workqueue: add missing wmb() in clear_work_data()
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
b5490077
TH
536 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued cwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 539 *
bbb68dfa
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
541 * and clear_work_data() can be used to set the cwq, cpu or clear
542 * work->data. These functions should only be called while the work is
543 * owned - ie. while the PENDING bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
546 * a work. gcwq is available once the work has been queued anywhere after
547 * initialization until it is sync canceled. cwq is available only while
548 * the work item is queued.
549 *
550 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
551 * canceled. While being canceled, a work item may have its PENDING set
552 * but stay off timer and worklist for arbitrarily long and nobody should
553 * try to steal the PENDING bit.
14441960 554 */
7a22ad75
TH
555static inline void set_work_data(struct work_struct *work, unsigned long data,
556 unsigned long flags)
365970a1 557{
4594bf15 558 BUG_ON(!work_pending(work));
7a22ad75
TH
559 atomic_long_set(&work->data, data | flags | work_static(work));
560}
365970a1 561
7a22ad75
TH
562static void set_work_cwq(struct work_struct *work,
563 struct cpu_workqueue_struct *cwq,
564 unsigned long extra_flags)
565{
566 set_work_data(work, (unsigned long)cwq,
e120153d 567 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
568}
569
8930caba
TH
570static void set_work_cpu_and_clear_pending(struct work_struct *work,
571 unsigned int cpu)
7a22ad75 572{
23657bb1
TH
573 /*
574 * The following wmb is paired with the implied mb in
575 * test_and_set_bit(PENDING) and ensures all updates to @work made
576 * here are visible to and precede any updates by the next PENDING
577 * owner.
578 */
579 smp_wmb();
b5490077 580 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 581}
f756d5e2 582
7a22ad75 583static void clear_work_data(struct work_struct *work)
1da177e4 584{
23657bb1 585 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 586 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
587}
588
7a22ad75 589static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 590{
e120153d 591 unsigned long data = atomic_long_read(&work->data);
7a22ad75 592
e120153d
TH
593 if (data & WORK_STRUCT_CWQ)
594 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
595 else
596 return NULL;
4d707b9f
ON
597}
598
7a22ad75 599static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 600{
e120153d 601 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
602 unsigned int cpu;
603
e120153d
TH
604 if (data & WORK_STRUCT_CWQ)
605 return ((struct cpu_workqueue_struct *)
bd7bdd43 606 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 607
b5490077 608 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 609 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
610 return NULL;
611
f3421797 612 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 613 return get_gcwq(cpu);
b1f4ec17
ON
614}
615
bbb68dfa
TH
616static void mark_work_canceling(struct work_struct *work)
617{
618 struct global_cwq *gcwq = get_work_gcwq(work);
619 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
620
621 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
622 WORK_STRUCT_PENDING);
623}
624
625static bool work_is_canceling(struct work_struct *work)
626{
627 unsigned long data = atomic_long_read(&work->data);
628
629 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
630}
631
e22bee78 632/*
3270476a
TH
633 * Policy functions. These define the policies on how the global worker
634 * pools are managed. Unless noted otherwise, these functions assume that
635 * they're being called with gcwq->lock held.
e22bee78
TH
636 */
637
63d95a91 638static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 639{
3270476a 640 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
641}
642
4594bf15 643/*
e22bee78
TH
644 * Need to wake up a worker? Called from anything but currently
645 * running workers.
974271c4
TH
646 *
647 * Note that, because unbound workers never contribute to nr_running, this
648 * function will always return %true for unbound gcwq as long as the
649 * worklist isn't empty.
4594bf15 650 */
63d95a91 651static bool need_more_worker(struct worker_pool *pool)
365970a1 652{
63d95a91 653 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 654}
4594bf15 655
e22bee78 656/* Can I start working? Called from busy but !running workers. */
63d95a91 657static bool may_start_working(struct worker_pool *pool)
e22bee78 658{
63d95a91 659 return pool->nr_idle;
e22bee78
TH
660}
661
662/* Do I need to keep working? Called from currently running workers. */
63d95a91 663static bool keep_working(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 666
3270476a 667 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
668}
669
670/* Do we need a new worker? Called from manager. */
63d95a91 671static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 672{
63d95a91 673 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 674}
365970a1 675
e22bee78 676/* Do I need to be the manager? */
63d95a91 677static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 678{
63d95a91 679 return need_to_create_worker(pool) ||
11ebea50 680 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
681}
682
683/* Do we have too many workers and should some go away? */
63d95a91 684static bool too_many_workers(struct worker_pool *pool)
e22bee78 685{
60373152 686 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
687 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
688 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
689
690 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
691}
692
4d707b9f 693/*
e22bee78
TH
694 * Wake up functions.
695 */
696
7e11629d 697/* Return the first worker. Safe with preemption disabled */
63d95a91 698static struct worker *first_worker(struct worker_pool *pool)
7e11629d 699{
63d95a91 700 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
701 return NULL;
702
63d95a91 703 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
704}
705
706/**
707 * wake_up_worker - wake up an idle worker
63d95a91 708 * @pool: worker pool to wake worker from
7e11629d 709 *
63d95a91 710 * Wake up the first idle worker of @pool.
7e11629d
TH
711 *
712 * CONTEXT:
713 * spin_lock_irq(gcwq->lock).
714 */
63d95a91 715static void wake_up_worker(struct worker_pool *pool)
7e11629d 716{
63d95a91 717 struct worker *worker = first_worker(pool);
7e11629d
TH
718
719 if (likely(worker))
720 wake_up_process(worker->task);
721}
722
d302f017 723/**
e22bee78
TH
724 * wq_worker_waking_up - a worker is waking up
725 * @task: task waking up
726 * @cpu: CPU @task is waking up to
727 *
728 * This function is called during try_to_wake_up() when a worker is
729 * being awoken.
730 *
731 * CONTEXT:
732 * spin_lock_irq(rq->lock)
733 */
734void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
735{
736 struct worker *worker = kthread_data(task);
737
2d64672e 738 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 739 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
740}
741
742/**
743 * wq_worker_sleeping - a worker is going to sleep
744 * @task: task going to sleep
745 * @cpu: CPU in question, must be the current CPU number
746 *
747 * This function is called during schedule() when a busy worker is
748 * going to sleep. Worker on the same cpu can be woken up by
749 * returning pointer to its task.
750 *
751 * CONTEXT:
752 * spin_lock_irq(rq->lock)
753 *
754 * RETURNS:
755 * Worker task on @cpu to wake up, %NULL if none.
756 */
757struct task_struct *wq_worker_sleeping(struct task_struct *task,
758 unsigned int cpu)
759{
760 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 761 struct worker_pool *pool = worker->pool;
63d95a91 762 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 763
2d64672e 764 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
765 return NULL;
766
767 /* this can only happen on the local cpu */
768 BUG_ON(cpu != raw_smp_processor_id());
769
770 /*
771 * The counterpart of the following dec_and_test, implied mb,
772 * worklist not empty test sequence is in insert_work().
773 * Please read comment there.
774 *
628c78e7
TH
775 * NOT_RUNNING is clear. This means that we're bound to and
776 * running on the local cpu w/ rq lock held and preemption
777 * disabled, which in turn means that none else could be
778 * manipulating idle_list, so dereferencing idle_list without gcwq
779 * lock is safe.
e22bee78 780 */
bd7bdd43 781 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 782 to_wakeup = first_worker(pool);
e22bee78
TH
783 return to_wakeup ? to_wakeup->task : NULL;
784}
785
786/**
787 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 788 * @worker: self
d302f017
TH
789 * @flags: flags to set
790 * @wakeup: wakeup an idle worker if necessary
791 *
e22bee78
TH
792 * Set @flags in @worker->flags and adjust nr_running accordingly. If
793 * nr_running becomes zero and @wakeup is %true, an idle worker is
794 * woken up.
d302f017 795 *
cb444766
TH
796 * CONTEXT:
797 * spin_lock_irq(gcwq->lock)
d302f017
TH
798 */
799static inline void worker_set_flags(struct worker *worker, unsigned int flags,
800 bool wakeup)
801{
bd7bdd43 802 struct worker_pool *pool = worker->pool;
e22bee78 803
cb444766
TH
804 WARN_ON_ONCE(worker->task != current);
805
e22bee78
TH
806 /*
807 * If transitioning into NOT_RUNNING, adjust nr_running and
808 * wake up an idle worker as necessary if requested by
809 * @wakeup.
810 */
811 if ((flags & WORKER_NOT_RUNNING) &&
812 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 813 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
814
815 if (wakeup) {
816 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 817 !list_empty(&pool->worklist))
63d95a91 818 wake_up_worker(pool);
e22bee78
TH
819 } else
820 atomic_dec(nr_running);
821 }
822
d302f017
TH
823 worker->flags |= flags;
824}
825
826/**
e22bee78 827 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 828 * @worker: self
d302f017
TH
829 * @flags: flags to clear
830 *
e22bee78 831 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 832 *
cb444766
TH
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock)
d302f017
TH
835 */
836static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
837{
63d95a91 838 struct worker_pool *pool = worker->pool;
e22bee78
TH
839 unsigned int oflags = worker->flags;
840
cb444766
TH
841 WARN_ON_ONCE(worker->task != current);
842
d302f017 843 worker->flags &= ~flags;
e22bee78 844
42c025f3
TH
845 /*
846 * If transitioning out of NOT_RUNNING, increment nr_running. Note
847 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
848 * of multiple flags, not a single flag.
849 */
e22bee78
TH
850 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
851 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 852 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
853}
854
c8e55f36
TH
855/**
856 * busy_worker_head - return the busy hash head for a work
857 * @gcwq: gcwq of interest
858 * @work: work to be hashed
859 *
860 * Return hash head of @gcwq for @work.
861 *
862 * CONTEXT:
863 * spin_lock_irq(gcwq->lock).
864 *
865 * RETURNS:
866 * Pointer to the hash head.
867 */
868static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
869 struct work_struct *work)
870{
871 const int base_shift = ilog2(sizeof(struct work_struct));
872 unsigned long v = (unsigned long)work;
873
874 /* simple shift and fold hash, do we need something better? */
875 v >>= base_shift;
876 v += v >> BUSY_WORKER_HASH_ORDER;
877 v &= BUSY_WORKER_HASH_MASK;
878
879 return &gcwq->busy_hash[v];
880}
881
8cca0eea
TH
882/**
883 * __find_worker_executing_work - find worker which is executing a work
884 * @gcwq: gcwq of interest
885 * @bwh: hash head as returned by busy_worker_head()
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. @bwh should be
889 * the hash head obtained by calling busy_worker_head() with the same
890 * work.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
898 */
899static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
900 struct hlist_head *bwh,
901 struct work_struct *work)
902{
903 struct worker *worker;
904 struct hlist_node *tmp;
905
906 hlist_for_each_entry(worker, tmp, bwh, hentry)
907 if (worker->current_work == work)
908 return worker;
909 return NULL;
910}
911
912/**
913 * find_worker_executing_work - find worker which is executing a work
914 * @gcwq: gcwq of interest
915 * @work: work to find worker for
916 *
917 * Find a worker which is executing @work on @gcwq. This function is
918 * identical to __find_worker_executing_work() except that this
919 * function calculates @bwh itself.
920 *
921 * CONTEXT:
922 * spin_lock_irq(gcwq->lock).
923 *
924 * RETURNS:
925 * Pointer to worker which is executing @work if found, NULL
926 * otherwise.
4d707b9f 927 */
8cca0eea
TH
928static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
929 struct work_struct *work)
4d707b9f 930{
8cca0eea
TH
931 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
932 work);
4d707b9f
ON
933}
934
bf4ede01
TH
935/**
936 * move_linked_works - move linked works to a list
937 * @work: start of series of works to be scheduled
938 * @head: target list to append @work to
939 * @nextp: out paramter for nested worklist walking
940 *
941 * Schedule linked works starting from @work to @head. Work series to
942 * be scheduled starts at @work and includes any consecutive work with
943 * WORK_STRUCT_LINKED set in its predecessor.
944 *
945 * If @nextp is not NULL, it's updated to point to the next work of
946 * the last scheduled work. This allows move_linked_works() to be
947 * nested inside outer list_for_each_entry_safe().
948 *
949 * CONTEXT:
950 * spin_lock_irq(gcwq->lock).
951 */
952static void move_linked_works(struct work_struct *work, struct list_head *head,
953 struct work_struct **nextp)
954{
955 struct work_struct *n;
956
957 /*
958 * Linked worklist will always end before the end of the list,
959 * use NULL for list head.
960 */
961 list_for_each_entry_safe_from(work, n, NULL, entry) {
962 list_move_tail(&work->entry, head);
963 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
964 break;
965 }
966
967 /*
968 * If we're already inside safe list traversal and have moved
969 * multiple works to the scheduled queue, the next position
970 * needs to be updated.
971 */
972 if (nextp)
973 *nextp = n;
974}
975
976static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
977{
978 struct work_struct *work = list_first_entry(&cwq->delayed_works,
979 struct work_struct, entry);
980
981 trace_workqueue_activate_work(work);
982 move_linked_works(work, &cwq->pool->worklist, NULL);
983 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
984 cwq->nr_active++;
985}
986
987/**
988 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
989 * @cwq: cwq of interest
990 * @color: color of work which left the queue
991 * @delayed: for a delayed work
992 *
993 * A work either has completed or is removed from pending queue,
994 * decrement nr_in_flight of its cwq and handle workqueue flushing.
995 *
996 * CONTEXT:
997 * spin_lock_irq(gcwq->lock).
998 */
999static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1000 bool delayed)
1001{
1002 /* ignore uncolored works */
1003 if (color == WORK_NO_COLOR)
1004 return;
1005
1006 cwq->nr_in_flight[color]--;
1007
1008 if (!delayed) {
1009 cwq->nr_active--;
1010 if (!list_empty(&cwq->delayed_works)) {
1011 /* one down, submit a delayed one */
1012 if (cwq->nr_active < cwq->max_active)
1013 cwq_activate_first_delayed(cwq);
1014 }
1015 }
1016
1017 /* is flush in progress and are we at the flushing tip? */
1018 if (likely(cwq->flush_color != color))
1019 return;
1020
1021 /* are there still in-flight works? */
1022 if (cwq->nr_in_flight[color])
1023 return;
1024
1025 /* this cwq is done, clear flush_color */
1026 cwq->flush_color = -1;
1027
1028 /*
1029 * If this was the last cwq, wake up the first flusher. It
1030 * will handle the rest.
1031 */
1032 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1033 complete(&cwq->wq->first_flusher->done);
1034}
1035
36e227d2 1036/**
bbb68dfa 1037 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1038 * @work: work item to steal
1039 * @is_dwork: @work is a delayed_work
bbb68dfa 1040 * @flags: place to store irq state
36e227d2
TH
1041 *
1042 * Try to grab PENDING bit of @work. This function can handle @work in any
1043 * stable state - idle, on timer or on worklist. Return values are
1044 *
1045 * 1 if @work was pending and we successfully stole PENDING
1046 * 0 if @work was idle and we claimed PENDING
1047 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1048 * -ENOENT if someone else is canceling @work, this state may persist
1049 * for arbitrarily long
36e227d2 1050 *
bbb68dfa
TH
1051 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1052 * preempted while holding PENDING and @work off queue, preemption must be
1053 * disabled on entry. This ensures that we don't return -EAGAIN while
1054 * another task is preempted in this function.
1055 *
1056 * On successful return, >= 0, irq is disabled and the caller is
1057 * responsible for releasing it using local_irq_restore(*@flags).
1058 *
1059 * This function is safe to call from any context other than IRQ handler.
1060 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1061 * this function return -EAGAIN perpetually.
bf4ede01 1062 */
bbb68dfa
TH
1063static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1064 unsigned long *flags)
bf4ede01
TH
1065{
1066 struct global_cwq *gcwq;
bf4ede01 1067
bbb68dfa
TH
1068 WARN_ON_ONCE(in_irq());
1069
1070 local_irq_save(*flags);
1071
36e227d2
TH
1072 /* try to steal the timer if it exists */
1073 if (is_dwork) {
1074 struct delayed_work *dwork = to_delayed_work(work);
1075
1076 if (likely(del_timer(&dwork->timer)))
1077 return 1;
1078 }
1079
1080 /* try to claim PENDING the normal way */
bf4ede01
TH
1081 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1082 return 0;
1083
1084 /*
1085 * The queueing is in progress, or it is already queued. Try to
1086 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1087 */
1088 gcwq = get_work_gcwq(work);
1089 if (!gcwq)
bbb68dfa 1090 goto fail;
bf4ede01 1091
bbb68dfa 1092 spin_lock(&gcwq->lock);
bf4ede01
TH
1093 if (!list_empty(&work->entry)) {
1094 /*
1095 * This work is queued, but perhaps we locked the wrong gcwq.
1096 * In that case we must see the new value after rmb(), see
1097 * insert_work()->wmb().
1098 */
1099 smp_rmb();
1100 if (gcwq == get_work_gcwq(work)) {
1101 debug_work_deactivate(work);
1102 list_del_init(&work->entry);
1103 cwq_dec_nr_in_flight(get_work_cwq(work),
1104 get_work_color(work),
1105 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1106
bbb68dfa 1107 spin_unlock(&gcwq->lock);
36e227d2 1108 return 1;
bf4ede01
TH
1109 }
1110 }
bbb68dfa
TH
1111 spin_unlock(&gcwq->lock);
1112fail:
1113 local_irq_restore(*flags);
1114 if (work_is_canceling(work))
1115 return -ENOENT;
1116 cpu_relax();
36e227d2 1117 return -EAGAIN;
bf4ede01
TH
1118}
1119
4690c4ab 1120/**
7e11629d 1121 * insert_work - insert a work into gcwq
4690c4ab
TH
1122 * @cwq: cwq @work belongs to
1123 * @work: work to insert
1124 * @head: insertion point
1125 * @extra_flags: extra WORK_STRUCT_* flags to set
1126 *
7e11629d
TH
1127 * Insert @work which belongs to @cwq into @gcwq after @head.
1128 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1129 *
1130 * CONTEXT:
8b03ae3c 1131 * spin_lock_irq(gcwq->lock).
4690c4ab 1132 */
b89deed3 1133static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1134 struct work_struct *work, struct list_head *head,
1135 unsigned int extra_flags)
b89deed3 1136{
63d95a91 1137 struct worker_pool *pool = cwq->pool;
e22bee78 1138
4690c4ab 1139 /* we own @work, set data and link */
7a22ad75 1140 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1141
6e84d644
ON
1142 /*
1143 * Ensure that we get the right work->data if we see the
1144 * result of list_add() below, see try_to_grab_pending().
1145 */
1146 smp_wmb();
4690c4ab 1147
1a4d9b0a 1148 list_add_tail(&work->entry, head);
e22bee78
TH
1149
1150 /*
1151 * Ensure either worker_sched_deactivated() sees the above
1152 * list_add_tail() or we see zero nr_running to avoid workers
1153 * lying around lazily while there are works to be processed.
1154 */
1155 smp_mb();
1156
63d95a91
TH
1157 if (__need_more_worker(pool))
1158 wake_up_worker(pool);
b89deed3
ON
1159}
1160
c8efcc25
TH
1161/*
1162 * Test whether @work is being queued from another work executing on the
1163 * same workqueue. This is rather expensive and should only be used from
1164 * cold paths.
1165 */
1166static bool is_chained_work(struct workqueue_struct *wq)
1167{
1168 unsigned long flags;
1169 unsigned int cpu;
1170
1171 for_each_gcwq_cpu(cpu) {
1172 struct global_cwq *gcwq = get_gcwq(cpu);
1173 struct worker *worker;
1174 struct hlist_node *pos;
1175 int i;
1176
1177 spin_lock_irqsave(&gcwq->lock, flags);
1178 for_each_busy_worker(worker, i, pos, gcwq) {
1179 if (worker->task != current)
1180 continue;
1181 spin_unlock_irqrestore(&gcwq->lock, flags);
1182 /*
1183 * I'm @worker, no locking necessary. See if @work
1184 * is headed to the same workqueue.
1185 */
1186 return worker->current_cwq->wq == wq;
1187 }
1188 spin_unlock_irqrestore(&gcwq->lock, flags);
1189 }
1190 return false;
1191}
1192
4690c4ab 1193static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1194 struct work_struct *work)
1195{
502ca9d8
TH
1196 struct global_cwq *gcwq;
1197 struct cpu_workqueue_struct *cwq;
1e19ffc6 1198 struct list_head *worklist;
8a2e8e5d 1199 unsigned int work_flags;
8930caba
TH
1200
1201 /*
1202 * While a work item is PENDING && off queue, a task trying to
1203 * steal the PENDING will busy-loop waiting for it to either get
1204 * queued or lose PENDING. Grabbing PENDING and queueing should
1205 * happen with IRQ disabled.
1206 */
1207 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1208
dc186ad7 1209 debug_work_activate(work);
1e19ffc6 1210
c8efcc25 1211 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1212 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1213 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1214 return;
1215
c7fc77f7
TH
1216 /* determine gcwq to use */
1217 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1218 struct global_cwq *last_gcwq;
1219
57469821 1220 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1221 cpu = raw_smp_processor_id();
1222
18aa9eff
TH
1223 /*
1224 * It's multi cpu. If @wq is non-reentrant and @work
1225 * was previously on a different cpu, it might still
1226 * be running there, in which case the work needs to
1227 * be queued on that cpu to guarantee non-reentrance.
1228 */
502ca9d8 1229 gcwq = get_gcwq(cpu);
18aa9eff
TH
1230 if (wq->flags & WQ_NON_REENTRANT &&
1231 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1232 struct worker *worker;
1233
8930caba 1234 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1235
1236 worker = find_worker_executing_work(last_gcwq, work);
1237
1238 if (worker && worker->current_cwq->wq == wq)
1239 gcwq = last_gcwq;
1240 else {
1241 /* meh... not running there, queue here */
8930caba
TH
1242 spin_unlock(&last_gcwq->lock);
1243 spin_lock(&gcwq->lock);
18aa9eff 1244 }
8930caba
TH
1245 } else {
1246 spin_lock(&gcwq->lock);
1247 }
f3421797
TH
1248 } else {
1249 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1250 spin_lock(&gcwq->lock);
502ca9d8
TH
1251 }
1252
1253 /* gcwq determined, get cwq and queue */
1254 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1255 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1256
f5b2552b 1257 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1258 spin_unlock(&gcwq->lock);
f5b2552b
DC
1259 return;
1260 }
1e19ffc6 1261
73f53c4a 1262 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1263 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1264
1265 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1266 trace_workqueue_activate_work(work);
1e19ffc6 1267 cwq->nr_active++;
3270476a 1268 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1269 } else {
1270 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1271 worklist = &cwq->delayed_works;
8a2e8e5d 1272 }
1e19ffc6 1273
8a2e8e5d 1274 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1275
8930caba 1276 spin_unlock(&gcwq->lock);
1da177e4
LT
1277}
1278
c1a220e7
ZR
1279/**
1280 * queue_work_on - queue work on specific cpu
1281 * @cpu: CPU number to execute work on
1282 * @wq: workqueue to use
1283 * @work: work to queue
1284 *
d4283e93 1285 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1286 *
1287 * We queue the work to a specific CPU, the caller must ensure it
1288 * can't go away.
1289 */
d4283e93
TH
1290bool queue_work_on(int cpu, struct workqueue_struct *wq,
1291 struct work_struct *work)
c1a220e7 1292{
d4283e93 1293 bool ret = false;
8930caba
TH
1294 unsigned long flags;
1295
1296 local_irq_save(flags);
c1a220e7 1297
22df02bb 1298 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1299 __queue_work(cpu, wq, work);
d4283e93 1300 ret = true;
c1a220e7 1301 }
8930caba
TH
1302
1303 local_irq_restore(flags);
c1a220e7
ZR
1304 return ret;
1305}
1306EXPORT_SYMBOL_GPL(queue_work_on);
1307
0fcb78c2 1308/**
0a13c00e 1309 * queue_work - queue work on a workqueue
0fcb78c2 1310 * @wq: workqueue to use
0a13c00e 1311 * @work: work to queue
0fcb78c2 1312 *
d4283e93 1313 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1314 *
1315 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1316 * it can be processed by another CPU.
0fcb78c2 1317 */
d4283e93 1318bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1319{
57469821 1320 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1321}
1322EXPORT_SYMBOL_GPL(queue_work);
1323
d8e794df 1324void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1325{
1326 struct delayed_work *dwork = (struct delayed_work *)__data;
1327 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1328
8930caba 1329 local_irq_disable();
1265057f 1330 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1331 local_irq_enable();
1da177e4 1332}
d8e794df 1333EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1334
7beb2edf
TH
1335static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1336 struct delayed_work *dwork, unsigned long delay)
1337{
1338 struct timer_list *timer = &dwork->timer;
1339 struct work_struct *work = &dwork->work;
1340 unsigned int lcpu;
1341
1342 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1343 timer->data != (unsigned long)dwork);
1344 BUG_ON(timer_pending(timer));
1345 BUG_ON(!list_empty(&work->entry));
1346
1347 timer_stats_timer_set_start_info(&dwork->timer);
1348
1349 /*
1350 * This stores cwq for the moment, for the timer_fn. Note that the
1351 * work's gcwq is preserved to allow reentrance detection for
1352 * delayed works.
1353 */
1354 if (!(wq->flags & WQ_UNBOUND)) {
1355 struct global_cwq *gcwq = get_work_gcwq(work);
1356
1357 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1358 lcpu = gcwq->cpu;
1359 else
1360 lcpu = raw_smp_processor_id();
1361 } else {
1362 lcpu = WORK_CPU_UNBOUND;
1363 }
1364
1365 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1366
1265057f 1367 dwork->cpu = cpu;
7beb2edf
TH
1368 timer->expires = jiffies + delay;
1369
1370 if (unlikely(cpu != WORK_CPU_UNBOUND))
1371 add_timer_on(timer, cpu);
1372 else
1373 add_timer(timer);
1374}
1375
0fcb78c2
REB
1376/**
1377 * queue_delayed_work_on - queue work on specific CPU after delay
1378 * @cpu: CPU number to execute work on
1379 * @wq: workqueue to use
af9997e4 1380 * @dwork: work to queue
0fcb78c2
REB
1381 * @delay: number of jiffies to wait before queueing
1382 *
715f1300
TH
1383 * Returns %false if @work was already on a queue, %true otherwise. If
1384 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1385 * execution.
0fcb78c2 1386 */
d4283e93
TH
1387bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1388 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1389{
52bad64d 1390 struct work_struct *work = &dwork->work;
d4283e93 1391 bool ret = false;
8930caba
TH
1392 unsigned long flags;
1393
715f1300
TH
1394 if (!delay)
1395 return queue_work_on(cpu, wq, &dwork->work);
1396
8930caba
TH
1397 /* read the comment in __queue_work() */
1398 local_irq_save(flags);
7a6bc1cd 1399
22df02bb 1400 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1401 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1402 ret = true;
7a6bc1cd 1403 }
8930caba
TH
1404
1405 local_irq_restore(flags);
7a6bc1cd
VP
1406 return ret;
1407}
ae90dd5d 1408EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1409
0a13c00e
TH
1410/**
1411 * queue_delayed_work - queue work on a workqueue after delay
1412 * @wq: workqueue to use
1413 * @dwork: delayable work to queue
1414 * @delay: number of jiffies to wait before queueing
1415 *
715f1300 1416 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1417 */
d4283e93 1418bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1419 struct delayed_work *dwork, unsigned long delay)
1420{
57469821 1421 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1422}
1423EXPORT_SYMBOL_GPL(queue_delayed_work);
1424
8376fe22
TH
1425/**
1426 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1427 * @cpu: CPU number to execute work on
1428 * @wq: workqueue to use
1429 * @dwork: work to queue
1430 * @delay: number of jiffies to wait before queueing
1431 *
1432 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1433 * modify @dwork's timer so that it expires after @delay. If @delay is
1434 * zero, @work is guaranteed to be scheduled immediately regardless of its
1435 * current state.
1436 *
1437 * Returns %false if @dwork was idle and queued, %true if @dwork was
1438 * pending and its timer was modified.
1439 *
1440 * This function is safe to call from any context other than IRQ handler.
1441 * See try_to_grab_pending() for details.
1442 */
1443bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1444 struct delayed_work *dwork, unsigned long delay)
1445{
1446 unsigned long flags;
1447 int ret;
1448
1449 do {
1450 ret = try_to_grab_pending(&dwork->work, true, &flags);
1451 } while (unlikely(ret == -EAGAIN));
1452
1453 if (likely(ret >= 0)) {
1454 __queue_delayed_work(cpu, wq, dwork, delay);
1455 local_irq_restore(flags);
1456 }
1457
1458 /* -ENOENT from try_to_grab_pending() becomes %true */
1459 return ret;
1460}
1461EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1462
1463/**
1464 * mod_delayed_work - modify delay of or queue a delayed work
1465 * @wq: workqueue to use
1466 * @dwork: work to queue
1467 * @delay: number of jiffies to wait before queueing
1468 *
1469 * mod_delayed_work_on() on local CPU.
1470 */
1471bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1472 unsigned long delay)
1473{
1474 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1475}
1476EXPORT_SYMBOL_GPL(mod_delayed_work);
1477
c8e55f36
TH
1478/**
1479 * worker_enter_idle - enter idle state
1480 * @worker: worker which is entering idle state
1481 *
1482 * @worker is entering idle state. Update stats and idle timer if
1483 * necessary.
1484 *
1485 * LOCKING:
1486 * spin_lock_irq(gcwq->lock).
1487 */
1488static void worker_enter_idle(struct worker *worker)
1da177e4 1489{
bd7bdd43
TH
1490 struct worker_pool *pool = worker->pool;
1491 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1492
1493 BUG_ON(worker->flags & WORKER_IDLE);
1494 BUG_ON(!list_empty(&worker->entry) &&
1495 (worker->hentry.next || worker->hentry.pprev));
1496
cb444766
TH
1497 /* can't use worker_set_flags(), also called from start_worker() */
1498 worker->flags |= WORKER_IDLE;
bd7bdd43 1499 pool->nr_idle++;
e22bee78 1500 worker->last_active = jiffies;
c8e55f36
TH
1501
1502 /* idle_list is LIFO */
bd7bdd43 1503 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1504
628c78e7
TH
1505 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1506 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1507
544ecf31 1508 /*
628c78e7
TH
1509 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1510 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1511 * nr_running, the warning may trigger spuriously. Check iff
1512 * unbind is not in progress.
544ecf31 1513 */
628c78e7 1514 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1515 pool->nr_workers == pool->nr_idle &&
63d95a91 1516 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1517}
1518
1519/**
1520 * worker_leave_idle - leave idle state
1521 * @worker: worker which is leaving idle state
1522 *
1523 * @worker is leaving idle state. Update stats.
1524 *
1525 * LOCKING:
1526 * spin_lock_irq(gcwq->lock).
1527 */
1528static void worker_leave_idle(struct worker *worker)
1529{
bd7bdd43 1530 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1531
1532 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1533 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1534 pool->nr_idle--;
c8e55f36
TH
1535 list_del_init(&worker->entry);
1536}
1537
e22bee78
TH
1538/**
1539 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1540 * @worker: self
1541 *
1542 * Works which are scheduled while the cpu is online must at least be
1543 * scheduled to a worker which is bound to the cpu so that if they are
1544 * flushed from cpu callbacks while cpu is going down, they are
1545 * guaranteed to execute on the cpu.
1546 *
1547 * This function is to be used by rogue workers and rescuers to bind
1548 * themselves to the target cpu and may race with cpu going down or
1549 * coming online. kthread_bind() can't be used because it may put the
1550 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1551 * verbatim as it's best effort and blocking and gcwq may be
1552 * [dis]associated in the meantime.
1553 *
f2d5a0ee
TH
1554 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1555 * binding against %GCWQ_DISASSOCIATED which is set during
1556 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1557 * enters idle state or fetches works without dropping lock, it can
1558 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1559 *
1560 * CONTEXT:
1561 * Might sleep. Called without any lock but returns with gcwq->lock
1562 * held.
1563 *
1564 * RETURNS:
1565 * %true if the associated gcwq is online (@worker is successfully
1566 * bound), %false if offline.
1567 */
1568static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1569__acquires(&gcwq->lock)
e22bee78 1570{
bd7bdd43 1571 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1572 struct task_struct *task = worker->task;
1573
1574 while (true) {
4e6045f1 1575 /*
e22bee78
TH
1576 * The following call may fail, succeed or succeed
1577 * without actually migrating the task to the cpu if
1578 * it races with cpu hotunplug operation. Verify
1579 * against GCWQ_DISASSOCIATED.
4e6045f1 1580 */
f3421797
TH
1581 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1582 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1583
1584 spin_lock_irq(&gcwq->lock);
1585 if (gcwq->flags & GCWQ_DISASSOCIATED)
1586 return false;
1587 if (task_cpu(task) == gcwq->cpu &&
1588 cpumask_equal(&current->cpus_allowed,
1589 get_cpu_mask(gcwq->cpu)))
1590 return true;
1591 spin_unlock_irq(&gcwq->lock);
1592
5035b20f
TH
1593 /*
1594 * We've raced with CPU hot[un]plug. Give it a breather
1595 * and retry migration. cond_resched() is required here;
1596 * otherwise, we might deadlock against cpu_stop trying to
1597 * bring down the CPU on non-preemptive kernel.
1598 */
e22bee78 1599 cpu_relax();
5035b20f 1600 cond_resched();
e22bee78
TH
1601 }
1602}
1603
25511a47
TH
1604struct idle_rebind {
1605 int cnt; /* # workers to be rebound */
1606 struct completion done; /* all workers rebound */
1607};
1608
1609/*
1610 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1611 * happen synchronously for idle workers. worker_thread() will test
1612 * %WORKER_REBIND before leaving idle and call this function.
1613 */
1614static void idle_worker_rebind(struct worker *worker)
1615{
1616 struct global_cwq *gcwq = worker->pool->gcwq;
1617
1618 /* CPU must be online at this point */
1619 WARN_ON(!worker_maybe_bind_and_lock(worker));
1620 if (!--worker->idle_rebind->cnt)
1621 complete(&worker->idle_rebind->done);
1622 spin_unlock_irq(&worker->pool->gcwq->lock);
1623
1624 /* we did our part, wait for rebind_workers() to finish up */
1625 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1626}
1627
e22bee78 1628/*
25511a47 1629 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1630 * the associated cpu which is coming back online. This is scheduled by
1631 * cpu up but can race with other cpu hotplug operations and may be
1632 * executed twice without intervening cpu down.
e22bee78 1633 */
25511a47 1634static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1635{
1636 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1637 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1638
1639 if (worker_maybe_bind_and_lock(worker))
1640 worker_clr_flags(worker, WORKER_REBIND);
1641
1642 spin_unlock_irq(&gcwq->lock);
1643}
1644
25511a47
TH
1645/**
1646 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1647 * @gcwq: gcwq of interest
1648 *
1649 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1650 * is different for idle and busy ones.
1651 *
1652 * The idle ones should be rebound synchronously and idle rebinding should
1653 * be complete before any worker starts executing work items with
1654 * concurrency management enabled; otherwise, scheduler may oops trying to
1655 * wake up non-local idle worker from wq_worker_sleeping().
1656 *
1657 * This is achieved by repeatedly requesting rebinding until all idle
1658 * workers are known to have been rebound under @gcwq->lock and holding all
1659 * idle workers from becoming busy until idle rebinding is complete.
1660 *
1661 * Once idle workers are rebound, busy workers can be rebound as they
1662 * finish executing their current work items. Queueing the rebind work at
1663 * the head of their scheduled lists is enough. Note that nr_running will
1664 * be properbly bumped as busy workers rebind.
1665 *
1666 * On return, all workers are guaranteed to either be bound or have rebind
1667 * work item scheduled.
1668 */
1669static void rebind_workers(struct global_cwq *gcwq)
1670 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1671{
1672 struct idle_rebind idle_rebind;
1673 struct worker_pool *pool;
1674 struct worker *worker;
1675 struct hlist_node *pos;
1676 int i;
1677
1678 lockdep_assert_held(&gcwq->lock);
1679
1680 for_each_worker_pool(pool, gcwq)
1681 lockdep_assert_held(&pool->manager_mutex);
1682
1683 /*
1684 * Rebind idle workers. Interlocked both ways. We wait for
1685 * workers to rebind via @idle_rebind.done. Workers will wait for
1686 * us to finish up by watching %WORKER_REBIND.
1687 */
1688 init_completion(&idle_rebind.done);
1689retry:
1690 idle_rebind.cnt = 1;
1691 INIT_COMPLETION(idle_rebind.done);
1692
1693 /* set REBIND and kick idle ones, we'll wait for these later */
1694 for_each_worker_pool(pool, gcwq) {
1695 list_for_each_entry(worker, &pool->idle_list, entry) {
1696 if (worker->flags & WORKER_REBIND)
1697 continue;
1698
1699 /* morph UNBOUND to REBIND */
1700 worker->flags &= ~WORKER_UNBOUND;
1701 worker->flags |= WORKER_REBIND;
1702
1703 idle_rebind.cnt++;
1704 worker->idle_rebind = &idle_rebind;
1705
1706 /* worker_thread() will call idle_worker_rebind() */
1707 wake_up_process(worker->task);
1708 }
1709 }
1710
1711 if (--idle_rebind.cnt) {
1712 spin_unlock_irq(&gcwq->lock);
1713 wait_for_completion(&idle_rebind.done);
1714 spin_lock_irq(&gcwq->lock);
1715 /* busy ones might have become idle while waiting, retry */
1716 goto retry;
1717 }
1718
1719 /*
1720 * All idle workers are rebound and waiting for %WORKER_REBIND to
1721 * be cleared inside idle_worker_rebind(). Clear and release.
1722 * Clearing %WORKER_REBIND from this foreign context is safe
1723 * because these workers are still guaranteed to be idle.
1724 */
1725 for_each_worker_pool(pool, gcwq)
1726 list_for_each_entry(worker, &pool->idle_list, entry)
1727 worker->flags &= ~WORKER_REBIND;
1728
1729 wake_up_all(&gcwq->rebind_hold);
1730
1731 /* rebind busy workers */
1732 for_each_busy_worker(worker, i, pos, gcwq) {
1733 struct work_struct *rebind_work = &worker->rebind_work;
1734
1735 /* morph UNBOUND to REBIND */
1736 worker->flags &= ~WORKER_UNBOUND;
1737 worker->flags |= WORKER_REBIND;
1738
1739 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1740 work_data_bits(rebind_work)))
1741 continue;
1742
1743 /* wq doesn't matter, use the default one */
1744 debug_work_activate(rebind_work);
1745 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1746 worker->scheduled.next,
1747 work_color_to_flags(WORK_NO_COLOR));
1748 }
1749}
1750
c34056a3
TH
1751static struct worker *alloc_worker(void)
1752{
1753 struct worker *worker;
1754
1755 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1756 if (worker) {
1757 INIT_LIST_HEAD(&worker->entry);
affee4b2 1758 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1759 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1760 /* on creation a worker is in !idle && prep state */
1761 worker->flags = WORKER_PREP;
c8e55f36 1762 }
c34056a3
TH
1763 return worker;
1764}
1765
1766/**
1767 * create_worker - create a new workqueue worker
63d95a91 1768 * @pool: pool the new worker will belong to
c34056a3 1769 *
63d95a91 1770 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1771 * can be started by calling start_worker() or destroyed using
1772 * destroy_worker().
1773 *
1774 * CONTEXT:
1775 * Might sleep. Does GFP_KERNEL allocations.
1776 *
1777 * RETURNS:
1778 * Pointer to the newly created worker.
1779 */
bc2ae0f5 1780static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1781{
63d95a91 1782 struct global_cwq *gcwq = pool->gcwq;
3270476a 1783 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1784 struct worker *worker = NULL;
f3421797 1785 int id = -1;
c34056a3 1786
8b03ae3c 1787 spin_lock_irq(&gcwq->lock);
bd7bdd43 1788 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1789 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1790 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1791 goto fail;
8b03ae3c 1792 spin_lock_irq(&gcwq->lock);
c34056a3 1793 }
8b03ae3c 1794 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1795
1796 worker = alloc_worker();
1797 if (!worker)
1798 goto fail;
1799
bd7bdd43 1800 worker->pool = pool;
c34056a3
TH
1801 worker->id = id;
1802
bc2ae0f5 1803 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1804 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1805 worker, cpu_to_node(gcwq->cpu),
1806 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1807 else
1808 worker->task = kthread_create(worker_thread, worker,
3270476a 1809 "kworker/u:%d%s", id, pri);
c34056a3
TH
1810 if (IS_ERR(worker->task))
1811 goto fail;
1812
3270476a
TH
1813 if (worker_pool_pri(pool))
1814 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1815
db7bccf4 1816 /*
bc2ae0f5
TH
1817 * Determine CPU binding of the new worker depending on
1818 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1819 * flag remains stable across this function. See the comments
1820 * above the flag definition for details.
1821 *
1822 * As an unbound worker may later become a regular one if CPU comes
1823 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1824 */
bc2ae0f5 1825 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1826 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1827 } else {
db7bccf4 1828 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1829 worker->flags |= WORKER_UNBOUND;
f3421797 1830 }
c34056a3
TH
1831
1832 return worker;
1833fail:
1834 if (id >= 0) {
8b03ae3c 1835 spin_lock_irq(&gcwq->lock);
bd7bdd43 1836 ida_remove(&pool->worker_ida, id);
8b03ae3c 1837 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1838 }
1839 kfree(worker);
1840 return NULL;
1841}
1842
1843/**
1844 * start_worker - start a newly created worker
1845 * @worker: worker to start
1846 *
c8e55f36 1847 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1848 *
1849 * CONTEXT:
8b03ae3c 1850 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1851 */
1852static void start_worker(struct worker *worker)
1853{
cb444766 1854 worker->flags |= WORKER_STARTED;
bd7bdd43 1855 worker->pool->nr_workers++;
c8e55f36 1856 worker_enter_idle(worker);
c34056a3
TH
1857 wake_up_process(worker->task);
1858}
1859
1860/**
1861 * destroy_worker - destroy a workqueue worker
1862 * @worker: worker to be destroyed
1863 *
c8e55f36
TH
1864 * Destroy @worker and adjust @gcwq stats accordingly.
1865 *
1866 * CONTEXT:
1867 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1868 */
1869static void destroy_worker(struct worker *worker)
1870{
bd7bdd43
TH
1871 struct worker_pool *pool = worker->pool;
1872 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1873 int id = worker->id;
1874
1875 /* sanity check frenzy */
1876 BUG_ON(worker->current_work);
affee4b2 1877 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1878
c8e55f36 1879 if (worker->flags & WORKER_STARTED)
bd7bdd43 1880 pool->nr_workers--;
c8e55f36 1881 if (worker->flags & WORKER_IDLE)
bd7bdd43 1882 pool->nr_idle--;
c8e55f36
TH
1883
1884 list_del_init(&worker->entry);
cb444766 1885 worker->flags |= WORKER_DIE;
c8e55f36
TH
1886
1887 spin_unlock_irq(&gcwq->lock);
1888
c34056a3
TH
1889 kthread_stop(worker->task);
1890 kfree(worker);
1891
8b03ae3c 1892 spin_lock_irq(&gcwq->lock);
bd7bdd43 1893 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1894}
1895
63d95a91 1896static void idle_worker_timeout(unsigned long __pool)
e22bee78 1897{
63d95a91
TH
1898 struct worker_pool *pool = (void *)__pool;
1899 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1900
1901 spin_lock_irq(&gcwq->lock);
1902
63d95a91 1903 if (too_many_workers(pool)) {
e22bee78
TH
1904 struct worker *worker;
1905 unsigned long expires;
1906
1907 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1908 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1909 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1910
1911 if (time_before(jiffies, expires))
63d95a91 1912 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1913 else {
1914 /* it's been idle for too long, wake up manager */
11ebea50 1915 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1916 wake_up_worker(pool);
d5abe669 1917 }
e22bee78
TH
1918 }
1919
1920 spin_unlock_irq(&gcwq->lock);
1921}
d5abe669 1922
e22bee78
TH
1923static bool send_mayday(struct work_struct *work)
1924{
1925 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1926 struct workqueue_struct *wq = cwq->wq;
f3421797 1927 unsigned int cpu;
e22bee78
TH
1928
1929 if (!(wq->flags & WQ_RESCUER))
1930 return false;
1931
1932 /* mayday mayday mayday */
bd7bdd43 1933 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1934 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1935 if (cpu == WORK_CPU_UNBOUND)
1936 cpu = 0;
f2e005aa 1937 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1938 wake_up_process(wq->rescuer->task);
1939 return true;
1940}
1941
63d95a91 1942static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1943{
63d95a91
TH
1944 struct worker_pool *pool = (void *)__pool;
1945 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1946 struct work_struct *work;
1947
1948 spin_lock_irq(&gcwq->lock);
1949
63d95a91 1950 if (need_to_create_worker(pool)) {
e22bee78
TH
1951 /*
1952 * We've been trying to create a new worker but
1953 * haven't been successful. We might be hitting an
1954 * allocation deadlock. Send distress signals to
1955 * rescuers.
1956 */
63d95a91 1957 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1958 send_mayday(work);
1da177e4 1959 }
e22bee78
TH
1960
1961 spin_unlock_irq(&gcwq->lock);
1962
63d95a91 1963 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1964}
1965
e22bee78
TH
1966/**
1967 * maybe_create_worker - create a new worker if necessary
63d95a91 1968 * @pool: pool to create a new worker for
e22bee78 1969 *
63d95a91 1970 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1971 * have at least one idle worker on return from this function. If
1972 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1973 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1974 * possible allocation deadlock.
1975 *
1976 * On return, need_to_create_worker() is guaranteed to be false and
1977 * may_start_working() true.
1978 *
1979 * LOCKING:
1980 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1981 * multiple times. Does GFP_KERNEL allocations. Called only from
1982 * manager.
1983 *
1984 * RETURNS:
1985 * false if no action was taken and gcwq->lock stayed locked, true
1986 * otherwise.
1987 */
63d95a91 1988static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1989__releases(&gcwq->lock)
1990__acquires(&gcwq->lock)
1da177e4 1991{
63d95a91
TH
1992 struct global_cwq *gcwq = pool->gcwq;
1993
1994 if (!need_to_create_worker(pool))
e22bee78
TH
1995 return false;
1996restart:
9f9c2364
TH
1997 spin_unlock_irq(&gcwq->lock);
1998
e22bee78 1999 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2000 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2001
2002 while (true) {
2003 struct worker *worker;
2004
bc2ae0f5 2005 worker = create_worker(pool);
e22bee78 2006 if (worker) {
63d95a91 2007 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2008 spin_lock_irq(&gcwq->lock);
2009 start_worker(worker);
63d95a91 2010 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2011 return true;
2012 }
2013
63d95a91 2014 if (!need_to_create_worker(pool))
e22bee78 2015 break;
1da177e4 2016
e22bee78
TH
2017 __set_current_state(TASK_INTERRUPTIBLE);
2018 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2019
63d95a91 2020 if (!need_to_create_worker(pool))
e22bee78
TH
2021 break;
2022 }
2023
63d95a91 2024 del_timer_sync(&pool->mayday_timer);
e22bee78 2025 spin_lock_irq(&gcwq->lock);
63d95a91 2026 if (need_to_create_worker(pool))
e22bee78
TH
2027 goto restart;
2028 return true;
2029}
2030
2031/**
2032 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2033 * @pool: pool to destroy workers for
e22bee78 2034 *
63d95a91 2035 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2036 * IDLE_WORKER_TIMEOUT.
2037 *
2038 * LOCKING:
2039 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2040 * multiple times. Called only from manager.
2041 *
2042 * RETURNS:
2043 * false if no action was taken and gcwq->lock stayed locked, true
2044 * otherwise.
2045 */
63d95a91 2046static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2047{
2048 bool ret = false;
1da177e4 2049
63d95a91 2050 while (too_many_workers(pool)) {
e22bee78
TH
2051 struct worker *worker;
2052 unsigned long expires;
3af24433 2053
63d95a91 2054 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2055 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2056
e22bee78 2057 if (time_before(jiffies, expires)) {
63d95a91 2058 mod_timer(&pool->idle_timer, expires);
3af24433 2059 break;
e22bee78 2060 }
1da177e4 2061
e22bee78
TH
2062 destroy_worker(worker);
2063 ret = true;
1da177e4 2064 }
3af24433 2065
e22bee78
TH
2066 return ret;
2067}
2068
2069/**
2070 * manage_workers - manage worker pool
2071 * @worker: self
2072 *
2073 * Assume the manager role and manage gcwq worker pool @worker belongs
2074 * to. At any given time, there can be only zero or one manager per
2075 * gcwq. The exclusion is handled automatically by this function.
2076 *
2077 * The caller can safely start processing works on false return. On
2078 * true return, it's guaranteed that need_to_create_worker() is false
2079 * and may_start_working() is true.
2080 *
2081 * CONTEXT:
2082 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2083 * multiple times. Does GFP_KERNEL allocations.
2084 *
2085 * RETURNS:
2086 * false if no action was taken and gcwq->lock stayed locked, true if
2087 * some action was taken.
2088 */
2089static bool manage_workers(struct worker *worker)
2090{
63d95a91 2091 struct worker_pool *pool = worker->pool;
e22bee78
TH
2092 bool ret = false;
2093
60373152 2094 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2095 return ret;
2096
11ebea50 2097 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2098
2099 /*
2100 * Destroy and then create so that may_start_working() is true
2101 * on return.
2102 */
63d95a91
TH
2103 ret |= maybe_destroy_workers(pool);
2104 ret |= maybe_create_worker(pool);
e22bee78 2105
60373152 2106 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2107 return ret;
2108}
2109
a62428c0
TH
2110/**
2111 * process_one_work - process single work
c34056a3 2112 * @worker: self
a62428c0
TH
2113 * @work: work to process
2114 *
2115 * Process @work. This function contains all the logics necessary to
2116 * process a single work including synchronization against and
2117 * interaction with other workers on the same cpu, queueing and
2118 * flushing. As long as context requirement is met, any worker can
2119 * call this function to process a work.
2120 *
2121 * CONTEXT:
8b03ae3c 2122 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2123 */
c34056a3 2124static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2125__releases(&gcwq->lock)
2126__acquires(&gcwq->lock)
a62428c0 2127{
7e11629d 2128 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2129 struct worker_pool *pool = worker->pool;
2130 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2131 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2132 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2133 work_func_t f = work->func;
73f53c4a 2134 int work_color;
7e11629d 2135 struct worker *collision;
a62428c0
TH
2136#ifdef CONFIG_LOCKDEP
2137 /*
2138 * It is permissible to free the struct work_struct from
2139 * inside the function that is called from it, this we need to
2140 * take into account for lockdep too. To avoid bogus "held
2141 * lock freed" warnings as well as problems when looking into
2142 * work->lockdep_map, make a copy and use that here.
2143 */
4d82a1de
PZ
2144 struct lockdep_map lockdep_map;
2145
2146 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2147#endif
6fec10a1
TH
2148 /*
2149 * Ensure we're on the correct CPU. DISASSOCIATED test is
2150 * necessary to avoid spurious warnings from rescuers servicing the
2151 * unbound or a disassociated gcwq.
2152 */
25511a47 2153 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2154 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2155 raw_smp_processor_id() != gcwq->cpu);
2156
7e11629d
TH
2157 /*
2158 * A single work shouldn't be executed concurrently by
2159 * multiple workers on a single cpu. Check whether anyone is
2160 * already processing the work. If so, defer the work to the
2161 * currently executing one.
2162 */
2163 collision = __find_worker_executing_work(gcwq, bwh, work);
2164 if (unlikely(collision)) {
2165 move_linked_works(work, &collision->scheduled, NULL);
2166 return;
2167 }
2168
8930caba 2169 /* claim and dequeue */
a62428c0 2170 debug_work_deactivate(work);
c8e55f36 2171 hlist_add_head(&worker->hentry, bwh);
c34056a3 2172 worker->current_work = work;
8cca0eea 2173 worker->current_cwq = cwq;
73f53c4a 2174 work_color = get_work_color(work);
7a22ad75 2175
a62428c0
TH
2176 list_del_init(&work->entry);
2177
fb0e7beb
TH
2178 /*
2179 * CPU intensive works don't participate in concurrency
2180 * management. They're the scheduler's responsibility.
2181 */
2182 if (unlikely(cpu_intensive))
2183 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2184
974271c4
TH
2185 /*
2186 * Unbound gcwq isn't concurrency managed and work items should be
2187 * executed ASAP. Wake up another worker if necessary.
2188 */
63d95a91
TH
2189 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2190 wake_up_worker(pool);
974271c4 2191
8930caba 2192 /*
23657bb1
TH
2193 * Record the last CPU and clear PENDING which should be the last
2194 * update to @work. Also, do this inside @gcwq->lock so that
2195 * PENDING and queued state changes happen together while IRQ is
2196 * disabled.
8930caba 2197 */
8930caba 2198 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2199
8930caba 2200 spin_unlock_irq(&gcwq->lock);
959d1af8 2201
e159489b 2202 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2203 lock_map_acquire(&lockdep_map);
e36c886a 2204 trace_workqueue_execute_start(work);
a62428c0 2205 f(work);
e36c886a
AV
2206 /*
2207 * While we must be careful to not use "work" after this, the trace
2208 * point will only record its address.
2209 */
2210 trace_workqueue_execute_end(work);
a62428c0
TH
2211 lock_map_release(&lockdep_map);
2212 lock_map_release(&cwq->wq->lockdep_map);
2213
2214 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2215 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2216 "%s/0x%08x/%d\n",
2217 current->comm, preempt_count(), task_pid_nr(current));
2218 printk(KERN_ERR " last function: ");
2219 print_symbol("%s\n", (unsigned long)f);
2220 debug_show_held_locks(current);
2221 dump_stack();
2222 }
2223
8b03ae3c 2224 spin_lock_irq(&gcwq->lock);
a62428c0 2225
fb0e7beb
TH
2226 /* clear cpu intensive status */
2227 if (unlikely(cpu_intensive))
2228 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2229
a62428c0 2230 /* we're done with it, release */
c8e55f36 2231 hlist_del_init(&worker->hentry);
c34056a3 2232 worker->current_work = NULL;
8cca0eea 2233 worker->current_cwq = NULL;
8a2e8e5d 2234 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2235}
2236
affee4b2
TH
2237/**
2238 * process_scheduled_works - process scheduled works
2239 * @worker: self
2240 *
2241 * Process all scheduled works. Please note that the scheduled list
2242 * may change while processing a work, so this function repeatedly
2243 * fetches a work from the top and executes it.
2244 *
2245 * CONTEXT:
8b03ae3c 2246 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2247 * multiple times.
2248 */
2249static void process_scheduled_works(struct worker *worker)
1da177e4 2250{
affee4b2
TH
2251 while (!list_empty(&worker->scheduled)) {
2252 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2253 struct work_struct, entry);
c34056a3 2254 process_one_work(worker, work);
1da177e4 2255 }
1da177e4
LT
2256}
2257
4690c4ab
TH
2258/**
2259 * worker_thread - the worker thread function
c34056a3 2260 * @__worker: self
4690c4ab 2261 *
e22bee78
TH
2262 * The gcwq worker thread function. There's a single dynamic pool of
2263 * these per each cpu. These workers process all works regardless of
2264 * their specific target workqueue. The only exception is works which
2265 * belong to workqueues with a rescuer which will be explained in
2266 * rescuer_thread().
4690c4ab 2267 */
c34056a3 2268static int worker_thread(void *__worker)
1da177e4 2269{
c34056a3 2270 struct worker *worker = __worker;
bd7bdd43
TH
2271 struct worker_pool *pool = worker->pool;
2272 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2273
e22bee78
TH
2274 /* tell the scheduler that this is a workqueue worker */
2275 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2276woke_up:
c8e55f36 2277 spin_lock_irq(&gcwq->lock);
1da177e4 2278
25511a47
TH
2279 /*
2280 * DIE can be set only while idle and REBIND set while busy has
2281 * @worker->rebind_work scheduled. Checking here is enough.
2282 */
2283 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2284 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2285
2286 if (worker->flags & WORKER_DIE) {
2287 worker->task->flags &= ~PF_WQ_WORKER;
2288 return 0;
2289 }
2290
2291 idle_worker_rebind(worker);
2292 goto woke_up;
c8e55f36 2293 }
affee4b2 2294
c8e55f36 2295 worker_leave_idle(worker);
db7bccf4 2296recheck:
e22bee78 2297 /* no more worker necessary? */
63d95a91 2298 if (!need_more_worker(pool))
e22bee78
TH
2299 goto sleep;
2300
2301 /* do we need to manage? */
63d95a91 2302 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2303 goto recheck;
2304
c8e55f36
TH
2305 /*
2306 * ->scheduled list can only be filled while a worker is
2307 * preparing to process a work or actually processing it.
2308 * Make sure nobody diddled with it while I was sleeping.
2309 */
2310 BUG_ON(!list_empty(&worker->scheduled));
2311
e22bee78
TH
2312 /*
2313 * When control reaches this point, we're guaranteed to have
2314 * at least one idle worker or that someone else has already
2315 * assumed the manager role.
2316 */
2317 worker_clr_flags(worker, WORKER_PREP);
2318
2319 do {
c8e55f36 2320 struct work_struct *work =
bd7bdd43 2321 list_first_entry(&pool->worklist,
c8e55f36
TH
2322 struct work_struct, entry);
2323
2324 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2325 /* optimization path, not strictly necessary */
2326 process_one_work(worker, work);
2327 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2328 process_scheduled_works(worker);
c8e55f36
TH
2329 } else {
2330 move_linked_works(work, &worker->scheduled, NULL);
2331 process_scheduled_works(worker);
affee4b2 2332 }
63d95a91 2333 } while (keep_working(pool));
e22bee78
TH
2334
2335 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2336sleep:
63d95a91 2337 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2338 goto recheck;
d313dd85 2339
c8e55f36 2340 /*
e22bee78
TH
2341 * gcwq->lock is held and there's no work to process and no
2342 * need to manage, sleep. Workers are woken up only while
2343 * holding gcwq->lock or from local cpu, so setting the
2344 * current state before releasing gcwq->lock is enough to
2345 * prevent losing any event.
c8e55f36
TH
2346 */
2347 worker_enter_idle(worker);
2348 __set_current_state(TASK_INTERRUPTIBLE);
2349 spin_unlock_irq(&gcwq->lock);
2350 schedule();
2351 goto woke_up;
1da177e4
LT
2352}
2353
e22bee78
TH
2354/**
2355 * rescuer_thread - the rescuer thread function
2356 * @__wq: the associated workqueue
2357 *
2358 * Workqueue rescuer thread function. There's one rescuer for each
2359 * workqueue which has WQ_RESCUER set.
2360 *
2361 * Regular work processing on a gcwq may block trying to create a new
2362 * worker which uses GFP_KERNEL allocation which has slight chance of
2363 * developing into deadlock if some works currently on the same queue
2364 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2365 * the problem rescuer solves.
2366 *
2367 * When such condition is possible, the gcwq summons rescuers of all
2368 * workqueues which have works queued on the gcwq and let them process
2369 * those works so that forward progress can be guaranteed.
2370 *
2371 * This should happen rarely.
2372 */
2373static int rescuer_thread(void *__wq)
2374{
2375 struct workqueue_struct *wq = __wq;
2376 struct worker *rescuer = wq->rescuer;
2377 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2378 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2379 unsigned int cpu;
2380
2381 set_user_nice(current, RESCUER_NICE_LEVEL);
2382repeat:
2383 set_current_state(TASK_INTERRUPTIBLE);
2384
2385 if (kthread_should_stop())
2386 return 0;
2387
f3421797
TH
2388 /*
2389 * See whether any cpu is asking for help. Unbounded
2390 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2391 */
f2e005aa 2392 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2393 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2394 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2395 struct worker_pool *pool = cwq->pool;
2396 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2397 struct work_struct *work, *n;
2398
2399 __set_current_state(TASK_RUNNING);
f2e005aa 2400 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2401
2402 /* migrate to the target cpu if possible */
bd7bdd43 2403 rescuer->pool = pool;
e22bee78
TH
2404 worker_maybe_bind_and_lock(rescuer);
2405
2406 /*
2407 * Slurp in all works issued via this workqueue and
2408 * process'em.
2409 */
2410 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2411 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2412 if (get_work_cwq(work) == cwq)
2413 move_linked_works(work, scheduled, &n);
2414
2415 process_scheduled_works(rescuer);
7576958a
TH
2416
2417 /*
2418 * Leave this gcwq. If keep_working() is %true, notify a
2419 * regular worker; otherwise, we end up with 0 concurrency
2420 * and stalling the execution.
2421 */
63d95a91
TH
2422 if (keep_working(pool))
2423 wake_up_worker(pool);
7576958a 2424
e22bee78
TH
2425 spin_unlock_irq(&gcwq->lock);
2426 }
2427
2428 schedule();
2429 goto repeat;
1da177e4
LT
2430}
2431
fc2e4d70
ON
2432struct wq_barrier {
2433 struct work_struct work;
2434 struct completion done;
2435};
2436
2437static void wq_barrier_func(struct work_struct *work)
2438{
2439 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2440 complete(&barr->done);
2441}
2442
4690c4ab
TH
2443/**
2444 * insert_wq_barrier - insert a barrier work
2445 * @cwq: cwq to insert barrier into
2446 * @barr: wq_barrier to insert
affee4b2
TH
2447 * @target: target work to attach @barr to
2448 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2449 *
affee4b2
TH
2450 * @barr is linked to @target such that @barr is completed only after
2451 * @target finishes execution. Please note that the ordering
2452 * guarantee is observed only with respect to @target and on the local
2453 * cpu.
2454 *
2455 * Currently, a queued barrier can't be canceled. This is because
2456 * try_to_grab_pending() can't determine whether the work to be
2457 * grabbed is at the head of the queue and thus can't clear LINKED
2458 * flag of the previous work while there must be a valid next work
2459 * after a work with LINKED flag set.
2460 *
2461 * Note that when @worker is non-NULL, @target may be modified
2462 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2463 *
2464 * CONTEXT:
8b03ae3c 2465 * spin_lock_irq(gcwq->lock).
4690c4ab 2466 */
83c22520 2467static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2468 struct wq_barrier *barr,
2469 struct work_struct *target, struct worker *worker)
fc2e4d70 2470{
affee4b2
TH
2471 struct list_head *head;
2472 unsigned int linked = 0;
2473
dc186ad7 2474 /*
8b03ae3c 2475 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2476 * as we know for sure that this will not trigger any of the
2477 * checks and call back into the fixup functions where we
2478 * might deadlock.
2479 */
ca1cab37 2480 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2481 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2482 init_completion(&barr->done);
83c22520 2483
affee4b2
TH
2484 /*
2485 * If @target is currently being executed, schedule the
2486 * barrier to the worker; otherwise, put it after @target.
2487 */
2488 if (worker)
2489 head = worker->scheduled.next;
2490 else {
2491 unsigned long *bits = work_data_bits(target);
2492
2493 head = target->entry.next;
2494 /* there can already be other linked works, inherit and set */
2495 linked = *bits & WORK_STRUCT_LINKED;
2496 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2497 }
2498
dc186ad7 2499 debug_work_activate(&barr->work);
affee4b2
TH
2500 insert_work(cwq, &barr->work, head,
2501 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2502}
2503
73f53c4a
TH
2504/**
2505 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2506 * @wq: workqueue being flushed
2507 * @flush_color: new flush color, < 0 for no-op
2508 * @work_color: new work color, < 0 for no-op
2509 *
2510 * Prepare cwqs for workqueue flushing.
2511 *
2512 * If @flush_color is non-negative, flush_color on all cwqs should be
2513 * -1. If no cwq has in-flight commands at the specified color, all
2514 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2515 * has in flight commands, its cwq->flush_color is set to
2516 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2517 * wakeup logic is armed and %true is returned.
2518 *
2519 * The caller should have initialized @wq->first_flusher prior to
2520 * calling this function with non-negative @flush_color. If
2521 * @flush_color is negative, no flush color update is done and %false
2522 * is returned.
2523 *
2524 * If @work_color is non-negative, all cwqs should have the same
2525 * work_color which is previous to @work_color and all will be
2526 * advanced to @work_color.
2527 *
2528 * CONTEXT:
2529 * mutex_lock(wq->flush_mutex).
2530 *
2531 * RETURNS:
2532 * %true if @flush_color >= 0 and there's something to flush. %false
2533 * otherwise.
2534 */
2535static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2536 int flush_color, int work_color)
1da177e4 2537{
73f53c4a
TH
2538 bool wait = false;
2539 unsigned int cpu;
1da177e4 2540
73f53c4a
TH
2541 if (flush_color >= 0) {
2542 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2543 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2544 }
2355b70f 2545
f3421797 2546 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2547 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2548 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2549
8b03ae3c 2550 spin_lock_irq(&gcwq->lock);
83c22520 2551
73f53c4a
TH
2552 if (flush_color >= 0) {
2553 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2554
73f53c4a
TH
2555 if (cwq->nr_in_flight[flush_color]) {
2556 cwq->flush_color = flush_color;
2557 atomic_inc(&wq->nr_cwqs_to_flush);
2558 wait = true;
2559 }
2560 }
1da177e4 2561
73f53c4a
TH
2562 if (work_color >= 0) {
2563 BUG_ON(work_color != work_next_color(cwq->work_color));
2564 cwq->work_color = work_color;
2565 }
1da177e4 2566
8b03ae3c 2567 spin_unlock_irq(&gcwq->lock);
1da177e4 2568 }
2355b70f 2569
73f53c4a
TH
2570 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2571 complete(&wq->first_flusher->done);
14441960 2572
73f53c4a 2573 return wait;
1da177e4
LT
2574}
2575
0fcb78c2 2576/**
1da177e4 2577 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2578 * @wq: workqueue to flush
1da177e4
LT
2579 *
2580 * Forces execution of the workqueue and blocks until its completion.
2581 * This is typically used in driver shutdown handlers.
2582 *
fc2e4d70
ON
2583 * We sleep until all works which were queued on entry have been handled,
2584 * but we are not livelocked by new incoming ones.
1da177e4 2585 */
7ad5b3a5 2586void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2587{
73f53c4a
TH
2588 struct wq_flusher this_flusher = {
2589 .list = LIST_HEAD_INIT(this_flusher.list),
2590 .flush_color = -1,
2591 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2592 };
2593 int next_color;
1da177e4 2594
3295f0ef
IM
2595 lock_map_acquire(&wq->lockdep_map);
2596 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2597
2598 mutex_lock(&wq->flush_mutex);
2599
2600 /*
2601 * Start-to-wait phase
2602 */
2603 next_color = work_next_color(wq->work_color);
2604
2605 if (next_color != wq->flush_color) {
2606 /*
2607 * Color space is not full. The current work_color
2608 * becomes our flush_color and work_color is advanced
2609 * by one.
2610 */
2611 BUG_ON(!list_empty(&wq->flusher_overflow));
2612 this_flusher.flush_color = wq->work_color;
2613 wq->work_color = next_color;
2614
2615 if (!wq->first_flusher) {
2616 /* no flush in progress, become the first flusher */
2617 BUG_ON(wq->flush_color != this_flusher.flush_color);
2618
2619 wq->first_flusher = &this_flusher;
2620
2621 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2622 wq->work_color)) {
2623 /* nothing to flush, done */
2624 wq->flush_color = next_color;
2625 wq->first_flusher = NULL;
2626 goto out_unlock;
2627 }
2628 } else {
2629 /* wait in queue */
2630 BUG_ON(wq->flush_color == this_flusher.flush_color);
2631 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2632 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2633 }
2634 } else {
2635 /*
2636 * Oops, color space is full, wait on overflow queue.
2637 * The next flush completion will assign us
2638 * flush_color and transfer to flusher_queue.
2639 */
2640 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2641 }
2642
2643 mutex_unlock(&wq->flush_mutex);
2644
2645 wait_for_completion(&this_flusher.done);
2646
2647 /*
2648 * Wake-up-and-cascade phase
2649 *
2650 * First flushers are responsible for cascading flushes and
2651 * handling overflow. Non-first flushers can simply return.
2652 */
2653 if (wq->first_flusher != &this_flusher)
2654 return;
2655
2656 mutex_lock(&wq->flush_mutex);
2657
4ce48b37
TH
2658 /* we might have raced, check again with mutex held */
2659 if (wq->first_flusher != &this_flusher)
2660 goto out_unlock;
2661
73f53c4a
TH
2662 wq->first_flusher = NULL;
2663
2664 BUG_ON(!list_empty(&this_flusher.list));
2665 BUG_ON(wq->flush_color != this_flusher.flush_color);
2666
2667 while (true) {
2668 struct wq_flusher *next, *tmp;
2669
2670 /* complete all the flushers sharing the current flush color */
2671 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2672 if (next->flush_color != wq->flush_color)
2673 break;
2674 list_del_init(&next->list);
2675 complete(&next->done);
2676 }
2677
2678 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2679 wq->flush_color != work_next_color(wq->work_color));
2680
2681 /* this flush_color is finished, advance by one */
2682 wq->flush_color = work_next_color(wq->flush_color);
2683
2684 /* one color has been freed, handle overflow queue */
2685 if (!list_empty(&wq->flusher_overflow)) {
2686 /*
2687 * Assign the same color to all overflowed
2688 * flushers, advance work_color and append to
2689 * flusher_queue. This is the start-to-wait
2690 * phase for these overflowed flushers.
2691 */
2692 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2693 tmp->flush_color = wq->work_color;
2694
2695 wq->work_color = work_next_color(wq->work_color);
2696
2697 list_splice_tail_init(&wq->flusher_overflow,
2698 &wq->flusher_queue);
2699 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2700 }
2701
2702 if (list_empty(&wq->flusher_queue)) {
2703 BUG_ON(wq->flush_color != wq->work_color);
2704 break;
2705 }
2706
2707 /*
2708 * Need to flush more colors. Make the next flusher
2709 * the new first flusher and arm cwqs.
2710 */
2711 BUG_ON(wq->flush_color == wq->work_color);
2712 BUG_ON(wq->flush_color != next->flush_color);
2713
2714 list_del_init(&next->list);
2715 wq->first_flusher = next;
2716
2717 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2718 break;
2719
2720 /*
2721 * Meh... this color is already done, clear first
2722 * flusher and repeat cascading.
2723 */
2724 wq->first_flusher = NULL;
2725 }
2726
2727out_unlock:
2728 mutex_unlock(&wq->flush_mutex);
1da177e4 2729}
ae90dd5d 2730EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2731
9c5a2ba7
TH
2732/**
2733 * drain_workqueue - drain a workqueue
2734 * @wq: workqueue to drain
2735 *
2736 * Wait until the workqueue becomes empty. While draining is in progress,
2737 * only chain queueing is allowed. IOW, only currently pending or running
2738 * work items on @wq can queue further work items on it. @wq is flushed
2739 * repeatedly until it becomes empty. The number of flushing is detemined
2740 * by the depth of chaining and should be relatively short. Whine if it
2741 * takes too long.
2742 */
2743void drain_workqueue(struct workqueue_struct *wq)
2744{
2745 unsigned int flush_cnt = 0;
2746 unsigned int cpu;
2747
2748 /*
2749 * __queue_work() needs to test whether there are drainers, is much
2750 * hotter than drain_workqueue() and already looks at @wq->flags.
2751 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2752 */
2753 spin_lock(&workqueue_lock);
2754 if (!wq->nr_drainers++)
2755 wq->flags |= WQ_DRAINING;
2756 spin_unlock(&workqueue_lock);
2757reflush:
2758 flush_workqueue(wq);
2759
2760 for_each_cwq_cpu(cpu, wq) {
2761 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2762 bool drained;
9c5a2ba7 2763
bd7bdd43 2764 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2765 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2766 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2767
2768 if (drained)
9c5a2ba7
TH
2769 continue;
2770
2771 if (++flush_cnt == 10 ||
2772 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2773 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2774 wq->name, flush_cnt);
2775 goto reflush;
2776 }
2777
2778 spin_lock(&workqueue_lock);
2779 if (!--wq->nr_drainers)
2780 wq->flags &= ~WQ_DRAINING;
2781 spin_unlock(&workqueue_lock);
2782}
2783EXPORT_SYMBOL_GPL(drain_workqueue);
2784
baf59022
TH
2785static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2786 bool wait_executing)
db700897 2787{
affee4b2 2788 struct worker *worker = NULL;
8b03ae3c 2789 struct global_cwq *gcwq;
db700897 2790 struct cpu_workqueue_struct *cwq;
db700897
ON
2791
2792 might_sleep();
7a22ad75
TH
2793 gcwq = get_work_gcwq(work);
2794 if (!gcwq)
baf59022 2795 return false;
db700897 2796
8b03ae3c 2797 spin_lock_irq(&gcwq->lock);
db700897
ON
2798 if (!list_empty(&work->entry)) {
2799 /*
2800 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2801 * If it was re-queued to a different gcwq under us, we
2802 * are not going to wait.
db700897
ON
2803 */
2804 smp_rmb();
7a22ad75 2805 cwq = get_work_cwq(work);
bd7bdd43 2806 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2807 goto already_gone;
baf59022 2808 } else if (wait_executing) {
7a22ad75 2809 worker = find_worker_executing_work(gcwq, work);
affee4b2 2810 if (!worker)
4690c4ab 2811 goto already_gone;
7a22ad75 2812 cwq = worker->current_cwq;
baf59022
TH
2813 } else
2814 goto already_gone;
db700897 2815
baf59022 2816 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2817 spin_unlock_irq(&gcwq->lock);
7a22ad75 2818
e159489b
TH
2819 /*
2820 * If @max_active is 1 or rescuer is in use, flushing another work
2821 * item on the same workqueue may lead to deadlock. Make sure the
2822 * flusher is not running on the same workqueue by verifying write
2823 * access.
2824 */
2825 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2826 lock_map_acquire(&cwq->wq->lockdep_map);
2827 else
2828 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2829 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2830
401a8d04 2831 return true;
4690c4ab 2832already_gone:
8b03ae3c 2833 spin_unlock_irq(&gcwq->lock);
401a8d04 2834 return false;
db700897 2835}
baf59022
TH
2836
2837/**
2838 * flush_work - wait for a work to finish executing the last queueing instance
2839 * @work: the work to flush
2840 *
2841 * Wait until @work has finished execution. This function considers
2842 * only the last queueing instance of @work. If @work has been
2843 * enqueued across different CPUs on a non-reentrant workqueue or on
2844 * multiple workqueues, @work might still be executing on return on
2845 * some of the CPUs from earlier queueing.
2846 *
2847 * If @work was queued only on a non-reentrant, ordered or unbound
2848 * workqueue, @work is guaranteed to be idle on return if it hasn't
2849 * been requeued since flush started.
2850 *
2851 * RETURNS:
2852 * %true if flush_work() waited for the work to finish execution,
2853 * %false if it was already idle.
2854 */
2855bool flush_work(struct work_struct *work)
2856{
2857 struct wq_barrier barr;
2858
0976dfc1
SB
2859 lock_map_acquire(&work->lockdep_map);
2860 lock_map_release(&work->lockdep_map);
2861
baf59022
TH
2862 if (start_flush_work(work, &barr, true)) {
2863 wait_for_completion(&barr.done);
2864 destroy_work_on_stack(&barr.work);
2865 return true;
2866 } else
2867 return false;
2868}
db700897
ON
2869EXPORT_SYMBOL_GPL(flush_work);
2870
401a8d04
TH
2871static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2872{
2873 struct wq_barrier barr;
2874 struct worker *worker;
2875
2876 spin_lock_irq(&gcwq->lock);
2877
2878 worker = find_worker_executing_work(gcwq, work);
2879 if (unlikely(worker))
2880 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2881
2882 spin_unlock_irq(&gcwq->lock);
2883
2884 if (unlikely(worker)) {
2885 wait_for_completion(&barr.done);
2886 destroy_work_on_stack(&barr.work);
2887 return true;
2888 } else
2889 return false;
2890}
2891
2892static bool wait_on_work(struct work_struct *work)
2893{
2894 bool ret = false;
2895 int cpu;
2896
2897 might_sleep();
2898
2899 lock_map_acquire(&work->lockdep_map);
2900 lock_map_release(&work->lockdep_map);
2901
2902 for_each_gcwq_cpu(cpu)
2903 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2904 return ret;
2905}
2906
09383498
TH
2907/**
2908 * flush_work_sync - wait until a work has finished execution
2909 * @work: the work to flush
2910 *
2911 * Wait until @work has finished execution. On return, it's
2912 * guaranteed that all queueing instances of @work which happened
2913 * before this function is called are finished. In other words, if
2914 * @work hasn't been requeued since this function was called, @work is
2915 * guaranteed to be idle on return.
2916 *
2917 * RETURNS:
2918 * %true if flush_work_sync() waited for the work to finish execution,
2919 * %false if it was already idle.
2920 */
2921bool flush_work_sync(struct work_struct *work)
2922{
2923 struct wq_barrier barr;
2924 bool pending, waited;
2925
2926 /* we'll wait for executions separately, queue barr only if pending */
2927 pending = start_flush_work(work, &barr, false);
2928
2929 /* wait for executions to finish */
2930 waited = wait_on_work(work);
2931
2932 /* wait for the pending one */
2933 if (pending) {
2934 wait_for_completion(&barr.done);
2935 destroy_work_on_stack(&barr.work);
2936 }
2937
2938 return pending || waited;
2939}
2940EXPORT_SYMBOL_GPL(flush_work_sync);
2941
36e227d2 2942static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2943{
bbb68dfa 2944 unsigned long flags;
1f1f642e
ON
2945 int ret;
2946
2947 do {
bbb68dfa
TH
2948 ret = try_to_grab_pending(work, is_dwork, &flags);
2949 /*
2950 * If someone else is canceling, wait for the same event it
2951 * would be waiting for before retrying.
2952 */
2953 if (unlikely(ret == -ENOENT))
2954 wait_on_work(work);
1f1f642e
ON
2955 } while (unlikely(ret < 0));
2956
bbb68dfa
TH
2957 /* tell other tasks trying to grab @work to back off */
2958 mark_work_canceling(work);
2959 local_irq_restore(flags);
2960
2961 wait_on_work(work);
7a22ad75 2962 clear_work_data(work);
1f1f642e
ON
2963 return ret;
2964}
2965
6e84d644 2966/**
401a8d04
TH
2967 * cancel_work_sync - cancel a work and wait for it to finish
2968 * @work: the work to cancel
6e84d644 2969 *
401a8d04
TH
2970 * Cancel @work and wait for its execution to finish. This function
2971 * can be used even if the work re-queues itself or migrates to
2972 * another workqueue. On return from this function, @work is
2973 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2974 *
401a8d04
TH
2975 * cancel_work_sync(&delayed_work->work) must not be used for
2976 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2977 *
401a8d04 2978 * The caller must ensure that the workqueue on which @work was last
6e84d644 2979 * queued can't be destroyed before this function returns.
401a8d04
TH
2980 *
2981 * RETURNS:
2982 * %true if @work was pending, %false otherwise.
6e84d644 2983 */
401a8d04 2984bool cancel_work_sync(struct work_struct *work)
6e84d644 2985{
36e227d2 2986 return __cancel_work_timer(work, false);
b89deed3 2987}
28e53bdd 2988EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2989
6e84d644 2990/**
401a8d04
TH
2991 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2992 * @dwork: the delayed work to flush
6e84d644 2993 *
401a8d04
TH
2994 * Delayed timer is cancelled and the pending work is queued for
2995 * immediate execution. Like flush_work(), this function only
2996 * considers the last queueing instance of @dwork.
1f1f642e 2997 *
401a8d04
TH
2998 * RETURNS:
2999 * %true if flush_work() waited for the work to finish execution,
3000 * %false if it was already idle.
6e84d644 3001 */
401a8d04
TH
3002bool flush_delayed_work(struct delayed_work *dwork)
3003{
8930caba 3004 local_irq_disable();
401a8d04 3005 if (del_timer_sync(&dwork->timer))
1265057f 3006 __queue_work(dwork->cpu,
401a8d04 3007 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3008 local_irq_enable();
401a8d04
TH
3009 return flush_work(&dwork->work);
3010}
3011EXPORT_SYMBOL(flush_delayed_work);
3012
09383498
TH
3013/**
3014 * flush_delayed_work_sync - wait for a dwork to finish
3015 * @dwork: the delayed work to flush
3016 *
3017 * Delayed timer is cancelled and the pending work is queued for
3018 * execution immediately. Other than timer handling, its behavior
3019 * is identical to flush_work_sync().
3020 *
3021 * RETURNS:
3022 * %true if flush_work_sync() waited for the work to finish execution,
3023 * %false if it was already idle.
3024 */
3025bool flush_delayed_work_sync(struct delayed_work *dwork)
3026{
8930caba 3027 local_irq_disable();
09383498 3028 if (del_timer_sync(&dwork->timer))
1265057f 3029 __queue_work(dwork->cpu,
09383498 3030 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3031 local_irq_enable();
09383498
TH
3032 return flush_work_sync(&dwork->work);
3033}
3034EXPORT_SYMBOL(flush_delayed_work_sync);
3035
401a8d04
TH
3036/**
3037 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3038 * @dwork: the delayed work cancel
3039 *
3040 * This is cancel_work_sync() for delayed works.
3041 *
3042 * RETURNS:
3043 * %true if @dwork was pending, %false otherwise.
3044 */
3045bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3046{
36e227d2 3047 return __cancel_work_timer(&dwork->work, true);
6e84d644 3048}
f5a421a4 3049EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3050
d4283e93 3051/**
0a13c00e
TH
3052 * schedule_work_on - put work task on a specific cpu
3053 * @cpu: cpu to put the work task on
3054 * @work: job to be done
3055 *
3056 * This puts a job on a specific cpu
3057 */
d4283e93 3058bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3059{
3060 return queue_work_on(cpu, system_wq, work);
3061}
3062EXPORT_SYMBOL(schedule_work_on);
3063
0fcb78c2
REB
3064/**
3065 * schedule_work - put work task in global workqueue
3066 * @work: job to be done
3067 *
d4283e93
TH
3068 * Returns %false if @work was already on the kernel-global workqueue and
3069 * %true otherwise.
5b0f437d
BVA
3070 *
3071 * This puts a job in the kernel-global workqueue if it was not already
3072 * queued and leaves it in the same position on the kernel-global
3073 * workqueue otherwise.
0fcb78c2 3074 */
d4283e93 3075bool schedule_work(struct work_struct *work)
1da177e4 3076{
d320c038 3077 return queue_work(system_wq, work);
1da177e4 3078}
ae90dd5d 3079EXPORT_SYMBOL(schedule_work);
1da177e4 3080
0a13c00e
TH
3081/**
3082 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3083 * @cpu: cpu to use
3084 * @dwork: job to be done
3085 * @delay: number of jiffies to wait
c1a220e7 3086 *
0a13c00e
TH
3087 * After waiting for a given time this puts a job in the kernel-global
3088 * workqueue on the specified CPU.
c1a220e7 3089 */
d4283e93
TH
3090bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3091 unsigned long delay)
c1a220e7 3092{
0a13c00e 3093 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3094}
0a13c00e 3095EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3096
0fcb78c2
REB
3097/**
3098 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3099 * @dwork: job to be done
3100 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3101 *
3102 * After waiting for a given time this puts a job in the kernel-global
3103 * workqueue.
3104 */
d4283e93 3105bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3106{
d320c038 3107 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3108}
ae90dd5d 3109EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3110
b6136773 3111/**
31ddd871 3112 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3113 * @func: the function to call
b6136773 3114 *
31ddd871
TH
3115 * schedule_on_each_cpu() executes @func on each online CPU using the
3116 * system workqueue and blocks until all CPUs have completed.
b6136773 3117 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3118 *
3119 * RETURNS:
3120 * 0 on success, -errno on failure.
b6136773 3121 */
65f27f38 3122int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3123{
3124 int cpu;
38f51568 3125 struct work_struct __percpu *works;
15316ba8 3126
b6136773
AM
3127 works = alloc_percpu(struct work_struct);
3128 if (!works)
15316ba8 3129 return -ENOMEM;
b6136773 3130
93981800
TH
3131 get_online_cpus();
3132
15316ba8 3133 for_each_online_cpu(cpu) {
9bfb1839
IM
3134 struct work_struct *work = per_cpu_ptr(works, cpu);
3135
3136 INIT_WORK(work, func);
b71ab8c2 3137 schedule_work_on(cpu, work);
65a64464 3138 }
93981800
TH
3139
3140 for_each_online_cpu(cpu)
3141 flush_work(per_cpu_ptr(works, cpu));
3142
95402b38 3143 put_online_cpus();
b6136773 3144 free_percpu(works);
15316ba8
CL
3145 return 0;
3146}
3147
eef6a7d5
AS
3148/**
3149 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3150 *
3151 * Forces execution of the kernel-global workqueue and blocks until its
3152 * completion.
3153 *
3154 * Think twice before calling this function! It's very easy to get into
3155 * trouble if you don't take great care. Either of the following situations
3156 * will lead to deadlock:
3157 *
3158 * One of the work items currently on the workqueue needs to acquire
3159 * a lock held by your code or its caller.
3160 *
3161 * Your code is running in the context of a work routine.
3162 *
3163 * They will be detected by lockdep when they occur, but the first might not
3164 * occur very often. It depends on what work items are on the workqueue and
3165 * what locks they need, which you have no control over.
3166 *
3167 * In most situations flushing the entire workqueue is overkill; you merely
3168 * need to know that a particular work item isn't queued and isn't running.
3169 * In such cases you should use cancel_delayed_work_sync() or
3170 * cancel_work_sync() instead.
3171 */
1da177e4
LT
3172void flush_scheduled_work(void)
3173{
d320c038 3174 flush_workqueue(system_wq);
1da177e4 3175}
ae90dd5d 3176EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3177
1fa44eca
JB
3178/**
3179 * execute_in_process_context - reliably execute the routine with user context
3180 * @fn: the function to execute
1fa44eca
JB
3181 * @ew: guaranteed storage for the execute work structure (must
3182 * be available when the work executes)
3183 *
3184 * Executes the function immediately if process context is available,
3185 * otherwise schedules the function for delayed execution.
3186 *
3187 * Returns: 0 - function was executed
3188 * 1 - function was scheduled for execution
3189 */
65f27f38 3190int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3191{
3192 if (!in_interrupt()) {
65f27f38 3193 fn(&ew->work);
1fa44eca
JB
3194 return 0;
3195 }
3196
65f27f38 3197 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3198 schedule_work(&ew->work);
3199
3200 return 1;
3201}
3202EXPORT_SYMBOL_GPL(execute_in_process_context);
3203
1da177e4
LT
3204int keventd_up(void)
3205{
d320c038 3206 return system_wq != NULL;
1da177e4
LT
3207}
3208
bdbc5dd7 3209static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3210{
65a64464 3211 /*
0f900049
TH
3212 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3213 * Make sure that the alignment isn't lower than that of
3214 * unsigned long long.
65a64464 3215 */
0f900049
TH
3216 const size_t size = sizeof(struct cpu_workqueue_struct);
3217 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3218 __alignof__(unsigned long long));
65a64464 3219
e06ffa1e 3220 if (!(wq->flags & WQ_UNBOUND))
f3421797 3221 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3222 else {
f3421797
TH
3223 void *ptr;
3224
3225 /*
3226 * Allocate enough room to align cwq and put an extra
3227 * pointer at the end pointing back to the originally
3228 * allocated pointer which will be used for free.
3229 */
3230 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3231 if (ptr) {
3232 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3233 *(void **)(wq->cpu_wq.single + 1) = ptr;
3234 }
bdbc5dd7 3235 }
f3421797 3236
0415b00d 3237 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3238 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3239 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3240}
3241
bdbc5dd7 3242static void free_cwqs(struct workqueue_struct *wq)
0f900049 3243{
e06ffa1e 3244 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3245 free_percpu(wq->cpu_wq.pcpu);
3246 else if (wq->cpu_wq.single) {
3247 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3248 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3249 }
0f900049
TH
3250}
3251
f3421797
TH
3252static int wq_clamp_max_active(int max_active, unsigned int flags,
3253 const char *name)
b71ab8c2 3254{
f3421797
TH
3255 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3256
3257 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3258 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3259 "is out of range, clamping between %d and %d\n",
f3421797 3260 max_active, name, 1, lim);
b71ab8c2 3261
f3421797 3262 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3263}
3264
b196be89 3265struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3266 unsigned int flags,
3267 int max_active,
3268 struct lock_class_key *key,
b196be89 3269 const char *lock_name, ...)
1da177e4 3270{
b196be89 3271 va_list args, args1;
1da177e4 3272 struct workqueue_struct *wq;
c34056a3 3273 unsigned int cpu;
b196be89
TH
3274 size_t namelen;
3275
3276 /* determine namelen, allocate wq and format name */
3277 va_start(args, lock_name);
3278 va_copy(args1, args);
3279 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3280
3281 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3282 if (!wq)
3283 goto err;
3284
3285 vsnprintf(wq->name, namelen, fmt, args1);
3286 va_end(args);
3287 va_end(args1);
1da177e4 3288
6370a6ad
TH
3289 /*
3290 * Workqueues which may be used during memory reclaim should
3291 * have a rescuer to guarantee forward progress.
3292 */
3293 if (flags & WQ_MEM_RECLAIM)
3294 flags |= WQ_RESCUER;
3295
d320c038 3296 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3297 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3298
b196be89 3299 /* init wq */
97e37d7b 3300 wq->flags = flags;
a0a1a5fd 3301 wq->saved_max_active = max_active;
73f53c4a
TH
3302 mutex_init(&wq->flush_mutex);
3303 atomic_set(&wq->nr_cwqs_to_flush, 0);
3304 INIT_LIST_HEAD(&wq->flusher_queue);
3305 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3306
eb13ba87 3307 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3308 INIT_LIST_HEAD(&wq->list);
3af24433 3309
bdbc5dd7
TH
3310 if (alloc_cwqs(wq) < 0)
3311 goto err;
3312
f3421797 3313 for_each_cwq_cpu(cpu, wq) {
1537663f 3314 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3315 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3316 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3317
0f900049 3318 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3319 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3320 cwq->wq = wq;
73f53c4a 3321 cwq->flush_color = -1;
1e19ffc6 3322 cwq->max_active = max_active;
1e19ffc6 3323 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3324 }
1537663f 3325
e22bee78
TH
3326 if (flags & WQ_RESCUER) {
3327 struct worker *rescuer;
3328
f2e005aa 3329 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3330 goto err;
3331
3332 wq->rescuer = rescuer = alloc_worker();
3333 if (!rescuer)
3334 goto err;
3335
b196be89
TH
3336 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3337 wq->name);
e22bee78
TH
3338 if (IS_ERR(rescuer->task))
3339 goto err;
3340
e22bee78
TH
3341 rescuer->task->flags |= PF_THREAD_BOUND;
3342 wake_up_process(rescuer->task);
3af24433
ON
3343 }
3344
a0a1a5fd
TH
3345 /*
3346 * workqueue_lock protects global freeze state and workqueues
3347 * list. Grab it, set max_active accordingly and add the new
3348 * workqueue to workqueues list.
3349 */
1537663f 3350 spin_lock(&workqueue_lock);
a0a1a5fd 3351
58a69cb4 3352 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3353 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3354 get_cwq(cpu, wq)->max_active = 0;
3355
1537663f 3356 list_add(&wq->list, &workqueues);
a0a1a5fd 3357
1537663f
TH
3358 spin_unlock(&workqueue_lock);
3359
3af24433 3360 return wq;
4690c4ab
TH
3361err:
3362 if (wq) {
bdbc5dd7 3363 free_cwqs(wq);
f2e005aa 3364 free_mayday_mask(wq->mayday_mask);
e22bee78 3365 kfree(wq->rescuer);
4690c4ab
TH
3366 kfree(wq);
3367 }
3368 return NULL;
3af24433 3369}
d320c038 3370EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3371
3af24433
ON
3372/**
3373 * destroy_workqueue - safely terminate a workqueue
3374 * @wq: target workqueue
3375 *
3376 * Safely destroy a workqueue. All work currently pending will be done first.
3377 */
3378void destroy_workqueue(struct workqueue_struct *wq)
3379{
c8e55f36 3380 unsigned int cpu;
3af24433 3381
9c5a2ba7
TH
3382 /* drain it before proceeding with destruction */
3383 drain_workqueue(wq);
c8efcc25 3384
a0a1a5fd
TH
3385 /*
3386 * wq list is used to freeze wq, remove from list after
3387 * flushing is complete in case freeze races us.
3388 */
95402b38 3389 spin_lock(&workqueue_lock);
b1f4ec17 3390 list_del(&wq->list);
95402b38 3391 spin_unlock(&workqueue_lock);
3af24433 3392
e22bee78 3393 /* sanity check */
f3421797 3394 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3395 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3396 int i;
3397
73f53c4a
TH
3398 for (i = 0; i < WORK_NR_COLORS; i++)
3399 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3400 BUG_ON(cwq->nr_active);
3401 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3402 }
9b41ea72 3403
e22bee78
TH
3404 if (wq->flags & WQ_RESCUER) {
3405 kthread_stop(wq->rescuer->task);
f2e005aa 3406 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3407 kfree(wq->rescuer);
e22bee78
TH
3408 }
3409
bdbc5dd7 3410 free_cwqs(wq);
3af24433
ON
3411 kfree(wq);
3412}
3413EXPORT_SYMBOL_GPL(destroy_workqueue);
3414
dcd989cb
TH
3415/**
3416 * workqueue_set_max_active - adjust max_active of a workqueue
3417 * @wq: target workqueue
3418 * @max_active: new max_active value.
3419 *
3420 * Set max_active of @wq to @max_active.
3421 *
3422 * CONTEXT:
3423 * Don't call from IRQ context.
3424 */
3425void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3426{
3427 unsigned int cpu;
3428
f3421797 3429 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3430
3431 spin_lock(&workqueue_lock);
3432
3433 wq->saved_max_active = max_active;
3434
f3421797 3435 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3436 struct global_cwq *gcwq = get_gcwq(cpu);
3437
3438 spin_lock_irq(&gcwq->lock);
3439
58a69cb4 3440 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3441 !(gcwq->flags & GCWQ_FREEZING))
3442 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3443
dcd989cb 3444 spin_unlock_irq(&gcwq->lock);
65a64464 3445 }
93981800 3446
dcd989cb 3447 spin_unlock(&workqueue_lock);
15316ba8 3448}
dcd989cb 3449EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3450
eef6a7d5 3451/**
dcd989cb
TH
3452 * workqueue_congested - test whether a workqueue is congested
3453 * @cpu: CPU in question
3454 * @wq: target workqueue
eef6a7d5 3455 *
dcd989cb
TH
3456 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3457 * no synchronization around this function and the test result is
3458 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3459 *
dcd989cb
TH
3460 * RETURNS:
3461 * %true if congested, %false otherwise.
eef6a7d5 3462 */
dcd989cb 3463bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3464{
dcd989cb
TH
3465 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3466
3467 return !list_empty(&cwq->delayed_works);
1da177e4 3468}
dcd989cb 3469EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3470
1fa44eca 3471/**
dcd989cb
TH
3472 * work_cpu - return the last known associated cpu for @work
3473 * @work: the work of interest
1fa44eca 3474 *
dcd989cb 3475 * RETURNS:
bdbc5dd7 3476 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3477 */
dcd989cb 3478unsigned int work_cpu(struct work_struct *work)
1fa44eca 3479{
dcd989cb 3480 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3481
bdbc5dd7 3482 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3483}
dcd989cb 3484EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3485
dcd989cb
TH
3486/**
3487 * work_busy - test whether a work is currently pending or running
3488 * @work: the work to be tested
3489 *
3490 * Test whether @work is currently pending or running. There is no
3491 * synchronization around this function and the test result is
3492 * unreliable and only useful as advisory hints or for debugging.
3493 * Especially for reentrant wqs, the pending state might hide the
3494 * running state.
3495 *
3496 * RETURNS:
3497 * OR'd bitmask of WORK_BUSY_* bits.
3498 */
3499unsigned int work_busy(struct work_struct *work)
1da177e4 3500{
dcd989cb
TH
3501 struct global_cwq *gcwq = get_work_gcwq(work);
3502 unsigned long flags;
3503 unsigned int ret = 0;
1da177e4 3504
dcd989cb
TH
3505 if (!gcwq)
3506 return false;
1da177e4 3507
dcd989cb 3508 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3509
dcd989cb
TH
3510 if (work_pending(work))
3511 ret |= WORK_BUSY_PENDING;
3512 if (find_worker_executing_work(gcwq, work))
3513 ret |= WORK_BUSY_RUNNING;
1da177e4 3514
dcd989cb 3515 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3516
dcd989cb 3517 return ret;
1da177e4 3518}
dcd989cb 3519EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3520
db7bccf4
TH
3521/*
3522 * CPU hotplug.
3523 *
e22bee78
TH
3524 * There are two challenges in supporting CPU hotplug. Firstly, there
3525 * are a lot of assumptions on strong associations among work, cwq and
3526 * gcwq which make migrating pending and scheduled works very
3527 * difficult to implement without impacting hot paths. Secondly,
3528 * gcwqs serve mix of short, long and very long running works making
3529 * blocked draining impractical.
3530 *
628c78e7
TH
3531 * This is solved by allowing a gcwq to be disassociated from the CPU
3532 * running as an unbound one and allowing it to be reattached later if the
3533 * cpu comes back online.
db7bccf4 3534 */
1da177e4 3535
60373152 3536/* claim manager positions of all pools */
8db25e78 3537static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3538{
3539 struct worker_pool *pool;
3540
3541 for_each_worker_pool(pool, gcwq)
3542 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3543 spin_lock_irq(&gcwq->lock);
60373152
TH
3544}
3545
3546/* release manager positions */
8db25e78 3547static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3548{
3549 struct worker_pool *pool;
3550
8db25e78 3551 spin_unlock_irq(&gcwq->lock);
60373152
TH
3552 for_each_worker_pool(pool, gcwq)
3553 mutex_unlock(&pool->manager_mutex);
3554}
3555
628c78e7 3556static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3557{
628c78e7 3558 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3559 struct worker_pool *pool;
db7bccf4
TH
3560 struct worker *worker;
3561 struct hlist_node *pos;
3562 int i;
3af24433 3563
db7bccf4
TH
3564 BUG_ON(gcwq->cpu != smp_processor_id());
3565
8db25e78 3566 gcwq_claim_management_and_lock(gcwq);
3af24433 3567
f2d5a0ee
TH
3568 /*
3569 * We've claimed all manager positions. Make all workers unbound
3570 * and set DISASSOCIATED. Before this, all workers except for the
3571 * ones which are still executing works from before the last CPU
3572 * down must be on the cpu. After this, they may become diasporas.
3573 */
60373152 3574 for_each_worker_pool(pool, gcwq)
4ce62e9e 3575 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3576 worker->flags |= WORKER_UNBOUND;
3af24433 3577
db7bccf4 3578 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3579 worker->flags |= WORKER_UNBOUND;
06ba38a9 3580
f2d5a0ee
TH
3581 gcwq->flags |= GCWQ_DISASSOCIATED;
3582
8db25e78 3583 gcwq_release_management_and_unlock(gcwq);
628c78e7 3584
e22bee78 3585 /*
403c821d 3586 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3587 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3588 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3589 */
e22bee78 3590 schedule();
06ba38a9 3591
e22bee78 3592 /*
628c78e7
TH
3593 * Sched callbacks are disabled now. Zap nr_running. After this,
3594 * nr_running stays zero and need_more_worker() and keep_working()
3595 * are always true as long as the worklist is not empty. @gcwq now
3596 * behaves as unbound (in terms of concurrency management) gcwq
3597 * which is served by workers tied to the CPU.
3598 *
3599 * On return from this function, the current worker would trigger
3600 * unbound chain execution of pending work items if other workers
3601 * didn't already.
e22bee78 3602 */
4ce62e9e
TH
3603 for_each_worker_pool(pool, gcwq)
3604 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3605}
3af24433 3606
8db25e78
TH
3607/*
3608 * Workqueues should be brought up before normal priority CPU notifiers.
3609 * This will be registered high priority CPU notifier.
3610 */
3611static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3612 unsigned long action,
3613 void *hcpu)
3af24433
ON
3614{
3615 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3616 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3617 struct worker_pool *pool;
3ce63377 3618
8db25e78 3619 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3620 case CPU_UP_PREPARE:
4ce62e9e 3621 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3622 struct worker *worker;
3623
3624 if (pool->nr_workers)
3625 continue;
3626
3627 worker = create_worker(pool);
3628 if (!worker)
3629 return NOTIFY_BAD;
3630
3631 spin_lock_irq(&gcwq->lock);
3632 start_worker(worker);
3633 spin_unlock_irq(&gcwq->lock);
3af24433 3634 }
8db25e78 3635 break;
3af24433 3636
db7bccf4
TH
3637 case CPU_DOWN_FAILED:
3638 case CPU_ONLINE:
8db25e78 3639 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3640 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3641 rebind_workers(gcwq);
8db25e78 3642 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3643 break;
00dfcaf7 3644 }
65758202
TH
3645 return NOTIFY_OK;
3646}
3647
3648/*
3649 * Workqueues should be brought down after normal priority CPU notifiers.
3650 * This will be registered as low priority CPU notifier.
3651 */
3652static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3653 unsigned long action,
3654 void *hcpu)
3655{
8db25e78
TH
3656 unsigned int cpu = (unsigned long)hcpu;
3657 struct work_struct unbind_work;
3658
65758202
TH
3659 switch (action & ~CPU_TASKS_FROZEN) {
3660 case CPU_DOWN_PREPARE:
8db25e78
TH
3661 /* unbinding should happen on the local CPU */
3662 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3663 schedule_work_on(cpu, &unbind_work);
3664 flush_work(&unbind_work);
3665 break;
65758202
TH
3666 }
3667 return NOTIFY_OK;
3668}
3669
2d3854a3 3670#ifdef CONFIG_SMP
8ccad40d 3671
2d3854a3 3672struct work_for_cpu {
6b44003e 3673 struct completion completion;
2d3854a3
RR
3674 long (*fn)(void *);
3675 void *arg;
3676 long ret;
3677};
3678
6b44003e 3679static int do_work_for_cpu(void *_wfc)
2d3854a3 3680{
6b44003e 3681 struct work_for_cpu *wfc = _wfc;
2d3854a3 3682 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3683 complete(&wfc->completion);
3684 return 0;
2d3854a3
RR
3685}
3686
3687/**
3688 * work_on_cpu - run a function in user context on a particular cpu
3689 * @cpu: the cpu to run on
3690 * @fn: the function to run
3691 * @arg: the function arg
3692 *
31ad9081
RR
3693 * This will return the value @fn returns.
3694 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3695 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3696 */
3697long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3698{
6b44003e
AM
3699 struct task_struct *sub_thread;
3700 struct work_for_cpu wfc = {
3701 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3702 .fn = fn,
3703 .arg = arg,
3704 };
3705
3706 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3707 if (IS_ERR(sub_thread))
3708 return PTR_ERR(sub_thread);
3709 kthread_bind(sub_thread, cpu);
3710 wake_up_process(sub_thread);
3711 wait_for_completion(&wfc.completion);
2d3854a3
RR
3712 return wfc.ret;
3713}
3714EXPORT_SYMBOL_GPL(work_on_cpu);
3715#endif /* CONFIG_SMP */
3716
a0a1a5fd
TH
3717#ifdef CONFIG_FREEZER
3718
3719/**
3720 * freeze_workqueues_begin - begin freezing workqueues
3721 *
58a69cb4
TH
3722 * Start freezing workqueues. After this function returns, all freezable
3723 * workqueues will queue new works to their frozen_works list instead of
3724 * gcwq->worklist.
a0a1a5fd
TH
3725 *
3726 * CONTEXT:
8b03ae3c 3727 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3728 */
3729void freeze_workqueues_begin(void)
3730{
a0a1a5fd
TH
3731 unsigned int cpu;
3732
3733 spin_lock(&workqueue_lock);
3734
3735 BUG_ON(workqueue_freezing);
3736 workqueue_freezing = true;
3737
f3421797 3738 for_each_gcwq_cpu(cpu) {
8b03ae3c 3739 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3740 struct workqueue_struct *wq;
8b03ae3c
TH
3741
3742 spin_lock_irq(&gcwq->lock);
3743
db7bccf4
TH
3744 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3745 gcwq->flags |= GCWQ_FREEZING;
3746
a0a1a5fd
TH
3747 list_for_each_entry(wq, &workqueues, list) {
3748 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3749
58a69cb4 3750 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3751 cwq->max_active = 0;
a0a1a5fd 3752 }
8b03ae3c
TH
3753
3754 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3755 }
3756
3757 spin_unlock(&workqueue_lock);
3758}
3759
3760/**
58a69cb4 3761 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3762 *
3763 * Check whether freezing is complete. This function must be called
3764 * between freeze_workqueues_begin() and thaw_workqueues().
3765 *
3766 * CONTEXT:
3767 * Grabs and releases workqueue_lock.
3768 *
3769 * RETURNS:
58a69cb4
TH
3770 * %true if some freezable workqueues are still busy. %false if freezing
3771 * is complete.
a0a1a5fd
TH
3772 */
3773bool freeze_workqueues_busy(void)
3774{
a0a1a5fd
TH
3775 unsigned int cpu;
3776 bool busy = false;
3777
3778 spin_lock(&workqueue_lock);
3779
3780 BUG_ON(!workqueue_freezing);
3781
f3421797 3782 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3783 struct workqueue_struct *wq;
a0a1a5fd
TH
3784 /*
3785 * nr_active is monotonically decreasing. It's safe
3786 * to peek without lock.
3787 */
3788 list_for_each_entry(wq, &workqueues, list) {
3789 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3790
58a69cb4 3791 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3792 continue;
3793
3794 BUG_ON(cwq->nr_active < 0);
3795 if (cwq->nr_active) {
3796 busy = true;
3797 goto out_unlock;
3798 }
3799 }
3800 }
3801out_unlock:
3802 spin_unlock(&workqueue_lock);
3803 return busy;
3804}
3805
3806/**
3807 * thaw_workqueues - thaw workqueues
3808 *
3809 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3810 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3811 *
3812 * CONTEXT:
8b03ae3c 3813 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3814 */
3815void thaw_workqueues(void)
3816{
a0a1a5fd
TH
3817 unsigned int cpu;
3818
3819 spin_lock(&workqueue_lock);
3820
3821 if (!workqueue_freezing)
3822 goto out_unlock;
3823
f3421797 3824 for_each_gcwq_cpu(cpu) {
8b03ae3c 3825 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3826 struct worker_pool *pool;
bdbc5dd7 3827 struct workqueue_struct *wq;
8b03ae3c
TH
3828
3829 spin_lock_irq(&gcwq->lock);
3830
db7bccf4
TH
3831 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3832 gcwq->flags &= ~GCWQ_FREEZING;
3833
a0a1a5fd
TH
3834 list_for_each_entry(wq, &workqueues, list) {
3835 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3836
58a69cb4 3837 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3838 continue;
3839
a0a1a5fd
TH
3840 /* restore max_active and repopulate worklist */
3841 cwq->max_active = wq->saved_max_active;
3842
3843 while (!list_empty(&cwq->delayed_works) &&
3844 cwq->nr_active < cwq->max_active)
3845 cwq_activate_first_delayed(cwq);
a0a1a5fd 3846 }
8b03ae3c 3847
4ce62e9e
TH
3848 for_each_worker_pool(pool, gcwq)
3849 wake_up_worker(pool);
e22bee78 3850
8b03ae3c 3851 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3852 }
3853
3854 workqueue_freezing = false;
3855out_unlock:
3856 spin_unlock(&workqueue_lock);
3857}
3858#endif /* CONFIG_FREEZER */
3859
6ee0578b 3860static int __init init_workqueues(void)
1da177e4 3861{
c34056a3 3862 unsigned int cpu;
c8e55f36 3863 int i;
c34056a3 3864
b5490077
TH
3865 /* make sure we have enough bits for OFFQ CPU number */
3866 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3867 WORK_CPU_LAST);
3868
65758202
TH
3869 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3870 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3871
3872 /* initialize gcwqs */
f3421797 3873 for_each_gcwq_cpu(cpu) {
8b03ae3c 3874 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3875 struct worker_pool *pool;
8b03ae3c
TH
3876
3877 spin_lock_init(&gcwq->lock);
3878 gcwq->cpu = cpu;
477a3c33 3879 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3880
c8e55f36
TH
3881 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3882 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3883
4ce62e9e
TH
3884 for_each_worker_pool(pool, gcwq) {
3885 pool->gcwq = gcwq;
3886 INIT_LIST_HEAD(&pool->worklist);
3887 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3888
4ce62e9e
TH
3889 init_timer_deferrable(&pool->idle_timer);
3890 pool->idle_timer.function = idle_worker_timeout;
3891 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3892
4ce62e9e
TH
3893 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3894 (unsigned long)pool);
3895
60373152 3896 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3897 ida_init(&pool->worker_ida);
3898 }
db7bccf4 3899
25511a47 3900 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3901 }
3902
e22bee78 3903 /* create the initial worker */
f3421797 3904 for_each_online_gcwq_cpu(cpu) {
e22bee78 3905 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3906 struct worker_pool *pool;
e22bee78 3907
477a3c33
TH
3908 if (cpu != WORK_CPU_UNBOUND)
3909 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3910
3911 for_each_worker_pool(pool, gcwq) {
3912 struct worker *worker;
3913
bc2ae0f5 3914 worker = create_worker(pool);
4ce62e9e
TH
3915 BUG_ON(!worker);
3916 spin_lock_irq(&gcwq->lock);
3917 start_worker(worker);
3918 spin_unlock_irq(&gcwq->lock);
3919 }
e22bee78
TH
3920 }
3921
d320c038
TH
3922 system_wq = alloc_workqueue("events", 0, 0);
3923 system_long_wq = alloc_workqueue("events_long", 0, 0);
3924 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3925 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3926 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3927 system_freezable_wq = alloc_workqueue("events_freezable",
3928 WQ_FREEZABLE, 0);
62d3c543
AS
3929 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3930 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3931 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3932 !system_unbound_wq || !system_freezable_wq ||
3933 !system_nrt_freezable_wq);
6ee0578b 3934 return 0;
1da177e4 3935}
6ee0578b 3936early_initcall(init_workqueues);
This page took 4.395811 seconds and 5 git commands to generate.