tracing: Don't make assumptions about length of string on task rename
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
34a148bf 248static void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
abc9b56d 283struct buffer_data_page {
e4c2ce82 284 u64 time_stamp; /* page time stamp */
c3706f00 285 local_t commit; /* write committed index */
649508f6 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
287};
288
77ae365e
SR
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
abc9b56d 297struct buffer_page {
778c55d4 298 struct list_head list; /* list of buffer pages */
abc9b56d 299 local_t write; /* index for next write */
6f807acd 300 unsigned read; /* index for next read */
778c55d4 301 local_t entries; /* entries on this page */
ff0ff84a 302 unsigned long real_end; /* real end of data */
abc9b56d 303 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
304};
305
77ae365e
SR
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
044fa782 321static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 322{
044fa782 323 local_set(&bpage->commit, 0);
abc9b56d
SR
324}
325
474d32b6
SR
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
ef7a4a16
SR
332size_t ring_buffer_page_len(void *page)
333{
474d32b6
SR
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
336}
337
ed56829c
SR
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
34a148bf 342static void free_buffer_page(struct buffer_page *bpage)
ed56829c 343{
34a148bf 344 free_page((unsigned long)bpage->page);
e4c2ce82 345 kfree(bpage);
ed56829c
SR
346}
347
7a8e76a3
SR
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
474d32b6 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 359
be957c44
SR
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
d1b182a8
SR
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
c0cd93aa
SRRH
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
d1b182a8
SR
391}
392
15693458
SRRH
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
1e0d6714 396 wait_queue_head_t full_waiters;
15693458 397 bool waiters_pending;
1e0d6714
SRRH
398 bool full_waiters_pending;
399 bool wakeup_full;
15693458
SRRH
400};
401
fcc742ea
SRRH
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
a497adb4
SRRH
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
7a8e76a3
SR
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
985023de 435 atomic_t record_disabled;
7a8e76a3 436 struct ring_buffer *buffer;
5389f6fa 437 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 438 arch_spinlock_t lock;
7a8e76a3 439 struct lock_class_key lock_key;
438ced17 440 unsigned int nr_pages;
58a09ec6 441 unsigned int current_context;
3adc54fa 442 struct list_head *pages;
6f807acd
SR
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
c3706f00 445 struct buffer_page *commit_page; /* committed pages */
d769041f 446 struct buffer_page *reader_page;
66a8cb95
SR
447 unsigned long lost_events;
448 unsigned long last_overrun;
c64e148a 449 local_t entries_bytes;
e4906eff 450 local_t entries;
884bfe89
SP
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
fa743953
SR
454 local_t committing;
455 local_t commits;
77ae365e 456 unsigned long read;
c64e148a 457 unsigned long read_bytes;
7a8e76a3
SR
458 u64 write_stamp;
459 u64 read_stamp;
438ced17
VN
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
83f40318 463 struct work_struct update_pages_work;
05fdd70d 464 struct completion update_done;
15693458
SRRH
465
466 struct rb_irq_work irq_work;
7a8e76a3
SR
467};
468
469struct ring_buffer {
7a8e76a3
SR
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
83f40318 473 atomic_t resize_disabled;
00f62f61 474 cpumask_var_t cpumask;
7a8e76a3 475
1f8a6a10
PZ
476 struct lock_class_key *reader_lock_key;
477
7a8e76a3
SR
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
554f786e 481
59222efe 482#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
483 struct notifier_block cpu_notify;
484#endif
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832static int rb_is_reader_page(struct buffer_page *page)
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010{
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
1039 if (tail_page == cpu_buffer->tail_page) {
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
da706d8b
LJ
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1053 */
da706d8b
LJ
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072}
1073
1074static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076{
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083}
1084
1085/**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090{
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096}
1097
7a8e76a3 1098/**
d611851b 1099 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
c3706f00 1102 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1103 * been corrupted.
1104 */
1105static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106{
3adc54fa 1107 struct list_head *head = cpu_buffer->pages;
044fa782 1108 struct buffer_page *bpage, *tmp;
7a8e76a3 1109
308f7eeb
SR
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
77ae365e
SR
1114 rb_head_page_deactivate(cpu_buffer);
1115
3e89c7bb
SR
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
7a8e76a3 1120
77ae365e
SR
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
044fa782 1124 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1125 if (RB_WARN_ON(cpu_buffer,
044fa782 1126 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
044fa782 1129 bpage->list.prev->next != &bpage->list))
3e89c7bb 1130 return -1;
77ae365e
SR
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
7a8e76a3
SR
1133 }
1134
77ae365e
SR
1135 rb_head_page_activate(cpu_buffer);
1136
7a8e76a3
SR
1137 return 0;
1138}
1139
438ced17 1140static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1141{
438ced17 1142 int i;
044fa782 1143 struct buffer_page *bpage, *tmp;
3adc54fa 1144
7a8e76a3 1145 for (i = 0; i < nr_pages; i++) {
7ea59064 1146 struct page *page;
d7ec4bfe
VN
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
044fa782 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1153 GFP_KERNEL | __GFP_NORETRY,
438ced17 1154 cpu_to_node(cpu));
044fa782 1155 if (!bpage)
e4c2ce82 1156 goto free_pages;
77ae365e 1157
438ced17 1158 list_add(&bpage->list, pages);
77ae365e 1159
438ced17 1160 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1161 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1162 if (!page)
7a8e76a3 1163 goto free_pages;
7ea59064 1164 bpage->page = page_address(page);
044fa782 1165 rb_init_page(bpage->page);
7a8e76a3
SR
1166 }
1167
438ced17
VN
1168 return 0;
1169
1170free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177}
1178
1179static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181{
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
3adc54fa
SR
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
7a8e76a3 1196
438ced17
VN
1197 cpu_buffer->nr_pages = nr_pages;
1198
7a8e76a3
SR
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
7a8e76a3
SR
1202}
1203
1204static struct ring_buffer_per_cpu *
438ced17 1205rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1206{
1207 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1208 struct buffer_page *bpage;
7ea59064 1209 struct page *page;
7a8e76a3
SR
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
5389f6fa 1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1223 init_completion(&cpu_buffer->update_done);
15693458 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1227
044fa782 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1229 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1230 if (!bpage)
e4c2ce82
SR
1231 goto fail_free_buffer;
1232
77ae365e
SR
1233 rb_check_bpage(cpu_buffer, bpage);
1234
044fa782 1235 cpu_buffer->reader_page = bpage;
7ea59064
VN
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
e4c2ce82 1238 goto fail_free_reader;
7ea59064 1239 bpage->page = page_address(page);
044fa782 1240 rb_init_page(bpage->page);
e4c2ce82 1241
d769041f 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1244
438ced17 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1246 if (ret < 0)
d769041f 1247 goto fail_free_reader;
7a8e76a3
SR
1248
1249 cpu_buffer->head_page
3adc54fa 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1252
77ae365e
SR
1253 rb_head_page_activate(cpu_buffer);
1254
7a8e76a3
SR
1255 return cpu_buffer;
1256
d769041f
SR
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
7a8e76a3
SR
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263}
1264
1265static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266{
3adc54fa 1267 struct list_head *head = cpu_buffer->pages;
044fa782 1268 struct buffer_page *bpage, *tmp;
7a8e76a3 1269
d769041f
SR
1270 free_buffer_page(cpu_buffer->reader_page);
1271
77ae365e
SR
1272 rb_head_page_deactivate(cpu_buffer);
1273
3adc54fa
SR
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
044fa782 1280 free_buffer_page(bpage);
7a8e76a3 1281 }
3adc54fa 1282
7a8e76a3
SR
1283 kfree(cpu_buffer);
1284}
1285
59222efe 1286#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1287static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
554f786e
SR
1289#endif
1290
7a8e76a3 1291/**
d611851b 1292 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1293 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1f8a6a10
PZ
1301struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
7a8e76a3
SR
1303{
1304 struct ring_buffer *buffer;
1305 int bsize;
438ced17 1306 int cpu, nr_pages;
7a8e76a3
SR
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
9e01c1b7
RR
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
438ced17 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1318 buffer->flags = flags;
37886f6a 1319 buffer->clock = trace_clock_local;
1f8a6a10 1320 buffer->reader_lock_key = key;
7a8e76a3 1321
15693458 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1323 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1324
7a8e76a3 1325 /* need at least two pages */
438ced17
VN
1326 if (nr_pages < 2)
1327 nr_pages = 2;
7a8e76a3 1328
3bf832ce
FW
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1335 cpu_notifier_register_begin();
554f786e 1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1337#else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339#endif
7a8e76a3
SR
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
9e01c1b7 1346 goto fail_free_cpumask;
7a8e76a3
SR
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
438ced17 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
59222efe 1355#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
d39ad278
SB
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
554f786e
SR
1360#endif
1361
7a8e76a3
SR
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
9e01c1b7
RR
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1375#ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377#endif
9e01c1b7 1378
7a8e76a3
SR
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382}
1f8a6a10 1383EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1384
1385/**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389void
1390ring_buffer_free(struct ring_buffer *buffer)
1391{
1392 int cpu;
1393
59222efe 1394#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1397#endif
1398
7a8e76a3
SR
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
d39ad278
SB
1402#ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404#endif
554f786e 1405
bd3f0221 1406 kfree(buffer->buffers);
9e01c1b7
RR
1407 free_cpumask_var(buffer->cpumask);
1408
7a8e76a3
SR
1409 kfree(buffer);
1410}
c4f50183 1411EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1412
37886f6a
SR
1413void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415{
1416 buffer->clock = clock;
1417}
1418
7a8e76a3
SR
1419static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
83f40318
VN
1421static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422{
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424}
1425
1426static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427{
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429}
1430
5040b4b7 1431static int
83f40318 1432rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1433{
83f40318
VN
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
7a8e76a3 1442
5389f6fa 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1455
83f40318
VN
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1471 }
7a8e76a3 1472
83f40318 1473 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1474
83f40318
VN
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
48fdc72f 1521 * Increment overrun to account for the lost events.
83f40318 1522 */
48fdc72f 1523 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1537
1538 return nr_removed == 0;
7a8e76a3
SR
1539}
1540
5040b4b7
VN
1541static int
1542rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1543{
5040b4b7
VN
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
7a8e76a3 1546
5389f6fa 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
77ae365e 1568
5040b4b7 1569 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1570 if (!head_page)
1571 break;
5040b4b7
VN
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
7a8e76a3 1595 }
7a8e76a3 1596
5040b4b7
VN
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
7a8e76a3
SR
1616}
1617
83f40318 1618static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1619{
5040b4b7
VN
1620 int success;
1621
438ced17 1622 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1623 success = rb_insert_pages(cpu_buffer);
438ced17 1624 else
5040b4b7
VN
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
83f40318 1627
5040b4b7
VN
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1630}
1631
1632static void update_pages_handler(struct work_struct *work)
1633{
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
05fdd70d 1637 complete(&cpu_buffer->update_done);
438ced17
VN
1638}
1639
7a8e76a3
SR
1640/**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
d611851b 1644 * @cpu_id: the cpu buffer to resize
7a8e76a3 1645 *
7a8e76a3
SR
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
83f40318 1648 * Returns 0 on success and < 0 on failure.
7a8e76a3 1649 */
438ced17
VN
1650int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
7a8e76a3
SR
1652{
1653 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1654 unsigned nr_pages;
83f40318 1655 int cpu, err = 0;
7a8e76a3 1656
ee51a1de
IM
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
6a31e1f1
SR
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
7a8e76a3
SR
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
83f40318 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1676
83f40318
VN
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
18421015 1684
83f40318 1685 /* prevent another thread from changing buffer sizes */
7a8e76a3 1686 mutex_lock(&buffer->mutex);
7a8e76a3 1687
438ced17
VN
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
7a8e76a3
SR
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1692
438ced17
VN
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
438ced17
VN
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
d7ec4bfe 1700 /*
438ced17
VN
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
d7ec4bfe 1703 */
438ced17
VN
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1706 &cpu_buffer->new_pages, cpu)) {
438ced17 1707 /* not enough memory for new pages */
83f40318
VN
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
05fdd70d 1716 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1721 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1722 continue;
1723
021c5b34
CM
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
05fdd70d
VN
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
f5eb5588 1731 }
7a8e76a3 1732 }
7a8e76a3 1733
438ced17
VN
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1737 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1738 continue;
1739
05fdd70d
VN
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
83f40318 1742 cpu_buffer->nr_pages_to_update = 0;
438ced17 1743 }
83f40318
VN
1744
1745 put_online_cpus();
438ced17 1746 } else {
8e49f418
VN
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
438ced17 1751 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1752
438ced17
VN
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
7a8e76a3 1755
438ced17
VN
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
438ced17 1766
83f40318
VN
1767 get_online_cpus();
1768
021c5b34
CM
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1771 rb_update_pages(cpu_buffer);
1772 else {
83f40318
VN
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
05fdd70d 1775 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1776 }
83f40318 1777
83f40318 1778 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1779 put_online_cpus();
438ced17 1780 }
7a8e76a3
SR
1781
1782 out:
659f451f
SR
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
7a8e76a3 1806 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1807 return size;
1808
83f40318 1809 out_err:
438ced17
VN
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
83f40318 1812
438ced17 1813 cpu_buffer = buffer->buffers[cpu];
438ced17 1814 cpu_buffer->nr_pages_to_update = 0;
83f40318 1815
438ced17
VN
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
83f40318 1818
438ced17
VN
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
7a8e76a3 1824 }
641d2f63 1825 mutex_unlock(&buffer->mutex);
83f40318 1826 return err;
7a8e76a3 1827}
c4f50183 1828EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1829
750912fa
DS
1830void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831{
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838}
1839EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
8789a9e7 1841static inline void *
044fa782 1842__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1843{
044fa782 1844 return bpage->data + index;
8789a9e7
SR
1845}
1846
044fa782 1847static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1848{
044fa782 1849 return bpage->page->data + index;
7a8e76a3
SR
1850}
1851
1852static inline struct ring_buffer_event *
d769041f 1853rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1854{
6f807acd
SR
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857}
1858
7a8e76a3
SR
1859static inline struct ring_buffer_event *
1860rb_iter_head_event(struct ring_buffer_iter *iter)
1861{
6f807acd 1862 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1863}
1864
bf41a158
SR
1865static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866{
abc9b56d 1867 return local_read(&bpage->page->commit);
bf41a158
SR
1868}
1869
25985edc 1870/* Size is determined by what has been committed */
bf41a158
SR
1871static inline unsigned rb_page_size(struct buffer_page *bpage)
1872{
1873 return rb_page_commit(bpage);
1874}
1875
1876static inline unsigned
1877rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878{
1879 return rb_page_commit(cpu_buffer->commit_page);
1880}
1881
bf41a158
SR
1882static inline unsigned
1883rb_event_index(struct ring_buffer_event *event)
1884{
1885 unsigned long addr = (unsigned long)event;
1886
22f470f8 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1888}
1889
d769041f 1890static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1891{
abc9b56d 1892 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1893 cpu_buffer->reader_page->read = 0;
d769041f
SR
1894}
1895
34a148bf 1896static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1897{
1898 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1899
1900 /*
1901 * The iterator could be on the reader page (it starts there).
1902 * But the head could have moved, since the reader was
1903 * found. Check for this case and assign the iterator
1904 * to the head page instead of next.
1905 */
1906 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1907 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1908 else
1909 rb_inc_page(cpu_buffer, &iter->head_page);
1910
abc9b56d 1911 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1912 iter->head = 0;
1913}
1914
77ae365e
SR
1915/*
1916 * rb_handle_head_page - writer hit the head page
1917 *
1918 * Returns: +1 to retry page
1919 * 0 to continue
1920 * -1 on error
1921 */
1922static int
1923rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1924 struct buffer_page *tail_page,
1925 struct buffer_page *next_page)
1926{
1927 struct buffer_page *new_head;
1928 int entries;
1929 int type;
1930 int ret;
1931
1932 entries = rb_page_entries(next_page);
1933
1934 /*
1935 * The hard part is here. We need to move the head
1936 * forward, and protect against both readers on
1937 * other CPUs and writers coming in via interrupts.
1938 */
1939 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1940 RB_PAGE_HEAD);
1941
1942 /*
1943 * type can be one of four:
1944 * NORMAL - an interrupt already moved it for us
1945 * HEAD - we are the first to get here.
1946 * UPDATE - we are the interrupt interrupting
1947 * a current move.
1948 * MOVED - a reader on another CPU moved the next
1949 * pointer to its reader page. Give up
1950 * and try again.
1951 */
1952
1953 switch (type) {
1954 case RB_PAGE_HEAD:
1955 /*
1956 * We changed the head to UPDATE, thus
1957 * it is our responsibility to update
1958 * the counters.
1959 */
1960 local_add(entries, &cpu_buffer->overrun);
c64e148a 1961 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1962
1963 /*
1964 * The entries will be zeroed out when we move the
1965 * tail page.
1966 */
1967
1968 /* still more to do */
1969 break;
1970
1971 case RB_PAGE_UPDATE:
1972 /*
1973 * This is an interrupt that interrupt the
1974 * previous update. Still more to do.
1975 */
1976 break;
1977 case RB_PAGE_NORMAL:
1978 /*
1979 * An interrupt came in before the update
1980 * and processed this for us.
1981 * Nothing left to do.
1982 */
1983 return 1;
1984 case RB_PAGE_MOVED:
1985 /*
1986 * The reader is on another CPU and just did
1987 * a swap with our next_page.
1988 * Try again.
1989 */
1990 return 1;
1991 default:
1992 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1993 return -1;
1994 }
1995
1996 /*
1997 * Now that we are here, the old head pointer is
1998 * set to UPDATE. This will keep the reader from
1999 * swapping the head page with the reader page.
2000 * The reader (on another CPU) will spin till
2001 * we are finished.
2002 *
2003 * We just need to protect against interrupts
2004 * doing the job. We will set the next pointer
2005 * to HEAD. After that, we set the old pointer
2006 * to NORMAL, but only if it was HEAD before.
2007 * otherwise we are an interrupt, and only
2008 * want the outer most commit to reset it.
2009 */
2010 new_head = next_page;
2011 rb_inc_page(cpu_buffer, &new_head);
2012
2013 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2014 RB_PAGE_NORMAL);
2015
2016 /*
2017 * Valid returns are:
2018 * HEAD - an interrupt came in and already set it.
2019 * NORMAL - One of two things:
2020 * 1) We really set it.
2021 * 2) A bunch of interrupts came in and moved
2022 * the page forward again.
2023 */
2024 switch (ret) {
2025 case RB_PAGE_HEAD:
2026 case RB_PAGE_NORMAL:
2027 /* OK */
2028 break;
2029 default:
2030 RB_WARN_ON(cpu_buffer, 1);
2031 return -1;
2032 }
2033
2034 /*
2035 * It is possible that an interrupt came in,
2036 * set the head up, then more interrupts came in
2037 * and moved it again. When we get back here,
2038 * the page would have been set to NORMAL but we
2039 * just set it back to HEAD.
2040 *
2041 * How do you detect this? Well, if that happened
2042 * the tail page would have moved.
2043 */
2044 if (ret == RB_PAGE_NORMAL) {
2045 /*
2046 * If the tail had moved passed next, then we need
2047 * to reset the pointer.
2048 */
2049 if (cpu_buffer->tail_page != tail_page &&
2050 cpu_buffer->tail_page != next_page)
2051 rb_head_page_set_normal(cpu_buffer, new_head,
2052 next_page,
2053 RB_PAGE_HEAD);
2054 }
2055
2056 /*
2057 * If this was the outer most commit (the one that
2058 * changed the original pointer from HEAD to UPDATE),
2059 * then it is up to us to reset it to NORMAL.
2060 */
2061 if (type == RB_PAGE_HEAD) {
2062 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2063 tail_page,
2064 RB_PAGE_UPDATE);
2065 if (RB_WARN_ON(cpu_buffer,
2066 ret != RB_PAGE_UPDATE))
2067 return -1;
2068 }
2069
2070 return 0;
2071}
2072
c7b09308
SR
2073static inline void
2074rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2075 unsigned long tail, struct rb_event_info *info)
c7b09308 2076{
fcc742ea 2077 struct buffer_page *tail_page = info->tail_page;
c7b09308 2078 struct ring_buffer_event *event;
fcc742ea 2079 unsigned long length = info->length;
c7b09308
SR
2080
2081 /*
2082 * Only the event that crossed the page boundary
2083 * must fill the old tail_page with padding.
2084 */
2085 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2086 /*
2087 * If the page was filled, then we still need
2088 * to update the real_end. Reset it to zero
2089 * and the reader will ignore it.
2090 */
2091 if (tail == BUF_PAGE_SIZE)
2092 tail_page->real_end = 0;
2093
c7b09308
SR
2094 local_sub(length, &tail_page->write);
2095 return;
2096 }
2097
2098 event = __rb_page_index(tail_page, tail);
b0b7065b 2099 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2100
c64e148a
VN
2101 /* account for padding bytes */
2102 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2103
ff0ff84a
SR
2104 /*
2105 * Save the original length to the meta data.
2106 * This will be used by the reader to add lost event
2107 * counter.
2108 */
2109 tail_page->real_end = tail;
2110
c7b09308
SR
2111 /*
2112 * If this event is bigger than the minimum size, then
2113 * we need to be careful that we don't subtract the
2114 * write counter enough to allow another writer to slip
2115 * in on this page.
2116 * We put in a discarded commit instead, to make sure
2117 * that this space is not used again.
2118 *
2119 * If we are less than the minimum size, we don't need to
2120 * worry about it.
2121 */
2122 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2123 /* No room for any events */
2124
2125 /* Mark the rest of the page with padding */
2126 rb_event_set_padding(event);
2127
2128 /* Set the write back to the previous setting */
2129 local_sub(length, &tail_page->write);
2130 return;
2131 }
2132
2133 /* Put in a discarded event */
2134 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2135 event->type_len = RINGBUF_TYPE_PADDING;
2136 /* time delta must be non zero */
2137 event->time_delta = 1;
c7b09308
SR
2138
2139 /* Set write to end of buffer */
2140 length = (tail + length) - BUF_PAGE_SIZE;
2141 local_sub(length, &tail_page->write);
2142}
6634ff26 2143
a4543a2f
SRRH
2144static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2145
747e94ae
SR
2146/*
2147 * This is the slow path, force gcc not to inline it.
2148 */
2149static noinline struct ring_buffer_event *
6634ff26 2150rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2151 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2152{
fcc742ea 2153 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2154 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2155 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2156 struct buffer_page *next_page;
2157 int ret;
fcc742ea 2158 u64 ts;
aa20ae84 2159
a4543a2f
SRRH
2160 /*
2161 * If the event had a timestamp attached to it, remove it.
2162 * The first event on a page (nested or not) always uses
2163 * the full timestamp of the new page.
2164 */
2165 if (info->add_timestamp) {
2166 info->add_timestamp = 0;
2167 info->length -= RB_LEN_TIME_EXTEND;
2168 }
2169
aa20ae84
SR
2170 next_page = tail_page;
2171
aa20ae84
SR
2172 rb_inc_page(cpu_buffer, &next_page);
2173
aa20ae84
SR
2174 /*
2175 * If for some reason, we had an interrupt storm that made
2176 * it all the way around the buffer, bail, and warn
2177 * about it.
2178 */
2179 if (unlikely(next_page == commit_page)) {
77ae365e 2180 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2181 goto out_reset;
2182 }
2183
77ae365e
SR
2184 /*
2185 * This is where the fun begins!
2186 *
2187 * We are fighting against races between a reader that
2188 * could be on another CPU trying to swap its reader
2189 * page with the buffer head.
2190 *
2191 * We are also fighting against interrupts coming in and
2192 * moving the head or tail on us as well.
2193 *
2194 * If the next page is the head page then we have filled
2195 * the buffer, unless the commit page is still on the
2196 * reader page.
2197 */
2198 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2199
77ae365e
SR
2200 /*
2201 * If the commit is not on the reader page, then
2202 * move the header page.
2203 */
2204 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2205 /*
2206 * If we are not in overwrite mode,
2207 * this is easy, just stop here.
2208 */
884bfe89
SP
2209 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2210 local_inc(&cpu_buffer->dropped_events);
77ae365e 2211 goto out_reset;
884bfe89 2212 }
77ae365e
SR
2213
2214 ret = rb_handle_head_page(cpu_buffer,
2215 tail_page,
2216 next_page);
2217 if (ret < 0)
2218 goto out_reset;
2219 if (ret)
2220 goto out_again;
2221 } else {
2222 /*
2223 * We need to be careful here too. The
2224 * commit page could still be on the reader
2225 * page. We could have a small buffer, and
2226 * have filled up the buffer with events
2227 * from interrupts and such, and wrapped.
2228 *
2229 * Note, if the tail page is also the on the
2230 * reader_page, we let it move out.
2231 */
2232 if (unlikely((cpu_buffer->commit_page !=
2233 cpu_buffer->tail_page) &&
2234 (cpu_buffer->commit_page ==
2235 cpu_buffer->reader_page))) {
2236 local_inc(&cpu_buffer->commit_overrun);
2237 goto out_reset;
2238 }
aa20ae84
SR
2239 }
2240 }
2241
77ae365e
SR
2242 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2243 if (ret) {
2244 /*
2245 * Nested commits always have zero deltas, so
2246 * just reread the time stamp
2247 */
e8bc43e8
SR
2248 ts = rb_time_stamp(buffer);
2249 next_page->page->time_stamp = ts;
aa20ae84
SR
2250 }
2251
77ae365e 2252 out_again:
aa20ae84 2253
fcc742ea 2254 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2255
a4543a2f
SRRH
2256 /* Commit what we have for now to update timestamps */
2257 rb_end_commit(cpu_buffer);
2258 /* rb_end_commit() decs committing */
2259 local_inc(&cpu_buffer->committing);
2260
aa20ae84
SR
2261 /* fail and let the caller try again */
2262 return ERR_PTR(-EAGAIN);
2263
45141d46 2264 out_reset:
6f3b3440 2265 /* reset write */
fcc742ea 2266 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2267
bf41a158 2268 return NULL;
7a8e76a3
SR
2269}
2270
d90fd774
SRRH
2271/* Slow path, do not inline */
2272static noinline struct ring_buffer_event *
2273rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2274{
d90fd774 2275 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2276
d90fd774
SRRH
2277 /* Not the first event on the page? */
2278 if (rb_event_index(event)) {
2279 event->time_delta = delta & TS_MASK;
2280 event->array[0] = delta >> TS_SHIFT;
2281 } else {
2282 /* nope, just zero it */
2283 event->time_delta = 0;
2284 event->array[0] = 0;
2285 }
a4543a2f 2286
d90fd774
SRRH
2287 return skip_time_extend(event);
2288}
a4543a2f 2289
d90fd774
SRRH
2290/**
2291 * rb_update_event - update event type and data
2292 * @event: the event to update
2293 * @type: the type of event
2294 * @length: the size of the event field in the ring buffer
2295 *
2296 * Update the type and data fields of the event. The length
2297 * is the actual size that is written to the ring buffer,
2298 * and with this, we can determine what to place into the
2299 * data field.
2300 */
2301static void __always_inline
2302rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2303 struct ring_buffer_event *event,
2304 struct rb_event_info *info)
2305{
2306 unsigned length = info->length;
2307 u64 delta = info->delta;
a4543a2f
SRRH
2308
2309 /*
d90fd774
SRRH
2310 * If we need to add a timestamp, then we
2311 * add it to the start of the resevered space.
a4543a2f 2312 */
d90fd774
SRRH
2313 if (unlikely(info->add_timestamp)) {
2314 event = rb_add_time_stamp(event, delta);
2315 length -= RB_LEN_TIME_EXTEND;
2316 delta = 0;
a4543a2f
SRRH
2317 }
2318
d90fd774
SRRH
2319 event->time_delta = delta;
2320 length -= RB_EVNT_HDR_SIZE;
2321 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2322 event->type_len = 0;
2323 event->array[0] = length;
2324 } else
2325 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2326}
2327
2328static unsigned rb_calculate_event_length(unsigned length)
2329{
2330 struct ring_buffer_event event; /* Used only for sizeof array */
2331
2332 /* zero length can cause confusions */
2333 if (!length)
2334 length++;
2335
2336 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2337 length += sizeof(event.array[0]);
2338
2339 length += RB_EVNT_HDR_SIZE;
2340 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2341
2342 /*
2343 * In case the time delta is larger than the 27 bits for it
2344 * in the header, we need to add a timestamp. If another
2345 * event comes in when trying to discard this one to increase
2346 * the length, then the timestamp will be added in the allocated
2347 * space of this event. If length is bigger than the size needed
2348 * for the TIME_EXTEND, then padding has to be used. The events
2349 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2350 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2351 * As length is a multiple of 4, we only need to worry if it
2352 * is 12 (RB_LEN_TIME_EXTEND + 4).
2353 */
2354 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2355 length += RB_ALIGNMENT;
2356
2357 return length;
2358}
2359
2360#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2361static inline bool sched_clock_stable(void)
2362{
2363 return true;
2364}
2365#endif
2366
2367static inline int
2368rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2369 struct ring_buffer_event *event)
2370{
2371 unsigned long new_index, old_index;
2372 struct buffer_page *bpage;
2373 unsigned long index;
2374 unsigned long addr;
2375
2376 new_index = rb_event_index(event);
2377 old_index = new_index + rb_event_ts_length(event);
2378 addr = (unsigned long)event;
2379 addr &= PAGE_MASK;
2380
2381 bpage = cpu_buffer->tail_page;
2382
2383 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2384 unsigned long write_mask =
2385 local_read(&bpage->write) & ~RB_WRITE_MASK;
2386 unsigned long event_length = rb_event_length(event);
2387 /*
2388 * This is on the tail page. It is possible that
2389 * a write could come in and move the tail page
2390 * and write to the next page. That is fine
2391 * because we just shorten what is on this page.
2392 */
2393 old_index += write_mask;
2394 new_index += write_mask;
2395 index = local_cmpxchg(&bpage->write, old_index, new_index);
2396 if (index == old_index) {
2397 /* update counters */
2398 local_sub(event_length, &cpu_buffer->entries_bytes);
2399 return 1;
2400 }
2401 }
2402
2403 /* could not discard */
2404 return 0;
2405}
2406
2407static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2408{
2409 local_inc(&cpu_buffer->committing);
2410 local_inc(&cpu_buffer->commits);
2411}
2412
2413static void
2414rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2415{
2416 unsigned long max_count;
2417
2418 /*
2419 * We only race with interrupts and NMIs on this CPU.
2420 * If we own the commit event, then we can commit
2421 * all others that interrupted us, since the interruptions
2422 * are in stack format (they finish before they come
2423 * back to us). This allows us to do a simple loop to
2424 * assign the commit to the tail.
2425 */
2426 again:
2427 max_count = cpu_buffer->nr_pages * 100;
2428
2429 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2430 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2431 return;
2432 if (RB_WARN_ON(cpu_buffer,
2433 rb_is_reader_page(cpu_buffer->tail_page)))
2434 return;
2435 local_set(&cpu_buffer->commit_page->page->commit,
2436 rb_page_write(cpu_buffer->commit_page));
2437 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2438 cpu_buffer->write_stamp =
2439 cpu_buffer->commit_page->page->time_stamp;
2440 /* add barrier to keep gcc from optimizing too much */
2441 barrier();
2442 }
2443 while (rb_commit_index(cpu_buffer) !=
2444 rb_page_write(cpu_buffer->commit_page)) {
2445
2446 local_set(&cpu_buffer->commit_page->page->commit,
2447 rb_page_write(cpu_buffer->commit_page));
2448 RB_WARN_ON(cpu_buffer,
2449 local_read(&cpu_buffer->commit_page->page->commit) &
2450 ~RB_WRITE_MASK);
2451 barrier();
2452 }
2453
2454 /* again, keep gcc from optimizing */
2455 barrier();
2456
2457 /*
2458 * If an interrupt came in just after the first while loop
2459 * and pushed the tail page forward, we will be left with
2460 * a dangling commit that will never go forward.
2461 */
2462 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2463 goto again;
2464}
2465
2466static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2467{
2468 unsigned long commits;
2469
2470 if (RB_WARN_ON(cpu_buffer,
2471 !local_read(&cpu_buffer->committing)))
2472 return;
2473
2474 again:
2475 commits = local_read(&cpu_buffer->commits);
2476 /* synchronize with interrupts */
2477 barrier();
2478 if (local_read(&cpu_buffer->committing) == 1)
2479 rb_set_commit_to_write(cpu_buffer);
2480
2481 local_dec(&cpu_buffer->committing);
2482
2483 /* synchronize with interrupts */
2484 barrier();
2485
2486 /*
2487 * Need to account for interrupts coming in between the
2488 * updating of the commit page and the clearing of the
2489 * committing counter.
2490 */
2491 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2492 !local_read(&cpu_buffer->committing)) {
2493 local_inc(&cpu_buffer->committing);
2494 goto again;
2495 }
2496}
2497
2498static inline void rb_event_discard(struct ring_buffer_event *event)
2499{
2500 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2501 event = skip_time_extend(event);
2502
2503 /* array[0] holds the actual length for the discarded event */
2504 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2505 event->type_len = RINGBUF_TYPE_PADDING;
2506 /* time delta must be non zero */
2507 if (!event->time_delta)
2508 event->time_delta = 1;
2509}
2510
2511static inline int
2512rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2513 struct ring_buffer_event *event)
2514{
2515 unsigned long addr = (unsigned long)event;
2516 unsigned long index;
2517
2518 index = rb_event_index(event);
2519 addr &= PAGE_MASK;
2520
2521 return cpu_buffer->commit_page->page == (void *)addr &&
2522 rb_commit_index(cpu_buffer) == index;
2523}
2524
2525static void
2526rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2527 struct ring_buffer_event *event)
2528{
2529 u64 delta;
2530
2531 /*
2532 * The event first in the commit queue updates the
2533 * time stamp.
2534 */
2535 if (rb_event_is_commit(cpu_buffer, event)) {
2536 /*
2537 * A commit event that is first on a page
2538 * updates the write timestamp with the page stamp
2539 */
2540 if (!rb_event_index(event))
2541 cpu_buffer->write_stamp =
2542 cpu_buffer->commit_page->page->time_stamp;
2543 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2544 delta = event->array[0];
2545 delta <<= TS_SHIFT;
2546 delta += event->time_delta;
2547 cpu_buffer->write_stamp += delta;
2548 } else
2549 cpu_buffer->write_stamp += event->time_delta;
2550 }
2551}
2552
2553static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2554 struct ring_buffer_event *event)
2555{
2556 local_inc(&cpu_buffer->entries);
2557 rb_update_write_stamp(cpu_buffer, event);
2558 rb_end_commit(cpu_buffer);
2559}
2560
2561static __always_inline void
2562rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2563{
2564 bool pagebusy;
2565
2566 if (buffer->irq_work.waiters_pending) {
2567 buffer->irq_work.waiters_pending = false;
2568 /* irq_work_queue() supplies it's own memory barriers */
2569 irq_work_queue(&buffer->irq_work.work);
2570 }
2571
2572 if (cpu_buffer->irq_work.waiters_pending) {
2573 cpu_buffer->irq_work.waiters_pending = false;
2574 /* irq_work_queue() supplies it's own memory barriers */
2575 irq_work_queue(&cpu_buffer->irq_work.work);
2576 }
2577
2578 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2579
2580 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2581 cpu_buffer->irq_work.wakeup_full = true;
2582 cpu_buffer->irq_work.full_waiters_pending = false;
2583 /* irq_work_queue() supplies it's own memory barriers */
2584 irq_work_queue(&cpu_buffer->irq_work.work);
2585 }
2586}
2587
2588/*
2589 * The lock and unlock are done within a preempt disable section.
2590 * The current_context per_cpu variable can only be modified
2591 * by the current task between lock and unlock. But it can
2592 * be modified more than once via an interrupt. To pass this
2593 * information from the lock to the unlock without having to
2594 * access the 'in_interrupt()' functions again (which do show
2595 * a bit of overhead in something as critical as function tracing,
2596 * we use a bitmask trick.
2597 *
2598 * bit 0 = NMI context
2599 * bit 1 = IRQ context
2600 * bit 2 = SoftIRQ context
2601 * bit 3 = normal context.
2602 *
2603 * This works because this is the order of contexts that can
2604 * preempt other contexts. A SoftIRQ never preempts an IRQ
2605 * context.
2606 *
2607 * When the context is determined, the corresponding bit is
2608 * checked and set (if it was set, then a recursion of that context
2609 * happened).
2610 *
2611 * On unlock, we need to clear this bit. To do so, just subtract
2612 * 1 from the current_context and AND it to itself.
2613 *
2614 * (binary)
2615 * 101 - 1 = 100
2616 * 101 & 100 = 100 (clearing bit zero)
2617 *
2618 * 1010 - 1 = 1001
2619 * 1010 & 1001 = 1000 (clearing bit 1)
2620 *
2621 * The least significant bit can be cleared this way, and it
2622 * just so happens that it is the same bit corresponding to
2623 * the current context.
2624 */
2625
2626static __always_inline int
2627trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2628{
2629 unsigned int val = cpu_buffer->current_context;
2630 int bit;
2631
2632 if (in_interrupt()) {
2633 if (in_nmi())
2634 bit = RB_CTX_NMI;
2635 else if (in_irq())
2636 bit = RB_CTX_IRQ;
2637 else
2638 bit = RB_CTX_SOFTIRQ;
2639 } else
2640 bit = RB_CTX_NORMAL;
2641
2642 if (unlikely(val & (1 << bit)))
2643 return 1;
2644
2645 val |= (1 << bit);
2646 cpu_buffer->current_context = val;
2647
2648 return 0;
2649}
2650
2651static __always_inline void
2652trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2653{
2654 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2655}
2656
2657/**
2658 * ring_buffer_unlock_commit - commit a reserved
2659 * @buffer: The buffer to commit to
2660 * @event: The event pointer to commit.
2661 *
2662 * This commits the data to the ring buffer, and releases any locks held.
2663 *
2664 * Must be paired with ring_buffer_lock_reserve.
2665 */
2666int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2667 struct ring_buffer_event *event)
2668{
2669 struct ring_buffer_per_cpu *cpu_buffer;
2670 int cpu = raw_smp_processor_id();
2671
2672 cpu_buffer = buffer->buffers[cpu];
2673
2674 rb_commit(cpu_buffer, event);
2675
2676 rb_wakeups(buffer, cpu_buffer);
2677
2678 trace_recursive_unlock(cpu_buffer);
2679
2680 preempt_enable_notrace();
2681
2682 return 0;
2683}
2684EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2685
2686static noinline void
2687rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2688 struct ring_buffer_event *event,
2689 struct rb_event_info *info)
2690{
2691 struct ring_buffer_event *padding;
2692 int length;
2693 int size;
2694
2695 WARN_ONCE(info->delta > (1ULL << 59),
2696 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2697 (unsigned long long)info->delta,
2698 (unsigned long long)info->ts,
2699 (unsigned long long)cpu_buffer->write_stamp,
2700 sched_clock_stable() ? "" :
2701 "If you just came from a suspend/resume,\n"
2702 "please switch to the trace global clock:\n"
2703 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2704
2705 /*
2706 * Discarding this event to add a timestamp in front, but
2707 * we still need to update the length of it to perform the discard.
2708 */
2709 rb_update_event(cpu_buffer, event, info);
2710
2711 if (rb_try_to_discard(cpu_buffer, event)) {
2712 info->add_timestamp = 1;
2713 /*
2714 * The time delta since the last event is too big to
2715 * hold in the time field of the event, then we append a
2716 * TIME EXTEND event ahead of the data event.
2717 */
2718 info->length += RB_LEN_TIME_EXTEND;
2719 return;
2720 }
2721
2722 /*
2723 * Humpf! An event came in after this one, and because it is not a
2724 * commit, it will have a delta of zero, thus, it will take on
2725 * the timestamp of the previous commit, which happened a long time
2726 * ago (we need to add a timestamp, remember?).
2727 * We need to add the timestamp here. A timestamp is a fixed size
2728 * of 8 bytes. That means the rest of the event needs to be
2729 * padding.
2730 */
2731 size = info->length - RB_LEN_TIME_EXTEND;
2732
2733 /* The padding will have a delta of 1 */
2734 if (size)
2735 info->delta--;
a4543a2f
SRRH
2736
2737 padding = rb_add_time_stamp(event, info->delta);
2738
2739 if (size) {
2740 length = info->length;
2741 info->delta = 0;
2742 info->length = size;
2743 rb_update_event(cpu_buffer, padding, info);
2744
2745 rb_event_discard(padding);
2746
2747 /* Still visible, need to update write_stamp */
2748 rb_update_write_stamp(cpu_buffer, event);
2749
2750 /* Still need to commit the padding. */
2751 rb_end_commit(cpu_buffer);
2752
2753 /* rb_end_commit() decs committing */
2754 local_inc(&cpu_buffer->committing);
2755
2756 /* The next iteration still uses the original length */
2757 info->length = length;
2758 }
9826b273
SRRH
2759}
2760
6634ff26
SR
2761static struct ring_buffer_event *
2762__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2763 struct rb_event_info *info)
6634ff26 2764{
6634ff26 2765 struct ring_buffer_event *event;
fcc742ea 2766 struct buffer_page *tail_page;
6634ff26 2767 unsigned long tail, write;
a4543a2f 2768 bool is_commit;
69d1b839 2769
fcc742ea
SRRH
2770 tail_page = info->tail_page = cpu_buffer->tail_page;
2771 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2772
2773 /* set write to only the index of the write */
2774 write &= RB_WRITE_MASK;
fcc742ea 2775 tail = write - info->length;
6634ff26
SR
2776
2777 /* See if we shot pass the end of this buffer page */
747e94ae 2778 if (unlikely(write > BUF_PAGE_SIZE))
fcc742ea 2779 return rb_move_tail(cpu_buffer, tail, info);
6634ff26
SR
2780
2781 /* We reserved something on the buffer */
6634ff26 2782 event = __rb_page_index(tail_page, tail);
6634ff26
SR
2783
2784 /*
a4543a2f
SRRH
2785 * If this is the first commit on the page, then it has the same
2786 * timestamp as the page itself, otherwise we need to figure out
2787 * the delta.
6634ff26 2788 */
a4543a2f
SRRH
2789 info->ts = rb_time_stamp(cpu_buffer->buffer);
2790 is_commit = rb_event_is_commit(cpu_buffer, event);
2791
2792 /* Commits are special (non nested events) */
2793 info->delta = is_commit ? info->ts - cpu_buffer->write_stamp : 0;
2794
2795 if (!tail) {
2796 /*
2797 * If this is the first commit on the page, set the
2798 * page to its timestamp.
2799 */
fcc742ea 2800 tail_page->page->time_stamp = info->ts;
a4543a2f
SRRH
2801 info->delta = 0;
2802
2803 } else if (unlikely(test_time_stamp(info->delta)) &&
2804 !info->add_timestamp) {
2805 rb_handle_timestamp(cpu_buffer, event, info);
2806 return ERR_PTR(-EAGAIN);
2807 }
2808
2809 kmemcheck_annotate_bitfield(event, bitfield);
2810 rb_update_event(cpu_buffer, event, info);
2811
2812 local_inc(&tail_page->entries);
6634ff26 2813
c64e148a 2814 /* account for these added bytes */
fcc742ea 2815 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2816
6634ff26
SR
2817 return event;
2818}
2819
7a8e76a3 2820static struct ring_buffer_event *
62f0b3eb
SR
2821rb_reserve_next_event(struct ring_buffer *buffer,
2822 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2823 unsigned long length)
7a8e76a3
SR
2824{
2825 struct ring_buffer_event *event;
fcc742ea 2826 struct rb_event_info info;
818e3dd3 2827 int nr_loops = 0;
7a8e76a3 2828
fa743953
SR
2829 rb_start_commit(cpu_buffer);
2830
85bac32c 2831#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2832 /*
2833 * Due to the ability to swap a cpu buffer from a buffer
2834 * it is possible it was swapped before we committed.
2835 * (committing stops a swap). We check for it here and
2836 * if it happened, we have to fail the write.
2837 */
2838 barrier();
2839 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2840 local_dec(&cpu_buffer->committing);
2841 local_dec(&cpu_buffer->commits);
2842 return NULL;
2843 }
85bac32c 2844#endif
fcc742ea 2845 info.length = rb_calculate_event_length(length);
fcc742ea 2846 info.add_timestamp = 0;
a4543a2f 2847 again:
818e3dd3
SR
2848 /*
2849 * We allow for interrupts to reenter here and do a trace.
2850 * If one does, it will cause this original code to loop
2851 * back here. Even with heavy interrupts happening, this
2852 * should only happen a few times in a row. If this happens
2853 * 1000 times in a row, there must be either an interrupt
2854 * storm or we have something buggy.
2855 * Bail!
2856 */
3e89c7bb 2857 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2858 goto out_fail;
818e3dd3 2859
fcc742ea
SRRH
2860 event = __rb_reserve_next(cpu_buffer, &info);
2861
168b6b1d 2862 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2863 goto again;
2864
fa743953
SR
2865 if (!event)
2866 goto out_fail;
7a8e76a3 2867
7a8e76a3 2868 return event;
fa743953
SR
2869
2870 out_fail:
2871 rb_end_commit(cpu_buffer);
2872 return NULL;
7a8e76a3
SR
2873}
2874
2875/**
2876 * ring_buffer_lock_reserve - reserve a part of the buffer
2877 * @buffer: the ring buffer to reserve from
2878 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2879 *
2880 * Returns a reseverd event on the ring buffer to copy directly to.
2881 * The user of this interface will need to get the body to write into
2882 * and can use the ring_buffer_event_data() interface.
2883 *
2884 * The length is the length of the data needed, not the event length
2885 * which also includes the event header.
2886 *
2887 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2888 * If NULL is returned, then nothing has been allocated or locked.
2889 */
2890struct ring_buffer_event *
0a987751 2891ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2892{
2893 struct ring_buffer_per_cpu *cpu_buffer;
2894 struct ring_buffer_event *event;
5168ae50 2895 int cpu;
7a8e76a3 2896
bf41a158 2897 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2898 preempt_disable_notrace();
bf41a158 2899
3205f806 2900 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2901 goto out;
261842b7 2902
7a8e76a3
SR
2903 cpu = raw_smp_processor_id();
2904
3205f806 2905 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2906 goto out;
7a8e76a3
SR
2907
2908 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2909
3205f806 2910 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2911 goto out;
7a8e76a3 2912
3205f806 2913 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2914 goto out;
7a8e76a3 2915
58a09ec6
SRRH
2916 if (unlikely(trace_recursive_lock(cpu_buffer)))
2917 goto out;
2918
62f0b3eb 2919 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2920 if (!event)
58a09ec6 2921 goto out_unlock;
7a8e76a3
SR
2922
2923 return event;
2924
58a09ec6
SRRH
2925 out_unlock:
2926 trace_recursive_unlock(cpu_buffer);
d769041f 2927 out:
5168ae50 2928 preempt_enable_notrace();
7a8e76a3
SR
2929 return NULL;
2930}
c4f50183 2931EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2932
a1863c21
SR
2933/*
2934 * Decrement the entries to the page that an event is on.
2935 * The event does not even need to exist, only the pointer
2936 * to the page it is on. This may only be called before the commit
2937 * takes place.
2938 */
2939static inline void
2940rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2941 struct ring_buffer_event *event)
2942{
2943 unsigned long addr = (unsigned long)event;
2944 struct buffer_page *bpage = cpu_buffer->commit_page;
2945 struct buffer_page *start;
2946
2947 addr &= PAGE_MASK;
2948
2949 /* Do the likely case first */
2950 if (likely(bpage->page == (void *)addr)) {
2951 local_dec(&bpage->entries);
2952 return;
2953 }
2954
2955 /*
2956 * Because the commit page may be on the reader page we
2957 * start with the next page and check the end loop there.
2958 */
2959 rb_inc_page(cpu_buffer, &bpage);
2960 start = bpage;
2961 do {
2962 if (bpage->page == (void *)addr) {
2963 local_dec(&bpage->entries);
2964 return;
2965 }
2966 rb_inc_page(cpu_buffer, &bpage);
2967 } while (bpage != start);
2968
2969 /* commit not part of this buffer?? */
2970 RB_WARN_ON(cpu_buffer, 1);
2971}
2972
fa1b47dd
SR
2973/**
2974 * ring_buffer_commit_discard - discard an event that has not been committed
2975 * @buffer: the ring buffer
2976 * @event: non committed event to discard
2977 *
dc892f73
SR
2978 * Sometimes an event that is in the ring buffer needs to be ignored.
2979 * This function lets the user discard an event in the ring buffer
2980 * and then that event will not be read later.
2981 *
2982 * This function only works if it is called before the the item has been
2983 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2984 * if another event has not been added behind it.
2985 *
2986 * If another event has been added behind it, it will set the event
2987 * up as discarded, and perform the commit.
2988 *
2989 * If this function is called, do not call ring_buffer_unlock_commit on
2990 * the event.
2991 */
2992void ring_buffer_discard_commit(struct ring_buffer *buffer,
2993 struct ring_buffer_event *event)
2994{
2995 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2996 int cpu;
2997
2998 /* The event is discarded regardless */
f3b9aae1 2999 rb_event_discard(event);
fa1b47dd 3000
fa743953
SR
3001 cpu = smp_processor_id();
3002 cpu_buffer = buffer->buffers[cpu];
3003
fa1b47dd
SR
3004 /*
3005 * This must only be called if the event has not been
3006 * committed yet. Thus we can assume that preemption
3007 * is still disabled.
3008 */
fa743953 3009 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3010
a1863c21 3011 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3012 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3013 goto out;
fa1b47dd
SR
3014
3015 /*
3016 * The commit is still visible by the reader, so we
a1863c21 3017 * must still update the timestamp.
fa1b47dd 3018 */
a1863c21 3019 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 3020 out:
fa743953 3021 rb_end_commit(cpu_buffer);
fa1b47dd 3022
58a09ec6 3023 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3024
5168ae50 3025 preempt_enable_notrace();
fa1b47dd
SR
3026
3027}
3028EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3029
7a8e76a3
SR
3030/**
3031 * ring_buffer_write - write data to the buffer without reserving
3032 * @buffer: The ring buffer to write to.
3033 * @length: The length of the data being written (excluding the event header)
3034 * @data: The data to write to the buffer.
3035 *
3036 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3037 * one function. If you already have the data to write to the buffer, it
3038 * may be easier to simply call this function.
3039 *
3040 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3041 * and not the length of the event which would hold the header.
3042 */
3043int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
3044 unsigned long length,
3045 void *data)
7a8e76a3
SR
3046{
3047 struct ring_buffer_per_cpu *cpu_buffer;
3048 struct ring_buffer_event *event;
7a8e76a3
SR
3049 void *body;
3050 int ret = -EBUSY;
5168ae50 3051 int cpu;
7a8e76a3 3052
5168ae50 3053 preempt_disable_notrace();
bf41a158 3054
52fbe9cd
LJ
3055 if (atomic_read(&buffer->record_disabled))
3056 goto out;
3057
7a8e76a3
SR
3058 cpu = raw_smp_processor_id();
3059
9e01c1b7 3060 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3061 goto out;
7a8e76a3
SR
3062
3063 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3064
3065 if (atomic_read(&cpu_buffer->record_disabled))
3066 goto out;
3067
be957c44
SR
3068 if (length > BUF_MAX_DATA_SIZE)
3069 goto out;
3070
985e871b
SRRH
3071 if (unlikely(trace_recursive_lock(cpu_buffer)))
3072 goto out;
3073
62f0b3eb 3074 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3075 if (!event)
985e871b 3076 goto out_unlock;
7a8e76a3
SR
3077
3078 body = rb_event_data(event);
3079
3080 memcpy(body, data, length);
3081
3082 rb_commit(cpu_buffer, event);
3083
15693458
SRRH
3084 rb_wakeups(buffer, cpu_buffer);
3085
7a8e76a3 3086 ret = 0;
985e871b
SRRH
3087
3088 out_unlock:
3089 trace_recursive_unlock(cpu_buffer);
3090
7a8e76a3 3091 out:
5168ae50 3092 preempt_enable_notrace();
7a8e76a3
SR
3093
3094 return ret;
3095}
c4f50183 3096EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3097
34a148bf 3098static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3099{
3100 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3101 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3102 struct buffer_page *commit = cpu_buffer->commit_page;
3103
77ae365e
SR
3104 /* In case of error, head will be NULL */
3105 if (unlikely(!head))
3106 return 1;
3107
bf41a158
SR
3108 return reader->read == rb_page_commit(reader) &&
3109 (commit == reader ||
3110 (commit == head &&
3111 head->read == rb_page_commit(commit)));
3112}
3113
7a8e76a3
SR
3114/**
3115 * ring_buffer_record_disable - stop all writes into the buffer
3116 * @buffer: The ring buffer to stop writes to.
3117 *
3118 * This prevents all writes to the buffer. Any attempt to write
3119 * to the buffer after this will fail and return NULL.
3120 *
3121 * The caller should call synchronize_sched() after this.
3122 */
3123void ring_buffer_record_disable(struct ring_buffer *buffer)
3124{
3125 atomic_inc(&buffer->record_disabled);
3126}
c4f50183 3127EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3128
3129/**
3130 * ring_buffer_record_enable - enable writes to the buffer
3131 * @buffer: The ring buffer to enable writes
3132 *
3133 * Note, multiple disables will need the same number of enables
c41b20e7 3134 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3135 */
3136void ring_buffer_record_enable(struct ring_buffer *buffer)
3137{
3138 atomic_dec(&buffer->record_disabled);
3139}
c4f50183 3140EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3141
499e5470
SR
3142/**
3143 * ring_buffer_record_off - stop all writes into the buffer
3144 * @buffer: The ring buffer to stop writes to.
3145 *
3146 * This prevents all writes to the buffer. Any attempt to write
3147 * to the buffer after this will fail and return NULL.
3148 *
3149 * This is different than ring_buffer_record_disable() as
87abb3b1 3150 * it works like an on/off switch, where as the disable() version
499e5470
SR
3151 * must be paired with a enable().
3152 */
3153void ring_buffer_record_off(struct ring_buffer *buffer)
3154{
3155 unsigned int rd;
3156 unsigned int new_rd;
3157
3158 do {
3159 rd = atomic_read(&buffer->record_disabled);
3160 new_rd = rd | RB_BUFFER_OFF;
3161 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3162}
3163EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3164
3165/**
3166 * ring_buffer_record_on - restart writes into the buffer
3167 * @buffer: The ring buffer to start writes to.
3168 *
3169 * This enables all writes to the buffer that was disabled by
3170 * ring_buffer_record_off().
3171 *
3172 * This is different than ring_buffer_record_enable() as
87abb3b1 3173 * it works like an on/off switch, where as the enable() version
499e5470
SR
3174 * must be paired with a disable().
3175 */
3176void ring_buffer_record_on(struct ring_buffer *buffer)
3177{
3178 unsigned int rd;
3179 unsigned int new_rd;
3180
3181 do {
3182 rd = atomic_read(&buffer->record_disabled);
3183 new_rd = rd & ~RB_BUFFER_OFF;
3184 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3185}
3186EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3187
3188/**
3189 * ring_buffer_record_is_on - return true if the ring buffer can write
3190 * @buffer: The ring buffer to see if write is enabled
3191 *
3192 * Returns true if the ring buffer is in a state that it accepts writes.
3193 */
3194int ring_buffer_record_is_on(struct ring_buffer *buffer)
3195{
3196 return !atomic_read(&buffer->record_disabled);
3197}
3198
7a8e76a3
SR
3199/**
3200 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3201 * @buffer: The ring buffer to stop writes to.
3202 * @cpu: The CPU buffer to stop
3203 *
3204 * This prevents all writes to the buffer. Any attempt to write
3205 * to the buffer after this will fail and return NULL.
3206 *
3207 * The caller should call synchronize_sched() after this.
3208 */
3209void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3210{
3211 struct ring_buffer_per_cpu *cpu_buffer;
3212
9e01c1b7 3213 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3214 return;
7a8e76a3
SR
3215
3216 cpu_buffer = buffer->buffers[cpu];
3217 atomic_inc(&cpu_buffer->record_disabled);
3218}
c4f50183 3219EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3220
3221/**
3222 * ring_buffer_record_enable_cpu - enable writes to the buffer
3223 * @buffer: The ring buffer to enable writes
3224 * @cpu: The CPU to enable.
3225 *
3226 * Note, multiple disables will need the same number of enables
c41b20e7 3227 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3228 */
3229void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3230{
3231 struct ring_buffer_per_cpu *cpu_buffer;
3232
9e01c1b7 3233 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3234 return;
7a8e76a3
SR
3235
3236 cpu_buffer = buffer->buffers[cpu];
3237 atomic_dec(&cpu_buffer->record_disabled);
3238}
c4f50183 3239EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3240
f6195aa0
SR
3241/*
3242 * The total entries in the ring buffer is the running counter
3243 * of entries entered into the ring buffer, minus the sum of
3244 * the entries read from the ring buffer and the number of
3245 * entries that were overwritten.
3246 */
3247static inline unsigned long
3248rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3249{
3250 return local_read(&cpu_buffer->entries) -
3251 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3252}
3253
c64e148a
VN
3254/**
3255 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to read from.
3258 */
50ecf2c3 3259u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3260{
3261 unsigned long flags;
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 struct buffer_page *bpage;
da830e58 3264 u64 ret = 0;
c64e148a
VN
3265
3266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267 return 0;
3268
3269 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3270 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3271 /*
3272 * if the tail is on reader_page, oldest time stamp is on the reader
3273 * page
3274 */
3275 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3276 bpage = cpu_buffer->reader_page;
3277 else
3278 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3279 if (bpage)
3280 ret = bpage->page->time_stamp;
7115e3fc 3281 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3282
3283 return ret;
3284}
3285EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3286
3287/**
3288 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3289 * @buffer: The ring buffer
3290 * @cpu: The per CPU buffer to read from.
3291 */
3292unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3293{
3294 struct ring_buffer_per_cpu *cpu_buffer;
3295 unsigned long ret;
3296
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return 0;
3299
3300 cpu_buffer = buffer->buffers[cpu];
3301 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3302
3303 return ret;
3304}
3305EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3306
7a8e76a3
SR
3307/**
3308 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3309 * @buffer: The ring buffer
3310 * @cpu: The per CPU buffer to get the entries from.
3311 */
3312unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3313{
3314 struct ring_buffer_per_cpu *cpu_buffer;
3315
9e01c1b7 3316 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3317 return 0;
7a8e76a3
SR
3318
3319 cpu_buffer = buffer->buffers[cpu];
554f786e 3320
f6195aa0 3321 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3322}
c4f50183 3323EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3324
3325/**
884bfe89
SP
3326 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3327 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3328 * @buffer: The ring buffer
3329 * @cpu: The per CPU buffer to get the number of overruns from
3330 */
3331unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3332{
3333 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3334 unsigned long ret;
7a8e76a3 3335
9e01c1b7 3336 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3337 return 0;
7a8e76a3
SR
3338
3339 cpu_buffer = buffer->buffers[cpu];
77ae365e 3340 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3341
3342 return ret;
7a8e76a3 3343}
c4f50183 3344EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3345
f0d2c681 3346/**
884bfe89
SP
3347 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3348 * commits failing due to the buffer wrapping around while there are uncommitted
3349 * events, such as during an interrupt storm.
f0d2c681
SR
3350 * @buffer: The ring buffer
3351 * @cpu: The per CPU buffer to get the number of overruns from
3352 */
3353unsigned long
3354ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3355{
3356 struct ring_buffer_per_cpu *cpu_buffer;
3357 unsigned long ret;
3358
3359 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3360 return 0;
3361
3362 cpu_buffer = buffer->buffers[cpu];
77ae365e 3363 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3364
3365 return ret;
3366}
3367EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3368
884bfe89
SP
3369/**
3370 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3371 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3372 * @buffer: The ring buffer
3373 * @cpu: The per CPU buffer to get the number of overruns from
3374 */
3375unsigned long
3376ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3377{
3378 struct ring_buffer_per_cpu *cpu_buffer;
3379 unsigned long ret;
3380
3381 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3382 return 0;
3383
3384 cpu_buffer = buffer->buffers[cpu];
3385 ret = local_read(&cpu_buffer->dropped_events);
3386
3387 return ret;
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3390
ad964704
SRRH
3391/**
3392 * ring_buffer_read_events_cpu - get the number of events successfully read
3393 * @buffer: The ring buffer
3394 * @cpu: The per CPU buffer to get the number of events read
3395 */
3396unsigned long
3397ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3398{
3399 struct ring_buffer_per_cpu *cpu_buffer;
3400
3401 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3402 return 0;
3403
3404 cpu_buffer = buffer->buffers[cpu];
3405 return cpu_buffer->read;
3406}
3407EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3408
7a8e76a3
SR
3409/**
3410 * ring_buffer_entries - get the number of entries in a buffer
3411 * @buffer: The ring buffer
3412 *
3413 * Returns the total number of entries in the ring buffer
3414 * (all CPU entries)
3415 */
3416unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3417{
3418 struct ring_buffer_per_cpu *cpu_buffer;
3419 unsigned long entries = 0;
3420 int cpu;
3421
3422 /* if you care about this being correct, lock the buffer */
3423 for_each_buffer_cpu(buffer, cpu) {
3424 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3425 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3426 }
3427
3428 return entries;
3429}
c4f50183 3430EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3431
3432/**
67b394f7 3433 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3434 * @buffer: The ring buffer
3435 *
3436 * Returns the total number of overruns in the ring buffer
3437 * (all CPU entries)
3438 */
3439unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3440{
3441 struct ring_buffer_per_cpu *cpu_buffer;
3442 unsigned long overruns = 0;
3443 int cpu;
3444
3445 /* if you care about this being correct, lock the buffer */
3446 for_each_buffer_cpu(buffer, cpu) {
3447 cpu_buffer = buffer->buffers[cpu];
77ae365e 3448 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3449 }
3450
3451 return overruns;
3452}
c4f50183 3453EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3454
642edba5 3455static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3456{
3457 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3458
d769041f 3459 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3460 iter->head_page = cpu_buffer->reader_page;
3461 iter->head = cpu_buffer->reader_page->read;
3462
3463 iter->cache_reader_page = iter->head_page;
24607f11 3464 iter->cache_read = cpu_buffer->read;
651e22f2 3465
d769041f
SR
3466 if (iter->head)
3467 iter->read_stamp = cpu_buffer->read_stamp;
3468 else
abc9b56d 3469 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3470}
f83c9d0f 3471
642edba5
SR
3472/**
3473 * ring_buffer_iter_reset - reset an iterator
3474 * @iter: The iterator to reset
3475 *
3476 * Resets the iterator, so that it will start from the beginning
3477 * again.
3478 */
3479void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3480{
554f786e 3481 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3482 unsigned long flags;
3483
554f786e
SR
3484 if (!iter)
3485 return;
3486
3487 cpu_buffer = iter->cpu_buffer;
3488
5389f6fa 3489 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3490 rb_iter_reset(iter);
5389f6fa 3491 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3492}
c4f50183 3493EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3494
3495/**
3496 * ring_buffer_iter_empty - check if an iterator has no more to read
3497 * @iter: The iterator to check
3498 */
3499int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3500{
3501 struct ring_buffer_per_cpu *cpu_buffer;
3502
3503 cpu_buffer = iter->cpu_buffer;
3504
bf41a158
SR
3505 return iter->head_page == cpu_buffer->commit_page &&
3506 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3507}
c4f50183 3508EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3509
3510static void
3511rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3512 struct ring_buffer_event *event)
3513{
3514 u64 delta;
3515
334d4169 3516 switch (event->type_len) {
7a8e76a3
SR
3517 case RINGBUF_TYPE_PADDING:
3518 return;
3519
3520 case RINGBUF_TYPE_TIME_EXTEND:
3521 delta = event->array[0];
3522 delta <<= TS_SHIFT;
3523 delta += event->time_delta;
3524 cpu_buffer->read_stamp += delta;
3525 return;
3526
3527 case RINGBUF_TYPE_TIME_STAMP:
3528 /* FIXME: not implemented */
3529 return;
3530
3531 case RINGBUF_TYPE_DATA:
3532 cpu_buffer->read_stamp += event->time_delta;
3533 return;
3534
3535 default:
3536 BUG();
3537 }
3538 return;
3539}
3540
3541static void
3542rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3543 struct ring_buffer_event *event)
3544{
3545 u64 delta;
3546
334d4169 3547 switch (event->type_len) {
7a8e76a3
SR
3548 case RINGBUF_TYPE_PADDING:
3549 return;
3550
3551 case RINGBUF_TYPE_TIME_EXTEND:
3552 delta = event->array[0];
3553 delta <<= TS_SHIFT;
3554 delta += event->time_delta;
3555 iter->read_stamp += delta;
3556 return;
3557
3558 case RINGBUF_TYPE_TIME_STAMP:
3559 /* FIXME: not implemented */
3560 return;
3561
3562 case RINGBUF_TYPE_DATA:
3563 iter->read_stamp += event->time_delta;
3564 return;
3565
3566 default:
3567 BUG();
3568 }
3569 return;
3570}
3571
d769041f
SR
3572static struct buffer_page *
3573rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3574{
d769041f 3575 struct buffer_page *reader = NULL;
66a8cb95 3576 unsigned long overwrite;
d769041f 3577 unsigned long flags;
818e3dd3 3578 int nr_loops = 0;
77ae365e 3579 int ret;
d769041f 3580
3e03fb7f 3581 local_irq_save(flags);
0199c4e6 3582 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3583
3584 again:
818e3dd3
SR
3585 /*
3586 * This should normally only loop twice. But because the
3587 * start of the reader inserts an empty page, it causes
3588 * a case where we will loop three times. There should be no
3589 * reason to loop four times (that I know of).
3590 */
3e89c7bb 3591 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3592 reader = NULL;
3593 goto out;
3594 }
3595
d769041f
SR
3596 reader = cpu_buffer->reader_page;
3597
3598 /* If there's more to read, return this page */
bf41a158 3599 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3600 goto out;
3601
3602 /* Never should we have an index greater than the size */
3e89c7bb
SR
3603 if (RB_WARN_ON(cpu_buffer,
3604 cpu_buffer->reader_page->read > rb_page_size(reader)))
3605 goto out;
d769041f
SR
3606
3607 /* check if we caught up to the tail */
3608 reader = NULL;
bf41a158 3609 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3610 goto out;
7a8e76a3 3611
a5fb8331
SR
3612 /* Don't bother swapping if the ring buffer is empty */
3613 if (rb_num_of_entries(cpu_buffer) == 0)
3614 goto out;
3615
7a8e76a3 3616 /*
d769041f 3617 * Reset the reader page to size zero.
7a8e76a3 3618 */
77ae365e
SR
3619 local_set(&cpu_buffer->reader_page->write, 0);
3620 local_set(&cpu_buffer->reader_page->entries, 0);
3621 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3622 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3623
77ae365e
SR
3624 spin:
3625 /*
3626 * Splice the empty reader page into the list around the head.
3627 */
3628 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3629 if (!reader)
3630 goto out;
0e1ff5d7 3631 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3632 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3633
3adc54fa
SR
3634 /*
3635 * cpu_buffer->pages just needs to point to the buffer, it
3636 * has no specific buffer page to point to. Lets move it out
25985edc 3637 * of our way so we don't accidentally swap it.
3adc54fa
SR
3638 */
3639 cpu_buffer->pages = reader->list.prev;
3640
77ae365e
SR
3641 /* The reader page will be pointing to the new head */
3642 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3643
66a8cb95
SR
3644 /*
3645 * We want to make sure we read the overruns after we set up our
3646 * pointers to the next object. The writer side does a
3647 * cmpxchg to cross pages which acts as the mb on the writer
3648 * side. Note, the reader will constantly fail the swap
3649 * while the writer is updating the pointers, so this
3650 * guarantees that the overwrite recorded here is the one we
3651 * want to compare with the last_overrun.
3652 */
3653 smp_mb();
3654 overwrite = local_read(&(cpu_buffer->overrun));
3655
77ae365e
SR
3656 /*
3657 * Here's the tricky part.
3658 *
3659 * We need to move the pointer past the header page.
3660 * But we can only do that if a writer is not currently
3661 * moving it. The page before the header page has the
3662 * flag bit '1' set if it is pointing to the page we want.
3663 * but if the writer is in the process of moving it
3664 * than it will be '2' or already moved '0'.
3665 */
3666
3667 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3668
3669 /*
77ae365e 3670 * If we did not convert it, then we must try again.
7a8e76a3 3671 */
77ae365e
SR
3672 if (!ret)
3673 goto spin;
7a8e76a3 3674
77ae365e
SR
3675 /*
3676 * Yeah! We succeeded in replacing the page.
3677 *
3678 * Now make the new head point back to the reader page.
3679 */
5ded3dc6 3680 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3681 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3682
3683 /* Finally update the reader page to the new head */
3684 cpu_buffer->reader_page = reader;
3685 rb_reset_reader_page(cpu_buffer);
3686
66a8cb95
SR
3687 if (overwrite != cpu_buffer->last_overrun) {
3688 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3689 cpu_buffer->last_overrun = overwrite;
3690 }
3691
d769041f
SR
3692 goto again;
3693
3694 out:
0199c4e6 3695 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3696 local_irq_restore(flags);
d769041f
SR
3697
3698 return reader;
3699}
3700
3701static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3702{
3703 struct ring_buffer_event *event;
3704 struct buffer_page *reader;
3705 unsigned length;
3706
3707 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3708
d769041f 3709 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3710 if (RB_WARN_ON(cpu_buffer, !reader))
3711 return;
7a8e76a3 3712
d769041f
SR
3713 event = rb_reader_event(cpu_buffer);
3714
a1863c21 3715 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3716 cpu_buffer->read++;
d769041f
SR
3717
3718 rb_update_read_stamp(cpu_buffer, event);
3719
3720 length = rb_event_length(event);
6f807acd 3721 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3722}
3723
3724static void rb_advance_iter(struct ring_buffer_iter *iter)
3725{
7a8e76a3
SR
3726 struct ring_buffer_per_cpu *cpu_buffer;
3727 struct ring_buffer_event *event;
3728 unsigned length;
3729
3730 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3731
3732 /*
3733 * Check if we are at the end of the buffer.
3734 */
bf41a158 3735 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3736 /* discarded commits can make the page empty */
3737 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3738 return;
d769041f 3739 rb_inc_iter(iter);
7a8e76a3
SR
3740 return;
3741 }
3742
3743 event = rb_iter_head_event(iter);
3744
3745 length = rb_event_length(event);
3746
3747 /*
3748 * This should not be called to advance the header if we are
3749 * at the tail of the buffer.
3750 */
3e89c7bb 3751 if (RB_WARN_ON(cpu_buffer,
f536aafc 3752 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3753 (iter->head + length > rb_commit_index(cpu_buffer))))
3754 return;
7a8e76a3
SR
3755
3756 rb_update_iter_read_stamp(iter, event);
3757
3758 iter->head += length;
3759
3760 /* check for end of page padding */
bf41a158
SR
3761 if ((iter->head >= rb_page_size(iter->head_page)) &&
3762 (iter->head_page != cpu_buffer->commit_page))
771e0384 3763 rb_inc_iter(iter);
7a8e76a3
SR
3764}
3765
66a8cb95
SR
3766static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3767{
3768 return cpu_buffer->lost_events;
3769}
3770
f83c9d0f 3771static struct ring_buffer_event *
66a8cb95
SR
3772rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3773 unsigned long *lost_events)
7a8e76a3 3774{
7a8e76a3 3775 struct ring_buffer_event *event;
d769041f 3776 struct buffer_page *reader;
818e3dd3 3777 int nr_loops = 0;
7a8e76a3 3778
7a8e76a3 3779 again:
818e3dd3 3780 /*
69d1b839
SR
3781 * We repeat when a time extend is encountered.
3782 * Since the time extend is always attached to a data event,
3783 * we should never loop more than once.
3784 * (We never hit the following condition more than twice).
818e3dd3 3785 */
69d1b839 3786 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3787 return NULL;
818e3dd3 3788
d769041f
SR
3789 reader = rb_get_reader_page(cpu_buffer);
3790 if (!reader)
7a8e76a3
SR
3791 return NULL;
3792
d769041f 3793 event = rb_reader_event(cpu_buffer);
7a8e76a3 3794
334d4169 3795 switch (event->type_len) {
7a8e76a3 3796 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3797 if (rb_null_event(event))
3798 RB_WARN_ON(cpu_buffer, 1);
3799 /*
3800 * Because the writer could be discarding every
3801 * event it creates (which would probably be bad)
3802 * if we were to go back to "again" then we may never
3803 * catch up, and will trigger the warn on, or lock
3804 * the box. Return the padding, and we will release
3805 * the current locks, and try again.
3806 */
2d622719 3807 return event;
7a8e76a3
SR
3808
3809 case RINGBUF_TYPE_TIME_EXTEND:
3810 /* Internal data, OK to advance */
d769041f 3811 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3812 goto again;
3813
3814 case RINGBUF_TYPE_TIME_STAMP:
3815 /* FIXME: not implemented */
d769041f 3816 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3817 goto again;
3818
3819 case RINGBUF_TYPE_DATA:
3820 if (ts) {
3821 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3822 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3823 cpu_buffer->cpu, ts);
7a8e76a3 3824 }
66a8cb95
SR
3825 if (lost_events)
3826 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3827 return event;
3828
3829 default:
3830 BUG();
3831 }
3832
3833 return NULL;
3834}
c4f50183 3835EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3836
f83c9d0f
SR
3837static struct ring_buffer_event *
3838rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3839{
3840 struct ring_buffer *buffer;
3841 struct ring_buffer_per_cpu *cpu_buffer;
3842 struct ring_buffer_event *event;
818e3dd3 3843 int nr_loops = 0;
7a8e76a3 3844
7a8e76a3
SR
3845 cpu_buffer = iter->cpu_buffer;
3846 buffer = cpu_buffer->buffer;
3847
492a74f4
SR
3848 /*
3849 * Check if someone performed a consuming read to
3850 * the buffer. A consuming read invalidates the iterator
3851 * and we need to reset the iterator in this case.
3852 */
3853 if (unlikely(iter->cache_read != cpu_buffer->read ||
3854 iter->cache_reader_page != cpu_buffer->reader_page))
3855 rb_iter_reset(iter);
3856
7a8e76a3 3857 again:
3c05d748
SR
3858 if (ring_buffer_iter_empty(iter))
3859 return NULL;
3860
818e3dd3 3861 /*
021de3d9
SRRH
3862 * We repeat when a time extend is encountered or we hit
3863 * the end of the page. Since the time extend is always attached
3864 * to a data event, we should never loop more than three times.
3865 * Once for going to next page, once on time extend, and
3866 * finally once to get the event.
3867 * (We never hit the following condition more than thrice).
818e3dd3 3868 */
021de3d9 3869 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3870 return NULL;
818e3dd3 3871
7a8e76a3
SR
3872 if (rb_per_cpu_empty(cpu_buffer))
3873 return NULL;
3874
10e83fd0 3875 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3876 rb_inc_iter(iter);
3877 goto again;
3878 }
3879
7a8e76a3
SR
3880 event = rb_iter_head_event(iter);
3881
334d4169 3882 switch (event->type_len) {
7a8e76a3 3883 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3884 if (rb_null_event(event)) {
3885 rb_inc_iter(iter);
3886 goto again;
3887 }
3888 rb_advance_iter(iter);
3889 return event;
7a8e76a3
SR
3890
3891 case RINGBUF_TYPE_TIME_EXTEND:
3892 /* Internal data, OK to advance */
3893 rb_advance_iter(iter);
3894 goto again;
3895
3896 case RINGBUF_TYPE_TIME_STAMP:
3897 /* FIXME: not implemented */
3898 rb_advance_iter(iter);
3899 goto again;
3900
3901 case RINGBUF_TYPE_DATA:
3902 if (ts) {
3903 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3904 ring_buffer_normalize_time_stamp(buffer,
3905 cpu_buffer->cpu, ts);
7a8e76a3
SR
3906 }
3907 return event;
3908
3909 default:
3910 BUG();
3911 }
3912
3913 return NULL;
3914}
c4f50183 3915EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3916
289a5a25 3917static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3918{
289a5a25
SRRH
3919 if (likely(!in_nmi())) {
3920 raw_spin_lock(&cpu_buffer->reader_lock);
3921 return true;
3922 }
3923
8d707e8e
SR
3924 /*
3925 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3926 * trylock must be used to prevent a deadlock if the NMI
3927 * preempted a task that holds the ring buffer locks. If
3928 * we get the lock then all is fine, if not, then continue
3929 * to do the read, but this can corrupt the ring buffer,
3930 * so it must be permanently disabled from future writes.
3931 * Reading from NMI is a oneshot deal.
8d707e8e 3932 */
289a5a25
SRRH
3933 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3934 return true;
8d707e8e 3935
289a5a25
SRRH
3936 /* Continue without locking, but disable the ring buffer */
3937 atomic_inc(&cpu_buffer->record_disabled);
3938 return false;
3939}
3940
3941static inline void
3942rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3943{
3944 if (likely(locked))
3945 raw_spin_unlock(&cpu_buffer->reader_lock);
3946 return;
8d707e8e
SR
3947}
3948
f83c9d0f
SR
3949/**
3950 * ring_buffer_peek - peek at the next event to be read
3951 * @buffer: The ring buffer to read
3952 * @cpu: The cpu to peak at
3953 * @ts: The timestamp counter of this event.
66a8cb95 3954 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3955 *
3956 * This will return the event that will be read next, but does
3957 * not consume the data.
3958 */
3959struct ring_buffer_event *
66a8cb95
SR
3960ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3961 unsigned long *lost_events)
f83c9d0f
SR
3962{
3963 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3964 struct ring_buffer_event *event;
f83c9d0f 3965 unsigned long flags;
289a5a25 3966 bool dolock;
f83c9d0f 3967
554f786e 3968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3969 return NULL;
554f786e 3970
2d622719 3971 again:
8d707e8e 3972 local_irq_save(flags);
289a5a25 3973 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3974 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3975 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3976 rb_advance_reader(cpu_buffer);
289a5a25 3977 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3978 local_irq_restore(flags);
f83c9d0f 3979
1b959e18 3980 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3981 goto again;
2d622719 3982
f83c9d0f
SR
3983 return event;
3984}
3985
3986/**
3987 * ring_buffer_iter_peek - peek at the next event to be read
3988 * @iter: The ring buffer iterator
3989 * @ts: The timestamp counter of this event.
3990 *
3991 * This will return the event that will be read next, but does
3992 * not increment the iterator.
3993 */
3994struct ring_buffer_event *
3995ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3996{
3997 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3998 struct ring_buffer_event *event;
3999 unsigned long flags;
4000
2d622719 4001 again:
5389f6fa 4002 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4003 event = rb_iter_peek(iter, ts);
5389f6fa 4004 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4005
1b959e18 4006 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4007 goto again;
2d622719 4008
f83c9d0f
SR
4009 return event;
4010}
4011
7a8e76a3
SR
4012/**
4013 * ring_buffer_consume - return an event and consume it
4014 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4015 * @cpu: the cpu to read the buffer from
4016 * @ts: a variable to store the timestamp (may be NULL)
4017 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4018 *
4019 * Returns the next event in the ring buffer, and that event is consumed.
4020 * Meaning, that sequential reads will keep returning a different event,
4021 * and eventually empty the ring buffer if the producer is slower.
4022 */
4023struct ring_buffer_event *
66a8cb95
SR
4024ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4025 unsigned long *lost_events)
7a8e76a3 4026{
554f786e
SR
4027 struct ring_buffer_per_cpu *cpu_buffer;
4028 struct ring_buffer_event *event = NULL;
f83c9d0f 4029 unsigned long flags;
289a5a25 4030 bool dolock;
7a8e76a3 4031
2d622719 4032 again:
554f786e
SR
4033 /* might be called in atomic */
4034 preempt_disable();
4035
9e01c1b7 4036 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4037 goto out;
7a8e76a3 4038
554f786e 4039 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4040 local_irq_save(flags);
289a5a25 4041 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4042
66a8cb95
SR
4043 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4044 if (event) {
4045 cpu_buffer->lost_events = 0;
469535a5 4046 rb_advance_reader(cpu_buffer);
66a8cb95 4047 }
7a8e76a3 4048
289a5a25 4049 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4050 local_irq_restore(flags);
f83c9d0f 4051
554f786e
SR
4052 out:
4053 preempt_enable();
4054
1b959e18 4055 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4056 goto again;
2d622719 4057
7a8e76a3
SR
4058 return event;
4059}
c4f50183 4060EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4061
4062/**
72c9ddfd 4063 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4064 * @buffer: The ring buffer to read from
4065 * @cpu: The cpu buffer to iterate over
4066 *
72c9ddfd
DM
4067 * This performs the initial preparations necessary to iterate
4068 * through the buffer. Memory is allocated, buffer recording
4069 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4070 *
72c9ddfd
DM
4071 * Disabling buffer recordng prevents the reading from being
4072 * corrupted. This is not a consuming read, so a producer is not
4073 * expected.
4074 *
4075 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4076 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4077 * Afterwards, ring_buffer_read_start is invoked to get things going
4078 * for real.
4079 *
d611851b 4080 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4081 */
4082struct ring_buffer_iter *
72c9ddfd 4083ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4084{
4085 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4086 struct ring_buffer_iter *iter;
7a8e76a3 4087
9e01c1b7 4088 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4089 return NULL;
7a8e76a3
SR
4090
4091 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4092 if (!iter)
8aabee57 4093 return NULL;
7a8e76a3
SR
4094
4095 cpu_buffer = buffer->buffers[cpu];
4096
4097 iter->cpu_buffer = cpu_buffer;
4098
83f40318 4099 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4100 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4101
4102 return iter;
4103}
4104EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4105
4106/**
4107 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4108 *
4109 * All previously invoked ring_buffer_read_prepare calls to prepare
4110 * iterators will be synchronized. Afterwards, read_buffer_read_start
4111 * calls on those iterators are allowed.
4112 */
4113void
4114ring_buffer_read_prepare_sync(void)
4115{
7a8e76a3 4116 synchronize_sched();
72c9ddfd
DM
4117}
4118EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4119
4120/**
4121 * ring_buffer_read_start - start a non consuming read of the buffer
4122 * @iter: The iterator returned by ring_buffer_read_prepare
4123 *
4124 * This finalizes the startup of an iteration through the buffer.
4125 * The iterator comes from a call to ring_buffer_read_prepare and
4126 * an intervening ring_buffer_read_prepare_sync must have been
4127 * performed.
4128 *
d611851b 4129 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4130 */
4131void
4132ring_buffer_read_start(struct ring_buffer_iter *iter)
4133{
4134 struct ring_buffer_per_cpu *cpu_buffer;
4135 unsigned long flags;
4136
4137 if (!iter)
4138 return;
4139
4140 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4141
5389f6fa 4142 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4143 arch_spin_lock(&cpu_buffer->lock);
642edba5 4144 rb_iter_reset(iter);
0199c4e6 4145 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4146 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4147}
c4f50183 4148EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4149
4150/**
d611851b 4151 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4152 * @iter: The iterator retrieved by ring_buffer_start
4153 *
4154 * This re-enables the recording to the buffer, and frees the
4155 * iterator.
4156 */
4157void
4158ring_buffer_read_finish(struct ring_buffer_iter *iter)
4159{
4160 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4161 unsigned long flags;
7a8e76a3 4162
659f451f
SR
4163 /*
4164 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4165 * to check the integrity of the ring buffer.
4166 * Must prevent readers from trying to read, as the check
4167 * clears the HEAD page and readers require it.
659f451f 4168 */
9366c1ba 4169 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4170 rb_check_pages(cpu_buffer);
9366c1ba 4171 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4172
7a8e76a3 4173 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4174 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4175 kfree(iter);
4176}
c4f50183 4177EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4178
4179/**
4180 * ring_buffer_read - read the next item in the ring buffer by the iterator
4181 * @iter: The ring buffer iterator
4182 * @ts: The time stamp of the event read.
4183 *
4184 * This reads the next event in the ring buffer and increments the iterator.
4185 */
4186struct ring_buffer_event *
4187ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4188{
4189 struct ring_buffer_event *event;
f83c9d0f
SR
4190 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4191 unsigned long flags;
7a8e76a3 4192
5389f6fa 4193 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4194 again:
f83c9d0f 4195 event = rb_iter_peek(iter, ts);
7a8e76a3 4196 if (!event)
f83c9d0f 4197 goto out;
7a8e76a3 4198
7e9391cf
SR
4199 if (event->type_len == RINGBUF_TYPE_PADDING)
4200 goto again;
4201
7a8e76a3 4202 rb_advance_iter(iter);
f83c9d0f 4203 out:
5389f6fa 4204 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4205
4206 return event;
4207}
c4f50183 4208EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4209
4210/**
4211 * ring_buffer_size - return the size of the ring buffer (in bytes)
4212 * @buffer: The ring buffer.
4213 */
438ced17 4214unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4215{
438ced17
VN
4216 /*
4217 * Earlier, this method returned
4218 * BUF_PAGE_SIZE * buffer->nr_pages
4219 * Since the nr_pages field is now removed, we have converted this to
4220 * return the per cpu buffer value.
4221 */
4222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4223 return 0;
4224
4225 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4226}
c4f50183 4227EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4228
4229static void
4230rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4231{
77ae365e
SR
4232 rb_head_page_deactivate(cpu_buffer);
4233
7a8e76a3 4234 cpu_buffer->head_page
3adc54fa 4235 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4236 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4237 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4238 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4239
6f807acd 4240 cpu_buffer->head_page->read = 0;
bf41a158
SR
4241
4242 cpu_buffer->tail_page = cpu_buffer->head_page;
4243 cpu_buffer->commit_page = cpu_buffer->head_page;
4244
4245 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4246 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4247 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4248 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4249 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4250 cpu_buffer->reader_page->read = 0;
7a8e76a3 4251
c64e148a 4252 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4253 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4254 local_set(&cpu_buffer->commit_overrun, 0);
4255 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4256 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4257 local_set(&cpu_buffer->committing, 0);
4258 local_set(&cpu_buffer->commits, 0);
77ae365e 4259 cpu_buffer->read = 0;
c64e148a 4260 cpu_buffer->read_bytes = 0;
69507c06
SR
4261
4262 cpu_buffer->write_stamp = 0;
4263 cpu_buffer->read_stamp = 0;
77ae365e 4264
66a8cb95
SR
4265 cpu_buffer->lost_events = 0;
4266 cpu_buffer->last_overrun = 0;
4267
77ae365e 4268 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4269}
4270
4271/**
4272 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4273 * @buffer: The ring buffer to reset a per cpu buffer of
4274 * @cpu: The CPU buffer to be reset
4275 */
4276void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4277{
4278 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4279 unsigned long flags;
4280
9e01c1b7 4281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4282 return;
7a8e76a3 4283
83f40318 4284 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4285 atomic_inc(&cpu_buffer->record_disabled);
4286
83f40318
VN
4287 /* Make sure all commits have finished */
4288 synchronize_sched();
4289
5389f6fa 4290 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4291
41b6a95d
SR
4292 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4293 goto out;
4294
0199c4e6 4295 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4296
4297 rb_reset_cpu(cpu_buffer);
4298
0199c4e6 4299 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4300
41b6a95d 4301 out:
5389f6fa 4302 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4303
4304 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4305 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4306}
c4f50183 4307EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4308
4309/**
4310 * ring_buffer_reset - reset a ring buffer
4311 * @buffer: The ring buffer to reset all cpu buffers
4312 */
4313void ring_buffer_reset(struct ring_buffer *buffer)
4314{
7a8e76a3
SR
4315 int cpu;
4316
7a8e76a3 4317 for_each_buffer_cpu(buffer, cpu)
d769041f 4318 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4319}
c4f50183 4320EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4321
4322/**
4323 * rind_buffer_empty - is the ring buffer empty?
4324 * @buffer: The ring buffer to test
4325 */
4326int ring_buffer_empty(struct ring_buffer *buffer)
4327{
4328 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4329 unsigned long flags;
289a5a25 4330 bool dolock;
7a8e76a3 4331 int cpu;
d4788207 4332 int ret;
7a8e76a3
SR
4333
4334 /* yes this is racy, but if you don't like the race, lock the buffer */
4335 for_each_buffer_cpu(buffer, cpu) {
4336 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4337 local_irq_save(flags);
289a5a25 4338 dolock = rb_reader_lock(cpu_buffer);
d4788207 4339 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4340 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4341 local_irq_restore(flags);
4342
d4788207 4343 if (!ret)
7a8e76a3
SR
4344 return 0;
4345 }
554f786e 4346
7a8e76a3
SR
4347 return 1;
4348}
c4f50183 4349EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4350
4351/**
4352 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4353 * @buffer: The ring buffer
4354 * @cpu: The CPU buffer to test
4355 */
4356int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4357{
4358 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4359 unsigned long flags;
289a5a25 4360 bool dolock;
8aabee57 4361 int ret;
7a8e76a3 4362
9e01c1b7 4363 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4364 return 1;
7a8e76a3
SR
4365
4366 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4367 local_irq_save(flags);
289a5a25 4368 dolock = rb_reader_lock(cpu_buffer);
554f786e 4369 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4370 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4371 local_irq_restore(flags);
554f786e
SR
4372
4373 return ret;
7a8e76a3 4374}
c4f50183 4375EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4376
85bac32c 4377#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4378/**
4379 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4380 * @buffer_a: One buffer to swap with
4381 * @buffer_b: The other buffer to swap with
4382 *
4383 * This function is useful for tracers that want to take a "snapshot"
4384 * of a CPU buffer and has another back up buffer lying around.
4385 * it is expected that the tracer handles the cpu buffer not being
4386 * used at the moment.
4387 */
4388int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4389 struct ring_buffer *buffer_b, int cpu)
4390{
4391 struct ring_buffer_per_cpu *cpu_buffer_a;
4392 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4393 int ret = -EINVAL;
4394
9e01c1b7
RR
4395 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4396 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4397 goto out;
7a8e76a3 4398
438ced17
VN
4399 cpu_buffer_a = buffer_a->buffers[cpu];
4400 cpu_buffer_b = buffer_b->buffers[cpu];
4401
7a8e76a3 4402 /* At least make sure the two buffers are somewhat the same */
438ced17 4403 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4404 goto out;
4405
4406 ret = -EAGAIN;
7a8e76a3 4407
97b17efe 4408 if (atomic_read(&buffer_a->record_disabled))
554f786e 4409 goto out;
97b17efe
SR
4410
4411 if (atomic_read(&buffer_b->record_disabled))
554f786e 4412 goto out;
97b17efe 4413
97b17efe 4414 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4415 goto out;
97b17efe
SR
4416
4417 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4418 goto out;
97b17efe 4419
7a8e76a3
SR
4420 /*
4421 * We can't do a synchronize_sched here because this
4422 * function can be called in atomic context.
4423 * Normally this will be called from the same CPU as cpu.
4424 * If not it's up to the caller to protect this.
4425 */
4426 atomic_inc(&cpu_buffer_a->record_disabled);
4427 atomic_inc(&cpu_buffer_b->record_disabled);
4428
98277991
SR
4429 ret = -EBUSY;
4430 if (local_read(&cpu_buffer_a->committing))
4431 goto out_dec;
4432 if (local_read(&cpu_buffer_b->committing))
4433 goto out_dec;
4434
7a8e76a3
SR
4435 buffer_a->buffers[cpu] = cpu_buffer_b;
4436 buffer_b->buffers[cpu] = cpu_buffer_a;
4437
4438 cpu_buffer_b->buffer = buffer_a;
4439 cpu_buffer_a->buffer = buffer_b;
4440
98277991
SR
4441 ret = 0;
4442
4443out_dec:
7a8e76a3
SR
4444 atomic_dec(&cpu_buffer_a->record_disabled);
4445 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4446out:
554f786e 4447 return ret;
7a8e76a3 4448}
c4f50183 4449EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4450#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4451
8789a9e7
SR
4452/**
4453 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4454 * @buffer: the buffer to allocate for.
d611851b 4455 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4456 *
4457 * This function is used in conjunction with ring_buffer_read_page.
4458 * When reading a full page from the ring buffer, these functions
4459 * can be used to speed up the process. The calling function should
4460 * allocate a few pages first with this function. Then when it
4461 * needs to get pages from the ring buffer, it passes the result
4462 * of this function into ring_buffer_read_page, which will swap
4463 * the page that was allocated, with the read page of the buffer.
4464 *
4465 * Returns:
4466 * The page allocated, or NULL on error.
4467 */
7ea59064 4468void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4469{
044fa782 4470 struct buffer_data_page *bpage;
7ea59064 4471 struct page *page;
8789a9e7 4472
d7ec4bfe
VN
4473 page = alloc_pages_node(cpu_to_node(cpu),
4474 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4475 if (!page)
8789a9e7
SR
4476 return NULL;
4477
7ea59064 4478 bpage = page_address(page);
8789a9e7 4479
ef7a4a16
SR
4480 rb_init_page(bpage);
4481
044fa782 4482 return bpage;
8789a9e7 4483}
d6ce96da 4484EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4485
4486/**
4487 * ring_buffer_free_read_page - free an allocated read page
4488 * @buffer: the buffer the page was allocate for
4489 * @data: the page to free
4490 *
4491 * Free a page allocated from ring_buffer_alloc_read_page.
4492 */
4493void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4494{
4495 free_page((unsigned long)data);
4496}
d6ce96da 4497EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4498
4499/**
4500 * ring_buffer_read_page - extract a page from the ring buffer
4501 * @buffer: buffer to extract from
4502 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4503 * @len: amount to extract
8789a9e7
SR
4504 * @cpu: the cpu of the buffer to extract
4505 * @full: should the extraction only happen when the page is full.
4506 *
4507 * This function will pull out a page from the ring buffer and consume it.
4508 * @data_page must be the address of the variable that was returned
4509 * from ring_buffer_alloc_read_page. This is because the page might be used
4510 * to swap with a page in the ring buffer.
4511 *
4512 * for example:
d611851b 4513 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4514 * if (!rpage)
4515 * return error;
ef7a4a16 4516 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4517 * if (ret >= 0)
4518 * process_page(rpage, ret);
8789a9e7
SR
4519 *
4520 * When @full is set, the function will not return true unless
4521 * the writer is off the reader page.
4522 *
4523 * Note: it is up to the calling functions to handle sleeps and wakeups.
4524 * The ring buffer can be used anywhere in the kernel and can not
4525 * blindly call wake_up. The layer that uses the ring buffer must be
4526 * responsible for that.
4527 *
4528 * Returns:
667d2412
LJ
4529 * >=0 if data has been transferred, returns the offset of consumed data.
4530 * <0 if no data has been transferred.
8789a9e7
SR
4531 */
4532int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4533 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4534{
4535 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4536 struct ring_buffer_event *event;
044fa782 4537 struct buffer_data_page *bpage;
ef7a4a16 4538 struct buffer_page *reader;
ff0ff84a 4539 unsigned long missed_events;
8789a9e7 4540 unsigned long flags;
ef7a4a16 4541 unsigned int commit;
667d2412 4542 unsigned int read;
4f3640f8 4543 u64 save_timestamp;
667d2412 4544 int ret = -1;
8789a9e7 4545
554f786e
SR
4546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4547 goto out;
4548
474d32b6
SR
4549 /*
4550 * If len is not big enough to hold the page header, then
4551 * we can not copy anything.
4552 */
4553 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4554 goto out;
474d32b6
SR
4555
4556 len -= BUF_PAGE_HDR_SIZE;
4557
8789a9e7 4558 if (!data_page)
554f786e 4559 goto out;
8789a9e7 4560
044fa782
SR
4561 bpage = *data_page;
4562 if (!bpage)
554f786e 4563 goto out;
8789a9e7 4564
5389f6fa 4565 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4566
ef7a4a16
SR
4567 reader = rb_get_reader_page(cpu_buffer);
4568 if (!reader)
554f786e 4569 goto out_unlock;
8789a9e7 4570
ef7a4a16
SR
4571 event = rb_reader_event(cpu_buffer);
4572
4573 read = reader->read;
4574 commit = rb_page_commit(reader);
667d2412 4575
66a8cb95 4576 /* Check if any events were dropped */
ff0ff84a 4577 missed_events = cpu_buffer->lost_events;
66a8cb95 4578
8789a9e7 4579 /*
474d32b6
SR
4580 * If this page has been partially read or
4581 * if len is not big enough to read the rest of the page or
4582 * a writer is still on the page, then
4583 * we must copy the data from the page to the buffer.
4584 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4585 */
474d32b6 4586 if (read || (len < (commit - read)) ||
ef7a4a16 4587 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4588 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4589 unsigned int rpos = read;
4590 unsigned int pos = 0;
ef7a4a16 4591 unsigned int size;
8789a9e7
SR
4592
4593 if (full)
554f786e 4594 goto out_unlock;
8789a9e7 4595
ef7a4a16
SR
4596 if (len > (commit - read))
4597 len = (commit - read);
4598
69d1b839
SR
4599 /* Always keep the time extend and data together */
4600 size = rb_event_ts_length(event);
ef7a4a16
SR
4601
4602 if (len < size)
554f786e 4603 goto out_unlock;
ef7a4a16 4604
4f3640f8
SR
4605 /* save the current timestamp, since the user will need it */
4606 save_timestamp = cpu_buffer->read_stamp;
4607
ef7a4a16
SR
4608 /* Need to copy one event at a time */
4609 do {
e1e35927
DS
4610 /* We need the size of one event, because
4611 * rb_advance_reader only advances by one event,
4612 * whereas rb_event_ts_length may include the size of
4613 * one or two events.
4614 * We have already ensured there's enough space if this
4615 * is a time extend. */
4616 size = rb_event_length(event);
474d32b6 4617 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4618
4619 len -= size;
4620
4621 rb_advance_reader(cpu_buffer);
474d32b6
SR
4622 rpos = reader->read;
4623 pos += size;
ef7a4a16 4624
18fab912
HY
4625 if (rpos >= commit)
4626 break;
4627
ef7a4a16 4628 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4629 /* Always keep the time extend and data together */
4630 size = rb_event_ts_length(event);
e1e35927 4631 } while (len >= size);
667d2412
LJ
4632
4633 /* update bpage */
ef7a4a16 4634 local_set(&bpage->commit, pos);
4f3640f8 4635 bpage->time_stamp = save_timestamp;
ef7a4a16 4636
474d32b6
SR
4637 /* we copied everything to the beginning */
4638 read = 0;
8789a9e7 4639 } else {
afbab76a 4640 /* update the entry counter */
77ae365e 4641 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4642 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4643
8789a9e7 4644 /* swap the pages */
044fa782 4645 rb_init_page(bpage);
ef7a4a16
SR
4646 bpage = reader->page;
4647 reader->page = *data_page;
4648 local_set(&reader->write, 0);
778c55d4 4649 local_set(&reader->entries, 0);
ef7a4a16 4650 reader->read = 0;
044fa782 4651 *data_page = bpage;
ff0ff84a
SR
4652
4653 /*
4654 * Use the real_end for the data size,
4655 * This gives us a chance to store the lost events
4656 * on the page.
4657 */
4658 if (reader->real_end)
4659 local_set(&bpage->commit, reader->real_end);
8789a9e7 4660 }
667d2412 4661 ret = read;
8789a9e7 4662
66a8cb95 4663 cpu_buffer->lost_events = 0;
2711ca23
SR
4664
4665 commit = local_read(&bpage->commit);
66a8cb95
SR
4666 /*
4667 * Set a flag in the commit field if we lost events
4668 */
ff0ff84a 4669 if (missed_events) {
ff0ff84a
SR
4670 /* If there is room at the end of the page to save the
4671 * missed events, then record it there.
4672 */
4673 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4674 memcpy(&bpage->data[commit], &missed_events,
4675 sizeof(missed_events));
4676 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4677 commit += sizeof(missed_events);
ff0ff84a 4678 }
66a8cb95 4679 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4680 }
66a8cb95 4681
2711ca23
SR
4682 /*
4683 * This page may be off to user land. Zero it out here.
4684 */
4685 if (commit < BUF_PAGE_SIZE)
4686 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4687
554f786e 4688 out_unlock:
5389f6fa 4689 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4690
554f786e 4691 out:
8789a9e7
SR
4692 return ret;
4693}
d6ce96da 4694EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4695
59222efe 4696#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4697static int rb_cpu_notify(struct notifier_block *self,
4698 unsigned long action, void *hcpu)
554f786e
SR
4699{
4700 struct ring_buffer *buffer =
4701 container_of(self, struct ring_buffer, cpu_notify);
4702 long cpu = (long)hcpu;
438ced17
VN
4703 int cpu_i, nr_pages_same;
4704 unsigned int nr_pages;
554f786e
SR
4705
4706 switch (action) {
4707 case CPU_UP_PREPARE:
4708 case CPU_UP_PREPARE_FROZEN:
3f237a79 4709 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4710 return NOTIFY_OK;
4711
438ced17
VN
4712 nr_pages = 0;
4713 nr_pages_same = 1;
4714 /* check if all cpu sizes are same */
4715 for_each_buffer_cpu(buffer, cpu_i) {
4716 /* fill in the size from first enabled cpu */
4717 if (nr_pages == 0)
4718 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4719 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4720 nr_pages_same = 0;
4721 break;
4722 }
4723 }
4724 /* allocate minimum pages, user can later expand it */
4725 if (!nr_pages_same)
4726 nr_pages = 2;
554f786e 4727 buffer->buffers[cpu] =
438ced17 4728 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4729 if (!buffer->buffers[cpu]) {
4730 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4731 cpu);
4732 return NOTIFY_OK;
4733 }
4734 smp_wmb();
3f237a79 4735 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4736 break;
4737 case CPU_DOWN_PREPARE:
4738 case CPU_DOWN_PREPARE_FROZEN:
4739 /*
4740 * Do nothing.
4741 * If we were to free the buffer, then the user would
4742 * lose any trace that was in the buffer.
4743 */
4744 break;
4745 default:
4746 break;
4747 }
4748 return NOTIFY_OK;
4749}
4750#endif
6c43e554
SRRH
4751
4752#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4753/*
4754 * This is a basic integrity check of the ring buffer.
4755 * Late in the boot cycle this test will run when configured in.
4756 * It will kick off a thread per CPU that will go into a loop
4757 * writing to the per cpu ring buffer various sizes of data.
4758 * Some of the data will be large items, some small.
4759 *
4760 * Another thread is created that goes into a spin, sending out
4761 * IPIs to the other CPUs to also write into the ring buffer.
4762 * this is to test the nesting ability of the buffer.
4763 *
4764 * Basic stats are recorded and reported. If something in the
4765 * ring buffer should happen that's not expected, a big warning
4766 * is displayed and all ring buffers are disabled.
4767 */
4768static struct task_struct *rb_threads[NR_CPUS] __initdata;
4769
4770struct rb_test_data {
4771 struct ring_buffer *buffer;
4772 unsigned long events;
4773 unsigned long bytes_written;
4774 unsigned long bytes_alloc;
4775 unsigned long bytes_dropped;
4776 unsigned long events_nested;
4777 unsigned long bytes_written_nested;
4778 unsigned long bytes_alloc_nested;
4779 unsigned long bytes_dropped_nested;
4780 int min_size_nested;
4781 int max_size_nested;
4782 int max_size;
4783 int min_size;
4784 int cpu;
4785 int cnt;
4786};
4787
4788static struct rb_test_data rb_data[NR_CPUS] __initdata;
4789
4790/* 1 meg per cpu */
4791#define RB_TEST_BUFFER_SIZE 1048576
4792
4793static char rb_string[] __initdata =
4794 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4795 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4796 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4797
4798static bool rb_test_started __initdata;
4799
4800struct rb_item {
4801 int size;
4802 char str[];
4803};
4804
4805static __init int rb_write_something(struct rb_test_data *data, bool nested)
4806{
4807 struct ring_buffer_event *event;
4808 struct rb_item *item;
4809 bool started;
4810 int event_len;
4811 int size;
4812 int len;
4813 int cnt;
4814
4815 /* Have nested writes different that what is written */
4816 cnt = data->cnt + (nested ? 27 : 0);
4817
4818 /* Multiply cnt by ~e, to make some unique increment */
4819 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4820
4821 len = size + sizeof(struct rb_item);
4822
4823 started = rb_test_started;
4824 /* read rb_test_started before checking buffer enabled */
4825 smp_rmb();
4826
4827 event = ring_buffer_lock_reserve(data->buffer, len);
4828 if (!event) {
4829 /* Ignore dropped events before test starts. */
4830 if (started) {
4831 if (nested)
4832 data->bytes_dropped += len;
4833 else
4834 data->bytes_dropped_nested += len;
4835 }
4836 return len;
4837 }
4838
4839 event_len = ring_buffer_event_length(event);
4840
4841 if (RB_WARN_ON(data->buffer, event_len < len))
4842 goto out;
4843
4844 item = ring_buffer_event_data(event);
4845 item->size = size;
4846 memcpy(item->str, rb_string, size);
4847
4848 if (nested) {
4849 data->bytes_alloc_nested += event_len;
4850 data->bytes_written_nested += len;
4851 data->events_nested++;
4852 if (!data->min_size_nested || len < data->min_size_nested)
4853 data->min_size_nested = len;
4854 if (len > data->max_size_nested)
4855 data->max_size_nested = len;
4856 } else {
4857 data->bytes_alloc += event_len;
4858 data->bytes_written += len;
4859 data->events++;
4860 if (!data->min_size || len < data->min_size)
4861 data->max_size = len;
4862 if (len > data->max_size)
4863 data->max_size = len;
4864 }
4865
4866 out:
4867 ring_buffer_unlock_commit(data->buffer, event);
4868
4869 return 0;
4870}
4871
4872static __init int rb_test(void *arg)
4873{
4874 struct rb_test_data *data = arg;
4875
4876 while (!kthread_should_stop()) {
4877 rb_write_something(data, false);
4878 data->cnt++;
4879
4880 set_current_state(TASK_INTERRUPTIBLE);
4881 /* Now sleep between a min of 100-300us and a max of 1ms */
4882 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4883 }
4884
4885 return 0;
4886}
4887
4888static __init void rb_ipi(void *ignore)
4889{
4890 struct rb_test_data *data;
4891 int cpu = smp_processor_id();
4892
4893 data = &rb_data[cpu];
4894 rb_write_something(data, true);
4895}
4896
4897static __init int rb_hammer_test(void *arg)
4898{
4899 while (!kthread_should_stop()) {
4900
4901 /* Send an IPI to all cpus to write data! */
4902 smp_call_function(rb_ipi, NULL, 1);
4903 /* No sleep, but for non preempt, let others run */
4904 schedule();
4905 }
4906
4907 return 0;
4908}
4909
4910static __init int test_ringbuffer(void)
4911{
4912 struct task_struct *rb_hammer;
4913 struct ring_buffer *buffer;
4914 int cpu;
4915 int ret = 0;
4916
4917 pr_info("Running ring buffer tests...\n");
4918
4919 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4920 if (WARN_ON(!buffer))
4921 return 0;
4922
4923 /* Disable buffer so that threads can't write to it yet */
4924 ring_buffer_record_off(buffer);
4925
4926 for_each_online_cpu(cpu) {
4927 rb_data[cpu].buffer = buffer;
4928 rb_data[cpu].cpu = cpu;
4929 rb_data[cpu].cnt = cpu;
4930 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4931 "rbtester/%d", cpu);
4932 if (WARN_ON(!rb_threads[cpu])) {
4933 pr_cont("FAILED\n");
4934 ret = -1;
4935 goto out_free;
4936 }
4937
4938 kthread_bind(rb_threads[cpu], cpu);
4939 wake_up_process(rb_threads[cpu]);
4940 }
4941
4942 /* Now create the rb hammer! */
4943 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4944 if (WARN_ON(!rb_hammer)) {
4945 pr_cont("FAILED\n");
4946 ret = -1;
4947 goto out_free;
4948 }
4949
4950 ring_buffer_record_on(buffer);
4951 /*
4952 * Show buffer is enabled before setting rb_test_started.
4953 * Yes there's a small race window where events could be
4954 * dropped and the thread wont catch it. But when a ring
4955 * buffer gets enabled, there will always be some kind of
4956 * delay before other CPUs see it. Thus, we don't care about
4957 * those dropped events. We care about events dropped after
4958 * the threads see that the buffer is active.
4959 */
4960 smp_wmb();
4961 rb_test_started = true;
4962
4963 set_current_state(TASK_INTERRUPTIBLE);
4964 /* Just run for 10 seconds */;
4965 schedule_timeout(10 * HZ);
4966
4967 kthread_stop(rb_hammer);
4968
4969 out_free:
4970 for_each_online_cpu(cpu) {
4971 if (!rb_threads[cpu])
4972 break;
4973 kthread_stop(rb_threads[cpu]);
4974 }
4975 if (ret) {
4976 ring_buffer_free(buffer);
4977 return ret;
4978 }
4979
4980 /* Report! */
4981 pr_info("finished\n");
4982 for_each_online_cpu(cpu) {
4983 struct ring_buffer_event *event;
4984 struct rb_test_data *data = &rb_data[cpu];
4985 struct rb_item *item;
4986 unsigned long total_events;
4987 unsigned long total_dropped;
4988 unsigned long total_written;
4989 unsigned long total_alloc;
4990 unsigned long total_read = 0;
4991 unsigned long total_size = 0;
4992 unsigned long total_len = 0;
4993 unsigned long total_lost = 0;
4994 unsigned long lost;
4995 int big_event_size;
4996 int small_event_size;
4997
4998 ret = -1;
4999
5000 total_events = data->events + data->events_nested;
5001 total_written = data->bytes_written + data->bytes_written_nested;
5002 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5003 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5004
5005 big_event_size = data->max_size + data->max_size_nested;
5006 small_event_size = data->min_size + data->min_size_nested;
5007
5008 pr_info("CPU %d:\n", cpu);
5009 pr_info(" events: %ld\n", total_events);
5010 pr_info(" dropped bytes: %ld\n", total_dropped);
5011 pr_info(" alloced bytes: %ld\n", total_alloc);
5012 pr_info(" written bytes: %ld\n", total_written);
5013 pr_info(" biggest event: %d\n", big_event_size);
5014 pr_info(" smallest event: %d\n", small_event_size);
5015
5016 if (RB_WARN_ON(buffer, total_dropped))
5017 break;
5018
5019 ret = 0;
5020
5021 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5022 total_lost += lost;
5023 item = ring_buffer_event_data(event);
5024 total_len += ring_buffer_event_length(event);
5025 total_size += item->size + sizeof(struct rb_item);
5026 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5027 pr_info("FAILED!\n");
5028 pr_info("buffer had: %.*s\n", item->size, item->str);
5029 pr_info("expected: %.*s\n", item->size, rb_string);
5030 RB_WARN_ON(buffer, 1);
5031 ret = -1;
5032 break;
5033 }
5034 total_read++;
5035 }
5036 if (ret)
5037 break;
5038
5039 ret = -1;
5040
5041 pr_info(" read events: %ld\n", total_read);
5042 pr_info(" lost events: %ld\n", total_lost);
5043 pr_info(" total events: %ld\n", total_lost + total_read);
5044 pr_info(" recorded len bytes: %ld\n", total_len);
5045 pr_info(" recorded size bytes: %ld\n", total_size);
5046 if (total_lost)
5047 pr_info(" With dropped events, record len and size may not match\n"
5048 " alloced and written from above\n");
5049 if (!total_lost) {
5050 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5051 total_size != total_written))
5052 break;
5053 }
5054 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5055 break;
5056
5057 ret = 0;
5058 }
5059 if (!ret)
5060 pr_info("Ring buffer PASSED!\n");
5061
5062 ring_buffer_free(buffer);
5063 return 0;
5064}
5065
5066late_initcall(test_ringbuffer);
5067#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.582648 seconds and 5 git commands to generate.