rbd: encapsulate code that gets snapshot info
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 76 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 79
403c821d
TH
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
81 WORKER_CPU_INTENSIVE,
db7bccf4 82
3270476a 83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 84
c8e55f36
TH
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
87 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
3270476a 103 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 104};
1da177e4
LT
105
106/*
4690c4ab
TH
107 * Structure fields follow one of the following exclusion rules.
108 *
e41e704b
TH
109 * I: Modifiable by initialization/destruction paths and read-only for
110 * everyone else.
4690c4ab 111 *
e22bee78
TH
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
114 *
8b03ae3c 115 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 116 *
e22bee78
TH
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 120 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 121 *
73f53c4a
TH
122 * F: wq->flush_mutex protected.
123 *
4690c4ab 124 * W: workqueue_lock protected.
1da177e4 125 */
1da177e4 126
8b03ae3c 127struct global_cwq;
bd7bdd43 128struct worker_pool;
25511a47 129struct idle_rebind;
1da177e4 130
e22bee78
TH
131/*
132 * The poor guys doing the actual heavy lifting. All on-duty workers
133 * are either serving the manager role, on idle list or on busy hash.
134 */
c34056a3 135struct worker {
c8e55f36
TH
136 /* on idle list while idle, on busy hash table while busy */
137 union {
138 struct list_head entry; /* L: while idle */
139 struct hlist_node hentry; /* L: while busy */
140 };
1da177e4 141
c34056a3 142 struct work_struct *current_work; /* L: work being processed */
8cca0eea 143 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 144 struct list_head scheduled; /* L: scheduled works */
c34056a3 145 struct task_struct *task; /* I: worker task */
bd7bdd43 146 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
147 /* 64 bytes boundary on 64bit, 32 on 32bit */
148 unsigned long last_active; /* L: last active timestamp */
149 unsigned int flags; /* X: flags */
c34056a3 150 int id; /* I: worker id */
25511a47
TH
151
152 /* for rebinding worker to CPU */
153 struct idle_rebind *idle_rebind; /* L: for idle worker */
154 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
155};
156
bd7bdd43
TH
157struct worker_pool {
158 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 159 unsigned int flags; /* X: flags */
bd7bdd43
TH
160
161 struct list_head worklist; /* L: list of pending works */
162 int nr_workers; /* L: total number of workers */
163 int nr_idle; /* L: currently idle ones */
164
165 struct list_head idle_list; /* X: list of idle workers */
166 struct timer_list idle_timer; /* L: worker idle timeout */
167 struct timer_list mayday_timer; /* L: SOS timer for workers */
168
60373152 169 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 170 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
171};
172
8b03ae3c 173/*
e22bee78
TH
174 * Global per-cpu workqueue. There's one and only one for each cpu
175 * and all works are queued and processed here regardless of their
176 * target workqueues.
8b03ae3c
TH
177 */
178struct global_cwq {
179 spinlock_t lock; /* the gcwq lock */
180 unsigned int cpu; /* I: the associated cpu */
db7bccf4 181 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 182
bd7bdd43 183 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
184 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
185 /* L: hash of busy workers */
186
3270476a 187 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038
TH
271struct workqueue_struct *system_wq __read_mostly;
272struct workqueue_struct *system_long_wq __read_mostly;
273struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 274struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 275struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 276struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
277EXPORT_SYMBOL_GPL(system_wq);
278EXPORT_SYMBOL_GPL(system_long_wq);
279EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 280EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 281EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 282EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 283
97bd2347
TH
284#define CREATE_TRACE_POINTS
285#include <trace/events/workqueue.h>
286
4ce62e9e 287#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 290
db7bccf4
TH
291#define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294
f3421797
TH
295static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 unsigned int sw)
297{
298 if (cpu < nr_cpu_ids) {
299 if (sw & 1) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
302 return cpu;
303 }
304 if (sw & 2)
305 return WORK_CPU_UNBOUND;
306 }
307 return WORK_CPU_NONE;
308}
309
310static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
312{
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314}
315
09884951
TH
316/*
317 * CPU iterators
318 *
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
323 *
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
328 */
f3421797
TH
329#define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333
334#define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338
339#define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343
dc186ad7
TG
344#ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346static struct debug_obj_descr work_debug_descr;
347
99777288
SG
348static void *work_debug_hint(void *addr)
349{
350 return ((struct work_struct *) addr)->func;
351}
352
dc186ad7
TG
353/*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357static int work_fixup_init(void *addr, enum debug_obj_state state)
358{
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369}
370
371/*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376static int work_fixup_activate(void *addr, enum debug_obj_state state)
377{
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
22df02bb 388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int work_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
99777288 424 .debug_hint = work_debug_hint,
dc186ad7
TG
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428};
429
430static inline void debug_work_activate(struct work_struct *work)
431{
432 debug_object_activate(work, &work_debug_descr);
433}
434
435static inline void debug_work_deactivate(struct work_struct *work)
436{
437 debug_object_deactivate(work, &work_debug_descr);
438}
439
440void __init_work(struct work_struct *work, int onstack)
441{
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446}
447EXPORT_SYMBOL_GPL(__init_work);
448
449void destroy_work_on_stack(struct work_struct *work)
450{
451 debug_object_free(work, &work_debug_descr);
452}
453EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455#else
456static inline void debug_work_activate(struct work_struct *work) { }
457static inline void debug_work_deactivate(struct work_struct *work) { }
458#endif
459
95402b38
GS
460/* Serializes the accesses to the list of workqueues. */
461static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 462static LIST_HEAD(workqueues);
a0a1a5fd 463static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 464
e22bee78
TH
465/*
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
469 */
8b03ae3c 470static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 471static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 472
f3421797
TH
473/*
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
477 */
478static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
479static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
481};
f3421797 482
c34056a3 483static int worker_thread(void *__worker);
1da177e4 484
3270476a
TH
485static int worker_pool_pri(struct worker_pool *pool)
486{
487 return pool - pool->gcwq->pools;
488}
489
8b03ae3c
TH
490static struct global_cwq *get_gcwq(unsigned int cpu)
491{
f3421797
TH
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
494 else
495 return &unbound_global_cwq;
8b03ae3c
TH
496}
497
63d95a91 498static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 499{
63d95a91 500 int cpu = pool->gcwq->cpu;
3270476a 501 int idx = worker_pool_pri(pool);
63d95a91 502
f3421797 503 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 504 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 505 else
4ce62e9e 506 return &unbound_pool_nr_running[idx];
e22bee78
TH
507}
508
1537663f
TH
509static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
b1f4ec17 511{
f3421797 512 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 513 if (likely(cpu < nr_cpu_ids))
f3421797 514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
517 return NULL;
b1f4ec17
ON
518}
519
73f53c4a
TH
520static unsigned int work_color_to_flags(int color)
521{
522 return color << WORK_STRUCT_COLOR_SHIFT;
523}
524
525static int get_work_color(struct work_struct *work)
526{
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529}
530
531static int work_next_color(int color)
532{
533 return (color + 1) % WORK_NR_COLORS;
534}
1da177e4 535
14441960 536/*
e120153d
TH
537 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
538 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
539 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
540 *
541 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
542 * cwq, cpu or clear work->data. These functions should only be
543 * called while the work is owned - ie. while the PENDING bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
7a22ad75
TH
565static void set_work_cpu(struct work_struct *work, unsigned int cpu)
566{
567 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
568}
f756d5e2 569
7a22ad75 570static void clear_work_data(struct work_struct *work)
1da177e4 571{
7a22ad75 572 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
573}
574
7a22ad75 575static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 576{
e120153d 577 unsigned long data = atomic_long_read(&work->data);
7a22ad75 578
e120153d
TH
579 if (data & WORK_STRUCT_CWQ)
580 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
581 else
582 return NULL;
4d707b9f
ON
583}
584
7a22ad75 585static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
588 unsigned int cpu;
589
e120153d
TH
590 if (data & WORK_STRUCT_CWQ)
591 return ((struct cpu_workqueue_struct *)
bd7bdd43 592 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
593
594 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 595 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
596 return NULL;
597
f3421797 598 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 599 return get_gcwq(cpu);
b1f4ec17
ON
600}
601
e22bee78 602/*
3270476a
TH
603 * Policy functions. These define the policies on how the global worker
604 * pools are managed. Unless noted otherwise, these functions assume that
605 * they're being called with gcwq->lock held.
e22bee78
TH
606 */
607
63d95a91 608static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 609{
3270476a 610 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
611}
612
4594bf15 613/*
e22bee78
TH
614 * Need to wake up a worker? Called from anything but currently
615 * running workers.
974271c4
TH
616 *
617 * Note that, because unbound workers never contribute to nr_running, this
618 * function will always return %true for unbound gcwq as long as the
619 * worklist isn't empty.
4594bf15 620 */
63d95a91 621static bool need_more_worker(struct worker_pool *pool)
365970a1 622{
63d95a91 623 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 624}
4594bf15 625
e22bee78 626/* Can I start working? Called from busy but !running workers. */
63d95a91 627static bool may_start_working(struct worker_pool *pool)
e22bee78 628{
63d95a91 629 return pool->nr_idle;
e22bee78
TH
630}
631
632/* Do I need to keep working? Called from currently running workers. */
63d95a91 633static bool keep_working(struct worker_pool *pool)
e22bee78 634{
63d95a91 635 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 636
3270476a 637 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
638}
639
640/* Do we need a new worker? Called from manager. */
63d95a91 641static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 642{
63d95a91 643 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 644}
365970a1 645
e22bee78 646/* Do I need to be the manager? */
63d95a91 647static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 648{
63d95a91 649 return need_to_create_worker(pool) ||
11ebea50 650 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
651}
652
653/* Do we have too many workers and should some go away? */
63d95a91 654static bool too_many_workers(struct worker_pool *pool)
e22bee78 655{
552a37e9 656 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
657 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
659
660 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
661}
662
4d707b9f 663/*
e22bee78
TH
664 * Wake up functions.
665 */
666
7e11629d 667/* Return the first worker. Safe with preemption disabled */
63d95a91 668static struct worker *first_worker(struct worker_pool *pool)
7e11629d 669{
63d95a91 670 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
671 return NULL;
672
63d95a91 673 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
674}
675
676/**
677 * wake_up_worker - wake up an idle worker
63d95a91 678 * @pool: worker pool to wake worker from
7e11629d 679 *
63d95a91 680 * Wake up the first idle worker of @pool.
7e11629d
TH
681 *
682 * CONTEXT:
683 * spin_lock_irq(gcwq->lock).
684 */
63d95a91 685static void wake_up_worker(struct worker_pool *pool)
7e11629d 686{
63d95a91 687 struct worker *worker = first_worker(pool);
7e11629d
TH
688
689 if (likely(worker))
690 wake_up_process(worker->task);
691}
692
d302f017 693/**
e22bee78
TH
694 * wq_worker_waking_up - a worker is waking up
695 * @task: task waking up
696 * @cpu: CPU @task is waking up to
697 *
698 * This function is called during try_to_wake_up() when a worker is
699 * being awoken.
700 *
701 * CONTEXT:
702 * spin_lock_irq(rq->lock)
703 */
704void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
705{
706 struct worker *worker = kthread_data(task);
707
2d64672e 708 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 709 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
710}
711
712/**
713 * wq_worker_sleeping - a worker is going to sleep
714 * @task: task going to sleep
715 * @cpu: CPU in question, must be the current CPU number
716 *
717 * This function is called during schedule() when a busy worker is
718 * going to sleep. Worker on the same cpu can be woken up by
719 * returning pointer to its task.
720 *
721 * CONTEXT:
722 * spin_lock_irq(rq->lock)
723 *
724 * RETURNS:
725 * Worker task on @cpu to wake up, %NULL if none.
726 */
727struct task_struct *wq_worker_sleeping(struct task_struct *task,
728 unsigned int cpu)
729{
730 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 731 struct worker_pool *pool = worker->pool;
63d95a91 732 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 733
2d64672e 734 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
735 return NULL;
736
737 /* this can only happen on the local cpu */
738 BUG_ON(cpu != raw_smp_processor_id());
739
740 /*
741 * The counterpart of the following dec_and_test, implied mb,
742 * worklist not empty test sequence is in insert_work().
743 * Please read comment there.
744 *
628c78e7
TH
745 * NOT_RUNNING is clear. This means that we're bound to and
746 * running on the local cpu w/ rq lock held and preemption
747 * disabled, which in turn means that none else could be
748 * manipulating idle_list, so dereferencing idle_list without gcwq
749 * lock is safe.
e22bee78 750 */
bd7bdd43 751 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 752 to_wakeup = first_worker(pool);
e22bee78
TH
753 return to_wakeup ? to_wakeup->task : NULL;
754}
755
756/**
757 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 758 * @worker: self
d302f017
TH
759 * @flags: flags to set
760 * @wakeup: wakeup an idle worker if necessary
761 *
e22bee78
TH
762 * Set @flags in @worker->flags and adjust nr_running accordingly. If
763 * nr_running becomes zero and @wakeup is %true, an idle worker is
764 * woken up.
d302f017 765 *
cb444766
TH
766 * CONTEXT:
767 * spin_lock_irq(gcwq->lock)
d302f017
TH
768 */
769static inline void worker_set_flags(struct worker *worker, unsigned int flags,
770 bool wakeup)
771{
bd7bdd43 772 struct worker_pool *pool = worker->pool;
e22bee78 773
cb444766
TH
774 WARN_ON_ONCE(worker->task != current);
775
e22bee78
TH
776 /*
777 * If transitioning into NOT_RUNNING, adjust nr_running and
778 * wake up an idle worker as necessary if requested by
779 * @wakeup.
780 */
781 if ((flags & WORKER_NOT_RUNNING) &&
782 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 783 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
784
785 if (wakeup) {
786 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 787 !list_empty(&pool->worklist))
63d95a91 788 wake_up_worker(pool);
e22bee78
TH
789 } else
790 atomic_dec(nr_running);
791 }
792
d302f017
TH
793 worker->flags |= flags;
794}
795
796/**
e22bee78 797 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 798 * @worker: self
d302f017
TH
799 * @flags: flags to clear
800 *
e22bee78 801 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 802 *
cb444766
TH
803 * CONTEXT:
804 * spin_lock_irq(gcwq->lock)
d302f017
TH
805 */
806static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
807{
63d95a91 808 struct worker_pool *pool = worker->pool;
e22bee78
TH
809 unsigned int oflags = worker->flags;
810
cb444766
TH
811 WARN_ON_ONCE(worker->task != current);
812
d302f017 813 worker->flags &= ~flags;
e22bee78 814
42c025f3
TH
815 /*
816 * If transitioning out of NOT_RUNNING, increment nr_running. Note
817 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
818 * of multiple flags, not a single flag.
819 */
e22bee78
TH
820 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
821 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 822 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
823}
824
c8e55f36
TH
825/**
826 * busy_worker_head - return the busy hash head for a work
827 * @gcwq: gcwq of interest
828 * @work: work to be hashed
829 *
830 * Return hash head of @gcwq for @work.
831 *
832 * CONTEXT:
833 * spin_lock_irq(gcwq->lock).
834 *
835 * RETURNS:
836 * Pointer to the hash head.
837 */
838static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
839 struct work_struct *work)
840{
841 const int base_shift = ilog2(sizeof(struct work_struct));
842 unsigned long v = (unsigned long)work;
843
844 /* simple shift and fold hash, do we need something better? */
845 v >>= base_shift;
846 v += v >> BUSY_WORKER_HASH_ORDER;
847 v &= BUSY_WORKER_HASH_MASK;
848
849 return &gcwq->busy_hash[v];
850}
851
8cca0eea
TH
852/**
853 * __find_worker_executing_work - find worker which is executing a work
854 * @gcwq: gcwq of interest
855 * @bwh: hash head as returned by busy_worker_head()
856 * @work: work to find worker for
857 *
858 * Find a worker which is executing @work on @gcwq. @bwh should be
859 * the hash head obtained by calling busy_worker_head() with the same
860 * work.
861 *
862 * CONTEXT:
863 * spin_lock_irq(gcwq->lock).
864 *
865 * RETURNS:
866 * Pointer to worker which is executing @work if found, NULL
867 * otherwise.
868 */
869static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
870 struct hlist_head *bwh,
871 struct work_struct *work)
872{
873 struct worker *worker;
874 struct hlist_node *tmp;
875
876 hlist_for_each_entry(worker, tmp, bwh, hentry)
877 if (worker->current_work == work)
878 return worker;
879 return NULL;
880}
881
882/**
883 * find_worker_executing_work - find worker which is executing a work
884 * @gcwq: gcwq of interest
885 * @work: work to find worker for
886 *
887 * Find a worker which is executing @work on @gcwq. This function is
888 * identical to __find_worker_executing_work() except that this
889 * function calculates @bwh itself.
890 *
891 * CONTEXT:
892 * spin_lock_irq(gcwq->lock).
893 *
894 * RETURNS:
895 * Pointer to worker which is executing @work if found, NULL
896 * otherwise.
4d707b9f 897 */
8cca0eea
TH
898static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
899 struct work_struct *work)
4d707b9f 900{
8cca0eea
TH
901 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
902 work);
4d707b9f
ON
903}
904
4690c4ab 905/**
7e11629d 906 * insert_work - insert a work into gcwq
4690c4ab
TH
907 * @cwq: cwq @work belongs to
908 * @work: work to insert
909 * @head: insertion point
910 * @extra_flags: extra WORK_STRUCT_* flags to set
911 *
7e11629d
TH
912 * Insert @work which belongs to @cwq into @gcwq after @head.
913 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
914 *
915 * CONTEXT:
8b03ae3c 916 * spin_lock_irq(gcwq->lock).
4690c4ab 917 */
b89deed3 918static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
919 struct work_struct *work, struct list_head *head,
920 unsigned int extra_flags)
b89deed3 921{
63d95a91 922 struct worker_pool *pool = cwq->pool;
e22bee78 923
4690c4ab 924 /* we own @work, set data and link */
7a22ad75 925 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 926
6e84d644
ON
927 /*
928 * Ensure that we get the right work->data if we see the
929 * result of list_add() below, see try_to_grab_pending().
930 */
931 smp_wmb();
4690c4ab 932
1a4d9b0a 933 list_add_tail(&work->entry, head);
e22bee78
TH
934
935 /*
936 * Ensure either worker_sched_deactivated() sees the above
937 * list_add_tail() or we see zero nr_running to avoid workers
938 * lying around lazily while there are works to be processed.
939 */
940 smp_mb();
941
63d95a91
TH
942 if (__need_more_worker(pool))
943 wake_up_worker(pool);
b89deed3
ON
944}
945
c8efcc25
TH
946/*
947 * Test whether @work is being queued from another work executing on the
948 * same workqueue. This is rather expensive and should only be used from
949 * cold paths.
950 */
951static bool is_chained_work(struct workqueue_struct *wq)
952{
953 unsigned long flags;
954 unsigned int cpu;
955
956 for_each_gcwq_cpu(cpu) {
957 struct global_cwq *gcwq = get_gcwq(cpu);
958 struct worker *worker;
959 struct hlist_node *pos;
960 int i;
961
962 spin_lock_irqsave(&gcwq->lock, flags);
963 for_each_busy_worker(worker, i, pos, gcwq) {
964 if (worker->task != current)
965 continue;
966 spin_unlock_irqrestore(&gcwq->lock, flags);
967 /*
968 * I'm @worker, no locking necessary. See if @work
969 * is headed to the same workqueue.
970 */
971 return worker->current_cwq->wq == wq;
972 }
973 spin_unlock_irqrestore(&gcwq->lock, flags);
974 }
975 return false;
976}
977
4690c4ab 978static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
979 struct work_struct *work)
980{
502ca9d8
TH
981 struct global_cwq *gcwq;
982 struct cpu_workqueue_struct *cwq;
1e19ffc6 983 struct list_head *worklist;
8a2e8e5d 984 unsigned int work_flags;
1da177e4
LT
985 unsigned long flags;
986
dc186ad7 987 debug_work_activate(work);
1e19ffc6 988
c8efcc25 989 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 990 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 991 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
992 return;
993
c7fc77f7
TH
994 /* determine gcwq to use */
995 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
996 struct global_cwq *last_gcwq;
997
c7fc77f7
TH
998 if (unlikely(cpu == WORK_CPU_UNBOUND))
999 cpu = raw_smp_processor_id();
1000
18aa9eff
TH
1001 /*
1002 * It's multi cpu. If @wq is non-reentrant and @work
1003 * was previously on a different cpu, it might still
1004 * be running there, in which case the work needs to
1005 * be queued on that cpu to guarantee non-reentrance.
1006 */
502ca9d8 1007 gcwq = get_gcwq(cpu);
18aa9eff
TH
1008 if (wq->flags & WQ_NON_REENTRANT &&
1009 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1010 struct worker *worker;
1011
1012 spin_lock_irqsave(&last_gcwq->lock, flags);
1013
1014 worker = find_worker_executing_work(last_gcwq, work);
1015
1016 if (worker && worker->current_cwq->wq == wq)
1017 gcwq = last_gcwq;
1018 else {
1019 /* meh... not running there, queue here */
1020 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1021 spin_lock_irqsave(&gcwq->lock, flags);
1022 }
1023 } else
1024 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
1025 } else {
1026 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1027 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
1028 }
1029
1030 /* gcwq determined, get cwq and queue */
1031 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1032 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1033
f5b2552b
DC
1034 if (WARN_ON(!list_empty(&work->entry))) {
1035 spin_unlock_irqrestore(&gcwq->lock, flags);
1036 return;
1037 }
1e19ffc6 1038
73f53c4a 1039 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1040 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1041
1042 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1043 trace_workqueue_activate_work(work);
1e19ffc6 1044 cwq->nr_active++;
3270476a 1045 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1046 } else {
1047 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1048 worklist = &cwq->delayed_works;
8a2e8e5d 1049 }
1e19ffc6 1050
8a2e8e5d 1051 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1052
8b03ae3c 1053 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1054}
1055
0fcb78c2
REB
1056/**
1057 * queue_work - queue work on a workqueue
1058 * @wq: workqueue to use
1059 * @work: work to queue
1060 *
057647fc 1061 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1062 *
00dfcaf7
ON
1063 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064 * it can be processed by another CPU.
1da177e4 1065 */
7ad5b3a5 1066int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1067{
ef1ca236
ON
1068 int ret;
1069
1070 ret = queue_work_on(get_cpu(), wq, work);
1071 put_cpu();
1072
1da177e4
LT
1073 return ret;
1074}
ae90dd5d 1075EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1076
c1a220e7
ZR
1077/**
1078 * queue_work_on - queue work on specific cpu
1079 * @cpu: CPU number to execute work on
1080 * @wq: workqueue to use
1081 * @work: work to queue
1082 *
1083 * Returns 0 if @work was already on a queue, non-zero otherwise.
1084 *
1085 * We queue the work to a specific CPU, the caller must ensure it
1086 * can't go away.
1087 */
1088int
1089queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090{
1091 int ret = 0;
1092
22df02bb 1093 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1094 __queue_work(cpu, wq, work);
c1a220e7
ZR
1095 ret = 1;
1096 }
1097 return ret;
1098}
1099EXPORT_SYMBOL_GPL(queue_work_on);
1100
6d141c3f 1101static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1102{
52bad64d 1103 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1104 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1105
4690c4ab 1106 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1107}
1108
0fcb78c2
REB
1109/**
1110 * queue_delayed_work - queue work on a workqueue after delay
1111 * @wq: workqueue to use
af9997e4 1112 * @dwork: delayable work to queue
0fcb78c2
REB
1113 * @delay: number of jiffies to wait before queueing
1114 *
057647fc 1115 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1116 */
7ad5b3a5 1117int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1118 struct delayed_work *dwork, unsigned long delay)
1da177e4 1119{
52bad64d 1120 if (delay == 0)
63bc0362 1121 return queue_work(wq, &dwork->work);
1da177e4 1122
63bc0362 1123 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1124}
ae90dd5d 1125EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1126
0fcb78c2
REB
1127/**
1128 * queue_delayed_work_on - queue work on specific CPU after delay
1129 * @cpu: CPU number to execute work on
1130 * @wq: workqueue to use
af9997e4 1131 * @dwork: work to queue
0fcb78c2
REB
1132 * @delay: number of jiffies to wait before queueing
1133 *
057647fc 1134 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1135 */
7a6bc1cd 1136int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1137 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1138{
1139 int ret = 0;
52bad64d
DH
1140 struct timer_list *timer = &dwork->timer;
1141 struct work_struct *work = &dwork->work;
7a6bc1cd 1142
22df02bb 1143 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1144 unsigned int lcpu;
7a22ad75 1145
7a6bc1cd
VP
1146 BUG_ON(timer_pending(timer));
1147 BUG_ON(!list_empty(&work->entry));
1148
8a3e77cc
AL
1149 timer_stats_timer_set_start_info(&dwork->timer);
1150
7a22ad75
TH
1151 /*
1152 * This stores cwq for the moment, for the timer_fn.
1153 * Note that the work's gcwq is preserved to allow
1154 * reentrance detection for delayed works.
1155 */
c7fc77f7
TH
1156 if (!(wq->flags & WQ_UNBOUND)) {
1157 struct global_cwq *gcwq = get_work_gcwq(work);
1158
1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 lcpu = gcwq->cpu;
1161 else
1162 lcpu = raw_smp_processor_id();
1163 } else
1164 lcpu = WORK_CPU_UNBOUND;
1165
7a22ad75 1166 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1167
7a6bc1cd 1168 timer->expires = jiffies + delay;
52bad64d 1169 timer->data = (unsigned long)dwork;
7a6bc1cd 1170 timer->function = delayed_work_timer_fn;
63bc0362
ON
1171
1172 if (unlikely(cpu >= 0))
1173 add_timer_on(timer, cpu);
1174 else
1175 add_timer(timer);
7a6bc1cd
VP
1176 ret = 1;
1177 }
1178 return ret;
1179}
ae90dd5d 1180EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1181
c8e55f36
TH
1182/**
1183 * worker_enter_idle - enter idle state
1184 * @worker: worker which is entering idle state
1185 *
1186 * @worker is entering idle state. Update stats and idle timer if
1187 * necessary.
1188 *
1189 * LOCKING:
1190 * spin_lock_irq(gcwq->lock).
1191 */
1192static void worker_enter_idle(struct worker *worker)
1da177e4 1193{
bd7bdd43
TH
1194 struct worker_pool *pool = worker->pool;
1195 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1196
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1200
cb444766
TH
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
bd7bdd43 1203 pool->nr_idle++;
e22bee78 1204 worker->last_active = jiffies;
c8e55f36
TH
1205
1206 /* idle_list is LIFO */
bd7bdd43 1207 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1208
628c78e7
TH
1209 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1210 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1211
544ecf31 1212 /*
628c78e7
TH
1213 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1214 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1215 * nr_running, the warning may trigger spuriously. Check iff
1216 * unbind is not in progress.
544ecf31 1217 */
628c78e7 1218 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1219 pool->nr_workers == pool->nr_idle &&
63d95a91 1220 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1221}
1222
1223/**
1224 * worker_leave_idle - leave idle state
1225 * @worker: worker which is leaving idle state
1226 *
1227 * @worker is leaving idle state. Update stats.
1228 *
1229 * LOCKING:
1230 * spin_lock_irq(gcwq->lock).
1231 */
1232static void worker_leave_idle(struct worker *worker)
1233{
bd7bdd43 1234 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1235
1236 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1237 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1238 pool->nr_idle--;
c8e55f36
TH
1239 list_del_init(&worker->entry);
1240}
1241
e22bee78
TH
1242/**
1243 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1244 * @worker: self
1245 *
1246 * Works which are scheduled while the cpu is online must at least be
1247 * scheduled to a worker which is bound to the cpu so that if they are
1248 * flushed from cpu callbacks while cpu is going down, they are
1249 * guaranteed to execute on the cpu.
1250 *
1251 * This function is to be used by rogue workers and rescuers to bind
1252 * themselves to the target cpu and may race with cpu going down or
1253 * coming online. kthread_bind() can't be used because it may put the
1254 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255 * verbatim as it's best effort and blocking and gcwq may be
1256 * [dis]associated in the meantime.
1257 *
f2d5a0ee
TH
1258 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1259 * binding against %GCWQ_DISASSOCIATED which is set during
1260 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1261 * enters idle state or fetches works without dropping lock, it can
1262 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1263 *
1264 * CONTEXT:
1265 * Might sleep. Called without any lock but returns with gcwq->lock
1266 * held.
1267 *
1268 * RETURNS:
1269 * %true if the associated gcwq is online (@worker is successfully
1270 * bound), %false if offline.
1271 */
1272static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1273__acquires(&gcwq->lock)
e22bee78 1274{
bd7bdd43 1275 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1276 struct task_struct *task = worker->task;
1277
1278 while (true) {
4e6045f1 1279 /*
e22bee78
TH
1280 * The following call may fail, succeed or succeed
1281 * without actually migrating the task to the cpu if
1282 * it races with cpu hotunplug operation. Verify
1283 * against GCWQ_DISASSOCIATED.
4e6045f1 1284 */
f3421797
TH
1285 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1287
1288 spin_lock_irq(&gcwq->lock);
1289 if (gcwq->flags & GCWQ_DISASSOCIATED)
1290 return false;
1291 if (task_cpu(task) == gcwq->cpu &&
1292 cpumask_equal(&current->cpus_allowed,
1293 get_cpu_mask(gcwq->cpu)))
1294 return true;
1295 spin_unlock_irq(&gcwq->lock);
1296
5035b20f
TH
1297 /*
1298 * We've raced with CPU hot[un]plug. Give it a breather
1299 * and retry migration. cond_resched() is required here;
1300 * otherwise, we might deadlock against cpu_stop trying to
1301 * bring down the CPU on non-preemptive kernel.
1302 */
e22bee78 1303 cpu_relax();
5035b20f 1304 cond_resched();
e22bee78
TH
1305 }
1306}
1307
25511a47
TH
1308struct idle_rebind {
1309 int cnt; /* # workers to be rebound */
1310 struct completion done; /* all workers rebound */
1311};
1312
1313/*
1314 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1315 * happen synchronously for idle workers. worker_thread() will test
1316 * %WORKER_REBIND before leaving idle and call this function.
1317 */
1318static void idle_worker_rebind(struct worker *worker)
1319{
1320 struct global_cwq *gcwq = worker->pool->gcwq;
1321
1322 /* CPU must be online at this point */
1323 WARN_ON(!worker_maybe_bind_and_lock(worker));
1324 if (!--worker->idle_rebind->cnt)
1325 complete(&worker->idle_rebind->done);
1326 spin_unlock_irq(&worker->pool->gcwq->lock);
1327
1328 /* we did our part, wait for rebind_workers() to finish up */
1329 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
ec58815a
TH
1330
1331 /*
1332 * rebind_workers() shouldn't finish until all workers passed the
1333 * above WORKER_REBIND wait. Tell it when done.
1334 */
1335 spin_lock_irq(&worker->pool->gcwq->lock);
1336 if (!--worker->idle_rebind->cnt)
1337 complete(&worker->idle_rebind->done);
1338 spin_unlock_irq(&worker->pool->gcwq->lock);
25511a47
TH
1339}
1340
e22bee78 1341/*
25511a47 1342 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1343 * the associated cpu which is coming back online. This is scheduled by
1344 * cpu up but can race with other cpu hotplug operations and may be
1345 * executed twice without intervening cpu down.
e22bee78 1346 */
25511a47 1347static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1348{
1349 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1350 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1351
960bd11b
LJ
1352 worker_maybe_bind_and_lock(worker);
1353
1354 /*
1355 * %WORKER_REBIND must be cleared even if the above binding failed;
1356 * otherwise, we may confuse the next CPU_UP cycle or oops / get
1357 * stuck by calling idle_worker_rebind() prematurely. If CPU went
1358 * down again inbetween, %WORKER_UNBOUND would be set, so clearing
1359 * %WORKER_REBIND is always safe.
1360 */
1361 worker_clr_flags(worker, WORKER_REBIND);
e22bee78
TH
1362
1363 spin_unlock_irq(&gcwq->lock);
1364}
1365
25511a47
TH
1366/**
1367 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1368 * @gcwq: gcwq of interest
1369 *
1370 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1371 * is different for idle and busy ones.
1372 *
1373 * The idle ones should be rebound synchronously and idle rebinding should
1374 * be complete before any worker starts executing work items with
1375 * concurrency management enabled; otherwise, scheduler may oops trying to
1376 * wake up non-local idle worker from wq_worker_sleeping().
1377 *
1378 * This is achieved by repeatedly requesting rebinding until all idle
1379 * workers are known to have been rebound under @gcwq->lock and holding all
1380 * idle workers from becoming busy until idle rebinding is complete.
1381 *
1382 * Once idle workers are rebound, busy workers can be rebound as they
1383 * finish executing their current work items. Queueing the rebind work at
1384 * the head of their scheduled lists is enough. Note that nr_running will
1385 * be properbly bumped as busy workers rebind.
1386 *
1387 * On return, all workers are guaranteed to either be bound or have rebind
1388 * work item scheduled.
1389 */
1390static void rebind_workers(struct global_cwq *gcwq)
1391 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1392{
1393 struct idle_rebind idle_rebind;
1394 struct worker_pool *pool;
1395 struct worker *worker;
1396 struct hlist_node *pos;
1397 int i;
1398
1399 lockdep_assert_held(&gcwq->lock);
1400
1401 for_each_worker_pool(pool, gcwq)
1402 lockdep_assert_held(&pool->manager_mutex);
1403
1404 /*
1405 * Rebind idle workers. Interlocked both ways. We wait for
1406 * workers to rebind via @idle_rebind.done. Workers will wait for
1407 * us to finish up by watching %WORKER_REBIND.
1408 */
1409 init_completion(&idle_rebind.done);
1410retry:
1411 idle_rebind.cnt = 1;
1412 INIT_COMPLETION(idle_rebind.done);
1413
1414 /* set REBIND and kick idle ones, we'll wait for these later */
1415 for_each_worker_pool(pool, gcwq) {
1416 list_for_each_entry(worker, &pool->idle_list, entry) {
96e65306
LJ
1417 unsigned long worker_flags = worker->flags;
1418
25511a47
TH
1419 if (worker->flags & WORKER_REBIND)
1420 continue;
1421
96e65306
LJ
1422 /* morph UNBOUND to REBIND atomically */
1423 worker_flags &= ~WORKER_UNBOUND;
1424 worker_flags |= WORKER_REBIND;
1425 ACCESS_ONCE(worker->flags) = worker_flags;
25511a47
TH
1426
1427 idle_rebind.cnt++;
1428 worker->idle_rebind = &idle_rebind;
1429
1430 /* worker_thread() will call idle_worker_rebind() */
1431 wake_up_process(worker->task);
1432 }
1433 }
1434
1435 if (--idle_rebind.cnt) {
1436 spin_unlock_irq(&gcwq->lock);
1437 wait_for_completion(&idle_rebind.done);
1438 spin_lock_irq(&gcwq->lock);
1439 /* busy ones might have become idle while waiting, retry */
1440 goto retry;
1441 }
1442
90beca5d 1443 /* all idle workers are rebound, rebind busy workers */
25511a47
TH
1444 for_each_busy_worker(worker, i, pos, gcwq) {
1445 struct work_struct *rebind_work = &worker->rebind_work;
96e65306 1446 unsigned long worker_flags = worker->flags;
25511a47 1447
96e65306
LJ
1448 /* morph UNBOUND to REBIND atomically */
1449 worker_flags &= ~WORKER_UNBOUND;
1450 worker_flags |= WORKER_REBIND;
1451 ACCESS_ONCE(worker->flags) = worker_flags;
25511a47
TH
1452
1453 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1454 work_data_bits(rebind_work)))
1455 continue;
1456
1457 /* wq doesn't matter, use the default one */
1458 debug_work_activate(rebind_work);
1459 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1460 worker->scheduled.next,
1461 work_color_to_flags(WORK_NO_COLOR));
1462 }
90beca5d
TH
1463
1464 /*
1465 * All idle workers are rebound and waiting for %WORKER_REBIND to
1466 * be cleared inside idle_worker_rebind(). Clear and release.
1467 * Clearing %WORKER_REBIND from this foreign context is safe
1468 * because these workers are still guaranteed to be idle.
ec58815a
TH
1469 *
1470 * We need to make sure all idle workers passed WORKER_REBIND wait
1471 * in idle_worker_rebind() before returning; otherwise, workers can
1472 * get stuck at the wait if hotplug cycle repeats.
90beca5d 1473 */
ec58815a
TH
1474 idle_rebind.cnt = 1;
1475 INIT_COMPLETION(idle_rebind.done);
1476
1477 for_each_worker_pool(pool, gcwq) {
1478 list_for_each_entry(worker, &pool->idle_list, entry) {
90beca5d 1479 worker->flags &= ~WORKER_REBIND;
ec58815a
TH
1480 idle_rebind.cnt++;
1481 }
1482 }
90beca5d
TH
1483
1484 wake_up_all(&gcwq->rebind_hold);
ec58815a
TH
1485
1486 if (--idle_rebind.cnt) {
1487 spin_unlock_irq(&gcwq->lock);
1488 wait_for_completion(&idle_rebind.done);
1489 spin_lock_irq(&gcwq->lock);
1490 }
25511a47
TH
1491}
1492
c34056a3
TH
1493static struct worker *alloc_worker(void)
1494{
1495 struct worker *worker;
1496
1497 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1498 if (worker) {
1499 INIT_LIST_HEAD(&worker->entry);
affee4b2 1500 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1501 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1502 /* on creation a worker is in !idle && prep state */
1503 worker->flags = WORKER_PREP;
c8e55f36 1504 }
c34056a3
TH
1505 return worker;
1506}
1507
1508/**
1509 * create_worker - create a new workqueue worker
63d95a91 1510 * @pool: pool the new worker will belong to
c34056a3 1511 *
63d95a91 1512 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1513 * can be started by calling start_worker() or destroyed using
1514 * destroy_worker().
1515 *
1516 * CONTEXT:
1517 * Might sleep. Does GFP_KERNEL allocations.
1518 *
1519 * RETURNS:
1520 * Pointer to the newly created worker.
1521 */
bc2ae0f5 1522static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1523{
63d95a91 1524 struct global_cwq *gcwq = pool->gcwq;
3270476a 1525 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1526 struct worker *worker = NULL;
f3421797 1527 int id = -1;
c34056a3 1528
8b03ae3c 1529 spin_lock_irq(&gcwq->lock);
bd7bdd43 1530 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1531 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1532 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1533 goto fail;
8b03ae3c 1534 spin_lock_irq(&gcwq->lock);
c34056a3 1535 }
8b03ae3c 1536 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1537
1538 worker = alloc_worker();
1539 if (!worker)
1540 goto fail;
1541
bd7bdd43 1542 worker->pool = pool;
c34056a3
TH
1543 worker->id = id;
1544
bc2ae0f5 1545 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1546 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1547 worker, cpu_to_node(gcwq->cpu),
1548 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1549 else
1550 worker->task = kthread_create(worker_thread, worker,
3270476a 1551 "kworker/u:%d%s", id, pri);
c34056a3
TH
1552 if (IS_ERR(worker->task))
1553 goto fail;
1554
3270476a
TH
1555 if (worker_pool_pri(pool))
1556 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1557
db7bccf4 1558 /*
bc2ae0f5
TH
1559 * Determine CPU binding of the new worker depending on
1560 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1561 * flag remains stable across this function. See the comments
1562 * above the flag definition for details.
1563 *
1564 * As an unbound worker may later become a regular one if CPU comes
1565 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1566 */
bc2ae0f5 1567 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1568 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1569 } else {
db7bccf4 1570 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1571 worker->flags |= WORKER_UNBOUND;
f3421797 1572 }
c34056a3
TH
1573
1574 return worker;
1575fail:
1576 if (id >= 0) {
8b03ae3c 1577 spin_lock_irq(&gcwq->lock);
bd7bdd43 1578 ida_remove(&pool->worker_ida, id);
8b03ae3c 1579 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1580 }
1581 kfree(worker);
1582 return NULL;
1583}
1584
1585/**
1586 * start_worker - start a newly created worker
1587 * @worker: worker to start
1588 *
c8e55f36 1589 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1590 *
1591 * CONTEXT:
8b03ae3c 1592 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1593 */
1594static void start_worker(struct worker *worker)
1595{
cb444766 1596 worker->flags |= WORKER_STARTED;
bd7bdd43 1597 worker->pool->nr_workers++;
c8e55f36 1598 worker_enter_idle(worker);
c34056a3
TH
1599 wake_up_process(worker->task);
1600}
1601
1602/**
1603 * destroy_worker - destroy a workqueue worker
1604 * @worker: worker to be destroyed
1605 *
c8e55f36
TH
1606 * Destroy @worker and adjust @gcwq stats accordingly.
1607 *
1608 * CONTEXT:
1609 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1610 */
1611static void destroy_worker(struct worker *worker)
1612{
bd7bdd43
TH
1613 struct worker_pool *pool = worker->pool;
1614 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1615 int id = worker->id;
1616
1617 /* sanity check frenzy */
1618 BUG_ON(worker->current_work);
affee4b2 1619 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1620
c8e55f36 1621 if (worker->flags & WORKER_STARTED)
bd7bdd43 1622 pool->nr_workers--;
c8e55f36 1623 if (worker->flags & WORKER_IDLE)
bd7bdd43 1624 pool->nr_idle--;
c8e55f36
TH
1625
1626 list_del_init(&worker->entry);
cb444766 1627 worker->flags |= WORKER_DIE;
c8e55f36
TH
1628
1629 spin_unlock_irq(&gcwq->lock);
1630
c34056a3
TH
1631 kthread_stop(worker->task);
1632 kfree(worker);
1633
8b03ae3c 1634 spin_lock_irq(&gcwq->lock);
bd7bdd43 1635 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1636}
1637
63d95a91 1638static void idle_worker_timeout(unsigned long __pool)
e22bee78 1639{
63d95a91
TH
1640 struct worker_pool *pool = (void *)__pool;
1641 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1642
1643 spin_lock_irq(&gcwq->lock);
1644
63d95a91 1645 if (too_many_workers(pool)) {
e22bee78
TH
1646 struct worker *worker;
1647 unsigned long expires;
1648
1649 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1650 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1651 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1652
1653 if (time_before(jiffies, expires))
63d95a91 1654 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1655 else {
1656 /* it's been idle for too long, wake up manager */
11ebea50 1657 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1658 wake_up_worker(pool);
d5abe669 1659 }
e22bee78
TH
1660 }
1661
1662 spin_unlock_irq(&gcwq->lock);
1663}
d5abe669 1664
e22bee78
TH
1665static bool send_mayday(struct work_struct *work)
1666{
1667 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1668 struct workqueue_struct *wq = cwq->wq;
f3421797 1669 unsigned int cpu;
e22bee78
TH
1670
1671 if (!(wq->flags & WQ_RESCUER))
1672 return false;
1673
1674 /* mayday mayday mayday */
bd7bdd43 1675 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1676 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1677 if (cpu == WORK_CPU_UNBOUND)
1678 cpu = 0;
f2e005aa 1679 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1680 wake_up_process(wq->rescuer->task);
1681 return true;
1682}
1683
63d95a91 1684static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1685{
63d95a91
TH
1686 struct worker_pool *pool = (void *)__pool;
1687 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1688 struct work_struct *work;
1689
1690 spin_lock_irq(&gcwq->lock);
1691
63d95a91 1692 if (need_to_create_worker(pool)) {
e22bee78
TH
1693 /*
1694 * We've been trying to create a new worker but
1695 * haven't been successful. We might be hitting an
1696 * allocation deadlock. Send distress signals to
1697 * rescuers.
1698 */
63d95a91 1699 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1700 send_mayday(work);
1da177e4 1701 }
e22bee78
TH
1702
1703 spin_unlock_irq(&gcwq->lock);
1704
63d95a91 1705 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1706}
1707
e22bee78
TH
1708/**
1709 * maybe_create_worker - create a new worker if necessary
63d95a91 1710 * @pool: pool to create a new worker for
e22bee78 1711 *
63d95a91 1712 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1713 * have at least one idle worker on return from this function. If
1714 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1715 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1716 * possible allocation deadlock.
1717 *
1718 * On return, need_to_create_worker() is guaranteed to be false and
1719 * may_start_working() true.
1720 *
1721 * LOCKING:
1722 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1723 * multiple times. Does GFP_KERNEL allocations. Called only from
1724 * manager.
1725 *
1726 * RETURNS:
1727 * false if no action was taken and gcwq->lock stayed locked, true
1728 * otherwise.
1729 */
63d95a91 1730static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1731__releases(&gcwq->lock)
1732__acquires(&gcwq->lock)
1da177e4 1733{
63d95a91
TH
1734 struct global_cwq *gcwq = pool->gcwq;
1735
1736 if (!need_to_create_worker(pool))
e22bee78
TH
1737 return false;
1738restart:
9f9c2364
TH
1739 spin_unlock_irq(&gcwq->lock);
1740
e22bee78 1741 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1742 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1743
1744 while (true) {
1745 struct worker *worker;
1746
bc2ae0f5 1747 worker = create_worker(pool);
e22bee78 1748 if (worker) {
63d95a91 1749 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1750 spin_lock_irq(&gcwq->lock);
1751 start_worker(worker);
63d95a91 1752 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1753 return true;
1754 }
1755
63d95a91 1756 if (!need_to_create_worker(pool))
e22bee78 1757 break;
1da177e4 1758
e22bee78
TH
1759 __set_current_state(TASK_INTERRUPTIBLE);
1760 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1761
63d95a91 1762 if (!need_to_create_worker(pool))
e22bee78
TH
1763 break;
1764 }
1765
63d95a91 1766 del_timer_sync(&pool->mayday_timer);
e22bee78 1767 spin_lock_irq(&gcwq->lock);
63d95a91 1768 if (need_to_create_worker(pool))
e22bee78
TH
1769 goto restart;
1770 return true;
1771}
1772
1773/**
1774 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1775 * @pool: pool to destroy workers for
e22bee78 1776 *
63d95a91 1777 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1778 * IDLE_WORKER_TIMEOUT.
1779 *
1780 * LOCKING:
1781 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1782 * multiple times. Called only from manager.
1783 *
1784 * RETURNS:
1785 * false if no action was taken and gcwq->lock stayed locked, true
1786 * otherwise.
1787 */
63d95a91 1788static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1789{
1790 bool ret = false;
1da177e4 1791
63d95a91 1792 while (too_many_workers(pool)) {
e22bee78
TH
1793 struct worker *worker;
1794 unsigned long expires;
3af24433 1795
63d95a91 1796 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1797 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1798
e22bee78 1799 if (time_before(jiffies, expires)) {
63d95a91 1800 mod_timer(&pool->idle_timer, expires);
3af24433 1801 break;
e22bee78 1802 }
1da177e4 1803
e22bee78
TH
1804 destroy_worker(worker);
1805 ret = true;
1da177e4 1806 }
3af24433 1807
e22bee78
TH
1808 return ret;
1809}
1810
1811/**
1812 * manage_workers - manage worker pool
1813 * @worker: self
1814 *
1815 * Assume the manager role and manage gcwq worker pool @worker belongs
1816 * to. At any given time, there can be only zero or one manager per
1817 * gcwq. The exclusion is handled automatically by this function.
1818 *
1819 * The caller can safely start processing works on false return. On
1820 * true return, it's guaranteed that need_to_create_worker() is false
1821 * and may_start_working() is true.
1822 *
1823 * CONTEXT:
1824 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1825 * multiple times. Does GFP_KERNEL allocations.
1826 *
1827 * RETURNS:
1828 * false if no action was taken and gcwq->lock stayed locked, true if
1829 * some action was taken.
1830 */
1831static bool manage_workers(struct worker *worker)
1832{
63d95a91 1833 struct worker_pool *pool = worker->pool;
e22bee78
TH
1834 bool ret = false;
1835
ee378aa4 1836 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78
TH
1837 return ret;
1838
552a37e9 1839 pool->flags |= POOL_MANAGING_WORKERS;
ee378aa4
LJ
1840
1841 /*
1842 * To simplify both worker management and CPU hotplug, hold off
1843 * management while hotplug is in progress. CPU hotplug path can't
1844 * grab %POOL_MANAGING_WORKERS to achieve this because that can
1845 * lead to idle worker depletion (all become busy thinking someone
1846 * else is managing) which in turn can result in deadlock under
1847 * extreme circumstances. Use @pool->manager_mutex to synchronize
1848 * manager against CPU hotplug.
1849 *
1850 * manager_mutex would always be free unless CPU hotplug is in
1851 * progress. trylock first without dropping @gcwq->lock.
1852 */
1853 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
1854 spin_unlock_irq(&pool->gcwq->lock);
1855 mutex_lock(&pool->manager_mutex);
1856 /*
1857 * CPU hotplug could have happened while we were waiting
1858 * for manager_mutex. Hotplug itself can't handle us
1859 * because manager isn't either on idle or busy list, and
1860 * @gcwq's state and ours could have deviated.
1861 *
1862 * As hotplug is now excluded via manager_mutex, we can
1863 * simply try to bind. It will succeed or fail depending
1864 * on @gcwq's current state. Try it and adjust
1865 * %WORKER_UNBOUND accordingly.
1866 */
1867 if (worker_maybe_bind_and_lock(worker))
1868 worker->flags &= ~WORKER_UNBOUND;
1869 else
1870 worker->flags |= WORKER_UNBOUND;
1871
1872 ret = true;
1873 }
1874
11ebea50 1875 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1876
1877 /*
1878 * Destroy and then create so that may_start_working() is true
1879 * on return.
1880 */
63d95a91
TH
1881 ret |= maybe_destroy_workers(pool);
1882 ret |= maybe_create_worker(pool);
e22bee78 1883
552a37e9 1884 pool->flags &= ~POOL_MANAGING_WORKERS;
60373152 1885 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1886 return ret;
1887}
1888
affee4b2
TH
1889/**
1890 * move_linked_works - move linked works to a list
1891 * @work: start of series of works to be scheduled
1892 * @head: target list to append @work to
1893 * @nextp: out paramter for nested worklist walking
1894 *
1895 * Schedule linked works starting from @work to @head. Work series to
1896 * be scheduled starts at @work and includes any consecutive work with
1897 * WORK_STRUCT_LINKED set in its predecessor.
1898 *
1899 * If @nextp is not NULL, it's updated to point to the next work of
1900 * the last scheduled work. This allows move_linked_works() to be
1901 * nested inside outer list_for_each_entry_safe().
1902 *
1903 * CONTEXT:
8b03ae3c 1904 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1905 */
1906static void move_linked_works(struct work_struct *work, struct list_head *head,
1907 struct work_struct **nextp)
1908{
1909 struct work_struct *n;
1910
1911 /*
1912 * Linked worklist will always end before the end of the list,
1913 * use NULL for list head.
1914 */
1915 list_for_each_entry_safe_from(work, n, NULL, entry) {
1916 list_move_tail(&work->entry, head);
1917 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1918 break;
1919 }
1920
1921 /*
1922 * If we're already inside safe list traversal and have moved
1923 * multiple works to the scheduled queue, the next position
1924 * needs to be updated.
1925 */
1926 if (nextp)
1927 *nextp = n;
1928}
1929
1e19ffc6
TH
1930static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1931{
1932 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1933 struct work_struct, entry);
1934
cdadf009 1935 trace_workqueue_activate_work(work);
3270476a 1936 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1937 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1938 cwq->nr_active++;
1939}
1940
73f53c4a
TH
1941/**
1942 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1943 * @cwq: cwq of interest
1944 * @color: color of work which left the queue
8a2e8e5d 1945 * @delayed: for a delayed work
73f53c4a
TH
1946 *
1947 * A work either has completed or is removed from pending queue,
1948 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1949 *
1950 * CONTEXT:
8b03ae3c 1951 * spin_lock_irq(gcwq->lock).
73f53c4a 1952 */
8a2e8e5d
TH
1953static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1954 bool delayed)
73f53c4a
TH
1955{
1956 /* ignore uncolored works */
1957 if (color == WORK_NO_COLOR)
1958 return;
1959
1960 cwq->nr_in_flight[color]--;
1e19ffc6 1961
8a2e8e5d
TH
1962 if (!delayed) {
1963 cwq->nr_active--;
1964 if (!list_empty(&cwq->delayed_works)) {
1965 /* one down, submit a delayed one */
1966 if (cwq->nr_active < cwq->max_active)
1967 cwq_activate_first_delayed(cwq);
1968 }
502ca9d8 1969 }
73f53c4a
TH
1970
1971 /* is flush in progress and are we at the flushing tip? */
1972 if (likely(cwq->flush_color != color))
1973 return;
1974
1975 /* are there still in-flight works? */
1976 if (cwq->nr_in_flight[color])
1977 return;
1978
1979 /* this cwq is done, clear flush_color */
1980 cwq->flush_color = -1;
1981
1982 /*
1983 * If this was the last cwq, wake up the first flusher. It
1984 * will handle the rest.
1985 */
1986 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1987 complete(&cwq->wq->first_flusher->done);
1988}
1989
a62428c0
TH
1990/**
1991 * process_one_work - process single work
c34056a3 1992 * @worker: self
a62428c0
TH
1993 * @work: work to process
1994 *
1995 * Process @work. This function contains all the logics necessary to
1996 * process a single work including synchronization against and
1997 * interaction with other workers on the same cpu, queueing and
1998 * flushing. As long as context requirement is met, any worker can
1999 * call this function to process a work.
2000 *
2001 * CONTEXT:
8b03ae3c 2002 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2003 */
c34056a3 2004static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2005__releases(&gcwq->lock)
2006__acquires(&gcwq->lock)
a62428c0 2007{
7e11629d 2008 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2009 struct worker_pool *pool = worker->pool;
2010 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2011 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2012 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2013 work_func_t f = work->func;
73f53c4a 2014 int work_color;
7e11629d 2015 struct worker *collision;
a62428c0
TH
2016#ifdef CONFIG_LOCKDEP
2017 /*
2018 * It is permissible to free the struct work_struct from
2019 * inside the function that is called from it, this we need to
2020 * take into account for lockdep too. To avoid bogus "held
2021 * lock freed" warnings as well as problems when looking into
2022 * work->lockdep_map, make a copy and use that here.
2023 */
4d82a1de
PZ
2024 struct lockdep_map lockdep_map;
2025
2026 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2027#endif
6fec10a1
TH
2028 /*
2029 * Ensure we're on the correct CPU. DISASSOCIATED test is
2030 * necessary to avoid spurious warnings from rescuers servicing the
2031 * unbound or a disassociated gcwq.
2032 */
25511a47 2033 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2034 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2035 raw_smp_processor_id() != gcwq->cpu);
2036
7e11629d
TH
2037 /*
2038 * A single work shouldn't be executed concurrently by
2039 * multiple workers on a single cpu. Check whether anyone is
2040 * already processing the work. If so, defer the work to the
2041 * currently executing one.
2042 */
2043 collision = __find_worker_executing_work(gcwq, bwh, work);
2044 if (unlikely(collision)) {
2045 move_linked_works(work, &collision->scheduled, NULL);
2046 return;
2047 }
2048
a62428c0 2049 /* claim and process */
a62428c0 2050 debug_work_deactivate(work);
c8e55f36 2051 hlist_add_head(&worker->hentry, bwh);
c34056a3 2052 worker->current_work = work;
8cca0eea 2053 worker->current_cwq = cwq;
73f53c4a 2054 work_color = get_work_color(work);
7a22ad75 2055
7a22ad75
TH
2056 /* record the current cpu number in the work data and dequeue */
2057 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
2058 list_del_init(&work->entry);
2059
fb0e7beb
TH
2060 /*
2061 * CPU intensive works don't participate in concurrency
2062 * management. They're the scheduler's responsibility.
2063 */
2064 if (unlikely(cpu_intensive))
2065 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2066
974271c4
TH
2067 /*
2068 * Unbound gcwq isn't concurrency managed and work items should be
2069 * executed ASAP. Wake up another worker if necessary.
2070 */
63d95a91
TH
2071 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2072 wake_up_worker(pool);
974271c4 2073
8b03ae3c 2074 spin_unlock_irq(&gcwq->lock);
a62428c0 2075
a62428c0 2076 work_clear_pending(work);
e159489b 2077 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2078 lock_map_acquire(&lockdep_map);
e36c886a 2079 trace_workqueue_execute_start(work);
a62428c0 2080 f(work);
e36c886a
AV
2081 /*
2082 * While we must be careful to not use "work" after this, the trace
2083 * point will only record its address.
2084 */
2085 trace_workqueue_execute_end(work);
a62428c0
TH
2086 lock_map_release(&lockdep_map);
2087 lock_map_release(&cwq->wq->lockdep_map);
2088
2089 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2090 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2091 "%s/0x%08x/%d\n",
2092 current->comm, preempt_count(), task_pid_nr(current));
2093 printk(KERN_ERR " last function: ");
2094 print_symbol("%s\n", (unsigned long)f);
2095 debug_show_held_locks(current);
2096 dump_stack();
2097 }
2098
8b03ae3c 2099 spin_lock_irq(&gcwq->lock);
a62428c0 2100
fb0e7beb
TH
2101 /* clear cpu intensive status */
2102 if (unlikely(cpu_intensive))
2103 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2104
a62428c0 2105 /* we're done with it, release */
c8e55f36 2106 hlist_del_init(&worker->hentry);
c34056a3 2107 worker->current_work = NULL;
8cca0eea 2108 worker->current_cwq = NULL;
8a2e8e5d 2109 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2110}
2111
affee4b2
TH
2112/**
2113 * process_scheduled_works - process scheduled works
2114 * @worker: self
2115 *
2116 * Process all scheduled works. Please note that the scheduled list
2117 * may change while processing a work, so this function repeatedly
2118 * fetches a work from the top and executes it.
2119 *
2120 * CONTEXT:
8b03ae3c 2121 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2122 * multiple times.
2123 */
2124static void process_scheduled_works(struct worker *worker)
1da177e4 2125{
affee4b2
TH
2126 while (!list_empty(&worker->scheduled)) {
2127 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2128 struct work_struct, entry);
c34056a3 2129 process_one_work(worker, work);
1da177e4 2130 }
1da177e4
LT
2131}
2132
4690c4ab
TH
2133/**
2134 * worker_thread - the worker thread function
c34056a3 2135 * @__worker: self
4690c4ab 2136 *
e22bee78
TH
2137 * The gcwq worker thread function. There's a single dynamic pool of
2138 * these per each cpu. These workers process all works regardless of
2139 * their specific target workqueue. The only exception is works which
2140 * belong to workqueues with a rescuer which will be explained in
2141 * rescuer_thread().
4690c4ab 2142 */
c34056a3 2143static int worker_thread(void *__worker)
1da177e4 2144{
c34056a3 2145 struct worker *worker = __worker;
bd7bdd43
TH
2146 struct worker_pool *pool = worker->pool;
2147 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2148
e22bee78
TH
2149 /* tell the scheduler that this is a workqueue worker */
2150 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2151woke_up:
c8e55f36 2152 spin_lock_irq(&gcwq->lock);
1da177e4 2153
25511a47
TH
2154 /*
2155 * DIE can be set only while idle and REBIND set while busy has
2156 * @worker->rebind_work scheduled. Checking here is enough.
2157 */
2158 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2159 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2160
2161 if (worker->flags & WORKER_DIE) {
2162 worker->task->flags &= ~PF_WQ_WORKER;
2163 return 0;
2164 }
2165
2166 idle_worker_rebind(worker);
2167 goto woke_up;
c8e55f36 2168 }
affee4b2 2169
c8e55f36 2170 worker_leave_idle(worker);
db7bccf4 2171recheck:
e22bee78 2172 /* no more worker necessary? */
63d95a91 2173 if (!need_more_worker(pool))
e22bee78
TH
2174 goto sleep;
2175
2176 /* do we need to manage? */
63d95a91 2177 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2178 goto recheck;
2179
c8e55f36
TH
2180 /*
2181 * ->scheduled list can only be filled while a worker is
2182 * preparing to process a work or actually processing it.
2183 * Make sure nobody diddled with it while I was sleeping.
2184 */
2185 BUG_ON(!list_empty(&worker->scheduled));
2186
e22bee78
TH
2187 /*
2188 * When control reaches this point, we're guaranteed to have
2189 * at least one idle worker or that someone else has already
2190 * assumed the manager role.
2191 */
2192 worker_clr_flags(worker, WORKER_PREP);
2193
2194 do {
c8e55f36 2195 struct work_struct *work =
bd7bdd43 2196 list_first_entry(&pool->worklist,
c8e55f36
TH
2197 struct work_struct, entry);
2198
2199 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 /* optimization path, not strictly necessary */
2201 process_one_work(worker, work);
2202 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2203 process_scheduled_works(worker);
c8e55f36
TH
2204 } else {
2205 move_linked_works(work, &worker->scheduled, NULL);
2206 process_scheduled_works(worker);
affee4b2 2207 }
63d95a91 2208 } while (keep_working(pool));
e22bee78
TH
2209
2210 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2211sleep:
63d95a91 2212 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2213 goto recheck;
d313dd85 2214
c8e55f36 2215 /*
e22bee78
TH
2216 * gcwq->lock is held and there's no work to process and no
2217 * need to manage, sleep. Workers are woken up only while
2218 * holding gcwq->lock or from local cpu, so setting the
2219 * current state before releasing gcwq->lock is enough to
2220 * prevent losing any event.
c8e55f36
TH
2221 */
2222 worker_enter_idle(worker);
2223 __set_current_state(TASK_INTERRUPTIBLE);
2224 spin_unlock_irq(&gcwq->lock);
2225 schedule();
2226 goto woke_up;
1da177e4
LT
2227}
2228
e22bee78
TH
2229/**
2230 * rescuer_thread - the rescuer thread function
2231 * @__wq: the associated workqueue
2232 *
2233 * Workqueue rescuer thread function. There's one rescuer for each
2234 * workqueue which has WQ_RESCUER set.
2235 *
2236 * Regular work processing on a gcwq may block trying to create a new
2237 * worker which uses GFP_KERNEL allocation which has slight chance of
2238 * developing into deadlock if some works currently on the same queue
2239 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2240 * the problem rescuer solves.
2241 *
2242 * When such condition is possible, the gcwq summons rescuers of all
2243 * workqueues which have works queued on the gcwq and let them process
2244 * those works so that forward progress can be guaranteed.
2245 *
2246 * This should happen rarely.
2247 */
2248static int rescuer_thread(void *__wq)
2249{
2250 struct workqueue_struct *wq = __wq;
2251 struct worker *rescuer = wq->rescuer;
2252 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2253 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2254 unsigned int cpu;
2255
2256 set_user_nice(current, RESCUER_NICE_LEVEL);
2257repeat:
2258 set_current_state(TASK_INTERRUPTIBLE);
2259
2260 if (kthread_should_stop())
2261 return 0;
2262
f3421797
TH
2263 /*
2264 * See whether any cpu is asking for help. Unbounded
2265 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2266 */
f2e005aa 2267 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2268 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2269 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2270 struct worker_pool *pool = cwq->pool;
2271 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2272 struct work_struct *work, *n;
2273
2274 __set_current_state(TASK_RUNNING);
f2e005aa 2275 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2276
2277 /* migrate to the target cpu if possible */
bd7bdd43 2278 rescuer->pool = pool;
e22bee78
TH
2279 worker_maybe_bind_and_lock(rescuer);
2280
2281 /*
2282 * Slurp in all works issued via this workqueue and
2283 * process'em.
2284 */
2285 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2286 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2287 if (get_work_cwq(work) == cwq)
2288 move_linked_works(work, scheduled, &n);
2289
2290 process_scheduled_works(rescuer);
7576958a
TH
2291
2292 /*
2293 * Leave this gcwq. If keep_working() is %true, notify a
2294 * regular worker; otherwise, we end up with 0 concurrency
2295 * and stalling the execution.
2296 */
63d95a91
TH
2297 if (keep_working(pool))
2298 wake_up_worker(pool);
7576958a 2299
e22bee78
TH
2300 spin_unlock_irq(&gcwq->lock);
2301 }
2302
2303 schedule();
2304 goto repeat;
1da177e4
LT
2305}
2306
fc2e4d70
ON
2307struct wq_barrier {
2308 struct work_struct work;
2309 struct completion done;
2310};
2311
2312static void wq_barrier_func(struct work_struct *work)
2313{
2314 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2315 complete(&barr->done);
2316}
2317
4690c4ab
TH
2318/**
2319 * insert_wq_barrier - insert a barrier work
2320 * @cwq: cwq to insert barrier into
2321 * @barr: wq_barrier to insert
affee4b2
TH
2322 * @target: target work to attach @barr to
2323 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2324 *
affee4b2
TH
2325 * @barr is linked to @target such that @barr is completed only after
2326 * @target finishes execution. Please note that the ordering
2327 * guarantee is observed only with respect to @target and on the local
2328 * cpu.
2329 *
2330 * Currently, a queued barrier can't be canceled. This is because
2331 * try_to_grab_pending() can't determine whether the work to be
2332 * grabbed is at the head of the queue and thus can't clear LINKED
2333 * flag of the previous work while there must be a valid next work
2334 * after a work with LINKED flag set.
2335 *
2336 * Note that when @worker is non-NULL, @target may be modified
2337 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2338 *
2339 * CONTEXT:
8b03ae3c 2340 * spin_lock_irq(gcwq->lock).
4690c4ab 2341 */
83c22520 2342static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2343 struct wq_barrier *barr,
2344 struct work_struct *target, struct worker *worker)
fc2e4d70 2345{
affee4b2
TH
2346 struct list_head *head;
2347 unsigned int linked = 0;
2348
dc186ad7 2349 /*
8b03ae3c 2350 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2351 * as we know for sure that this will not trigger any of the
2352 * checks and call back into the fixup functions where we
2353 * might deadlock.
2354 */
ca1cab37 2355 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2356 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2357 init_completion(&barr->done);
83c22520 2358
affee4b2
TH
2359 /*
2360 * If @target is currently being executed, schedule the
2361 * barrier to the worker; otherwise, put it after @target.
2362 */
2363 if (worker)
2364 head = worker->scheduled.next;
2365 else {
2366 unsigned long *bits = work_data_bits(target);
2367
2368 head = target->entry.next;
2369 /* there can already be other linked works, inherit and set */
2370 linked = *bits & WORK_STRUCT_LINKED;
2371 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2372 }
2373
dc186ad7 2374 debug_work_activate(&barr->work);
affee4b2
TH
2375 insert_work(cwq, &barr->work, head,
2376 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2377}
2378
73f53c4a
TH
2379/**
2380 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2381 * @wq: workqueue being flushed
2382 * @flush_color: new flush color, < 0 for no-op
2383 * @work_color: new work color, < 0 for no-op
2384 *
2385 * Prepare cwqs for workqueue flushing.
2386 *
2387 * If @flush_color is non-negative, flush_color on all cwqs should be
2388 * -1. If no cwq has in-flight commands at the specified color, all
2389 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2390 * has in flight commands, its cwq->flush_color is set to
2391 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2392 * wakeup logic is armed and %true is returned.
2393 *
2394 * The caller should have initialized @wq->first_flusher prior to
2395 * calling this function with non-negative @flush_color. If
2396 * @flush_color is negative, no flush color update is done and %false
2397 * is returned.
2398 *
2399 * If @work_color is non-negative, all cwqs should have the same
2400 * work_color which is previous to @work_color and all will be
2401 * advanced to @work_color.
2402 *
2403 * CONTEXT:
2404 * mutex_lock(wq->flush_mutex).
2405 *
2406 * RETURNS:
2407 * %true if @flush_color >= 0 and there's something to flush. %false
2408 * otherwise.
2409 */
2410static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2411 int flush_color, int work_color)
1da177e4 2412{
73f53c4a
TH
2413 bool wait = false;
2414 unsigned int cpu;
1da177e4 2415
73f53c4a
TH
2416 if (flush_color >= 0) {
2417 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2418 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2419 }
2355b70f 2420
f3421797 2421 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2422 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2423 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2424
8b03ae3c 2425 spin_lock_irq(&gcwq->lock);
83c22520 2426
73f53c4a
TH
2427 if (flush_color >= 0) {
2428 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2429
73f53c4a
TH
2430 if (cwq->nr_in_flight[flush_color]) {
2431 cwq->flush_color = flush_color;
2432 atomic_inc(&wq->nr_cwqs_to_flush);
2433 wait = true;
2434 }
2435 }
1da177e4 2436
73f53c4a
TH
2437 if (work_color >= 0) {
2438 BUG_ON(work_color != work_next_color(cwq->work_color));
2439 cwq->work_color = work_color;
2440 }
1da177e4 2441
8b03ae3c 2442 spin_unlock_irq(&gcwq->lock);
1da177e4 2443 }
2355b70f 2444
73f53c4a
TH
2445 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2446 complete(&wq->first_flusher->done);
14441960 2447
73f53c4a 2448 return wait;
1da177e4
LT
2449}
2450
0fcb78c2 2451/**
1da177e4 2452 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2453 * @wq: workqueue to flush
1da177e4
LT
2454 *
2455 * Forces execution of the workqueue and blocks until its completion.
2456 * This is typically used in driver shutdown handlers.
2457 *
fc2e4d70
ON
2458 * We sleep until all works which were queued on entry have been handled,
2459 * but we are not livelocked by new incoming ones.
1da177e4 2460 */
7ad5b3a5 2461void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2462{
73f53c4a
TH
2463 struct wq_flusher this_flusher = {
2464 .list = LIST_HEAD_INIT(this_flusher.list),
2465 .flush_color = -1,
2466 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2467 };
2468 int next_color;
1da177e4 2469
3295f0ef
IM
2470 lock_map_acquire(&wq->lockdep_map);
2471 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2472
2473 mutex_lock(&wq->flush_mutex);
2474
2475 /*
2476 * Start-to-wait phase
2477 */
2478 next_color = work_next_color(wq->work_color);
2479
2480 if (next_color != wq->flush_color) {
2481 /*
2482 * Color space is not full. The current work_color
2483 * becomes our flush_color and work_color is advanced
2484 * by one.
2485 */
2486 BUG_ON(!list_empty(&wq->flusher_overflow));
2487 this_flusher.flush_color = wq->work_color;
2488 wq->work_color = next_color;
2489
2490 if (!wq->first_flusher) {
2491 /* no flush in progress, become the first flusher */
2492 BUG_ON(wq->flush_color != this_flusher.flush_color);
2493
2494 wq->first_flusher = &this_flusher;
2495
2496 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2497 wq->work_color)) {
2498 /* nothing to flush, done */
2499 wq->flush_color = next_color;
2500 wq->first_flusher = NULL;
2501 goto out_unlock;
2502 }
2503 } else {
2504 /* wait in queue */
2505 BUG_ON(wq->flush_color == this_flusher.flush_color);
2506 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2507 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2508 }
2509 } else {
2510 /*
2511 * Oops, color space is full, wait on overflow queue.
2512 * The next flush completion will assign us
2513 * flush_color and transfer to flusher_queue.
2514 */
2515 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2516 }
2517
2518 mutex_unlock(&wq->flush_mutex);
2519
2520 wait_for_completion(&this_flusher.done);
2521
2522 /*
2523 * Wake-up-and-cascade phase
2524 *
2525 * First flushers are responsible for cascading flushes and
2526 * handling overflow. Non-first flushers can simply return.
2527 */
2528 if (wq->first_flusher != &this_flusher)
2529 return;
2530
2531 mutex_lock(&wq->flush_mutex);
2532
4ce48b37
TH
2533 /* we might have raced, check again with mutex held */
2534 if (wq->first_flusher != &this_flusher)
2535 goto out_unlock;
2536
73f53c4a
TH
2537 wq->first_flusher = NULL;
2538
2539 BUG_ON(!list_empty(&this_flusher.list));
2540 BUG_ON(wq->flush_color != this_flusher.flush_color);
2541
2542 while (true) {
2543 struct wq_flusher *next, *tmp;
2544
2545 /* complete all the flushers sharing the current flush color */
2546 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2547 if (next->flush_color != wq->flush_color)
2548 break;
2549 list_del_init(&next->list);
2550 complete(&next->done);
2551 }
2552
2553 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2554 wq->flush_color != work_next_color(wq->work_color));
2555
2556 /* this flush_color is finished, advance by one */
2557 wq->flush_color = work_next_color(wq->flush_color);
2558
2559 /* one color has been freed, handle overflow queue */
2560 if (!list_empty(&wq->flusher_overflow)) {
2561 /*
2562 * Assign the same color to all overflowed
2563 * flushers, advance work_color and append to
2564 * flusher_queue. This is the start-to-wait
2565 * phase for these overflowed flushers.
2566 */
2567 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2568 tmp->flush_color = wq->work_color;
2569
2570 wq->work_color = work_next_color(wq->work_color);
2571
2572 list_splice_tail_init(&wq->flusher_overflow,
2573 &wq->flusher_queue);
2574 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2575 }
2576
2577 if (list_empty(&wq->flusher_queue)) {
2578 BUG_ON(wq->flush_color != wq->work_color);
2579 break;
2580 }
2581
2582 /*
2583 * Need to flush more colors. Make the next flusher
2584 * the new first flusher and arm cwqs.
2585 */
2586 BUG_ON(wq->flush_color == wq->work_color);
2587 BUG_ON(wq->flush_color != next->flush_color);
2588
2589 list_del_init(&next->list);
2590 wq->first_flusher = next;
2591
2592 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2593 break;
2594
2595 /*
2596 * Meh... this color is already done, clear first
2597 * flusher and repeat cascading.
2598 */
2599 wq->first_flusher = NULL;
2600 }
2601
2602out_unlock:
2603 mutex_unlock(&wq->flush_mutex);
1da177e4 2604}
ae90dd5d 2605EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2606
9c5a2ba7
TH
2607/**
2608 * drain_workqueue - drain a workqueue
2609 * @wq: workqueue to drain
2610 *
2611 * Wait until the workqueue becomes empty. While draining is in progress,
2612 * only chain queueing is allowed. IOW, only currently pending or running
2613 * work items on @wq can queue further work items on it. @wq is flushed
2614 * repeatedly until it becomes empty. The number of flushing is detemined
2615 * by the depth of chaining and should be relatively short. Whine if it
2616 * takes too long.
2617 */
2618void drain_workqueue(struct workqueue_struct *wq)
2619{
2620 unsigned int flush_cnt = 0;
2621 unsigned int cpu;
2622
2623 /*
2624 * __queue_work() needs to test whether there are drainers, is much
2625 * hotter than drain_workqueue() and already looks at @wq->flags.
2626 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2627 */
2628 spin_lock(&workqueue_lock);
2629 if (!wq->nr_drainers++)
2630 wq->flags |= WQ_DRAINING;
2631 spin_unlock(&workqueue_lock);
2632reflush:
2633 flush_workqueue(wq);
2634
2635 for_each_cwq_cpu(cpu, wq) {
2636 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2637 bool drained;
9c5a2ba7 2638
bd7bdd43 2639 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2640 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2641 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2642
2643 if (drained)
9c5a2ba7
TH
2644 continue;
2645
2646 if (++flush_cnt == 10 ||
2647 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2648 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2649 wq->name, flush_cnt);
2650 goto reflush;
2651 }
2652
2653 spin_lock(&workqueue_lock);
2654 if (!--wq->nr_drainers)
2655 wq->flags &= ~WQ_DRAINING;
2656 spin_unlock(&workqueue_lock);
2657}
2658EXPORT_SYMBOL_GPL(drain_workqueue);
2659
baf59022
TH
2660static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2661 bool wait_executing)
db700897 2662{
affee4b2 2663 struct worker *worker = NULL;
8b03ae3c 2664 struct global_cwq *gcwq;
db700897 2665 struct cpu_workqueue_struct *cwq;
db700897
ON
2666
2667 might_sleep();
7a22ad75
TH
2668 gcwq = get_work_gcwq(work);
2669 if (!gcwq)
baf59022 2670 return false;
db700897 2671
8b03ae3c 2672 spin_lock_irq(&gcwq->lock);
db700897
ON
2673 if (!list_empty(&work->entry)) {
2674 /*
2675 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2676 * If it was re-queued to a different gcwq under us, we
2677 * are not going to wait.
db700897
ON
2678 */
2679 smp_rmb();
7a22ad75 2680 cwq = get_work_cwq(work);
bd7bdd43 2681 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2682 goto already_gone;
baf59022 2683 } else if (wait_executing) {
7a22ad75 2684 worker = find_worker_executing_work(gcwq, work);
affee4b2 2685 if (!worker)
4690c4ab 2686 goto already_gone;
7a22ad75 2687 cwq = worker->current_cwq;
baf59022
TH
2688 } else
2689 goto already_gone;
db700897 2690
baf59022 2691 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2692 spin_unlock_irq(&gcwq->lock);
7a22ad75 2693
e159489b
TH
2694 /*
2695 * If @max_active is 1 or rescuer is in use, flushing another work
2696 * item on the same workqueue may lead to deadlock. Make sure the
2697 * flusher is not running on the same workqueue by verifying write
2698 * access.
2699 */
2700 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2701 lock_map_acquire(&cwq->wq->lockdep_map);
2702 else
2703 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2704 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2705
401a8d04 2706 return true;
4690c4ab 2707already_gone:
8b03ae3c 2708 spin_unlock_irq(&gcwq->lock);
401a8d04 2709 return false;
db700897 2710}
baf59022
TH
2711
2712/**
2713 * flush_work - wait for a work to finish executing the last queueing instance
2714 * @work: the work to flush
2715 *
2716 * Wait until @work has finished execution. This function considers
2717 * only the last queueing instance of @work. If @work has been
2718 * enqueued across different CPUs on a non-reentrant workqueue or on
2719 * multiple workqueues, @work might still be executing on return on
2720 * some of the CPUs from earlier queueing.
2721 *
2722 * If @work was queued only on a non-reentrant, ordered or unbound
2723 * workqueue, @work is guaranteed to be idle on return if it hasn't
2724 * been requeued since flush started.
2725 *
2726 * RETURNS:
2727 * %true if flush_work() waited for the work to finish execution,
2728 * %false if it was already idle.
2729 */
2730bool flush_work(struct work_struct *work)
2731{
2732 struct wq_barrier barr;
2733
0976dfc1
SB
2734 lock_map_acquire(&work->lockdep_map);
2735 lock_map_release(&work->lockdep_map);
2736
baf59022
TH
2737 if (start_flush_work(work, &barr, true)) {
2738 wait_for_completion(&barr.done);
2739 destroy_work_on_stack(&barr.work);
2740 return true;
2741 } else
2742 return false;
2743}
db700897
ON
2744EXPORT_SYMBOL_GPL(flush_work);
2745
401a8d04
TH
2746static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2747{
2748 struct wq_barrier barr;
2749 struct worker *worker;
2750
2751 spin_lock_irq(&gcwq->lock);
2752
2753 worker = find_worker_executing_work(gcwq, work);
2754 if (unlikely(worker))
2755 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2756
2757 spin_unlock_irq(&gcwq->lock);
2758
2759 if (unlikely(worker)) {
2760 wait_for_completion(&barr.done);
2761 destroy_work_on_stack(&barr.work);
2762 return true;
2763 } else
2764 return false;
2765}
2766
2767static bool wait_on_work(struct work_struct *work)
2768{
2769 bool ret = false;
2770 int cpu;
2771
2772 might_sleep();
2773
2774 lock_map_acquire(&work->lockdep_map);
2775 lock_map_release(&work->lockdep_map);
2776
2777 for_each_gcwq_cpu(cpu)
2778 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2779 return ret;
2780}
2781
09383498
TH
2782/**
2783 * flush_work_sync - wait until a work has finished execution
2784 * @work: the work to flush
2785 *
2786 * Wait until @work has finished execution. On return, it's
2787 * guaranteed that all queueing instances of @work which happened
2788 * before this function is called are finished. In other words, if
2789 * @work hasn't been requeued since this function was called, @work is
2790 * guaranteed to be idle on return.
2791 *
2792 * RETURNS:
2793 * %true if flush_work_sync() waited for the work to finish execution,
2794 * %false if it was already idle.
2795 */
2796bool flush_work_sync(struct work_struct *work)
2797{
2798 struct wq_barrier barr;
2799 bool pending, waited;
2800
2801 /* we'll wait for executions separately, queue barr only if pending */
2802 pending = start_flush_work(work, &barr, false);
2803
2804 /* wait for executions to finish */
2805 waited = wait_on_work(work);
2806
2807 /* wait for the pending one */
2808 if (pending) {
2809 wait_for_completion(&barr.done);
2810 destroy_work_on_stack(&barr.work);
2811 }
2812
2813 return pending || waited;
2814}
2815EXPORT_SYMBOL_GPL(flush_work_sync);
2816
6e84d644 2817/*
1f1f642e 2818 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2819 * so this work can't be re-armed in any way.
2820 */
2821static int try_to_grab_pending(struct work_struct *work)
2822{
8b03ae3c 2823 struct global_cwq *gcwq;
1f1f642e 2824 int ret = -1;
6e84d644 2825
22df02bb 2826 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2827 return 0;
6e84d644
ON
2828
2829 /*
2830 * The queueing is in progress, or it is already queued. Try to
2831 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2832 */
7a22ad75
TH
2833 gcwq = get_work_gcwq(work);
2834 if (!gcwq)
6e84d644
ON
2835 return ret;
2836
8b03ae3c 2837 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2838 if (!list_empty(&work->entry)) {
2839 /*
7a22ad75 2840 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2841 * In that case we must see the new value after rmb(), see
2842 * insert_work()->wmb().
2843 */
2844 smp_rmb();
7a22ad75 2845 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2846 debug_work_deactivate(work);
6e84d644 2847 list_del_init(&work->entry);
7a22ad75 2848 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2849 get_work_color(work),
2850 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2851 ret = 1;
2852 }
2853 }
8b03ae3c 2854 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2855
2856 return ret;
2857}
2858
401a8d04 2859static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2860 struct timer_list* timer)
2861{
2862 int ret;
2863
2864 do {
2865 ret = (timer && likely(del_timer(timer)));
2866 if (!ret)
2867 ret = try_to_grab_pending(work);
2868 wait_on_work(work);
2869 } while (unlikely(ret < 0));
2870
7a22ad75 2871 clear_work_data(work);
1f1f642e
ON
2872 return ret;
2873}
2874
6e84d644 2875/**
401a8d04
TH
2876 * cancel_work_sync - cancel a work and wait for it to finish
2877 * @work: the work to cancel
6e84d644 2878 *
401a8d04
TH
2879 * Cancel @work and wait for its execution to finish. This function
2880 * can be used even if the work re-queues itself or migrates to
2881 * another workqueue. On return from this function, @work is
2882 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2883 *
401a8d04
TH
2884 * cancel_work_sync(&delayed_work->work) must not be used for
2885 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2886 *
401a8d04 2887 * The caller must ensure that the workqueue on which @work was last
6e84d644 2888 * queued can't be destroyed before this function returns.
401a8d04
TH
2889 *
2890 * RETURNS:
2891 * %true if @work was pending, %false otherwise.
6e84d644 2892 */
401a8d04 2893bool cancel_work_sync(struct work_struct *work)
6e84d644 2894{
1f1f642e 2895 return __cancel_work_timer(work, NULL);
b89deed3 2896}
28e53bdd 2897EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2898
6e84d644 2899/**
401a8d04
TH
2900 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2901 * @dwork: the delayed work to flush
6e84d644 2902 *
401a8d04
TH
2903 * Delayed timer is cancelled and the pending work is queued for
2904 * immediate execution. Like flush_work(), this function only
2905 * considers the last queueing instance of @dwork.
1f1f642e 2906 *
401a8d04
TH
2907 * RETURNS:
2908 * %true if flush_work() waited for the work to finish execution,
2909 * %false if it was already idle.
6e84d644 2910 */
401a8d04
TH
2911bool flush_delayed_work(struct delayed_work *dwork)
2912{
2913 if (del_timer_sync(&dwork->timer))
2914 __queue_work(raw_smp_processor_id(),
2915 get_work_cwq(&dwork->work)->wq, &dwork->work);
2916 return flush_work(&dwork->work);
2917}
2918EXPORT_SYMBOL(flush_delayed_work);
2919
09383498
TH
2920/**
2921 * flush_delayed_work_sync - wait for a dwork to finish
2922 * @dwork: the delayed work to flush
2923 *
2924 * Delayed timer is cancelled and the pending work is queued for
2925 * execution immediately. Other than timer handling, its behavior
2926 * is identical to flush_work_sync().
2927 *
2928 * RETURNS:
2929 * %true if flush_work_sync() waited for the work to finish execution,
2930 * %false if it was already idle.
2931 */
2932bool flush_delayed_work_sync(struct delayed_work *dwork)
2933{
2934 if (del_timer_sync(&dwork->timer))
2935 __queue_work(raw_smp_processor_id(),
2936 get_work_cwq(&dwork->work)->wq, &dwork->work);
2937 return flush_work_sync(&dwork->work);
2938}
2939EXPORT_SYMBOL(flush_delayed_work_sync);
2940
401a8d04
TH
2941/**
2942 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2943 * @dwork: the delayed work cancel
2944 *
2945 * This is cancel_work_sync() for delayed works.
2946 *
2947 * RETURNS:
2948 * %true if @dwork was pending, %false otherwise.
2949 */
2950bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2951{
1f1f642e 2952 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2953}
f5a421a4 2954EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2955
0fcb78c2
REB
2956/**
2957 * schedule_work - put work task in global workqueue
2958 * @work: job to be done
2959 *
5b0f437d
BVA
2960 * Returns zero if @work was already on the kernel-global workqueue and
2961 * non-zero otherwise.
2962 *
2963 * This puts a job in the kernel-global workqueue if it was not already
2964 * queued and leaves it in the same position on the kernel-global
2965 * workqueue otherwise.
0fcb78c2 2966 */
7ad5b3a5 2967int schedule_work(struct work_struct *work)
1da177e4 2968{
d320c038 2969 return queue_work(system_wq, work);
1da177e4 2970}
ae90dd5d 2971EXPORT_SYMBOL(schedule_work);
1da177e4 2972
c1a220e7
ZR
2973/*
2974 * schedule_work_on - put work task on a specific cpu
2975 * @cpu: cpu to put the work task on
2976 * @work: job to be done
2977 *
2978 * This puts a job on a specific cpu
2979 */
2980int schedule_work_on(int cpu, struct work_struct *work)
2981{
d320c038 2982 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2983}
2984EXPORT_SYMBOL(schedule_work_on);
2985
0fcb78c2
REB
2986/**
2987 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2988 * @dwork: job to be done
2989 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2990 *
2991 * After waiting for a given time this puts a job in the kernel-global
2992 * workqueue.
2993 */
7ad5b3a5 2994int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2995 unsigned long delay)
1da177e4 2996{
d320c038 2997 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2998}
ae90dd5d 2999EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3000
0fcb78c2
REB
3001/**
3002 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3003 * @cpu: cpu to use
52bad64d 3004 * @dwork: job to be done
0fcb78c2
REB
3005 * @delay: number of jiffies to wait
3006 *
3007 * After waiting for a given time this puts a job in the kernel-global
3008 * workqueue on the specified CPU.
3009 */
1da177e4 3010int schedule_delayed_work_on(int cpu,
52bad64d 3011 struct delayed_work *dwork, unsigned long delay)
1da177e4 3012{
d320c038 3013 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3014}
ae90dd5d 3015EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3016
b6136773 3017/**
31ddd871 3018 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3019 * @func: the function to call
b6136773 3020 *
31ddd871
TH
3021 * schedule_on_each_cpu() executes @func on each online CPU using the
3022 * system workqueue and blocks until all CPUs have completed.
b6136773 3023 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3024 *
3025 * RETURNS:
3026 * 0 on success, -errno on failure.
b6136773 3027 */
65f27f38 3028int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3029{
3030 int cpu;
38f51568 3031 struct work_struct __percpu *works;
15316ba8 3032
b6136773
AM
3033 works = alloc_percpu(struct work_struct);
3034 if (!works)
15316ba8 3035 return -ENOMEM;
b6136773 3036
93981800
TH
3037 get_online_cpus();
3038
15316ba8 3039 for_each_online_cpu(cpu) {
9bfb1839
IM
3040 struct work_struct *work = per_cpu_ptr(works, cpu);
3041
3042 INIT_WORK(work, func);
b71ab8c2 3043 schedule_work_on(cpu, work);
65a64464 3044 }
93981800
TH
3045
3046 for_each_online_cpu(cpu)
3047 flush_work(per_cpu_ptr(works, cpu));
3048
95402b38 3049 put_online_cpus();
b6136773 3050 free_percpu(works);
15316ba8
CL
3051 return 0;
3052}
3053
eef6a7d5
AS
3054/**
3055 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3056 *
3057 * Forces execution of the kernel-global workqueue and blocks until its
3058 * completion.
3059 *
3060 * Think twice before calling this function! It's very easy to get into
3061 * trouble if you don't take great care. Either of the following situations
3062 * will lead to deadlock:
3063 *
3064 * One of the work items currently on the workqueue needs to acquire
3065 * a lock held by your code or its caller.
3066 *
3067 * Your code is running in the context of a work routine.
3068 *
3069 * They will be detected by lockdep when they occur, but the first might not
3070 * occur very often. It depends on what work items are on the workqueue and
3071 * what locks they need, which you have no control over.
3072 *
3073 * In most situations flushing the entire workqueue is overkill; you merely
3074 * need to know that a particular work item isn't queued and isn't running.
3075 * In such cases you should use cancel_delayed_work_sync() or
3076 * cancel_work_sync() instead.
3077 */
1da177e4
LT
3078void flush_scheduled_work(void)
3079{
d320c038 3080 flush_workqueue(system_wq);
1da177e4 3081}
ae90dd5d 3082EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3083
1fa44eca
JB
3084/**
3085 * execute_in_process_context - reliably execute the routine with user context
3086 * @fn: the function to execute
1fa44eca
JB
3087 * @ew: guaranteed storage for the execute work structure (must
3088 * be available when the work executes)
3089 *
3090 * Executes the function immediately if process context is available,
3091 * otherwise schedules the function for delayed execution.
3092 *
3093 * Returns: 0 - function was executed
3094 * 1 - function was scheduled for execution
3095 */
65f27f38 3096int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3097{
3098 if (!in_interrupt()) {
65f27f38 3099 fn(&ew->work);
1fa44eca
JB
3100 return 0;
3101 }
3102
65f27f38 3103 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3104 schedule_work(&ew->work);
3105
3106 return 1;
3107}
3108EXPORT_SYMBOL_GPL(execute_in_process_context);
3109
1da177e4
LT
3110int keventd_up(void)
3111{
d320c038 3112 return system_wq != NULL;
1da177e4
LT
3113}
3114
bdbc5dd7 3115static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3116{
65a64464 3117 /*
0f900049
TH
3118 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3119 * Make sure that the alignment isn't lower than that of
3120 * unsigned long long.
65a64464 3121 */
0f900049
TH
3122 const size_t size = sizeof(struct cpu_workqueue_struct);
3123 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3124 __alignof__(unsigned long long));
65a64464 3125
e06ffa1e 3126 if (!(wq->flags & WQ_UNBOUND))
f3421797 3127 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3128 else {
f3421797
TH
3129 void *ptr;
3130
3131 /*
3132 * Allocate enough room to align cwq and put an extra
3133 * pointer at the end pointing back to the originally
3134 * allocated pointer which will be used for free.
3135 */
3136 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3137 if (ptr) {
3138 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3139 *(void **)(wq->cpu_wq.single + 1) = ptr;
3140 }
bdbc5dd7 3141 }
f3421797 3142
0415b00d 3143 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3144 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3145 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3146}
3147
bdbc5dd7 3148static void free_cwqs(struct workqueue_struct *wq)
0f900049 3149{
e06ffa1e 3150 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3151 free_percpu(wq->cpu_wq.pcpu);
3152 else if (wq->cpu_wq.single) {
3153 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3154 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3155 }
0f900049
TH
3156}
3157
f3421797
TH
3158static int wq_clamp_max_active(int max_active, unsigned int flags,
3159 const char *name)
b71ab8c2 3160{
f3421797
TH
3161 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3162
3163 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3164 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3165 "is out of range, clamping between %d and %d\n",
f3421797 3166 max_active, name, 1, lim);
b71ab8c2 3167
f3421797 3168 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3169}
3170
b196be89 3171struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3172 unsigned int flags,
3173 int max_active,
3174 struct lock_class_key *key,
b196be89 3175 const char *lock_name, ...)
1da177e4 3176{
b196be89 3177 va_list args, args1;
1da177e4 3178 struct workqueue_struct *wq;
c34056a3 3179 unsigned int cpu;
b196be89
TH
3180 size_t namelen;
3181
3182 /* determine namelen, allocate wq and format name */
3183 va_start(args, lock_name);
3184 va_copy(args1, args);
3185 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3186
3187 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3188 if (!wq)
3189 goto err;
3190
3191 vsnprintf(wq->name, namelen, fmt, args1);
3192 va_end(args);
3193 va_end(args1);
1da177e4 3194
6370a6ad
TH
3195 /*
3196 * Workqueues which may be used during memory reclaim should
3197 * have a rescuer to guarantee forward progress.
3198 */
3199 if (flags & WQ_MEM_RECLAIM)
3200 flags |= WQ_RESCUER;
3201
d320c038 3202 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3203 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3204
b196be89 3205 /* init wq */
97e37d7b 3206 wq->flags = flags;
a0a1a5fd 3207 wq->saved_max_active = max_active;
73f53c4a
TH
3208 mutex_init(&wq->flush_mutex);
3209 atomic_set(&wq->nr_cwqs_to_flush, 0);
3210 INIT_LIST_HEAD(&wq->flusher_queue);
3211 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3212
eb13ba87 3213 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3214 INIT_LIST_HEAD(&wq->list);
3af24433 3215
bdbc5dd7
TH
3216 if (alloc_cwqs(wq) < 0)
3217 goto err;
3218
f3421797 3219 for_each_cwq_cpu(cpu, wq) {
1537663f 3220 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3221 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3222 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3223
0f900049 3224 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3225 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3226 cwq->wq = wq;
73f53c4a 3227 cwq->flush_color = -1;
1e19ffc6 3228 cwq->max_active = max_active;
1e19ffc6 3229 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3230 }
1537663f 3231
e22bee78
TH
3232 if (flags & WQ_RESCUER) {
3233 struct worker *rescuer;
3234
f2e005aa 3235 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3236 goto err;
3237
3238 wq->rescuer = rescuer = alloc_worker();
3239 if (!rescuer)
3240 goto err;
3241
b196be89
TH
3242 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3243 wq->name);
e22bee78
TH
3244 if (IS_ERR(rescuer->task))
3245 goto err;
3246
e22bee78
TH
3247 rescuer->task->flags |= PF_THREAD_BOUND;
3248 wake_up_process(rescuer->task);
3af24433
ON
3249 }
3250
a0a1a5fd
TH
3251 /*
3252 * workqueue_lock protects global freeze state and workqueues
3253 * list. Grab it, set max_active accordingly and add the new
3254 * workqueue to workqueues list.
3255 */
1537663f 3256 spin_lock(&workqueue_lock);
a0a1a5fd 3257
58a69cb4 3258 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3259 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3260 get_cwq(cpu, wq)->max_active = 0;
3261
1537663f 3262 list_add(&wq->list, &workqueues);
a0a1a5fd 3263
1537663f
TH
3264 spin_unlock(&workqueue_lock);
3265
3af24433 3266 return wq;
4690c4ab
TH
3267err:
3268 if (wq) {
bdbc5dd7 3269 free_cwqs(wq);
f2e005aa 3270 free_mayday_mask(wq->mayday_mask);
e22bee78 3271 kfree(wq->rescuer);
4690c4ab
TH
3272 kfree(wq);
3273 }
3274 return NULL;
3af24433 3275}
d320c038 3276EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3277
3af24433
ON
3278/**
3279 * destroy_workqueue - safely terminate a workqueue
3280 * @wq: target workqueue
3281 *
3282 * Safely destroy a workqueue. All work currently pending will be done first.
3283 */
3284void destroy_workqueue(struct workqueue_struct *wq)
3285{
c8e55f36 3286 unsigned int cpu;
3af24433 3287
9c5a2ba7
TH
3288 /* drain it before proceeding with destruction */
3289 drain_workqueue(wq);
c8efcc25 3290
a0a1a5fd
TH
3291 /*
3292 * wq list is used to freeze wq, remove from list after
3293 * flushing is complete in case freeze races us.
3294 */
95402b38 3295 spin_lock(&workqueue_lock);
b1f4ec17 3296 list_del(&wq->list);
95402b38 3297 spin_unlock(&workqueue_lock);
3af24433 3298
e22bee78 3299 /* sanity check */
f3421797 3300 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3301 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3302 int i;
3303
73f53c4a
TH
3304 for (i = 0; i < WORK_NR_COLORS; i++)
3305 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3306 BUG_ON(cwq->nr_active);
3307 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3308 }
9b41ea72 3309
e22bee78
TH
3310 if (wq->flags & WQ_RESCUER) {
3311 kthread_stop(wq->rescuer->task);
f2e005aa 3312 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3313 kfree(wq->rescuer);
e22bee78
TH
3314 }
3315
bdbc5dd7 3316 free_cwqs(wq);
3af24433
ON
3317 kfree(wq);
3318}
3319EXPORT_SYMBOL_GPL(destroy_workqueue);
3320
dcd989cb
TH
3321/**
3322 * workqueue_set_max_active - adjust max_active of a workqueue
3323 * @wq: target workqueue
3324 * @max_active: new max_active value.
3325 *
3326 * Set max_active of @wq to @max_active.
3327 *
3328 * CONTEXT:
3329 * Don't call from IRQ context.
3330 */
3331void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3332{
3333 unsigned int cpu;
3334
f3421797 3335 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3336
3337 spin_lock(&workqueue_lock);
3338
3339 wq->saved_max_active = max_active;
3340
f3421797 3341 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3342 struct global_cwq *gcwq = get_gcwq(cpu);
3343
3344 spin_lock_irq(&gcwq->lock);
3345
58a69cb4 3346 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3347 !(gcwq->flags & GCWQ_FREEZING))
3348 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3349
dcd989cb 3350 spin_unlock_irq(&gcwq->lock);
65a64464 3351 }
93981800 3352
dcd989cb 3353 spin_unlock(&workqueue_lock);
15316ba8 3354}
dcd989cb 3355EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3356
eef6a7d5 3357/**
dcd989cb
TH
3358 * workqueue_congested - test whether a workqueue is congested
3359 * @cpu: CPU in question
3360 * @wq: target workqueue
eef6a7d5 3361 *
dcd989cb
TH
3362 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3363 * no synchronization around this function and the test result is
3364 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3365 *
dcd989cb
TH
3366 * RETURNS:
3367 * %true if congested, %false otherwise.
eef6a7d5 3368 */
dcd989cb 3369bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3370{
dcd989cb
TH
3371 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3372
3373 return !list_empty(&cwq->delayed_works);
1da177e4 3374}
dcd989cb 3375EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3376
1fa44eca 3377/**
dcd989cb
TH
3378 * work_cpu - return the last known associated cpu for @work
3379 * @work: the work of interest
1fa44eca 3380 *
dcd989cb 3381 * RETURNS:
bdbc5dd7 3382 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3383 */
dcd989cb 3384unsigned int work_cpu(struct work_struct *work)
1fa44eca 3385{
dcd989cb 3386 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3387
bdbc5dd7 3388 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3389}
dcd989cb 3390EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3391
dcd989cb
TH
3392/**
3393 * work_busy - test whether a work is currently pending or running
3394 * @work: the work to be tested
3395 *
3396 * Test whether @work is currently pending or running. There is no
3397 * synchronization around this function and the test result is
3398 * unreliable and only useful as advisory hints or for debugging.
3399 * Especially for reentrant wqs, the pending state might hide the
3400 * running state.
3401 *
3402 * RETURNS:
3403 * OR'd bitmask of WORK_BUSY_* bits.
3404 */
3405unsigned int work_busy(struct work_struct *work)
1da177e4 3406{
dcd989cb
TH
3407 struct global_cwq *gcwq = get_work_gcwq(work);
3408 unsigned long flags;
3409 unsigned int ret = 0;
1da177e4 3410
dcd989cb
TH
3411 if (!gcwq)
3412 return false;
1da177e4 3413
dcd989cb 3414 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3415
dcd989cb
TH
3416 if (work_pending(work))
3417 ret |= WORK_BUSY_PENDING;
3418 if (find_worker_executing_work(gcwq, work))
3419 ret |= WORK_BUSY_RUNNING;
1da177e4 3420
dcd989cb 3421 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3422
dcd989cb 3423 return ret;
1da177e4 3424}
dcd989cb 3425EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3426
db7bccf4
TH
3427/*
3428 * CPU hotplug.
3429 *
e22bee78
TH
3430 * There are two challenges in supporting CPU hotplug. Firstly, there
3431 * are a lot of assumptions on strong associations among work, cwq and
3432 * gcwq which make migrating pending and scheduled works very
3433 * difficult to implement without impacting hot paths. Secondly,
3434 * gcwqs serve mix of short, long and very long running works making
3435 * blocked draining impractical.
3436 *
628c78e7
TH
3437 * This is solved by allowing a gcwq to be disassociated from the CPU
3438 * running as an unbound one and allowing it to be reattached later if the
3439 * cpu comes back online.
db7bccf4 3440 */
1da177e4 3441
60373152 3442/* claim manager positions of all pools */
8db25e78 3443static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3444{
3445 struct worker_pool *pool;
3446
3447 for_each_worker_pool(pool, gcwq)
3448 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3449 spin_lock_irq(&gcwq->lock);
60373152
TH
3450}
3451
3452/* release manager positions */
8db25e78 3453static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3454{
3455 struct worker_pool *pool;
3456
8db25e78 3457 spin_unlock_irq(&gcwq->lock);
60373152
TH
3458 for_each_worker_pool(pool, gcwq)
3459 mutex_unlock(&pool->manager_mutex);
3460}
3461
628c78e7 3462static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3463{
628c78e7 3464 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3465 struct worker_pool *pool;
db7bccf4
TH
3466 struct worker *worker;
3467 struct hlist_node *pos;
3468 int i;
3af24433 3469
db7bccf4
TH
3470 BUG_ON(gcwq->cpu != smp_processor_id());
3471
8db25e78 3472 gcwq_claim_management_and_lock(gcwq);
3af24433 3473
f2d5a0ee
TH
3474 /*
3475 * We've claimed all manager positions. Make all workers unbound
3476 * and set DISASSOCIATED. Before this, all workers except for the
3477 * ones which are still executing works from before the last CPU
3478 * down must be on the cpu. After this, they may become diasporas.
3479 */
60373152 3480 for_each_worker_pool(pool, gcwq)
4ce62e9e 3481 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3482 worker->flags |= WORKER_UNBOUND;
3af24433 3483
db7bccf4 3484 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3485 worker->flags |= WORKER_UNBOUND;
06ba38a9 3486
f2d5a0ee
TH
3487 gcwq->flags |= GCWQ_DISASSOCIATED;
3488
8db25e78 3489 gcwq_release_management_and_unlock(gcwq);
628c78e7 3490
e22bee78 3491 /*
403c821d 3492 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3493 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3494 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3495 */
e22bee78 3496 schedule();
06ba38a9 3497
e22bee78 3498 /*
628c78e7
TH
3499 * Sched callbacks are disabled now. Zap nr_running. After this,
3500 * nr_running stays zero and need_more_worker() and keep_working()
3501 * are always true as long as the worklist is not empty. @gcwq now
3502 * behaves as unbound (in terms of concurrency management) gcwq
3503 * which is served by workers tied to the CPU.
3504 *
3505 * On return from this function, the current worker would trigger
3506 * unbound chain execution of pending work items if other workers
3507 * didn't already.
e22bee78 3508 */
4ce62e9e
TH
3509 for_each_worker_pool(pool, gcwq)
3510 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3511}
3af24433 3512
8db25e78
TH
3513/*
3514 * Workqueues should be brought up before normal priority CPU notifiers.
3515 * This will be registered high priority CPU notifier.
3516 */
3517static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3518 unsigned long action,
3519 void *hcpu)
3af24433
ON
3520{
3521 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3522 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3523 struct worker_pool *pool;
3ce63377 3524
8db25e78 3525 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3526 case CPU_UP_PREPARE:
4ce62e9e 3527 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3528 struct worker *worker;
3529
3530 if (pool->nr_workers)
3531 continue;
3532
3533 worker = create_worker(pool);
3534 if (!worker)
3535 return NOTIFY_BAD;
3536
3537 spin_lock_irq(&gcwq->lock);
3538 start_worker(worker);
3539 spin_unlock_irq(&gcwq->lock);
3af24433 3540 }
8db25e78 3541 break;
3af24433 3542
db7bccf4
TH
3543 case CPU_DOWN_FAILED:
3544 case CPU_ONLINE:
8db25e78 3545 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3546 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3547 rebind_workers(gcwq);
8db25e78 3548 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3549 break;
00dfcaf7 3550 }
65758202
TH
3551 return NOTIFY_OK;
3552}
3553
3554/*
3555 * Workqueues should be brought down after normal priority CPU notifiers.
3556 * This will be registered as low priority CPU notifier.
3557 */
3558static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3559 unsigned long action,
3560 void *hcpu)
3561{
8db25e78
TH
3562 unsigned int cpu = (unsigned long)hcpu;
3563 struct work_struct unbind_work;
3564
65758202
TH
3565 switch (action & ~CPU_TASKS_FROZEN) {
3566 case CPU_DOWN_PREPARE:
8db25e78
TH
3567 /* unbinding should happen on the local CPU */
3568 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3569 schedule_work_on(cpu, &unbind_work);
3570 flush_work(&unbind_work);
3571 break;
65758202
TH
3572 }
3573 return NOTIFY_OK;
3574}
3575
2d3854a3 3576#ifdef CONFIG_SMP
8ccad40d 3577
2d3854a3 3578struct work_for_cpu {
ed48ece2 3579 struct work_struct work;
2d3854a3
RR
3580 long (*fn)(void *);
3581 void *arg;
3582 long ret;
3583};
3584
ed48ece2 3585static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3586{
ed48ece2
TH
3587 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3588
2d3854a3
RR
3589 wfc->ret = wfc->fn(wfc->arg);
3590}
3591
3592/**
3593 * work_on_cpu - run a function in user context on a particular cpu
3594 * @cpu: the cpu to run on
3595 * @fn: the function to run
3596 * @arg: the function arg
3597 *
31ad9081
RR
3598 * This will return the value @fn returns.
3599 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3600 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3601 */
3602long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3603{
ed48ece2 3604 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3605
ed48ece2
TH
3606 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3607 schedule_work_on(cpu, &wfc.work);
3608 flush_work(&wfc.work);
2d3854a3
RR
3609 return wfc.ret;
3610}
3611EXPORT_SYMBOL_GPL(work_on_cpu);
3612#endif /* CONFIG_SMP */
3613
a0a1a5fd
TH
3614#ifdef CONFIG_FREEZER
3615
3616/**
3617 * freeze_workqueues_begin - begin freezing workqueues
3618 *
58a69cb4
TH
3619 * Start freezing workqueues. After this function returns, all freezable
3620 * workqueues will queue new works to their frozen_works list instead of
3621 * gcwq->worklist.
a0a1a5fd
TH
3622 *
3623 * CONTEXT:
8b03ae3c 3624 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3625 */
3626void freeze_workqueues_begin(void)
3627{
a0a1a5fd
TH
3628 unsigned int cpu;
3629
3630 spin_lock(&workqueue_lock);
3631
3632 BUG_ON(workqueue_freezing);
3633 workqueue_freezing = true;
3634
f3421797 3635 for_each_gcwq_cpu(cpu) {
8b03ae3c 3636 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3637 struct workqueue_struct *wq;
8b03ae3c
TH
3638
3639 spin_lock_irq(&gcwq->lock);
3640
db7bccf4
TH
3641 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3642 gcwq->flags |= GCWQ_FREEZING;
3643
a0a1a5fd
TH
3644 list_for_each_entry(wq, &workqueues, list) {
3645 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3646
58a69cb4 3647 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3648 cwq->max_active = 0;
a0a1a5fd 3649 }
8b03ae3c
TH
3650
3651 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3652 }
3653
3654 spin_unlock(&workqueue_lock);
3655}
3656
3657/**
58a69cb4 3658 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3659 *
3660 * Check whether freezing is complete. This function must be called
3661 * between freeze_workqueues_begin() and thaw_workqueues().
3662 *
3663 * CONTEXT:
3664 * Grabs and releases workqueue_lock.
3665 *
3666 * RETURNS:
58a69cb4
TH
3667 * %true if some freezable workqueues are still busy. %false if freezing
3668 * is complete.
a0a1a5fd
TH
3669 */
3670bool freeze_workqueues_busy(void)
3671{
a0a1a5fd
TH
3672 unsigned int cpu;
3673 bool busy = false;
3674
3675 spin_lock(&workqueue_lock);
3676
3677 BUG_ON(!workqueue_freezing);
3678
f3421797 3679 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3680 struct workqueue_struct *wq;
a0a1a5fd
TH
3681 /*
3682 * nr_active is monotonically decreasing. It's safe
3683 * to peek without lock.
3684 */
3685 list_for_each_entry(wq, &workqueues, list) {
3686 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3687
58a69cb4 3688 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3689 continue;
3690
3691 BUG_ON(cwq->nr_active < 0);
3692 if (cwq->nr_active) {
3693 busy = true;
3694 goto out_unlock;
3695 }
3696 }
3697 }
3698out_unlock:
3699 spin_unlock(&workqueue_lock);
3700 return busy;
3701}
3702
3703/**
3704 * thaw_workqueues - thaw workqueues
3705 *
3706 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3707 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3708 *
3709 * CONTEXT:
8b03ae3c 3710 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3711 */
3712void thaw_workqueues(void)
3713{
a0a1a5fd
TH
3714 unsigned int cpu;
3715
3716 spin_lock(&workqueue_lock);
3717
3718 if (!workqueue_freezing)
3719 goto out_unlock;
3720
f3421797 3721 for_each_gcwq_cpu(cpu) {
8b03ae3c 3722 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3723 struct worker_pool *pool;
bdbc5dd7 3724 struct workqueue_struct *wq;
8b03ae3c
TH
3725
3726 spin_lock_irq(&gcwq->lock);
3727
db7bccf4
TH
3728 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3729 gcwq->flags &= ~GCWQ_FREEZING;
3730
a0a1a5fd
TH
3731 list_for_each_entry(wq, &workqueues, list) {
3732 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3733
58a69cb4 3734 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3735 continue;
3736
a0a1a5fd
TH
3737 /* restore max_active and repopulate worklist */
3738 cwq->max_active = wq->saved_max_active;
3739
3740 while (!list_empty(&cwq->delayed_works) &&
3741 cwq->nr_active < cwq->max_active)
3742 cwq_activate_first_delayed(cwq);
a0a1a5fd 3743 }
8b03ae3c 3744
4ce62e9e
TH
3745 for_each_worker_pool(pool, gcwq)
3746 wake_up_worker(pool);
e22bee78 3747
8b03ae3c 3748 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3749 }
3750
3751 workqueue_freezing = false;
3752out_unlock:
3753 spin_unlock(&workqueue_lock);
3754}
3755#endif /* CONFIG_FREEZER */
3756
6ee0578b 3757static int __init init_workqueues(void)
1da177e4 3758{
c34056a3 3759 unsigned int cpu;
c8e55f36 3760 int i;
c34056a3 3761
65758202
TH
3762 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3763 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3764
3765 /* initialize gcwqs */
f3421797 3766 for_each_gcwq_cpu(cpu) {
8b03ae3c 3767 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3768 struct worker_pool *pool;
8b03ae3c
TH
3769
3770 spin_lock_init(&gcwq->lock);
3771 gcwq->cpu = cpu;
477a3c33 3772 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3773
c8e55f36
TH
3774 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3775 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3776
4ce62e9e
TH
3777 for_each_worker_pool(pool, gcwq) {
3778 pool->gcwq = gcwq;
3779 INIT_LIST_HEAD(&pool->worklist);
3780 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3781
4ce62e9e
TH
3782 init_timer_deferrable(&pool->idle_timer);
3783 pool->idle_timer.function = idle_worker_timeout;
3784 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3785
4ce62e9e
TH
3786 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3787 (unsigned long)pool);
3788
60373152 3789 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3790 ida_init(&pool->worker_ida);
3791 }
db7bccf4 3792
25511a47 3793 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3794 }
3795
e22bee78 3796 /* create the initial worker */
f3421797 3797 for_each_online_gcwq_cpu(cpu) {
e22bee78 3798 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3799 struct worker_pool *pool;
e22bee78 3800
477a3c33
TH
3801 if (cpu != WORK_CPU_UNBOUND)
3802 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3803
3804 for_each_worker_pool(pool, gcwq) {
3805 struct worker *worker;
3806
bc2ae0f5 3807 worker = create_worker(pool);
4ce62e9e
TH
3808 BUG_ON(!worker);
3809 spin_lock_irq(&gcwq->lock);
3810 start_worker(worker);
3811 spin_unlock_irq(&gcwq->lock);
3812 }
e22bee78
TH
3813 }
3814
d320c038
TH
3815 system_wq = alloc_workqueue("events", 0, 0);
3816 system_long_wq = alloc_workqueue("events_long", 0, 0);
3817 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3818 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3819 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3820 system_freezable_wq = alloc_workqueue("events_freezable",
3821 WQ_FREEZABLE, 0);
62d3c543
AS
3822 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3823 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3824 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3825 !system_unbound_wq || !system_freezable_wq ||
3826 !system_nrt_freezable_wq);
6ee0578b 3827 return 0;
1da177e4 3828}
6ee0578b 3829early_initcall(init_workqueues);
This page took 0.830262 seconds and 5 git commands to generate.