tracing: show event name in trace for TRACE_EVENT created events
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
033601a3
SR
24/*
25 * A fast way to enable or disable all ring buffers is to
26 * call tracing_on or tracing_off. Turning off the ring buffers
27 * prevents all ring buffers from being recorded to.
28 * Turning this switch on, makes it OK to write to the
29 * ring buffer, if the ring buffer is enabled itself.
30 *
31 * There's three layers that must be on in order to write
32 * to the ring buffer.
33 *
34 * 1) This global flag must be set.
35 * 2) The ring buffer must be enabled for recording.
36 * 3) The per cpu buffer must be enabled for recording.
37 *
38 * In case of an anomaly, this global flag has a bit set that
39 * will permantly disable all ring buffers.
40 */
41
42/*
43 * Global flag to disable all recording to ring buffers
44 * This has two bits: ON, DISABLED
45 *
46 * ON DISABLED
47 * ---- ----------
48 * 0 0 : ring buffers are off
49 * 1 0 : ring buffers are on
50 * X 1 : ring buffers are permanently disabled
51 */
52
53enum {
54 RB_BUFFERS_ON_BIT = 0,
55 RB_BUFFERS_DISABLED_BIT = 1,
56};
57
58enum {
59 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
60 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
61};
62
5e39841c 63static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 64
474d32b6
SR
65#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
66
a3583244
SR
67/**
68 * tracing_on - enable all tracing buffers
69 *
70 * This function enables all tracing buffers that may have been
71 * disabled with tracing_off.
72 */
73void tracing_on(void)
74{
033601a3 75 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 76}
c4f50183 77EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
78
79/**
80 * tracing_off - turn off all tracing buffers
81 *
82 * This function stops all tracing buffers from recording data.
83 * It does not disable any overhead the tracers themselves may
84 * be causing. This function simply causes all recording to
85 * the ring buffers to fail.
86 */
87void tracing_off(void)
88{
033601a3
SR
89 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
90}
c4f50183 91EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
92
93/**
94 * tracing_off_permanent - permanently disable ring buffers
95 *
96 * This function, once called, will disable all ring buffers
c3706f00 97 * permanently.
033601a3
SR
98 */
99void tracing_off_permanent(void)
100{
101 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
102}
103
988ae9d6
SR
104/**
105 * tracing_is_on - show state of ring buffers enabled
106 */
107int tracing_is_on(void)
108{
109 return ring_buffer_flags == RB_BUFFERS_ON;
110}
111EXPORT_SYMBOL_GPL(tracing_is_on);
112
d06bbd66
IM
113#include "trace.h"
114
7a8e76a3
SR
115/* Up this if you want to test the TIME_EXTENTS and normalization */
116#define DEBUG_SHIFT 0
117
7a8e76a3
SR
118u64 ring_buffer_time_stamp(int cpu)
119{
47e74f2b
SR
120 u64 time;
121
122 preempt_disable_notrace();
7a8e76a3 123 /* shift to debug/test normalization and TIME_EXTENTS */
14131f2f 124 time = trace_clock_local() << DEBUG_SHIFT;
2c2d7329 125 preempt_enable_no_resched_notrace();
47e74f2b
SR
126
127 return time;
7a8e76a3 128}
c4f50183 129EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
7a8e76a3
SR
130
131void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
132{
133 /* Just stupid testing the normalize function and deltas */
134 *ts >>= DEBUG_SHIFT;
135}
c4f50183 136EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
7a8e76a3 137
e3d6bf0a 138#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 139#define RB_ALIGNMENT 4U
7a8e76a3
SR
140#define RB_MAX_SMALL_DATA 28
141
142enum {
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
145};
146
147/* inline for ring buffer fast paths */
34a148bf 148static unsigned
7a8e76a3
SR
149rb_event_length(struct ring_buffer_event *event)
150{
151 unsigned length;
152
153 switch (event->type) {
154 case RINGBUF_TYPE_PADDING:
155 /* undefined */
156 return -1;
157
158 case RINGBUF_TYPE_TIME_EXTEND:
159 return RB_LEN_TIME_EXTEND;
160
161 case RINGBUF_TYPE_TIME_STAMP:
162 return RB_LEN_TIME_STAMP;
163
164 case RINGBUF_TYPE_DATA:
165 if (event->len)
67d34724 166 length = event->len * RB_ALIGNMENT;
7a8e76a3
SR
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
170 default:
171 BUG();
172 }
173 /* not hit */
174 return 0;
175}
176
177/**
178 * ring_buffer_event_length - return the length of the event
179 * @event: the event to get the length of
180 */
181unsigned ring_buffer_event_length(struct ring_buffer_event *event)
182{
465634ad
RR
183 unsigned length = rb_event_length(event);
184 if (event->type != RINGBUF_TYPE_DATA)
185 return length;
186 length -= RB_EVNT_HDR_SIZE;
187 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
188 length -= sizeof(event->array[0]);
189 return length;
7a8e76a3 190}
c4f50183 191EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
192
193/* inline for ring buffer fast paths */
34a148bf 194static void *
7a8e76a3
SR
195rb_event_data(struct ring_buffer_event *event)
196{
197 BUG_ON(event->type != RINGBUF_TYPE_DATA);
198 /* If length is in len field, then array[0] has the data */
199 if (event->len)
200 return (void *)&event->array[0];
201 /* Otherwise length is in array[0] and array[1] has the data */
202 return (void *)&event->array[1];
203}
204
205/**
206 * ring_buffer_event_data - return the data of the event
207 * @event: the event to get the data from
208 */
209void *ring_buffer_event_data(struct ring_buffer_event *event)
210{
211 return rb_event_data(event);
212}
c4f50183 213EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
214
215#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 216 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
217
218#define TS_SHIFT 27
219#define TS_MASK ((1ULL << TS_SHIFT) - 1)
220#define TS_DELTA_TEST (~TS_MASK)
221
abc9b56d 222struct buffer_data_page {
e4c2ce82 223 u64 time_stamp; /* page time stamp */
c3706f00 224 local_t commit; /* write committed index */
abc9b56d
SR
225 unsigned char data[]; /* data of buffer page */
226};
227
228struct buffer_page {
229 local_t write; /* index for next write */
6f807acd 230 unsigned read; /* index for next read */
e4c2ce82 231 struct list_head list; /* list of free pages */
abc9b56d 232 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
233};
234
044fa782 235static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 236{
044fa782 237 local_set(&bpage->commit, 0);
abc9b56d
SR
238}
239
474d32b6
SR
240/**
241 * ring_buffer_page_len - the size of data on the page.
242 * @page: The page to read
243 *
244 * Returns the amount of data on the page, including buffer page header.
245 */
ef7a4a16
SR
246size_t ring_buffer_page_len(void *page)
247{
474d32b6
SR
248 return local_read(&((struct buffer_data_page *)page)->commit)
249 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
250}
251
ed56829c
SR
252/*
253 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
254 * this issue out.
255 */
34a148bf 256static void free_buffer_page(struct buffer_page *bpage)
ed56829c 257{
34a148bf 258 free_page((unsigned long)bpage->page);
e4c2ce82 259 kfree(bpage);
ed56829c
SR
260}
261
7a8e76a3
SR
262/*
263 * We need to fit the time_stamp delta into 27 bits.
264 */
265static inline int test_time_stamp(u64 delta)
266{
267 if (delta & TS_DELTA_TEST)
268 return 1;
269 return 0;
270}
271
474d32b6 272#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3
SR
273
274/*
275 * head_page == tail_page && head == tail then buffer is empty.
276 */
277struct ring_buffer_per_cpu {
278 int cpu;
279 struct ring_buffer *buffer;
f83c9d0f 280 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 281 raw_spinlock_t lock;
7a8e76a3
SR
282 struct lock_class_key lock_key;
283 struct list_head pages;
6f807acd
SR
284 struct buffer_page *head_page; /* read from head */
285 struct buffer_page *tail_page; /* write to tail */
c3706f00 286 struct buffer_page *commit_page; /* committed pages */
d769041f 287 struct buffer_page *reader_page;
7a8e76a3
SR
288 unsigned long overrun;
289 unsigned long entries;
290 u64 write_stamp;
291 u64 read_stamp;
292 atomic_t record_disabled;
293};
294
295struct ring_buffer {
7a8e76a3
SR
296 unsigned pages;
297 unsigned flags;
298 int cpus;
7a8e76a3 299 atomic_t record_disabled;
00f62f61 300 cpumask_var_t cpumask;
7a8e76a3
SR
301
302 struct mutex mutex;
303
304 struct ring_buffer_per_cpu **buffers;
554f786e 305
59222efe 306#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
307 struct notifier_block cpu_notify;
308#endif
7a8e76a3
SR
309};
310
311struct ring_buffer_iter {
312 struct ring_buffer_per_cpu *cpu_buffer;
313 unsigned long head;
314 struct buffer_page *head_page;
315 u64 read_stamp;
316};
317
f536aafc 318/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 319#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
320 ({ \
321 int _____ret = unlikely(cond); \
322 if (_____ret) { \
bf41a158
SR
323 atomic_inc(&buffer->record_disabled); \
324 WARN_ON(1); \
325 } \
3e89c7bb
SR
326 _____ret; \
327 })
f536aafc 328
7a8e76a3
SR
329/**
330 * check_pages - integrity check of buffer pages
331 * @cpu_buffer: CPU buffer with pages to test
332 *
c3706f00 333 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
334 * been corrupted.
335 */
336static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
337{
338 struct list_head *head = &cpu_buffer->pages;
044fa782 339 struct buffer_page *bpage, *tmp;
7a8e76a3 340
3e89c7bb
SR
341 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
342 return -1;
343 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
344 return -1;
7a8e76a3 345
044fa782 346 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 347 if (RB_WARN_ON(cpu_buffer,
044fa782 348 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
349 return -1;
350 if (RB_WARN_ON(cpu_buffer,
044fa782 351 bpage->list.prev->next != &bpage->list))
3e89c7bb 352 return -1;
7a8e76a3
SR
353 }
354
355 return 0;
356}
357
7a8e76a3
SR
358static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
359 unsigned nr_pages)
360{
361 struct list_head *head = &cpu_buffer->pages;
044fa782 362 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
363 unsigned long addr;
364 LIST_HEAD(pages);
365 unsigned i;
366
367 for (i = 0; i < nr_pages; i++) {
044fa782 368 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 369 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 370 if (!bpage)
e4c2ce82 371 goto free_pages;
044fa782 372 list_add(&bpage->list, &pages);
e4c2ce82 373
7a8e76a3
SR
374 addr = __get_free_page(GFP_KERNEL);
375 if (!addr)
376 goto free_pages;
044fa782
SR
377 bpage->page = (void *)addr;
378 rb_init_page(bpage->page);
7a8e76a3
SR
379 }
380
381 list_splice(&pages, head);
382
383 rb_check_pages(cpu_buffer);
384
385 return 0;
386
387 free_pages:
044fa782
SR
388 list_for_each_entry_safe(bpage, tmp, &pages, list) {
389 list_del_init(&bpage->list);
390 free_buffer_page(bpage);
7a8e76a3
SR
391 }
392 return -ENOMEM;
393}
394
395static struct ring_buffer_per_cpu *
396rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
397{
398 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 399 struct buffer_page *bpage;
d769041f 400 unsigned long addr;
7a8e76a3
SR
401 int ret;
402
403 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
404 GFP_KERNEL, cpu_to_node(cpu));
405 if (!cpu_buffer)
406 return NULL;
407
408 cpu_buffer->cpu = cpu;
409 cpu_buffer->buffer = buffer;
f83c9d0f 410 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 411 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
412 INIT_LIST_HEAD(&cpu_buffer->pages);
413
044fa782 414 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 415 GFP_KERNEL, cpu_to_node(cpu));
044fa782 416 if (!bpage)
e4c2ce82
SR
417 goto fail_free_buffer;
418
044fa782 419 cpu_buffer->reader_page = bpage;
d769041f
SR
420 addr = __get_free_page(GFP_KERNEL);
421 if (!addr)
e4c2ce82 422 goto fail_free_reader;
044fa782
SR
423 bpage->page = (void *)addr;
424 rb_init_page(bpage->page);
e4c2ce82 425
d769041f 426 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 427
7a8e76a3
SR
428 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
429 if (ret < 0)
d769041f 430 goto fail_free_reader;
7a8e76a3
SR
431
432 cpu_buffer->head_page
433 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 434 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
435
436 return cpu_buffer;
437
d769041f
SR
438 fail_free_reader:
439 free_buffer_page(cpu_buffer->reader_page);
440
7a8e76a3
SR
441 fail_free_buffer:
442 kfree(cpu_buffer);
443 return NULL;
444}
445
446static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
447{
448 struct list_head *head = &cpu_buffer->pages;
044fa782 449 struct buffer_page *bpage, *tmp;
7a8e76a3 450
d769041f
SR
451 list_del_init(&cpu_buffer->reader_page->list);
452 free_buffer_page(cpu_buffer->reader_page);
453
044fa782
SR
454 list_for_each_entry_safe(bpage, tmp, head, list) {
455 list_del_init(&bpage->list);
456 free_buffer_page(bpage);
7a8e76a3
SR
457 }
458 kfree(cpu_buffer);
459}
460
a7b13743
SR
461/*
462 * Causes compile errors if the struct buffer_page gets bigger
463 * than the struct page.
464 */
465extern int ring_buffer_page_too_big(void);
466
59222efe 467#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
468static int __cpuinit rb_cpu_notify(struct notifier_block *self,
469 unsigned long action, void *hcpu);
470#endif
471
7a8e76a3
SR
472/**
473 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 474 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
475 * @flags: attributes to set for the ring buffer.
476 *
477 * Currently the only flag that is available is the RB_FL_OVERWRITE
478 * flag. This flag means that the buffer will overwrite old data
479 * when the buffer wraps. If this flag is not set, the buffer will
480 * drop data when the tail hits the head.
481 */
482struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
483{
484 struct ring_buffer *buffer;
485 int bsize;
486 int cpu;
487
a7b13743
SR
488 /* Paranoid! Optimizes out when all is well */
489 if (sizeof(struct buffer_page) > sizeof(struct page))
490 ring_buffer_page_too_big();
491
492
7a8e76a3
SR
493 /* keep it in its own cache line */
494 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
495 GFP_KERNEL);
496 if (!buffer)
497 return NULL;
498
9e01c1b7
RR
499 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
500 goto fail_free_buffer;
501
7a8e76a3
SR
502 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
503 buffer->flags = flags;
504
505 /* need at least two pages */
506 if (buffer->pages == 1)
507 buffer->pages++;
508
554f786e
SR
509 get_online_cpus();
510 cpumask_copy(buffer->cpumask, cpu_online_mask);
7a8e76a3
SR
511 buffer->cpus = nr_cpu_ids;
512
513 bsize = sizeof(void *) * nr_cpu_ids;
514 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
515 GFP_KERNEL);
516 if (!buffer->buffers)
9e01c1b7 517 goto fail_free_cpumask;
7a8e76a3
SR
518
519 for_each_buffer_cpu(buffer, cpu) {
520 buffer->buffers[cpu] =
521 rb_allocate_cpu_buffer(buffer, cpu);
522 if (!buffer->buffers[cpu])
523 goto fail_free_buffers;
524 }
525
59222efe 526#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
527 buffer->cpu_notify.notifier_call = rb_cpu_notify;
528 buffer->cpu_notify.priority = 0;
529 register_cpu_notifier(&buffer->cpu_notify);
530#endif
531
532 put_online_cpus();
7a8e76a3
SR
533 mutex_init(&buffer->mutex);
534
535 return buffer;
536
537 fail_free_buffers:
538 for_each_buffer_cpu(buffer, cpu) {
539 if (buffer->buffers[cpu])
540 rb_free_cpu_buffer(buffer->buffers[cpu]);
541 }
542 kfree(buffer->buffers);
543
9e01c1b7
RR
544 fail_free_cpumask:
545 free_cpumask_var(buffer->cpumask);
554f786e 546 put_online_cpus();
9e01c1b7 547
7a8e76a3
SR
548 fail_free_buffer:
549 kfree(buffer);
550 return NULL;
551}
c4f50183 552EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
553
554/**
555 * ring_buffer_free - free a ring buffer.
556 * @buffer: the buffer to free.
557 */
558void
559ring_buffer_free(struct ring_buffer *buffer)
560{
561 int cpu;
562
554f786e
SR
563 get_online_cpus();
564
59222efe 565#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
566 unregister_cpu_notifier(&buffer->cpu_notify);
567#endif
568
7a8e76a3
SR
569 for_each_buffer_cpu(buffer, cpu)
570 rb_free_cpu_buffer(buffer->buffers[cpu]);
571
554f786e
SR
572 put_online_cpus();
573
9e01c1b7
RR
574 free_cpumask_var(buffer->cpumask);
575
7a8e76a3
SR
576 kfree(buffer);
577}
c4f50183 578EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3
SR
579
580static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
581
582static void
583rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
584{
044fa782 585 struct buffer_page *bpage;
7a8e76a3
SR
586 struct list_head *p;
587 unsigned i;
588
589 atomic_inc(&cpu_buffer->record_disabled);
590 synchronize_sched();
591
592 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
593 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
594 return;
7a8e76a3 595 p = cpu_buffer->pages.next;
044fa782
SR
596 bpage = list_entry(p, struct buffer_page, list);
597 list_del_init(&bpage->list);
598 free_buffer_page(bpage);
7a8e76a3 599 }
3e89c7bb
SR
600 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
601 return;
7a8e76a3
SR
602
603 rb_reset_cpu(cpu_buffer);
604
605 rb_check_pages(cpu_buffer);
606
607 atomic_dec(&cpu_buffer->record_disabled);
608
609}
610
611static void
612rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
613 struct list_head *pages, unsigned nr_pages)
614{
044fa782 615 struct buffer_page *bpage;
7a8e76a3
SR
616 struct list_head *p;
617 unsigned i;
618
619 atomic_inc(&cpu_buffer->record_disabled);
620 synchronize_sched();
621
622 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
623 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
624 return;
7a8e76a3 625 p = pages->next;
044fa782
SR
626 bpage = list_entry(p, struct buffer_page, list);
627 list_del_init(&bpage->list);
628 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
629 }
630 rb_reset_cpu(cpu_buffer);
631
632 rb_check_pages(cpu_buffer);
633
634 atomic_dec(&cpu_buffer->record_disabled);
635}
636
637/**
638 * ring_buffer_resize - resize the ring buffer
639 * @buffer: the buffer to resize.
640 * @size: the new size.
641 *
642 * The tracer is responsible for making sure that the buffer is
643 * not being used while changing the size.
644 * Note: We may be able to change the above requirement by using
645 * RCU synchronizations.
646 *
647 * Minimum size is 2 * BUF_PAGE_SIZE.
648 *
649 * Returns -1 on failure.
650 */
651int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
652{
653 struct ring_buffer_per_cpu *cpu_buffer;
654 unsigned nr_pages, rm_pages, new_pages;
044fa782 655 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
656 unsigned long buffer_size;
657 unsigned long addr;
658 LIST_HEAD(pages);
659 int i, cpu;
660
ee51a1de
IM
661 /*
662 * Always succeed at resizing a non-existent buffer:
663 */
664 if (!buffer)
665 return size;
666
7a8e76a3
SR
667 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
668 size *= BUF_PAGE_SIZE;
669 buffer_size = buffer->pages * BUF_PAGE_SIZE;
670
671 /* we need a minimum of two pages */
672 if (size < BUF_PAGE_SIZE * 2)
673 size = BUF_PAGE_SIZE * 2;
674
675 if (size == buffer_size)
676 return size;
677
678 mutex_lock(&buffer->mutex);
554f786e 679 get_online_cpus();
7a8e76a3
SR
680
681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
682
683 if (size < buffer_size) {
684
685 /* easy case, just free pages */
554f786e
SR
686 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
687 goto out_fail;
7a8e76a3
SR
688
689 rm_pages = buffer->pages - nr_pages;
690
691 for_each_buffer_cpu(buffer, cpu) {
692 cpu_buffer = buffer->buffers[cpu];
693 rb_remove_pages(cpu_buffer, rm_pages);
694 }
695 goto out;
696 }
697
698 /*
699 * This is a bit more difficult. We only want to add pages
700 * when we can allocate enough for all CPUs. We do this
701 * by allocating all the pages and storing them on a local
702 * link list. If we succeed in our allocation, then we
703 * add these pages to the cpu_buffers. Otherwise we just free
704 * them all and return -ENOMEM;
705 */
554f786e
SR
706 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
707 goto out_fail;
f536aafc 708
7a8e76a3
SR
709 new_pages = nr_pages - buffer->pages;
710
711 for_each_buffer_cpu(buffer, cpu) {
712 for (i = 0; i < new_pages; i++) {
044fa782 713 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
714 cache_line_size()),
715 GFP_KERNEL, cpu_to_node(cpu));
044fa782 716 if (!bpage)
e4c2ce82 717 goto free_pages;
044fa782 718 list_add(&bpage->list, &pages);
7a8e76a3
SR
719 addr = __get_free_page(GFP_KERNEL);
720 if (!addr)
721 goto free_pages;
044fa782
SR
722 bpage->page = (void *)addr;
723 rb_init_page(bpage->page);
7a8e76a3
SR
724 }
725 }
726
727 for_each_buffer_cpu(buffer, cpu) {
728 cpu_buffer = buffer->buffers[cpu];
729 rb_insert_pages(cpu_buffer, &pages, new_pages);
730 }
731
554f786e
SR
732 if (RB_WARN_ON(buffer, !list_empty(&pages)))
733 goto out_fail;
7a8e76a3
SR
734
735 out:
736 buffer->pages = nr_pages;
554f786e 737 put_online_cpus();
7a8e76a3
SR
738 mutex_unlock(&buffer->mutex);
739
740 return size;
741
742 free_pages:
044fa782
SR
743 list_for_each_entry_safe(bpage, tmp, &pages, list) {
744 list_del_init(&bpage->list);
745 free_buffer_page(bpage);
7a8e76a3 746 }
554f786e 747 put_online_cpus();
641d2f63 748 mutex_unlock(&buffer->mutex);
7a8e76a3 749 return -ENOMEM;
554f786e
SR
750
751 /*
752 * Something went totally wrong, and we are too paranoid
753 * to even clean up the mess.
754 */
755 out_fail:
756 put_online_cpus();
757 mutex_unlock(&buffer->mutex);
758 return -1;
7a8e76a3 759}
c4f50183 760EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 761
7a8e76a3
SR
762static inline int rb_null_event(struct ring_buffer_event *event)
763{
764 return event->type == RINGBUF_TYPE_PADDING;
765}
766
8789a9e7 767static inline void *
044fa782 768__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 769{
044fa782 770 return bpage->data + index;
8789a9e7
SR
771}
772
044fa782 773static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 774{
044fa782 775 return bpage->page->data + index;
7a8e76a3
SR
776}
777
778static inline struct ring_buffer_event *
d769041f 779rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 780{
6f807acd
SR
781 return __rb_page_index(cpu_buffer->reader_page,
782 cpu_buffer->reader_page->read);
783}
784
785static inline struct ring_buffer_event *
786rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
787{
788 return __rb_page_index(cpu_buffer->head_page,
789 cpu_buffer->head_page->read);
7a8e76a3
SR
790}
791
792static inline struct ring_buffer_event *
793rb_iter_head_event(struct ring_buffer_iter *iter)
794{
6f807acd 795 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
796}
797
bf41a158
SR
798static inline unsigned rb_page_write(struct buffer_page *bpage)
799{
800 return local_read(&bpage->write);
801}
802
803static inline unsigned rb_page_commit(struct buffer_page *bpage)
804{
abc9b56d 805 return local_read(&bpage->page->commit);
bf41a158
SR
806}
807
808/* Size is determined by what has been commited */
809static inline unsigned rb_page_size(struct buffer_page *bpage)
810{
811 return rb_page_commit(bpage);
812}
813
814static inline unsigned
815rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
816{
817 return rb_page_commit(cpu_buffer->commit_page);
818}
819
820static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
821{
822 return rb_page_commit(cpu_buffer->head_page);
823}
824
7a8e76a3
SR
825/*
826 * When the tail hits the head and the buffer is in overwrite mode,
827 * the head jumps to the next page and all content on the previous
828 * page is discarded. But before doing so, we update the overrun
829 * variable of the buffer.
830 */
831static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
832{
833 struct ring_buffer_event *event;
834 unsigned long head;
835
836 for (head = 0; head < rb_head_size(cpu_buffer);
837 head += rb_event_length(event)) {
838
6f807acd 839 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
840 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
841 return;
7a8e76a3
SR
842 /* Only count data entries */
843 if (event->type != RINGBUF_TYPE_DATA)
844 continue;
845 cpu_buffer->overrun++;
846 cpu_buffer->entries--;
847 }
848}
849
850static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 851 struct buffer_page **bpage)
7a8e76a3 852{
044fa782 853 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
854
855 if (p == &cpu_buffer->pages)
856 p = p->next;
857
044fa782 858 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
859}
860
bf41a158
SR
861static inline unsigned
862rb_event_index(struct ring_buffer_event *event)
863{
864 unsigned long addr = (unsigned long)event;
865
866 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
867}
868
34a148bf 869static int
bf41a158
SR
870rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
871 struct ring_buffer_event *event)
872{
873 unsigned long addr = (unsigned long)event;
874 unsigned long index;
875
876 index = rb_event_index(event);
877 addr &= PAGE_MASK;
878
879 return cpu_buffer->commit_page->page == (void *)addr &&
880 rb_commit_index(cpu_buffer) == index;
881}
882
34a148bf 883static void
bf41a158
SR
884rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
885 struct ring_buffer_event *event)
7a8e76a3 886{
bf41a158
SR
887 unsigned long addr = (unsigned long)event;
888 unsigned long index;
889
890 index = rb_event_index(event);
891 addr &= PAGE_MASK;
892
893 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
894 if (RB_WARN_ON(cpu_buffer,
895 cpu_buffer->commit_page == cpu_buffer->tail_page))
896 return;
abc9b56d 897 cpu_buffer->commit_page->page->commit =
bf41a158
SR
898 cpu_buffer->commit_page->write;
899 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
900 cpu_buffer->write_stamp =
901 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
902 }
903
904 /* Now set the commit to the event's index */
abc9b56d 905 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
906}
907
34a148bf 908static void
bf41a158 909rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 910{
bf41a158
SR
911 /*
912 * We only race with interrupts and NMIs on this CPU.
913 * If we own the commit event, then we can commit
914 * all others that interrupted us, since the interruptions
915 * are in stack format (they finish before they come
916 * back to us). This allows us to do a simple loop to
917 * assign the commit to the tail.
918 */
a8ccf1d6 919 again:
bf41a158 920 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 921 cpu_buffer->commit_page->page->commit =
bf41a158
SR
922 cpu_buffer->commit_page->write;
923 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
924 cpu_buffer->write_stamp =
925 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
926 /* add barrier to keep gcc from optimizing too much */
927 barrier();
928 }
929 while (rb_commit_index(cpu_buffer) !=
930 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 931 cpu_buffer->commit_page->page->commit =
bf41a158
SR
932 cpu_buffer->commit_page->write;
933 barrier();
934 }
a8ccf1d6
SR
935
936 /* again, keep gcc from optimizing */
937 barrier();
938
939 /*
940 * If an interrupt came in just after the first while loop
941 * and pushed the tail page forward, we will be left with
942 * a dangling commit that will never go forward.
943 */
944 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
945 goto again;
7a8e76a3
SR
946}
947
d769041f 948static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 949{
abc9b56d 950 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 951 cpu_buffer->reader_page->read = 0;
d769041f
SR
952}
953
34a148bf 954static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
955{
956 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
957
958 /*
959 * The iterator could be on the reader page (it starts there).
960 * But the head could have moved, since the reader was
961 * found. Check for this case and assign the iterator
962 * to the head page instead of next.
963 */
964 if (iter->head_page == cpu_buffer->reader_page)
965 iter->head_page = cpu_buffer->head_page;
966 else
967 rb_inc_page(cpu_buffer, &iter->head_page);
968
abc9b56d 969 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
970 iter->head = 0;
971}
972
973/**
974 * ring_buffer_update_event - update event type and data
975 * @event: the even to update
976 * @type: the type of event
977 * @length: the size of the event field in the ring buffer
978 *
979 * Update the type and data fields of the event. The length
980 * is the actual size that is written to the ring buffer,
981 * and with this, we can determine what to place into the
982 * data field.
983 */
34a148bf 984static void
7a8e76a3
SR
985rb_update_event(struct ring_buffer_event *event,
986 unsigned type, unsigned length)
987{
988 event->type = type;
989
990 switch (type) {
991
992 case RINGBUF_TYPE_PADDING:
993 break;
994
995 case RINGBUF_TYPE_TIME_EXTEND:
67d34724 996 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
7a8e76a3
SR
997 break;
998
999 case RINGBUF_TYPE_TIME_STAMP:
67d34724 1000 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
7a8e76a3
SR
1001 break;
1002
1003 case RINGBUF_TYPE_DATA:
1004 length -= RB_EVNT_HDR_SIZE;
1005 if (length > RB_MAX_SMALL_DATA) {
1006 event->len = 0;
1007 event->array[0] = length;
1008 } else
67d34724 1009 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1010 break;
1011 default:
1012 BUG();
1013 }
1014}
1015
34a148bf 1016static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1017{
1018 struct ring_buffer_event event; /* Used only for sizeof array */
1019
1020 /* zero length can cause confusions */
1021 if (!length)
1022 length = 1;
1023
1024 if (length > RB_MAX_SMALL_DATA)
1025 length += sizeof(event.array[0]);
1026
1027 length += RB_EVNT_HDR_SIZE;
1028 length = ALIGN(length, RB_ALIGNMENT);
1029
1030 return length;
1031}
1032
1033static struct ring_buffer_event *
1034__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1035 unsigned type, unsigned long length, u64 *ts)
1036{
98db8df7 1037 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1038 unsigned long tail, write;
7a8e76a3
SR
1039 struct ring_buffer *buffer = cpu_buffer->buffer;
1040 struct ring_buffer_event *event;
bf41a158 1041 unsigned long flags;
78d904b4 1042 bool lock_taken = false;
7a8e76a3 1043
98db8df7
SR
1044 commit_page = cpu_buffer->commit_page;
1045 /* we just need to protect against interrupts */
1046 barrier();
7a8e76a3 1047 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1048 write = local_add_return(length, &tail_page->write);
1049 tail = write - length;
7a8e76a3 1050
bf41a158
SR
1051 /* See if we shot pass the end of this buffer page */
1052 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1053 struct buffer_page *next_page = tail_page;
1054
3e03fb7f 1055 local_irq_save(flags);
78d904b4 1056 /*
a81bd80a
SR
1057 * Since the write to the buffer is still not
1058 * fully lockless, we must be careful with NMIs.
1059 * The locks in the writers are taken when a write
1060 * crosses to a new page. The locks protect against
1061 * races with the readers (this will soon be fixed
1062 * with a lockless solution).
1063 *
1064 * Because we can not protect against NMIs, and we
1065 * want to keep traces reentrant, we need to manage
1066 * what happens when we are in an NMI.
1067 *
78d904b4
SR
1068 * NMIs can happen after we take the lock.
1069 * If we are in an NMI, only take the lock
1070 * if it is not already taken. Otherwise
1071 * simply fail.
1072 */
a81bd80a 1073 if (unlikely(in_nmi())) {
78d904b4 1074 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1075 goto out_reset;
78d904b4
SR
1076 } else
1077 __raw_spin_lock(&cpu_buffer->lock);
1078
1079 lock_taken = true;
bf41a158 1080
7a8e76a3
SR
1081 rb_inc_page(cpu_buffer, &next_page);
1082
d769041f
SR
1083 head_page = cpu_buffer->head_page;
1084 reader_page = cpu_buffer->reader_page;
1085
1086 /* we grabbed the lock before incrementing */
3e89c7bb 1087 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1088 goto out_reset;
bf41a158
SR
1089
1090 /*
1091 * If for some reason, we had an interrupt storm that made
1092 * it all the way around the buffer, bail, and warn
1093 * about it.
1094 */
98db8df7 1095 if (unlikely(next_page == commit_page)) {
bf41a158 1096 WARN_ON_ONCE(1);
45141d46 1097 goto out_reset;
bf41a158 1098 }
d769041f 1099
7a8e76a3 1100 if (next_page == head_page) {
6f3b3440 1101 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1102 goto out_reset;
7a8e76a3 1103
bf41a158
SR
1104 /* tail_page has not moved yet? */
1105 if (tail_page == cpu_buffer->tail_page) {
1106 /* count overflows */
1107 rb_update_overflow(cpu_buffer);
1108
1109 rb_inc_page(cpu_buffer, &head_page);
1110 cpu_buffer->head_page = head_page;
1111 cpu_buffer->head_page->read = 0;
1112 }
1113 }
7a8e76a3 1114
bf41a158
SR
1115 /*
1116 * If the tail page is still the same as what we think
1117 * it is, then it is up to us to update the tail
1118 * pointer.
1119 */
1120 if (tail_page == cpu_buffer->tail_page) {
1121 local_set(&next_page->write, 0);
abc9b56d 1122 local_set(&next_page->page->commit, 0);
bf41a158
SR
1123 cpu_buffer->tail_page = next_page;
1124
1125 /* reread the time stamp */
1126 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
abc9b56d 1127 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1128 }
1129
bf41a158
SR
1130 /*
1131 * The actual tail page has moved forward.
1132 */
1133 if (tail < BUF_PAGE_SIZE) {
1134 /* Mark the rest of the page with padding */
6f807acd 1135 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1136 event->type = RINGBUF_TYPE_PADDING;
1137 }
1138
bf41a158
SR
1139 if (tail <= BUF_PAGE_SIZE)
1140 /* Set the write back to the previous setting */
1141 local_set(&tail_page->write, tail);
1142
1143 /*
1144 * If this was a commit entry that failed,
1145 * increment that too
1146 */
1147 if (tail_page == cpu_buffer->commit_page &&
1148 tail == rb_commit_index(cpu_buffer)) {
1149 rb_set_commit_to_write(cpu_buffer);
1150 }
1151
3e03fb7f
SR
1152 __raw_spin_unlock(&cpu_buffer->lock);
1153 local_irq_restore(flags);
bf41a158
SR
1154
1155 /* fail and let the caller try again */
1156 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1157 }
1158
bf41a158
SR
1159 /* We reserved something on the buffer */
1160
3e89c7bb
SR
1161 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1162 return NULL;
7a8e76a3 1163
6f807acd 1164 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1165 rb_update_event(event, type, length);
1166
bf41a158
SR
1167 /*
1168 * If this is a commit and the tail is zero, then update
1169 * this page's time stamp.
1170 */
1171 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1172 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1173
7a8e76a3 1174 return event;
bf41a158 1175
45141d46 1176 out_reset:
6f3b3440
LJ
1177 /* reset write */
1178 if (tail <= BUF_PAGE_SIZE)
1179 local_set(&tail_page->write, tail);
1180
78d904b4
SR
1181 if (likely(lock_taken))
1182 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1183 local_irq_restore(flags);
bf41a158 1184 return NULL;
7a8e76a3
SR
1185}
1186
1187static int
1188rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1189 u64 *ts, u64 *delta)
1190{
1191 struct ring_buffer_event *event;
1192 static int once;
bf41a158 1193 int ret;
7a8e76a3
SR
1194
1195 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1196 printk(KERN_WARNING "Delta way too big! %llu"
1197 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1198 (unsigned long long)*delta,
1199 (unsigned long long)*ts,
1200 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1201 WARN_ON(1);
1202 }
1203
1204 /*
1205 * The delta is too big, we to add a
1206 * new timestamp.
1207 */
1208 event = __rb_reserve_next(cpu_buffer,
1209 RINGBUF_TYPE_TIME_EXTEND,
1210 RB_LEN_TIME_EXTEND,
1211 ts);
1212 if (!event)
bf41a158 1213 return -EBUSY;
7a8e76a3 1214
bf41a158
SR
1215 if (PTR_ERR(event) == -EAGAIN)
1216 return -EAGAIN;
1217
1218 /* Only a commited time event can update the write stamp */
1219 if (rb_is_commit(cpu_buffer, event)) {
1220 /*
1221 * If this is the first on the page, then we need to
1222 * update the page itself, and just put in a zero.
1223 */
1224 if (rb_event_index(event)) {
1225 event->time_delta = *delta & TS_MASK;
1226 event->array[0] = *delta >> TS_SHIFT;
1227 } else {
abc9b56d 1228 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1229 event->time_delta = 0;
1230 event->array[0] = 0;
1231 }
7a8e76a3 1232 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1233 /* let the caller know this was the commit */
1234 ret = 1;
1235 } else {
1236 /* Darn, this is just wasted space */
1237 event->time_delta = 0;
1238 event->array[0] = 0;
1239 ret = 0;
7a8e76a3
SR
1240 }
1241
bf41a158
SR
1242 *delta = 0;
1243
1244 return ret;
7a8e76a3
SR
1245}
1246
1247static struct ring_buffer_event *
1248rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1249 unsigned type, unsigned long length)
1250{
1251 struct ring_buffer_event *event;
1252 u64 ts, delta;
bf41a158 1253 int commit = 0;
818e3dd3 1254 int nr_loops = 0;
7a8e76a3 1255
bf41a158 1256 again:
818e3dd3
SR
1257 /*
1258 * We allow for interrupts to reenter here and do a trace.
1259 * If one does, it will cause this original code to loop
1260 * back here. Even with heavy interrupts happening, this
1261 * should only happen a few times in a row. If this happens
1262 * 1000 times in a row, there must be either an interrupt
1263 * storm or we have something buggy.
1264 * Bail!
1265 */
3e89c7bb 1266 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1267 return NULL;
818e3dd3 1268
7a8e76a3
SR
1269 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1270
bf41a158
SR
1271 /*
1272 * Only the first commit can update the timestamp.
1273 * Yes there is a race here. If an interrupt comes in
1274 * just after the conditional and it traces too, then it
1275 * will also check the deltas. More than one timestamp may
1276 * also be made. But only the entry that did the actual
1277 * commit will be something other than zero.
1278 */
1279 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1280 rb_page_write(cpu_buffer->tail_page) ==
1281 rb_commit_index(cpu_buffer)) {
1282
7a8e76a3
SR
1283 delta = ts - cpu_buffer->write_stamp;
1284
bf41a158
SR
1285 /* make sure this delta is calculated here */
1286 barrier();
1287
1288 /* Did the write stamp get updated already? */
1289 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1290 delta = 0;
bf41a158 1291
7a8e76a3 1292 if (test_time_stamp(delta)) {
7a8e76a3 1293
bf41a158
SR
1294 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1295
1296 if (commit == -EBUSY)
7a8e76a3 1297 return NULL;
bf41a158
SR
1298
1299 if (commit == -EAGAIN)
1300 goto again;
1301
1302 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1303 }
bf41a158
SR
1304 } else
1305 /* Non commits have zero deltas */
7a8e76a3 1306 delta = 0;
7a8e76a3
SR
1307
1308 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1309 if (PTR_ERR(event) == -EAGAIN)
1310 goto again;
1311
1312 if (!event) {
1313 if (unlikely(commit))
1314 /*
1315 * Ouch! We needed a timestamp and it was commited. But
1316 * we didn't get our event reserved.
1317 */
1318 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1319 return NULL;
bf41a158 1320 }
7a8e76a3 1321
bf41a158
SR
1322 /*
1323 * If the timestamp was commited, make the commit our entry
1324 * now so that we will update it when needed.
1325 */
1326 if (commit)
1327 rb_set_commit_event(cpu_buffer, event);
1328 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1329 delta = 0;
1330
1331 event->time_delta = delta;
1332
1333 return event;
1334}
1335
bf41a158
SR
1336static DEFINE_PER_CPU(int, rb_need_resched);
1337
7a8e76a3
SR
1338/**
1339 * ring_buffer_lock_reserve - reserve a part of the buffer
1340 * @buffer: the ring buffer to reserve from
1341 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1342 *
1343 * Returns a reseverd event on the ring buffer to copy directly to.
1344 * The user of this interface will need to get the body to write into
1345 * and can use the ring_buffer_event_data() interface.
1346 *
1347 * The length is the length of the data needed, not the event length
1348 * which also includes the event header.
1349 *
1350 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1351 * If NULL is returned, then nothing has been allocated or locked.
1352 */
1353struct ring_buffer_event *
0a987751 1354ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1355{
1356 struct ring_buffer_per_cpu *cpu_buffer;
1357 struct ring_buffer_event *event;
bf41a158 1358 int cpu, resched;
7a8e76a3 1359
033601a3 1360 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1361 return NULL;
1362
7a8e76a3
SR
1363 if (atomic_read(&buffer->record_disabled))
1364 return NULL;
1365
bf41a158 1366 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1367 resched = ftrace_preempt_disable();
bf41a158 1368
7a8e76a3
SR
1369 cpu = raw_smp_processor_id();
1370
9e01c1b7 1371 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1372 goto out;
7a8e76a3
SR
1373
1374 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1375
1376 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1377 goto out;
7a8e76a3
SR
1378
1379 length = rb_calculate_event_length(length);
1380 if (length > BUF_PAGE_SIZE)
bf41a158 1381 goto out;
7a8e76a3
SR
1382
1383 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1384 if (!event)
d769041f 1385 goto out;
7a8e76a3 1386
bf41a158
SR
1387 /*
1388 * Need to store resched state on this cpu.
1389 * Only the first needs to.
1390 */
1391
1392 if (preempt_count() == 1)
1393 per_cpu(rb_need_resched, cpu) = resched;
1394
7a8e76a3
SR
1395 return event;
1396
d769041f 1397 out:
182e9f5f 1398 ftrace_preempt_enable(resched);
7a8e76a3
SR
1399 return NULL;
1400}
c4f50183 1401EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1402
1403static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1404 struct ring_buffer_event *event)
1405{
7a8e76a3 1406 cpu_buffer->entries++;
bf41a158
SR
1407
1408 /* Only process further if we own the commit */
1409 if (!rb_is_commit(cpu_buffer, event))
1410 return;
1411
1412 cpu_buffer->write_stamp += event->time_delta;
1413
1414 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1415}
1416
1417/**
1418 * ring_buffer_unlock_commit - commit a reserved
1419 * @buffer: The buffer to commit to
1420 * @event: The event pointer to commit.
7a8e76a3
SR
1421 *
1422 * This commits the data to the ring buffer, and releases any locks held.
1423 *
1424 * Must be paired with ring_buffer_lock_reserve.
1425 */
1426int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1427 struct ring_buffer_event *event)
7a8e76a3
SR
1428{
1429 struct ring_buffer_per_cpu *cpu_buffer;
1430 int cpu = raw_smp_processor_id();
1431
1432 cpu_buffer = buffer->buffers[cpu];
1433
7a8e76a3
SR
1434 rb_commit(cpu_buffer, event);
1435
bf41a158
SR
1436 /*
1437 * Only the last preempt count needs to restore preemption.
1438 */
182e9f5f
SR
1439 if (preempt_count() == 1)
1440 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1441 else
bf41a158 1442 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1443
1444 return 0;
1445}
c4f50183 1446EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3
SR
1447
1448/**
1449 * ring_buffer_write - write data to the buffer without reserving
1450 * @buffer: The ring buffer to write to.
1451 * @length: The length of the data being written (excluding the event header)
1452 * @data: The data to write to the buffer.
1453 *
1454 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1455 * one function. If you already have the data to write to the buffer, it
1456 * may be easier to simply call this function.
1457 *
1458 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1459 * and not the length of the event which would hold the header.
1460 */
1461int ring_buffer_write(struct ring_buffer *buffer,
1462 unsigned long length,
1463 void *data)
1464{
1465 struct ring_buffer_per_cpu *cpu_buffer;
1466 struct ring_buffer_event *event;
bf41a158 1467 unsigned long event_length;
7a8e76a3
SR
1468 void *body;
1469 int ret = -EBUSY;
bf41a158 1470 int cpu, resched;
7a8e76a3 1471
033601a3 1472 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1473 return -EBUSY;
1474
7a8e76a3
SR
1475 if (atomic_read(&buffer->record_disabled))
1476 return -EBUSY;
1477
182e9f5f 1478 resched = ftrace_preempt_disable();
bf41a158 1479
7a8e76a3
SR
1480 cpu = raw_smp_processor_id();
1481
9e01c1b7 1482 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1483 goto out;
7a8e76a3
SR
1484
1485 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1486
1487 if (atomic_read(&cpu_buffer->record_disabled))
1488 goto out;
1489
1490 event_length = rb_calculate_event_length(length);
1491 event = rb_reserve_next_event(cpu_buffer,
1492 RINGBUF_TYPE_DATA, event_length);
1493 if (!event)
1494 goto out;
1495
1496 body = rb_event_data(event);
1497
1498 memcpy(body, data, length);
1499
1500 rb_commit(cpu_buffer, event);
1501
1502 ret = 0;
1503 out:
182e9f5f 1504 ftrace_preempt_enable(resched);
7a8e76a3
SR
1505
1506 return ret;
1507}
c4f50183 1508EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1509
34a148bf 1510static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1511{
1512 struct buffer_page *reader = cpu_buffer->reader_page;
1513 struct buffer_page *head = cpu_buffer->head_page;
1514 struct buffer_page *commit = cpu_buffer->commit_page;
1515
1516 return reader->read == rb_page_commit(reader) &&
1517 (commit == reader ||
1518 (commit == head &&
1519 head->read == rb_page_commit(commit)));
1520}
1521
7a8e76a3
SR
1522/**
1523 * ring_buffer_record_disable - stop all writes into the buffer
1524 * @buffer: The ring buffer to stop writes to.
1525 *
1526 * This prevents all writes to the buffer. Any attempt to write
1527 * to the buffer after this will fail and return NULL.
1528 *
1529 * The caller should call synchronize_sched() after this.
1530 */
1531void ring_buffer_record_disable(struct ring_buffer *buffer)
1532{
1533 atomic_inc(&buffer->record_disabled);
1534}
c4f50183 1535EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1536
1537/**
1538 * ring_buffer_record_enable - enable writes to the buffer
1539 * @buffer: The ring buffer to enable writes
1540 *
1541 * Note, multiple disables will need the same number of enables
1542 * to truely enable the writing (much like preempt_disable).
1543 */
1544void ring_buffer_record_enable(struct ring_buffer *buffer)
1545{
1546 atomic_dec(&buffer->record_disabled);
1547}
c4f50183 1548EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1549
1550/**
1551 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1552 * @buffer: The ring buffer to stop writes to.
1553 * @cpu: The CPU buffer to stop
1554 *
1555 * This prevents all writes to the buffer. Any attempt to write
1556 * to the buffer after this will fail and return NULL.
1557 *
1558 * The caller should call synchronize_sched() after this.
1559 */
1560void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1561{
1562 struct ring_buffer_per_cpu *cpu_buffer;
1563
9e01c1b7 1564 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1565 return;
7a8e76a3
SR
1566
1567 cpu_buffer = buffer->buffers[cpu];
1568 atomic_inc(&cpu_buffer->record_disabled);
1569}
c4f50183 1570EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1571
1572/**
1573 * ring_buffer_record_enable_cpu - enable writes to the buffer
1574 * @buffer: The ring buffer to enable writes
1575 * @cpu: The CPU to enable.
1576 *
1577 * Note, multiple disables will need the same number of enables
1578 * to truely enable the writing (much like preempt_disable).
1579 */
1580void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1581{
1582 struct ring_buffer_per_cpu *cpu_buffer;
1583
9e01c1b7 1584 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1585 return;
7a8e76a3
SR
1586
1587 cpu_buffer = buffer->buffers[cpu];
1588 atomic_dec(&cpu_buffer->record_disabled);
1589}
c4f50183 1590EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1591
1592/**
1593 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1594 * @buffer: The ring buffer
1595 * @cpu: The per CPU buffer to get the entries from.
1596 */
1597unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1598{
1599 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1600 unsigned long ret;
7a8e76a3 1601
9e01c1b7 1602 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1603 return 0;
7a8e76a3
SR
1604
1605 cpu_buffer = buffer->buffers[cpu];
554f786e 1606 ret = cpu_buffer->entries;
554f786e
SR
1607
1608 return ret;
7a8e76a3 1609}
c4f50183 1610EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1611
1612/**
1613 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1614 * @buffer: The ring buffer
1615 * @cpu: The per CPU buffer to get the number of overruns from
1616 */
1617unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1618{
1619 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1620 unsigned long ret;
7a8e76a3 1621
9e01c1b7 1622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1623 return 0;
7a8e76a3
SR
1624
1625 cpu_buffer = buffer->buffers[cpu];
554f786e 1626 ret = cpu_buffer->overrun;
554f786e
SR
1627
1628 return ret;
7a8e76a3 1629}
c4f50183 1630EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1631
1632/**
1633 * ring_buffer_entries - get the number of entries in a buffer
1634 * @buffer: The ring buffer
1635 *
1636 * Returns the total number of entries in the ring buffer
1637 * (all CPU entries)
1638 */
1639unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1640{
1641 struct ring_buffer_per_cpu *cpu_buffer;
1642 unsigned long entries = 0;
1643 int cpu;
1644
1645 /* if you care about this being correct, lock the buffer */
1646 for_each_buffer_cpu(buffer, cpu) {
1647 cpu_buffer = buffer->buffers[cpu];
1648 entries += cpu_buffer->entries;
1649 }
1650
1651 return entries;
1652}
c4f50183 1653EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1654
1655/**
1656 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1657 * @buffer: The ring buffer
1658 *
1659 * Returns the total number of overruns in the ring buffer
1660 * (all CPU entries)
1661 */
1662unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1663{
1664 struct ring_buffer_per_cpu *cpu_buffer;
1665 unsigned long overruns = 0;
1666 int cpu;
1667
1668 /* if you care about this being correct, lock the buffer */
1669 for_each_buffer_cpu(buffer, cpu) {
1670 cpu_buffer = buffer->buffers[cpu];
1671 overruns += cpu_buffer->overrun;
1672 }
1673
1674 return overruns;
1675}
c4f50183 1676EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1677
642edba5 1678static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1679{
1680 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1681
d769041f
SR
1682 /* Iterator usage is expected to have record disabled */
1683 if (list_empty(&cpu_buffer->reader_page->list)) {
1684 iter->head_page = cpu_buffer->head_page;
6f807acd 1685 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1686 } else {
1687 iter->head_page = cpu_buffer->reader_page;
6f807acd 1688 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1689 }
1690 if (iter->head)
1691 iter->read_stamp = cpu_buffer->read_stamp;
1692 else
abc9b56d 1693 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1694}
f83c9d0f 1695
642edba5
SR
1696/**
1697 * ring_buffer_iter_reset - reset an iterator
1698 * @iter: The iterator to reset
1699 *
1700 * Resets the iterator, so that it will start from the beginning
1701 * again.
1702 */
1703void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1704{
554f786e 1705 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
1706 unsigned long flags;
1707
554f786e
SR
1708 if (!iter)
1709 return;
1710
1711 cpu_buffer = iter->cpu_buffer;
1712
642edba5
SR
1713 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1714 rb_iter_reset(iter);
f83c9d0f 1715 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 1716}
c4f50183 1717EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
1718
1719/**
1720 * ring_buffer_iter_empty - check if an iterator has no more to read
1721 * @iter: The iterator to check
1722 */
1723int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1724{
1725 struct ring_buffer_per_cpu *cpu_buffer;
1726
1727 cpu_buffer = iter->cpu_buffer;
1728
bf41a158
SR
1729 return iter->head_page == cpu_buffer->commit_page &&
1730 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 1731}
c4f50183 1732EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
1733
1734static void
1735rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1736 struct ring_buffer_event *event)
1737{
1738 u64 delta;
1739
1740 switch (event->type) {
1741 case RINGBUF_TYPE_PADDING:
1742 return;
1743
1744 case RINGBUF_TYPE_TIME_EXTEND:
1745 delta = event->array[0];
1746 delta <<= TS_SHIFT;
1747 delta += event->time_delta;
1748 cpu_buffer->read_stamp += delta;
1749 return;
1750
1751 case RINGBUF_TYPE_TIME_STAMP:
1752 /* FIXME: not implemented */
1753 return;
1754
1755 case RINGBUF_TYPE_DATA:
1756 cpu_buffer->read_stamp += event->time_delta;
1757 return;
1758
1759 default:
1760 BUG();
1761 }
1762 return;
1763}
1764
1765static void
1766rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1767 struct ring_buffer_event *event)
1768{
1769 u64 delta;
1770
1771 switch (event->type) {
1772 case RINGBUF_TYPE_PADDING:
1773 return;
1774
1775 case RINGBUF_TYPE_TIME_EXTEND:
1776 delta = event->array[0];
1777 delta <<= TS_SHIFT;
1778 delta += event->time_delta;
1779 iter->read_stamp += delta;
1780 return;
1781
1782 case RINGBUF_TYPE_TIME_STAMP:
1783 /* FIXME: not implemented */
1784 return;
1785
1786 case RINGBUF_TYPE_DATA:
1787 iter->read_stamp += event->time_delta;
1788 return;
1789
1790 default:
1791 BUG();
1792 }
1793 return;
1794}
1795
d769041f
SR
1796static struct buffer_page *
1797rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1798{
d769041f
SR
1799 struct buffer_page *reader = NULL;
1800 unsigned long flags;
818e3dd3 1801 int nr_loops = 0;
d769041f 1802
3e03fb7f
SR
1803 local_irq_save(flags);
1804 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1805
1806 again:
818e3dd3
SR
1807 /*
1808 * This should normally only loop twice. But because the
1809 * start of the reader inserts an empty page, it causes
1810 * a case where we will loop three times. There should be no
1811 * reason to loop four times (that I know of).
1812 */
3e89c7bb 1813 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1814 reader = NULL;
1815 goto out;
1816 }
1817
d769041f
SR
1818 reader = cpu_buffer->reader_page;
1819
1820 /* If there's more to read, return this page */
bf41a158 1821 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1822 goto out;
1823
1824 /* Never should we have an index greater than the size */
3e89c7bb
SR
1825 if (RB_WARN_ON(cpu_buffer,
1826 cpu_buffer->reader_page->read > rb_page_size(reader)))
1827 goto out;
d769041f
SR
1828
1829 /* check if we caught up to the tail */
1830 reader = NULL;
bf41a158 1831 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1832 goto out;
7a8e76a3
SR
1833
1834 /*
d769041f
SR
1835 * Splice the empty reader page into the list around the head.
1836 * Reset the reader page to size zero.
7a8e76a3 1837 */
7a8e76a3 1838
d769041f
SR
1839 reader = cpu_buffer->head_page;
1840 cpu_buffer->reader_page->list.next = reader->list.next;
1841 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1842
1843 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1844 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1845
d769041f
SR
1846 /* Make the reader page now replace the head */
1847 reader->list.prev->next = &cpu_buffer->reader_page->list;
1848 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1849
1850 /*
d769041f
SR
1851 * If the tail is on the reader, then we must set the head
1852 * to the inserted page, otherwise we set it one before.
7a8e76a3 1853 */
d769041f 1854 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1855
bf41a158 1856 if (cpu_buffer->commit_page != reader)
d769041f
SR
1857 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1858
1859 /* Finally update the reader page to the new head */
1860 cpu_buffer->reader_page = reader;
1861 rb_reset_reader_page(cpu_buffer);
1862
1863 goto again;
1864
1865 out:
3e03fb7f
SR
1866 __raw_spin_unlock(&cpu_buffer->lock);
1867 local_irq_restore(flags);
d769041f
SR
1868
1869 return reader;
1870}
1871
1872static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1873{
1874 struct ring_buffer_event *event;
1875 struct buffer_page *reader;
1876 unsigned length;
1877
1878 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1879
d769041f 1880 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1881 if (RB_WARN_ON(cpu_buffer, !reader))
1882 return;
7a8e76a3 1883
d769041f
SR
1884 event = rb_reader_event(cpu_buffer);
1885
1886 if (event->type == RINGBUF_TYPE_DATA)
1887 cpu_buffer->entries--;
1888
1889 rb_update_read_stamp(cpu_buffer, event);
1890
1891 length = rb_event_length(event);
6f807acd 1892 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1893}
1894
1895static void rb_advance_iter(struct ring_buffer_iter *iter)
1896{
1897 struct ring_buffer *buffer;
1898 struct ring_buffer_per_cpu *cpu_buffer;
1899 struct ring_buffer_event *event;
1900 unsigned length;
1901
1902 cpu_buffer = iter->cpu_buffer;
1903 buffer = cpu_buffer->buffer;
1904
1905 /*
1906 * Check if we are at the end of the buffer.
1907 */
bf41a158 1908 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1909 if (RB_WARN_ON(buffer,
1910 iter->head_page == cpu_buffer->commit_page))
1911 return;
d769041f 1912 rb_inc_iter(iter);
7a8e76a3
SR
1913 return;
1914 }
1915
1916 event = rb_iter_head_event(iter);
1917
1918 length = rb_event_length(event);
1919
1920 /*
1921 * This should not be called to advance the header if we are
1922 * at the tail of the buffer.
1923 */
3e89c7bb 1924 if (RB_WARN_ON(cpu_buffer,
f536aafc 1925 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1926 (iter->head + length > rb_commit_index(cpu_buffer))))
1927 return;
7a8e76a3
SR
1928
1929 rb_update_iter_read_stamp(iter, event);
1930
1931 iter->head += length;
1932
1933 /* check for end of page padding */
bf41a158
SR
1934 if ((iter->head >= rb_page_size(iter->head_page)) &&
1935 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
1936 rb_advance_iter(iter);
1937}
1938
f83c9d0f
SR
1939static struct ring_buffer_event *
1940rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
1941{
1942 struct ring_buffer_per_cpu *cpu_buffer;
1943 struct ring_buffer_event *event;
d769041f 1944 struct buffer_page *reader;
818e3dd3 1945 int nr_loops = 0;
7a8e76a3 1946
7a8e76a3
SR
1947 cpu_buffer = buffer->buffers[cpu];
1948
1949 again:
818e3dd3
SR
1950 /*
1951 * We repeat when a timestamp is encountered. It is possible
1952 * to get multiple timestamps from an interrupt entering just
1953 * as one timestamp is about to be written. The max times
1954 * that this can happen is the number of nested interrupts we
1955 * can have. Nesting 10 deep of interrupts is clearly
1956 * an anomaly.
1957 */
3e89c7bb 1958 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1959 return NULL;
818e3dd3 1960
d769041f
SR
1961 reader = rb_get_reader_page(cpu_buffer);
1962 if (!reader)
7a8e76a3
SR
1963 return NULL;
1964
d769041f 1965 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1966
1967 switch (event->type) {
1968 case RINGBUF_TYPE_PADDING:
bf41a158 1969 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
1970 rb_advance_reader(cpu_buffer);
1971 return NULL;
7a8e76a3
SR
1972
1973 case RINGBUF_TYPE_TIME_EXTEND:
1974 /* Internal data, OK to advance */
d769041f 1975 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1976 goto again;
1977
1978 case RINGBUF_TYPE_TIME_STAMP:
1979 /* FIXME: not implemented */
d769041f 1980 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1981 goto again;
1982
1983 case RINGBUF_TYPE_DATA:
1984 if (ts) {
1985 *ts = cpu_buffer->read_stamp + event->time_delta;
1986 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1987 }
1988 return event;
1989
1990 default:
1991 BUG();
1992 }
1993
1994 return NULL;
1995}
c4f50183 1996EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 1997
f83c9d0f
SR
1998static struct ring_buffer_event *
1999rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2000{
2001 struct ring_buffer *buffer;
2002 struct ring_buffer_per_cpu *cpu_buffer;
2003 struct ring_buffer_event *event;
818e3dd3 2004 int nr_loops = 0;
7a8e76a3
SR
2005
2006 if (ring_buffer_iter_empty(iter))
2007 return NULL;
2008
2009 cpu_buffer = iter->cpu_buffer;
2010 buffer = cpu_buffer->buffer;
2011
2012 again:
818e3dd3
SR
2013 /*
2014 * We repeat when a timestamp is encountered. It is possible
2015 * to get multiple timestamps from an interrupt entering just
2016 * as one timestamp is about to be written. The max times
2017 * that this can happen is the number of nested interrupts we
2018 * can have. Nesting 10 deep of interrupts is clearly
2019 * an anomaly.
2020 */
3e89c7bb 2021 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2022 return NULL;
818e3dd3 2023
7a8e76a3
SR
2024 if (rb_per_cpu_empty(cpu_buffer))
2025 return NULL;
2026
2027 event = rb_iter_head_event(iter);
2028
2029 switch (event->type) {
2030 case RINGBUF_TYPE_PADDING:
d769041f 2031 rb_inc_iter(iter);
7a8e76a3
SR
2032 goto again;
2033
2034 case RINGBUF_TYPE_TIME_EXTEND:
2035 /* Internal data, OK to advance */
2036 rb_advance_iter(iter);
2037 goto again;
2038
2039 case RINGBUF_TYPE_TIME_STAMP:
2040 /* FIXME: not implemented */
2041 rb_advance_iter(iter);
2042 goto again;
2043
2044 case RINGBUF_TYPE_DATA:
2045 if (ts) {
2046 *ts = iter->read_stamp + event->time_delta;
2047 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2048 }
2049 return event;
2050
2051 default:
2052 BUG();
2053 }
2054
2055 return NULL;
2056}
c4f50183 2057EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2058
f83c9d0f
SR
2059/**
2060 * ring_buffer_peek - peek at the next event to be read
2061 * @buffer: The ring buffer to read
2062 * @cpu: The cpu to peak at
2063 * @ts: The timestamp counter of this event.
2064 *
2065 * This will return the event that will be read next, but does
2066 * not consume the data.
2067 */
2068struct ring_buffer_event *
2069ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2070{
2071 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2072 struct ring_buffer_event *event;
f83c9d0f
SR
2073 unsigned long flags;
2074
554f786e 2075 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2076 return NULL;
554f786e 2077
f83c9d0f
SR
2078 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2079 event = rb_buffer_peek(buffer, cpu, ts);
2080 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2081
2082 return event;
2083}
2084
2085/**
2086 * ring_buffer_iter_peek - peek at the next event to be read
2087 * @iter: The ring buffer iterator
2088 * @ts: The timestamp counter of this event.
2089 *
2090 * This will return the event that will be read next, but does
2091 * not increment the iterator.
2092 */
2093struct ring_buffer_event *
2094ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2095{
2096 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2097 struct ring_buffer_event *event;
2098 unsigned long flags;
2099
2100 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2101 event = rb_iter_peek(iter, ts);
2102 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2103
2104 return event;
2105}
2106
7a8e76a3
SR
2107/**
2108 * ring_buffer_consume - return an event and consume it
2109 * @buffer: The ring buffer to get the next event from
2110 *
2111 * Returns the next event in the ring buffer, and that event is consumed.
2112 * Meaning, that sequential reads will keep returning a different event,
2113 * and eventually empty the ring buffer if the producer is slower.
2114 */
2115struct ring_buffer_event *
2116ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2117{
554f786e
SR
2118 struct ring_buffer_per_cpu *cpu_buffer;
2119 struct ring_buffer_event *event = NULL;
f83c9d0f 2120 unsigned long flags;
7a8e76a3 2121
554f786e
SR
2122 /* might be called in atomic */
2123 preempt_disable();
2124
9e01c1b7 2125 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2126 goto out;
7a8e76a3 2127
554f786e 2128 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2129 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130
2131 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2132 if (!event)
554f786e 2133 goto out_unlock;
7a8e76a3 2134
d769041f 2135 rb_advance_reader(cpu_buffer);
7a8e76a3 2136
554f786e 2137 out_unlock:
f83c9d0f
SR
2138 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2139
554f786e
SR
2140 out:
2141 preempt_enable();
2142
7a8e76a3
SR
2143 return event;
2144}
c4f50183 2145EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2146
2147/**
2148 * ring_buffer_read_start - start a non consuming read of the buffer
2149 * @buffer: The ring buffer to read from
2150 * @cpu: The cpu buffer to iterate over
2151 *
2152 * This starts up an iteration through the buffer. It also disables
2153 * the recording to the buffer until the reading is finished.
2154 * This prevents the reading from being corrupted. This is not
2155 * a consuming read, so a producer is not expected.
2156 *
2157 * Must be paired with ring_buffer_finish.
2158 */
2159struct ring_buffer_iter *
2160ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2161{
2162 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2163 struct ring_buffer_iter *iter;
d769041f 2164 unsigned long flags;
7a8e76a3 2165
9e01c1b7 2166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2167 return NULL;
7a8e76a3
SR
2168
2169 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2170 if (!iter)
8aabee57 2171 return NULL;
7a8e76a3
SR
2172
2173 cpu_buffer = buffer->buffers[cpu];
2174
2175 iter->cpu_buffer = cpu_buffer;
2176
2177 atomic_inc(&cpu_buffer->record_disabled);
2178 synchronize_sched();
2179
f83c9d0f 2180 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2181 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2182 rb_iter_reset(iter);
3e03fb7f 2183 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2184 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2185
2186 return iter;
2187}
c4f50183 2188EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2189
2190/**
2191 * ring_buffer_finish - finish reading the iterator of the buffer
2192 * @iter: The iterator retrieved by ring_buffer_start
2193 *
2194 * This re-enables the recording to the buffer, and frees the
2195 * iterator.
2196 */
2197void
2198ring_buffer_read_finish(struct ring_buffer_iter *iter)
2199{
2200 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2201
2202 atomic_dec(&cpu_buffer->record_disabled);
2203 kfree(iter);
2204}
c4f50183 2205EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2206
2207/**
2208 * ring_buffer_read - read the next item in the ring buffer by the iterator
2209 * @iter: The ring buffer iterator
2210 * @ts: The time stamp of the event read.
2211 *
2212 * This reads the next event in the ring buffer and increments the iterator.
2213 */
2214struct ring_buffer_event *
2215ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2216{
2217 struct ring_buffer_event *event;
f83c9d0f
SR
2218 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2219 unsigned long flags;
7a8e76a3 2220
f83c9d0f
SR
2221 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2222 event = rb_iter_peek(iter, ts);
7a8e76a3 2223 if (!event)
f83c9d0f 2224 goto out;
7a8e76a3
SR
2225
2226 rb_advance_iter(iter);
f83c9d0f
SR
2227 out:
2228 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2229
2230 return event;
2231}
c4f50183 2232EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2233
2234/**
2235 * ring_buffer_size - return the size of the ring buffer (in bytes)
2236 * @buffer: The ring buffer.
2237 */
2238unsigned long ring_buffer_size(struct ring_buffer *buffer)
2239{
2240 return BUF_PAGE_SIZE * buffer->pages;
2241}
c4f50183 2242EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2243
2244static void
2245rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2246{
2247 cpu_buffer->head_page
2248 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2249 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2250 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2251
6f807acd 2252 cpu_buffer->head_page->read = 0;
bf41a158
SR
2253
2254 cpu_buffer->tail_page = cpu_buffer->head_page;
2255 cpu_buffer->commit_page = cpu_buffer->head_page;
2256
2257 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2258 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2259 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2260 cpu_buffer->reader_page->read = 0;
7a8e76a3 2261
7a8e76a3
SR
2262 cpu_buffer->overrun = 0;
2263 cpu_buffer->entries = 0;
69507c06
SR
2264
2265 cpu_buffer->write_stamp = 0;
2266 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2267}
2268
2269/**
2270 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2271 * @buffer: The ring buffer to reset a per cpu buffer of
2272 * @cpu: The CPU buffer to be reset
2273 */
2274void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2275{
2276 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2277 unsigned long flags;
2278
9e01c1b7 2279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2280 return;
7a8e76a3 2281
f83c9d0f
SR
2282 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2283
3e03fb7f 2284 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2285
2286 rb_reset_cpu(cpu_buffer);
2287
3e03fb7f 2288 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2289
2290 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2291}
c4f50183 2292EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2293
2294/**
2295 * ring_buffer_reset - reset a ring buffer
2296 * @buffer: The ring buffer to reset all cpu buffers
2297 */
2298void ring_buffer_reset(struct ring_buffer *buffer)
2299{
7a8e76a3
SR
2300 int cpu;
2301
7a8e76a3 2302 for_each_buffer_cpu(buffer, cpu)
d769041f 2303 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2304}
c4f50183 2305EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2306
2307/**
2308 * rind_buffer_empty - is the ring buffer empty?
2309 * @buffer: The ring buffer to test
2310 */
2311int ring_buffer_empty(struct ring_buffer *buffer)
2312{
2313 struct ring_buffer_per_cpu *cpu_buffer;
2314 int cpu;
2315
2316 /* yes this is racy, but if you don't like the race, lock the buffer */
2317 for_each_buffer_cpu(buffer, cpu) {
2318 cpu_buffer = buffer->buffers[cpu];
2319 if (!rb_per_cpu_empty(cpu_buffer))
2320 return 0;
2321 }
554f786e 2322
7a8e76a3
SR
2323 return 1;
2324}
c4f50183 2325EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2326
2327/**
2328 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2329 * @buffer: The ring buffer
2330 * @cpu: The CPU buffer to test
2331 */
2332int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2333{
2334 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2335 int ret;
7a8e76a3 2336
9e01c1b7 2337 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2338 return 1;
7a8e76a3
SR
2339
2340 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2341 ret = rb_per_cpu_empty(cpu_buffer);
2342
554f786e
SR
2343
2344 return ret;
7a8e76a3 2345}
c4f50183 2346EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2347
2348/**
2349 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2350 * @buffer_a: One buffer to swap with
2351 * @buffer_b: The other buffer to swap with
2352 *
2353 * This function is useful for tracers that want to take a "snapshot"
2354 * of a CPU buffer and has another back up buffer lying around.
2355 * it is expected that the tracer handles the cpu buffer not being
2356 * used at the moment.
2357 */
2358int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2359 struct ring_buffer *buffer_b, int cpu)
2360{
2361 struct ring_buffer_per_cpu *cpu_buffer_a;
2362 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2363 int ret = -EINVAL;
2364
9e01c1b7
RR
2365 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2366 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2367 goto out;
7a8e76a3
SR
2368
2369 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2370 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2371 goto out;
2372
2373 ret = -EAGAIN;
7a8e76a3 2374
97b17efe 2375 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2376 goto out;
97b17efe
SR
2377
2378 if (atomic_read(&buffer_a->record_disabled))
554f786e 2379 goto out;
97b17efe
SR
2380
2381 if (atomic_read(&buffer_b->record_disabled))
554f786e 2382 goto out;
97b17efe 2383
7a8e76a3
SR
2384 cpu_buffer_a = buffer_a->buffers[cpu];
2385 cpu_buffer_b = buffer_b->buffers[cpu];
2386
97b17efe 2387 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2388 goto out;
97b17efe
SR
2389
2390 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2391 goto out;
97b17efe 2392
7a8e76a3
SR
2393 /*
2394 * We can't do a synchronize_sched here because this
2395 * function can be called in atomic context.
2396 * Normally this will be called from the same CPU as cpu.
2397 * If not it's up to the caller to protect this.
2398 */
2399 atomic_inc(&cpu_buffer_a->record_disabled);
2400 atomic_inc(&cpu_buffer_b->record_disabled);
2401
2402 buffer_a->buffers[cpu] = cpu_buffer_b;
2403 buffer_b->buffers[cpu] = cpu_buffer_a;
2404
2405 cpu_buffer_b->buffer = buffer_a;
2406 cpu_buffer_a->buffer = buffer_b;
2407
2408 atomic_dec(&cpu_buffer_a->record_disabled);
2409 atomic_dec(&cpu_buffer_b->record_disabled);
2410
554f786e
SR
2411 ret = 0;
2412out:
554f786e 2413 return ret;
7a8e76a3 2414}
c4f50183 2415EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2416
8789a9e7 2417static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2418 struct buffer_data_page *bpage,
2419 unsigned int offset)
8789a9e7
SR
2420{
2421 struct ring_buffer_event *event;
2422 unsigned long head;
2423
2424 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2425 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2426 head += rb_event_length(event)) {
2427
044fa782 2428 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2429 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2430 return;
2431 /* Only count data entries */
2432 if (event->type != RINGBUF_TYPE_DATA)
2433 continue;
2434 cpu_buffer->entries--;
2435 }
2436 __raw_spin_unlock(&cpu_buffer->lock);
2437}
2438
2439/**
2440 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2441 * @buffer: the buffer to allocate for.
2442 *
2443 * This function is used in conjunction with ring_buffer_read_page.
2444 * When reading a full page from the ring buffer, these functions
2445 * can be used to speed up the process. The calling function should
2446 * allocate a few pages first with this function. Then when it
2447 * needs to get pages from the ring buffer, it passes the result
2448 * of this function into ring_buffer_read_page, which will swap
2449 * the page that was allocated, with the read page of the buffer.
2450 *
2451 * Returns:
2452 * The page allocated, or NULL on error.
2453 */
2454void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2455{
044fa782 2456 struct buffer_data_page *bpage;
ef7a4a16 2457 unsigned long addr;
8789a9e7
SR
2458
2459 addr = __get_free_page(GFP_KERNEL);
2460 if (!addr)
2461 return NULL;
2462
044fa782 2463 bpage = (void *)addr;
8789a9e7 2464
ef7a4a16
SR
2465 rb_init_page(bpage);
2466
044fa782 2467 return bpage;
8789a9e7
SR
2468}
2469
2470/**
2471 * ring_buffer_free_read_page - free an allocated read page
2472 * @buffer: the buffer the page was allocate for
2473 * @data: the page to free
2474 *
2475 * Free a page allocated from ring_buffer_alloc_read_page.
2476 */
2477void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2478{
2479 free_page((unsigned long)data);
2480}
2481
2482/**
2483 * ring_buffer_read_page - extract a page from the ring buffer
2484 * @buffer: buffer to extract from
2485 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2486 * @len: amount to extract
8789a9e7
SR
2487 * @cpu: the cpu of the buffer to extract
2488 * @full: should the extraction only happen when the page is full.
2489 *
2490 * This function will pull out a page from the ring buffer and consume it.
2491 * @data_page must be the address of the variable that was returned
2492 * from ring_buffer_alloc_read_page. This is because the page might be used
2493 * to swap with a page in the ring buffer.
2494 *
2495 * for example:
b85fa01e 2496 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2497 * if (!rpage)
2498 * return error;
ef7a4a16 2499 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2500 * if (ret >= 0)
2501 * process_page(rpage, ret);
8789a9e7
SR
2502 *
2503 * When @full is set, the function will not return true unless
2504 * the writer is off the reader page.
2505 *
2506 * Note: it is up to the calling functions to handle sleeps and wakeups.
2507 * The ring buffer can be used anywhere in the kernel and can not
2508 * blindly call wake_up. The layer that uses the ring buffer must be
2509 * responsible for that.
2510 *
2511 * Returns:
667d2412
LJ
2512 * >=0 if data has been transferred, returns the offset of consumed data.
2513 * <0 if no data has been transferred.
8789a9e7
SR
2514 */
2515int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2516 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2517{
2518 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2519 struct ring_buffer_event *event;
044fa782 2520 struct buffer_data_page *bpage;
ef7a4a16 2521 struct buffer_page *reader;
8789a9e7 2522 unsigned long flags;
ef7a4a16 2523 unsigned int commit;
667d2412 2524 unsigned int read;
4f3640f8 2525 u64 save_timestamp;
667d2412 2526 int ret = -1;
8789a9e7 2527
554f786e
SR
2528 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2529 goto out;
2530
474d32b6
SR
2531 /*
2532 * If len is not big enough to hold the page header, then
2533 * we can not copy anything.
2534 */
2535 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2536 goto out;
474d32b6
SR
2537
2538 len -= BUF_PAGE_HDR_SIZE;
2539
8789a9e7 2540 if (!data_page)
554f786e 2541 goto out;
8789a9e7 2542
044fa782
SR
2543 bpage = *data_page;
2544 if (!bpage)
554f786e 2545 goto out;
8789a9e7
SR
2546
2547 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2548
ef7a4a16
SR
2549 reader = rb_get_reader_page(cpu_buffer);
2550 if (!reader)
554f786e 2551 goto out_unlock;
8789a9e7 2552
ef7a4a16
SR
2553 event = rb_reader_event(cpu_buffer);
2554
2555 read = reader->read;
2556 commit = rb_page_commit(reader);
667d2412 2557
8789a9e7 2558 /*
474d32b6
SR
2559 * If this page has been partially read or
2560 * if len is not big enough to read the rest of the page or
2561 * a writer is still on the page, then
2562 * we must copy the data from the page to the buffer.
2563 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2564 */
474d32b6 2565 if (read || (len < (commit - read)) ||
ef7a4a16 2566 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2567 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2568 unsigned int rpos = read;
2569 unsigned int pos = 0;
ef7a4a16 2570 unsigned int size;
8789a9e7
SR
2571
2572 if (full)
554f786e 2573 goto out_unlock;
8789a9e7 2574
ef7a4a16
SR
2575 if (len > (commit - read))
2576 len = (commit - read);
2577
2578 size = rb_event_length(event);
2579
2580 if (len < size)
554f786e 2581 goto out_unlock;
ef7a4a16 2582
4f3640f8
SR
2583 /* save the current timestamp, since the user will need it */
2584 save_timestamp = cpu_buffer->read_stamp;
2585
ef7a4a16
SR
2586 /* Need to copy one event at a time */
2587 do {
474d32b6 2588 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2589
2590 len -= size;
2591
2592 rb_advance_reader(cpu_buffer);
474d32b6
SR
2593 rpos = reader->read;
2594 pos += size;
ef7a4a16
SR
2595
2596 event = rb_reader_event(cpu_buffer);
2597 size = rb_event_length(event);
2598 } while (len > size);
667d2412
LJ
2599
2600 /* update bpage */
ef7a4a16 2601 local_set(&bpage->commit, pos);
4f3640f8 2602 bpage->time_stamp = save_timestamp;
ef7a4a16 2603
474d32b6
SR
2604 /* we copied everything to the beginning */
2605 read = 0;
8789a9e7
SR
2606 } else {
2607 /* swap the pages */
044fa782 2608 rb_init_page(bpage);
ef7a4a16
SR
2609 bpage = reader->page;
2610 reader->page = *data_page;
2611 local_set(&reader->write, 0);
2612 reader->read = 0;
044fa782 2613 *data_page = bpage;
ef7a4a16
SR
2614
2615 /* update the entry counter */
2616 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2617 }
667d2412 2618 ret = read;
8789a9e7 2619
554f786e 2620 out_unlock:
8789a9e7
SR
2621 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2622
554f786e 2623 out:
8789a9e7
SR
2624 return ret;
2625}
2626
a3583244
SR
2627static ssize_t
2628rb_simple_read(struct file *filp, char __user *ubuf,
2629 size_t cnt, loff_t *ppos)
2630{
5e39841c 2631 unsigned long *p = filp->private_data;
a3583244
SR
2632 char buf[64];
2633 int r;
2634
033601a3
SR
2635 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2636 r = sprintf(buf, "permanently disabled\n");
2637 else
2638 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2639
2640 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2641}
2642
2643static ssize_t
2644rb_simple_write(struct file *filp, const char __user *ubuf,
2645 size_t cnt, loff_t *ppos)
2646{
5e39841c 2647 unsigned long *p = filp->private_data;
a3583244 2648 char buf[64];
5e39841c 2649 unsigned long val;
a3583244
SR
2650 int ret;
2651
2652 if (cnt >= sizeof(buf))
2653 return -EINVAL;
2654
2655 if (copy_from_user(&buf, ubuf, cnt))
2656 return -EFAULT;
2657
2658 buf[cnt] = 0;
2659
2660 ret = strict_strtoul(buf, 10, &val);
2661 if (ret < 0)
2662 return ret;
2663
033601a3
SR
2664 if (val)
2665 set_bit(RB_BUFFERS_ON_BIT, p);
2666 else
2667 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2668
2669 (*ppos)++;
2670
2671 return cnt;
2672}
2673
5e2336a0 2674static const struct file_operations rb_simple_fops = {
a3583244
SR
2675 .open = tracing_open_generic,
2676 .read = rb_simple_read,
2677 .write = rb_simple_write,
2678};
2679
2680
2681static __init int rb_init_debugfs(void)
2682{
2683 struct dentry *d_tracer;
2684 struct dentry *entry;
2685
2686 d_tracer = tracing_init_dentry();
2687
2688 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2689 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2690 if (!entry)
2691 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2692
2693 return 0;
2694}
2695
2696fs_initcall(rb_init_debugfs);
554f786e 2697
59222efe 2698#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
2699static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2700 unsigned long action, void *hcpu)
2701{
2702 struct ring_buffer *buffer =
2703 container_of(self, struct ring_buffer, cpu_notify);
2704 long cpu = (long)hcpu;
2705
2706 switch (action) {
2707 case CPU_UP_PREPARE:
2708 case CPU_UP_PREPARE_FROZEN:
2709 if (cpu_isset(cpu, *buffer->cpumask))
2710 return NOTIFY_OK;
2711
2712 buffer->buffers[cpu] =
2713 rb_allocate_cpu_buffer(buffer, cpu);
2714 if (!buffer->buffers[cpu]) {
2715 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2716 cpu);
2717 return NOTIFY_OK;
2718 }
2719 smp_wmb();
2720 cpu_set(cpu, *buffer->cpumask);
2721 break;
2722 case CPU_DOWN_PREPARE:
2723 case CPU_DOWN_PREPARE_FROZEN:
2724 /*
2725 * Do nothing.
2726 * If we were to free the buffer, then the user would
2727 * lose any trace that was in the buffer.
2728 */
2729 break;
2730 default:
2731 break;
2732 }
2733 return NOTIFY_OK;
2734}
2735#endif
This page took 0.194459 seconds and 5 git commands to generate.