
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
192
193enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196};
197
69d1b839
SR
198#define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
2d622719
TZ
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
a1863c21 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
a1863c21 208 /* padding has a NULL time_delta */
334d4169 209 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
210 event->time_delta = 0;
211}
212
34a148bf 213static unsigned
2d622719 214rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
215{
216 unsigned length;
217
334d4169
LJ
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223}
224
69d1b839
SR
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
2d622719
TZ
231rb_event_length(struct ring_buffer_event *event)
232{
334d4169 233 switch (event->type_len) {
7a8e76a3 234 case RINGBUF_TYPE_PADDING:
2d622719
TZ
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
334d4169 238 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
2d622719 247 return rb_event_data_length(event);
7a8e76a3
SR
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253}
254
69d1b839
SR
255/*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270}
271
7a8e76a3
SR
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
69d1b839
SR
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
7a8e76a3
SR
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
69d1b839
SR
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
334d4169 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
7a8e76a3 296}
c4f50183 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
298
299/* inline for ring buffer fast paths */
34a148bf 300static void *
7a8e76a3
SR
301rb_event_data(struct ring_buffer_event *event)
302{
69d1b839
SR
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
334d4169 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 306 /* If length is in len field, then array[0] has the data */
334d4169 307 if (event->type_len)
7a8e76a3
SR
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319 return rb_event_data(event);
320}
c4f50183 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
322
323#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 324 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
325
326#define TS_SHIFT 27
327#define TS_MASK ((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST (~TS_MASK)
329
66a8cb95
SR
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
332/* Missed count stored at end */
333#define RB_MISSED_STORED (1 << 30)
66a8cb95 334
abc9b56d 335struct buffer_data_page {
e4c2ce82 336 u64 time_stamp; /* page time stamp */
c3706f00 337 local_t commit; /* write committed index */
abc9b56d
SR
338 unsigned char data[]; /* data of buffer page */
339};
340
77ae365e
SR
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
abc9b56d 349struct buffer_page {
778c55d4 350 struct list_head list; /* list of buffer pages */
abc9b56d 351 local_t write; /* index for next write */
6f807acd 352 unsigned read; /* index for next read */
778c55d4 353 local_t entries; /* entries on this page */
ff0ff84a 354 unsigned long real_end; /* real end of data */
abc9b56d 355 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
356};
357
77ae365e
SR
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK 0xfffff
371#define RB_WRITE_INTCNT (1 << 20)
372
044fa782 373static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 374{
044fa782 375 local_set(&bpage->commit, 0);
abc9b56d
SR
376}
377
474d32b6
SR
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ef7a4a16
SR
384size_t ring_buffer_page_len(void *page)
385{
474d32b6
SR
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
388}
389
ed56829c
SR
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
34a148bf 394static void free_buffer_page(struct buffer_page *bpage)
ed56829c 395{
34a148bf 396 free_page((unsigned long)bpage->page);
e4c2ce82 397 kfree(bpage);
ed56829c
SR
398}
399
7a8e76a3
SR
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408}
409
474d32b6 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 411
be957c44
SR
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
d1b182a8
SR
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417 struct buffer_data_page field;
418 int ret;
419
420 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
421 "offset:0;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)sizeof(field.time_stamp),
423 (unsigned int)is_signed_type(u64));
d1b182a8
SR
424
425 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 426 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 427 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
428 (unsigned int)sizeof(field.commit),
429 (unsigned int)is_signed_type(long));
d1b182a8 430
66a8cb95
SR
431 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
432 "offset:%u;\tsize:%u;\tsigned:%u;\n",
433 (unsigned int)offsetof(typeof(field), commit),
434 1,
435 (unsigned int)is_signed_type(long));
436
d1b182a8 437 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 438 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 439 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
440 (unsigned int)BUF_PAGE_SIZE,
441 (unsigned int)is_signed_type(char));
d1b182a8
SR
442
443 return ret;
444}
445
15693458
SRRH
446struct rb_irq_work {
447 struct irq_work work;
448 wait_queue_head_t waiters;
449 bool waiters_pending;
450};
451
7a8e76a3
SR
452/*
453 * head_page == tail_page && head == tail then buffer is empty.
454 */
455struct ring_buffer_per_cpu {
456 int cpu;
985023de 457 atomic_t record_disabled;
7a8e76a3 458 struct ring_buffer *buffer;
5389f6fa 459 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 460 arch_spinlock_t lock;
7a8e76a3 461 struct lock_class_key lock_key;
438ced17 462 unsigned int nr_pages;
3adc54fa 463 struct list_head *pages;
6f807acd
SR
464 struct buffer_page *head_page; /* read from head */
465 struct buffer_page *tail_page; /* write to tail */
c3706f00 466 struct buffer_page *commit_page; /* committed pages */
d769041f 467 struct buffer_page *reader_page;
66a8cb95
SR
468 unsigned long lost_events;
469 unsigned long last_overrun;
c64e148a 470 local_t entries_bytes;
e4906eff 471 local_t entries;
884bfe89
SP
472 local_t overrun;
473 local_t commit_overrun;
474 local_t dropped_events;
fa743953
SR
475 local_t committing;
476 local_t commits;
77ae365e 477 unsigned long read;
c64e148a 478 unsigned long read_bytes;
7a8e76a3
SR
479 u64 write_stamp;
480 u64 read_stamp;
438ced17
VN
481 /* ring buffer pages to update, > 0 to add, < 0 to remove */
482 int nr_pages_to_update;
483 struct list_head new_pages; /* new pages to add */
83f40318 484 struct work_struct update_pages_work;
05fdd70d 485 struct completion update_done;
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer {
7a8e76a3
SR
491 unsigned flags;
492 int cpus;
7a8e76a3 493 atomic_t record_disabled;
83f40318 494 atomic_t resize_disabled;
00f62f61 495 cpumask_var_t cpumask;
7a8e76a3 496
1f8a6a10
PZ
497 struct lock_class_key *reader_lock_key;
498
7a8e76a3
SR
499 struct mutex mutex;
500
501 struct ring_buffer_per_cpu **buffers;
554f786e 502
59222efe 503#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
504 struct notifier_block cpu_notify;
505#endif
37886f6a 506 u64 (*clock)(void);
15693458
SRRH
507
508 struct rb_irq_work irq_work;
7a8e76a3
SR
509};
510
511struct ring_buffer_iter {
512 struct ring_buffer_per_cpu *cpu_buffer;
513 unsigned long head;
514 struct buffer_page *head_page;
492a74f4
SR
515 struct buffer_page *cache_reader_page;
516 unsigned long cache_read;
7a8e76a3
SR
517 u64 read_stamp;
518};
519
15693458
SRRH
520/*
521 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
522 *
523 * Schedules a delayed work to wake up any task that is blocked on the
524 * ring buffer waiters queue.
525 */
526static void rb_wake_up_waiters(struct irq_work *work)
527{
528 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
529
530 wake_up_all(&rbwork->waiters);
531}
532
533/**
534 * ring_buffer_wait - wait for input to the ring buffer
535 * @buffer: buffer to wait on
536 * @cpu: the cpu buffer to wait on
537 *
538 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539 * as data is added to any of the @buffer's cpu buffers. Otherwise
540 * it will wait for data to be added to a specific cpu buffer.
541 */
542void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
543{
544 struct ring_buffer_per_cpu *cpu_buffer;
545 DEFINE_WAIT(wait);
546 struct rb_irq_work *work;
547
548 /*
549 * Depending on what the caller is waiting for, either any
550 * data in any cpu buffer, or a specific buffer, put the
551 * caller on the appropriate wait queue.
552 */
553 if (cpu == RING_BUFFER_ALL_CPUS)
554 work = &buffer->irq_work;
555 else {
556 cpu_buffer = buffer->buffers[cpu];
557 work = &cpu_buffer->irq_work;
558 }
559
560
561 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
562
563 /*
564 * The events can happen in critical sections where
565 * checking a work queue can cause deadlocks.
566 * After adding a task to the queue, this flag is set
567 * only to notify events to try to wake up the queue
568 * using irq_work.
569 *
570 * We don't clear it even if the buffer is no longer
571 * empty. The flag only causes the next event to run
572 * irq_work to do the work queue wake up. The worse
573 * that can happen if we race with !trace_empty() is that
574 * an event will cause an irq_work to try to wake up
575 * an empty queue.
576 *
577 * There's no reason to protect this flag either, as
578 * the work queue and irq_work logic will do the necessary
579 * synchronization for the wake ups. The only thing
580 * that is necessary is that the wake up happens after
581 * a task has been queued. It's OK for spurious wake ups.
582 */
583 work->waiters_pending = true;
584
585 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
586 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
587 schedule();
588
589 finish_wait(&work->waiters, &wait);
590}
591
592/**
593 * ring_buffer_poll_wait - poll on buffer input
594 * @buffer: buffer to wait on
595 * @cpu: the cpu buffer to wait on
596 * @filp: the file descriptor
597 * @poll_table: The poll descriptor
598 *
599 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
600 * as data is added to any of the @buffer's cpu buffers. Otherwise
601 * it will wait for data to be added to a specific cpu buffer.
602 *
603 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
604 * zero otherwise.
605 */
606int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
607 struct file *filp, poll_table *poll_table)
608{
609 struct ring_buffer_per_cpu *cpu_buffer;
610 struct rb_irq_work *work;
611
612 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
613 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
614 return POLLIN | POLLRDNORM;
615
616 if (cpu == RING_BUFFER_ALL_CPUS)
617 work = &buffer->irq_work;
618 else {
619 cpu_buffer = buffer->buffers[cpu];
620 work = &cpu_buffer->irq_work;
621 }
622
623 work->waiters_pending = true;
624 poll_wait(filp, &work->waiters, poll_table);
625
626 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
627 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
628 return POLLIN | POLLRDNORM;
629 return 0;
630}
631
f536aafc 632/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
633#define RB_WARN_ON(b, cond) \
634 ({ \
635 int _____ret = unlikely(cond); \
636 if (_____ret) { \
637 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
638 struct ring_buffer_per_cpu *__b = \
639 (void *)b; \
640 atomic_inc(&__b->buffer->record_disabled); \
641 } else \
642 atomic_inc(&b->record_disabled); \
643 WARN_ON(1); \
644 } \
645 _____ret; \
3e89c7bb 646 })
f536aafc 647
37886f6a
SR
648/* Up this if you want to test the TIME_EXTENTS and normalization */
649#define DEBUG_SHIFT 0
650
6d3f1e12 651static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
652{
653 /* shift to debug/test normalization and TIME_EXTENTS */
654 return buffer->clock() << DEBUG_SHIFT;
655}
656
37886f6a
SR
657u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
658{
659 u64 time;
660
661 preempt_disable_notrace();
6d3f1e12 662 time = rb_time_stamp(buffer);
37886f6a
SR
663 preempt_enable_no_resched_notrace();
664
665 return time;
666}
667EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
668
669void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
670 int cpu, u64 *ts)
671{
672 /* Just stupid testing the normalize function and deltas */
673 *ts >>= DEBUG_SHIFT;
674}
675EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
676
77ae365e
SR
677/*
678 * Making the ring buffer lockless makes things tricky.
679 * Although writes only happen on the CPU that they are on,
680 * and they only need to worry about interrupts. Reads can
681 * happen on any CPU.
682 *
683 * The reader page is always off the ring buffer, but when the
684 * reader finishes with a page, it needs to swap its page with
685 * a new one from the buffer. The reader needs to take from
686 * the head (writes go to the tail). But if a writer is in overwrite
687 * mode and wraps, it must push the head page forward.
688 *
689 * Here lies the problem.
690 *
691 * The reader must be careful to replace only the head page, and
692 * not another one. As described at the top of the file in the
693 * ASCII art, the reader sets its old page to point to the next
694 * page after head. It then sets the page after head to point to
695 * the old reader page. But if the writer moves the head page
696 * during this operation, the reader could end up with the tail.
697 *
698 * We use cmpxchg to help prevent this race. We also do something
699 * special with the page before head. We set the LSB to 1.
700 *
701 * When the writer must push the page forward, it will clear the
702 * bit that points to the head page, move the head, and then set
703 * the bit that points to the new head page.
704 *
705 * We also don't want an interrupt coming in and moving the head
706 * page on another writer. Thus we use the second LSB to catch
707 * that too. Thus:
708 *
709 * head->list->prev->next bit 1 bit 0
710 * ------- -------
711 * Normal page 0 0
712 * Points to head page 0 1
713 * New head page 1 0
714 *
715 * Note we can not trust the prev pointer of the head page, because:
716 *
717 * +----+ +-----+ +-----+
718 * | |------>| T |---X--->| N |
719 * | |<------| | | |
720 * +----+ +-----+ +-----+
721 * ^ ^ |
722 * | +-----+ | |
723 * +----------| R |----------+ |
724 * | |<-----------+
725 * +-----+
726 *
727 * Key: ---X--> HEAD flag set in pointer
728 * T Tail page
729 * R Reader page
730 * N Next page
731 *
732 * (see __rb_reserve_next() to see where this happens)
733 *
734 * What the above shows is that the reader just swapped out
735 * the reader page with a page in the buffer, but before it
736 * could make the new header point back to the new page added
737 * it was preempted by a writer. The writer moved forward onto
738 * the new page added by the reader and is about to move forward
739 * again.
740 *
741 * You can see, it is legitimate for the previous pointer of
742 * the head (or any page) not to point back to itself. But only
743 * temporarially.
744 */
745
746#define RB_PAGE_NORMAL 0UL
747#define RB_PAGE_HEAD 1UL
748#define RB_PAGE_UPDATE 2UL
749
750
751#define RB_FLAG_MASK 3UL
752
753/* PAGE_MOVED is not part of the mask */
754#define RB_PAGE_MOVED 4UL
755
756/*
757 * rb_list_head - remove any bit
758 */
759static struct list_head *rb_list_head(struct list_head *list)
760{
761 unsigned long val = (unsigned long)list;
762
763 return (struct list_head *)(val & ~RB_FLAG_MASK);
764}
765
766/*
6d3f1e12 767 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
768 *
769 * Because the reader may move the head_page pointer, we can
770 * not trust what the head page is (it may be pointing to
771 * the reader page). But if the next page is a header page,
772 * its flags will be non zero.
773 */
42b16b3f 774static inline int
77ae365e
SR
775rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
776 struct buffer_page *page, struct list_head *list)
777{
778 unsigned long val;
779
780 val = (unsigned long)list->next;
781
782 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
783 return RB_PAGE_MOVED;
784
785 return val & RB_FLAG_MASK;
786}
787
788/*
789 * rb_is_reader_page
790 *
791 * The unique thing about the reader page, is that, if the
792 * writer is ever on it, the previous pointer never points
793 * back to the reader page.
794 */
795static int rb_is_reader_page(struct buffer_page *page)
796{
797 struct list_head *list = page->list.prev;
798
799 return rb_list_head(list->next) != &page->list;
800}
801
802/*
803 * rb_set_list_to_head - set a list_head to be pointing to head.
804 */
805static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
806 struct list_head *list)
807{
808 unsigned long *ptr;
809
810 ptr = (unsigned long *)&list->next;
811 *ptr |= RB_PAGE_HEAD;
812 *ptr &= ~RB_PAGE_UPDATE;
813}
814
815/*
816 * rb_head_page_activate - sets up head page
817 */
818static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
819{
820 struct buffer_page *head;
821
822 head = cpu_buffer->head_page;
823 if (!head)
824 return;
825
826 /*
827 * Set the previous list pointer to have the HEAD flag.
828 */
829 rb_set_list_to_head(cpu_buffer, head->list.prev);
830}
831
832static void rb_list_head_clear(struct list_head *list)
833{
834 unsigned long *ptr = (unsigned long *)&list->next;
835
836 *ptr &= ~RB_FLAG_MASK;
837}
838
839/*
840 * rb_head_page_dactivate - clears head page ptr (for free list)
841 */
842static void
843rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
844{
845 struct list_head *hd;
846
847 /* Go through the whole list and clear any pointers found. */
848 rb_list_head_clear(cpu_buffer->pages);
849
850 list_for_each(hd, cpu_buffer->pages)
851 rb_list_head_clear(hd);
852}
853
854static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
855 struct buffer_page *head,
856 struct buffer_page *prev,
857 int old_flag, int new_flag)
858{
859 struct list_head *list;
860 unsigned long val = (unsigned long)&head->list;
861 unsigned long ret;
862
863 list = &prev->list;
864
865 val &= ~RB_FLAG_MASK;
866
08a40816
SR
867 ret = cmpxchg((unsigned long *)&list->next,
868 val | old_flag, val | new_flag);
77ae365e
SR
869
870 /* check if the reader took the page */
871 if ((ret & ~RB_FLAG_MASK) != val)
872 return RB_PAGE_MOVED;
873
874 return ret & RB_FLAG_MASK;
875}
876
877static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
878 struct buffer_page *head,
879 struct buffer_page *prev,
880 int old_flag)
881{
882 return rb_head_page_set(cpu_buffer, head, prev,
883 old_flag, RB_PAGE_UPDATE);
884}
885
886static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
887 struct buffer_page *head,
888 struct buffer_page *prev,
889 int old_flag)
890{
891 return rb_head_page_set(cpu_buffer, head, prev,
892 old_flag, RB_PAGE_HEAD);
893}
894
895static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
896 struct buffer_page *head,
897 struct buffer_page *prev,
898 int old_flag)
899{
900 return rb_head_page_set(cpu_buffer, head, prev,
901 old_flag, RB_PAGE_NORMAL);
902}
903
904static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
905 struct buffer_page **bpage)
906{
907 struct list_head *p = rb_list_head((*bpage)->list.next);
908
909 *bpage = list_entry(p, struct buffer_page, list);
910}
911
912static struct buffer_page *
913rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
914{
915 struct buffer_page *head;
916 struct buffer_page *page;
917 struct list_head *list;
918 int i;
919
920 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
921 return NULL;
922
923 /* sanity check */
924 list = cpu_buffer->pages;
925 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
926 return NULL;
927
928 page = head = cpu_buffer->head_page;
929 /*
930 * It is possible that the writer moves the header behind
931 * where we started, and we miss in one loop.
932 * A second loop should grab the header, but we'll do
933 * three loops just because I'm paranoid.
934 */
935 for (i = 0; i < 3; i++) {
936 do {
937 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
938 cpu_buffer->head_page = page;
939 return page;
940 }
941 rb_inc_page(cpu_buffer, &page);
942 } while (page != head);
943 }
944
945 RB_WARN_ON(cpu_buffer, 1);
946
947 return NULL;
948}
949
950static int rb_head_page_replace(struct buffer_page *old,
951 struct buffer_page *new)
952{
953 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
954 unsigned long val;
955 unsigned long ret;
956
957 val = *ptr & ~RB_FLAG_MASK;
958 val |= RB_PAGE_HEAD;
959
08a40816 960 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
961
962 return ret == val;
963}
964
965/*
966 * rb_tail_page_update - move the tail page forward
967 *
968 * Returns 1 if moved tail page, 0 if someone else did.
969 */
970static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
971 struct buffer_page *tail_page,
972 struct buffer_page *next_page)
973{
974 struct buffer_page *old_tail;
975 unsigned long old_entries;
976 unsigned long old_write;
977 int ret = 0;
978
979 /*
980 * The tail page now needs to be moved forward.
981 *
982 * We need to reset the tail page, but without messing
983 * with possible erasing of data brought in by interrupts
984 * that have moved the tail page and are currently on it.
985 *
986 * We add a counter to the write field to denote this.
987 */
988 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
989 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
990
991 /*
992 * Just make sure we have seen our old_write and synchronize
993 * with any interrupts that come in.
994 */
995 barrier();
996
997 /*
998 * If the tail page is still the same as what we think
999 * it is, then it is up to us to update the tail
1000 * pointer.
1001 */
1002 if (tail_page == cpu_buffer->tail_page) {
1003 /* Zero the write counter */
1004 unsigned long val = old_write & ~RB_WRITE_MASK;
1005 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1006
1007 /*
1008 * This will only succeed if an interrupt did
1009 * not come in and change it. In which case, we
1010 * do not want to modify it.
da706d8b
LJ
1011 *
1012 * We add (void) to let the compiler know that we do not care
1013 * about the return value of these functions. We use the
1014 * cmpxchg to only update if an interrupt did not already
1015 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1016 */
da706d8b
LJ
1017 (void)local_cmpxchg(&next_page->write, old_write, val);
1018 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1019
1020 /*
1021 * No need to worry about races with clearing out the commit.
1022 * it only can increment when a commit takes place. But that
1023 * only happens in the outer most nested commit.
1024 */
1025 local_set(&next_page->page->commit, 0);
1026
1027 old_tail = cmpxchg(&cpu_buffer->tail_page,
1028 tail_page, next_page);
1029
1030 if (old_tail == tail_page)
1031 ret = 1;
1032 }
1033
1034 return ret;
1035}
1036
1037static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1038 struct buffer_page *bpage)
1039{
1040 unsigned long val = (unsigned long)bpage;
1041
1042 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1043 return 1;
1044
1045 return 0;
1046}
1047
1048/**
1049 * rb_check_list - make sure a pointer to a list has the last bits zero
1050 */
1051static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1052 struct list_head *list)
1053{
1054 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1055 return 1;
1056 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1057 return 1;
1058 return 0;
1059}
1060
7a8e76a3
SR
1061/**
1062 * check_pages - integrity check of buffer pages
1063 * @cpu_buffer: CPU buffer with pages to test
1064 *
c3706f00 1065 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1066 * been corrupted.
1067 */
1068static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1069{
3adc54fa 1070 struct list_head *head = cpu_buffer->pages;
044fa782 1071 struct buffer_page *bpage, *tmp;
7a8e76a3 1072
308f7eeb
SR
1073 /* Reset the head page if it exists */
1074 if (cpu_buffer->head_page)
1075 rb_set_head_page(cpu_buffer);
1076
77ae365e
SR
1077 rb_head_page_deactivate(cpu_buffer);
1078
3e89c7bb
SR
1079 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1080 return -1;
1081 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1082 return -1;
7a8e76a3 1083
77ae365e
SR
1084 if (rb_check_list(cpu_buffer, head))
1085 return -1;
1086
044fa782 1087 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1088 if (RB_WARN_ON(cpu_buffer,
044fa782 1089 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1090 return -1;
1091 if (RB_WARN_ON(cpu_buffer,
044fa782 1092 bpage->list.prev->next != &bpage->list))
3e89c7bb 1093 return -1;
77ae365e
SR
1094 if (rb_check_list(cpu_buffer, &bpage->list))
1095 return -1;
7a8e76a3
SR
1096 }
1097
77ae365e
SR
1098 rb_head_page_activate(cpu_buffer);
1099
7a8e76a3
SR
1100 return 0;
1101}
1102
438ced17 1103static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1104{
438ced17 1105 int i;
044fa782 1106 struct buffer_page *bpage, *tmp;
3adc54fa 1107
7a8e76a3 1108 for (i = 0; i < nr_pages; i++) {
7ea59064 1109 struct page *page;
d7ec4bfe
VN
1110 /*
1111 * __GFP_NORETRY flag makes sure that the allocation fails
1112 * gracefully without invoking oom-killer and the system is
1113 * not destabilized.
1114 */
044fa782 1115 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1116 GFP_KERNEL | __GFP_NORETRY,
438ced17 1117 cpu_to_node(cpu));
044fa782 1118 if (!bpage)
e4c2ce82 1119 goto free_pages;
77ae365e 1120
438ced17 1121 list_add(&bpage->list, pages);
77ae365e 1122
438ced17 1123 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1124 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1125 if (!page)
7a8e76a3 1126 goto free_pages;
7ea59064 1127 bpage->page = page_address(page);
044fa782 1128 rb_init_page(bpage->page);
7a8e76a3
SR
1129 }
1130
438ced17
VN
1131 return 0;
1132
1133free_pages:
1134 list_for_each_entry_safe(bpage, tmp, pages, list) {
1135 list_del_init(&bpage->list);
1136 free_buffer_page(bpage);
1137 }
1138
1139 return -ENOMEM;
1140}
1141
1142static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1143 unsigned nr_pages)
1144{
1145 LIST_HEAD(pages);
1146
1147 WARN_ON(!nr_pages);
1148
1149 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1150 return -ENOMEM;
1151
3adc54fa
SR
1152 /*
1153 * The ring buffer page list is a circular list that does not
1154 * start and end with a list head. All page list items point to
1155 * other pages.
1156 */
1157 cpu_buffer->pages = pages.next;
1158 list_del(&pages);
7a8e76a3 1159
438ced17
VN
1160 cpu_buffer->nr_pages = nr_pages;
1161
7a8e76a3
SR
1162 rb_check_pages(cpu_buffer);
1163
1164 return 0;
7a8e76a3
SR
1165}
1166
1167static struct ring_buffer_per_cpu *
438ced17 1168rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1169{
1170 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1171 struct buffer_page *bpage;
7ea59064 1172 struct page *page;
7a8e76a3
SR
1173 int ret;
1174
1175 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1176 GFP_KERNEL, cpu_to_node(cpu));
1177 if (!cpu_buffer)
1178 return NULL;
1179
1180 cpu_buffer->cpu = cpu;
1181 cpu_buffer->buffer = buffer;
5389f6fa 1182 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1183 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1184 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1185 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1186 init_completion(&cpu_buffer->update_done);
15693458 1187 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1188 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1189
044fa782 1190 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1191 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1192 if (!bpage)
e4c2ce82
SR
1193 goto fail_free_buffer;
1194
77ae365e
SR
1195 rb_check_bpage(cpu_buffer, bpage);
1196
044fa782 1197 cpu_buffer->reader_page = bpage;
7ea59064
VN
1198 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1199 if (!page)
e4c2ce82 1200 goto fail_free_reader;
7ea59064 1201 bpage->page = page_address(page);
044fa782 1202 rb_init_page(bpage->page);
e4c2ce82 1203
d769041f 1204 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1205 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1206
438ced17 1207 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1208 if (ret < 0)
d769041f 1209 goto fail_free_reader;
7a8e76a3
SR
1210
1211 cpu_buffer->head_page
3adc54fa 1212 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1213 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1214
77ae365e
SR
1215 rb_head_page_activate(cpu_buffer);
1216
7a8e76a3
SR
1217 return cpu_buffer;
1218
d769041f
SR
1219 fail_free_reader:
1220 free_buffer_page(cpu_buffer->reader_page);
1221
7a8e76a3
SR
1222 fail_free_buffer:
1223 kfree(cpu_buffer);
1224 return NULL;
1225}
1226
1227static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1228{
3adc54fa 1229 struct list_head *head = cpu_buffer->pages;
044fa782 1230 struct buffer_page *bpage, *tmp;
7a8e76a3 1231
d769041f
SR
1232 free_buffer_page(cpu_buffer->reader_page);
1233
77ae365e
SR
1234 rb_head_page_deactivate(cpu_buffer);
1235
3adc54fa
SR
1236 if (head) {
1237 list_for_each_entry_safe(bpage, tmp, head, list) {
1238 list_del_init(&bpage->list);
1239 free_buffer_page(bpage);
1240 }
1241 bpage = list_entry(head, struct buffer_page, list);
044fa782 1242 free_buffer_page(bpage);
7a8e76a3 1243 }
3adc54fa 1244
7a8e76a3
SR
1245 kfree(cpu_buffer);
1246}
1247
59222efe 1248#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1249static int rb_cpu_notify(struct notifier_block *self,
1250 unsigned long action, void *hcpu);
554f786e
SR
1251#endif
1252
7a8e76a3
SR
1253/**
1254 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1255 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1256 * @flags: attributes to set for the ring buffer.
1257 *
1258 * Currently the only flag that is available is the RB_FL_OVERWRITE
1259 * flag. This flag means that the buffer will overwrite old data
1260 * when the buffer wraps. If this flag is not set, the buffer will
1261 * drop data when the tail hits the head.
1262 */
1f8a6a10
PZ
1263struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1264 struct lock_class_key *key)
7a8e76a3
SR
1265{
1266 struct ring_buffer *buffer;
1267 int bsize;
438ced17 1268 int cpu, nr_pages;
7a8e76a3
SR
1269
1270 /* keep it in its own cache line */
1271 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1272 GFP_KERNEL);
1273 if (!buffer)
1274 return NULL;
1275
9e01c1b7
RR
1276 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1277 goto fail_free_buffer;
1278
438ced17 1279 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1280 buffer->flags = flags;
37886f6a 1281 buffer->clock = trace_clock_local;
1f8a6a10 1282 buffer->reader_lock_key = key;
7a8e76a3 1283
15693458 1284 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1285 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1286
7a8e76a3 1287 /* need at least two pages */
438ced17
VN
1288 if (nr_pages < 2)
1289 nr_pages = 2;
7a8e76a3 1290
3bf832ce
FW
1291 /*
1292 * In case of non-hotplug cpu, if the ring-buffer is allocated
1293 * in early initcall, it will not be notified of secondary cpus.
1294 * In that off case, we need to allocate for all possible cpus.
1295 */
1296#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1297 get_online_cpus();
1298 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1299#else
1300 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1301#endif
7a8e76a3
SR
1302 buffer->cpus = nr_cpu_ids;
1303
1304 bsize = sizeof(void *) * nr_cpu_ids;
1305 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer->buffers)
9e01c1b7 1308 goto fail_free_cpumask;
7a8e76a3
SR
1309
1310 for_each_buffer_cpu(buffer, cpu) {
1311 buffer->buffers[cpu] =
438ced17 1312 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1313 if (!buffer->buffers[cpu])
1314 goto fail_free_buffers;
1315 }
1316
59222efe 1317#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1318 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1319 buffer->cpu_notify.priority = 0;
1320 register_cpu_notifier(&buffer->cpu_notify);
1321#endif
1322
1323 put_online_cpus();
7a8e76a3
SR
1324 mutex_init(&buffer->mutex);
1325
1326 return buffer;
1327
1328 fail_free_buffers:
1329 for_each_buffer_cpu(buffer, cpu) {
1330 if (buffer->buffers[cpu])
1331 rb_free_cpu_buffer(buffer->buffers[cpu]);
1332 }
1333 kfree(buffer->buffers);
1334
9e01c1b7
RR
1335 fail_free_cpumask:
1336 free_cpumask_var(buffer->cpumask);
554f786e 1337 put_online_cpus();
9e01c1b7 1338
7a8e76a3
SR
1339 fail_free_buffer:
1340 kfree(buffer);
1341 return NULL;
1342}
1f8a6a10 1343EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1344
1345/**
1346 * ring_buffer_free - free a ring buffer.
1347 * @buffer: the buffer to free.
1348 */
1349void
1350ring_buffer_free(struct ring_buffer *buffer)
1351{
1352 int cpu;
1353
554f786e
SR
1354 get_online_cpus();
1355
59222efe 1356#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1357 unregister_cpu_notifier(&buffer->cpu_notify);
1358#endif
1359
7a8e76a3
SR
1360 for_each_buffer_cpu(buffer, cpu)
1361 rb_free_cpu_buffer(buffer->buffers[cpu]);
1362
554f786e
SR
1363 put_online_cpus();
1364
bd3f0221 1365 kfree(buffer->buffers);
9e01c1b7
RR
1366 free_cpumask_var(buffer->cpumask);
1367
7a8e76a3
SR
1368 kfree(buffer);
1369}
c4f50183 1370EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1371
37886f6a
SR
1372void ring_buffer_set_clock(struct ring_buffer *buffer,
1373 u64 (*clock)(void))
1374{
1375 buffer->clock = clock;
1376}
1377
7a8e76a3
SR
1378static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1379
83f40318
VN
1380static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1381{
1382 return local_read(&bpage->entries) & RB_WRITE_MASK;
1383}
1384
1385static inline unsigned long rb_page_write(struct buffer_page *bpage)
1386{
1387 return local_read(&bpage->write) & RB_WRITE_MASK;
1388}
1389
5040b4b7 1390static int
83f40318 1391rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1392{
83f40318
VN
1393 struct list_head *tail_page, *to_remove, *next_page;
1394 struct buffer_page *to_remove_page, *tmp_iter_page;
1395 struct buffer_page *last_page, *first_page;
1396 unsigned int nr_removed;
1397 unsigned long head_bit;
1398 int page_entries;
1399
1400 head_bit = 0;
7a8e76a3 1401
5389f6fa 1402 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1403 atomic_inc(&cpu_buffer->record_disabled);
1404 /*
1405 * We don't race with the readers since we have acquired the reader
1406 * lock. We also don't race with writers after disabling recording.
1407 * This makes it easy to figure out the first and the last page to be
1408 * removed from the list. We unlink all the pages in between including
1409 * the first and last pages. This is done in a busy loop so that we
1410 * lose the least number of traces.
1411 * The pages are freed after we restart recording and unlock readers.
1412 */
1413 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1414
83f40318
VN
1415 /*
1416 * tail page might be on reader page, we remove the next page
1417 * from the ring buffer
1418 */
1419 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1420 tail_page = rb_list_head(tail_page->next);
1421 to_remove = tail_page;
1422
1423 /* start of pages to remove */
1424 first_page = list_entry(rb_list_head(to_remove->next),
1425 struct buffer_page, list);
1426
1427 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1428 to_remove = rb_list_head(to_remove)->next;
1429 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1430 }
7a8e76a3 1431
83f40318 1432 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1433
83f40318
VN
1434 /*
1435 * Now we remove all pages between tail_page and next_page.
1436 * Make sure that we have head_bit value preserved for the
1437 * next page
1438 */
1439 tail_page->next = (struct list_head *)((unsigned long)next_page |
1440 head_bit);
1441 next_page = rb_list_head(next_page);
1442 next_page->prev = tail_page;
1443
1444 /* make sure pages points to a valid page in the ring buffer */
1445 cpu_buffer->pages = next_page;
1446
1447 /* update head page */
1448 if (head_bit)
1449 cpu_buffer->head_page = list_entry(next_page,
1450 struct buffer_page, list);
1451
1452 /*
1453 * change read pointer to make sure any read iterators reset
1454 * themselves
1455 */
1456 cpu_buffer->read = 0;
1457
1458 /* pages are removed, resume tracing and then free the pages */
1459 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1460 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1461
1462 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1463
1464 /* last buffer page to remove */
1465 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1466 list);
1467 tmp_iter_page = first_page;
1468
1469 do {
1470 to_remove_page = tmp_iter_page;
1471 rb_inc_page(cpu_buffer, &tmp_iter_page);
1472
1473 /* update the counters */
1474 page_entries = rb_page_entries(to_remove_page);
1475 if (page_entries) {
1476 /*
1477 * If something was added to this page, it was full
1478 * since it is not the tail page. So we deduct the
1479 * bytes consumed in ring buffer from here.
48fdc72f 1480 * Increment overrun to account for the lost events.
83f40318 1481 */
48fdc72f 1482 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1483 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1484 }
1485
1486 /*
1487 * We have already removed references to this list item, just
1488 * free up the buffer_page and its page
1489 */
1490 free_buffer_page(to_remove_page);
1491 nr_removed--;
1492
1493 } while (to_remove_page != last_page);
1494
1495 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1496
1497 return nr_removed == 0;
7a8e76a3
SR
1498}
1499
5040b4b7
VN
1500static int
1501rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1502{
5040b4b7
VN
1503 struct list_head *pages = &cpu_buffer->new_pages;
1504 int retries, success;
7a8e76a3 1505
5389f6fa 1506 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1507 /*
1508 * We are holding the reader lock, so the reader page won't be swapped
1509 * in the ring buffer. Now we are racing with the writer trying to
1510 * move head page and the tail page.
1511 * We are going to adapt the reader page update process where:
1512 * 1. We first splice the start and end of list of new pages between
1513 * the head page and its previous page.
1514 * 2. We cmpxchg the prev_page->next to point from head page to the
1515 * start of new pages list.
1516 * 3. Finally, we update the head->prev to the end of new list.
1517 *
1518 * We will try this process 10 times, to make sure that we don't keep
1519 * spinning.
1520 */
1521 retries = 10;
1522 success = 0;
1523 while (retries--) {
1524 struct list_head *head_page, *prev_page, *r;
1525 struct list_head *last_page, *first_page;
1526 struct list_head *head_page_with_bit;
77ae365e 1527
5040b4b7 1528 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1529 if (!head_page)
1530 break;
5040b4b7
VN
1531 prev_page = head_page->prev;
1532
1533 first_page = pages->next;
1534 last_page = pages->prev;
1535
1536 head_page_with_bit = (struct list_head *)
1537 ((unsigned long)head_page | RB_PAGE_HEAD);
1538
1539 last_page->next = head_page_with_bit;
1540 first_page->prev = prev_page;
1541
1542 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1543
1544 if (r == head_page_with_bit) {
1545 /*
1546 * yay, we replaced the page pointer to our new list,
1547 * now, we just have to update to head page's prev
1548 * pointer to point to end of list
1549 */
1550 head_page->prev = last_page;
1551 success = 1;
1552 break;
1553 }
7a8e76a3 1554 }
7a8e76a3 1555
5040b4b7
VN
1556 if (success)
1557 INIT_LIST_HEAD(pages);
1558 /*
1559 * If we weren't successful in adding in new pages, warn and stop
1560 * tracing
1561 */
1562 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1564
1565 /* free pages if they weren't inserted */
1566 if (!success) {
1567 struct buffer_page *bpage, *tmp;
1568 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1569 list) {
1570 list_del_init(&bpage->list);
1571 free_buffer_page(bpage);
1572 }
1573 }
1574 return success;
7a8e76a3
SR
1575}
1576
83f40318 1577static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1578{
5040b4b7
VN
1579 int success;
1580
438ced17 1581 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1582 success = rb_insert_pages(cpu_buffer);
438ced17 1583 else
5040b4b7
VN
1584 success = rb_remove_pages(cpu_buffer,
1585 -cpu_buffer->nr_pages_to_update);
83f40318 1586
5040b4b7
VN
1587 if (success)
1588 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1589}
1590
1591static void update_pages_handler(struct work_struct *work)
1592{
1593 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1594 struct ring_buffer_per_cpu, update_pages_work);
1595 rb_update_pages(cpu_buffer);
05fdd70d 1596 complete(&cpu_buffer->update_done);
438ced17
VN
1597}
1598
7a8e76a3
SR
1599/**
1600 * ring_buffer_resize - resize the ring buffer
1601 * @buffer: the buffer to resize.
1602 * @size: the new size.
1603 *
7a8e76a3
SR
1604 * Minimum size is 2 * BUF_PAGE_SIZE.
1605 *
83f40318 1606 * Returns 0 on success and < 0 on failure.
7a8e76a3 1607 */
438ced17
VN
1608int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1609 int cpu_id)
7a8e76a3
SR
1610{
1611 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1612 unsigned nr_pages;
83f40318 1613 int cpu, err = 0;
7a8e76a3 1614
ee51a1de
IM
1615 /*
1616 * Always succeed at resizing a non-existent buffer:
1617 */
1618 if (!buffer)
1619 return size;
1620
6a31e1f1
SR
1621 /* Make sure the requested buffer exists */
1622 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1623 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1624 return size;
1625
7a8e76a3
SR
1626 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1627 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1628
1629 /* we need a minimum of two pages */
1630 if (size < BUF_PAGE_SIZE * 2)
1631 size = BUF_PAGE_SIZE * 2;
1632
83f40318 1633 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1634
83f40318
VN
1635 /*
1636 * Don't succeed if resizing is disabled, as a reader might be
1637 * manipulating the ring buffer and is expecting a sane state while
1638 * this is true.
1639 */
1640 if (atomic_read(&buffer->resize_disabled))
1641 return -EBUSY;
18421015 1642
83f40318 1643 /* prevent another thread from changing buffer sizes */
7a8e76a3 1644 mutex_lock(&buffer->mutex);
7a8e76a3 1645
438ced17
VN
1646 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1647 /* calculate the pages to update */
7a8e76a3
SR
1648 for_each_buffer_cpu(buffer, cpu) {
1649 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1650
438ced17
VN
1651 cpu_buffer->nr_pages_to_update = nr_pages -
1652 cpu_buffer->nr_pages;
438ced17
VN
1653 /*
1654 * nothing more to do for removing pages or no update
1655 */
1656 if (cpu_buffer->nr_pages_to_update <= 0)
1657 continue;
d7ec4bfe 1658 /*
438ced17
VN
1659 * to add pages, make sure all new pages can be
1660 * allocated without receiving ENOMEM
d7ec4bfe 1661 */
438ced17
VN
1662 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1663 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1664 &cpu_buffer->new_pages, cpu)) {
438ced17 1665 /* not enough memory for new pages */
83f40318
VN
1666 err = -ENOMEM;
1667 goto out_err;
1668 }
1669 }
1670
1671 get_online_cpus();
1672 /*
1673 * Fire off all the required work handlers
05fdd70d 1674 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1675 * since we can change their buffer sizes without any race.
1676 */
1677 for_each_buffer_cpu(buffer, cpu) {
1678 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1679 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1680 continue;
1681
f5eb5588
SRRH
1682 /* The update must run on the CPU that is being updated. */
1683 preempt_disable();
1684 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1685 rb_update_pages(cpu_buffer);
1686 cpu_buffer->nr_pages_to_update = 0;
1687 } else {
1688 /*
1689 * Can not disable preemption for schedule_work_on()
1690 * on PREEMPT_RT.
1691 */
1692 preempt_enable();
05fdd70d
VN
1693 schedule_work_on(cpu,
1694 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1695 preempt_disable();
1696 }
1697 preempt_enable();
7a8e76a3 1698 }
7a8e76a3 1699
438ced17
VN
1700 /* wait for all the updates to complete */
1701 for_each_buffer_cpu(buffer, cpu) {
1702 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1703 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1704 continue;
1705
05fdd70d
VN
1706 if (cpu_online(cpu))
1707 wait_for_completion(&cpu_buffer->update_done);
83f40318 1708 cpu_buffer->nr_pages_to_update = 0;
438ced17 1709 }
83f40318
VN
1710
1711 put_online_cpus();
438ced17 1712 } else {
8e49f418
VN
1713 /* Make sure this CPU has been intitialized */
1714 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1715 goto out;
1716
438ced17 1717 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1718
438ced17
VN
1719 if (nr_pages == cpu_buffer->nr_pages)
1720 goto out;
7a8e76a3 1721
438ced17
VN
1722 cpu_buffer->nr_pages_to_update = nr_pages -
1723 cpu_buffer->nr_pages;
1724
1725 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1726 if (cpu_buffer->nr_pages_to_update > 0 &&
1727 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1728 &cpu_buffer->new_pages, cpu_id)) {
1729 err = -ENOMEM;
1730 goto out_err;
1731 }
438ced17 1732
83f40318
VN
1733 get_online_cpus();
1734
f5eb5588
SRRH
1735 preempt_disable();
1736 /* The update must run on the CPU that is being updated. */
1737 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1738 rb_update_pages(cpu_buffer);
1739 else {
1740 /*
1741 * Can not disable preemption for schedule_work_on()
1742 * on PREEMPT_RT.
1743 */
1744 preempt_enable();
83f40318
VN
1745 schedule_work_on(cpu_id,
1746 &cpu_buffer->update_pages_work);
05fdd70d 1747 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1748 preempt_disable();
1749 }
1750 preempt_enable();
83f40318 1751
83f40318 1752 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1753 put_online_cpus();
438ced17 1754 }
7a8e76a3
SR
1755
1756 out:
659f451f
SR
1757 /*
1758 * The ring buffer resize can happen with the ring buffer
1759 * enabled, so that the update disturbs the tracing as little
1760 * as possible. But if the buffer is disabled, we do not need
1761 * to worry about that, and we can take the time to verify
1762 * that the buffer is not corrupt.
1763 */
1764 if (atomic_read(&buffer->record_disabled)) {
1765 atomic_inc(&buffer->record_disabled);
1766 /*
1767 * Even though the buffer was disabled, we must make sure
1768 * that it is truly disabled before calling rb_check_pages.
1769 * There could have been a race between checking
1770 * record_disable and incrementing it.
1771 */
1772 synchronize_sched();
1773 for_each_buffer_cpu(buffer, cpu) {
1774 cpu_buffer = buffer->buffers[cpu];
1775 rb_check_pages(cpu_buffer);
1776 }
1777 atomic_dec(&buffer->record_disabled);
1778 }
1779
7a8e76a3 1780 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1781 return size;
1782
83f40318 1783 out_err:
438ced17
VN
1784 for_each_buffer_cpu(buffer, cpu) {
1785 struct buffer_page *bpage, *tmp;
83f40318 1786
438ced17 1787 cpu_buffer = buffer->buffers[cpu];
438ced17 1788 cpu_buffer->nr_pages_to_update = 0;
83f40318 1789
438ced17
VN
1790 if (list_empty(&cpu_buffer->new_pages))
1791 continue;
83f40318 1792
438ced17
VN
1793 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1794 list) {
1795 list_del_init(&bpage->list);
1796 free_buffer_page(bpage);
1797 }
7a8e76a3 1798 }
641d2f63 1799 mutex_unlock(&buffer->mutex);
83f40318 1800 return err;
7a8e76a3 1801}
c4f50183 1802EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1803
750912fa
DS
1804void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1805{
1806 mutex_lock(&buffer->mutex);
1807 if (val)
1808 buffer->flags |= RB_FL_OVERWRITE;
1809 else
1810 buffer->flags &= ~RB_FL_OVERWRITE;
1811 mutex_unlock(&buffer->mutex);
1812}
1813EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1814
8789a9e7 1815static inline void *
044fa782 1816__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1817{
044fa782 1818 return bpage->data + index;
8789a9e7
SR
1819}
1820
044fa782 1821static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1822{
044fa782 1823 return bpage->page->data + index;
7a8e76a3
SR
1824}
1825
1826static inline struct ring_buffer_event *
d769041f 1827rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1828{
6f807acd
SR
1829 return __rb_page_index(cpu_buffer->reader_page,
1830 cpu_buffer->reader_page->read);
1831}
1832
7a8e76a3
SR
1833static inline struct ring_buffer_event *
1834rb_iter_head_event(struct ring_buffer_iter *iter)
1835{
6f807acd 1836 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1837}
1838
bf41a158
SR
1839static inline unsigned rb_page_commit(struct buffer_page *bpage)
1840{
abc9b56d 1841 return local_read(&bpage->page->commit);
bf41a158
SR
1842}
1843
25985edc 1844/* Size is determined by what has been committed */
bf41a158
SR
1845static inline unsigned rb_page_size(struct buffer_page *bpage)
1846{
1847 return rb_page_commit(bpage);
1848}
1849
1850static inline unsigned
1851rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1852{
1853 return rb_page_commit(cpu_buffer->commit_page);
1854}
1855
bf41a158
SR
1856static inline unsigned
1857rb_event_index(struct ring_buffer_event *event)
1858{
1859 unsigned long addr = (unsigned long)event;
1860
22f470f8 1861 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1862}
1863
0f0c85fc 1864static inline int
fa743953
SR
1865rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1866 struct ring_buffer_event *event)
bf41a158
SR
1867{
1868 unsigned long addr = (unsigned long)event;
1869 unsigned long index;
1870
1871 index = rb_event_index(event);
1872 addr &= PAGE_MASK;
1873
1874 return cpu_buffer->commit_page->page == (void *)addr &&
1875 rb_commit_index(cpu_buffer) == index;
1876}
1877
34a148bf 1878static void
bf41a158 1879rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1880{
77ae365e
SR
1881 unsigned long max_count;
1882
bf41a158
SR
1883 /*
1884 * We only race with interrupts and NMIs on this CPU.
1885 * If we own the commit event, then we can commit
1886 * all others that interrupted us, since the interruptions
1887 * are in stack format (they finish before they come
1888 * back to us). This allows us to do a simple loop to
1889 * assign the commit to the tail.
1890 */
a8ccf1d6 1891 again:
438ced17 1892 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1893
bf41a158 1894 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1895 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1896 return;
1897 if (RB_WARN_ON(cpu_buffer,
1898 rb_is_reader_page(cpu_buffer->tail_page)))
1899 return;
1900 local_set(&cpu_buffer->commit_page->page->commit,
1901 rb_page_write(cpu_buffer->commit_page));
bf41a158 1902 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1903 cpu_buffer->write_stamp =
1904 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1905 /* add barrier to keep gcc from optimizing too much */
1906 barrier();
1907 }
1908 while (rb_commit_index(cpu_buffer) !=
1909 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1910
1911 local_set(&cpu_buffer->commit_page->page->commit,
1912 rb_page_write(cpu_buffer->commit_page));
1913 RB_WARN_ON(cpu_buffer,
1914 local_read(&cpu_buffer->commit_page->page->commit) &
1915 ~RB_WRITE_MASK);
bf41a158
SR
1916 barrier();
1917 }
a8ccf1d6
SR
1918
1919 /* again, keep gcc from optimizing */
1920 barrier();
1921
1922 /*
1923 * If an interrupt came in just after the first while loop
1924 * and pushed the tail page forward, we will be left with
1925 * a dangling commit that will never go forward.
1926 */
1927 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1928 goto again;
7a8e76a3
SR
1929}
1930
d769041f 1931static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1932{
abc9b56d 1933 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1934 cpu_buffer->reader_page->read = 0;
d769041f
SR
1935}
1936
34a148bf 1937static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1938{
1939 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1940
1941 /*
1942 * The iterator could be on the reader page (it starts there).
1943 * But the head could have moved, since the reader was
1944 * found. Check for this case and assign the iterator
1945 * to the head page instead of next.
1946 */
1947 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1948 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1949 else
1950 rb_inc_page(cpu_buffer, &iter->head_page);
1951
abc9b56d 1952 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1953 iter->head = 0;
1954}
1955
69d1b839
SR
1956/* Slow path, do not inline */
1957static noinline struct ring_buffer_event *
1958rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1959{
1960 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1961
1962 /* Not the first event on the page? */
1963 if (rb_event_index(event)) {
1964 event->time_delta = delta & TS_MASK;
1965 event->array[0] = delta >> TS_SHIFT;
1966 } else {
1967 /* nope, just zero it */
1968 event->time_delta = 0;
1969 event->array[0] = 0;
1970 }
1971
1972 return skip_time_extend(event);
1973}
1974
7a8e76a3 1975/**
01e3e710 1976 * rb_update_event - update event type and data
7a8e76a3
SR
1977 * @event: the even to update
1978 * @type: the type of event
1979 * @length: the size of the event field in the ring buffer
1980 *
1981 * Update the type and data fields of the event. The length
1982 * is the actual size that is written to the ring buffer,
1983 * and with this, we can determine what to place into the
1984 * data field.
1985 */
34a148bf 1986static void
69d1b839
SR
1987rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1988 struct ring_buffer_event *event, unsigned length,
1989 int add_timestamp, u64 delta)
7a8e76a3 1990{
69d1b839
SR
1991 /* Only a commit updates the timestamp */
1992 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1993 delta = 0;
7a8e76a3 1994
69d1b839
SR
1995 /*
1996 * If we need to add a timestamp, then we
1997 * add it to the start of the resevered space.
1998 */
1999 if (unlikely(add_timestamp)) {
2000 event = rb_add_time_stamp(event, delta);
2001 length -= RB_LEN_TIME_EXTEND;
2002 delta = 0;
7a8e76a3 2003 }
69d1b839
SR
2004
2005 event->time_delta = delta;
2006 length -= RB_EVNT_HDR_SIZE;
2007 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2008 event->type_len = 0;
2009 event->array[0] = length;
2010 } else
2011 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2012}
2013
77ae365e
SR
2014/*
2015 * rb_handle_head_page - writer hit the head page
2016 *
2017 * Returns: +1 to retry page
2018 * 0 to continue
2019 * -1 on error
2020 */
2021static int
2022rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2023 struct buffer_page *tail_page,
2024 struct buffer_page *next_page)
2025{
2026 struct buffer_page *new_head;
2027 int entries;
2028 int type;
2029 int ret;
2030
2031 entries = rb_page_entries(next_page);
2032
2033 /*
2034 * The hard part is here. We need to move the head
2035 * forward, and protect against both readers on
2036 * other CPUs and writers coming in via interrupts.
2037 */
2038 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2039 RB_PAGE_HEAD);
2040
2041 /*
2042 * type can be one of four:
2043 * NORMAL - an interrupt already moved it for us
2044 * HEAD - we are the first to get here.
2045 * UPDATE - we are the interrupt interrupting
2046 * a current move.
2047 * MOVED - a reader on another CPU moved the next
2048 * pointer to its reader page. Give up
2049 * and try again.
2050 */
2051
2052 switch (type) {
2053 case RB_PAGE_HEAD:
2054 /*
2055 * We changed the head to UPDATE, thus
2056 * it is our responsibility to update
2057 * the counters.
2058 */
2059 local_add(entries, &cpu_buffer->overrun);
c64e148a 2060 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2061
2062 /*
2063 * The entries will be zeroed out when we move the
2064 * tail page.
2065 */
2066
2067 /* still more to do */
2068 break;
2069
2070 case RB_PAGE_UPDATE:
2071 /*
2072 * This is an interrupt that interrupt the
2073 * previous update. Still more to do.
2074 */
2075 break;
2076 case RB_PAGE_NORMAL:
2077 /*
2078 * An interrupt came in before the update
2079 * and processed this for us.
2080 * Nothing left to do.
2081 */
2082 return 1;
2083 case RB_PAGE_MOVED:
2084 /*
2085 * The reader is on another CPU and just did
2086 * a swap with our next_page.
2087 * Try again.
2088 */
2089 return 1;
2090 default:
2091 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2092 return -1;
2093 }
2094
2095 /*
2096 * Now that we are here, the old head pointer is
2097 * set to UPDATE. This will keep the reader from
2098 * swapping the head page with the reader page.
2099 * The reader (on another CPU) will spin till
2100 * we are finished.
2101 *
2102 * We just need to protect against interrupts
2103 * doing the job. We will set the next pointer
2104 * to HEAD. After that, we set the old pointer
2105 * to NORMAL, but only if it was HEAD before.
2106 * otherwise we are an interrupt, and only
2107 * want the outer most commit to reset it.
2108 */
2109 new_head = next_page;
2110 rb_inc_page(cpu_buffer, &new_head);
2111
2112 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2113 RB_PAGE_NORMAL);
2114
2115 /*
2116 * Valid returns are:
2117 * HEAD - an interrupt came in and already set it.
2118 * NORMAL - One of two things:
2119 * 1) We really set it.
2120 * 2) A bunch of interrupts came in and moved
2121 * the page forward again.
2122 */
2123 switch (ret) {
2124 case RB_PAGE_HEAD:
2125 case RB_PAGE_NORMAL:
2126 /* OK */
2127 break;
2128 default:
2129 RB_WARN_ON(cpu_buffer, 1);
2130 return -1;
2131 }
2132
2133 /*
2134 * It is possible that an interrupt came in,
2135 * set the head up, then more interrupts came in
2136 * and moved it again. When we get back here,
2137 * the page would have been set to NORMAL but we
2138 * just set it back to HEAD.
2139 *
2140 * How do you detect this? Well, if that happened
2141 * the tail page would have moved.
2142 */
2143 if (ret == RB_PAGE_NORMAL) {
2144 /*
2145 * If the tail had moved passed next, then we need
2146 * to reset the pointer.
2147 */
2148 if (cpu_buffer->tail_page != tail_page &&
2149 cpu_buffer->tail_page != next_page)
2150 rb_head_page_set_normal(cpu_buffer, new_head,
2151 next_page,
2152 RB_PAGE_HEAD);
2153 }
2154
2155 /*
2156 * If this was the outer most commit (the one that
2157 * changed the original pointer from HEAD to UPDATE),
2158 * then it is up to us to reset it to NORMAL.
2159 */
2160 if (type == RB_PAGE_HEAD) {
2161 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2162 tail_page,
2163 RB_PAGE_UPDATE);
2164 if (RB_WARN_ON(cpu_buffer,
2165 ret != RB_PAGE_UPDATE))
2166 return -1;
2167 }
2168
2169 return 0;
2170}
2171
34a148bf 2172static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2173{
2174 struct ring_buffer_event event; /* Used only for sizeof array */
2175
2176 /* zero length can cause confusions */
2177 if (!length)
2178 length = 1;
2179
2271048d 2180 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2181 length += sizeof(event.array[0]);
2182
2183 length += RB_EVNT_HDR_SIZE;
2271048d 2184 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2185
2186 return length;
2187}
2188
c7b09308
SR
2189static inline void
2190rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2191 struct buffer_page *tail_page,
2192 unsigned long tail, unsigned long length)
2193{
2194 struct ring_buffer_event *event;
2195
2196 /*
2197 * Only the event that crossed the page boundary
2198 * must fill the old tail_page with padding.
2199 */
2200 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2201 /*
2202 * If the page was filled, then we still need
2203 * to update the real_end. Reset it to zero
2204 * and the reader will ignore it.
2205 */
2206 if (tail == BUF_PAGE_SIZE)
2207 tail_page->real_end = 0;
2208
c7b09308
SR
2209 local_sub(length, &tail_page->write);
2210 return;
2211 }
2212
2213 event = __rb_page_index(tail_page, tail);
b0b7065b 2214 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2215
c64e148a
VN
2216 /* account for padding bytes */
2217 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2218
ff0ff84a
SR
2219 /*
2220 * Save the original length to the meta data.
2221 * This will be used by the reader to add lost event
2222 * counter.
2223 */
2224 tail_page->real_end = tail;
2225
c7b09308
SR
2226 /*
2227 * If this event is bigger than the minimum size, then
2228 * we need to be careful that we don't subtract the
2229 * write counter enough to allow another writer to slip
2230 * in on this page.
2231 * We put in a discarded commit instead, to make sure
2232 * that this space is not used again.
2233 *
2234 * If we are less than the minimum size, we don't need to
2235 * worry about it.
2236 */
2237 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2238 /* No room for any events */
2239
2240 /* Mark the rest of the page with padding */
2241 rb_event_set_padding(event);
2242
2243 /* Set the write back to the previous setting */
2244 local_sub(length, &tail_page->write);
2245 return;
2246 }
2247
2248 /* Put in a discarded event */
2249 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2250 event->type_len = RINGBUF_TYPE_PADDING;
2251 /* time delta must be non zero */
2252 event->time_delta = 1;
c7b09308
SR
2253
2254 /* Set write to end of buffer */
2255 length = (tail + length) - BUF_PAGE_SIZE;
2256 local_sub(length, &tail_page->write);
2257}
6634ff26 2258
747e94ae
SR
2259/*
2260 * This is the slow path, force gcc not to inline it.
2261 */
2262static noinline struct ring_buffer_event *
6634ff26
SR
2263rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2264 unsigned long length, unsigned long tail,
e8bc43e8 2265 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2266{
5a50e33c 2267 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2268 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2269 struct buffer_page *next_page;
2270 int ret;
aa20ae84
SR
2271
2272 next_page = tail_page;
2273
aa20ae84
SR
2274 rb_inc_page(cpu_buffer, &next_page);
2275
aa20ae84
SR
2276 /*
2277 * If for some reason, we had an interrupt storm that made
2278 * it all the way around the buffer, bail, and warn
2279 * about it.
2280 */
2281 if (unlikely(next_page == commit_page)) {
77ae365e 2282 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2283 goto out_reset;
2284 }
2285
77ae365e
SR
2286 /*
2287 * This is where the fun begins!
2288 *
2289 * We are fighting against races between a reader that
2290 * could be on another CPU trying to swap its reader
2291 * page with the buffer head.
2292 *
2293 * We are also fighting against interrupts coming in and
2294 * moving the head or tail on us as well.
2295 *
2296 * If the next page is the head page then we have filled
2297 * the buffer, unless the commit page is still on the
2298 * reader page.
2299 */
2300 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2301
77ae365e
SR
2302 /*
2303 * If the commit is not on the reader page, then
2304 * move the header page.
2305 */
2306 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2307 /*
2308 * If we are not in overwrite mode,
2309 * this is easy, just stop here.
2310 */
884bfe89
SP
2311 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2312 local_inc(&cpu_buffer->dropped_events);
77ae365e 2313 goto out_reset;
884bfe89 2314 }
77ae365e
SR
2315
2316 ret = rb_handle_head_page(cpu_buffer,
2317 tail_page,
2318 next_page);
2319 if (ret < 0)
2320 goto out_reset;
2321 if (ret)
2322 goto out_again;
2323 } else {
2324 /*
2325 * We need to be careful here too. The
2326 * commit page could still be on the reader
2327 * page. We could have a small buffer, and
2328 * have filled up the buffer with events
2329 * from interrupts and such, and wrapped.
2330 *
2331 * Note, if the tail page is also the on the
2332 * reader_page, we let it move out.
2333 */
2334 if (unlikely((cpu_buffer->commit_page !=
2335 cpu_buffer->tail_page) &&
2336 (cpu_buffer->commit_page ==
2337 cpu_buffer->reader_page))) {
2338 local_inc(&cpu_buffer->commit_overrun);
2339 goto out_reset;
2340 }
aa20ae84
SR
2341 }
2342 }
2343
77ae365e
SR
2344 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2345 if (ret) {
2346 /*
2347 * Nested commits always have zero deltas, so
2348 * just reread the time stamp
2349 */
e8bc43e8
SR
2350 ts = rb_time_stamp(buffer);
2351 next_page->page->time_stamp = ts;
aa20ae84
SR
2352 }
2353
77ae365e 2354 out_again:
aa20ae84 2355
77ae365e 2356 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2357
2358 /* fail and let the caller try again */
2359 return ERR_PTR(-EAGAIN);
2360
45141d46 2361 out_reset:
6f3b3440 2362 /* reset write */
c7b09308 2363 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2364
bf41a158 2365 return NULL;
7a8e76a3
SR
2366}
2367
6634ff26
SR
2368static struct ring_buffer_event *
2369__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2370 unsigned long length, u64 ts,
2371 u64 delta, int add_timestamp)
6634ff26 2372{
5a50e33c 2373 struct buffer_page *tail_page;
6634ff26
SR
2374 struct ring_buffer_event *event;
2375 unsigned long tail, write;
2376
69d1b839
SR
2377 /*
2378 * If the time delta since the last event is too big to
2379 * hold in the time field of the event, then we append a
2380 * TIME EXTEND event ahead of the data event.
2381 */
2382 if (unlikely(add_timestamp))
2383 length += RB_LEN_TIME_EXTEND;
2384
6634ff26
SR
2385 tail_page = cpu_buffer->tail_page;
2386 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2387
2388 /* set write to only the index of the write */
2389 write &= RB_WRITE_MASK;
6634ff26
SR
2390 tail = write - length;
2391
2392 /* See if we shot pass the end of this buffer page */
747e94ae 2393 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2394 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2395 tail_page, ts);
6634ff26
SR
2396
2397 /* We reserved something on the buffer */
2398
6634ff26 2399 event = __rb_page_index(tail_page, tail);
1744a21d 2400 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2401 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2402
69d1b839 2403 local_inc(&tail_page->entries);
6634ff26
SR
2404
2405 /*
fa743953
SR
2406 * If this is the first commit on the page, then update
2407 * its timestamp.
6634ff26 2408 */
fa743953 2409 if (!tail)
e8bc43e8 2410 tail_page->page->time_stamp = ts;
6634ff26 2411
c64e148a
VN
2412 /* account for these added bytes */
2413 local_add(length, &cpu_buffer->entries_bytes);
2414
6634ff26
SR
2415 return event;
2416}
2417
edd813bf
SR
2418static inline int
2419rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2420 struct ring_buffer_event *event)
2421{
2422 unsigned long new_index, old_index;
2423 struct buffer_page *bpage;
2424 unsigned long index;
2425 unsigned long addr;
2426
2427 new_index = rb_event_index(event);
69d1b839 2428 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2429 addr = (unsigned long)event;
2430 addr &= PAGE_MASK;
2431
2432 bpage = cpu_buffer->tail_page;
2433
2434 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2435 unsigned long write_mask =
2436 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2437 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2438 /*
2439 * This is on the tail page. It is possible that
2440 * a write could come in and move the tail page
2441 * and write to the next page. That is fine
2442 * because we just shorten what is on this page.
2443 */
77ae365e
SR
2444 old_index += write_mask;
2445 new_index += write_mask;
edd813bf 2446 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2447 if (index == old_index) {
2448 /* update counters */
2449 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2450 return 1;
c64e148a 2451 }
edd813bf
SR
2452 }
2453
2454 /* could not discard */
2455 return 0;
2456}
2457
fa743953
SR
2458static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2459{
2460 local_inc(&cpu_buffer->committing);
2461 local_inc(&cpu_buffer->commits);
2462}
2463
d9abde21 2464static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2465{
2466 unsigned long commits;
2467
2468 if (RB_WARN_ON(cpu_buffer,
2469 !local_read(&cpu_buffer->committing)))
2470 return;
2471
2472 again:
2473 commits = local_read(&cpu_buffer->commits);
2474 /* synchronize with interrupts */
2475 barrier();
2476 if (local_read(&cpu_buffer->committing) == 1)
2477 rb_set_commit_to_write(cpu_buffer);
2478
2479 local_dec(&cpu_buffer->committing);
2480
2481 /* synchronize with interrupts */
2482 barrier();
2483
2484 /*
2485 * Need to account for interrupts coming in between the
2486 * updating of the commit page and the clearing of the
2487 * committing counter.
2488 */
2489 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2490 !local_read(&cpu_buffer->committing)) {
2491 local_inc(&cpu_buffer->committing);
2492 goto again;
2493 }
2494}
2495
7a8e76a3 2496static struct ring_buffer_event *
62f0b3eb
SR
2497rb_reserve_next_event(struct ring_buffer *buffer,
2498 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2499 unsigned long length)
7a8e76a3
SR
2500{
2501 struct ring_buffer_event *event;
69d1b839 2502 u64 ts, delta;
818e3dd3 2503 int nr_loops = 0;
69d1b839 2504 int add_timestamp;
140ff891 2505 u64 diff;
7a8e76a3 2506
fa743953
SR
2507 rb_start_commit(cpu_buffer);
2508
85bac32c 2509#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2510 /*
2511 * Due to the ability to swap a cpu buffer from a buffer
2512 * it is possible it was swapped before we committed.
2513 * (committing stops a swap). We check for it here and
2514 * if it happened, we have to fail the write.
2515 */
2516 barrier();
2517 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2518 local_dec(&cpu_buffer->committing);
2519 local_dec(&cpu_buffer->commits);
2520 return NULL;
2521 }
85bac32c 2522#endif
62f0b3eb 2523
be957c44 2524 length = rb_calculate_event_length(length);
bf41a158 2525 again:
69d1b839
SR
2526 add_timestamp = 0;
2527 delta = 0;
2528
818e3dd3
SR
2529 /*
2530 * We allow for interrupts to reenter here and do a trace.
2531 * If one does, it will cause this original code to loop
2532 * back here. Even with heavy interrupts happening, this
2533 * should only happen a few times in a row. If this happens
2534 * 1000 times in a row, there must be either an interrupt
2535 * storm or we have something buggy.
2536 * Bail!
2537 */
3e89c7bb 2538 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2539 goto out_fail;
818e3dd3 2540
6d3f1e12 2541 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2542 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2543
140ff891
SR
2544 /* make sure this diff is calculated here */
2545 barrier();
bf41a158 2546
140ff891
SR
2547 /* Did the write stamp get updated already? */
2548 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2549 delta = diff;
2550 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2551 int local_clock_stable = 1;
2552#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2553 local_clock_stable = sched_clock_stable;
2554#endif
69d1b839 2555 WARN_ONCE(delta > (1ULL << 59),
31274d72 2556 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2557 (unsigned long long)delta,
2558 (unsigned long long)ts,
31274d72
JO
2559 (unsigned long long)cpu_buffer->write_stamp,
2560 local_clock_stable ? "" :
2561 "If you just came from a suspend/resume,\n"
2562 "please switch to the trace global clock:\n"
2563 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2564 add_timestamp = 1;
7a8e76a3 2565 }
168b6b1d 2566 }
7a8e76a3 2567
69d1b839
SR
2568 event = __rb_reserve_next(cpu_buffer, length, ts,
2569 delta, add_timestamp);
168b6b1d 2570 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2571 goto again;
2572
fa743953
SR
2573 if (!event)
2574 goto out_fail;
7a8e76a3 2575
7a8e76a3 2576 return event;
fa743953
SR
2577
2578 out_fail:
2579 rb_end_commit(cpu_buffer);
2580 return NULL;
7a8e76a3
SR
2581}
2582
1155de47
PM
2583#ifdef CONFIG_TRACING
2584
567cd4da
SR
2585/*
2586 * The lock and unlock are done within a preempt disable section.
2587 * The current_context per_cpu variable can only be modified
2588 * by the current task between lock and unlock. But it can
2589 * be modified more than once via an interrupt. To pass this
2590 * information from the lock to the unlock without having to
2591 * access the 'in_interrupt()' functions again (which do show
2592 * a bit of overhead in something as critical as function tracing,
2593 * we use a bitmask trick.
2594 *
2595 * bit 0 = NMI context
2596 * bit 1 = IRQ context
2597 * bit 2 = SoftIRQ context
2598 * bit 3 = normal context.
2599 *
2600 * This works because this is the order of contexts that can
2601 * preempt other contexts. A SoftIRQ never preempts an IRQ
2602 * context.
2603 *
2604 * When the context is determined, the corresponding bit is
2605 * checked and set (if it was set, then a recursion of that context
2606 * happened).
2607 *
2608 * On unlock, we need to clear this bit. To do so, just subtract
2609 * 1 from the current_context and AND it to itself.
2610 *
2611 * (binary)
2612 * 101 - 1 = 100
2613 * 101 & 100 = 100 (clearing bit zero)
2614 *
2615 * 1010 - 1 = 1001
2616 * 1010 & 1001 = 1000 (clearing bit 1)
2617 *
2618 * The least significant bit can be cleared this way, and it
2619 * just so happens that it is the same bit corresponding to
2620 * the current context.
2621 */
2622static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2623
567cd4da 2624static __always_inline int trace_recursive_lock(void)
261842b7 2625{
567cd4da
SR
2626 unsigned int val = this_cpu_read(current_context);
2627 int bit;
d9abde21 2628
567cd4da
SR
2629 if (in_interrupt()) {
2630 if (in_nmi())
2631 bit = 0;
2632 else if (in_irq())
2633 bit = 1;
2634 else
2635 bit = 2;
2636 } else
2637 bit = 3;
d9abde21 2638
567cd4da
SR
2639 if (unlikely(val & (1 << bit)))
2640 return 1;
d9abde21 2641
567cd4da
SR
2642 val |= (1 << bit);
2643 this_cpu_write(current_context, val);
d9abde21 2644
567cd4da 2645 return 0;
261842b7
SR
2646}
2647
567cd4da 2648static __always_inline void trace_recursive_unlock(void)
261842b7 2649{
567cd4da 2650 unsigned int val = this_cpu_read(current_context);
261842b7 2651
567cd4da
SR
2652 val--;
2653 val &= this_cpu_read(current_context);
2654 this_cpu_write(current_context, val);
261842b7
SR
2655}
2656
1155de47
PM
2657#else
2658
2659#define trace_recursive_lock() (0)
2660#define trace_recursive_unlock() do { } while (0)
2661
2662#endif
2663
7a8e76a3
SR
2664/**
2665 * ring_buffer_lock_reserve - reserve a part of the buffer
2666 * @buffer: the ring buffer to reserve from
2667 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2668 *
2669 * Returns a reseverd event on the ring buffer to copy directly to.
2670 * The user of this interface will need to get the body to write into
2671 * and can use the ring_buffer_event_data() interface.
2672 *
2673 * The length is the length of the data needed, not the event length
2674 * which also includes the event header.
2675 *
2676 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2677 * If NULL is returned, then nothing has been allocated or locked.
2678 */
2679struct ring_buffer_event *
0a987751 2680ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2681{
2682 struct ring_buffer_per_cpu *cpu_buffer;
2683 struct ring_buffer_event *event;
5168ae50 2684 int cpu;
7a8e76a3 2685
033601a3 2686 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2687 return NULL;
2688
bf41a158 2689 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2690 preempt_disable_notrace();
bf41a158 2691
52fbe9cd
LJ
2692 if (atomic_read(&buffer->record_disabled))
2693 goto out_nocheck;
2694
261842b7
SR
2695 if (trace_recursive_lock())
2696 goto out_nocheck;
2697
7a8e76a3
SR
2698 cpu = raw_smp_processor_id();
2699
9e01c1b7 2700 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2701 goto out;
7a8e76a3
SR
2702
2703 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2704
2705 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2706 goto out;
7a8e76a3 2707
be957c44 2708 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2709 goto out;
7a8e76a3 2710
62f0b3eb 2711 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2712 if (!event)
d769041f 2713 goto out;
7a8e76a3
SR
2714
2715 return event;
2716
d769041f 2717 out:
261842b7
SR
2718 trace_recursive_unlock();
2719
2720 out_nocheck:
5168ae50 2721 preempt_enable_notrace();
7a8e76a3
SR
2722 return NULL;
2723}
c4f50183 2724EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2725
a1863c21
SR
2726static void
2727rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2728 struct ring_buffer_event *event)
2729{
69d1b839
SR
2730 u64 delta;
2731
fa743953
SR
2732 /*
2733 * The event first in the commit queue updates the
2734 * time stamp.
2735 */
69d1b839
SR
2736 if (rb_event_is_commit(cpu_buffer, event)) {
2737 /*
2738 * A commit event that is first on a page
2739 * updates the write timestamp with the page stamp
2740 */
2741 if (!rb_event_index(event))
2742 cpu_buffer->write_stamp =
2743 cpu_buffer->commit_page->page->time_stamp;
2744 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2745 delta = event->array[0];
2746 delta <<= TS_SHIFT;
2747 delta += event->time_delta;
2748 cpu_buffer->write_stamp += delta;
2749 } else
2750 cpu_buffer->write_stamp += event->time_delta;
2751 }
a1863c21 2752}
bf41a158 2753
a1863c21
SR
2754static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2755 struct ring_buffer_event *event)
2756{
2757 local_inc(&cpu_buffer->entries);
2758 rb_update_write_stamp(cpu_buffer, event);
fa743953 2759 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2760}
2761
15693458
SRRH
2762static __always_inline void
2763rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2764{
2765 if (buffer->irq_work.waiters_pending) {
2766 buffer->irq_work.waiters_pending = false;
2767 /* irq_work_queue() supplies it's own memory barriers */
2768 irq_work_queue(&buffer->irq_work.work);
2769 }
2770
2771 if (cpu_buffer->irq_work.waiters_pending) {
2772 cpu_buffer->irq_work.waiters_pending = false;
2773 /* irq_work_queue() supplies it's own memory barriers */
2774 irq_work_queue(&cpu_buffer->irq_work.work);
2775 }
2776}
2777
7a8e76a3
SR
2778/**
2779 * ring_buffer_unlock_commit - commit a reserved
2780 * @buffer: The buffer to commit to
2781 * @event: The event pointer to commit.
7a8e76a3
SR
2782 *
2783 * This commits the data to the ring buffer, and releases any locks held.
2784 *
2785 * Must be paired with ring_buffer_lock_reserve.
2786 */
2787int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2788 struct ring_buffer_event *event)
7a8e76a3
SR
2789{
2790 struct ring_buffer_per_cpu *cpu_buffer;
2791 int cpu = raw_smp_processor_id();
2792
2793 cpu_buffer = buffer->buffers[cpu];
2794
7a8e76a3
SR
2795 rb_commit(cpu_buffer, event);
2796
15693458
SRRH
2797 rb_wakeups(buffer, cpu_buffer);
2798
261842b7
SR
2799 trace_recursive_unlock();
2800
5168ae50 2801 preempt_enable_notrace();
7a8e76a3
SR
2802
2803 return 0;
2804}
c4f50183 2805EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2806
f3b9aae1
FW
2807static inline void rb_event_discard(struct ring_buffer_event *event)
2808{
69d1b839
SR
2809 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2810 event = skip_time_extend(event);
2811
334d4169
LJ
2812 /* array[0] holds the actual length for the discarded event */
2813 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2814 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2815 /* time delta must be non zero */
2816 if (!event->time_delta)
2817 event->time_delta = 1;
2818}
2819
a1863c21
SR
2820/*
2821 * Decrement the entries to the page that an event is on.
2822 * The event does not even need to exist, only the pointer
2823 * to the page it is on. This may only be called before the commit
2824 * takes place.
2825 */
2826static inline void
2827rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2828 struct ring_buffer_event *event)
2829{
2830 unsigned long addr = (unsigned long)event;
2831 struct buffer_page *bpage = cpu_buffer->commit_page;
2832 struct buffer_page *start;
2833
2834 addr &= PAGE_MASK;
2835
2836 /* Do the likely case first */
2837 if (likely(bpage->page == (void *)addr)) {
2838 local_dec(&bpage->entries);
2839 return;
2840 }
2841
2842 /*
2843 * Because the commit page may be on the reader page we
2844 * start with the next page and check the end loop there.
2845 */
2846 rb_inc_page(cpu_buffer, &bpage);
2847 start = bpage;
2848 do {
2849 if (bpage->page == (void *)addr) {
2850 local_dec(&bpage->entries);
2851 return;
2852 }
2853 rb_inc_page(cpu_buffer, &bpage);
2854 } while (bpage != start);
2855
2856 /* commit not part of this buffer?? */
2857 RB_WARN_ON(cpu_buffer, 1);
2858}
2859
fa1b47dd
SR
2860/**
2861 * ring_buffer_commit_discard - discard an event that has not been committed
2862 * @buffer: the ring buffer
2863 * @event: non committed event to discard
2864 *
dc892f73
SR
2865 * Sometimes an event that is in the ring buffer needs to be ignored.
2866 * This function lets the user discard an event in the ring buffer
2867 * and then that event will not be read later.
2868 *
2869 * This function only works if it is called before the the item has been
2870 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2871 * if another event has not been added behind it.
2872 *
2873 * If another event has been added behind it, it will set the event
2874 * up as discarded, and perform the commit.
2875 *
2876 * If this function is called, do not call ring_buffer_unlock_commit on
2877 * the event.
2878 */
2879void ring_buffer_discard_commit(struct ring_buffer *buffer,
2880 struct ring_buffer_event *event)
2881{
2882 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2883 int cpu;
2884
2885 /* The event is discarded regardless */
f3b9aae1 2886 rb_event_discard(event);
fa1b47dd 2887
fa743953
SR
2888 cpu = smp_processor_id();
2889 cpu_buffer = buffer->buffers[cpu];
2890
fa1b47dd
SR
2891 /*
2892 * This must only be called if the event has not been
2893 * committed yet. Thus we can assume that preemption
2894 * is still disabled.
2895 */
fa743953 2896 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2897
a1863c21 2898 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2899 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2900 goto out;
fa1b47dd
SR
2901
2902 /*
2903 * The commit is still visible by the reader, so we
a1863c21 2904 * must still update the timestamp.
fa1b47dd 2905 */
a1863c21 2906 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2907 out:
fa743953 2908 rb_end_commit(cpu_buffer);
fa1b47dd 2909
f3b9aae1
FW
2910 trace_recursive_unlock();
2911
5168ae50 2912 preempt_enable_notrace();
fa1b47dd
SR
2913
2914}
2915EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2916
7a8e76a3
SR
2917/**
2918 * ring_buffer_write - write data to the buffer without reserving
2919 * @buffer: The ring buffer to write to.
2920 * @length: The length of the data being written (excluding the event header)
2921 * @data: The data to write to the buffer.
2922 *
2923 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2924 * one function. If you already have the data to write to the buffer, it
2925 * may be easier to simply call this function.
2926 *
2927 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2928 * and not the length of the event which would hold the header.
2929 */
2930int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2931 unsigned long length,
2932 void *data)
7a8e76a3
SR
2933{
2934 struct ring_buffer_per_cpu *cpu_buffer;
2935 struct ring_buffer_event *event;
7a8e76a3
SR
2936 void *body;
2937 int ret = -EBUSY;
5168ae50 2938 int cpu;
7a8e76a3 2939
033601a3 2940 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2941 return -EBUSY;
2942
5168ae50 2943 preempt_disable_notrace();
bf41a158 2944
52fbe9cd
LJ
2945 if (atomic_read(&buffer->record_disabled))
2946 goto out;
2947
7a8e76a3
SR
2948 cpu = raw_smp_processor_id();
2949
9e01c1b7 2950 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2951 goto out;
7a8e76a3
SR
2952
2953 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2954
2955 if (atomic_read(&cpu_buffer->record_disabled))
2956 goto out;
2957
be957c44
SR
2958 if (length > BUF_MAX_DATA_SIZE)
2959 goto out;
2960
62f0b3eb 2961 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2962 if (!event)
2963 goto out;
2964
2965 body = rb_event_data(event);
2966
2967 memcpy(body, data, length);
2968
2969 rb_commit(cpu_buffer, event);
2970
15693458
SRRH
2971 rb_wakeups(buffer, cpu_buffer);
2972
7a8e76a3
SR
2973 ret = 0;
2974 out:
5168ae50 2975 preempt_enable_notrace();
7a8e76a3
SR
2976
2977 return ret;
2978}
c4f50183 2979EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2980
34a148bf 2981static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2982{
2983 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2984 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2985 struct buffer_page *commit = cpu_buffer->commit_page;
2986
77ae365e
SR
2987 /* In case of error, head will be NULL */
2988 if (unlikely(!head))
2989 return 1;
2990
bf41a158
SR
2991 return reader->read == rb_page_commit(reader) &&
2992 (commit == reader ||
2993 (commit == head &&
2994 head->read == rb_page_commit(commit)));
2995}
2996
7a8e76a3
SR
2997/**
2998 * ring_buffer_record_disable - stop all writes into the buffer
2999 * @buffer: The ring buffer to stop writes to.
3000 *
3001 * This prevents all writes to the buffer. Any attempt to write
3002 * to the buffer after this will fail and return NULL.
3003 *
3004 * The caller should call synchronize_sched() after this.
3005 */
3006void ring_buffer_record_disable(struct ring_buffer *buffer)
3007{
3008 atomic_inc(&buffer->record_disabled);
3009}
c4f50183 3010EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3011
3012/**
3013 * ring_buffer_record_enable - enable writes to the buffer
3014 * @buffer: The ring buffer to enable writes
3015 *
3016 * Note, multiple disables will need the same number of enables
c41b20e7 3017 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3018 */
3019void ring_buffer_record_enable(struct ring_buffer *buffer)
3020{
3021 atomic_dec(&buffer->record_disabled);
3022}
c4f50183 3023EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3024
499e5470
SR
3025/**
3026 * ring_buffer_record_off - stop all writes into the buffer
3027 * @buffer: The ring buffer to stop writes to.
3028 *
3029 * This prevents all writes to the buffer. Any attempt to write
3030 * to the buffer after this will fail and return NULL.
3031 *
3032 * This is different than ring_buffer_record_disable() as
87abb3b1 3033 * it works like an on/off switch, where as the disable() version
499e5470
SR
3034 * must be paired with a enable().
3035 */
3036void ring_buffer_record_off(struct ring_buffer *buffer)
3037{
3038 unsigned int rd;
3039 unsigned int new_rd;
3040
3041 do {
3042 rd = atomic_read(&buffer->record_disabled);
3043 new_rd = rd | RB_BUFFER_OFF;
3044 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3045}
3046EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3047
3048/**
3049 * ring_buffer_record_on - restart writes into the buffer
3050 * @buffer: The ring buffer to start writes to.
3051 *
3052 * This enables all writes to the buffer that was disabled by
3053 * ring_buffer_record_off().
3054 *
3055 * This is different than ring_buffer_record_enable() as
87abb3b1 3056 * it works like an on/off switch, where as the enable() version
499e5470
SR
3057 * must be paired with a disable().
3058 */
3059void ring_buffer_record_on(struct ring_buffer *buffer)
3060{
3061 unsigned int rd;
3062 unsigned int new_rd;
3063
3064 do {
3065 rd = atomic_read(&buffer->record_disabled);
3066 new_rd = rd & ~RB_BUFFER_OFF;
3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068}
3069EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3070
3071/**
3072 * ring_buffer_record_is_on - return true if the ring buffer can write
3073 * @buffer: The ring buffer to see if write is enabled
3074 *
3075 * Returns true if the ring buffer is in a state that it accepts writes.
3076 */
3077int ring_buffer_record_is_on(struct ring_buffer *buffer)
3078{
3079 return !atomic_read(&buffer->record_disabled);
3080}
3081
7a8e76a3
SR
3082/**
3083 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3084 * @buffer: The ring buffer to stop writes to.
3085 * @cpu: The CPU buffer to stop
3086 *
3087 * This prevents all writes to the buffer. Any attempt to write
3088 * to the buffer after this will fail and return NULL.
3089 *
3090 * The caller should call synchronize_sched() after this.
3091 */
3092void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3093{
3094 struct ring_buffer_per_cpu *cpu_buffer;
3095
9e01c1b7 3096 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3097 return;
7a8e76a3
SR
3098
3099 cpu_buffer = buffer->buffers[cpu];
3100 atomic_inc(&cpu_buffer->record_disabled);
3101}
c4f50183 3102EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3103
3104/**
3105 * ring_buffer_record_enable_cpu - enable writes to the buffer
3106 * @buffer: The ring buffer to enable writes
3107 * @cpu: The CPU to enable.
3108 *
3109 * Note, multiple disables will need the same number of enables
c41b20e7 3110 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3111 */
3112void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3113{
3114 struct ring_buffer_per_cpu *cpu_buffer;
3115
9e01c1b7 3116 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3117 return;
7a8e76a3
SR
3118
3119 cpu_buffer = buffer->buffers[cpu];
3120 atomic_dec(&cpu_buffer->record_disabled);
3121}
c4f50183 3122EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3123
f6195aa0
SR
3124/*
3125 * The total entries in the ring buffer is the running counter
3126 * of entries entered into the ring buffer, minus the sum of
3127 * the entries read from the ring buffer and the number of
3128 * entries that were overwritten.
3129 */
3130static inline unsigned long
3131rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3132{
3133 return local_read(&cpu_buffer->entries) -
3134 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3135}
3136
c64e148a
VN
3137/**
3138 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3139 * @buffer: The ring buffer
3140 * @cpu: The per CPU buffer to read from.
3141 */
50ecf2c3 3142u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3143{
3144 unsigned long flags;
3145 struct ring_buffer_per_cpu *cpu_buffer;
3146 struct buffer_page *bpage;
da830e58 3147 u64 ret = 0;
c64e148a
VN
3148
3149 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150 return 0;
3151
3152 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3153 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3154 /*
3155 * if the tail is on reader_page, oldest time stamp is on the reader
3156 * page
3157 */
3158 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3159 bpage = cpu_buffer->reader_page;
3160 else
3161 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3162 if (bpage)
3163 ret = bpage->page->time_stamp;
7115e3fc 3164 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3165
3166 return ret;
3167}
3168EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3169
3170/**
3171 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3172 * @buffer: The ring buffer
3173 * @cpu: The per CPU buffer to read from.
3174 */
3175unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3176{
3177 struct ring_buffer_per_cpu *cpu_buffer;
3178 unsigned long ret;
3179
3180 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3181 return 0;
3182
3183 cpu_buffer = buffer->buffers[cpu];
3184 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3185
3186 return ret;
3187}
3188EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3189
7a8e76a3
SR
3190/**
3191 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to get the entries from.
3194 */
3195unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3196{
3197 struct ring_buffer_per_cpu *cpu_buffer;
3198
9e01c1b7 3199 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3200 return 0;
7a8e76a3
SR
3201
3202 cpu_buffer = buffer->buffers[cpu];
554f786e 3203
f6195aa0 3204 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3205}
c4f50183 3206EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3207
3208/**
884bfe89
SP
3209 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3210 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3211 * @buffer: The ring buffer
3212 * @cpu: The per CPU buffer to get the number of overruns from
3213 */
3214unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3215{
3216 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3217 unsigned long ret;
7a8e76a3 3218
9e01c1b7 3219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3220 return 0;
7a8e76a3
SR
3221
3222 cpu_buffer = buffer->buffers[cpu];
77ae365e 3223 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3224
3225 return ret;
7a8e76a3 3226}
c4f50183 3227EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3228
f0d2c681 3229/**
884bfe89
SP
3230 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3231 * commits failing due to the buffer wrapping around while there are uncommitted
3232 * events, such as during an interrupt storm.
f0d2c681
SR
3233 * @buffer: The ring buffer
3234 * @cpu: The per CPU buffer to get the number of overruns from
3235 */
3236unsigned long
3237ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238{
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 unsigned long ret;
3241
3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 return 0;
3244
3245 cpu_buffer = buffer->buffers[cpu];
77ae365e 3246 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3247
3248 return ret;
3249}
3250EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3251
884bfe89
SP
3252/**
3253 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3254 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the number of overruns from
3257 */
3258unsigned long
3259ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3260{
3261 struct ring_buffer_per_cpu *cpu_buffer;
3262 unsigned long ret;
3263
3264 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265 return 0;
3266
3267 cpu_buffer = buffer->buffers[cpu];
3268 ret = local_read(&cpu_buffer->dropped_events);
3269
3270 return ret;
3271}
3272EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3273
ad964704
SRRH
3274/**
3275 * ring_buffer_read_events_cpu - get the number of events successfully read
3276 * @buffer: The ring buffer
3277 * @cpu: The per CPU buffer to get the number of events read
3278 */
3279unsigned long
3280ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3281{
3282 struct ring_buffer_per_cpu *cpu_buffer;
3283
3284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3285 return 0;
3286
3287 cpu_buffer = buffer->buffers[cpu];
3288 return cpu_buffer->read;
3289}
3290EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3291
7a8e76a3
SR
3292/**
3293 * ring_buffer_entries - get the number of entries in a buffer
3294 * @buffer: The ring buffer
3295 *
3296 * Returns the total number of entries in the ring buffer
3297 * (all CPU entries)
3298 */
3299unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3300{
3301 struct ring_buffer_per_cpu *cpu_buffer;
3302 unsigned long entries = 0;
3303 int cpu;
3304
3305 /* if you care about this being correct, lock the buffer */
3306 for_each_buffer_cpu(buffer, cpu) {
3307 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3308 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3309 }
3310
3311 return entries;
3312}
c4f50183 3313EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3314
3315/**
67b394f7 3316 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3317 * @buffer: The ring buffer
3318 *
3319 * Returns the total number of overruns in the ring buffer
3320 * (all CPU entries)
3321 */
3322unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3323{
3324 struct ring_buffer_per_cpu *cpu_buffer;
3325 unsigned long overruns = 0;
3326 int cpu;
3327
3328 /* if you care about this being correct, lock the buffer */
3329 for_each_buffer_cpu(buffer, cpu) {
3330 cpu_buffer = buffer->buffers[cpu];
77ae365e 3331 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3332 }
3333
3334 return overruns;
3335}
c4f50183 3336EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3337
642edba5 3338static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3339{
3340 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3341
d769041f
SR
3342 /* Iterator usage is expected to have record disabled */
3343 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3344 iter->head_page = rb_set_head_page(cpu_buffer);
3345 if (unlikely(!iter->head_page))
3346 return;
3347 iter->head = iter->head_page->read;
d769041f
SR
3348 } else {
3349 iter->head_page = cpu_buffer->reader_page;
6f807acd 3350 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3351 }
3352 if (iter->head)
3353 iter->read_stamp = cpu_buffer->read_stamp;
3354 else
abc9b56d 3355 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3356 iter->cache_reader_page = cpu_buffer->reader_page;
3357 iter->cache_read = cpu_buffer->read;
642edba5 3358}
f83c9d0f 3359
642edba5
SR
3360/**
3361 * ring_buffer_iter_reset - reset an iterator
3362 * @iter: The iterator to reset
3363 *
3364 * Resets the iterator, so that it will start from the beginning
3365 * again.
3366 */
3367void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3368{
554f786e 3369 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3370 unsigned long flags;
3371
554f786e
SR
3372 if (!iter)
3373 return;
3374
3375 cpu_buffer = iter->cpu_buffer;
3376
5389f6fa 3377 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3378 rb_iter_reset(iter);
5389f6fa 3379 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3380}
c4f50183 3381EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3382
3383/**
3384 * ring_buffer_iter_empty - check if an iterator has no more to read
3385 * @iter: The iterator to check
3386 */
3387int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3388{
3389 struct ring_buffer_per_cpu *cpu_buffer;
3390
3391 cpu_buffer = iter->cpu_buffer;
3392
bf41a158
SR
3393 return iter->head_page == cpu_buffer->commit_page &&
3394 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3395}
c4f50183 3396EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3397
3398static void
3399rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3400 struct ring_buffer_event *event)
3401{
3402 u64 delta;
3403
334d4169 3404 switch (event->type_len) {
7a8e76a3
SR
3405 case RINGBUF_TYPE_PADDING:
3406 return;
3407
3408 case RINGBUF_TYPE_TIME_EXTEND:
3409 delta = event->array[0];
3410 delta <<= TS_SHIFT;
3411 delta += event->time_delta;
3412 cpu_buffer->read_stamp += delta;
3413 return;
3414
3415 case RINGBUF_TYPE_TIME_STAMP:
3416 /* FIXME: not implemented */
3417 return;
3418
3419 case RINGBUF_TYPE_DATA:
3420 cpu_buffer->read_stamp += event->time_delta;
3421 return;
3422
3423 default:
3424 BUG();
3425 }
3426 return;
3427}
3428
3429static void
3430rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3431 struct ring_buffer_event *event)
3432{
3433 u64 delta;
3434
334d4169 3435 switch (event->type_len) {
7a8e76a3
SR
3436 case RINGBUF_TYPE_PADDING:
3437 return;
3438
3439 case RINGBUF_TYPE_TIME_EXTEND:
3440 delta = event->array[0];
3441 delta <<= TS_SHIFT;
3442 delta += event->time_delta;
3443 iter->read_stamp += delta;
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_STAMP:
3447 /* FIXME: not implemented */
3448 return;
3449
3450 case RINGBUF_TYPE_DATA:
3451 iter->read_stamp += event->time_delta;
3452 return;
3453
3454 default:
3455 BUG();
3456 }
3457 return;
3458}
3459
d769041f
SR
3460static struct buffer_page *
3461rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3462{
d769041f 3463 struct buffer_page *reader = NULL;
66a8cb95 3464 unsigned long overwrite;
d769041f 3465 unsigned long flags;
818e3dd3 3466 int nr_loops = 0;
77ae365e 3467 int ret;
d769041f 3468
3e03fb7f 3469 local_irq_save(flags);
0199c4e6 3470 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3471
3472 again:
818e3dd3
SR
3473 /*
3474 * This should normally only loop twice. But because the
3475 * start of the reader inserts an empty page, it causes
3476 * a case where we will loop three times. There should be no
3477 * reason to loop four times (that I know of).
3478 */
3e89c7bb 3479 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3480 reader = NULL;
3481 goto out;
3482 }
3483
d769041f
SR
3484 reader = cpu_buffer->reader_page;
3485
3486 /* If there's more to read, return this page */
bf41a158 3487 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3488 goto out;
3489
3490 /* Never should we have an index greater than the size */
3e89c7bb
SR
3491 if (RB_WARN_ON(cpu_buffer,
3492 cpu_buffer->reader_page->read > rb_page_size(reader)))
3493 goto out;
d769041f
SR
3494
3495 /* check if we caught up to the tail */
3496 reader = NULL;
bf41a158 3497 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3498 goto out;
7a8e76a3 3499
a5fb8331
SR
3500 /* Don't bother swapping if the ring buffer is empty */
3501 if (rb_num_of_entries(cpu_buffer) == 0)
3502 goto out;
3503
7a8e76a3 3504 /*
d769041f 3505 * Reset the reader page to size zero.
7a8e76a3 3506 */
77ae365e
SR
3507 local_set(&cpu_buffer->reader_page->write, 0);
3508 local_set(&cpu_buffer->reader_page->entries, 0);
3509 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3510 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3511
77ae365e
SR
3512 spin:
3513 /*
3514 * Splice the empty reader page into the list around the head.
3515 */
3516 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3517 if (!reader)
3518 goto out;
0e1ff5d7 3519 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3520 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3521
3adc54fa
SR
3522 /*
3523 * cpu_buffer->pages just needs to point to the buffer, it
3524 * has no specific buffer page to point to. Lets move it out
25985edc 3525 * of our way so we don't accidentally swap it.
3adc54fa
SR
3526 */
3527 cpu_buffer->pages = reader->list.prev;
3528
77ae365e
SR
3529 /* The reader page will be pointing to the new head */
3530 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3531
66a8cb95
SR
3532 /*
3533 * We want to make sure we read the overruns after we set up our
3534 * pointers to the next object. The writer side does a
3535 * cmpxchg to cross pages which acts as the mb on the writer
3536 * side. Note, the reader will constantly fail the swap
3537 * while the writer is updating the pointers, so this
3538 * guarantees that the overwrite recorded here is the one we
3539 * want to compare with the last_overrun.
3540 */
3541 smp_mb();
3542 overwrite = local_read(&(cpu_buffer->overrun));
3543
77ae365e
SR
3544 /*
3545 * Here's the tricky part.
3546 *
3547 * We need to move the pointer past the header page.
3548 * But we can only do that if a writer is not currently
3549 * moving it. The page before the header page has the
3550 * flag bit '1' set if it is pointing to the page we want.
3551 * but if the writer is in the process of moving it
3552 * than it will be '2' or already moved '0'.
3553 */
3554
3555 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3556
3557 /*
77ae365e 3558 * If we did not convert it, then we must try again.
7a8e76a3 3559 */
77ae365e
SR
3560 if (!ret)
3561 goto spin;
7a8e76a3 3562
77ae365e
SR
3563 /*
3564 * Yeah! We succeeded in replacing the page.
3565 *
3566 * Now make the new head point back to the reader page.
3567 */
5ded3dc6 3568 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3569 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3570
3571 /* Finally update the reader page to the new head */
3572 cpu_buffer->reader_page = reader;
3573 rb_reset_reader_page(cpu_buffer);
3574
66a8cb95
SR
3575 if (overwrite != cpu_buffer->last_overrun) {
3576 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3577 cpu_buffer->last_overrun = overwrite;
3578 }
3579
d769041f
SR
3580 goto again;
3581
3582 out:
0199c4e6 3583 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3584 local_irq_restore(flags);
d769041f
SR
3585
3586 return reader;
3587}
3588
3589static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3590{
3591 struct ring_buffer_event *event;
3592 struct buffer_page *reader;
3593 unsigned length;
3594
3595 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3596
d769041f 3597 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3598 if (RB_WARN_ON(cpu_buffer, !reader))
3599 return;
7a8e76a3 3600
d769041f
SR
3601 event = rb_reader_event(cpu_buffer);
3602
a1863c21 3603 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3604 cpu_buffer->read++;
d769041f
SR
3605
3606 rb_update_read_stamp(cpu_buffer, event);
3607
3608 length = rb_event_length(event);
6f807acd 3609 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3610}
3611
3612static void rb_advance_iter(struct ring_buffer_iter *iter)
3613{
7a8e76a3
SR
3614 struct ring_buffer_per_cpu *cpu_buffer;
3615 struct ring_buffer_event *event;
3616 unsigned length;
3617
3618 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3619
3620 /*
3621 * Check if we are at the end of the buffer.
3622 */
bf41a158 3623 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3624 /* discarded commits can make the page empty */
3625 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3626 return;
d769041f 3627 rb_inc_iter(iter);
7a8e76a3
SR
3628 return;
3629 }
3630
3631 event = rb_iter_head_event(iter);
3632
3633 length = rb_event_length(event);
3634
3635 /*
3636 * This should not be called to advance the header if we are
3637 * at the tail of the buffer.
3638 */
3e89c7bb 3639 if (RB_WARN_ON(cpu_buffer,
f536aafc 3640 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3641 (iter->head + length > rb_commit_index(cpu_buffer))))
3642 return;
7a8e76a3
SR
3643
3644 rb_update_iter_read_stamp(iter, event);
3645
3646 iter->head += length;
3647
3648 /* check for end of page padding */
bf41a158
SR
3649 if ((iter->head >= rb_page_size(iter->head_page)) &&
3650 (iter->head_page != cpu_buffer->commit_page))
771e0384 3651 rb_inc_iter(iter);
7a8e76a3
SR
3652}
3653
66a8cb95
SR
3654static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3655{
3656 return cpu_buffer->lost_events;
3657}
3658
f83c9d0f 3659static struct ring_buffer_event *
66a8cb95
SR
3660rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3661 unsigned long *lost_events)
7a8e76a3 3662{
7a8e76a3 3663 struct ring_buffer_event *event;
d769041f 3664 struct buffer_page *reader;
818e3dd3 3665 int nr_loops = 0;
7a8e76a3 3666
7a8e76a3 3667 again:
818e3dd3 3668 /*
69d1b839
SR
3669 * We repeat when a time extend is encountered.
3670 * Since the time extend is always attached to a data event,
3671 * we should never loop more than once.
3672 * (We never hit the following condition more than twice).
818e3dd3 3673 */
69d1b839 3674 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3675 return NULL;
818e3dd3 3676
d769041f
SR
3677 reader = rb_get_reader_page(cpu_buffer);
3678 if (!reader)
7a8e76a3
SR
3679 return NULL;
3680
d769041f 3681 event = rb_reader_event(cpu_buffer);
7a8e76a3 3682
334d4169 3683 switch (event->type_len) {
7a8e76a3 3684 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3685 if (rb_null_event(event))
3686 RB_WARN_ON(cpu_buffer, 1);
3687 /*
3688 * Because the writer could be discarding every
3689 * event it creates (which would probably be bad)
3690 * if we were to go back to "again" then we may never
3691 * catch up, and will trigger the warn on, or lock
3692 * the box. Return the padding, and we will release
3693 * the current locks, and try again.
3694 */
2d622719 3695 return event;
7a8e76a3
SR
3696
3697 case RINGBUF_TYPE_TIME_EXTEND:
3698 /* Internal data, OK to advance */
d769041f 3699 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3700 goto again;
3701
3702 case RINGBUF_TYPE_TIME_STAMP:
3703 /* FIXME: not implemented */
d769041f 3704 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3705 goto again;
3706
3707 case RINGBUF_TYPE_DATA:
3708 if (ts) {
3709 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3710 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3711 cpu_buffer->cpu, ts);
7a8e76a3 3712 }
66a8cb95
SR
3713 if (lost_events)
3714 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3715 return event;
3716
3717 default:
3718 BUG();
3719 }
3720
3721 return NULL;
3722}
c4f50183 3723EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3724
f83c9d0f
SR
3725static struct ring_buffer_event *
3726rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3727{
3728 struct ring_buffer *buffer;
3729 struct ring_buffer_per_cpu *cpu_buffer;
3730 struct ring_buffer_event *event;
818e3dd3 3731 int nr_loops = 0;
7a8e76a3 3732
7a8e76a3
SR
3733 cpu_buffer = iter->cpu_buffer;
3734 buffer = cpu_buffer->buffer;
3735
492a74f4
SR
3736 /*
3737 * Check if someone performed a consuming read to
3738 * the buffer. A consuming read invalidates the iterator
3739 * and we need to reset the iterator in this case.
3740 */
3741 if (unlikely(iter->cache_read != cpu_buffer->read ||
3742 iter->cache_reader_page != cpu_buffer->reader_page))
3743 rb_iter_reset(iter);
3744
7a8e76a3 3745 again:
3c05d748
SR
3746 if (ring_buffer_iter_empty(iter))
3747 return NULL;
3748
818e3dd3 3749 /*
69d1b839
SR
3750 * We repeat when a time extend is encountered.
3751 * Since the time extend is always attached to a data event,
3752 * we should never loop more than once.
3753 * (We never hit the following condition more than twice).
818e3dd3 3754 */
69d1b839 3755 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3756 return NULL;
818e3dd3 3757
7a8e76a3
SR
3758 if (rb_per_cpu_empty(cpu_buffer))
3759 return NULL;
3760
3c05d748
SR
3761 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3762 rb_inc_iter(iter);
3763 goto again;
3764 }
3765
7a8e76a3
SR
3766 event = rb_iter_head_event(iter);
3767
334d4169 3768 switch (event->type_len) {
7a8e76a3 3769 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3770 if (rb_null_event(event)) {
3771 rb_inc_iter(iter);
3772 goto again;
3773 }
3774 rb_advance_iter(iter);
3775 return event;
7a8e76a3
SR
3776
3777 case RINGBUF_TYPE_TIME_EXTEND:
3778 /* Internal data, OK to advance */
3779 rb_advance_iter(iter);
3780 goto again;
3781
3782 case RINGBUF_TYPE_TIME_STAMP:
3783 /* FIXME: not implemented */
3784 rb_advance_iter(iter);
3785 goto again;
3786
3787 case RINGBUF_TYPE_DATA:
3788 if (ts) {
3789 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3790 ring_buffer_normalize_time_stamp(buffer,
3791 cpu_buffer->cpu, ts);
7a8e76a3
SR
3792 }
3793 return event;
3794
3795 default:
3796 BUG();
3797 }
3798
3799 return NULL;
3800}
c4f50183 3801EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3802
8d707e8e
SR
3803static inline int rb_ok_to_lock(void)
3804{
3805 /*
3806 * If an NMI die dumps out the content of the ring buffer
3807 * do not grab locks. We also permanently disable the ring
3808 * buffer too. A one time deal is all you get from reading
3809 * the ring buffer from an NMI.
3810 */
464e85eb 3811 if (likely(!in_nmi()))
8d707e8e
SR
3812 return 1;
3813
3814 tracing_off_permanent();
3815 return 0;
3816}
3817
f83c9d0f
SR
3818/**
3819 * ring_buffer_peek - peek at the next event to be read
3820 * @buffer: The ring buffer to read
3821 * @cpu: The cpu to peak at
3822 * @ts: The timestamp counter of this event.
66a8cb95 3823 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3824 *
3825 * This will return the event that will be read next, but does
3826 * not consume the data.
3827 */
3828struct ring_buffer_event *
66a8cb95
SR
3829ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3830 unsigned long *lost_events)
f83c9d0f
SR
3831{
3832 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3833 struct ring_buffer_event *event;
f83c9d0f 3834 unsigned long flags;
8d707e8e 3835 int dolock;
f83c9d0f 3836
554f786e 3837 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3838 return NULL;
554f786e 3839
8d707e8e 3840 dolock = rb_ok_to_lock();
2d622719 3841 again:
8d707e8e
SR
3842 local_irq_save(flags);
3843 if (dolock)
5389f6fa 3844 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3845 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3846 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3847 rb_advance_reader(cpu_buffer);
8d707e8e 3848 if (dolock)
5389f6fa 3849 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3850 local_irq_restore(flags);
f83c9d0f 3851
1b959e18 3852 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3853 goto again;
2d622719 3854
f83c9d0f
SR
3855 return event;
3856}
3857
3858/**
3859 * ring_buffer_iter_peek - peek at the next event to be read
3860 * @iter: The ring buffer iterator
3861 * @ts: The timestamp counter of this event.
3862 *
3863 * This will return the event that will be read next, but does
3864 * not increment the iterator.
3865 */
3866struct ring_buffer_event *
3867ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3868{
3869 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3870 struct ring_buffer_event *event;
3871 unsigned long flags;
3872
2d622719 3873 again:
5389f6fa 3874 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3875 event = rb_iter_peek(iter, ts);
5389f6fa 3876 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3877
1b959e18 3878 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3879 goto again;
2d622719 3880
f83c9d0f
SR
3881 return event;
3882}
3883
7a8e76a3
SR
3884/**
3885 * ring_buffer_consume - return an event and consume it
3886 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3887 * @cpu: the cpu to read the buffer from
3888 * @ts: a variable to store the timestamp (may be NULL)
3889 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3890 *
3891 * Returns the next event in the ring buffer, and that event is consumed.
3892 * Meaning, that sequential reads will keep returning a different event,
3893 * and eventually empty the ring buffer if the producer is slower.
3894 */
3895struct ring_buffer_event *
66a8cb95
SR
3896ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3897 unsigned long *lost_events)
7a8e76a3 3898{
554f786e
SR
3899 struct ring_buffer_per_cpu *cpu_buffer;
3900 struct ring_buffer_event *event = NULL;
f83c9d0f 3901 unsigned long flags;
8d707e8e
SR
3902 int dolock;
3903
3904 dolock = rb_ok_to_lock();
7a8e76a3 3905
2d622719 3906 again:
554f786e
SR
3907 /* might be called in atomic */
3908 preempt_disable();
3909
9e01c1b7 3910 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3911 goto out;
7a8e76a3 3912
554f786e 3913 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3914 local_irq_save(flags);
3915 if (dolock)
5389f6fa 3916 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3917
66a8cb95
SR
3918 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3919 if (event) {
3920 cpu_buffer->lost_events = 0;
469535a5 3921 rb_advance_reader(cpu_buffer);
66a8cb95 3922 }
7a8e76a3 3923
8d707e8e 3924 if (dolock)
5389f6fa 3925 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3926 local_irq_restore(flags);
f83c9d0f 3927
554f786e
SR
3928 out:
3929 preempt_enable();
3930
1b959e18 3931 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3932 goto again;
2d622719 3933
7a8e76a3
SR
3934 return event;
3935}
c4f50183 3936EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3937
3938/**
72c9ddfd 3939 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3940 * @buffer: The ring buffer to read from
3941 * @cpu: The cpu buffer to iterate over
3942 *
72c9ddfd
DM
3943 * This performs the initial preparations necessary to iterate
3944 * through the buffer. Memory is allocated, buffer recording
3945 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3946 *
72c9ddfd
DM
3947 * Disabling buffer recordng prevents the reading from being
3948 * corrupted. This is not a consuming read, so a producer is not
3949 * expected.
3950 *
3951 * After a sequence of ring_buffer_read_prepare calls, the user is
3952 * expected to make at least one call to ring_buffer_prepare_sync.
3953 * Afterwards, ring_buffer_read_start is invoked to get things going
3954 * for real.
3955 *
3956 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3957 */
3958struct ring_buffer_iter *
72c9ddfd 3959ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3960{
3961 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3962 struct ring_buffer_iter *iter;
7a8e76a3 3963
9e01c1b7 3964 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3965 return NULL;
7a8e76a3
SR
3966
3967 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3968 if (!iter)
8aabee57 3969 return NULL;
7a8e76a3
SR
3970
3971 cpu_buffer = buffer->buffers[cpu];
3972
3973 iter->cpu_buffer = cpu_buffer;
3974
83f40318 3975 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3976 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3977
3978 return iter;
3979}
3980EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3981
3982/**
3983 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3984 *
3985 * All previously invoked ring_buffer_read_prepare calls to prepare
3986 * iterators will be synchronized. Afterwards, read_buffer_read_start
3987 * calls on those iterators are allowed.
3988 */
3989void
3990ring_buffer_read_prepare_sync(void)
3991{
7a8e76a3 3992 synchronize_sched();
72c9ddfd
DM
3993}
3994EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3995
3996/**
3997 * ring_buffer_read_start - start a non consuming read of the buffer
3998 * @iter: The iterator returned by ring_buffer_read_prepare
3999 *
4000 * This finalizes the startup of an iteration through the buffer.
4001 * The iterator comes from a call to ring_buffer_read_prepare and
4002 * an intervening ring_buffer_read_prepare_sync must have been
4003 * performed.
4004 *
4005 * Must be paired with ring_buffer_finish.
4006 */
4007void
4008ring_buffer_read_start(struct ring_buffer_iter *iter)
4009{
4010 struct ring_buffer_per_cpu *cpu_buffer;
4011 unsigned long flags;
4012
4013 if (!iter)
4014 return;
4015
4016 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4017
5389f6fa 4018 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4019 arch_spin_lock(&cpu_buffer->lock);
642edba5 4020 rb_iter_reset(iter);
0199c4e6 4021 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4022 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4023}
c4f50183 4024EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4025
4026/**
4027 * ring_buffer_finish - finish reading the iterator of the buffer
4028 * @iter: The iterator retrieved by ring_buffer_start
4029 *
4030 * This re-enables the recording to the buffer, and frees the
4031 * iterator.
4032 */
4033void
4034ring_buffer_read_finish(struct ring_buffer_iter *iter)
4035{
4036 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4037 unsigned long flags;
7a8e76a3 4038
659f451f
SR
4039 /*
4040 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4041 * to check the integrity of the ring buffer.
4042 * Must prevent readers from trying to read, as the check
4043 * clears the HEAD page and readers require it.
659f451f 4044 */
9366c1ba 4045 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4046 rb_check_pages(cpu_buffer);
9366c1ba 4047 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4048
7a8e76a3 4049 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4050 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4051 kfree(iter);
4052}
c4f50183 4053EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4054
4055/**
4056 * ring_buffer_read - read the next item in the ring buffer by the iterator
4057 * @iter: The ring buffer iterator
4058 * @ts: The time stamp of the event read.
4059 *
4060 * This reads the next event in the ring buffer and increments the iterator.
4061 */
4062struct ring_buffer_event *
4063ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4064{
4065 struct ring_buffer_event *event;
f83c9d0f
SR
4066 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4067 unsigned long flags;
7a8e76a3 4068
5389f6fa 4069 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4070 again:
f83c9d0f 4071 event = rb_iter_peek(iter, ts);
7a8e76a3 4072 if (!event)
f83c9d0f 4073 goto out;
7a8e76a3 4074
7e9391cf
SR
4075 if (event->type_len == RINGBUF_TYPE_PADDING)
4076 goto again;
4077
7a8e76a3 4078 rb_advance_iter(iter);
f83c9d0f 4079 out:
5389f6fa 4080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4081
4082 return event;
4083}
c4f50183 4084EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4085
4086/**
4087 * ring_buffer_size - return the size of the ring buffer (in bytes)
4088 * @buffer: The ring buffer.
4089 */
438ced17 4090unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4091{
438ced17
VN
4092 /*
4093 * Earlier, this method returned
4094 * BUF_PAGE_SIZE * buffer->nr_pages
4095 * Since the nr_pages field is now removed, we have converted this to
4096 * return the per cpu buffer value.
4097 */
4098 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4099 return 0;
4100
4101 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4102}
c4f50183 4103EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4104
4105static void
4106rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4107{
77ae365e
SR
4108 rb_head_page_deactivate(cpu_buffer);
4109
7a8e76a3 4110 cpu_buffer->head_page
3adc54fa 4111 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4112 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4113 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4114 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4115
6f807acd 4116 cpu_buffer->head_page->read = 0;
bf41a158
SR
4117
4118 cpu_buffer->tail_page = cpu_buffer->head_page;
4119 cpu_buffer->commit_page = cpu_buffer->head_page;
4120
4121 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4122 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4123 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4124 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4125 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4126 cpu_buffer->reader_page->read = 0;
7a8e76a3 4127
c64e148a 4128 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4129 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4130 local_set(&cpu_buffer->commit_overrun, 0);
4131 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4132 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4133 local_set(&cpu_buffer->committing, 0);
4134 local_set(&cpu_buffer->commits, 0);
77ae365e 4135 cpu_buffer->read = 0;
c64e148a 4136 cpu_buffer->read_bytes = 0;
69507c06
SR
4137
4138 cpu_buffer->write_stamp = 0;
4139 cpu_buffer->read_stamp = 0;
77ae365e 4140
66a8cb95
SR
4141 cpu_buffer->lost_events = 0;
4142 cpu_buffer->last_overrun = 0;
4143
77ae365e 4144 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4145}
4146
4147/**
4148 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4149 * @buffer: The ring buffer to reset a per cpu buffer of
4150 * @cpu: The CPU buffer to be reset
4151 */
4152void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4153{
4154 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4155 unsigned long flags;
4156
9e01c1b7 4157 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4158 return;
7a8e76a3 4159
83f40318 4160 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4161 atomic_inc(&cpu_buffer->record_disabled);
4162
83f40318
VN
4163 /* Make sure all commits have finished */
4164 synchronize_sched();
4165
5389f6fa 4166 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4167
41b6a95d
SR
4168 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4169 goto out;
4170
0199c4e6 4171 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4172
4173 rb_reset_cpu(cpu_buffer);
4174
0199c4e6 4175 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4176
41b6a95d 4177 out:
5389f6fa 4178 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4179
4180 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4181 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4182}
c4f50183 4183EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4184
4185/**
4186 * ring_buffer_reset - reset a ring buffer
4187 * @buffer: The ring buffer to reset all cpu buffers
4188 */
4189void ring_buffer_reset(struct ring_buffer *buffer)
4190{
7a8e76a3
SR
4191 int cpu;
4192
7a8e76a3 4193 for_each_buffer_cpu(buffer, cpu)
d769041f 4194 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4195}
c4f50183 4196EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4197
4198/**
4199 * rind_buffer_empty - is the ring buffer empty?
4200 * @buffer: The ring buffer to test
4201 */
4202int ring_buffer_empty(struct ring_buffer *buffer)
4203{
4204 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4205 unsigned long flags;
8d707e8e 4206 int dolock;
7a8e76a3 4207 int cpu;
d4788207 4208 int ret;
7a8e76a3 4209
8d707e8e 4210 dolock = rb_ok_to_lock();
7a8e76a3
SR
4211
4212 /* yes this is racy, but if you don't like the race, lock the buffer */
4213 for_each_buffer_cpu(buffer, cpu) {
4214 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4215 local_irq_save(flags);
4216 if (dolock)
5389f6fa 4217 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4218 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4219 if (dolock)
5389f6fa 4220 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4221 local_irq_restore(flags);
4222
d4788207 4223 if (!ret)
7a8e76a3
SR
4224 return 0;
4225 }
554f786e 4226
7a8e76a3
SR
4227 return 1;
4228}
c4f50183 4229EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4230
4231/**
4232 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4233 * @buffer: The ring buffer
4234 * @cpu: The CPU buffer to test
4235 */
4236int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4237{
4238 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4239 unsigned long flags;
8d707e8e 4240 int dolock;
8aabee57 4241 int ret;
7a8e76a3 4242
9e01c1b7 4243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4244 return 1;
7a8e76a3 4245
8d707e8e
SR
4246 dolock = rb_ok_to_lock();
4247
7a8e76a3 4248 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4249 local_irq_save(flags);
4250 if (dolock)
5389f6fa 4251 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4252 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4253 if (dolock)
5389f6fa 4254 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4255 local_irq_restore(flags);
554f786e
SR
4256
4257 return ret;
7a8e76a3 4258}
c4f50183 4259EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4260
85bac32c 4261#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4262/**
4263 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4264 * @buffer_a: One buffer to swap with
4265 * @buffer_b: The other buffer to swap with
4266 *
4267 * This function is useful for tracers that want to take a "snapshot"
4268 * of a CPU buffer and has another back up buffer lying around.
4269 * it is expected that the tracer handles the cpu buffer not being
4270 * used at the moment.
4271 */
4272int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4273 struct ring_buffer *buffer_b, int cpu)
4274{
4275 struct ring_buffer_per_cpu *cpu_buffer_a;
4276 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4277 int ret = -EINVAL;
4278
9e01c1b7
RR
4279 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4280 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4281 goto out;
7a8e76a3 4282
438ced17
VN
4283 cpu_buffer_a = buffer_a->buffers[cpu];
4284 cpu_buffer_b = buffer_b->buffers[cpu];
4285
7a8e76a3 4286 /* At least make sure the two buffers are somewhat the same */
438ced17 4287 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4288 goto out;
4289
4290 ret = -EAGAIN;
7a8e76a3 4291
97b17efe 4292 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4293 goto out;
97b17efe
SR
4294
4295 if (atomic_read(&buffer_a->record_disabled))
554f786e 4296 goto out;
97b17efe
SR
4297
4298 if (atomic_read(&buffer_b->record_disabled))
554f786e 4299 goto out;
97b17efe 4300
97b17efe 4301 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4302 goto out;
97b17efe
SR
4303
4304 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4305 goto out;
97b17efe 4306
7a8e76a3
SR
4307 /*
4308 * We can't do a synchronize_sched here because this
4309 * function can be called in atomic context.
4310 * Normally this will be called from the same CPU as cpu.
4311 * If not it's up to the caller to protect this.
4312 */
4313 atomic_inc(&cpu_buffer_a->record_disabled);
4314 atomic_inc(&cpu_buffer_b->record_disabled);
4315
98277991
SR
4316 ret = -EBUSY;
4317 if (local_read(&cpu_buffer_a->committing))
4318 goto out_dec;
4319 if (local_read(&cpu_buffer_b->committing))
4320 goto out_dec;
4321
7a8e76a3
SR
4322 buffer_a->buffers[cpu] = cpu_buffer_b;
4323 buffer_b->buffers[cpu] = cpu_buffer_a;
4324
4325 cpu_buffer_b->buffer = buffer_a;
4326 cpu_buffer_a->buffer = buffer_b;
4327
98277991
SR
4328 ret = 0;
4329
4330out_dec:
7a8e76a3
SR
4331 atomic_dec(&cpu_buffer_a->record_disabled);
4332 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4333out:
554f786e 4334 return ret;
7a8e76a3 4335}
c4f50183 4336EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4337#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4338
8789a9e7
SR
4339/**
4340 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4341 * @buffer: the buffer to allocate for.
4342 *
4343 * This function is used in conjunction with ring_buffer_read_page.
4344 * When reading a full page from the ring buffer, these functions
4345 * can be used to speed up the process. The calling function should
4346 * allocate a few pages first with this function. Then when it
4347 * needs to get pages from the ring buffer, it passes the result
4348 * of this function into ring_buffer_read_page, which will swap
4349 * the page that was allocated, with the read page of the buffer.
4350 *
4351 * Returns:
4352 * The page allocated, or NULL on error.
4353 */
7ea59064 4354void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4355{
044fa782 4356 struct buffer_data_page *bpage;
7ea59064 4357 struct page *page;
8789a9e7 4358
d7ec4bfe
VN
4359 page = alloc_pages_node(cpu_to_node(cpu),
4360 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4361 if (!page)
8789a9e7
SR
4362 return NULL;
4363
7ea59064 4364 bpage = page_address(page);
8789a9e7 4365
ef7a4a16
SR
4366 rb_init_page(bpage);
4367
044fa782 4368 return bpage;
8789a9e7 4369}
d6ce96da 4370EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4371
4372/**
4373 * ring_buffer_free_read_page - free an allocated read page
4374 * @buffer: the buffer the page was allocate for
4375 * @data: the page to free
4376 *
4377 * Free a page allocated from ring_buffer_alloc_read_page.
4378 */
4379void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4380{
4381 free_page((unsigned long)data);
4382}
d6ce96da 4383EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4384
4385/**
4386 * ring_buffer_read_page - extract a page from the ring buffer
4387 * @buffer: buffer to extract from
4388 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4389 * @len: amount to extract
8789a9e7
SR
4390 * @cpu: the cpu of the buffer to extract
4391 * @full: should the extraction only happen when the page is full.
4392 *
4393 * This function will pull out a page from the ring buffer and consume it.
4394 * @data_page must be the address of the variable that was returned
4395 * from ring_buffer_alloc_read_page. This is because the page might be used
4396 * to swap with a page in the ring buffer.
4397 *
4398 * for example:
b85fa01e 4399 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4400 * if (!rpage)
4401 * return error;
ef7a4a16 4402 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4403 * if (ret >= 0)
4404 * process_page(rpage, ret);
8789a9e7
SR
4405 *
4406 * When @full is set, the function will not return true unless
4407 * the writer is off the reader page.
4408 *
4409 * Note: it is up to the calling functions to handle sleeps and wakeups.
4410 * The ring buffer can be used anywhere in the kernel and can not
4411 * blindly call wake_up. The layer that uses the ring buffer must be
4412 * responsible for that.
4413 *
4414 * Returns:
667d2412
LJ
4415 * >=0 if data has been transferred, returns the offset of consumed data.
4416 * <0 if no data has been transferred.
8789a9e7
SR
4417 */
4418int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4419 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4420{
4421 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4422 struct ring_buffer_event *event;
044fa782 4423 struct buffer_data_page *bpage;
ef7a4a16 4424 struct buffer_page *reader;
ff0ff84a 4425 unsigned long missed_events;
8789a9e7 4426 unsigned long flags;
ef7a4a16 4427 unsigned int commit;
667d2412 4428 unsigned int read;
4f3640f8 4429 u64 save_timestamp;
667d2412 4430 int ret = -1;
8789a9e7 4431
554f786e
SR
4432 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4433 goto out;
4434
474d32b6
SR
4435 /*
4436 * If len is not big enough to hold the page header, then
4437 * we can not copy anything.
4438 */
4439 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4440 goto out;
474d32b6
SR
4441
4442 len -= BUF_PAGE_HDR_SIZE;
4443
8789a9e7 4444 if (!data_page)
554f786e 4445 goto out;
8789a9e7 4446
044fa782
SR
4447 bpage = *data_page;
4448 if (!bpage)
554f786e 4449 goto out;
8789a9e7 4450
5389f6fa 4451 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4452
ef7a4a16
SR
4453 reader = rb_get_reader_page(cpu_buffer);
4454 if (!reader)
554f786e 4455 goto out_unlock;
8789a9e7 4456
ef7a4a16
SR
4457 event = rb_reader_event(cpu_buffer);
4458
4459 read = reader->read;
4460 commit = rb_page_commit(reader);
667d2412 4461
66a8cb95 4462 /* Check if any events were dropped */
ff0ff84a 4463 missed_events = cpu_buffer->lost_events;
66a8cb95 4464
8789a9e7 4465 /*
474d32b6
SR
4466 * If this page has been partially read or
4467 * if len is not big enough to read the rest of the page or
4468 * a writer is still on the page, then
4469 * we must copy the data from the page to the buffer.
4470 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4471 */
474d32b6 4472 if (read || (len < (commit - read)) ||
ef7a4a16 4473 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4474 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4475 unsigned int rpos = read;
4476 unsigned int pos = 0;
ef7a4a16 4477 unsigned int size;
8789a9e7
SR
4478
4479 if (full)
554f786e 4480 goto out_unlock;
8789a9e7 4481
ef7a4a16
SR
4482 if (len > (commit - read))
4483 len = (commit - read);
4484
69d1b839
SR
4485 /* Always keep the time extend and data together */
4486 size = rb_event_ts_length(event);
ef7a4a16
SR
4487
4488 if (len < size)
554f786e 4489 goto out_unlock;
ef7a4a16 4490
4f3640f8
SR
4491 /* save the current timestamp, since the user will need it */
4492 save_timestamp = cpu_buffer->read_stamp;
4493
ef7a4a16
SR
4494 /* Need to copy one event at a time */
4495 do {
e1e35927
DS
4496 /* We need the size of one event, because
4497 * rb_advance_reader only advances by one event,
4498 * whereas rb_event_ts_length may include the size of
4499 * one or two events.
4500 * We have already ensured there's enough space if this
4501 * is a time extend. */
4502 size = rb_event_length(event);
474d32b6 4503 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4504
4505 len -= size;
4506
4507 rb_advance_reader(cpu_buffer);
474d32b6
SR
4508 rpos = reader->read;
4509 pos += size;
ef7a4a16 4510
18fab912
HY
4511 if (rpos >= commit)
4512 break;
4513
ef7a4a16 4514 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4515 /* Always keep the time extend and data together */
4516 size = rb_event_ts_length(event);
e1e35927 4517 } while (len >= size);
667d2412
LJ
4518
4519 /* update bpage */
ef7a4a16 4520 local_set(&bpage->commit, pos);
4f3640f8 4521 bpage->time_stamp = save_timestamp;
ef7a4a16 4522
474d32b6
SR
4523 /* we copied everything to the beginning */
4524 read = 0;
8789a9e7 4525 } else {
afbab76a 4526 /* update the entry counter */
77ae365e 4527 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4528 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4529
8789a9e7 4530 /* swap the pages */
044fa782 4531 rb_init_page(bpage);
ef7a4a16
SR
4532 bpage = reader->page;
4533 reader->page = *data_page;
4534 local_set(&reader->write, 0);
778c55d4 4535 local_set(&reader->entries, 0);
ef7a4a16 4536 reader->read = 0;
044fa782 4537 *data_page = bpage;
ff0ff84a
SR
4538
4539 /*
4540 * Use the real_end for the data size,
4541 * This gives us a chance to store the lost events
4542 * on the page.
4543 */
4544 if (reader->real_end)
4545 local_set(&bpage->commit, reader->real_end);
8789a9e7 4546 }
667d2412 4547 ret = read;
8789a9e7 4548
66a8cb95 4549 cpu_buffer->lost_events = 0;
2711ca23
SR
4550
4551 commit = local_read(&bpage->commit);
66a8cb95
SR
4552 /*
4553 * Set a flag in the commit field if we lost events
4554 */
ff0ff84a 4555 if (missed_events) {
ff0ff84a
SR
4556 /* If there is room at the end of the page to save the
4557 * missed events, then record it there.
4558 */
4559 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4560 memcpy(&bpage->data[commit], &missed_events,
4561 sizeof(missed_events));
4562 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4563 commit += sizeof(missed_events);
ff0ff84a 4564 }
66a8cb95 4565 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4566 }
66a8cb95 4567
2711ca23
SR
4568 /*
4569 * This page may be off to user land. Zero it out here.
4570 */
4571 if (commit < BUF_PAGE_SIZE)
4572 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4573
554f786e 4574 out_unlock:
5389f6fa 4575 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4576
554f786e 4577 out:
8789a9e7
SR
4578 return ret;
4579}
d6ce96da 4580EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4581
59222efe 4582#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4583static int rb_cpu_notify(struct notifier_block *self,
4584 unsigned long action, void *hcpu)
554f786e
SR
4585{
4586 struct ring_buffer *buffer =
4587 container_of(self, struct ring_buffer, cpu_notify);
4588 long cpu = (long)hcpu;
438ced17
VN
4589 int cpu_i, nr_pages_same;
4590 unsigned int nr_pages;
554f786e
SR
4591
4592 switch (action) {
4593 case CPU_UP_PREPARE:
4594 case CPU_UP_PREPARE_FROZEN:
3f237a79 4595 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4596 return NOTIFY_OK;
4597
438ced17
VN
4598 nr_pages = 0;
4599 nr_pages_same = 1;
4600 /* check if all cpu sizes are same */
4601 for_each_buffer_cpu(buffer, cpu_i) {
4602 /* fill in the size from first enabled cpu */
4603 if (nr_pages == 0)
4604 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4605 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4606 nr_pages_same = 0;
4607 break;
4608 }
4609 }
4610 /* allocate minimum pages, user can later expand it */
4611 if (!nr_pages_same)
4612 nr_pages = 2;
554f786e 4613 buffer->buffers[cpu] =
438ced17 4614 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4615 if (!buffer->buffers[cpu]) {
4616 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4617 cpu);
4618 return NOTIFY_OK;
4619 }
4620 smp_wmb();
3f237a79 4621 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4622 break;
4623 case CPU_DOWN_PREPARE:
4624 case CPU_DOWN_PREPARE_FROZEN:
4625 /*
4626 * Do nothing.
4627 * If we were to free the buffer, then the user would
4628 * lose any trace that was in the buffer.
4629 */
4630 break;
4631 default:
4632 break;
4633 }
4634 return NOTIFY_OK;
4635}
4636#endif
This page took 0.490677 seconds and 5 git commands to generate.