workqueue: make GCWQ_FREEZING a pool flag
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
8b03ae3c 111 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 112 *
e22bee78
TH
113 * X: During normal operation, modification requires gcwq->lock and
114 * should be done only from local cpu. Either disabling preemption
115 * on local cpu or grabbing gcwq->lock is enough for read access.
24647570 116 * If POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43
TH
125struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 127 unsigned int flags; /* X: flags */
bd7bdd43
TH
128
129 struct list_head worklist; /* L: list of pending works */
130 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
131
132 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
133 int nr_idle; /* L: currently idle ones */
134
135 struct list_head idle_list; /* X: list of idle workers */
136 struct timer_list idle_timer; /* L: worker idle timeout */
137 struct timer_list mayday_timer; /* L: SOS timer for workers */
138
24647570 139 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 140 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
141};
142
8b03ae3c 143/*
e22bee78
TH
144 * Global per-cpu workqueue. There's one and only one for each cpu
145 * and all works are queued and processed here regardless of their
146 * target workqueues.
8b03ae3c
TH
147 */
148struct global_cwq {
149 spinlock_t lock; /* the gcwq lock */
150 unsigned int cpu; /* I: the associated cpu */
c8e55f36 151
bd7bdd43 152 /* workers are chained either in busy_hash or pool idle_list */
42f8570f 153 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
c8e55f36
TH
154 /* L: hash of busy workers */
155
e34cdddb 156 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 157 /* normal and highpri pools */
8b03ae3c
TH
158} ____cacheline_aligned_in_smp;
159
1da177e4 160/*
502ca9d8 161 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
162 * work_struct->data are used for flags and thus cwqs need to be
163 * aligned at two's power of the number of flag bits.
1da177e4
LT
164 */
165struct cpu_workqueue_struct {
bd7bdd43 166 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 167 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
168 int work_color; /* L: current color */
169 int flush_color; /* L: flushing color */
170 int nr_in_flight[WORK_NR_COLORS];
171 /* L: nr of in_flight works */
1e19ffc6 172 int nr_active; /* L: nr of active works */
a0a1a5fd 173 int max_active; /* L: max active works */
1e19ffc6 174 struct list_head delayed_works; /* L: delayed works */
0f900049 175};
1da177e4 176
73f53c4a
TH
177/*
178 * Structure used to wait for workqueue flush.
179 */
180struct wq_flusher {
181 struct list_head list; /* F: list of flushers */
182 int flush_color; /* F: flush color waiting for */
183 struct completion done; /* flush completion */
184};
185
f2e005aa
TH
186/*
187 * All cpumasks are assumed to be always set on UP and thus can't be
188 * used to determine whether there's something to be done.
189 */
190#ifdef CONFIG_SMP
191typedef cpumask_var_t mayday_mask_t;
192#define mayday_test_and_set_cpu(cpu, mask) \
193 cpumask_test_and_set_cpu((cpu), (mask))
194#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
195#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 196#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
197#define free_mayday_mask(mask) free_cpumask_var((mask))
198#else
199typedef unsigned long mayday_mask_t;
200#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
201#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
202#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
203#define alloc_mayday_mask(maskp, gfp) true
204#define free_mayday_mask(mask) do { } while (0)
205#endif
1da177e4
LT
206
207/*
208 * The externally visible workqueue abstraction is an array of
209 * per-CPU workqueues:
210 */
211struct workqueue_struct {
9c5a2ba7 212 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
213 union {
214 struct cpu_workqueue_struct __percpu *pcpu;
215 struct cpu_workqueue_struct *single;
216 unsigned long v;
217 } cpu_wq; /* I: cwq's */
4690c4ab 218 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
219
220 struct mutex flush_mutex; /* protects wq flushing */
221 int work_color; /* F: current work color */
222 int flush_color; /* F: current flush color */
223 atomic_t nr_cwqs_to_flush; /* flush in progress */
224 struct wq_flusher *first_flusher; /* F: first flusher */
225 struct list_head flusher_queue; /* F: flush waiters */
226 struct list_head flusher_overflow; /* F: flush overflow list */
227
f2e005aa 228 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
229 struct worker *rescuer; /* I: rescue worker */
230
9c5a2ba7 231 int nr_drainers; /* W: drain in progress */
dcd989cb 232 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 233#ifdef CONFIG_LOCKDEP
4690c4ab 234 struct lockdep_map lockdep_map;
4e6045f1 235#endif
b196be89 236 char name[]; /* I: workqueue name */
1da177e4
LT
237};
238
d320c038 239struct workqueue_struct *system_wq __read_mostly;
d320c038 240EXPORT_SYMBOL_GPL(system_wq);
044c782c 241struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 242EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 243struct workqueue_struct *system_long_wq __read_mostly;
d320c038 244EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 245struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 246EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 247struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 248EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 249
97bd2347
TH
250#define CREATE_TRACE_POINTS
251#include <trace/events/workqueue.h>
252
4ce62e9e 253#define for_each_worker_pool(pool, gcwq) \
3270476a 254 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 255 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 256
db7bccf4 257#define for_each_busy_worker(worker, i, pos, gcwq) \
42f8570f 258 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
db7bccf4 259
f3421797
TH
260static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
261 unsigned int sw)
262{
263 if (cpu < nr_cpu_ids) {
264 if (sw & 1) {
265 cpu = cpumask_next(cpu, mask);
266 if (cpu < nr_cpu_ids)
267 return cpu;
268 }
269 if (sw & 2)
270 return WORK_CPU_UNBOUND;
271 }
272 return WORK_CPU_NONE;
273}
274
275static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
276 struct workqueue_struct *wq)
277{
278 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
279}
280
09884951
TH
281/*
282 * CPU iterators
283 *
284 * An extra gcwq is defined for an invalid cpu number
285 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
286 * specific CPU. The following iterators are similar to
287 * for_each_*_cpu() iterators but also considers the unbound gcwq.
288 *
289 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
290 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
291 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
292 * WORK_CPU_UNBOUND for unbound workqueues
293 */
f3421797
TH
294#define for_each_gcwq_cpu(cpu) \
295 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
296 (cpu) < WORK_CPU_NONE; \
297 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
298
299#define for_each_online_gcwq_cpu(cpu) \
300 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
301 (cpu) < WORK_CPU_NONE; \
302 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
303
304#define for_each_cwq_cpu(cpu, wq) \
305 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
308
dc186ad7
TG
309#ifdef CONFIG_DEBUG_OBJECTS_WORK
310
311static struct debug_obj_descr work_debug_descr;
312
99777288
SG
313static void *work_debug_hint(void *addr)
314{
315 return ((struct work_struct *) addr)->func;
316}
317
dc186ad7
TG
318/*
319 * fixup_init is called when:
320 * - an active object is initialized
321 */
322static int work_fixup_init(void *addr, enum debug_obj_state state)
323{
324 struct work_struct *work = addr;
325
326 switch (state) {
327 case ODEBUG_STATE_ACTIVE:
328 cancel_work_sync(work);
329 debug_object_init(work, &work_debug_descr);
330 return 1;
331 default:
332 return 0;
333 }
334}
335
336/*
337 * fixup_activate is called when:
338 * - an active object is activated
339 * - an unknown object is activated (might be a statically initialized object)
340 */
341static int work_fixup_activate(void *addr, enum debug_obj_state state)
342{
343 struct work_struct *work = addr;
344
345 switch (state) {
346
347 case ODEBUG_STATE_NOTAVAILABLE:
348 /*
349 * This is not really a fixup. The work struct was
350 * statically initialized. We just make sure that it
351 * is tracked in the object tracker.
352 */
22df02bb 353 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
354 debug_object_init(work, &work_debug_descr);
355 debug_object_activate(work, &work_debug_descr);
356 return 0;
357 }
358 WARN_ON_ONCE(1);
359 return 0;
360
361 case ODEBUG_STATE_ACTIVE:
362 WARN_ON(1);
363
364 default:
365 return 0;
366 }
367}
368
369/*
370 * fixup_free is called when:
371 * - an active object is freed
372 */
373static int work_fixup_free(void *addr, enum debug_obj_state state)
374{
375 struct work_struct *work = addr;
376
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 cancel_work_sync(work);
380 debug_object_free(work, &work_debug_descr);
381 return 1;
382 default:
383 return 0;
384 }
385}
386
387static struct debug_obj_descr work_debug_descr = {
388 .name = "work_struct",
99777288 389 .debug_hint = work_debug_hint,
dc186ad7
TG
390 .fixup_init = work_fixup_init,
391 .fixup_activate = work_fixup_activate,
392 .fixup_free = work_fixup_free,
393};
394
395static inline void debug_work_activate(struct work_struct *work)
396{
397 debug_object_activate(work, &work_debug_descr);
398}
399
400static inline void debug_work_deactivate(struct work_struct *work)
401{
402 debug_object_deactivate(work, &work_debug_descr);
403}
404
405void __init_work(struct work_struct *work, int onstack)
406{
407 if (onstack)
408 debug_object_init_on_stack(work, &work_debug_descr);
409 else
410 debug_object_init(work, &work_debug_descr);
411}
412EXPORT_SYMBOL_GPL(__init_work);
413
414void destroy_work_on_stack(struct work_struct *work)
415{
416 debug_object_free(work, &work_debug_descr);
417}
418EXPORT_SYMBOL_GPL(destroy_work_on_stack);
419
420#else
421static inline void debug_work_activate(struct work_struct *work) { }
422static inline void debug_work_deactivate(struct work_struct *work) { }
423#endif
424
95402b38
GS
425/* Serializes the accesses to the list of workqueues. */
426static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 427static LIST_HEAD(workqueues);
a0a1a5fd 428static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 429
e22bee78
TH
430/*
431 * The almighty global cpu workqueues. nr_running is the only field
432 * which is expected to be used frequently by other cpus via
433 * try_to_wake_up(). Put it in a separate cacheline.
434 */
8b03ae3c 435static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 436static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 437
f3421797 438/*
24647570
TH
439 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
440 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
441 * WORKER_UNBOUND set.
f3421797
TH
442 */
443static struct global_cwq unbound_global_cwq;
e34cdddb
TH
444static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
445 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 446};
f3421797 447
c34056a3 448static int worker_thread(void *__worker);
e2905b29 449static unsigned int work_cpu(struct work_struct *work);
1da177e4 450
e34cdddb 451static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
452{
453 return pool - pool->gcwq->pools;
454}
455
8b03ae3c
TH
456static struct global_cwq *get_gcwq(unsigned int cpu)
457{
f3421797
TH
458 if (cpu != WORK_CPU_UNBOUND)
459 return &per_cpu(global_cwq, cpu);
460 else
461 return &unbound_global_cwq;
8b03ae3c
TH
462}
463
63d95a91 464static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 465{
63d95a91 466 int cpu = pool->gcwq->cpu;
e34cdddb 467 int idx = std_worker_pool_pri(pool);
63d95a91 468
f3421797 469 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 470 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 471 else
4ce62e9e 472 return &unbound_pool_nr_running[idx];
e22bee78
TH
473}
474
1537663f
TH
475static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
b1f4ec17 477{
f3421797 478 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 479 if (likely(cpu < nr_cpu_ids))
f3421797 480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
481 } else if (likely(cpu == WORK_CPU_UNBOUND))
482 return wq->cpu_wq.single;
483 return NULL;
b1f4ec17
ON
484}
485
73f53c4a
TH
486static unsigned int work_color_to_flags(int color)
487{
488 return color << WORK_STRUCT_COLOR_SHIFT;
489}
490
491static int get_work_color(struct work_struct *work)
492{
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495}
496
497static int work_next_color(int color)
498{
499 return (color + 1) % WORK_NR_COLORS;
500}
1da177e4 501
14441960 502/*
b5490077
TH
503 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
504 * contain the pointer to the queued cwq. Once execution starts, the flag
505 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 506 *
bbb68dfa
TH
507 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
508 * and clear_work_data() can be used to set the cwq, cpu or clear
509 * work->data. These functions should only be called while the work is
510 * owned - ie. while the PENDING bit is set.
7a22ad75 511 *
bbb68dfa
TH
512 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
513 * a work. gcwq is available once the work has been queued anywhere after
514 * initialization until it is sync canceled. cwq is available only while
515 * the work item is queued.
7a22ad75 516 *
bbb68dfa
TH
517 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
518 * canceled. While being canceled, a work item may have its PENDING set
519 * but stay off timer and worklist for arbitrarily long and nobody should
520 * try to steal the PENDING bit.
14441960 521 */
7a22ad75
TH
522static inline void set_work_data(struct work_struct *work, unsigned long data,
523 unsigned long flags)
365970a1 524{
4594bf15 525 BUG_ON(!work_pending(work));
7a22ad75
TH
526 atomic_long_set(&work->data, data | flags | work_static(work));
527}
365970a1 528
7a22ad75
TH
529static void set_work_cwq(struct work_struct *work,
530 struct cpu_workqueue_struct *cwq,
531 unsigned long extra_flags)
532{
533 set_work_data(work, (unsigned long)cwq,
e120153d 534 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
535}
536
8930caba
TH
537static void set_work_cpu_and_clear_pending(struct work_struct *work,
538 unsigned int cpu)
7a22ad75 539{
23657bb1
TH
540 /*
541 * The following wmb is paired with the implied mb in
542 * test_and_set_bit(PENDING) and ensures all updates to @work made
543 * here are visible to and precede any updates by the next PENDING
544 * owner.
545 */
546 smp_wmb();
b5490077 547 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 548}
f756d5e2 549
7a22ad75 550static void clear_work_data(struct work_struct *work)
1da177e4 551{
23657bb1 552 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 553 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
554}
555
7a22ad75 556static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 557{
e120153d 558 unsigned long data = atomic_long_read(&work->data);
7a22ad75 559
e120153d
TH
560 if (data & WORK_STRUCT_CWQ)
561 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
562 else
563 return NULL;
4d707b9f
ON
564}
565
7a22ad75 566static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 567{
e120153d 568 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
569 unsigned int cpu;
570
e120153d
TH
571 if (data & WORK_STRUCT_CWQ)
572 return ((struct cpu_workqueue_struct *)
bd7bdd43 573 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 574
b5490077 575 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 576 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
577 return NULL;
578
f3421797 579 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 580 return get_gcwq(cpu);
b1f4ec17
ON
581}
582
bbb68dfa
TH
583static void mark_work_canceling(struct work_struct *work)
584{
585 struct global_cwq *gcwq = get_work_gcwq(work);
586 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
587
588 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
589 WORK_STRUCT_PENDING);
590}
591
592static bool work_is_canceling(struct work_struct *work)
593{
594 unsigned long data = atomic_long_read(&work->data);
595
596 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
597}
598
e22bee78 599/*
3270476a
TH
600 * Policy functions. These define the policies on how the global worker
601 * pools are managed. Unless noted otherwise, these functions assume that
602 * they're being called with gcwq->lock held.
e22bee78
TH
603 */
604
63d95a91 605static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 606{
3270476a 607 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
608}
609
4594bf15 610/*
e22bee78
TH
611 * Need to wake up a worker? Called from anything but currently
612 * running workers.
974271c4
TH
613 *
614 * Note that, because unbound workers never contribute to nr_running, this
615 * function will always return %true for unbound gcwq as long as the
616 * worklist isn't empty.
4594bf15 617 */
63d95a91 618static bool need_more_worker(struct worker_pool *pool)
365970a1 619{
63d95a91 620 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 621}
4594bf15 622
e22bee78 623/* Can I start working? Called from busy but !running workers. */
63d95a91 624static bool may_start_working(struct worker_pool *pool)
e22bee78 625{
63d95a91 626 return pool->nr_idle;
e22bee78
TH
627}
628
629/* Do I need to keep working? Called from currently running workers. */
63d95a91 630static bool keep_working(struct worker_pool *pool)
e22bee78 631{
63d95a91 632 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 633
3270476a 634 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
635}
636
637/* Do we need a new worker? Called from manager. */
63d95a91 638static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 639{
63d95a91 640 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 641}
365970a1 642
e22bee78 643/* Do I need to be the manager? */
63d95a91 644static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 645{
63d95a91 646 return need_to_create_worker(pool) ||
11ebea50 647 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
648}
649
650/* Do we have too many workers and should some go away? */
63d95a91 651static bool too_many_workers(struct worker_pool *pool)
e22bee78 652{
552a37e9 653 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
654 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
655 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 656
ea1abd61
LJ
657 /*
658 * nr_idle and idle_list may disagree if idle rebinding is in
659 * progress. Never return %true if idle_list is empty.
660 */
661 if (list_empty(&pool->idle_list))
662 return false;
663
e22bee78 664 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
665}
666
4d707b9f 667/*
e22bee78
TH
668 * Wake up functions.
669 */
670
7e11629d 671/* Return the first worker. Safe with preemption disabled */
63d95a91 672static struct worker *first_worker(struct worker_pool *pool)
7e11629d 673{
63d95a91 674 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
675 return NULL;
676
63d95a91 677 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
678}
679
680/**
681 * wake_up_worker - wake up an idle worker
63d95a91 682 * @pool: worker pool to wake worker from
7e11629d 683 *
63d95a91 684 * Wake up the first idle worker of @pool.
7e11629d
TH
685 *
686 * CONTEXT:
687 * spin_lock_irq(gcwq->lock).
688 */
63d95a91 689static void wake_up_worker(struct worker_pool *pool)
7e11629d 690{
63d95a91 691 struct worker *worker = first_worker(pool);
7e11629d
TH
692
693 if (likely(worker))
694 wake_up_process(worker->task);
695}
696
d302f017 697/**
e22bee78
TH
698 * wq_worker_waking_up - a worker is waking up
699 * @task: task waking up
700 * @cpu: CPU @task is waking up to
701 *
702 * This function is called during try_to_wake_up() when a worker is
703 * being awoken.
704 *
705 * CONTEXT:
706 * spin_lock_irq(rq->lock)
707 */
708void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
709{
710 struct worker *worker = kthread_data(task);
711
36576000
JK
712 if (!(worker->flags & WORKER_NOT_RUNNING)) {
713 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 714 atomic_inc(get_pool_nr_running(worker->pool));
36576000 715 }
e22bee78
TH
716}
717
718/**
719 * wq_worker_sleeping - a worker is going to sleep
720 * @task: task going to sleep
721 * @cpu: CPU in question, must be the current CPU number
722 *
723 * This function is called during schedule() when a busy worker is
724 * going to sleep. Worker on the same cpu can be woken up by
725 * returning pointer to its task.
726 *
727 * CONTEXT:
728 * spin_lock_irq(rq->lock)
729 *
730 * RETURNS:
731 * Worker task on @cpu to wake up, %NULL if none.
732 */
733struct task_struct *wq_worker_sleeping(struct task_struct *task,
734 unsigned int cpu)
735{
736 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
737 struct worker_pool *pool;
738 atomic_t *nr_running;
e22bee78 739
111c225a
TH
740 /*
741 * Rescuers, which may not have all the fields set up like normal
742 * workers, also reach here, let's not access anything before
743 * checking NOT_RUNNING.
744 */
2d64672e 745 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
746 return NULL;
747
111c225a
TH
748 pool = worker->pool;
749 nr_running = get_pool_nr_running(pool);
750
e22bee78
TH
751 /* this can only happen on the local cpu */
752 BUG_ON(cpu != raw_smp_processor_id());
753
754 /*
755 * The counterpart of the following dec_and_test, implied mb,
756 * worklist not empty test sequence is in insert_work().
757 * Please read comment there.
758 *
628c78e7
TH
759 * NOT_RUNNING is clear. This means that we're bound to and
760 * running on the local cpu w/ rq lock held and preemption
761 * disabled, which in turn means that none else could be
762 * manipulating idle_list, so dereferencing idle_list without gcwq
763 * lock is safe.
e22bee78 764 */
bd7bdd43 765 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 766 to_wakeup = first_worker(pool);
e22bee78
TH
767 return to_wakeup ? to_wakeup->task : NULL;
768}
769
770/**
771 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 772 * @worker: self
d302f017
TH
773 * @flags: flags to set
774 * @wakeup: wakeup an idle worker if necessary
775 *
e22bee78
TH
776 * Set @flags in @worker->flags and adjust nr_running accordingly. If
777 * nr_running becomes zero and @wakeup is %true, an idle worker is
778 * woken up.
d302f017 779 *
cb444766
TH
780 * CONTEXT:
781 * spin_lock_irq(gcwq->lock)
d302f017
TH
782 */
783static inline void worker_set_flags(struct worker *worker, unsigned int flags,
784 bool wakeup)
785{
bd7bdd43 786 struct worker_pool *pool = worker->pool;
e22bee78 787
cb444766
TH
788 WARN_ON_ONCE(worker->task != current);
789
e22bee78
TH
790 /*
791 * If transitioning into NOT_RUNNING, adjust nr_running and
792 * wake up an idle worker as necessary if requested by
793 * @wakeup.
794 */
795 if ((flags & WORKER_NOT_RUNNING) &&
796 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 797 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
798
799 if (wakeup) {
800 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 801 !list_empty(&pool->worklist))
63d95a91 802 wake_up_worker(pool);
e22bee78
TH
803 } else
804 atomic_dec(nr_running);
805 }
806
d302f017
TH
807 worker->flags |= flags;
808}
809
810/**
e22bee78 811 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 812 * @worker: self
d302f017
TH
813 * @flags: flags to clear
814 *
e22bee78 815 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 816 *
cb444766
TH
817 * CONTEXT:
818 * spin_lock_irq(gcwq->lock)
d302f017
TH
819 */
820static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
821{
63d95a91 822 struct worker_pool *pool = worker->pool;
e22bee78
TH
823 unsigned int oflags = worker->flags;
824
cb444766
TH
825 WARN_ON_ONCE(worker->task != current);
826
d302f017 827 worker->flags &= ~flags;
e22bee78 828
42c025f3
TH
829 /*
830 * If transitioning out of NOT_RUNNING, increment nr_running. Note
831 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
832 * of multiple flags, not a single flag.
833 */
e22bee78
TH
834 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
835 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 836 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
837}
838
8cca0eea
TH
839/**
840 * find_worker_executing_work - find worker which is executing a work
841 * @gcwq: gcwq of interest
842 * @work: work to find worker for
843 *
a2c1c57b
TH
844 * Find a worker which is executing @work on @gcwq by searching
845 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
846 * to match, its current execution should match the address of @work and
847 * its work function. This is to avoid unwanted dependency between
848 * unrelated work executions through a work item being recycled while still
849 * being executed.
850 *
851 * This is a bit tricky. A work item may be freed once its execution
852 * starts and nothing prevents the freed area from being recycled for
853 * another work item. If the same work item address ends up being reused
854 * before the original execution finishes, workqueue will identify the
855 * recycled work item as currently executing and make it wait until the
856 * current execution finishes, introducing an unwanted dependency.
857 *
858 * This function checks the work item address, work function and workqueue
859 * to avoid false positives. Note that this isn't complete as one may
860 * construct a work function which can introduce dependency onto itself
861 * through a recycled work item. Well, if somebody wants to shoot oneself
862 * in the foot that badly, there's only so much we can do, and if such
863 * deadlock actually occurs, it should be easy to locate the culprit work
864 * function.
8cca0eea
TH
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to worker which is executing @work if found, NULL
871 * otherwise.
4d707b9f 872 */
8cca0eea
TH
873static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
874 struct work_struct *work)
4d707b9f 875{
42f8570f
SL
876 struct worker *worker;
877 struct hlist_node *tmp;
878
a2c1c57b
TH
879 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
880 (unsigned long)work)
881 if (worker->current_work == work &&
882 worker->current_func == work->func)
42f8570f
SL
883 return worker;
884
885 return NULL;
4d707b9f
ON
886}
887
bf4ede01
TH
888/**
889 * move_linked_works - move linked works to a list
890 * @work: start of series of works to be scheduled
891 * @head: target list to append @work to
892 * @nextp: out paramter for nested worklist walking
893 *
894 * Schedule linked works starting from @work to @head. Work series to
895 * be scheduled starts at @work and includes any consecutive work with
896 * WORK_STRUCT_LINKED set in its predecessor.
897 *
898 * If @nextp is not NULL, it's updated to point to the next work of
899 * the last scheduled work. This allows move_linked_works() to be
900 * nested inside outer list_for_each_entry_safe().
901 *
902 * CONTEXT:
903 * spin_lock_irq(gcwq->lock).
904 */
905static void move_linked_works(struct work_struct *work, struct list_head *head,
906 struct work_struct **nextp)
907{
908 struct work_struct *n;
909
910 /*
911 * Linked worklist will always end before the end of the list,
912 * use NULL for list head.
913 */
914 list_for_each_entry_safe_from(work, n, NULL, entry) {
915 list_move_tail(&work->entry, head);
916 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
917 break;
918 }
919
920 /*
921 * If we're already inside safe list traversal and have moved
922 * multiple works to the scheduled queue, the next position
923 * needs to be updated.
924 */
925 if (nextp)
926 *nextp = n;
927}
928
3aa62497 929static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 930{
3aa62497 931 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
932
933 trace_workqueue_activate_work(work);
934 move_linked_works(work, &cwq->pool->worklist, NULL);
935 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
936 cwq->nr_active++;
937}
938
3aa62497
LJ
939static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
940{
941 struct work_struct *work = list_first_entry(&cwq->delayed_works,
942 struct work_struct, entry);
943
944 cwq_activate_delayed_work(work);
945}
946
bf4ede01
TH
947/**
948 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
949 * @cwq: cwq of interest
950 * @color: color of work which left the queue
bf4ede01
TH
951 *
952 * A work either has completed or is removed from pending queue,
953 * decrement nr_in_flight of its cwq and handle workqueue flushing.
954 *
955 * CONTEXT:
956 * spin_lock_irq(gcwq->lock).
957 */
b3f9f405 958static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
959{
960 /* ignore uncolored works */
961 if (color == WORK_NO_COLOR)
962 return;
963
964 cwq->nr_in_flight[color]--;
965
b3f9f405
LJ
966 cwq->nr_active--;
967 if (!list_empty(&cwq->delayed_works)) {
968 /* one down, submit a delayed one */
969 if (cwq->nr_active < cwq->max_active)
970 cwq_activate_first_delayed(cwq);
bf4ede01
TH
971 }
972
973 /* is flush in progress and are we at the flushing tip? */
974 if (likely(cwq->flush_color != color))
975 return;
976
977 /* are there still in-flight works? */
978 if (cwq->nr_in_flight[color])
979 return;
980
981 /* this cwq is done, clear flush_color */
982 cwq->flush_color = -1;
983
984 /*
985 * If this was the last cwq, wake up the first flusher. It
986 * will handle the rest.
987 */
988 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
989 complete(&cwq->wq->first_flusher->done);
990}
991
36e227d2 992/**
bbb68dfa 993 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
994 * @work: work item to steal
995 * @is_dwork: @work is a delayed_work
bbb68dfa 996 * @flags: place to store irq state
36e227d2
TH
997 *
998 * Try to grab PENDING bit of @work. This function can handle @work in any
999 * stable state - idle, on timer or on worklist. Return values are
1000 *
1001 * 1 if @work was pending and we successfully stole PENDING
1002 * 0 if @work was idle and we claimed PENDING
1003 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1004 * -ENOENT if someone else is canceling @work, this state may persist
1005 * for arbitrarily long
36e227d2 1006 *
bbb68dfa 1007 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1008 * interrupted while holding PENDING and @work off queue, irq must be
1009 * disabled on entry. This, combined with delayed_work->timer being
1010 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1011 *
1012 * On successful return, >= 0, irq is disabled and the caller is
1013 * responsible for releasing it using local_irq_restore(*@flags).
1014 *
e0aecdd8 1015 * This function is safe to call from any context including IRQ handler.
bf4ede01 1016 */
bbb68dfa
TH
1017static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1018 unsigned long *flags)
bf4ede01
TH
1019{
1020 struct global_cwq *gcwq;
bf4ede01 1021
bbb68dfa
TH
1022 local_irq_save(*flags);
1023
36e227d2
TH
1024 /* try to steal the timer if it exists */
1025 if (is_dwork) {
1026 struct delayed_work *dwork = to_delayed_work(work);
1027
e0aecdd8
TH
1028 /*
1029 * dwork->timer is irqsafe. If del_timer() fails, it's
1030 * guaranteed that the timer is not queued anywhere and not
1031 * running on the local CPU.
1032 */
36e227d2
TH
1033 if (likely(del_timer(&dwork->timer)))
1034 return 1;
1035 }
1036
1037 /* try to claim PENDING the normal way */
bf4ede01
TH
1038 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1039 return 0;
1040
1041 /*
1042 * The queueing is in progress, or it is already queued. Try to
1043 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1044 */
1045 gcwq = get_work_gcwq(work);
1046 if (!gcwq)
bbb68dfa 1047 goto fail;
bf4ede01 1048
bbb68dfa 1049 spin_lock(&gcwq->lock);
bf4ede01
TH
1050 if (!list_empty(&work->entry)) {
1051 /*
1052 * This work is queued, but perhaps we locked the wrong gcwq.
1053 * In that case we must see the new value after rmb(), see
1054 * insert_work()->wmb().
1055 */
1056 smp_rmb();
1057 if (gcwq == get_work_gcwq(work)) {
1058 debug_work_deactivate(work);
3aa62497
LJ
1059
1060 /*
1061 * A delayed work item cannot be grabbed directly
1062 * because it might have linked NO_COLOR work items
1063 * which, if left on the delayed_list, will confuse
1064 * cwq->nr_active management later on and cause
1065 * stall. Make sure the work item is activated
1066 * before grabbing.
1067 */
1068 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1069 cwq_activate_delayed_work(work);
1070
bf4ede01
TH
1071 list_del_init(&work->entry);
1072 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1073 get_work_color(work));
36e227d2 1074
bbb68dfa 1075 spin_unlock(&gcwq->lock);
36e227d2 1076 return 1;
bf4ede01
TH
1077 }
1078 }
bbb68dfa
TH
1079 spin_unlock(&gcwq->lock);
1080fail:
1081 local_irq_restore(*flags);
1082 if (work_is_canceling(work))
1083 return -ENOENT;
1084 cpu_relax();
36e227d2 1085 return -EAGAIN;
bf4ede01
TH
1086}
1087
4690c4ab 1088/**
7e11629d 1089 * insert_work - insert a work into gcwq
4690c4ab
TH
1090 * @cwq: cwq @work belongs to
1091 * @work: work to insert
1092 * @head: insertion point
1093 * @extra_flags: extra WORK_STRUCT_* flags to set
1094 *
7e11629d
TH
1095 * Insert @work which belongs to @cwq into @gcwq after @head.
1096 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1097 *
1098 * CONTEXT:
8b03ae3c 1099 * spin_lock_irq(gcwq->lock).
4690c4ab 1100 */
b89deed3 1101static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1102 struct work_struct *work, struct list_head *head,
1103 unsigned int extra_flags)
b89deed3 1104{
63d95a91 1105 struct worker_pool *pool = cwq->pool;
e22bee78 1106
4690c4ab 1107 /* we own @work, set data and link */
7a22ad75 1108 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1109
6e84d644
ON
1110 /*
1111 * Ensure that we get the right work->data if we see the
1112 * result of list_add() below, see try_to_grab_pending().
1113 */
1114 smp_wmb();
4690c4ab 1115
1a4d9b0a 1116 list_add_tail(&work->entry, head);
e22bee78
TH
1117
1118 /*
1119 * Ensure either worker_sched_deactivated() sees the above
1120 * list_add_tail() or we see zero nr_running to avoid workers
1121 * lying around lazily while there are works to be processed.
1122 */
1123 smp_mb();
1124
63d95a91
TH
1125 if (__need_more_worker(pool))
1126 wake_up_worker(pool);
b89deed3
ON
1127}
1128
c8efcc25
TH
1129/*
1130 * Test whether @work is being queued from another work executing on the
1131 * same workqueue. This is rather expensive and should only be used from
1132 * cold paths.
1133 */
1134static bool is_chained_work(struct workqueue_struct *wq)
1135{
1136 unsigned long flags;
1137 unsigned int cpu;
1138
1139 for_each_gcwq_cpu(cpu) {
1140 struct global_cwq *gcwq = get_gcwq(cpu);
1141 struct worker *worker;
1142 struct hlist_node *pos;
1143 int i;
1144
1145 spin_lock_irqsave(&gcwq->lock, flags);
1146 for_each_busy_worker(worker, i, pos, gcwq) {
1147 if (worker->task != current)
1148 continue;
1149 spin_unlock_irqrestore(&gcwq->lock, flags);
1150 /*
1151 * I'm @worker, no locking necessary. See if @work
1152 * is headed to the same workqueue.
1153 */
1154 return worker->current_cwq->wq == wq;
1155 }
1156 spin_unlock_irqrestore(&gcwq->lock, flags);
1157 }
1158 return false;
1159}
1160
4690c4ab 1161static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1162 struct work_struct *work)
1163{
502ca9d8
TH
1164 struct global_cwq *gcwq;
1165 struct cpu_workqueue_struct *cwq;
1e19ffc6 1166 struct list_head *worklist;
8a2e8e5d 1167 unsigned int work_flags;
b75cac93 1168 unsigned int req_cpu = cpu;
8930caba
TH
1169
1170 /*
1171 * While a work item is PENDING && off queue, a task trying to
1172 * steal the PENDING will busy-loop waiting for it to either get
1173 * queued or lose PENDING. Grabbing PENDING and queueing should
1174 * happen with IRQ disabled.
1175 */
1176 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1177
dc186ad7 1178 debug_work_activate(work);
1e19ffc6 1179
c8efcc25 1180 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1181 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1182 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1183 return;
1184
c7fc77f7
TH
1185 /* determine gcwq to use */
1186 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1187 struct global_cwq *last_gcwq;
1188
57469821 1189 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1190 cpu = raw_smp_processor_id();
1191
18aa9eff 1192 /*
dbf2576e
TH
1193 * It's multi cpu. If @work was previously on a different
1194 * cpu, it might still be running there, in which case the
1195 * work needs to be queued on that cpu to guarantee
1196 * non-reentrancy.
18aa9eff 1197 */
502ca9d8 1198 gcwq = get_gcwq(cpu);
dbf2576e
TH
1199 last_gcwq = get_work_gcwq(work);
1200
1201 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1202 struct worker *worker;
1203
8930caba 1204 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1205
1206 worker = find_worker_executing_work(last_gcwq, work);
1207
1208 if (worker && worker->current_cwq->wq == wq)
1209 gcwq = last_gcwq;
1210 else {
1211 /* meh... not running there, queue here */
8930caba
TH
1212 spin_unlock(&last_gcwq->lock);
1213 spin_lock(&gcwq->lock);
18aa9eff 1214 }
8930caba
TH
1215 } else {
1216 spin_lock(&gcwq->lock);
1217 }
f3421797
TH
1218 } else {
1219 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1220 spin_lock(&gcwq->lock);
502ca9d8
TH
1221 }
1222
1223 /* gcwq determined, get cwq and queue */
1224 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1225 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1226
f5b2552b 1227 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1228 spin_unlock(&gcwq->lock);
f5b2552b
DC
1229 return;
1230 }
1e19ffc6 1231
73f53c4a 1232 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1233 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1234
1235 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1236 trace_workqueue_activate_work(work);
1e19ffc6 1237 cwq->nr_active++;
3270476a 1238 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1239 } else {
1240 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1241 worklist = &cwq->delayed_works;
8a2e8e5d 1242 }
1e19ffc6 1243
8a2e8e5d 1244 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1245
8930caba 1246 spin_unlock(&gcwq->lock);
1da177e4
LT
1247}
1248
0fcb78c2 1249/**
c1a220e7
ZR
1250 * queue_work_on - queue work on specific cpu
1251 * @cpu: CPU number to execute work on
0fcb78c2
REB
1252 * @wq: workqueue to use
1253 * @work: work to queue
1254 *
d4283e93 1255 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1256 *
c1a220e7
ZR
1257 * We queue the work to a specific CPU, the caller must ensure it
1258 * can't go away.
1da177e4 1259 */
d4283e93
TH
1260bool queue_work_on(int cpu, struct workqueue_struct *wq,
1261 struct work_struct *work)
1da177e4 1262{
d4283e93 1263 bool ret = false;
8930caba 1264 unsigned long flags;
ef1ca236 1265
8930caba 1266 local_irq_save(flags);
c1a220e7 1267
22df02bb 1268 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1269 __queue_work(cpu, wq, work);
d4283e93 1270 ret = true;
c1a220e7 1271 }
ef1ca236 1272
8930caba 1273 local_irq_restore(flags);
1da177e4
LT
1274 return ret;
1275}
c1a220e7 1276EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1277
c1a220e7 1278/**
0a13c00e 1279 * queue_work - queue work on a workqueue
c1a220e7
ZR
1280 * @wq: workqueue to use
1281 * @work: work to queue
1282 *
d4283e93 1283 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1284 *
0a13c00e
TH
1285 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1286 * it can be processed by another CPU.
c1a220e7 1287 */
d4283e93 1288bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1289{
57469821 1290 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1291}
0a13c00e 1292EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1293
d8e794df 1294void delayed_work_timer_fn(unsigned long __data)
1da177e4 1295{
52bad64d 1296 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1297 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1298
e0aecdd8 1299 /* should have been called from irqsafe timer with irq already off */
1265057f 1300 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1301}
d8e794df 1302EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1303
7beb2edf
TH
1304static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1305 struct delayed_work *dwork, unsigned long delay)
1da177e4 1306{
7beb2edf
TH
1307 struct timer_list *timer = &dwork->timer;
1308 struct work_struct *work = &dwork->work;
1309 unsigned int lcpu;
1310
1311 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1312 timer->data != (unsigned long)dwork);
fc4b514f
TH
1313 WARN_ON_ONCE(timer_pending(timer));
1314 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1315
8852aac2
TH
1316 /*
1317 * If @delay is 0, queue @dwork->work immediately. This is for
1318 * both optimization and correctness. The earliest @timer can
1319 * expire is on the closest next tick and delayed_work users depend
1320 * on that there's no such delay when @delay is 0.
1321 */
1322 if (!delay) {
1323 __queue_work(cpu, wq, &dwork->work);
1324 return;
1325 }
1326
7beb2edf 1327 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1328
7beb2edf
TH
1329 /*
1330 * This stores cwq for the moment, for the timer_fn. Note that the
1331 * work's gcwq is preserved to allow reentrance detection for
1332 * delayed works.
1333 */
1334 if (!(wq->flags & WQ_UNBOUND)) {
1335 struct global_cwq *gcwq = get_work_gcwq(work);
1336
e42986de
JK
1337 /*
1338 * If we cannot get the last gcwq from @work directly,
1339 * select the last CPU such that it avoids unnecessarily
1340 * triggering non-reentrancy check in __queue_work().
1341 */
1342 lcpu = cpu;
1343 if (gcwq)
7beb2edf 1344 lcpu = gcwq->cpu;
e42986de 1345 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1346 lcpu = raw_smp_processor_id();
1347 } else {
1348 lcpu = WORK_CPU_UNBOUND;
1349 }
1350
1351 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1352
1265057f 1353 dwork->cpu = cpu;
7beb2edf
TH
1354 timer->expires = jiffies + delay;
1355
1356 if (unlikely(cpu != WORK_CPU_UNBOUND))
1357 add_timer_on(timer, cpu);
1358 else
1359 add_timer(timer);
1da177e4
LT
1360}
1361
0fcb78c2
REB
1362/**
1363 * queue_delayed_work_on - queue work on specific CPU after delay
1364 * @cpu: CPU number to execute work on
1365 * @wq: workqueue to use
af9997e4 1366 * @dwork: work to queue
0fcb78c2
REB
1367 * @delay: number of jiffies to wait before queueing
1368 *
715f1300
TH
1369 * Returns %false if @work was already on a queue, %true otherwise. If
1370 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1371 * execution.
0fcb78c2 1372 */
d4283e93
TH
1373bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1374 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1375{
52bad64d 1376 struct work_struct *work = &dwork->work;
d4283e93 1377 bool ret = false;
8930caba 1378 unsigned long flags;
7a6bc1cd 1379
8930caba
TH
1380 /* read the comment in __queue_work() */
1381 local_irq_save(flags);
7a6bc1cd 1382
22df02bb 1383 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1384 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1385 ret = true;
7a6bc1cd 1386 }
8a3e77cc 1387
8930caba 1388 local_irq_restore(flags);
7a6bc1cd
VP
1389 return ret;
1390}
ae90dd5d 1391EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1392
0a13c00e
TH
1393/**
1394 * queue_delayed_work - queue work on a workqueue after delay
1395 * @wq: workqueue to use
1396 * @dwork: delayable work to queue
1397 * @delay: number of jiffies to wait before queueing
1398 *
715f1300 1399 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1400 */
d4283e93 1401bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1402 struct delayed_work *dwork, unsigned long delay)
1403{
57469821 1404 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1405}
1406EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1407
8376fe22
TH
1408/**
1409 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1410 * @cpu: CPU number to execute work on
1411 * @wq: workqueue to use
1412 * @dwork: work to queue
1413 * @delay: number of jiffies to wait before queueing
1414 *
1415 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1416 * modify @dwork's timer so that it expires after @delay. If @delay is
1417 * zero, @work is guaranteed to be scheduled immediately regardless of its
1418 * current state.
1419 *
1420 * Returns %false if @dwork was idle and queued, %true if @dwork was
1421 * pending and its timer was modified.
1422 *
e0aecdd8 1423 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1424 * See try_to_grab_pending() for details.
1425 */
1426bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1427 struct delayed_work *dwork, unsigned long delay)
1428{
1429 unsigned long flags;
1430 int ret;
c7fc77f7 1431
8376fe22
TH
1432 do {
1433 ret = try_to_grab_pending(&dwork->work, true, &flags);
1434 } while (unlikely(ret == -EAGAIN));
63bc0362 1435
8376fe22
TH
1436 if (likely(ret >= 0)) {
1437 __queue_delayed_work(cpu, wq, dwork, delay);
1438 local_irq_restore(flags);
7a6bc1cd 1439 }
8376fe22
TH
1440
1441 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1442 return ret;
1443}
8376fe22
TH
1444EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1445
1446/**
1447 * mod_delayed_work - modify delay of or queue a delayed work
1448 * @wq: workqueue to use
1449 * @dwork: work to queue
1450 * @delay: number of jiffies to wait before queueing
1451 *
1452 * mod_delayed_work_on() on local CPU.
1453 */
1454bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1455 unsigned long delay)
1456{
1457 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458}
1459EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1460
c8e55f36
TH
1461/**
1462 * worker_enter_idle - enter idle state
1463 * @worker: worker which is entering idle state
1464 *
1465 * @worker is entering idle state. Update stats and idle timer if
1466 * necessary.
1467 *
1468 * LOCKING:
1469 * spin_lock_irq(gcwq->lock).
1470 */
1471static void worker_enter_idle(struct worker *worker)
1da177e4 1472{
bd7bdd43 1473 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1474
1475 BUG_ON(worker->flags & WORKER_IDLE);
1476 BUG_ON(!list_empty(&worker->entry) &&
1477 (worker->hentry.next || worker->hentry.pprev));
1478
cb444766
TH
1479 /* can't use worker_set_flags(), also called from start_worker() */
1480 worker->flags |= WORKER_IDLE;
bd7bdd43 1481 pool->nr_idle++;
e22bee78 1482 worker->last_active = jiffies;
c8e55f36
TH
1483
1484 /* idle_list is LIFO */
bd7bdd43 1485 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1486
628c78e7
TH
1487 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1488 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1489
544ecf31 1490 /*
628c78e7
TH
1491 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1492 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1493 * nr_running, the warning may trigger spuriously. Check iff
1494 * unbind is not in progress.
544ecf31 1495 */
24647570 1496 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1497 pool->nr_workers == pool->nr_idle &&
63d95a91 1498 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1499}
1500
1501/**
1502 * worker_leave_idle - leave idle state
1503 * @worker: worker which is leaving idle state
1504 *
1505 * @worker is leaving idle state. Update stats.
1506 *
1507 * LOCKING:
1508 * spin_lock_irq(gcwq->lock).
1509 */
1510static void worker_leave_idle(struct worker *worker)
1511{
bd7bdd43 1512 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1513
1514 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1515 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1516 pool->nr_idle--;
c8e55f36
TH
1517 list_del_init(&worker->entry);
1518}
1519
e22bee78
TH
1520/**
1521 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1522 * @worker: self
1523 *
1524 * Works which are scheduled while the cpu is online must at least be
1525 * scheduled to a worker which is bound to the cpu so that if they are
1526 * flushed from cpu callbacks while cpu is going down, they are
1527 * guaranteed to execute on the cpu.
1528 *
1529 * This function is to be used by rogue workers and rescuers to bind
1530 * themselves to the target cpu and may race with cpu going down or
1531 * coming online. kthread_bind() can't be used because it may put the
1532 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1533 * verbatim as it's best effort and blocking and gcwq may be
1534 * [dis]associated in the meantime.
1535 *
f2d5a0ee 1536 * This function tries set_cpus_allowed() and locks gcwq and verifies the
24647570 1537 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1538 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1539 * enters idle state or fetches works without dropping lock, it can
1540 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1541 *
1542 * CONTEXT:
1543 * Might sleep. Called without any lock but returns with gcwq->lock
1544 * held.
1545 *
1546 * RETURNS:
1547 * %true if the associated gcwq is online (@worker is successfully
1548 * bound), %false if offline.
1549 */
1550static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1551__acquires(&gcwq->lock)
e22bee78 1552{
24647570
TH
1553 struct worker_pool *pool = worker->pool;
1554 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1555 struct task_struct *task = worker->task;
1556
1557 while (true) {
4e6045f1 1558 /*
e22bee78
TH
1559 * The following call may fail, succeed or succeed
1560 * without actually migrating the task to the cpu if
1561 * it races with cpu hotunplug operation. Verify
24647570 1562 * against POOL_DISASSOCIATED.
4e6045f1 1563 */
24647570 1564 if (!(pool->flags & POOL_DISASSOCIATED))
f3421797 1565 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1566
1567 spin_lock_irq(&gcwq->lock);
24647570 1568 if (pool->flags & POOL_DISASSOCIATED)
e22bee78
TH
1569 return false;
1570 if (task_cpu(task) == gcwq->cpu &&
1571 cpumask_equal(&current->cpus_allowed,
1572 get_cpu_mask(gcwq->cpu)))
1573 return true;
1574 spin_unlock_irq(&gcwq->lock);
1575
5035b20f
TH
1576 /*
1577 * We've raced with CPU hot[un]plug. Give it a breather
1578 * and retry migration. cond_resched() is required here;
1579 * otherwise, we might deadlock against cpu_stop trying to
1580 * bring down the CPU on non-preemptive kernel.
1581 */
e22bee78 1582 cpu_relax();
5035b20f 1583 cond_resched();
e22bee78
TH
1584 }
1585}
1586
25511a47 1587/*
ea1abd61 1588 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1589 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1590 */
1591static void idle_worker_rebind(struct worker *worker)
1592{
1593 struct global_cwq *gcwq = worker->pool->gcwq;
1594
5f7dabfd
LJ
1595 /* CPU may go down again inbetween, clear UNBOUND only on success */
1596 if (worker_maybe_bind_and_lock(worker))
1597 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1598
ea1abd61
LJ
1599 /* rebind complete, become available again */
1600 list_add(&worker->entry, &worker->pool->idle_list);
1601 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1602}
1603
e22bee78 1604/*
25511a47 1605 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1606 * the associated cpu which is coming back online. This is scheduled by
1607 * cpu up but can race with other cpu hotplug operations and may be
1608 * executed twice without intervening cpu down.
e22bee78 1609 */
25511a47 1610static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1611{
1612 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1613 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1614
eab6d828
LJ
1615 if (worker_maybe_bind_and_lock(worker))
1616 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1617
1618 spin_unlock_irq(&gcwq->lock);
1619}
1620
25511a47
TH
1621/**
1622 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1623 * @gcwq: gcwq of interest
1624 *
1625 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1626 * is different for idle and busy ones.
1627 *
ea1abd61
LJ
1628 * Idle ones will be removed from the idle_list and woken up. They will
1629 * add themselves back after completing rebind. This ensures that the
1630 * idle_list doesn't contain any unbound workers when re-bound busy workers
1631 * try to perform local wake-ups for concurrency management.
25511a47 1632 *
ea1abd61
LJ
1633 * Busy workers can rebind after they finish their current work items.
1634 * Queueing the rebind work item at the head of the scheduled list is
1635 * enough. Note that nr_running will be properly bumped as busy workers
1636 * rebind.
25511a47 1637 *
ea1abd61
LJ
1638 * On return, all non-manager workers are scheduled for rebind - see
1639 * manage_workers() for the manager special case. Any idle worker
1640 * including the manager will not appear on @idle_list until rebind is
1641 * complete, making local wake-ups safe.
25511a47
TH
1642 */
1643static void rebind_workers(struct global_cwq *gcwq)
25511a47 1644{
25511a47 1645 struct worker_pool *pool;
ea1abd61 1646 struct worker *worker, *n;
25511a47
TH
1647 struct hlist_node *pos;
1648 int i;
1649
1650 lockdep_assert_held(&gcwq->lock);
1651
1652 for_each_worker_pool(pool, gcwq)
b2eb83d1 1653 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1654
5f7dabfd 1655 /* dequeue and kick idle ones */
25511a47 1656 for_each_worker_pool(pool, gcwq) {
ea1abd61 1657 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1658 /*
1659 * idle workers should be off @pool->idle_list
1660 * until rebind is complete to avoid receiving
1661 * premature local wake-ups.
1662 */
1663 list_del_init(&worker->entry);
25511a47 1664
5f7dabfd
LJ
1665 /*
1666 * worker_thread() will see the above dequeuing
1667 * and call idle_worker_rebind().
1668 */
25511a47
TH
1669 wake_up_process(worker->task);
1670 }
1671 }
1672
ea1abd61 1673 /* rebind busy workers */
25511a47
TH
1674 for_each_busy_worker(worker, i, pos, gcwq) {
1675 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1676 struct workqueue_struct *wq;
25511a47
TH
1677
1678 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1679 work_data_bits(rebind_work)))
1680 continue;
1681
25511a47 1682 debug_work_activate(rebind_work);
90beca5d 1683
e2b6a6d5
JK
1684 /*
1685 * wq doesn't really matter but let's keep @worker->pool
1686 * and @cwq->pool consistent for sanity.
1687 */
e34cdddb 1688 if (std_worker_pool_pri(worker->pool))
e2b6a6d5
JK
1689 wq = system_highpri_wq;
1690 else
1691 wq = system_wq;
ec58815a 1692
e2b6a6d5
JK
1693 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1694 worker->scheduled.next,
1695 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1696 }
25511a47
TH
1697}
1698
c34056a3
TH
1699static struct worker *alloc_worker(void)
1700{
1701 struct worker *worker;
1702
1703 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1704 if (worker) {
1705 INIT_LIST_HEAD(&worker->entry);
affee4b2 1706 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1707 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1708 /* on creation a worker is in !idle && prep state */
1709 worker->flags = WORKER_PREP;
c8e55f36 1710 }
c34056a3
TH
1711 return worker;
1712}
1713
1714/**
1715 * create_worker - create a new workqueue worker
63d95a91 1716 * @pool: pool the new worker will belong to
c34056a3 1717 *
63d95a91 1718 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1719 * can be started by calling start_worker() or destroyed using
1720 * destroy_worker().
1721 *
1722 * CONTEXT:
1723 * Might sleep. Does GFP_KERNEL allocations.
1724 *
1725 * RETURNS:
1726 * Pointer to the newly created worker.
1727 */
bc2ae0f5 1728static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1729{
63d95a91 1730 struct global_cwq *gcwq = pool->gcwq;
e34cdddb 1731 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1732 struct worker *worker = NULL;
f3421797 1733 int id = -1;
c34056a3 1734
8b03ae3c 1735 spin_lock_irq(&gcwq->lock);
bd7bdd43 1736 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1737 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1738 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1739 goto fail;
8b03ae3c 1740 spin_lock_irq(&gcwq->lock);
c34056a3 1741 }
8b03ae3c 1742 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1743
1744 worker = alloc_worker();
1745 if (!worker)
1746 goto fail;
1747
bd7bdd43 1748 worker->pool = pool;
c34056a3
TH
1749 worker->id = id;
1750
bc2ae0f5 1751 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1752 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1753 worker, cpu_to_node(gcwq->cpu),
1754 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1755 else
1756 worker->task = kthread_create(worker_thread, worker,
3270476a 1757 "kworker/u:%d%s", id, pri);
c34056a3
TH
1758 if (IS_ERR(worker->task))
1759 goto fail;
1760
e34cdddb 1761 if (std_worker_pool_pri(pool))
3270476a
TH
1762 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1763
db7bccf4 1764 /*
bc2ae0f5 1765 * Determine CPU binding of the new worker depending on
24647570 1766 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1767 * flag remains stable across this function. See the comments
1768 * above the flag definition for details.
1769 *
1770 * As an unbound worker may later become a regular one if CPU comes
1771 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1772 */
24647570 1773 if (!(pool->flags & POOL_DISASSOCIATED)) {
8b03ae3c 1774 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1775 } else {
db7bccf4 1776 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1777 worker->flags |= WORKER_UNBOUND;
f3421797 1778 }
c34056a3
TH
1779
1780 return worker;
1781fail:
1782 if (id >= 0) {
8b03ae3c 1783 spin_lock_irq(&gcwq->lock);
bd7bdd43 1784 ida_remove(&pool->worker_ida, id);
8b03ae3c 1785 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1786 }
1787 kfree(worker);
1788 return NULL;
1789}
1790
1791/**
1792 * start_worker - start a newly created worker
1793 * @worker: worker to start
1794 *
c8e55f36 1795 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1796 *
1797 * CONTEXT:
8b03ae3c 1798 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1799 */
1800static void start_worker(struct worker *worker)
1801{
cb444766 1802 worker->flags |= WORKER_STARTED;
bd7bdd43 1803 worker->pool->nr_workers++;
c8e55f36 1804 worker_enter_idle(worker);
c34056a3
TH
1805 wake_up_process(worker->task);
1806}
1807
1808/**
1809 * destroy_worker - destroy a workqueue worker
1810 * @worker: worker to be destroyed
1811 *
c8e55f36
TH
1812 * Destroy @worker and adjust @gcwq stats accordingly.
1813 *
1814 * CONTEXT:
1815 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1816 */
1817static void destroy_worker(struct worker *worker)
1818{
bd7bdd43
TH
1819 struct worker_pool *pool = worker->pool;
1820 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1821 int id = worker->id;
1822
1823 /* sanity check frenzy */
1824 BUG_ON(worker->current_work);
affee4b2 1825 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1826
c8e55f36 1827 if (worker->flags & WORKER_STARTED)
bd7bdd43 1828 pool->nr_workers--;
c8e55f36 1829 if (worker->flags & WORKER_IDLE)
bd7bdd43 1830 pool->nr_idle--;
c8e55f36
TH
1831
1832 list_del_init(&worker->entry);
cb444766 1833 worker->flags |= WORKER_DIE;
c8e55f36
TH
1834
1835 spin_unlock_irq(&gcwq->lock);
1836
c34056a3
TH
1837 kthread_stop(worker->task);
1838 kfree(worker);
1839
8b03ae3c 1840 spin_lock_irq(&gcwq->lock);
bd7bdd43 1841 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1842}
1843
63d95a91 1844static void idle_worker_timeout(unsigned long __pool)
e22bee78 1845{
63d95a91
TH
1846 struct worker_pool *pool = (void *)__pool;
1847 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1848
1849 spin_lock_irq(&gcwq->lock);
1850
63d95a91 1851 if (too_many_workers(pool)) {
e22bee78
TH
1852 struct worker *worker;
1853 unsigned long expires;
1854
1855 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1856 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1857 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1858
1859 if (time_before(jiffies, expires))
63d95a91 1860 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1861 else {
1862 /* it's been idle for too long, wake up manager */
11ebea50 1863 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1864 wake_up_worker(pool);
d5abe669 1865 }
e22bee78
TH
1866 }
1867
1868 spin_unlock_irq(&gcwq->lock);
1869}
d5abe669 1870
e22bee78
TH
1871static bool send_mayday(struct work_struct *work)
1872{
1873 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1874 struct workqueue_struct *wq = cwq->wq;
f3421797 1875 unsigned int cpu;
e22bee78
TH
1876
1877 if (!(wq->flags & WQ_RESCUER))
1878 return false;
1879
1880 /* mayday mayday mayday */
bd7bdd43 1881 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1882 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1883 if (cpu == WORK_CPU_UNBOUND)
1884 cpu = 0;
f2e005aa 1885 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1886 wake_up_process(wq->rescuer->task);
1887 return true;
1888}
1889
63d95a91 1890static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1891{
63d95a91
TH
1892 struct worker_pool *pool = (void *)__pool;
1893 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1894 struct work_struct *work;
1895
1896 spin_lock_irq(&gcwq->lock);
1897
63d95a91 1898 if (need_to_create_worker(pool)) {
e22bee78
TH
1899 /*
1900 * We've been trying to create a new worker but
1901 * haven't been successful. We might be hitting an
1902 * allocation deadlock. Send distress signals to
1903 * rescuers.
1904 */
63d95a91 1905 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1906 send_mayday(work);
1da177e4 1907 }
e22bee78
TH
1908
1909 spin_unlock_irq(&gcwq->lock);
1910
63d95a91 1911 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1912}
1913
e22bee78
TH
1914/**
1915 * maybe_create_worker - create a new worker if necessary
63d95a91 1916 * @pool: pool to create a new worker for
e22bee78 1917 *
63d95a91 1918 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1919 * have at least one idle worker on return from this function. If
1920 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1921 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1922 * possible allocation deadlock.
1923 *
1924 * On return, need_to_create_worker() is guaranteed to be false and
1925 * may_start_working() true.
1926 *
1927 * LOCKING:
1928 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1929 * multiple times. Does GFP_KERNEL allocations. Called only from
1930 * manager.
1931 *
1932 * RETURNS:
1933 * false if no action was taken and gcwq->lock stayed locked, true
1934 * otherwise.
1935 */
63d95a91 1936static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1937__releases(&gcwq->lock)
1938__acquires(&gcwq->lock)
1da177e4 1939{
63d95a91
TH
1940 struct global_cwq *gcwq = pool->gcwq;
1941
1942 if (!need_to_create_worker(pool))
e22bee78
TH
1943 return false;
1944restart:
9f9c2364
TH
1945 spin_unlock_irq(&gcwq->lock);
1946
e22bee78 1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1949
1950 while (true) {
1951 struct worker *worker;
1952
bc2ae0f5 1953 worker = create_worker(pool);
e22bee78 1954 if (worker) {
63d95a91 1955 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1956 spin_lock_irq(&gcwq->lock);
1957 start_worker(worker);
63d95a91 1958 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1959 return true;
1960 }
1961
63d95a91 1962 if (!need_to_create_worker(pool))
e22bee78 1963 break;
1da177e4 1964
e22bee78
TH
1965 __set_current_state(TASK_INTERRUPTIBLE);
1966 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1967
63d95a91 1968 if (!need_to_create_worker(pool))
e22bee78
TH
1969 break;
1970 }
1971
63d95a91 1972 del_timer_sync(&pool->mayday_timer);
e22bee78 1973 spin_lock_irq(&gcwq->lock);
63d95a91 1974 if (need_to_create_worker(pool))
e22bee78
TH
1975 goto restart;
1976 return true;
1977}
1978
1979/**
1980 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1981 * @pool: pool to destroy workers for
e22bee78 1982 *
63d95a91 1983 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1984 * IDLE_WORKER_TIMEOUT.
1985 *
1986 * LOCKING:
1987 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1988 * multiple times. Called only from manager.
1989 *
1990 * RETURNS:
1991 * false if no action was taken and gcwq->lock stayed locked, true
1992 * otherwise.
1993 */
63d95a91 1994static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1995{
1996 bool ret = false;
1da177e4 1997
63d95a91 1998 while (too_many_workers(pool)) {
e22bee78
TH
1999 struct worker *worker;
2000 unsigned long expires;
3af24433 2001
63d95a91 2002 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2003 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2004
e22bee78 2005 if (time_before(jiffies, expires)) {
63d95a91 2006 mod_timer(&pool->idle_timer, expires);
3af24433 2007 break;
e22bee78 2008 }
1da177e4 2009
e22bee78
TH
2010 destroy_worker(worker);
2011 ret = true;
1da177e4 2012 }
1e19ffc6 2013
e22bee78 2014 return ret;
1e19ffc6
TH
2015}
2016
73f53c4a 2017/**
e22bee78
TH
2018 * manage_workers - manage worker pool
2019 * @worker: self
73f53c4a 2020 *
e22bee78
TH
2021 * Assume the manager role and manage gcwq worker pool @worker belongs
2022 * to. At any given time, there can be only zero or one manager per
2023 * gcwq. The exclusion is handled automatically by this function.
2024 *
2025 * The caller can safely start processing works on false return. On
2026 * true return, it's guaranteed that need_to_create_worker() is false
2027 * and may_start_working() is true.
73f53c4a
TH
2028 *
2029 * CONTEXT:
e22bee78
TH
2030 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2031 * multiple times. Does GFP_KERNEL allocations.
2032 *
2033 * RETURNS:
2034 * false if no action was taken and gcwq->lock stayed locked, true if
2035 * some action was taken.
73f53c4a 2036 */
e22bee78 2037static bool manage_workers(struct worker *worker)
73f53c4a 2038{
63d95a91 2039 struct worker_pool *pool = worker->pool;
e22bee78 2040 bool ret = false;
73f53c4a 2041
ee378aa4 2042 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2043 return ret;
1e19ffc6 2044
552a37e9 2045 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2046
ee378aa4
LJ
2047 /*
2048 * To simplify both worker management and CPU hotplug, hold off
2049 * management while hotplug is in progress. CPU hotplug path can't
2050 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2051 * lead to idle worker depletion (all become busy thinking someone
2052 * else is managing) which in turn can result in deadlock under
b2eb83d1 2053 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2054 * manager against CPU hotplug.
2055 *
b2eb83d1 2056 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2057 * progress. trylock first without dropping @gcwq->lock.
2058 */
b2eb83d1 2059 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2060 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2061 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2062 /*
2063 * CPU hotplug could have happened while we were waiting
b2eb83d1 2064 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2065 * because manager isn't either on idle or busy list, and
2066 * @gcwq's state and ours could have deviated.
2067 *
b2eb83d1 2068 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2069 * simply try to bind. It will succeed or fail depending
2070 * on @gcwq's current state. Try it and adjust
2071 * %WORKER_UNBOUND accordingly.
2072 */
2073 if (worker_maybe_bind_and_lock(worker))
2074 worker->flags &= ~WORKER_UNBOUND;
2075 else
2076 worker->flags |= WORKER_UNBOUND;
73f53c4a 2077
ee378aa4
LJ
2078 ret = true;
2079 }
73f53c4a 2080
11ebea50 2081 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2082
2083 /*
e22bee78
TH
2084 * Destroy and then create so that may_start_working() is true
2085 * on return.
73f53c4a 2086 */
63d95a91
TH
2087 ret |= maybe_destroy_workers(pool);
2088 ret |= maybe_create_worker(pool);
e22bee78 2089
552a37e9 2090 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2091 mutex_unlock(&pool->assoc_mutex);
e22bee78 2092 return ret;
73f53c4a
TH
2093}
2094
a62428c0
TH
2095/**
2096 * process_one_work - process single work
c34056a3 2097 * @worker: self
a62428c0
TH
2098 * @work: work to process
2099 *
2100 * Process @work. This function contains all the logics necessary to
2101 * process a single work including synchronization against and
2102 * interaction with other workers on the same cpu, queueing and
2103 * flushing. As long as context requirement is met, any worker can
2104 * call this function to process a work.
2105 *
2106 * CONTEXT:
8b03ae3c 2107 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2108 */
c34056a3 2109static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2110__releases(&gcwq->lock)
2111__acquires(&gcwq->lock)
a62428c0 2112{
7e11629d 2113 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2114 struct worker_pool *pool = worker->pool;
2115 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2116 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2117 int work_color;
7e11629d 2118 struct worker *collision;
a62428c0
TH
2119#ifdef CONFIG_LOCKDEP
2120 /*
2121 * It is permissible to free the struct work_struct from
2122 * inside the function that is called from it, this we need to
2123 * take into account for lockdep too. To avoid bogus "held
2124 * lock freed" warnings as well as problems when looking into
2125 * work->lockdep_map, make a copy and use that here.
2126 */
4d82a1de
PZ
2127 struct lockdep_map lockdep_map;
2128
2129 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2130#endif
6fec10a1
TH
2131 /*
2132 * Ensure we're on the correct CPU. DISASSOCIATED test is
2133 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2134 * unbound or a disassociated pool.
6fec10a1 2135 */
5f7dabfd 2136 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2137 !(pool->flags & POOL_DISASSOCIATED) &&
25511a47
TH
2138 raw_smp_processor_id() != gcwq->cpu);
2139
7e11629d
TH
2140 /*
2141 * A single work shouldn't be executed concurrently by
2142 * multiple workers on a single cpu. Check whether anyone is
2143 * already processing the work. If so, defer the work to the
2144 * currently executing one.
2145 */
42f8570f 2146 collision = find_worker_executing_work(gcwq, work);
7e11629d
TH
2147 if (unlikely(collision)) {
2148 move_linked_works(work, &collision->scheduled, NULL);
2149 return;
2150 }
2151
8930caba 2152 /* claim and dequeue */
a62428c0 2153 debug_work_deactivate(work);
023f27d3 2154 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2155 worker->current_work = work;
a2c1c57b 2156 worker->current_func = work->func;
8cca0eea 2157 worker->current_cwq = cwq;
73f53c4a 2158 work_color = get_work_color(work);
7a22ad75 2159
a62428c0
TH
2160 list_del_init(&work->entry);
2161
fb0e7beb
TH
2162 /*
2163 * CPU intensive works don't participate in concurrency
2164 * management. They're the scheduler's responsibility.
2165 */
2166 if (unlikely(cpu_intensive))
2167 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2168
974271c4
TH
2169 /*
2170 * Unbound gcwq isn't concurrency managed and work items should be
2171 * executed ASAP. Wake up another worker if necessary.
2172 */
63d95a91
TH
2173 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2174 wake_up_worker(pool);
974271c4 2175
8930caba 2176 /*
23657bb1
TH
2177 * Record the last CPU and clear PENDING which should be the last
2178 * update to @work. Also, do this inside @gcwq->lock so that
2179 * PENDING and queued state changes happen together while IRQ is
2180 * disabled.
8930caba 2181 */
8930caba 2182 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2183
8b03ae3c 2184 spin_unlock_irq(&gcwq->lock);
a62428c0 2185
e159489b 2186 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2187 lock_map_acquire(&lockdep_map);
e36c886a 2188 trace_workqueue_execute_start(work);
a2c1c57b 2189 worker->current_func(work);
e36c886a
AV
2190 /*
2191 * While we must be careful to not use "work" after this, the trace
2192 * point will only record its address.
2193 */
2194 trace_workqueue_execute_end(work);
a62428c0
TH
2195 lock_map_release(&lockdep_map);
2196 lock_map_release(&cwq->wq->lockdep_map);
2197
2198 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2199 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2200 " last function: %pf\n",
a2c1c57b
TH
2201 current->comm, preempt_count(), task_pid_nr(current),
2202 worker->current_func);
a62428c0
TH
2203 debug_show_held_locks(current);
2204 dump_stack();
2205 }
2206
8b03ae3c 2207 spin_lock_irq(&gcwq->lock);
a62428c0 2208
fb0e7beb
TH
2209 /* clear cpu intensive status */
2210 if (unlikely(cpu_intensive))
2211 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2212
a62428c0 2213 /* we're done with it, release */
42f8570f 2214 hash_del(&worker->hentry);
c34056a3 2215 worker->current_work = NULL;
a2c1c57b 2216 worker->current_func = NULL;
8cca0eea 2217 worker->current_cwq = NULL;
b3f9f405 2218 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2219}
2220
affee4b2
TH
2221/**
2222 * process_scheduled_works - process scheduled works
2223 * @worker: self
2224 *
2225 * Process all scheduled works. Please note that the scheduled list
2226 * may change while processing a work, so this function repeatedly
2227 * fetches a work from the top and executes it.
2228 *
2229 * CONTEXT:
8b03ae3c 2230 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2231 * multiple times.
2232 */
2233static void process_scheduled_works(struct worker *worker)
1da177e4 2234{
affee4b2
TH
2235 while (!list_empty(&worker->scheduled)) {
2236 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2237 struct work_struct, entry);
c34056a3 2238 process_one_work(worker, work);
1da177e4 2239 }
1da177e4
LT
2240}
2241
4690c4ab
TH
2242/**
2243 * worker_thread - the worker thread function
c34056a3 2244 * @__worker: self
4690c4ab 2245 *
e22bee78
TH
2246 * The gcwq worker thread function. There's a single dynamic pool of
2247 * these per each cpu. These workers process all works regardless of
2248 * their specific target workqueue. The only exception is works which
2249 * belong to workqueues with a rescuer which will be explained in
2250 * rescuer_thread().
4690c4ab 2251 */
c34056a3 2252static int worker_thread(void *__worker)
1da177e4 2253{
c34056a3 2254 struct worker *worker = __worker;
bd7bdd43
TH
2255 struct worker_pool *pool = worker->pool;
2256 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2257
e22bee78
TH
2258 /* tell the scheduler that this is a workqueue worker */
2259 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2260woke_up:
c8e55f36 2261 spin_lock_irq(&gcwq->lock);
1da177e4 2262
5f7dabfd
LJ
2263 /* we are off idle list if destruction or rebind is requested */
2264 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2265 spin_unlock_irq(&gcwq->lock);
25511a47 2266
5f7dabfd 2267 /* if DIE is set, destruction is requested */
25511a47
TH
2268 if (worker->flags & WORKER_DIE) {
2269 worker->task->flags &= ~PF_WQ_WORKER;
2270 return 0;
2271 }
2272
5f7dabfd 2273 /* otherwise, rebind */
25511a47
TH
2274 idle_worker_rebind(worker);
2275 goto woke_up;
c8e55f36 2276 }
affee4b2 2277
c8e55f36 2278 worker_leave_idle(worker);
db7bccf4 2279recheck:
e22bee78 2280 /* no more worker necessary? */
63d95a91 2281 if (!need_more_worker(pool))
e22bee78
TH
2282 goto sleep;
2283
2284 /* do we need to manage? */
63d95a91 2285 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2286 goto recheck;
2287
c8e55f36
TH
2288 /*
2289 * ->scheduled list can only be filled while a worker is
2290 * preparing to process a work or actually processing it.
2291 * Make sure nobody diddled with it while I was sleeping.
2292 */
2293 BUG_ON(!list_empty(&worker->scheduled));
2294
e22bee78
TH
2295 /*
2296 * When control reaches this point, we're guaranteed to have
2297 * at least one idle worker or that someone else has already
2298 * assumed the manager role.
2299 */
2300 worker_clr_flags(worker, WORKER_PREP);
2301
2302 do {
c8e55f36 2303 struct work_struct *work =
bd7bdd43 2304 list_first_entry(&pool->worklist,
c8e55f36
TH
2305 struct work_struct, entry);
2306
2307 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2308 /* optimization path, not strictly necessary */
2309 process_one_work(worker, work);
2310 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2311 process_scheduled_works(worker);
c8e55f36
TH
2312 } else {
2313 move_linked_works(work, &worker->scheduled, NULL);
2314 process_scheduled_works(worker);
affee4b2 2315 }
63d95a91 2316 } while (keep_working(pool));
e22bee78
TH
2317
2318 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2319sleep:
63d95a91 2320 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2321 goto recheck;
d313dd85 2322
c8e55f36 2323 /*
e22bee78
TH
2324 * gcwq->lock is held and there's no work to process and no
2325 * need to manage, sleep. Workers are woken up only while
2326 * holding gcwq->lock or from local cpu, so setting the
2327 * current state before releasing gcwq->lock is enough to
2328 * prevent losing any event.
c8e55f36
TH
2329 */
2330 worker_enter_idle(worker);
2331 __set_current_state(TASK_INTERRUPTIBLE);
2332 spin_unlock_irq(&gcwq->lock);
2333 schedule();
2334 goto woke_up;
1da177e4
LT
2335}
2336
e22bee78
TH
2337/**
2338 * rescuer_thread - the rescuer thread function
111c225a 2339 * @__rescuer: self
e22bee78
TH
2340 *
2341 * Workqueue rescuer thread function. There's one rescuer for each
2342 * workqueue which has WQ_RESCUER set.
2343 *
2344 * Regular work processing on a gcwq may block trying to create a new
2345 * worker which uses GFP_KERNEL allocation which has slight chance of
2346 * developing into deadlock if some works currently on the same queue
2347 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2348 * the problem rescuer solves.
2349 *
2350 * When such condition is possible, the gcwq summons rescuers of all
2351 * workqueues which have works queued on the gcwq and let them process
2352 * those works so that forward progress can be guaranteed.
2353 *
2354 * This should happen rarely.
2355 */
111c225a 2356static int rescuer_thread(void *__rescuer)
e22bee78 2357{
111c225a
TH
2358 struct worker *rescuer = __rescuer;
2359 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2360 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2361 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2362 unsigned int cpu;
2363
2364 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2365
2366 /*
2367 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2368 * doesn't participate in concurrency management.
2369 */
2370 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2371repeat:
2372 set_current_state(TASK_INTERRUPTIBLE);
2373
412d32e6
MG
2374 if (kthread_should_stop()) {
2375 __set_current_state(TASK_RUNNING);
111c225a 2376 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2377 return 0;
412d32e6 2378 }
e22bee78 2379
f3421797
TH
2380 /*
2381 * See whether any cpu is asking for help. Unbounded
2382 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2383 */
f2e005aa 2384 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2385 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2386 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2387 struct worker_pool *pool = cwq->pool;
2388 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2389 struct work_struct *work, *n;
2390
2391 __set_current_state(TASK_RUNNING);
f2e005aa 2392 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2393
2394 /* migrate to the target cpu if possible */
bd7bdd43 2395 rescuer->pool = pool;
e22bee78
TH
2396 worker_maybe_bind_and_lock(rescuer);
2397
2398 /*
2399 * Slurp in all works issued via this workqueue and
2400 * process'em.
2401 */
2402 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2403 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2404 if (get_work_cwq(work) == cwq)
2405 move_linked_works(work, scheduled, &n);
2406
2407 process_scheduled_works(rescuer);
7576958a
TH
2408
2409 /*
2410 * Leave this gcwq. If keep_working() is %true, notify a
2411 * regular worker; otherwise, we end up with 0 concurrency
2412 * and stalling the execution.
2413 */
63d95a91
TH
2414 if (keep_working(pool))
2415 wake_up_worker(pool);
7576958a 2416
e22bee78
TH
2417 spin_unlock_irq(&gcwq->lock);
2418 }
2419
111c225a
TH
2420 /* rescuers should never participate in concurrency management */
2421 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2422 schedule();
2423 goto repeat;
1da177e4
LT
2424}
2425
fc2e4d70
ON
2426struct wq_barrier {
2427 struct work_struct work;
2428 struct completion done;
2429};
2430
2431static void wq_barrier_func(struct work_struct *work)
2432{
2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 complete(&barr->done);
2435}
2436
4690c4ab
TH
2437/**
2438 * insert_wq_barrier - insert a barrier work
2439 * @cwq: cwq to insert barrier into
2440 * @barr: wq_barrier to insert
affee4b2
TH
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2443 *
affee4b2
TH
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
2456 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2457 *
2458 * CONTEXT:
8b03ae3c 2459 * spin_lock_irq(gcwq->lock).
4690c4ab 2460 */
83c22520 2461static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2462 struct wq_barrier *barr,
2463 struct work_struct *target, struct worker *worker)
fc2e4d70 2464{
affee4b2
TH
2465 struct list_head *head;
2466 unsigned int linked = 0;
2467
dc186ad7 2468 /*
8b03ae3c 2469 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2472 * might deadlock.
2473 */
ca1cab37 2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2476 init_completion(&barr->done);
83c22520 2477
affee4b2
TH
2478 /*
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2481 */
2482 if (worker)
2483 head = worker->scheduled.next;
2484 else {
2485 unsigned long *bits = work_data_bits(target);
2486
2487 head = target->entry.next;
2488 /* there can already be other linked works, inherit and set */
2489 linked = *bits & WORK_STRUCT_LINKED;
2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 }
2492
dc186ad7 2493 debug_work_activate(&barr->work);
affee4b2
TH
2494 insert_work(cwq, &barr->work, head,
2495 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2496}
2497
73f53c4a
TH
2498/**
2499 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2503 *
2504 * Prepare cwqs for workqueue flushing.
2505 *
2506 * If @flush_color is non-negative, flush_color on all cwqs should be
2507 * -1. If no cwq has in-flight commands at the specified color, all
2508 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2509 * has in flight commands, its cwq->flush_color is set to
2510 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2511 * wakeup logic is armed and %true is returned.
2512 *
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2516 * is returned.
2517 *
2518 * If @work_color is non-negative, all cwqs should have the same
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2521 *
2522 * CONTEXT:
2523 * mutex_lock(wq->flush_mutex).
2524 *
2525 * RETURNS:
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2527 * otherwise.
2528 */
2529static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2530 int flush_color, int work_color)
1da177e4 2531{
73f53c4a
TH
2532 bool wait = false;
2533 unsigned int cpu;
1da177e4 2534
73f53c4a
TH
2535 if (flush_color >= 0) {
2536 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2537 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2538 }
2355b70f 2539
f3421797 2540 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2541 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2542 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2543
8b03ae3c 2544 spin_lock_irq(&gcwq->lock);
83c22520 2545
73f53c4a
TH
2546 if (flush_color >= 0) {
2547 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2548
73f53c4a
TH
2549 if (cwq->nr_in_flight[flush_color]) {
2550 cwq->flush_color = flush_color;
2551 atomic_inc(&wq->nr_cwqs_to_flush);
2552 wait = true;
2553 }
2554 }
1da177e4 2555
73f53c4a
TH
2556 if (work_color >= 0) {
2557 BUG_ON(work_color != work_next_color(cwq->work_color));
2558 cwq->work_color = work_color;
2559 }
1da177e4 2560
8b03ae3c 2561 spin_unlock_irq(&gcwq->lock);
1da177e4 2562 }
2355b70f 2563
73f53c4a
TH
2564 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2565 complete(&wq->first_flusher->done);
14441960 2566
73f53c4a 2567 return wait;
1da177e4
LT
2568}
2569
0fcb78c2 2570/**
1da177e4 2571 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2572 * @wq: workqueue to flush
1da177e4
LT
2573 *
2574 * Forces execution of the workqueue and blocks until its completion.
2575 * This is typically used in driver shutdown handlers.
2576 *
fc2e4d70
ON
2577 * We sleep until all works which were queued on entry have been handled,
2578 * but we are not livelocked by new incoming ones.
1da177e4 2579 */
7ad5b3a5 2580void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2581{
73f53c4a
TH
2582 struct wq_flusher this_flusher = {
2583 .list = LIST_HEAD_INIT(this_flusher.list),
2584 .flush_color = -1,
2585 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2586 };
2587 int next_color;
1da177e4 2588
3295f0ef
IM
2589 lock_map_acquire(&wq->lockdep_map);
2590 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2591
2592 mutex_lock(&wq->flush_mutex);
2593
2594 /*
2595 * Start-to-wait phase
2596 */
2597 next_color = work_next_color(wq->work_color);
2598
2599 if (next_color != wq->flush_color) {
2600 /*
2601 * Color space is not full. The current work_color
2602 * becomes our flush_color and work_color is advanced
2603 * by one.
2604 */
2605 BUG_ON(!list_empty(&wq->flusher_overflow));
2606 this_flusher.flush_color = wq->work_color;
2607 wq->work_color = next_color;
2608
2609 if (!wq->first_flusher) {
2610 /* no flush in progress, become the first flusher */
2611 BUG_ON(wq->flush_color != this_flusher.flush_color);
2612
2613 wq->first_flusher = &this_flusher;
2614
2615 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2616 wq->work_color)) {
2617 /* nothing to flush, done */
2618 wq->flush_color = next_color;
2619 wq->first_flusher = NULL;
2620 goto out_unlock;
2621 }
2622 } else {
2623 /* wait in queue */
2624 BUG_ON(wq->flush_color == this_flusher.flush_color);
2625 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2626 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2627 }
2628 } else {
2629 /*
2630 * Oops, color space is full, wait on overflow queue.
2631 * The next flush completion will assign us
2632 * flush_color and transfer to flusher_queue.
2633 */
2634 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2635 }
2636
2637 mutex_unlock(&wq->flush_mutex);
2638
2639 wait_for_completion(&this_flusher.done);
2640
2641 /*
2642 * Wake-up-and-cascade phase
2643 *
2644 * First flushers are responsible for cascading flushes and
2645 * handling overflow. Non-first flushers can simply return.
2646 */
2647 if (wq->first_flusher != &this_flusher)
2648 return;
2649
2650 mutex_lock(&wq->flush_mutex);
2651
4ce48b37
TH
2652 /* we might have raced, check again with mutex held */
2653 if (wq->first_flusher != &this_flusher)
2654 goto out_unlock;
2655
73f53c4a
TH
2656 wq->first_flusher = NULL;
2657
2658 BUG_ON(!list_empty(&this_flusher.list));
2659 BUG_ON(wq->flush_color != this_flusher.flush_color);
2660
2661 while (true) {
2662 struct wq_flusher *next, *tmp;
2663
2664 /* complete all the flushers sharing the current flush color */
2665 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2666 if (next->flush_color != wq->flush_color)
2667 break;
2668 list_del_init(&next->list);
2669 complete(&next->done);
2670 }
2671
2672 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2673 wq->flush_color != work_next_color(wq->work_color));
2674
2675 /* this flush_color is finished, advance by one */
2676 wq->flush_color = work_next_color(wq->flush_color);
2677
2678 /* one color has been freed, handle overflow queue */
2679 if (!list_empty(&wq->flusher_overflow)) {
2680 /*
2681 * Assign the same color to all overflowed
2682 * flushers, advance work_color and append to
2683 * flusher_queue. This is the start-to-wait
2684 * phase for these overflowed flushers.
2685 */
2686 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2687 tmp->flush_color = wq->work_color;
2688
2689 wq->work_color = work_next_color(wq->work_color);
2690
2691 list_splice_tail_init(&wq->flusher_overflow,
2692 &wq->flusher_queue);
2693 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2694 }
2695
2696 if (list_empty(&wq->flusher_queue)) {
2697 BUG_ON(wq->flush_color != wq->work_color);
2698 break;
2699 }
2700
2701 /*
2702 * Need to flush more colors. Make the next flusher
2703 * the new first flusher and arm cwqs.
2704 */
2705 BUG_ON(wq->flush_color == wq->work_color);
2706 BUG_ON(wq->flush_color != next->flush_color);
2707
2708 list_del_init(&next->list);
2709 wq->first_flusher = next;
2710
2711 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2712 break;
2713
2714 /*
2715 * Meh... this color is already done, clear first
2716 * flusher and repeat cascading.
2717 */
2718 wq->first_flusher = NULL;
2719 }
2720
2721out_unlock:
2722 mutex_unlock(&wq->flush_mutex);
1da177e4 2723}
ae90dd5d 2724EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2725
9c5a2ba7
TH
2726/**
2727 * drain_workqueue - drain a workqueue
2728 * @wq: workqueue to drain
2729 *
2730 * Wait until the workqueue becomes empty. While draining is in progress,
2731 * only chain queueing is allowed. IOW, only currently pending or running
2732 * work items on @wq can queue further work items on it. @wq is flushed
2733 * repeatedly until it becomes empty. The number of flushing is detemined
2734 * by the depth of chaining and should be relatively short. Whine if it
2735 * takes too long.
2736 */
2737void drain_workqueue(struct workqueue_struct *wq)
2738{
2739 unsigned int flush_cnt = 0;
2740 unsigned int cpu;
2741
2742 /*
2743 * __queue_work() needs to test whether there are drainers, is much
2744 * hotter than drain_workqueue() and already looks at @wq->flags.
2745 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2746 */
2747 spin_lock(&workqueue_lock);
2748 if (!wq->nr_drainers++)
2749 wq->flags |= WQ_DRAINING;
2750 spin_unlock(&workqueue_lock);
2751reflush:
2752 flush_workqueue(wq);
2753
2754 for_each_cwq_cpu(cpu, wq) {
2755 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2756 bool drained;
9c5a2ba7 2757
bd7bdd43 2758 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2759 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2760 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2761
2762 if (drained)
9c5a2ba7
TH
2763 continue;
2764
2765 if (++flush_cnt == 10 ||
2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2767 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2768 wq->name, flush_cnt);
9c5a2ba7
TH
2769 goto reflush;
2770 }
2771
2772 spin_lock(&workqueue_lock);
2773 if (!--wq->nr_drainers)
2774 wq->flags &= ~WQ_DRAINING;
2775 spin_unlock(&workqueue_lock);
2776}
2777EXPORT_SYMBOL_GPL(drain_workqueue);
2778
606a5020 2779static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2780{
affee4b2 2781 struct worker *worker = NULL;
8b03ae3c 2782 struct global_cwq *gcwq;
db700897 2783 struct cpu_workqueue_struct *cwq;
db700897
ON
2784
2785 might_sleep();
7a22ad75
TH
2786 gcwq = get_work_gcwq(work);
2787 if (!gcwq)
baf59022 2788 return false;
db700897 2789
8b03ae3c 2790 spin_lock_irq(&gcwq->lock);
db700897
ON
2791 if (!list_empty(&work->entry)) {
2792 /*
2793 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2794 * If it was re-queued to a different gcwq under us, we
2795 * are not going to wait.
db700897
ON
2796 */
2797 smp_rmb();
7a22ad75 2798 cwq = get_work_cwq(work);
bd7bdd43 2799 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2800 goto already_gone;
606a5020 2801 } else {
7a22ad75 2802 worker = find_worker_executing_work(gcwq, work);
affee4b2 2803 if (!worker)
4690c4ab 2804 goto already_gone;
7a22ad75 2805 cwq = worker->current_cwq;
606a5020 2806 }
db700897 2807
baf59022 2808 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2809 spin_unlock_irq(&gcwq->lock);
7a22ad75 2810
e159489b
TH
2811 /*
2812 * If @max_active is 1 or rescuer is in use, flushing another work
2813 * item on the same workqueue may lead to deadlock. Make sure the
2814 * flusher is not running on the same workqueue by verifying write
2815 * access.
2816 */
2817 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2818 lock_map_acquire(&cwq->wq->lockdep_map);
2819 else
2820 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2821 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2822
401a8d04 2823 return true;
4690c4ab 2824already_gone:
8b03ae3c 2825 spin_unlock_irq(&gcwq->lock);
401a8d04 2826 return false;
db700897 2827}
baf59022
TH
2828
2829/**
2830 * flush_work - wait for a work to finish executing the last queueing instance
2831 * @work: the work to flush
2832 *
606a5020
TH
2833 * Wait until @work has finished execution. @work is guaranteed to be idle
2834 * on return if it hasn't been requeued since flush started.
baf59022
TH
2835 *
2836 * RETURNS:
2837 * %true if flush_work() waited for the work to finish execution,
2838 * %false if it was already idle.
2839 */
2840bool flush_work(struct work_struct *work)
2841{
2842 struct wq_barrier barr;
2843
0976dfc1
SB
2844 lock_map_acquire(&work->lockdep_map);
2845 lock_map_release(&work->lockdep_map);
2846
606a5020 2847 if (start_flush_work(work, &barr)) {
401a8d04
TH
2848 wait_for_completion(&barr.done);
2849 destroy_work_on_stack(&barr.work);
2850 return true;
606a5020 2851 } else {
401a8d04 2852 return false;
6e84d644 2853 }
6e84d644 2854}
606a5020 2855EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2856
36e227d2 2857static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2858{
bbb68dfa 2859 unsigned long flags;
1f1f642e
ON
2860 int ret;
2861
2862 do {
bbb68dfa
TH
2863 ret = try_to_grab_pending(work, is_dwork, &flags);
2864 /*
2865 * If someone else is canceling, wait for the same event it
2866 * would be waiting for before retrying.
2867 */
2868 if (unlikely(ret == -ENOENT))
606a5020 2869 flush_work(work);
1f1f642e
ON
2870 } while (unlikely(ret < 0));
2871
bbb68dfa
TH
2872 /* tell other tasks trying to grab @work to back off */
2873 mark_work_canceling(work);
2874 local_irq_restore(flags);
2875
606a5020 2876 flush_work(work);
7a22ad75 2877 clear_work_data(work);
1f1f642e
ON
2878 return ret;
2879}
2880
6e84d644 2881/**
401a8d04
TH
2882 * cancel_work_sync - cancel a work and wait for it to finish
2883 * @work: the work to cancel
6e84d644 2884 *
401a8d04
TH
2885 * Cancel @work and wait for its execution to finish. This function
2886 * can be used even if the work re-queues itself or migrates to
2887 * another workqueue. On return from this function, @work is
2888 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2889 *
401a8d04
TH
2890 * cancel_work_sync(&delayed_work->work) must not be used for
2891 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2892 *
401a8d04 2893 * The caller must ensure that the workqueue on which @work was last
6e84d644 2894 * queued can't be destroyed before this function returns.
401a8d04
TH
2895 *
2896 * RETURNS:
2897 * %true if @work was pending, %false otherwise.
6e84d644 2898 */
401a8d04 2899bool cancel_work_sync(struct work_struct *work)
6e84d644 2900{
36e227d2 2901 return __cancel_work_timer(work, false);
b89deed3 2902}
28e53bdd 2903EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2904
6e84d644 2905/**
401a8d04
TH
2906 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2907 * @dwork: the delayed work to flush
6e84d644 2908 *
401a8d04
TH
2909 * Delayed timer is cancelled and the pending work is queued for
2910 * immediate execution. Like flush_work(), this function only
2911 * considers the last queueing instance of @dwork.
1f1f642e 2912 *
401a8d04
TH
2913 * RETURNS:
2914 * %true if flush_work() waited for the work to finish execution,
2915 * %false if it was already idle.
6e84d644 2916 */
401a8d04
TH
2917bool flush_delayed_work(struct delayed_work *dwork)
2918{
8930caba 2919 local_irq_disable();
401a8d04 2920 if (del_timer_sync(&dwork->timer))
1265057f 2921 __queue_work(dwork->cpu,
401a8d04 2922 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2923 local_irq_enable();
401a8d04
TH
2924 return flush_work(&dwork->work);
2925}
2926EXPORT_SYMBOL(flush_delayed_work);
2927
09383498 2928/**
57b30ae7
TH
2929 * cancel_delayed_work - cancel a delayed work
2930 * @dwork: delayed_work to cancel
09383498 2931 *
57b30ae7
TH
2932 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2933 * and canceled; %false if wasn't pending. Note that the work callback
2934 * function may still be running on return, unless it returns %true and the
2935 * work doesn't re-arm itself. Explicitly flush or use
2936 * cancel_delayed_work_sync() to wait on it.
09383498 2937 *
57b30ae7 2938 * This function is safe to call from any context including IRQ handler.
09383498 2939 */
57b30ae7 2940bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2941{
57b30ae7
TH
2942 unsigned long flags;
2943 int ret;
2944
2945 do {
2946 ret = try_to_grab_pending(&dwork->work, true, &flags);
2947 } while (unlikely(ret == -EAGAIN));
2948
2949 if (unlikely(ret < 0))
2950 return false;
2951
2952 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2953 local_irq_restore(flags);
c0158ca6 2954 return ret;
09383498 2955}
57b30ae7 2956EXPORT_SYMBOL(cancel_delayed_work);
09383498 2957
401a8d04
TH
2958/**
2959 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2960 * @dwork: the delayed work cancel
2961 *
2962 * This is cancel_work_sync() for delayed works.
2963 *
2964 * RETURNS:
2965 * %true if @dwork was pending, %false otherwise.
2966 */
2967bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2968{
36e227d2 2969 return __cancel_work_timer(&dwork->work, true);
6e84d644 2970}
f5a421a4 2971EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2972
0fcb78c2 2973/**
c1a220e7
ZR
2974 * schedule_work_on - put work task on a specific cpu
2975 * @cpu: cpu to put the work task on
2976 * @work: job to be done
2977 *
2978 * This puts a job on a specific cpu
2979 */
d4283e93 2980bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2981{
d320c038 2982 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2983}
2984EXPORT_SYMBOL(schedule_work_on);
2985
0fcb78c2 2986/**
0fcb78c2
REB
2987 * schedule_work - put work task in global workqueue
2988 * @work: job to be done
0fcb78c2 2989 *
d4283e93
TH
2990 * Returns %false if @work was already on the kernel-global workqueue and
2991 * %true otherwise.
5b0f437d
BVA
2992 *
2993 * This puts a job in the kernel-global workqueue if it was not already
2994 * queued and leaves it in the same position on the kernel-global
2995 * workqueue otherwise.
0fcb78c2 2996 */
d4283e93 2997bool schedule_work(struct work_struct *work)
1da177e4 2998{
d320c038 2999 return queue_work(system_wq, work);
1da177e4 3000}
ae90dd5d 3001EXPORT_SYMBOL(schedule_work);
1da177e4 3002
0fcb78c2
REB
3003/**
3004 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3005 * @cpu: cpu to use
52bad64d 3006 * @dwork: job to be done
0fcb78c2
REB
3007 * @delay: number of jiffies to wait
3008 *
3009 * After waiting for a given time this puts a job in the kernel-global
3010 * workqueue on the specified CPU.
3011 */
d4283e93
TH
3012bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3013 unsigned long delay)
1da177e4 3014{
d320c038 3015 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3016}
ae90dd5d 3017EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3018
0fcb78c2
REB
3019/**
3020 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3021 * @dwork: job to be done
3022 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3023 *
3024 * After waiting for a given time this puts a job in the kernel-global
3025 * workqueue.
3026 */
d4283e93 3027bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3028{
d320c038 3029 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3030}
ae90dd5d 3031EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3032
b6136773 3033/**
31ddd871 3034 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3035 * @func: the function to call
b6136773 3036 *
31ddd871
TH
3037 * schedule_on_each_cpu() executes @func on each online CPU using the
3038 * system workqueue and blocks until all CPUs have completed.
b6136773 3039 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3040 *
3041 * RETURNS:
3042 * 0 on success, -errno on failure.
b6136773 3043 */
65f27f38 3044int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3045{
3046 int cpu;
38f51568 3047 struct work_struct __percpu *works;
15316ba8 3048
b6136773
AM
3049 works = alloc_percpu(struct work_struct);
3050 if (!works)
15316ba8 3051 return -ENOMEM;
b6136773 3052
93981800
TH
3053 get_online_cpus();
3054
15316ba8 3055 for_each_online_cpu(cpu) {
9bfb1839
IM
3056 struct work_struct *work = per_cpu_ptr(works, cpu);
3057
3058 INIT_WORK(work, func);
b71ab8c2 3059 schedule_work_on(cpu, work);
65a64464 3060 }
93981800
TH
3061
3062 for_each_online_cpu(cpu)
3063 flush_work(per_cpu_ptr(works, cpu));
3064
95402b38 3065 put_online_cpus();
b6136773 3066 free_percpu(works);
15316ba8
CL
3067 return 0;
3068}
3069
eef6a7d5
AS
3070/**
3071 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3072 *
3073 * Forces execution of the kernel-global workqueue and blocks until its
3074 * completion.
3075 *
3076 * Think twice before calling this function! It's very easy to get into
3077 * trouble if you don't take great care. Either of the following situations
3078 * will lead to deadlock:
3079 *
3080 * One of the work items currently on the workqueue needs to acquire
3081 * a lock held by your code or its caller.
3082 *
3083 * Your code is running in the context of a work routine.
3084 *
3085 * They will be detected by lockdep when they occur, but the first might not
3086 * occur very often. It depends on what work items are on the workqueue and
3087 * what locks they need, which you have no control over.
3088 *
3089 * In most situations flushing the entire workqueue is overkill; you merely
3090 * need to know that a particular work item isn't queued and isn't running.
3091 * In such cases you should use cancel_delayed_work_sync() or
3092 * cancel_work_sync() instead.
3093 */
1da177e4
LT
3094void flush_scheduled_work(void)
3095{
d320c038 3096 flush_workqueue(system_wq);
1da177e4 3097}
ae90dd5d 3098EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3099
1fa44eca
JB
3100/**
3101 * execute_in_process_context - reliably execute the routine with user context
3102 * @fn: the function to execute
1fa44eca
JB
3103 * @ew: guaranteed storage for the execute work structure (must
3104 * be available when the work executes)
3105 *
3106 * Executes the function immediately if process context is available,
3107 * otherwise schedules the function for delayed execution.
3108 *
3109 * Returns: 0 - function was executed
3110 * 1 - function was scheduled for execution
3111 */
65f27f38 3112int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3113{
3114 if (!in_interrupt()) {
65f27f38 3115 fn(&ew->work);
1fa44eca
JB
3116 return 0;
3117 }
3118
65f27f38 3119 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3120 schedule_work(&ew->work);
3121
3122 return 1;
3123}
3124EXPORT_SYMBOL_GPL(execute_in_process_context);
3125
1da177e4
LT
3126int keventd_up(void)
3127{
d320c038 3128 return system_wq != NULL;
1da177e4
LT
3129}
3130
bdbc5dd7 3131static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3132{
65a64464 3133 /*
0f900049
TH
3134 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3135 * Make sure that the alignment isn't lower than that of
3136 * unsigned long long.
65a64464 3137 */
0f900049
TH
3138 const size_t size = sizeof(struct cpu_workqueue_struct);
3139 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3140 __alignof__(unsigned long long));
65a64464 3141
e06ffa1e 3142 if (!(wq->flags & WQ_UNBOUND))
f3421797 3143 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3144 else {
f3421797
TH
3145 void *ptr;
3146
3147 /*
3148 * Allocate enough room to align cwq and put an extra
3149 * pointer at the end pointing back to the originally
3150 * allocated pointer which will be used for free.
3151 */
3152 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3153 if (ptr) {
3154 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3155 *(void **)(wq->cpu_wq.single + 1) = ptr;
3156 }
bdbc5dd7 3157 }
f3421797 3158
0415b00d 3159 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3160 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3161 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3162}
3163
bdbc5dd7 3164static void free_cwqs(struct workqueue_struct *wq)
0f900049 3165{
e06ffa1e 3166 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3167 free_percpu(wq->cpu_wq.pcpu);
3168 else if (wq->cpu_wq.single) {
3169 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3170 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3171 }
0f900049
TH
3172}
3173
f3421797
TH
3174static int wq_clamp_max_active(int max_active, unsigned int flags,
3175 const char *name)
b71ab8c2 3176{
f3421797
TH
3177 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3178
3179 if (max_active < 1 || max_active > lim)
044c782c
VI
3180 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3181 max_active, name, 1, lim);
b71ab8c2 3182
f3421797 3183 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3184}
3185
b196be89 3186struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3187 unsigned int flags,
3188 int max_active,
3189 struct lock_class_key *key,
b196be89 3190 const char *lock_name, ...)
1da177e4 3191{
b196be89 3192 va_list args, args1;
1da177e4 3193 struct workqueue_struct *wq;
c34056a3 3194 unsigned int cpu;
b196be89
TH
3195 size_t namelen;
3196
3197 /* determine namelen, allocate wq and format name */
3198 va_start(args, lock_name);
3199 va_copy(args1, args);
3200 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3201
3202 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3203 if (!wq)
3204 goto err;
3205
3206 vsnprintf(wq->name, namelen, fmt, args1);
3207 va_end(args);
3208 va_end(args1);
1da177e4 3209
6370a6ad
TH
3210 /*
3211 * Workqueues which may be used during memory reclaim should
3212 * have a rescuer to guarantee forward progress.
3213 */
3214 if (flags & WQ_MEM_RECLAIM)
3215 flags |= WQ_RESCUER;
3216
d320c038 3217 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3218 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3219
b196be89 3220 /* init wq */
97e37d7b 3221 wq->flags = flags;
a0a1a5fd 3222 wq->saved_max_active = max_active;
73f53c4a
TH
3223 mutex_init(&wq->flush_mutex);
3224 atomic_set(&wq->nr_cwqs_to_flush, 0);
3225 INIT_LIST_HEAD(&wq->flusher_queue);
3226 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3227
eb13ba87 3228 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3229 INIT_LIST_HEAD(&wq->list);
3af24433 3230
bdbc5dd7
TH
3231 if (alloc_cwqs(wq) < 0)
3232 goto err;
3233
f3421797 3234 for_each_cwq_cpu(cpu, wq) {
1537663f 3235 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3236 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3237 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3238
0f900049 3239 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3240 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3241 cwq->wq = wq;
73f53c4a 3242 cwq->flush_color = -1;
1e19ffc6 3243 cwq->max_active = max_active;
1e19ffc6 3244 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3245 }
1537663f 3246
e22bee78
TH
3247 if (flags & WQ_RESCUER) {
3248 struct worker *rescuer;
3249
f2e005aa 3250 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3251 goto err;
3252
3253 wq->rescuer = rescuer = alloc_worker();
3254 if (!rescuer)
3255 goto err;
3256
111c225a
TH
3257 rescuer->rescue_wq = wq;
3258 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3259 wq->name);
e22bee78
TH
3260 if (IS_ERR(rescuer->task))
3261 goto err;
3262
e22bee78
TH
3263 rescuer->task->flags |= PF_THREAD_BOUND;
3264 wake_up_process(rescuer->task);
3af24433
ON
3265 }
3266
a0a1a5fd
TH
3267 /*
3268 * workqueue_lock protects global freeze state and workqueues
3269 * list. Grab it, set max_active accordingly and add the new
3270 * workqueue to workqueues list.
3271 */
1537663f 3272 spin_lock(&workqueue_lock);
a0a1a5fd 3273
58a69cb4 3274 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3275 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3276 get_cwq(cpu, wq)->max_active = 0;
3277
1537663f 3278 list_add(&wq->list, &workqueues);
a0a1a5fd 3279
1537663f
TH
3280 spin_unlock(&workqueue_lock);
3281
3af24433 3282 return wq;
4690c4ab
TH
3283err:
3284 if (wq) {
bdbc5dd7 3285 free_cwqs(wq);
f2e005aa 3286 free_mayday_mask(wq->mayday_mask);
e22bee78 3287 kfree(wq->rescuer);
4690c4ab
TH
3288 kfree(wq);
3289 }
3290 return NULL;
3af24433 3291}
d320c038 3292EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3293
3af24433
ON
3294/**
3295 * destroy_workqueue - safely terminate a workqueue
3296 * @wq: target workqueue
3297 *
3298 * Safely destroy a workqueue. All work currently pending will be done first.
3299 */
3300void destroy_workqueue(struct workqueue_struct *wq)
3301{
c8e55f36 3302 unsigned int cpu;
3af24433 3303
9c5a2ba7
TH
3304 /* drain it before proceeding with destruction */
3305 drain_workqueue(wq);
c8efcc25 3306
a0a1a5fd
TH
3307 /*
3308 * wq list is used to freeze wq, remove from list after
3309 * flushing is complete in case freeze races us.
3310 */
95402b38 3311 spin_lock(&workqueue_lock);
b1f4ec17 3312 list_del(&wq->list);
95402b38 3313 spin_unlock(&workqueue_lock);
3af24433 3314
e22bee78 3315 /* sanity check */
f3421797 3316 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3317 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3318 int i;
3319
73f53c4a
TH
3320 for (i = 0; i < WORK_NR_COLORS; i++)
3321 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3322 BUG_ON(cwq->nr_active);
3323 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3324 }
9b41ea72 3325
e22bee78
TH
3326 if (wq->flags & WQ_RESCUER) {
3327 kthread_stop(wq->rescuer->task);
f2e005aa 3328 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3329 kfree(wq->rescuer);
e22bee78
TH
3330 }
3331
bdbc5dd7 3332 free_cwqs(wq);
3af24433
ON
3333 kfree(wq);
3334}
3335EXPORT_SYMBOL_GPL(destroy_workqueue);
3336
9f4bd4cd
LJ
3337/**
3338 * cwq_set_max_active - adjust max_active of a cwq
3339 * @cwq: target cpu_workqueue_struct
3340 * @max_active: new max_active value.
3341 *
3342 * Set @cwq->max_active to @max_active and activate delayed works if
3343 * increased.
3344 *
3345 * CONTEXT:
3346 * spin_lock_irq(gcwq->lock).
3347 */
3348static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3349{
3350 cwq->max_active = max_active;
3351
3352 while (!list_empty(&cwq->delayed_works) &&
3353 cwq->nr_active < cwq->max_active)
3354 cwq_activate_first_delayed(cwq);
3355}
3356
dcd989cb
TH
3357/**
3358 * workqueue_set_max_active - adjust max_active of a workqueue
3359 * @wq: target workqueue
3360 * @max_active: new max_active value.
3361 *
3362 * Set max_active of @wq to @max_active.
3363 *
3364 * CONTEXT:
3365 * Don't call from IRQ context.
3366 */
3367void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3368{
3369 unsigned int cpu;
3370
f3421797 3371 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3372
3373 spin_lock(&workqueue_lock);
3374
3375 wq->saved_max_active = max_active;
3376
f3421797 3377 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3378 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3379 struct worker_pool *pool = cwq->pool;
3380 struct global_cwq *gcwq = pool->gcwq;
dcd989cb
TH
3381
3382 spin_lock_irq(&gcwq->lock);
3383
58a69cb4 3384 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3385 !(pool->flags & POOL_FREEZING))
3386 cwq_set_max_active(cwq, max_active);
9bfb1839 3387
dcd989cb 3388 spin_unlock_irq(&gcwq->lock);
65a64464 3389 }
93981800 3390
dcd989cb 3391 spin_unlock(&workqueue_lock);
15316ba8 3392}
dcd989cb 3393EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3394
eef6a7d5 3395/**
dcd989cb
TH
3396 * workqueue_congested - test whether a workqueue is congested
3397 * @cpu: CPU in question
3398 * @wq: target workqueue
eef6a7d5 3399 *
dcd989cb
TH
3400 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3401 * no synchronization around this function and the test result is
3402 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3403 *
dcd989cb
TH
3404 * RETURNS:
3405 * %true if congested, %false otherwise.
eef6a7d5 3406 */
dcd989cb 3407bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3408{
dcd989cb
TH
3409 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3410
3411 return !list_empty(&cwq->delayed_works);
1da177e4 3412}
dcd989cb 3413EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3414
1fa44eca 3415/**
dcd989cb
TH
3416 * work_cpu - return the last known associated cpu for @work
3417 * @work: the work of interest
1fa44eca 3418 *
dcd989cb 3419 * RETURNS:
bdbc5dd7 3420 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3421 */
e2905b29 3422static unsigned int work_cpu(struct work_struct *work)
1fa44eca 3423{
dcd989cb 3424 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3425
bdbc5dd7 3426 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3427}
1fa44eca 3428
dcd989cb
TH
3429/**
3430 * work_busy - test whether a work is currently pending or running
3431 * @work: the work to be tested
3432 *
3433 * Test whether @work is currently pending or running. There is no
3434 * synchronization around this function and the test result is
3435 * unreliable and only useful as advisory hints or for debugging.
3436 * Especially for reentrant wqs, the pending state might hide the
3437 * running state.
3438 *
3439 * RETURNS:
3440 * OR'd bitmask of WORK_BUSY_* bits.
3441 */
3442unsigned int work_busy(struct work_struct *work)
1da177e4 3443{
dcd989cb
TH
3444 struct global_cwq *gcwq = get_work_gcwq(work);
3445 unsigned long flags;
3446 unsigned int ret = 0;
1da177e4 3447
dcd989cb 3448 if (!gcwq)
999767be 3449 return 0;
1da177e4 3450
dcd989cb 3451 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3452
dcd989cb
TH
3453 if (work_pending(work))
3454 ret |= WORK_BUSY_PENDING;
3455 if (find_worker_executing_work(gcwq, work))
3456 ret |= WORK_BUSY_RUNNING;
1da177e4 3457
dcd989cb 3458 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3459
dcd989cb 3460 return ret;
1da177e4 3461}
dcd989cb 3462EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3463
db7bccf4
TH
3464/*
3465 * CPU hotplug.
3466 *
e22bee78
TH
3467 * There are two challenges in supporting CPU hotplug. Firstly, there
3468 * are a lot of assumptions on strong associations among work, cwq and
3469 * gcwq which make migrating pending and scheduled works very
3470 * difficult to implement without impacting hot paths. Secondly,
3471 * gcwqs serve mix of short, long and very long running works making
3472 * blocked draining impractical.
3473 *
24647570 3474 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3475 * running as an unbound one and allowing it to be reattached later if the
3476 * cpu comes back online.
db7bccf4 3477 */
1da177e4 3478
60373152 3479/* claim manager positions of all pools */
b2eb83d1 3480static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3481{
3482 struct worker_pool *pool;
3483
3484 for_each_worker_pool(pool, gcwq)
b2eb83d1 3485 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3486 spin_lock_irq(&gcwq->lock);
60373152
TH
3487}
3488
3489/* release manager positions */
b2eb83d1 3490static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3491{
3492 struct worker_pool *pool;
3493
8db25e78 3494 spin_unlock_irq(&gcwq->lock);
60373152 3495 for_each_worker_pool(pool, gcwq)
b2eb83d1 3496 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3497}
3498
628c78e7 3499static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3500{
628c78e7 3501 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3502 struct worker_pool *pool;
db7bccf4
TH
3503 struct worker *worker;
3504 struct hlist_node *pos;
3505 int i;
3af24433 3506
db7bccf4
TH
3507 BUG_ON(gcwq->cpu != smp_processor_id());
3508
b2eb83d1 3509 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3510
f2d5a0ee
TH
3511 /*
3512 * We've claimed all manager positions. Make all workers unbound
3513 * and set DISASSOCIATED. Before this, all workers except for the
3514 * ones which are still executing works from before the last CPU
3515 * down must be on the cpu. After this, they may become diasporas.
3516 */
60373152 3517 for_each_worker_pool(pool, gcwq)
4ce62e9e 3518 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3519 worker->flags |= WORKER_UNBOUND;
3af24433 3520
db7bccf4 3521 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3522 worker->flags |= WORKER_UNBOUND;
06ba38a9 3523
24647570
TH
3524 for_each_worker_pool(pool, gcwq)
3525 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3526
b2eb83d1 3527 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3528
e22bee78 3529 /*
403c821d 3530 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3531 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3532 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3533 */
e22bee78 3534 schedule();
06ba38a9 3535
e22bee78 3536 /*
628c78e7
TH
3537 * Sched callbacks are disabled now. Zap nr_running. After this,
3538 * nr_running stays zero and need_more_worker() and keep_working()
3539 * are always true as long as the worklist is not empty. @gcwq now
3540 * behaves as unbound (in terms of concurrency management) gcwq
3541 * which is served by workers tied to the CPU.
3542 *
3543 * On return from this function, the current worker would trigger
3544 * unbound chain execution of pending work items if other workers
3545 * didn't already.
e22bee78 3546 */
4ce62e9e
TH
3547 for_each_worker_pool(pool, gcwq)
3548 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3549}
3af24433 3550
8db25e78
TH
3551/*
3552 * Workqueues should be brought up before normal priority CPU notifiers.
3553 * This will be registered high priority CPU notifier.
3554 */
9fdf9b73 3555static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3556 unsigned long action,
3557 void *hcpu)
3af24433
ON
3558{
3559 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3560 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3561 struct worker_pool *pool;
3ce63377 3562
8db25e78 3563 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3564 case CPU_UP_PREPARE:
4ce62e9e 3565 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3566 struct worker *worker;
3567
3568 if (pool->nr_workers)
3569 continue;
3570
3571 worker = create_worker(pool);
3572 if (!worker)
3573 return NOTIFY_BAD;
3574
3575 spin_lock_irq(&gcwq->lock);
3576 start_worker(worker);
3577 spin_unlock_irq(&gcwq->lock);
3af24433 3578 }
8db25e78 3579 break;
3af24433 3580
db7bccf4
TH
3581 case CPU_DOWN_FAILED:
3582 case CPU_ONLINE:
b2eb83d1 3583 gcwq_claim_assoc_and_lock(gcwq);
24647570
TH
3584 for_each_worker_pool(pool, gcwq)
3585 pool->flags &= ~POOL_DISASSOCIATED;
25511a47 3586 rebind_workers(gcwq);
b2eb83d1 3587 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3588 break;
00dfcaf7 3589 }
65758202
TH
3590 return NOTIFY_OK;
3591}
3592
3593/*
3594 * Workqueues should be brought down after normal priority CPU notifiers.
3595 * This will be registered as low priority CPU notifier.
3596 */
9fdf9b73 3597static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3598 unsigned long action,
3599 void *hcpu)
3600{
8db25e78
TH
3601 unsigned int cpu = (unsigned long)hcpu;
3602 struct work_struct unbind_work;
3603
65758202
TH
3604 switch (action & ~CPU_TASKS_FROZEN) {
3605 case CPU_DOWN_PREPARE:
8db25e78
TH
3606 /* unbinding should happen on the local CPU */
3607 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3608 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3609 flush_work(&unbind_work);
3610 break;
65758202
TH
3611 }
3612 return NOTIFY_OK;
3613}
3614
2d3854a3 3615#ifdef CONFIG_SMP
8ccad40d 3616
2d3854a3 3617struct work_for_cpu {
ed48ece2 3618 struct work_struct work;
2d3854a3
RR
3619 long (*fn)(void *);
3620 void *arg;
3621 long ret;
3622};
3623
ed48ece2 3624static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3625{
ed48ece2
TH
3626 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3627
2d3854a3
RR
3628 wfc->ret = wfc->fn(wfc->arg);
3629}
3630
3631/**
3632 * work_on_cpu - run a function in user context on a particular cpu
3633 * @cpu: the cpu to run on
3634 * @fn: the function to run
3635 * @arg: the function arg
3636 *
31ad9081
RR
3637 * This will return the value @fn returns.
3638 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3639 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3640 */
3641long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3642{
ed48ece2 3643 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3644
ed48ece2
TH
3645 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3646 schedule_work_on(cpu, &wfc.work);
3647 flush_work(&wfc.work);
2d3854a3
RR
3648 return wfc.ret;
3649}
3650EXPORT_SYMBOL_GPL(work_on_cpu);
3651#endif /* CONFIG_SMP */
3652
a0a1a5fd
TH
3653#ifdef CONFIG_FREEZER
3654
3655/**
3656 * freeze_workqueues_begin - begin freezing workqueues
3657 *
58a69cb4
TH
3658 * Start freezing workqueues. After this function returns, all freezable
3659 * workqueues will queue new works to their frozen_works list instead of
3660 * gcwq->worklist.
a0a1a5fd
TH
3661 *
3662 * CONTEXT:
8b03ae3c 3663 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3664 */
3665void freeze_workqueues_begin(void)
3666{
a0a1a5fd
TH
3667 unsigned int cpu;
3668
3669 spin_lock(&workqueue_lock);
3670
3671 BUG_ON(workqueue_freezing);
3672 workqueue_freezing = true;
3673
f3421797 3674 for_each_gcwq_cpu(cpu) {
8b03ae3c 3675 struct global_cwq *gcwq = get_gcwq(cpu);
35b6bb63 3676 struct worker_pool *pool;
bdbc5dd7 3677 struct workqueue_struct *wq;
8b03ae3c
TH
3678
3679 spin_lock_irq(&gcwq->lock);
3680
35b6bb63
TH
3681 for_each_worker_pool(pool, gcwq) {
3682 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3683 pool->flags |= POOL_FREEZING;
3684 }
db7bccf4 3685
a0a1a5fd
TH
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3688
58a69cb4 3689 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3690 cwq->max_active = 0;
a0a1a5fd 3691 }
8b03ae3c
TH
3692
3693 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3694 }
3695
3696 spin_unlock(&workqueue_lock);
3697}
3698
3699/**
58a69cb4 3700 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3701 *
3702 * Check whether freezing is complete. This function must be called
3703 * between freeze_workqueues_begin() and thaw_workqueues().
3704 *
3705 * CONTEXT:
3706 * Grabs and releases workqueue_lock.
3707 *
3708 * RETURNS:
58a69cb4
TH
3709 * %true if some freezable workqueues are still busy. %false if freezing
3710 * is complete.
a0a1a5fd
TH
3711 */
3712bool freeze_workqueues_busy(void)
3713{
a0a1a5fd
TH
3714 unsigned int cpu;
3715 bool busy = false;
3716
3717 spin_lock(&workqueue_lock);
3718
3719 BUG_ON(!workqueue_freezing);
3720
f3421797 3721 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3722 struct workqueue_struct *wq;
a0a1a5fd
TH
3723 /*
3724 * nr_active is monotonically decreasing. It's safe
3725 * to peek without lock.
3726 */
3727 list_for_each_entry(wq, &workqueues, list) {
3728 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3729
58a69cb4 3730 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3731 continue;
3732
3733 BUG_ON(cwq->nr_active < 0);
3734 if (cwq->nr_active) {
3735 busy = true;
3736 goto out_unlock;
3737 }
3738 }
3739 }
3740out_unlock:
3741 spin_unlock(&workqueue_lock);
3742 return busy;
3743}
3744
3745/**
3746 * thaw_workqueues - thaw workqueues
3747 *
3748 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3749 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3750 *
3751 * CONTEXT:
8b03ae3c 3752 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3753 */
3754void thaw_workqueues(void)
3755{
a0a1a5fd
TH
3756 unsigned int cpu;
3757
3758 spin_lock(&workqueue_lock);
3759
3760 if (!workqueue_freezing)
3761 goto out_unlock;
3762
f3421797 3763 for_each_gcwq_cpu(cpu) {
8b03ae3c 3764 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3765 struct worker_pool *pool;
bdbc5dd7 3766 struct workqueue_struct *wq;
8b03ae3c
TH
3767
3768 spin_lock_irq(&gcwq->lock);
3769
35b6bb63
TH
3770 for_each_worker_pool(pool, gcwq) {
3771 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3772 pool->flags &= ~POOL_FREEZING;
3773 }
db7bccf4 3774
a0a1a5fd
TH
3775 list_for_each_entry(wq, &workqueues, list) {
3776 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3777
58a69cb4 3778 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3779 continue;
3780
a0a1a5fd 3781 /* restore max_active and repopulate worklist */
9f4bd4cd 3782 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3783 }
8b03ae3c 3784
4ce62e9e
TH
3785 for_each_worker_pool(pool, gcwq)
3786 wake_up_worker(pool);
e22bee78 3787
8b03ae3c 3788 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3789 }
3790
3791 workqueue_freezing = false;
3792out_unlock:
3793 spin_unlock(&workqueue_lock);
3794}
3795#endif /* CONFIG_FREEZER */
3796
6ee0578b 3797static int __init init_workqueues(void)
1da177e4 3798{
c34056a3
TH
3799 unsigned int cpu;
3800
b5490077
TH
3801 /* make sure we have enough bits for OFFQ CPU number */
3802 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3803 WORK_CPU_LAST);
3804
65758202 3805 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3806 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3807
3808 /* initialize gcwqs */
f3421797 3809 for_each_gcwq_cpu(cpu) {
8b03ae3c 3810 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3811 struct worker_pool *pool;
8b03ae3c
TH
3812
3813 spin_lock_init(&gcwq->lock);
3814 gcwq->cpu = cpu;
3815
42f8570f 3816 hash_init(gcwq->busy_hash);
c8e55f36 3817
4ce62e9e
TH
3818 for_each_worker_pool(pool, gcwq) {
3819 pool->gcwq = gcwq;
24647570 3820 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3821 INIT_LIST_HEAD(&pool->worklist);
3822 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3823
4ce62e9e
TH
3824 init_timer_deferrable(&pool->idle_timer);
3825 pool->idle_timer.function = idle_worker_timeout;
3826 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3827
4ce62e9e
TH
3828 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3829 (unsigned long)pool);
3830
b2eb83d1 3831 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3832 ida_init(&pool->worker_ida);
3833 }
8b03ae3c
TH
3834 }
3835
e22bee78 3836 /* create the initial worker */
f3421797 3837 for_each_online_gcwq_cpu(cpu) {
e22bee78 3838 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3839 struct worker_pool *pool;
e22bee78 3840
4ce62e9e
TH
3841 for_each_worker_pool(pool, gcwq) {
3842 struct worker *worker;
3843
24647570
TH
3844 if (cpu != WORK_CPU_UNBOUND)
3845 pool->flags &= ~POOL_DISASSOCIATED;
3846
bc2ae0f5 3847 worker = create_worker(pool);
4ce62e9e
TH
3848 BUG_ON(!worker);
3849 spin_lock_irq(&gcwq->lock);
3850 start_worker(worker);
3851 spin_unlock_irq(&gcwq->lock);
3852 }
e22bee78
TH
3853 }
3854
d320c038 3855 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3856 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3857 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3858 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3859 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3860 system_freezable_wq = alloc_workqueue("events_freezable",
3861 WQ_FREEZABLE, 0);
1aabe902 3862 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3863 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3864 return 0;
1da177e4 3865}
6ee0578b 3866early_initcall(init_workqueues);
This page took 1.160634 seconds and 5 git commands to generate.