workqueue: move flush_scheduled_work() to workqueue.h
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43
TH
150
151 struct list_head worklist; /* L: list of pending works */
152 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
153
154 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
155 int nr_idle; /* L: currently idle ones */
156
157 struct list_head idle_list; /* X: list of idle workers */
158 struct timer_list idle_timer; /* L: worker idle timeout */
159 struct timer_list mayday_timer; /* L: SOS timer for workers */
160
c5aa87bb 161 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
162 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
163 /* L: hash of busy workers */
164
bc3a1afc 165 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 166 struct mutex manager_arb; /* manager arbitration */
2607d7a6 167 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
168 struct mutex attach_mutex; /* attach/detach exclusion */
169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
4690c4ab 262 struct lockdep_map lockdep_map;
4e6045f1 263#endif
ecf6881f 264 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 265
e2dca7ad
TH
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
2728fd2f
TH
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
277};
278
e904e6c2
TH
279static struct kmem_cache *pwq_cache;
280
bce90380
TH
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
d55262c4
TH
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
cee22a15
VK
287/* see the comment above the definition of WQ_POWER_EFFICIENT */
288#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
289static bool wq_power_efficient = true;
290#else
291static bool wq_power_efficient;
292#endif
293
294module_param_named(power_efficient, wq_power_efficient, bool, 0444);
295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 303
e2dca7ad 304static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 305static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 306
042f7df1 307static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
b05a7928 308
7d19c5ce
TH
309/* the per-cpu worker pools */
310static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
311 cpu_worker_pools);
312
68e13a67 313static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 314
68e13a67 315/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
316static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
317
c5aa87bb 318/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
319static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
320
8a2b7538
TH
321/* I: attributes used when instantiating ordered pools on demand */
322static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
323
d320c038 324struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 325EXPORT_SYMBOL(system_wq);
044c782c 326struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 327EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 328struct workqueue_struct *system_long_wq __read_mostly;
d320c038 329EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 330struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 331EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 332struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 333EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
334struct workqueue_struct *system_power_efficient_wq __read_mostly;
335EXPORT_SYMBOL_GPL(system_power_efficient_wq);
336struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
337EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 338
7d19c5ce 339static int worker_thread(void *__worker);
6ba94429 340static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 341
97bd2347
TH
342#define CREATE_TRACE_POINTS
343#include <trace/events/workqueue.h>
344
68e13a67 345#define assert_rcu_or_pool_mutex() \
5bcab335 346 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
347 lockdep_is_held(&wq_pool_mutex), \
348 "sched RCU or wq_pool_mutex should be held")
5bcab335 349
b09f4fd3 350#define assert_rcu_or_wq_mutex(wq) \
76af4d93 351 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 352 lockdep_is_held(&wq->mutex), \
b09f4fd3 353 "sched RCU or wq->mutex should be held")
76af4d93 354
5b95e1af
LJ
355#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
356 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
357 lockdep_is_held(&wq->mutex) || \
358 lockdep_is_held(&wq_pool_mutex), \
359 "sched RCU, wq->mutex or wq_pool_mutex should be held")
360
f02ae73a
TH
361#define for_each_cpu_worker_pool(pool, cpu) \
362 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
363 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 364 (pool)++)
4ce62e9e 365
17116969
TH
366/**
367 * for_each_pool - iterate through all worker_pools in the system
368 * @pool: iteration cursor
611c92a0 369 * @pi: integer used for iteration
fa1b54e6 370 *
68e13a67
LJ
371 * This must be called either with wq_pool_mutex held or sched RCU read
372 * locked. If the pool needs to be used beyond the locking in effect, the
373 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
374 *
375 * The if/else clause exists only for the lockdep assertion and can be
376 * ignored.
17116969 377 */
611c92a0
TH
378#define for_each_pool(pool, pi) \
379 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 380 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 381 else
17116969 382
822d8405
TH
383/**
384 * for_each_pool_worker - iterate through all workers of a worker_pool
385 * @worker: iteration cursor
822d8405
TH
386 * @pool: worker_pool to iterate workers of
387 *
92f9c5c4 388 * This must be called with @pool->attach_mutex.
822d8405
TH
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
da028469
LJ
393#define for_each_pool_worker(worker, pool) \
394 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 395 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
396 else
397
49e3cf44
TH
398/**
399 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
400 * @pwq: iteration cursor
401 * @wq: the target workqueue
76af4d93 402 *
b09f4fd3 403 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
404 * If the pwq needs to be used beyond the locking in effect, the caller is
405 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
49e3cf44
TH
409 */
410#define for_each_pwq(pwq, wq) \
76af4d93 411 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 412 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 413 else
f3421797 414
dc186ad7
TG
415#ifdef CONFIG_DEBUG_OBJECTS_WORK
416
417static struct debug_obj_descr work_debug_descr;
418
99777288
SG
419static void *work_debug_hint(void *addr)
420{
421 return ((struct work_struct *) addr)->func;
422}
423
dc186ad7
TG
424/*
425 * fixup_init is called when:
426 * - an active object is initialized
427 */
428static int work_fixup_init(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433 case ODEBUG_STATE_ACTIVE:
434 cancel_work_sync(work);
435 debug_object_init(work, &work_debug_descr);
436 return 1;
437 default:
438 return 0;
439 }
440}
441
442/*
443 * fixup_activate is called when:
444 * - an active object is activated
445 * - an unknown object is activated (might be a statically initialized object)
446 */
447static int work_fixup_activate(void *addr, enum debug_obj_state state)
448{
449 struct work_struct *work = addr;
450
451 switch (state) {
452
453 case ODEBUG_STATE_NOTAVAILABLE:
454 /*
455 * This is not really a fixup. The work struct was
456 * statically initialized. We just make sure that it
457 * is tracked in the object tracker.
458 */
22df02bb 459 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
460 debug_object_init(work, &work_debug_descr);
461 debug_object_activate(work, &work_debug_descr);
462 return 0;
463 }
464 WARN_ON_ONCE(1);
465 return 0;
466
467 case ODEBUG_STATE_ACTIVE:
468 WARN_ON(1);
469
470 default:
471 return 0;
472 }
473}
474
475/*
476 * fixup_free is called when:
477 * - an active object is freed
478 */
479static int work_fixup_free(void *addr, enum debug_obj_state state)
480{
481 struct work_struct *work = addr;
482
483 switch (state) {
484 case ODEBUG_STATE_ACTIVE:
485 cancel_work_sync(work);
486 debug_object_free(work, &work_debug_descr);
487 return 1;
488 default:
489 return 0;
490 }
491}
492
493static struct debug_obj_descr work_debug_descr = {
494 .name = "work_struct",
99777288 495 .debug_hint = work_debug_hint,
dc186ad7
TG
496 .fixup_init = work_fixup_init,
497 .fixup_activate = work_fixup_activate,
498 .fixup_free = work_fixup_free,
499};
500
501static inline void debug_work_activate(struct work_struct *work)
502{
503 debug_object_activate(work, &work_debug_descr);
504}
505
506static inline void debug_work_deactivate(struct work_struct *work)
507{
508 debug_object_deactivate(work, &work_debug_descr);
509}
510
511void __init_work(struct work_struct *work, int onstack)
512{
513 if (onstack)
514 debug_object_init_on_stack(work, &work_debug_descr);
515 else
516 debug_object_init(work, &work_debug_descr);
517}
518EXPORT_SYMBOL_GPL(__init_work);
519
520void destroy_work_on_stack(struct work_struct *work)
521{
522 debug_object_free(work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(destroy_work_on_stack);
525
ea2e64f2
TG
526void destroy_delayed_work_on_stack(struct delayed_work *work)
527{
528 destroy_timer_on_stack(&work->timer);
529 debug_object_free(&work->work, &work_debug_descr);
530}
531EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
532
dc186ad7
TG
533#else
534static inline void debug_work_activate(struct work_struct *work) { }
535static inline void debug_work_deactivate(struct work_struct *work) { }
536#endif
537
4e8b22bd
LB
538/**
539 * worker_pool_assign_id - allocate ID and assing it to @pool
540 * @pool: the pool pointer of interest
541 *
542 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
543 * successfully, -errno on failure.
544 */
9daf9e67
TH
545static int worker_pool_assign_id(struct worker_pool *pool)
546{
547 int ret;
548
68e13a67 549 lockdep_assert_held(&wq_pool_mutex);
5bcab335 550
4e8b22bd
LB
551 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
552 GFP_KERNEL);
229641a6 553 if (ret >= 0) {
e68035fb 554 pool->id = ret;
229641a6
TH
555 return 0;
556 }
fa1b54e6 557 return ret;
7c3eed5c
TH
558}
559
df2d5ae4
TH
560/**
561 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
562 * @wq: the target workqueue
563 * @node: the node ID
564 *
5b95e1af
LJ
565 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
566 * read locked.
df2d5ae4
TH
567 * If the pwq needs to be used beyond the locking in effect, the caller is
568 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
569 *
570 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
571 */
572static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
573 int node)
574{
5b95e1af 575 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
df2d5ae4
TH
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
73f53c4a
TH
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
1da177e4 594
14441960 595/*
112202d9
TH
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 598 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 599 *
112202d9
TH
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
7a22ad75 604 *
112202d9 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 606 * corresponding to a work. Pool is available once the work has been
112202d9 607 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 608 * available only while the work item is queued.
7a22ad75 609 *
bbb68dfa
TH
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
14441960 614 */
7a22ad75
TH
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
365970a1 617{
6183c009 618 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
365970a1 621
112202d9 622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
623 unsigned long extra_flags)
624{
112202d9
TH
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
627}
628
4468a00f
LJ
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
7c3eed5c
TH
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
7a22ad75 638{
23657bb1
TH
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
7c3eed5c 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 647}
f756d5e2 648
7a22ad75 649static void clear_work_data(struct work_struct *work)
1da177e4 650{
7c3eed5c
TH
651 smp_wmb(); /* see set_work_pool_and_clear_pending() */
652 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
653}
654
112202d9 655static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 656{
e120153d 657 unsigned long data = atomic_long_read(&work->data);
7a22ad75 658
112202d9 659 if (data & WORK_STRUCT_PWQ)
e120153d
TH
660 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
661 else
662 return NULL;
4d707b9f
ON
663}
664
7c3eed5c
TH
665/**
666 * get_work_pool - return the worker_pool a given work was associated with
667 * @work: the work item of interest
668 *
68e13a67
LJ
669 * Pools are created and destroyed under wq_pool_mutex, and allows read
670 * access under sched-RCU read lock. As such, this function should be
671 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
672 *
673 * All fields of the returned pool are accessible as long as the above
674 * mentioned locking is in effect. If the returned pool needs to be used
675 * beyond the critical section, the caller is responsible for ensuring the
676 * returned pool is and stays online.
d185af30
YB
677 *
678 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
679 */
680static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 681{
e120153d 682 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 683 int pool_id;
7a22ad75 684
68e13a67 685 assert_rcu_or_pool_mutex();
fa1b54e6 686
112202d9
TH
687 if (data & WORK_STRUCT_PWQ)
688 return ((struct pool_workqueue *)
7c3eed5c 689 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 690
7c3eed5c
TH
691 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
692 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
693 return NULL;
694
fa1b54e6 695 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
696}
697
698/**
699 * get_work_pool_id - return the worker pool ID a given work is associated with
700 * @work: the work item of interest
701 *
d185af30 702 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
703 * %WORK_OFFQ_POOL_NONE if none.
704 */
705static int get_work_pool_id(struct work_struct *work)
706{
54d5b7d0
LJ
707 unsigned long data = atomic_long_read(&work->data);
708
112202d9
TH
709 if (data & WORK_STRUCT_PWQ)
710 return ((struct pool_workqueue *)
54d5b7d0 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 712
54d5b7d0 713 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
714}
715
bbb68dfa
TH
716static void mark_work_canceling(struct work_struct *work)
717{
7c3eed5c 718 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 719
7c3eed5c
TH
720 pool_id <<= WORK_OFFQ_POOL_SHIFT;
721 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
722}
723
724static bool work_is_canceling(struct work_struct *work)
725{
726 unsigned long data = atomic_long_read(&work->data);
727
112202d9 728 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
729}
730
e22bee78 731/*
3270476a
TH
732 * Policy functions. These define the policies on how the global worker
733 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 734 * they're being called with pool->lock held.
e22bee78
TH
735 */
736
63d95a91 737static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 738{
e19e397a 739 return !atomic_read(&pool->nr_running);
a848e3b6
ON
740}
741
4594bf15 742/*
e22bee78
TH
743 * Need to wake up a worker? Called from anything but currently
744 * running workers.
974271c4
TH
745 *
746 * Note that, because unbound workers never contribute to nr_running, this
706026c2 747 * function will always return %true for unbound pools as long as the
974271c4 748 * worklist isn't empty.
4594bf15 749 */
63d95a91 750static bool need_more_worker(struct worker_pool *pool)
365970a1 751{
63d95a91 752 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 753}
4594bf15 754
e22bee78 755/* Can I start working? Called from busy but !running workers. */
63d95a91 756static bool may_start_working(struct worker_pool *pool)
e22bee78 757{
63d95a91 758 return pool->nr_idle;
e22bee78
TH
759}
760
761/* Do I need to keep working? Called from currently running workers. */
63d95a91 762static bool keep_working(struct worker_pool *pool)
e22bee78 763{
e19e397a
TH
764 return !list_empty(&pool->worklist) &&
765 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
766}
767
768/* Do we need a new worker? Called from manager. */
63d95a91 769static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 770{
63d95a91 771 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 772}
365970a1 773
e22bee78 774/* Do we have too many workers and should some go away? */
63d95a91 775static bool too_many_workers(struct worker_pool *pool)
e22bee78 776{
34a06bd6 777 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
778 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
779 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
780
781 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
782}
783
4d707b9f 784/*
e22bee78
TH
785 * Wake up functions.
786 */
787
1037de36
LJ
788/* Return the first idle worker. Safe with preemption disabled */
789static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 790{
63d95a91 791 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
792 return NULL;
793
63d95a91 794 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
795}
796
797/**
798 * wake_up_worker - wake up an idle worker
63d95a91 799 * @pool: worker pool to wake worker from
7e11629d 800 *
63d95a91 801 * Wake up the first idle worker of @pool.
7e11629d
TH
802 *
803 * CONTEXT:
d565ed63 804 * spin_lock_irq(pool->lock).
7e11629d 805 */
63d95a91 806static void wake_up_worker(struct worker_pool *pool)
7e11629d 807{
1037de36 808 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
809
810 if (likely(worker))
811 wake_up_process(worker->task);
812}
813
d302f017 814/**
e22bee78
TH
815 * wq_worker_waking_up - a worker is waking up
816 * @task: task waking up
817 * @cpu: CPU @task is waking up to
818 *
819 * This function is called during try_to_wake_up() when a worker is
820 * being awoken.
821 *
822 * CONTEXT:
823 * spin_lock_irq(rq->lock)
824 */
d84ff051 825void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
826{
827 struct worker *worker = kthread_data(task);
828
36576000 829 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 830 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 831 atomic_inc(&worker->pool->nr_running);
36576000 832 }
e22bee78
TH
833}
834
835/**
836 * wq_worker_sleeping - a worker is going to sleep
837 * @task: task going to sleep
838 * @cpu: CPU in question, must be the current CPU number
839 *
840 * This function is called during schedule() when a busy worker is
841 * going to sleep. Worker on the same cpu can be woken up by
842 * returning pointer to its task.
843 *
844 * CONTEXT:
845 * spin_lock_irq(rq->lock)
846 *
d185af30 847 * Return:
e22bee78
TH
848 * Worker task on @cpu to wake up, %NULL if none.
849 */
d84ff051 850struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
851{
852 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 853 struct worker_pool *pool;
e22bee78 854
111c225a
TH
855 /*
856 * Rescuers, which may not have all the fields set up like normal
857 * workers, also reach here, let's not access anything before
858 * checking NOT_RUNNING.
859 */
2d64672e 860 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
861 return NULL;
862
111c225a 863 pool = worker->pool;
111c225a 864
e22bee78 865 /* this can only happen on the local cpu */
92b69f50 866 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 867 return NULL;
e22bee78
TH
868
869 /*
870 * The counterpart of the following dec_and_test, implied mb,
871 * worklist not empty test sequence is in insert_work().
872 * Please read comment there.
873 *
628c78e7
TH
874 * NOT_RUNNING is clear. This means that we're bound to and
875 * running on the local cpu w/ rq lock held and preemption
876 * disabled, which in turn means that none else could be
d565ed63 877 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 878 * lock is safe.
e22bee78 879 */
e19e397a
TH
880 if (atomic_dec_and_test(&pool->nr_running) &&
881 !list_empty(&pool->worklist))
1037de36 882 to_wakeup = first_idle_worker(pool);
e22bee78
TH
883 return to_wakeup ? to_wakeup->task : NULL;
884}
885
886/**
887 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 888 * @worker: self
d302f017 889 * @flags: flags to set
d302f017 890 *
228f1d00 891 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 892 *
cb444766 893 * CONTEXT:
d565ed63 894 * spin_lock_irq(pool->lock)
d302f017 895 */
228f1d00 896static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 897{
bd7bdd43 898 struct worker_pool *pool = worker->pool;
e22bee78 899
cb444766
TH
900 WARN_ON_ONCE(worker->task != current);
901
228f1d00 902 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
903 if ((flags & WORKER_NOT_RUNNING) &&
904 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 905 atomic_dec(&pool->nr_running);
e22bee78
TH
906 }
907
d302f017
TH
908 worker->flags |= flags;
909}
910
911/**
e22bee78 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 913 * @worker: self
d302f017
TH
914 * @flags: flags to clear
915 *
e22bee78 916 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 917 *
cb444766 918 * CONTEXT:
d565ed63 919 * spin_lock_irq(pool->lock)
d302f017
TH
920 */
921static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922{
63d95a91 923 struct worker_pool *pool = worker->pool;
e22bee78
TH
924 unsigned int oflags = worker->flags;
925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
d302f017 928 worker->flags &= ~flags;
e22bee78 929
42c025f3
TH
930 /*
931 * If transitioning out of NOT_RUNNING, increment nr_running. Note
932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
933 * of multiple flags, not a single flag.
934 */
e22bee78
TH
935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 937 atomic_inc(&pool->nr_running);
d302f017
TH
938}
939
8cca0eea
TH
940/**
941 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 942 * @pool: pool of interest
8cca0eea
TH
943 * @work: work to find worker for
944 *
c9e7cf27
TH
945 * Find a worker which is executing @work on @pool by searching
946 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
947 * to match, its current execution should match the address of @work and
948 * its work function. This is to avoid unwanted dependency between
949 * unrelated work executions through a work item being recycled while still
950 * being executed.
951 *
952 * This is a bit tricky. A work item may be freed once its execution
953 * starts and nothing prevents the freed area from being recycled for
954 * another work item. If the same work item address ends up being reused
955 * before the original execution finishes, workqueue will identify the
956 * recycled work item as currently executing and make it wait until the
957 * current execution finishes, introducing an unwanted dependency.
958 *
c5aa87bb
TH
959 * This function checks the work item address and work function to avoid
960 * false positives. Note that this isn't complete as one may construct a
961 * work function which can introduce dependency onto itself through a
962 * recycled work item. Well, if somebody wants to shoot oneself in the
963 * foot that badly, there's only so much we can do, and if such deadlock
964 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
965 *
966 * CONTEXT:
d565ed63 967 * spin_lock_irq(pool->lock).
8cca0eea 968 *
d185af30
YB
969 * Return:
970 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 971 * otherwise.
4d707b9f 972 */
c9e7cf27 973static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 974 struct work_struct *work)
4d707b9f 975{
42f8570f 976 struct worker *worker;
42f8570f 977
b67bfe0d 978 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
979 (unsigned long)work)
980 if (worker->current_work == work &&
981 worker->current_func == work->func)
42f8570f
SL
982 return worker;
983
984 return NULL;
4d707b9f
ON
985}
986
bf4ede01
TH
987/**
988 * move_linked_works - move linked works to a list
989 * @work: start of series of works to be scheduled
990 * @head: target list to append @work to
991 * @nextp: out paramter for nested worklist walking
992 *
993 * Schedule linked works starting from @work to @head. Work series to
994 * be scheduled starts at @work and includes any consecutive work with
995 * WORK_STRUCT_LINKED set in its predecessor.
996 *
997 * If @nextp is not NULL, it's updated to point to the next work of
998 * the last scheduled work. This allows move_linked_works() to be
999 * nested inside outer list_for_each_entry_safe().
1000 *
1001 * CONTEXT:
d565ed63 1002 * spin_lock_irq(pool->lock).
bf4ede01
TH
1003 */
1004static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 struct work_struct **nextp)
1006{
1007 struct work_struct *n;
1008
1009 /*
1010 * Linked worklist will always end before the end of the list,
1011 * use NULL for list head.
1012 */
1013 list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 list_move_tail(&work->entry, head);
1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 break;
1017 }
1018
1019 /*
1020 * If we're already inside safe list traversal and have moved
1021 * multiple works to the scheduled queue, the next position
1022 * needs to be updated.
1023 */
1024 if (nextp)
1025 *nextp = n;
1026}
1027
8864b4e5
TH
1028/**
1029 * get_pwq - get an extra reference on the specified pool_workqueue
1030 * @pwq: pool_workqueue to get
1031 *
1032 * Obtain an extra reference on @pwq. The caller should guarantee that
1033 * @pwq has positive refcnt and be holding the matching pool->lock.
1034 */
1035static void get_pwq(struct pool_workqueue *pwq)
1036{
1037 lockdep_assert_held(&pwq->pool->lock);
1038 WARN_ON_ONCE(pwq->refcnt <= 0);
1039 pwq->refcnt++;
1040}
1041
1042/**
1043 * put_pwq - put a pool_workqueue reference
1044 * @pwq: pool_workqueue to put
1045 *
1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1047 * destruction. The caller should be holding the matching pool->lock.
1048 */
1049static void put_pwq(struct pool_workqueue *pwq)
1050{
1051 lockdep_assert_held(&pwq->pool->lock);
1052 if (likely(--pwq->refcnt))
1053 return;
1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 return;
1056 /*
1057 * @pwq can't be released under pool->lock, bounce to
1058 * pwq_unbound_release_workfn(). This never recurses on the same
1059 * pool->lock as this path is taken only for unbound workqueues and
1060 * the release work item is scheduled on a per-cpu workqueue. To
1061 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 * subclass of 1 in get_unbound_pool().
1063 */
1064 schedule_work(&pwq->unbound_release_work);
1065}
1066
dce90d47
TH
1067/**
1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069 * @pwq: pool_workqueue to put (can be %NULL)
1070 *
1071 * put_pwq() with locking. This function also allows %NULL @pwq.
1072 */
1073static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074{
1075 if (pwq) {
1076 /*
1077 * As both pwqs and pools are sched-RCU protected, the
1078 * following lock operations are safe.
1079 */
1080 spin_lock_irq(&pwq->pool->lock);
1081 put_pwq(pwq);
1082 spin_unlock_irq(&pwq->pool->lock);
1083 }
1084}
1085
112202d9 1086static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1087{
112202d9 1088 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1089
1090 trace_workqueue_activate_work(work);
112202d9 1091 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1093 pwq->nr_active++;
bf4ede01
TH
1094}
1095
112202d9 1096static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1097{
112202d9 1098 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1099 struct work_struct, entry);
1100
112202d9 1101 pwq_activate_delayed_work(work);
3aa62497
LJ
1102}
1103
bf4ede01 1104/**
112202d9
TH
1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106 * @pwq: pwq of interest
bf4ede01 1107 * @color: color of work which left the queue
bf4ede01
TH
1108 *
1109 * A work either has completed or is removed from pending queue,
112202d9 1110 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1111 *
1112 * CONTEXT:
d565ed63 1113 * spin_lock_irq(pool->lock).
bf4ede01 1114 */
112202d9 1115static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1116{
8864b4e5 1117 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1118 if (color == WORK_NO_COLOR)
8864b4e5 1119 goto out_put;
bf4ede01 1120
112202d9 1121 pwq->nr_in_flight[color]--;
bf4ede01 1122
112202d9
TH
1123 pwq->nr_active--;
1124 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1125 /* one down, submit a delayed one */
112202d9
TH
1126 if (pwq->nr_active < pwq->max_active)
1127 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1128 }
1129
1130 /* is flush in progress and are we at the flushing tip? */
112202d9 1131 if (likely(pwq->flush_color != color))
8864b4e5 1132 goto out_put;
bf4ede01
TH
1133
1134 /* are there still in-flight works? */
112202d9 1135 if (pwq->nr_in_flight[color])
8864b4e5 1136 goto out_put;
bf4ede01 1137
112202d9
TH
1138 /* this pwq is done, clear flush_color */
1139 pwq->flush_color = -1;
bf4ede01
TH
1140
1141 /*
112202d9 1142 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1143 * will handle the rest.
1144 */
112202d9
TH
1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1147out_put:
1148 put_pwq(pwq);
bf4ede01
TH
1149}
1150
36e227d2 1151/**
bbb68dfa 1152 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1153 * @work: work item to steal
1154 * @is_dwork: @work is a delayed_work
bbb68dfa 1155 * @flags: place to store irq state
36e227d2
TH
1156 *
1157 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1158 * stable state - idle, on timer or on worklist.
36e227d2 1159 *
d185af30 1160 * Return:
36e227d2
TH
1161 * 1 if @work was pending and we successfully stole PENDING
1162 * 0 if @work was idle and we claimed PENDING
1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1164 * -ENOENT if someone else is canceling @work, this state may persist
1165 * for arbitrarily long
36e227d2 1166 *
d185af30 1167 * Note:
bbb68dfa 1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1169 * interrupted while holding PENDING and @work off queue, irq must be
1170 * disabled on entry. This, combined with delayed_work->timer being
1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1172 *
1173 * On successful return, >= 0, irq is disabled and the caller is
1174 * responsible for releasing it using local_irq_restore(*@flags).
1175 *
e0aecdd8 1176 * This function is safe to call from any context including IRQ handler.
bf4ede01 1177 */
bbb68dfa
TH
1178static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 unsigned long *flags)
bf4ede01 1180{
d565ed63 1181 struct worker_pool *pool;
112202d9 1182 struct pool_workqueue *pwq;
bf4ede01 1183
bbb68dfa
TH
1184 local_irq_save(*flags);
1185
36e227d2
TH
1186 /* try to steal the timer if it exists */
1187 if (is_dwork) {
1188 struct delayed_work *dwork = to_delayed_work(work);
1189
e0aecdd8
TH
1190 /*
1191 * dwork->timer is irqsafe. If del_timer() fails, it's
1192 * guaranteed that the timer is not queued anywhere and not
1193 * running on the local CPU.
1194 */
36e227d2
TH
1195 if (likely(del_timer(&dwork->timer)))
1196 return 1;
1197 }
1198
1199 /* try to claim PENDING the normal way */
bf4ede01
TH
1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 return 0;
1202
1203 /*
1204 * The queueing is in progress, or it is already queued. Try to
1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 */
d565ed63
TH
1207 pool = get_work_pool(work);
1208 if (!pool)
bbb68dfa 1209 goto fail;
bf4ede01 1210
d565ed63 1211 spin_lock(&pool->lock);
0b3dae68 1212 /*
112202d9
TH
1213 * work->data is guaranteed to point to pwq only while the work
1214 * item is queued on pwq->wq, and both updating work->data to point
1215 * to pwq on queueing and to pool on dequeueing are done under
1216 * pwq->pool->lock. This in turn guarantees that, if work->data
1217 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1218 * item is currently queued on that pool.
1219 */
112202d9
TH
1220 pwq = get_work_pwq(work);
1221 if (pwq && pwq->pool == pool) {
16062836
TH
1222 debug_work_deactivate(work);
1223
1224 /*
1225 * A delayed work item cannot be grabbed directly because
1226 * it might have linked NO_COLOR work items which, if left
112202d9 1227 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1228 * management later on and cause stall. Make sure the work
1229 * item is activated before grabbing.
1230 */
1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1232 pwq_activate_delayed_work(work);
16062836
TH
1233
1234 list_del_init(&work->entry);
9c34a704 1235 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1236
112202d9 1237 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1238 set_work_pool_and_keep_pending(work, pool->id);
1239
1240 spin_unlock(&pool->lock);
1241 return 1;
bf4ede01 1242 }
d565ed63 1243 spin_unlock(&pool->lock);
bbb68dfa
TH
1244fail:
1245 local_irq_restore(*flags);
1246 if (work_is_canceling(work))
1247 return -ENOENT;
1248 cpu_relax();
36e227d2 1249 return -EAGAIN;
bf4ede01
TH
1250}
1251
4690c4ab 1252/**
706026c2 1253 * insert_work - insert a work into a pool
112202d9 1254 * @pwq: pwq @work belongs to
4690c4ab
TH
1255 * @work: work to insert
1256 * @head: insertion point
1257 * @extra_flags: extra WORK_STRUCT_* flags to set
1258 *
112202d9 1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1260 * work_struct flags.
4690c4ab
TH
1261 *
1262 * CONTEXT:
d565ed63 1263 * spin_lock_irq(pool->lock).
4690c4ab 1264 */
112202d9
TH
1265static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 struct list_head *head, unsigned int extra_flags)
b89deed3 1267{
112202d9 1268 struct worker_pool *pool = pwq->pool;
e22bee78 1269
4690c4ab 1270 /* we own @work, set data and link */
112202d9 1271 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1272 list_add_tail(&work->entry, head);
8864b4e5 1273 get_pwq(pwq);
e22bee78
TH
1274
1275 /*
c5aa87bb
TH
1276 * Ensure either wq_worker_sleeping() sees the above
1277 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 * around lazily while there are works to be processed.
e22bee78
TH
1279 */
1280 smp_mb();
1281
63d95a91
TH
1282 if (__need_more_worker(pool))
1283 wake_up_worker(pool);
b89deed3
ON
1284}
1285
c8efcc25
TH
1286/*
1287 * Test whether @work is being queued from another work executing on the
8d03ecfe 1288 * same workqueue.
c8efcc25
TH
1289 */
1290static bool is_chained_work(struct workqueue_struct *wq)
1291{
8d03ecfe
TH
1292 struct worker *worker;
1293
1294 worker = current_wq_worker();
1295 /*
1296 * Return %true iff I'm a worker execuing a work item on @wq. If
1297 * I'm @worker, it's safe to dereference it without locking.
1298 */
112202d9 1299 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1300}
1301
d84ff051 1302static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1303 struct work_struct *work)
1304{
112202d9 1305 struct pool_workqueue *pwq;
c9178087 1306 struct worker_pool *last_pool;
1e19ffc6 1307 struct list_head *worklist;
8a2e8e5d 1308 unsigned int work_flags;
b75cac93 1309 unsigned int req_cpu = cpu;
8930caba
TH
1310
1311 /*
1312 * While a work item is PENDING && off queue, a task trying to
1313 * steal the PENDING will busy-loop waiting for it to either get
1314 * queued or lose PENDING. Grabbing PENDING and queueing should
1315 * happen with IRQ disabled.
1316 */
1317 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1318
dc186ad7 1319 debug_work_activate(work);
1e19ffc6 1320
9ef28a73 1321 /* if draining, only works from the same workqueue are allowed */
618b01eb 1322 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1323 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1324 return;
9e8cd2f5 1325retry:
df2d5ae4
TH
1326 if (req_cpu == WORK_CPU_UNBOUND)
1327 cpu = raw_smp_processor_id();
1328
c9178087 1329 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1330 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1332 else
1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1334
c9178087
TH
1335 /*
1336 * If @work was previously on a different pool, it might still be
1337 * running there, in which case the work needs to be queued on that
1338 * pool to guarantee non-reentrancy.
1339 */
1340 last_pool = get_work_pool(work);
1341 if (last_pool && last_pool != pwq->pool) {
1342 struct worker *worker;
18aa9eff 1343
c9178087 1344 spin_lock(&last_pool->lock);
18aa9eff 1345
c9178087 1346 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1347
c9178087
TH
1348 if (worker && worker->current_pwq->wq == wq) {
1349 pwq = worker->current_pwq;
8930caba 1350 } else {
c9178087
TH
1351 /* meh... not running there, queue here */
1352 spin_unlock(&last_pool->lock);
112202d9 1353 spin_lock(&pwq->pool->lock);
8930caba 1354 }
f3421797 1355 } else {
112202d9 1356 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1357 }
1358
9e8cd2f5
TH
1359 /*
1360 * pwq is determined and locked. For unbound pools, we could have
1361 * raced with pwq release and it could already be dead. If its
1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1363 * without another pwq replacing it in the numa_pwq_tbl or while
1364 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1365 * make forward-progress.
1366 */
1367 if (unlikely(!pwq->refcnt)) {
1368 if (wq->flags & WQ_UNBOUND) {
1369 spin_unlock(&pwq->pool->lock);
1370 cpu_relax();
1371 goto retry;
1372 }
1373 /* oops */
1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 wq->name, cpu);
1376 }
1377
112202d9
TH
1378 /* pwq determined, queue */
1379 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1380
f5b2552b 1381 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1382 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1383 return;
1384 }
1e19ffc6 1385
112202d9
TH
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1388
112202d9 1389 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1390 trace_workqueue_activate_work(work);
112202d9
TH
1391 pwq->nr_active++;
1392 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1393 } else {
1394 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1395 worklist = &pwq->delayed_works;
8a2e8e5d 1396 }
1e19ffc6 1397
112202d9 1398 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1399
112202d9 1400 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1401}
1402
0fcb78c2 1403/**
c1a220e7
ZR
1404 * queue_work_on - queue work on specific cpu
1405 * @cpu: CPU number to execute work on
0fcb78c2
REB
1406 * @wq: workqueue to use
1407 * @work: work to queue
1408 *
c1a220e7
ZR
1409 * We queue the work to a specific CPU, the caller must ensure it
1410 * can't go away.
d185af30
YB
1411 *
1412 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1413 */
d4283e93
TH
1414bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 struct work_struct *work)
1da177e4 1416{
d4283e93 1417 bool ret = false;
8930caba 1418 unsigned long flags;
ef1ca236 1419
8930caba 1420 local_irq_save(flags);
c1a220e7 1421
22df02bb 1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1423 __queue_work(cpu, wq, work);
d4283e93 1424 ret = true;
c1a220e7 1425 }
ef1ca236 1426
8930caba 1427 local_irq_restore(flags);
1da177e4
LT
1428 return ret;
1429}
ad7b1f84 1430EXPORT_SYMBOL(queue_work_on);
1da177e4 1431
d8e794df 1432void delayed_work_timer_fn(unsigned long __data)
1da177e4 1433{
52bad64d 1434 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1435
e0aecdd8 1436 /* should have been called from irqsafe timer with irq already off */
60c057bc 1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1438}
1438ade5 1439EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1440
7beb2edf
TH
1441static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 struct delayed_work *dwork, unsigned long delay)
1da177e4 1443{
7beb2edf
TH
1444 struct timer_list *timer = &dwork->timer;
1445 struct work_struct *work = &dwork->work;
7beb2edf
TH
1446
1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 timer->data != (unsigned long)dwork);
fc4b514f
TH
1449 WARN_ON_ONCE(timer_pending(timer));
1450 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1451
8852aac2
TH
1452 /*
1453 * If @delay is 0, queue @dwork->work immediately. This is for
1454 * both optimization and correctness. The earliest @timer can
1455 * expire is on the closest next tick and delayed_work users depend
1456 * on that there's no such delay when @delay is 0.
1457 */
1458 if (!delay) {
1459 __queue_work(cpu, wq, &dwork->work);
1460 return;
1461 }
1462
7beb2edf 1463 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1464
60c057bc 1465 dwork->wq = wq;
1265057f 1466 dwork->cpu = cpu;
7beb2edf
TH
1467 timer->expires = jiffies + delay;
1468
1469 if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 add_timer_on(timer, cpu);
1471 else
1472 add_timer(timer);
1da177e4
LT
1473}
1474
0fcb78c2
REB
1475/**
1476 * queue_delayed_work_on - queue work on specific CPU after delay
1477 * @cpu: CPU number to execute work on
1478 * @wq: workqueue to use
af9997e4 1479 * @dwork: work to queue
0fcb78c2
REB
1480 * @delay: number of jiffies to wait before queueing
1481 *
d185af30 1482 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484 * execution.
0fcb78c2 1485 */
d4283e93
TH
1486bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1488{
52bad64d 1489 struct work_struct *work = &dwork->work;
d4283e93 1490 bool ret = false;
8930caba 1491 unsigned long flags;
7a6bc1cd 1492
8930caba
TH
1493 /* read the comment in __queue_work() */
1494 local_irq_save(flags);
7a6bc1cd 1495
22df02bb 1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1497 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1498 ret = true;
7a6bc1cd 1499 }
8a3e77cc 1500
8930caba 1501 local_irq_restore(flags);
7a6bc1cd
VP
1502 return ret;
1503}
ad7b1f84 1504EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1505
8376fe22
TH
1506/**
1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
1510 * @dwork: work to queue
1511 * @delay: number of jiffies to wait before queueing
1512 *
1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514 * modify @dwork's timer so that it expires after @delay. If @delay is
1515 * zero, @work is guaranteed to be scheduled immediately regardless of its
1516 * current state.
1517 *
d185af30 1518 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1519 * pending and its timer was modified.
1520 *
e0aecdd8 1521 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1522 * See try_to_grab_pending() for details.
1523 */
1524bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 struct delayed_work *dwork, unsigned long delay)
1526{
1527 unsigned long flags;
1528 int ret;
c7fc77f7 1529
8376fe22
TH
1530 do {
1531 ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 } while (unlikely(ret == -EAGAIN));
63bc0362 1533
8376fe22
TH
1534 if (likely(ret >= 0)) {
1535 __queue_delayed_work(cpu, wq, dwork, delay);
1536 local_irq_restore(flags);
7a6bc1cd 1537 }
8376fe22
TH
1538
1539 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1540 return ret;
1541}
8376fe22
TH
1542EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543
c8e55f36
TH
1544/**
1545 * worker_enter_idle - enter idle state
1546 * @worker: worker which is entering idle state
1547 *
1548 * @worker is entering idle state. Update stats and idle timer if
1549 * necessary.
1550 *
1551 * LOCKING:
d565ed63 1552 * spin_lock_irq(pool->lock).
c8e55f36
TH
1553 */
1554static void worker_enter_idle(struct worker *worker)
1da177e4 1555{
bd7bdd43 1556 struct worker_pool *pool = worker->pool;
c8e55f36 1557
6183c009
TH
1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 (worker->hentry.next || worker->hentry.pprev)))
1561 return;
c8e55f36 1562
051e1850 1563 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1564 worker->flags |= WORKER_IDLE;
bd7bdd43 1565 pool->nr_idle++;
e22bee78 1566 worker->last_active = jiffies;
c8e55f36
TH
1567
1568 /* idle_list is LIFO */
bd7bdd43 1569 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1570
628c78e7
TH
1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1573
544ecf31 1574 /*
706026c2 1575 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1576 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1577 * nr_running, the warning may trigger spuriously. Check iff
1578 * unbind is not in progress.
544ecf31 1579 */
24647570 1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1581 pool->nr_workers == pool->nr_idle &&
e19e397a 1582 atomic_read(&pool->nr_running));
c8e55f36
TH
1583}
1584
1585/**
1586 * worker_leave_idle - leave idle state
1587 * @worker: worker which is leaving idle state
1588 *
1589 * @worker is leaving idle state. Update stats.
1590 *
1591 * LOCKING:
d565ed63 1592 * spin_lock_irq(pool->lock).
c8e55f36
TH
1593 */
1594static void worker_leave_idle(struct worker *worker)
1595{
bd7bdd43 1596 struct worker_pool *pool = worker->pool;
c8e55f36 1597
6183c009
TH
1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 return;
d302f017 1600 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1601 pool->nr_idle--;
c8e55f36
TH
1602 list_del_init(&worker->entry);
1603}
1604
f7537df5 1605static struct worker *alloc_worker(int node)
c34056a3
TH
1606{
1607 struct worker *worker;
1608
f7537df5 1609 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1610 if (worker) {
1611 INIT_LIST_HEAD(&worker->entry);
affee4b2 1612 INIT_LIST_HEAD(&worker->scheduled);
da028469 1613 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1614 /* on creation a worker is in !idle && prep state */
1615 worker->flags = WORKER_PREP;
c8e55f36 1616 }
c34056a3
TH
1617 return worker;
1618}
1619
4736cbf7
LJ
1620/**
1621 * worker_attach_to_pool() - attach a worker to a pool
1622 * @worker: worker to be attached
1623 * @pool: the target pool
1624 *
1625 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1626 * cpu-binding of @worker are kept coordinated with the pool across
1627 * cpu-[un]hotplugs.
1628 */
1629static void worker_attach_to_pool(struct worker *worker,
1630 struct worker_pool *pool)
1631{
1632 mutex_lock(&pool->attach_mutex);
1633
1634 /*
1635 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1636 * online CPUs. It'll be re-applied when any of the CPUs come up.
1637 */
1638 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1639
1640 /*
1641 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1642 * stable across this function. See the comments above the
1643 * flag definition for details.
1644 */
1645 if (pool->flags & POOL_DISASSOCIATED)
1646 worker->flags |= WORKER_UNBOUND;
1647
1648 list_add_tail(&worker->node, &pool->workers);
1649
1650 mutex_unlock(&pool->attach_mutex);
1651}
1652
60f5a4bc
LJ
1653/**
1654 * worker_detach_from_pool() - detach a worker from its pool
1655 * @worker: worker which is attached to its pool
1656 * @pool: the pool @worker is attached to
1657 *
4736cbf7
LJ
1658 * Undo the attaching which had been done in worker_attach_to_pool(). The
1659 * caller worker shouldn't access to the pool after detached except it has
1660 * other reference to the pool.
60f5a4bc
LJ
1661 */
1662static void worker_detach_from_pool(struct worker *worker,
1663 struct worker_pool *pool)
1664{
1665 struct completion *detach_completion = NULL;
1666
92f9c5c4 1667 mutex_lock(&pool->attach_mutex);
da028469
LJ
1668 list_del(&worker->node);
1669 if (list_empty(&pool->workers))
60f5a4bc 1670 detach_completion = pool->detach_completion;
92f9c5c4 1671 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1672
b62c0751
LJ
1673 /* clear leftover flags without pool->lock after it is detached */
1674 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1675
60f5a4bc
LJ
1676 if (detach_completion)
1677 complete(detach_completion);
1678}
1679
c34056a3
TH
1680/**
1681 * create_worker - create a new workqueue worker
63d95a91 1682 * @pool: pool the new worker will belong to
c34056a3 1683 *
051e1850 1684 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1685 *
1686 * CONTEXT:
1687 * Might sleep. Does GFP_KERNEL allocations.
1688 *
d185af30 1689 * Return:
c34056a3
TH
1690 * Pointer to the newly created worker.
1691 */
bc2ae0f5 1692static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1693{
c34056a3 1694 struct worker *worker = NULL;
f3421797 1695 int id = -1;
e3c916a4 1696 char id_buf[16];
c34056a3 1697
7cda9aae
LJ
1698 /* ID is needed to determine kthread name */
1699 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1700 if (id < 0)
1701 goto fail;
c34056a3 1702
f7537df5 1703 worker = alloc_worker(pool->node);
c34056a3
TH
1704 if (!worker)
1705 goto fail;
1706
bd7bdd43 1707 worker->pool = pool;
c34056a3
TH
1708 worker->id = id;
1709
29c91e99 1710 if (pool->cpu >= 0)
e3c916a4
TH
1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 pool->attrs->nice < 0 ? "H" : "");
f3421797 1713 else
e3c916a4
TH
1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715
f3f90ad4 1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1717 "kworker/%s", id_buf);
c34056a3
TH
1718 if (IS_ERR(worker->task))
1719 goto fail;
1720
91151228
ON
1721 set_user_nice(worker->task, pool->attrs->nice);
1722
1723 /* prevent userland from meddling with cpumask of workqueue workers */
1724 worker->task->flags |= PF_NO_SETAFFINITY;
1725
da028469 1726 /* successful, attach the worker to the pool */
4736cbf7 1727 worker_attach_to_pool(worker, pool);
822d8405 1728
051e1850
LJ
1729 /* start the newly created worker */
1730 spin_lock_irq(&pool->lock);
1731 worker->pool->nr_workers++;
1732 worker_enter_idle(worker);
1733 wake_up_process(worker->task);
1734 spin_unlock_irq(&pool->lock);
1735
c34056a3 1736 return worker;
822d8405 1737
c34056a3 1738fail:
9625ab17 1739 if (id >= 0)
7cda9aae 1740 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1741 kfree(worker);
1742 return NULL;
1743}
1744
c34056a3
TH
1745/**
1746 * destroy_worker - destroy a workqueue worker
1747 * @worker: worker to be destroyed
1748 *
73eb7fe7
LJ
1749 * Destroy @worker and adjust @pool stats accordingly. The worker should
1750 * be idle.
c8e55f36
TH
1751 *
1752 * CONTEXT:
60f5a4bc 1753 * spin_lock_irq(pool->lock).
c34056a3
TH
1754 */
1755static void destroy_worker(struct worker *worker)
1756{
bd7bdd43 1757 struct worker_pool *pool = worker->pool;
c34056a3 1758
cd549687
TH
1759 lockdep_assert_held(&pool->lock);
1760
c34056a3 1761 /* sanity check frenzy */
6183c009 1762 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1763 WARN_ON(!list_empty(&worker->scheduled)) ||
1764 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1765 return;
c34056a3 1766
73eb7fe7
LJ
1767 pool->nr_workers--;
1768 pool->nr_idle--;
5bdfff96 1769
c8e55f36 1770 list_del_init(&worker->entry);
cb444766 1771 worker->flags |= WORKER_DIE;
60f5a4bc 1772 wake_up_process(worker->task);
c34056a3
TH
1773}
1774
63d95a91 1775static void idle_worker_timeout(unsigned long __pool)
e22bee78 1776{
63d95a91 1777 struct worker_pool *pool = (void *)__pool;
e22bee78 1778
d565ed63 1779 spin_lock_irq(&pool->lock);
e22bee78 1780
3347fc9f 1781 while (too_many_workers(pool)) {
e22bee78
TH
1782 struct worker *worker;
1783 unsigned long expires;
1784
1785 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1786 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1787 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1788
3347fc9f 1789 if (time_before(jiffies, expires)) {
63d95a91 1790 mod_timer(&pool->idle_timer, expires);
3347fc9f 1791 break;
d5abe669 1792 }
3347fc9f
LJ
1793
1794 destroy_worker(worker);
e22bee78
TH
1795 }
1796
d565ed63 1797 spin_unlock_irq(&pool->lock);
e22bee78 1798}
d5abe669 1799
493a1724 1800static void send_mayday(struct work_struct *work)
e22bee78 1801{
112202d9
TH
1802 struct pool_workqueue *pwq = get_work_pwq(work);
1803 struct workqueue_struct *wq = pwq->wq;
493a1724 1804
2e109a28 1805 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1806
493008a8 1807 if (!wq->rescuer)
493a1724 1808 return;
e22bee78
TH
1809
1810 /* mayday mayday mayday */
493a1724 1811 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1812 /*
1813 * If @pwq is for an unbound wq, its base ref may be put at
1814 * any time due to an attribute change. Pin @pwq until the
1815 * rescuer is done with it.
1816 */
1817 get_pwq(pwq);
493a1724 1818 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1819 wake_up_process(wq->rescuer->task);
493a1724 1820 }
e22bee78
TH
1821}
1822
706026c2 1823static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1824{
63d95a91 1825 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1826 struct work_struct *work;
1827
b2d82909
TH
1828 spin_lock_irq(&pool->lock);
1829 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1830
63d95a91 1831 if (need_to_create_worker(pool)) {
e22bee78
TH
1832 /*
1833 * We've been trying to create a new worker but
1834 * haven't been successful. We might be hitting an
1835 * allocation deadlock. Send distress signals to
1836 * rescuers.
1837 */
63d95a91 1838 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1839 send_mayday(work);
1da177e4 1840 }
e22bee78 1841
b2d82909
TH
1842 spin_unlock(&wq_mayday_lock);
1843 spin_unlock_irq(&pool->lock);
e22bee78 1844
63d95a91 1845 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1846}
1847
e22bee78
TH
1848/**
1849 * maybe_create_worker - create a new worker if necessary
63d95a91 1850 * @pool: pool to create a new worker for
e22bee78 1851 *
63d95a91 1852 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1853 * have at least one idle worker on return from this function. If
1854 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1855 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1856 * possible allocation deadlock.
1857 *
c5aa87bb
TH
1858 * On return, need_to_create_worker() is guaranteed to be %false and
1859 * may_start_working() %true.
e22bee78
TH
1860 *
1861 * LOCKING:
d565ed63 1862 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1863 * multiple times. Does GFP_KERNEL allocations. Called only from
1864 * manager.
e22bee78 1865 */
29187a9e 1866static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1867__releases(&pool->lock)
1868__acquires(&pool->lock)
1da177e4 1869{
e22bee78 1870restart:
d565ed63 1871 spin_unlock_irq(&pool->lock);
9f9c2364 1872
e22bee78 1873 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1874 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1875
1876 while (true) {
051e1850 1877 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1878 break;
1da177e4 1879
e212f361 1880 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1881
63d95a91 1882 if (!need_to_create_worker(pool))
e22bee78
TH
1883 break;
1884 }
1885
63d95a91 1886 del_timer_sync(&pool->mayday_timer);
d565ed63 1887 spin_lock_irq(&pool->lock);
051e1850
LJ
1888 /*
1889 * This is necessary even after a new worker was just successfully
1890 * created as @pool->lock was dropped and the new worker might have
1891 * already become busy.
1892 */
63d95a91 1893 if (need_to_create_worker(pool))
e22bee78 1894 goto restart;
e22bee78
TH
1895}
1896
73f53c4a 1897/**
e22bee78
TH
1898 * manage_workers - manage worker pool
1899 * @worker: self
73f53c4a 1900 *
706026c2 1901 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1902 * to. At any given time, there can be only zero or one manager per
706026c2 1903 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1904 *
1905 * The caller can safely start processing works on false return. On
1906 * true return, it's guaranteed that need_to_create_worker() is false
1907 * and may_start_working() is true.
73f53c4a
TH
1908 *
1909 * CONTEXT:
d565ed63 1910 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1911 * multiple times. Does GFP_KERNEL allocations.
1912 *
d185af30 1913 * Return:
29187a9e
TH
1914 * %false if the pool doesn't need management and the caller can safely
1915 * start processing works, %true if management function was performed and
1916 * the conditions that the caller verified before calling the function may
1917 * no longer be true.
73f53c4a 1918 */
e22bee78 1919static bool manage_workers(struct worker *worker)
73f53c4a 1920{
63d95a91 1921 struct worker_pool *pool = worker->pool;
73f53c4a 1922
bc3a1afc 1923 /*
bc3a1afc
TH
1924 * Anyone who successfully grabs manager_arb wins the arbitration
1925 * and becomes the manager. mutex_trylock() on pool->manager_arb
1926 * failure while holding pool->lock reliably indicates that someone
1927 * else is managing the pool and the worker which failed trylock
1928 * can proceed to executing work items. This means that anyone
1929 * grabbing manager_arb is responsible for actually performing
1930 * manager duties. If manager_arb is grabbed and released without
1931 * actual management, the pool may stall indefinitely.
bc3a1afc 1932 */
34a06bd6 1933 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1934 return false;
2607d7a6 1935 pool->manager = worker;
1e19ffc6 1936
29187a9e 1937 maybe_create_worker(pool);
e22bee78 1938
2607d7a6 1939 pool->manager = NULL;
34a06bd6 1940 mutex_unlock(&pool->manager_arb);
29187a9e 1941 return true;
73f53c4a
TH
1942}
1943
a62428c0
TH
1944/**
1945 * process_one_work - process single work
c34056a3 1946 * @worker: self
a62428c0
TH
1947 * @work: work to process
1948 *
1949 * Process @work. This function contains all the logics necessary to
1950 * process a single work including synchronization against and
1951 * interaction with other workers on the same cpu, queueing and
1952 * flushing. As long as context requirement is met, any worker can
1953 * call this function to process a work.
1954 *
1955 * CONTEXT:
d565ed63 1956 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1957 */
c34056a3 1958static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1959__releases(&pool->lock)
1960__acquires(&pool->lock)
a62428c0 1961{
112202d9 1962 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1963 struct worker_pool *pool = worker->pool;
112202d9 1964 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1965 int work_color;
7e11629d 1966 struct worker *collision;
a62428c0
TH
1967#ifdef CONFIG_LOCKDEP
1968 /*
1969 * It is permissible to free the struct work_struct from
1970 * inside the function that is called from it, this we need to
1971 * take into account for lockdep too. To avoid bogus "held
1972 * lock freed" warnings as well as problems when looking into
1973 * work->lockdep_map, make a copy and use that here.
1974 */
4d82a1de
PZ
1975 struct lockdep_map lockdep_map;
1976
1977 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1978#endif
807407c0 1979 /* ensure we're on the correct CPU */
85327af6 1980 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1981 raw_smp_processor_id() != pool->cpu);
25511a47 1982
7e11629d
TH
1983 /*
1984 * A single work shouldn't be executed concurrently by
1985 * multiple workers on a single cpu. Check whether anyone is
1986 * already processing the work. If so, defer the work to the
1987 * currently executing one.
1988 */
c9e7cf27 1989 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1990 if (unlikely(collision)) {
1991 move_linked_works(work, &collision->scheduled, NULL);
1992 return;
1993 }
1994
8930caba 1995 /* claim and dequeue */
a62428c0 1996 debug_work_deactivate(work);
c9e7cf27 1997 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1998 worker->current_work = work;
a2c1c57b 1999 worker->current_func = work->func;
112202d9 2000 worker->current_pwq = pwq;
73f53c4a 2001 work_color = get_work_color(work);
7a22ad75 2002
a62428c0
TH
2003 list_del_init(&work->entry);
2004
fb0e7beb 2005 /*
228f1d00
LJ
2006 * CPU intensive works don't participate in concurrency management.
2007 * They're the scheduler's responsibility. This takes @worker out
2008 * of concurrency management and the next code block will chain
2009 * execution of the pending work items.
fb0e7beb
TH
2010 */
2011 if (unlikely(cpu_intensive))
228f1d00 2012 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2013
974271c4 2014 /*
a489a03e
LJ
2015 * Wake up another worker if necessary. The condition is always
2016 * false for normal per-cpu workers since nr_running would always
2017 * be >= 1 at this point. This is used to chain execution of the
2018 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2019 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2020 */
a489a03e 2021 if (need_more_worker(pool))
63d95a91 2022 wake_up_worker(pool);
974271c4 2023
8930caba 2024 /*
7c3eed5c 2025 * Record the last pool and clear PENDING which should be the last
d565ed63 2026 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2027 * PENDING and queued state changes happen together while IRQ is
2028 * disabled.
8930caba 2029 */
7c3eed5c 2030 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2031
d565ed63 2032 spin_unlock_irq(&pool->lock);
a62428c0 2033
112202d9 2034 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2035 lock_map_acquire(&lockdep_map);
e36c886a 2036 trace_workqueue_execute_start(work);
a2c1c57b 2037 worker->current_func(work);
e36c886a
AV
2038 /*
2039 * While we must be careful to not use "work" after this, the trace
2040 * point will only record its address.
2041 */
2042 trace_workqueue_execute_end(work);
a62428c0 2043 lock_map_release(&lockdep_map);
112202d9 2044 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2045
2046 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2047 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2048 " last function: %pf\n",
a2c1c57b
TH
2049 current->comm, preempt_count(), task_pid_nr(current),
2050 worker->current_func);
a62428c0
TH
2051 debug_show_held_locks(current);
2052 dump_stack();
2053 }
2054
b22ce278
TH
2055 /*
2056 * The following prevents a kworker from hogging CPU on !PREEMPT
2057 * kernels, where a requeueing work item waiting for something to
2058 * happen could deadlock with stop_machine as such work item could
2059 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2060 * stop_machine. At the same time, report a quiescent RCU state so
2061 * the same condition doesn't freeze RCU.
b22ce278 2062 */
3e28e377 2063 cond_resched_rcu_qs();
b22ce278 2064
d565ed63 2065 spin_lock_irq(&pool->lock);
a62428c0 2066
fb0e7beb
TH
2067 /* clear cpu intensive status */
2068 if (unlikely(cpu_intensive))
2069 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2070
a62428c0 2071 /* we're done with it, release */
42f8570f 2072 hash_del(&worker->hentry);
c34056a3 2073 worker->current_work = NULL;
a2c1c57b 2074 worker->current_func = NULL;
112202d9 2075 worker->current_pwq = NULL;
3d1cb205 2076 worker->desc_valid = false;
112202d9 2077 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2078}
2079
affee4b2
TH
2080/**
2081 * process_scheduled_works - process scheduled works
2082 * @worker: self
2083 *
2084 * Process all scheduled works. Please note that the scheduled list
2085 * may change while processing a work, so this function repeatedly
2086 * fetches a work from the top and executes it.
2087 *
2088 * CONTEXT:
d565ed63 2089 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2090 * multiple times.
2091 */
2092static void process_scheduled_works(struct worker *worker)
1da177e4 2093{
affee4b2
TH
2094 while (!list_empty(&worker->scheduled)) {
2095 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2096 struct work_struct, entry);
c34056a3 2097 process_one_work(worker, work);
1da177e4 2098 }
1da177e4
LT
2099}
2100
4690c4ab
TH
2101/**
2102 * worker_thread - the worker thread function
c34056a3 2103 * @__worker: self
4690c4ab 2104 *
c5aa87bb
TH
2105 * The worker thread function. All workers belong to a worker_pool -
2106 * either a per-cpu one or dynamic unbound one. These workers process all
2107 * work items regardless of their specific target workqueue. The only
2108 * exception is work items which belong to workqueues with a rescuer which
2109 * will be explained in rescuer_thread().
d185af30
YB
2110 *
2111 * Return: 0
4690c4ab 2112 */
c34056a3 2113static int worker_thread(void *__worker)
1da177e4 2114{
c34056a3 2115 struct worker *worker = __worker;
bd7bdd43 2116 struct worker_pool *pool = worker->pool;
1da177e4 2117
e22bee78
TH
2118 /* tell the scheduler that this is a workqueue worker */
2119 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2120woke_up:
d565ed63 2121 spin_lock_irq(&pool->lock);
1da177e4 2122
a9ab775b
TH
2123 /* am I supposed to die? */
2124 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2125 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2126 WARN_ON_ONCE(!list_empty(&worker->entry));
2127 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2128
2129 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2130 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2131 worker_detach_from_pool(worker, pool);
2132 kfree(worker);
a9ab775b 2133 return 0;
c8e55f36 2134 }
affee4b2 2135
c8e55f36 2136 worker_leave_idle(worker);
db7bccf4 2137recheck:
e22bee78 2138 /* no more worker necessary? */
63d95a91 2139 if (!need_more_worker(pool))
e22bee78
TH
2140 goto sleep;
2141
2142 /* do we need to manage? */
63d95a91 2143 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2144 goto recheck;
2145
c8e55f36
TH
2146 /*
2147 * ->scheduled list can only be filled while a worker is
2148 * preparing to process a work or actually processing it.
2149 * Make sure nobody diddled with it while I was sleeping.
2150 */
6183c009 2151 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2152
e22bee78 2153 /*
a9ab775b
TH
2154 * Finish PREP stage. We're guaranteed to have at least one idle
2155 * worker or that someone else has already assumed the manager
2156 * role. This is where @worker starts participating in concurrency
2157 * management if applicable and concurrency management is restored
2158 * after being rebound. See rebind_workers() for details.
e22bee78 2159 */
a9ab775b 2160 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2161
2162 do {
c8e55f36 2163 struct work_struct *work =
bd7bdd43 2164 list_first_entry(&pool->worklist,
c8e55f36
TH
2165 struct work_struct, entry);
2166
2167 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2168 /* optimization path, not strictly necessary */
2169 process_one_work(worker, work);
2170 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2171 process_scheduled_works(worker);
c8e55f36
TH
2172 } else {
2173 move_linked_works(work, &worker->scheduled, NULL);
2174 process_scheduled_works(worker);
affee4b2 2175 }
63d95a91 2176 } while (keep_working(pool));
e22bee78 2177
228f1d00 2178 worker_set_flags(worker, WORKER_PREP);
d313dd85 2179sleep:
c8e55f36 2180 /*
d565ed63
TH
2181 * pool->lock is held and there's no work to process and no need to
2182 * manage, sleep. Workers are woken up only while holding
2183 * pool->lock or from local cpu, so setting the current state
2184 * before releasing pool->lock is enough to prevent losing any
2185 * event.
c8e55f36
TH
2186 */
2187 worker_enter_idle(worker);
2188 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2189 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2190 schedule();
2191 goto woke_up;
1da177e4
LT
2192}
2193
e22bee78
TH
2194/**
2195 * rescuer_thread - the rescuer thread function
111c225a 2196 * @__rescuer: self
e22bee78
TH
2197 *
2198 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2199 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2200 *
706026c2 2201 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2202 * worker which uses GFP_KERNEL allocation which has slight chance of
2203 * developing into deadlock if some works currently on the same queue
2204 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2205 * the problem rescuer solves.
2206 *
706026c2
TH
2207 * When such condition is possible, the pool summons rescuers of all
2208 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2209 * those works so that forward progress can be guaranteed.
2210 *
2211 * This should happen rarely.
d185af30
YB
2212 *
2213 * Return: 0
e22bee78 2214 */
111c225a 2215static int rescuer_thread(void *__rescuer)
e22bee78 2216{
111c225a
TH
2217 struct worker *rescuer = __rescuer;
2218 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2219 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2220 bool should_stop;
e22bee78
TH
2221
2222 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2223
2224 /*
2225 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2226 * doesn't participate in concurrency management.
2227 */
2228 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2229repeat:
2230 set_current_state(TASK_INTERRUPTIBLE);
2231
4d595b86
LJ
2232 /*
2233 * By the time the rescuer is requested to stop, the workqueue
2234 * shouldn't have any work pending, but @wq->maydays may still have
2235 * pwq(s) queued. This can happen by non-rescuer workers consuming
2236 * all the work items before the rescuer got to them. Go through
2237 * @wq->maydays processing before acting on should_stop so that the
2238 * list is always empty on exit.
2239 */
2240 should_stop = kthread_should_stop();
e22bee78 2241
493a1724 2242 /* see whether any pwq is asking for help */
2e109a28 2243 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2244
2245 while (!list_empty(&wq->maydays)) {
2246 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2247 struct pool_workqueue, mayday_node);
112202d9 2248 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2249 struct work_struct *work, *n;
2250
2251 __set_current_state(TASK_RUNNING);
493a1724
TH
2252 list_del_init(&pwq->mayday_node);
2253
2e109a28 2254 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2255
51697d39
LJ
2256 worker_attach_to_pool(rescuer, pool);
2257
2258 spin_lock_irq(&pool->lock);
b3104104 2259 rescuer->pool = pool;
e22bee78
TH
2260
2261 /*
2262 * Slurp in all works issued via this workqueue and
2263 * process'em.
2264 */
0479c8c5 2265 WARN_ON_ONCE(!list_empty(scheduled));
bd7bdd43 2266 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2267 if (get_work_pwq(work) == pwq)
e22bee78
TH
2268 move_linked_works(work, scheduled, &n);
2269
008847f6
N
2270 if (!list_empty(scheduled)) {
2271 process_scheduled_works(rescuer);
2272
2273 /*
2274 * The above execution of rescued work items could
2275 * have created more to rescue through
2276 * pwq_activate_first_delayed() or chained
2277 * queueing. Let's put @pwq back on mayday list so
2278 * that such back-to-back work items, which may be
2279 * being used to relieve memory pressure, don't
2280 * incur MAYDAY_INTERVAL delay inbetween.
2281 */
2282 if (need_to_create_worker(pool)) {
2283 spin_lock(&wq_mayday_lock);
2284 get_pwq(pwq);
2285 list_move_tail(&pwq->mayday_node, &wq->maydays);
2286 spin_unlock(&wq_mayday_lock);
2287 }
2288 }
7576958a 2289
77668c8b
LJ
2290 /*
2291 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2292 * go away while we're still attached to it.
77668c8b
LJ
2293 */
2294 put_pwq(pwq);
2295
7576958a 2296 /*
d8ca83e6 2297 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2298 * regular worker; otherwise, we end up with 0 concurrency
2299 * and stalling the execution.
2300 */
d8ca83e6 2301 if (need_more_worker(pool))
63d95a91 2302 wake_up_worker(pool);
7576958a 2303
b3104104 2304 rescuer->pool = NULL;
13b1d625
LJ
2305 spin_unlock_irq(&pool->lock);
2306
2307 worker_detach_from_pool(rescuer, pool);
2308
2309 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2310 }
2311
2e109a28 2312 spin_unlock_irq(&wq_mayday_lock);
493a1724 2313
4d595b86
LJ
2314 if (should_stop) {
2315 __set_current_state(TASK_RUNNING);
2316 rescuer->task->flags &= ~PF_WQ_WORKER;
2317 return 0;
2318 }
2319
111c225a
TH
2320 /* rescuers should never participate in concurrency management */
2321 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2322 schedule();
2323 goto repeat;
1da177e4
LT
2324}
2325
fc2e4d70
ON
2326struct wq_barrier {
2327 struct work_struct work;
2328 struct completion done;
2607d7a6 2329 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2330};
2331
2332static void wq_barrier_func(struct work_struct *work)
2333{
2334 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2335 complete(&barr->done);
2336}
2337
4690c4ab
TH
2338/**
2339 * insert_wq_barrier - insert a barrier work
112202d9 2340 * @pwq: pwq to insert barrier into
4690c4ab 2341 * @barr: wq_barrier to insert
affee4b2
TH
2342 * @target: target work to attach @barr to
2343 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2344 *
affee4b2
TH
2345 * @barr is linked to @target such that @barr is completed only after
2346 * @target finishes execution. Please note that the ordering
2347 * guarantee is observed only with respect to @target and on the local
2348 * cpu.
2349 *
2350 * Currently, a queued barrier can't be canceled. This is because
2351 * try_to_grab_pending() can't determine whether the work to be
2352 * grabbed is at the head of the queue and thus can't clear LINKED
2353 * flag of the previous work while there must be a valid next work
2354 * after a work with LINKED flag set.
2355 *
2356 * Note that when @worker is non-NULL, @target may be modified
112202d9 2357 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2358 *
2359 * CONTEXT:
d565ed63 2360 * spin_lock_irq(pool->lock).
4690c4ab 2361 */
112202d9 2362static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2363 struct wq_barrier *barr,
2364 struct work_struct *target, struct worker *worker)
fc2e4d70 2365{
affee4b2
TH
2366 struct list_head *head;
2367 unsigned int linked = 0;
2368
dc186ad7 2369 /*
d565ed63 2370 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2371 * as we know for sure that this will not trigger any of the
2372 * checks and call back into the fixup functions where we
2373 * might deadlock.
2374 */
ca1cab37 2375 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2376 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2377 init_completion(&barr->done);
2607d7a6 2378 barr->task = current;
83c22520 2379
affee4b2
TH
2380 /*
2381 * If @target is currently being executed, schedule the
2382 * barrier to the worker; otherwise, put it after @target.
2383 */
2384 if (worker)
2385 head = worker->scheduled.next;
2386 else {
2387 unsigned long *bits = work_data_bits(target);
2388
2389 head = target->entry.next;
2390 /* there can already be other linked works, inherit and set */
2391 linked = *bits & WORK_STRUCT_LINKED;
2392 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2393 }
2394
dc186ad7 2395 debug_work_activate(&barr->work);
112202d9 2396 insert_work(pwq, &barr->work, head,
affee4b2 2397 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2398}
2399
73f53c4a 2400/**
112202d9 2401 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2402 * @wq: workqueue being flushed
2403 * @flush_color: new flush color, < 0 for no-op
2404 * @work_color: new work color, < 0 for no-op
2405 *
112202d9 2406 * Prepare pwqs for workqueue flushing.
73f53c4a 2407 *
112202d9
TH
2408 * If @flush_color is non-negative, flush_color on all pwqs should be
2409 * -1. If no pwq has in-flight commands at the specified color, all
2410 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2411 * has in flight commands, its pwq->flush_color is set to
2412 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2413 * wakeup logic is armed and %true is returned.
2414 *
2415 * The caller should have initialized @wq->first_flusher prior to
2416 * calling this function with non-negative @flush_color. If
2417 * @flush_color is negative, no flush color update is done and %false
2418 * is returned.
2419 *
112202d9 2420 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2421 * work_color which is previous to @work_color and all will be
2422 * advanced to @work_color.
2423 *
2424 * CONTEXT:
3c25a55d 2425 * mutex_lock(wq->mutex).
73f53c4a 2426 *
d185af30 2427 * Return:
73f53c4a
TH
2428 * %true if @flush_color >= 0 and there's something to flush. %false
2429 * otherwise.
2430 */
112202d9 2431static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2432 int flush_color, int work_color)
1da177e4 2433{
73f53c4a 2434 bool wait = false;
49e3cf44 2435 struct pool_workqueue *pwq;
1da177e4 2436
73f53c4a 2437 if (flush_color >= 0) {
6183c009 2438 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2439 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2440 }
2355b70f 2441
49e3cf44 2442 for_each_pwq(pwq, wq) {
112202d9 2443 struct worker_pool *pool = pwq->pool;
fc2e4d70 2444
b09f4fd3 2445 spin_lock_irq(&pool->lock);
83c22520 2446
73f53c4a 2447 if (flush_color >= 0) {
6183c009 2448 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2449
112202d9
TH
2450 if (pwq->nr_in_flight[flush_color]) {
2451 pwq->flush_color = flush_color;
2452 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2453 wait = true;
2454 }
2455 }
1da177e4 2456
73f53c4a 2457 if (work_color >= 0) {
6183c009 2458 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2459 pwq->work_color = work_color;
73f53c4a 2460 }
1da177e4 2461
b09f4fd3 2462 spin_unlock_irq(&pool->lock);
1da177e4 2463 }
2355b70f 2464
112202d9 2465 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2466 complete(&wq->first_flusher->done);
14441960 2467
73f53c4a 2468 return wait;
1da177e4
LT
2469}
2470
0fcb78c2 2471/**
1da177e4 2472 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2473 * @wq: workqueue to flush
1da177e4 2474 *
c5aa87bb
TH
2475 * This function sleeps until all work items which were queued on entry
2476 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2477 */
7ad5b3a5 2478void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2479{
73f53c4a
TH
2480 struct wq_flusher this_flusher = {
2481 .list = LIST_HEAD_INIT(this_flusher.list),
2482 .flush_color = -1,
2483 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2484 };
2485 int next_color;
1da177e4 2486
3295f0ef
IM
2487 lock_map_acquire(&wq->lockdep_map);
2488 lock_map_release(&wq->lockdep_map);
73f53c4a 2489
3c25a55d 2490 mutex_lock(&wq->mutex);
73f53c4a
TH
2491
2492 /*
2493 * Start-to-wait phase
2494 */
2495 next_color = work_next_color(wq->work_color);
2496
2497 if (next_color != wq->flush_color) {
2498 /*
2499 * Color space is not full. The current work_color
2500 * becomes our flush_color and work_color is advanced
2501 * by one.
2502 */
6183c009 2503 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2504 this_flusher.flush_color = wq->work_color;
2505 wq->work_color = next_color;
2506
2507 if (!wq->first_flusher) {
2508 /* no flush in progress, become the first flusher */
6183c009 2509 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2510
2511 wq->first_flusher = &this_flusher;
2512
112202d9 2513 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2514 wq->work_color)) {
2515 /* nothing to flush, done */
2516 wq->flush_color = next_color;
2517 wq->first_flusher = NULL;
2518 goto out_unlock;
2519 }
2520 } else {
2521 /* wait in queue */
6183c009 2522 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2523 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2524 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2525 }
2526 } else {
2527 /*
2528 * Oops, color space is full, wait on overflow queue.
2529 * The next flush completion will assign us
2530 * flush_color and transfer to flusher_queue.
2531 */
2532 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2533 }
2534
3c25a55d 2535 mutex_unlock(&wq->mutex);
73f53c4a
TH
2536
2537 wait_for_completion(&this_flusher.done);
2538
2539 /*
2540 * Wake-up-and-cascade phase
2541 *
2542 * First flushers are responsible for cascading flushes and
2543 * handling overflow. Non-first flushers can simply return.
2544 */
2545 if (wq->first_flusher != &this_flusher)
2546 return;
2547
3c25a55d 2548 mutex_lock(&wq->mutex);
73f53c4a 2549
4ce48b37
TH
2550 /* we might have raced, check again with mutex held */
2551 if (wq->first_flusher != &this_flusher)
2552 goto out_unlock;
2553
73f53c4a
TH
2554 wq->first_flusher = NULL;
2555
6183c009
TH
2556 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2557 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2558
2559 while (true) {
2560 struct wq_flusher *next, *tmp;
2561
2562 /* complete all the flushers sharing the current flush color */
2563 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2564 if (next->flush_color != wq->flush_color)
2565 break;
2566 list_del_init(&next->list);
2567 complete(&next->done);
2568 }
2569
6183c009
TH
2570 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2571 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2572
2573 /* this flush_color is finished, advance by one */
2574 wq->flush_color = work_next_color(wq->flush_color);
2575
2576 /* one color has been freed, handle overflow queue */
2577 if (!list_empty(&wq->flusher_overflow)) {
2578 /*
2579 * Assign the same color to all overflowed
2580 * flushers, advance work_color and append to
2581 * flusher_queue. This is the start-to-wait
2582 * phase for these overflowed flushers.
2583 */
2584 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2585 tmp->flush_color = wq->work_color;
2586
2587 wq->work_color = work_next_color(wq->work_color);
2588
2589 list_splice_tail_init(&wq->flusher_overflow,
2590 &wq->flusher_queue);
112202d9 2591 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2592 }
2593
2594 if (list_empty(&wq->flusher_queue)) {
6183c009 2595 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2596 break;
2597 }
2598
2599 /*
2600 * Need to flush more colors. Make the next flusher
112202d9 2601 * the new first flusher and arm pwqs.
73f53c4a 2602 */
6183c009
TH
2603 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2604 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2605
2606 list_del_init(&next->list);
2607 wq->first_flusher = next;
2608
112202d9 2609 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2610 break;
2611
2612 /*
2613 * Meh... this color is already done, clear first
2614 * flusher and repeat cascading.
2615 */
2616 wq->first_flusher = NULL;
2617 }
2618
2619out_unlock:
3c25a55d 2620 mutex_unlock(&wq->mutex);
1da177e4 2621}
ae90dd5d 2622EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2623
9c5a2ba7
TH
2624/**
2625 * drain_workqueue - drain a workqueue
2626 * @wq: workqueue to drain
2627 *
2628 * Wait until the workqueue becomes empty. While draining is in progress,
2629 * only chain queueing is allowed. IOW, only currently pending or running
2630 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2631 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2632 * by the depth of chaining and should be relatively short. Whine if it
2633 * takes too long.
2634 */
2635void drain_workqueue(struct workqueue_struct *wq)
2636{
2637 unsigned int flush_cnt = 0;
49e3cf44 2638 struct pool_workqueue *pwq;
9c5a2ba7
TH
2639
2640 /*
2641 * __queue_work() needs to test whether there are drainers, is much
2642 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2643 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2644 */
87fc741e 2645 mutex_lock(&wq->mutex);
9c5a2ba7 2646 if (!wq->nr_drainers++)
618b01eb 2647 wq->flags |= __WQ_DRAINING;
87fc741e 2648 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2649reflush:
2650 flush_workqueue(wq);
2651
b09f4fd3 2652 mutex_lock(&wq->mutex);
76af4d93 2653
49e3cf44 2654 for_each_pwq(pwq, wq) {
fa2563e4 2655 bool drained;
9c5a2ba7 2656
b09f4fd3 2657 spin_lock_irq(&pwq->pool->lock);
112202d9 2658 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2659 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2660
2661 if (drained)
9c5a2ba7
TH
2662 continue;
2663
2664 if (++flush_cnt == 10 ||
2665 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2666 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2667 wq->name, flush_cnt);
76af4d93 2668
b09f4fd3 2669 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2670 goto reflush;
2671 }
2672
9c5a2ba7 2673 if (!--wq->nr_drainers)
618b01eb 2674 wq->flags &= ~__WQ_DRAINING;
87fc741e 2675 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2676}
2677EXPORT_SYMBOL_GPL(drain_workqueue);
2678
606a5020 2679static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2680{
affee4b2 2681 struct worker *worker = NULL;
c9e7cf27 2682 struct worker_pool *pool;
112202d9 2683 struct pool_workqueue *pwq;
db700897
ON
2684
2685 might_sleep();
fa1b54e6
TH
2686
2687 local_irq_disable();
c9e7cf27 2688 pool = get_work_pool(work);
fa1b54e6
TH
2689 if (!pool) {
2690 local_irq_enable();
baf59022 2691 return false;
fa1b54e6 2692 }
db700897 2693
fa1b54e6 2694 spin_lock(&pool->lock);
0b3dae68 2695 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2696 pwq = get_work_pwq(work);
2697 if (pwq) {
2698 if (unlikely(pwq->pool != pool))
4690c4ab 2699 goto already_gone;
606a5020 2700 } else {
c9e7cf27 2701 worker = find_worker_executing_work(pool, work);
affee4b2 2702 if (!worker)
4690c4ab 2703 goto already_gone;
112202d9 2704 pwq = worker->current_pwq;
606a5020 2705 }
db700897 2706
112202d9 2707 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2708 spin_unlock_irq(&pool->lock);
7a22ad75 2709
e159489b
TH
2710 /*
2711 * If @max_active is 1 or rescuer is in use, flushing another work
2712 * item on the same workqueue may lead to deadlock. Make sure the
2713 * flusher is not running on the same workqueue by verifying write
2714 * access.
2715 */
493008a8 2716 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2717 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2718 else
112202d9
TH
2719 lock_map_acquire_read(&pwq->wq->lockdep_map);
2720 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2721
401a8d04 2722 return true;
4690c4ab 2723already_gone:
d565ed63 2724 spin_unlock_irq(&pool->lock);
401a8d04 2725 return false;
db700897 2726}
baf59022
TH
2727
2728/**
2729 * flush_work - wait for a work to finish executing the last queueing instance
2730 * @work: the work to flush
2731 *
606a5020
TH
2732 * Wait until @work has finished execution. @work is guaranteed to be idle
2733 * on return if it hasn't been requeued since flush started.
baf59022 2734 *
d185af30 2735 * Return:
baf59022
TH
2736 * %true if flush_work() waited for the work to finish execution,
2737 * %false if it was already idle.
2738 */
2739bool flush_work(struct work_struct *work)
2740{
12997d1a
BH
2741 struct wq_barrier barr;
2742
0976dfc1
SB
2743 lock_map_acquire(&work->lockdep_map);
2744 lock_map_release(&work->lockdep_map);
2745
12997d1a
BH
2746 if (start_flush_work(work, &barr)) {
2747 wait_for_completion(&barr.done);
2748 destroy_work_on_stack(&barr.work);
2749 return true;
2750 } else {
2751 return false;
2752 }
6e84d644 2753}
606a5020 2754EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2755
8603e1b3
TH
2756struct cwt_wait {
2757 wait_queue_t wait;
2758 struct work_struct *work;
2759};
2760
2761static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2762{
2763 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2764
2765 if (cwait->work != key)
2766 return 0;
2767 return autoremove_wake_function(wait, mode, sync, key);
2768}
2769
36e227d2 2770static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2771{
8603e1b3 2772 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2773 unsigned long flags;
1f1f642e
ON
2774 int ret;
2775
2776 do {
bbb68dfa
TH
2777 ret = try_to_grab_pending(work, is_dwork, &flags);
2778 /*
8603e1b3
TH
2779 * If someone else is already canceling, wait for it to
2780 * finish. flush_work() doesn't work for PREEMPT_NONE
2781 * because we may get scheduled between @work's completion
2782 * and the other canceling task resuming and clearing
2783 * CANCELING - flush_work() will return false immediately
2784 * as @work is no longer busy, try_to_grab_pending() will
2785 * return -ENOENT as @work is still being canceled and the
2786 * other canceling task won't be able to clear CANCELING as
2787 * we're hogging the CPU.
2788 *
2789 * Let's wait for completion using a waitqueue. As this
2790 * may lead to the thundering herd problem, use a custom
2791 * wake function which matches @work along with exclusive
2792 * wait and wakeup.
bbb68dfa 2793 */
8603e1b3
TH
2794 if (unlikely(ret == -ENOENT)) {
2795 struct cwt_wait cwait;
2796
2797 init_wait(&cwait.wait);
2798 cwait.wait.func = cwt_wakefn;
2799 cwait.work = work;
2800
2801 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2802 TASK_UNINTERRUPTIBLE);
2803 if (work_is_canceling(work))
2804 schedule();
2805 finish_wait(&cancel_waitq, &cwait.wait);
2806 }
1f1f642e
ON
2807 } while (unlikely(ret < 0));
2808
bbb68dfa
TH
2809 /* tell other tasks trying to grab @work to back off */
2810 mark_work_canceling(work);
2811 local_irq_restore(flags);
2812
606a5020 2813 flush_work(work);
7a22ad75 2814 clear_work_data(work);
8603e1b3
TH
2815
2816 /*
2817 * Paired with prepare_to_wait() above so that either
2818 * waitqueue_active() is visible here or !work_is_canceling() is
2819 * visible there.
2820 */
2821 smp_mb();
2822 if (waitqueue_active(&cancel_waitq))
2823 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2824
1f1f642e
ON
2825 return ret;
2826}
2827
6e84d644 2828/**
401a8d04
TH
2829 * cancel_work_sync - cancel a work and wait for it to finish
2830 * @work: the work to cancel
6e84d644 2831 *
401a8d04
TH
2832 * Cancel @work and wait for its execution to finish. This function
2833 * can be used even if the work re-queues itself or migrates to
2834 * another workqueue. On return from this function, @work is
2835 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2836 *
401a8d04
TH
2837 * cancel_work_sync(&delayed_work->work) must not be used for
2838 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2839 *
401a8d04 2840 * The caller must ensure that the workqueue on which @work was last
6e84d644 2841 * queued can't be destroyed before this function returns.
401a8d04 2842 *
d185af30 2843 * Return:
401a8d04 2844 * %true if @work was pending, %false otherwise.
6e84d644 2845 */
401a8d04 2846bool cancel_work_sync(struct work_struct *work)
6e84d644 2847{
36e227d2 2848 return __cancel_work_timer(work, false);
b89deed3 2849}
28e53bdd 2850EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2851
6e84d644 2852/**
401a8d04
TH
2853 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2854 * @dwork: the delayed work to flush
6e84d644 2855 *
401a8d04
TH
2856 * Delayed timer is cancelled and the pending work is queued for
2857 * immediate execution. Like flush_work(), this function only
2858 * considers the last queueing instance of @dwork.
1f1f642e 2859 *
d185af30 2860 * Return:
401a8d04
TH
2861 * %true if flush_work() waited for the work to finish execution,
2862 * %false if it was already idle.
6e84d644 2863 */
401a8d04
TH
2864bool flush_delayed_work(struct delayed_work *dwork)
2865{
8930caba 2866 local_irq_disable();
401a8d04 2867 if (del_timer_sync(&dwork->timer))
60c057bc 2868 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2869 local_irq_enable();
401a8d04
TH
2870 return flush_work(&dwork->work);
2871}
2872EXPORT_SYMBOL(flush_delayed_work);
2873
09383498 2874/**
57b30ae7
TH
2875 * cancel_delayed_work - cancel a delayed work
2876 * @dwork: delayed_work to cancel
09383498 2877 *
d185af30
YB
2878 * Kill off a pending delayed_work.
2879 *
2880 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2881 * pending.
2882 *
2883 * Note:
2884 * The work callback function may still be running on return, unless
2885 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2886 * use cancel_delayed_work_sync() to wait on it.
09383498 2887 *
57b30ae7 2888 * This function is safe to call from any context including IRQ handler.
09383498 2889 */
57b30ae7 2890bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2891{
57b30ae7
TH
2892 unsigned long flags;
2893 int ret;
2894
2895 do {
2896 ret = try_to_grab_pending(&dwork->work, true, &flags);
2897 } while (unlikely(ret == -EAGAIN));
2898
2899 if (unlikely(ret < 0))
2900 return false;
2901
7c3eed5c
TH
2902 set_work_pool_and_clear_pending(&dwork->work,
2903 get_work_pool_id(&dwork->work));
57b30ae7 2904 local_irq_restore(flags);
c0158ca6 2905 return ret;
09383498 2906}
57b30ae7 2907EXPORT_SYMBOL(cancel_delayed_work);
09383498 2908
401a8d04
TH
2909/**
2910 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2911 * @dwork: the delayed work cancel
2912 *
2913 * This is cancel_work_sync() for delayed works.
2914 *
d185af30 2915 * Return:
401a8d04
TH
2916 * %true if @dwork was pending, %false otherwise.
2917 */
2918bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2919{
36e227d2 2920 return __cancel_work_timer(&dwork->work, true);
6e84d644 2921}
f5a421a4 2922EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2923
b6136773 2924/**
31ddd871 2925 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2926 * @func: the function to call
b6136773 2927 *
31ddd871
TH
2928 * schedule_on_each_cpu() executes @func on each online CPU using the
2929 * system workqueue and blocks until all CPUs have completed.
b6136773 2930 * schedule_on_each_cpu() is very slow.
31ddd871 2931 *
d185af30 2932 * Return:
31ddd871 2933 * 0 on success, -errno on failure.
b6136773 2934 */
65f27f38 2935int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2936{
2937 int cpu;
38f51568 2938 struct work_struct __percpu *works;
15316ba8 2939
b6136773
AM
2940 works = alloc_percpu(struct work_struct);
2941 if (!works)
15316ba8 2942 return -ENOMEM;
b6136773 2943
93981800
TH
2944 get_online_cpus();
2945
15316ba8 2946 for_each_online_cpu(cpu) {
9bfb1839
IM
2947 struct work_struct *work = per_cpu_ptr(works, cpu);
2948
2949 INIT_WORK(work, func);
b71ab8c2 2950 schedule_work_on(cpu, work);
65a64464 2951 }
93981800
TH
2952
2953 for_each_online_cpu(cpu)
2954 flush_work(per_cpu_ptr(works, cpu));
2955
95402b38 2956 put_online_cpus();
b6136773 2957 free_percpu(works);
15316ba8
CL
2958 return 0;
2959}
2960
1fa44eca
JB
2961/**
2962 * execute_in_process_context - reliably execute the routine with user context
2963 * @fn: the function to execute
1fa44eca
JB
2964 * @ew: guaranteed storage for the execute work structure (must
2965 * be available when the work executes)
2966 *
2967 * Executes the function immediately if process context is available,
2968 * otherwise schedules the function for delayed execution.
2969 *
d185af30 2970 * Return: 0 - function was executed
1fa44eca
JB
2971 * 1 - function was scheduled for execution
2972 */
65f27f38 2973int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2974{
2975 if (!in_interrupt()) {
65f27f38 2976 fn(&ew->work);
1fa44eca
JB
2977 return 0;
2978 }
2979
65f27f38 2980 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2981 schedule_work(&ew->work);
2982
2983 return 1;
2984}
2985EXPORT_SYMBOL_GPL(execute_in_process_context);
2986
6ba94429
FW
2987/**
2988 * free_workqueue_attrs - free a workqueue_attrs
2989 * @attrs: workqueue_attrs to free
226223ab 2990 *
6ba94429 2991 * Undo alloc_workqueue_attrs().
226223ab 2992 */
6ba94429 2993void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 2994{
6ba94429
FW
2995 if (attrs) {
2996 free_cpumask_var(attrs->cpumask);
2997 kfree(attrs);
2998 }
226223ab
TH
2999}
3000
6ba94429
FW
3001/**
3002 * alloc_workqueue_attrs - allocate a workqueue_attrs
3003 * @gfp_mask: allocation mask to use
3004 *
3005 * Allocate a new workqueue_attrs, initialize with default settings and
3006 * return it.
3007 *
3008 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3009 */
3010struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3011{
6ba94429 3012 struct workqueue_attrs *attrs;
226223ab 3013
6ba94429
FW
3014 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3015 if (!attrs)
3016 goto fail;
3017 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3018 goto fail;
3019
3020 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3021 return attrs;
3022fail:
3023 free_workqueue_attrs(attrs);
3024 return NULL;
226223ab
TH
3025}
3026
6ba94429
FW
3027static void copy_workqueue_attrs(struct workqueue_attrs *to,
3028 const struct workqueue_attrs *from)
226223ab 3029{
6ba94429
FW
3030 to->nice = from->nice;
3031 cpumask_copy(to->cpumask, from->cpumask);
3032 /*
3033 * Unlike hash and equality test, this function doesn't ignore
3034 * ->no_numa as it is used for both pool and wq attrs. Instead,
3035 * get_unbound_pool() explicitly clears ->no_numa after copying.
3036 */
3037 to->no_numa = from->no_numa;
226223ab
TH
3038}
3039
6ba94429
FW
3040/* hash value of the content of @attr */
3041static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3042{
6ba94429 3043 u32 hash = 0;
226223ab 3044
6ba94429
FW
3045 hash = jhash_1word(attrs->nice, hash);
3046 hash = jhash(cpumask_bits(attrs->cpumask),
3047 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3048 return hash;
226223ab 3049}
226223ab 3050
6ba94429
FW
3051/* content equality test */
3052static bool wqattrs_equal(const struct workqueue_attrs *a,
3053 const struct workqueue_attrs *b)
226223ab 3054{
6ba94429
FW
3055 if (a->nice != b->nice)
3056 return false;
3057 if (!cpumask_equal(a->cpumask, b->cpumask))
3058 return false;
3059 return true;
226223ab
TH
3060}
3061
6ba94429
FW
3062/**
3063 * init_worker_pool - initialize a newly zalloc'd worker_pool
3064 * @pool: worker_pool to initialize
3065 *
3066 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3067 *
3068 * Return: 0 on success, -errno on failure. Even on failure, all fields
3069 * inside @pool proper are initialized and put_unbound_pool() can be called
3070 * on @pool safely to release it.
3071 */
3072static int init_worker_pool(struct worker_pool *pool)
226223ab 3073{
6ba94429
FW
3074 spin_lock_init(&pool->lock);
3075 pool->id = -1;
3076 pool->cpu = -1;
3077 pool->node = NUMA_NO_NODE;
3078 pool->flags |= POOL_DISASSOCIATED;
3079 INIT_LIST_HEAD(&pool->worklist);
3080 INIT_LIST_HEAD(&pool->idle_list);
3081 hash_init(pool->busy_hash);
226223ab 3082
6ba94429
FW
3083 init_timer_deferrable(&pool->idle_timer);
3084 pool->idle_timer.function = idle_worker_timeout;
3085 pool->idle_timer.data = (unsigned long)pool;
226223ab 3086
6ba94429
FW
3087 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3088 (unsigned long)pool);
226223ab 3089
6ba94429
FW
3090 mutex_init(&pool->manager_arb);
3091 mutex_init(&pool->attach_mutex);
3092 INIT_LIST_HEAD(&pool->workers);
226223ab 3093
6ba94429
FW
3094 ida_init(&pool->worker_ida);
3095 INIT_HLIST_NODE(&pool->hash_node);
3096 pool->refcnt = 1;
226223ab 3097
6ba94429
FW
3098 /* shouldn't fail above this point */
3099 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3100 if (!pool->attrs)
3101 return -ENOMEM;
3102 return 0;
226223ab
TH
3103}
3104
6ba94429 3105static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3106{
6ba94429
FW
3107 struct workqueue_struct *wq =
3108 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3109
6ba94429
FW
3110 if (!(wq->flags & WQ_UNBOUND))
3111 free_percpu(wq->cpu_pwqs);
226223ab 3112 else
6ba94429 3113 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3114
6ba94429
FW
3115 kfree(wq->rescuer);
3116 kfree(wq);
226223ab
TH
3117}
3118
6ba94429 3119static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3120{
6ba94429 3121 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3122
6ba94429
FW
3123 ida_destroy(&pool->worker_ida);
3124 free_workqueue_attrs(pool->attrs);
3125 kfree(pool);
226223ab
TH
3126}
3127
6ba94429
FW
3128/**
3129 * put_unbound_pool - put a worker_pool
3130 * @pool: worker_pool to put
3131 *
3132 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3133 * safe manner. get_unbound_pool() calls this function on its failure path
3134 * and this function should be able to release pools which went through,
3135 * successfully or not, init_worker_pool().
3136 *
3137 * Should be called with wq_pool_mutex held.
3138 */
3139static void put_unbound_pool(struct worker_pool *pool)
226223ab 3140{
6ba94429
FW
3141 DECLARE_COMPLETION_ONSTACK(detach_completion);
3142 struct worker *worker;
226223ab 3143
6ba94429 3144 lockdep_assert_held(&wq_pool_mutex);
226223ab 3145
6ba94429
FW
3146 if (--pool->refcnt)
3147 return;
226223ab 3148
6ba94429
FW
3149 /* sanity checks */
3150 if (WARN_ON(!(pool->cpu < 0)) ||
3151 WARN_ON(!list_empty(&pool->worklist)))
3152 return;
226223ab 3153
6ba94429
FW
3154 /* release id and unhash */
3155 if (pool->id >= 0)
3156 idr_remove(&worker_pool_idr, pool->id);
3157 hash_del(&pool->hash_node);
d55262c4 3158
6ba94429
FW
3159 /*
3160 * Become the manager and destroy all workers. Grabbing
3161 * manager_arb prevents @pool's workers from blocking on
3162 * attach_mutex.
3163 */
3164 mutex_lock(&pool->manager_arb);
d55262c4 3165
6ba94429
FW
3166 spin_lock_irq(&pool->lock);
3167 while ((worker = first_idle_worker(pool)))
3168 destroy_worker(worker);
3169 WARN_ON(pool->nr_workers || pool->nr_idle);
3170 spin_unlock_irq(&pool->lock);
d55262c4 3171
6ba94429
FW
3172 mutex_lock(&pool->attach_mutex);
3173 if (!list_empty(&pool->workers))
3174 pool->detach_completion = &detach_completion;
3175 mutex_unlock(&pool->attach_mutex);
226223ab 3176
6ba94429
FW
3177 if (pool->detach_completion)
3178 wait_for_completion(pool->detach_completion);
226223ab 3179
6ba94429 3180 mutex_unlock(&pool->manager_arb);
226223ab 3181
6ba94429
FW
3182 /* shut down the timers */
3183 del_timer_sync(&pool->idle_timer);
3184 del_timer_sync(&pool->mayday_timer);
226223ab 3185
6ba94429
FW
3186 /* sched-RCU protected to allow dereferences from get_work_pool() */
3187 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3188}
3189
3190/**
6ba94429
FW
3191 * get_unbound_pool - get a worker_pool with the specified attributes
3192 * @attrs: the attributes of the worker_pool to get
226223ab 3193 *
6ba94429
FW
3194 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3195 * reference count and return it. If there already is a matching
3196 * worker_pool, it will be used; otherwise, this function attempts to
3197 * create a new one.
226223ab 3198 *
6ba94429 3199 * Should be called with wq_pool_mutex held.
226223ab 3200 *
6ba94429
FW
3201 * Return: On success, a worker_pool with the same attributes as @attrs.
3202 * On failure, %NULL.
226223ab 3203 */
6ba94429 3204static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3205{
6ba94429
FW
3206 u32 hash = wqattrs_hash(attrs);
3207 struct worker_pool *pool;
3208 int node;
226223ab 3209
6ba94429 3210 lockdep_assert_held(&wq_pool_mutex);
226223ab 3211
6ba94429
FW
3212 /* do we already have a matching pool? */
3213 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3214 if (wqattrs_equal(pool->attrs, attrs)) {
3215 pool->refcnt++;
3216 return pool;
3217 }
3218 }
226223ab 3219
6ba94429
FW
3220 /* nope, create a new one */
3221 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3222 if (!pool || init_worker_pool(pool) < 0)
3223 goto fail;
3224
3225 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3226 copy_workqueue_attrs(pool->attrs, attrs);
226223ab
TH
3227
3228 /*
6ba94429
FW
3229 * no_numa isn't a worker_pool attribute, always clear it. See
3230 * 'struct workqueue_attrs' comments for detail.
226223ab 3231 */
6ba94429 3232 pool->attrs->no_numa = false;
226223ab 3233
6ba94429
FW
3234 /* if cpumask is contained inside a NUMA node, we belong to that node */
3235 if (wq_numa_enabled) {
3236 for_each_node(node) {
3237 if (cpumask_subset(pool->attrs->cpumask,
3238 wq_numa_possible_cpumask[node])) {
3239 pool->node = node;
3240 break;
226223ab
TH
3241 }
3242 }
3243 }
3244
6ba94429
FW
3245 if (worker_pool_assign_id(pool) < 0)
3246 goto fail;
226223ab 3247
6ba94429
FW
3248 /* create and start the initial worker */
3249 if (!create_worker(pool))
3250 goto fail;
226223ab 3251
6ba94429
FW
3252 /* install */
3253 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3254
6ba94429
FW
3255 return pool;
3256fail:
3257 if (pool)
3258 put_unbound_pool(pool);
3259 return NULL;
226223ab 3260}
226223ab 3261
6ba94429 3262static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3263{
6ba94429
FW
3264 kmem_cache_free(pwq_cache,
3265 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3266}
3267
6ba94429
FW
3268/*
3269 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3270 * and needs to be destroyed.
7a4e344c 3271 */
6ba94429 3272static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3273{
6ba94429
FW
3274 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3275 unbound_release_work);
3276 struct workqueue_struct *wq = pwq->wq;
3277 struct worker_pool *pool = pwq->pool;
3278 bool is_last;
7a4e344c 3279
6ba94429
FW
3280 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3281 return;
7a4e344c 3282
6ba94429
FW
3283 mutex_lock(&wq->mutex);
3284 list_del_rcu(&pwq->pwqs_node);
3285 is_last = list_empty(&wq->pwqs);
3286 mutex_unlock(&wq->mutex);
3287
3288 mutex_lock(&wq_pool_mutex);
3289 put_unbound_pool(pool);
3290 mutex_unlock(&wq_pool_mutex);
3291
3292 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3293
2865a8fb 3294 /*
6ba94429
FW
3295 * If we're the last pwq going away, @wq is already dead and no one
3296 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3297 */
6ba94429
FW
3298 if (is_last)
3299 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3300}
3301
7a4e344c 3302/**
6ba94429
FW
3303 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3304 * @pwq: target pool_workqueue
d185af30 3305 *
6ba94429
FW
3306 * If @pwq isn't freezing, set @pwq->max_active to the associated
3307 * workqueue's saved_max_active and activate delayed work items
3308 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3309 */
6ba94429 3310static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3311{
6ba94429
FW
3312 struct workqueue_struct *wq = pwq->wq;
3313 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3314
6ba94429
FW
3315 /* for @wq->saved_max_active */
3316 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3317
6ba94429
FW
3318 /* fast exit for non-freezable wqs */
3319 if (!freezable && pwq->max_active == wq->saved_max_active)
3320 return;
7a4e344c 3321
6ba94429 3322 spin_lock_irq(&pwq->pool->lock);
29c91e99 3323
6ba94429
FW
3324 /*
3325 * During [un]freezing, the caller is responsible for ensuring that
3326 * this function is called at least once after @workqueue_freezing
3327 * is updated and visible.
3328 */
3329 if (!freezable || !workqueue_freezing) {
3330 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3331
6ba94429
FW
3332 while (!list_empty(&pwq->delayed_works) &&
3333 pwq->nr_active < pwq->max_active)
3334 pwq_activate_first_delayed(pwq);
e2dca7ad 3335
6ba94429
FW
3336 /*
3337 * Need to kick a worker after thawed or an unbound wq's
3338 * max_active is bumped. It's a slow path. Do it always.
3339 */
3340 wake_up_worker(pwq->pool);
3341 } else {
3342 pwq->max_active = 0;
3343 }
e2dca7ad 3344
6ba94429 3345 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3346}
3347
6ba94429
FW
3348/* initialize newly alloced @pwq which is associated with @wq and @pool */
3349static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3350 struct worker_pool *pool)
29c91e99 3351{
6ba94429 3352 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3353
6ba94429
FW
3354 memset(pwq, 0, sizeof(*pwq));
3355
3356 pwq->pool = pool;
3357 pwq->wq = wq;
3358 pwq->flush_color = -1;
3359 pwq->refcnt = 1;
3360 INIT_LIST_HEAD(&pwq->delayed_works);
3361 INIT_LIST_HEAD(&pwq->pwqs_node);
3362 INIT_LIST_HEAD(&pwq->mayday_node);
3363 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3364}
3365
6ba94429
FW
3366/* sync @pwq with the current state of its associated wq and link it */
3367static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3368{
6ba94429 3369 struct workqueue_struct *wq = pwq->wq;
29c91e99 3370
6ba94429 3371 lockdep_assert_held(&wq->mutex);
a892cacc 3372
6ba94429
FW
3373 /* may be called multiple times, ignore if already linked */
3374 if (!list_empty(&pwq->pwqs_node))
29c91e99 3375 return;
29c91e99 3376
6ba94429
FW
3377 /* set the matching work_color */
3378 pwq->work_color = wq->work_color;
29c91e99 3379
6ba94429
FW
3380 /* sync max_active to the current setting */
3381 pwq_adjust_max_active(pwq);
29c91e99 3382
6ba94429
FW
3383 /* link in @pwq */
3384 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3385}
29c91e99 3386
6ba94429
FW
3387/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3388static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3389 const struct workqueue_attrs *attrs)
3390{
3391 struct worker_pool *pool;
3392 struct pool_workqueue *pwq;
60f5a4bc 3393
6ba94429 3394 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3395
6ba94429
FW
3396 pool = get_unbound_pool(attrs);
3397 if (!pool)
3398 return NULL;
60f5a4bc 3399
6ba94429
FW
3400 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3401 if (!pwq) {
3402 put_unbound_pool(pool);
3403 return NULL;
3404 }
29c91e99 3405
6ba94429
FW
3406 init_pwq(pwq, wq, pool);
3407 return pwq;
3408}
29c91e99 3409
29c91e99 3410/**
30186c6f 3411 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3412 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3413 * @node: the target NUMA node
3414 * @cpu_going_down: if >= 0, the CPU to consider as offline
3415 * @cpumask: outarg, the resulting cpumask
29c91e99 3416 *
6ba94429
FW
3417 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3418 * @cpu_going_down is >= 0, that cpu is considered offline during
3419 * calculation. The result is stored in @cpumask.
a892cacc 3420 *
6ba94429
FW
3421 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3422 * enabled and @node has online CPUs requested by @attrs, the returned
3423 * cpumask is the intersection of the possible CPUs of @node and
3424 * @attrs->cpumask.
d185af30 3425 *
6ba94429
FW
3426 * The caller is responsible for ensuring that the cpumask of @node stays
3427 * stable.
3428 *
3429 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3430 * %false if equal.
29c91e99 3431 */
6ba94429
FW
3432static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3433 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3434{
6ba94429
FW
3435 if (!wq_numa_enabled || attrs->no_numa)
3436 goto use_dfl;
29c91e99 3437
6ba94429
FW
3438 /* does @node have any online CPUs @attrs wants? */
3439 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3440 if (cpu_going_down >= 0)
3441 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3442
6ba94429
FW
3443 if (cpumask_empty(cpumask))
3444 goto use_dfl;
4c16bd32
TH
3445
3446 /* yeap, return possible CPUs in @node that @attrs wants */
3447 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3448 return !cpumask_equal(cpumask, attrs->cpumask);
3449
3450use_dfl:
3451 cpumask_copy(cpumask, attrs->cpumask);
3452 return false;
3453}
3454
1befcf30
TH
3455/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3456static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3457 int node,
3458 struct pool_workqueue *pwq)
3459{
3460 struct pool_workqueue *old_pwq;
3461
5b95e1af 3462 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3463 lockdep_assert_held(&wq->mutex);
3464
3465 /* link_pwq() can handle duplicate calls */
3466 link_pwq(pwq);
3467
3468 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3469 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3470 return old_pwq;
3471}
3472
2d5f0764
LJ
3473/* context to store the prepared attrs & pwqs before applying */
3474struct apply_wqattrs_ctx {
3475 struct workqueue_struct *wq; /* target workqueue */
3476 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3477 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3478 struct pool_workqueue *dfl_pwq;
3479 struct pool_workqueue *pwq_tbl[];
3480};
3481
3482/* free the resources after success or abort */
3483static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3484{
3485 if (ctx) {
3486 int node;
3487
3488 for_each_node(node)
3489 put_pwq_unlocked(ctx->pwq_tbl[node]);
3490 put_pwq_unlocked(ctx->dfl_pwq);
3491
3492 free_workqueue_attrs(ctx->attrs);
3493
3494 kfree(ctx);
3495 }
3496}
3497
3498/* allocate the attrs and pwqs for later installation */
3499static struct apply_wqattrs_ctx *
3500apply_wqattrs_prepare(struct workqueue_struct *wq,
3501 const struct workqueue_attrs *attrs)
9e8cd2f5 3502{
2d5f0764 3503 struct apply_wqattrs_ctx *ctx;
4c16bd32 3504 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3505 int node;
9e8cd2f5 3506
2d5f0764 3507 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3508
2d5f0764
LJ
3509 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3510 GFP_KERNEL);
8719dcea 3511
13e2e556 3512 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3513 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3514 if (!ctx || !new_attrs || !tmp_attrs)
3515 goto out_free;
13e2e556 3516
042f7df1
LJ
3517 /*
3518 * Calculate the attrs of the default pwq.
3519 * If the user configured cpumask doesn't overlap with the
3520 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3521 */
13e2e556 3522 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3523 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3524 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3525 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3526
4c16bd32
TH
3527 /*
3528 * We may create multiple pwqs with differing cpumasks. Make a
3529 * copy of @new_attrs which will be modified and used to obtain
3530 * pools.
3531 */
3532 copy_workqueue_attrs(tmp_attrs, new_attrs);
3533
4c16bd32
TH
3534 /*
3535 * If something goes wrong during CPU up/down, we'll fall back to
3536 * the default pwq covering whole @attrs->cpumask. Always create
3537 * it even if we don't use it immediately.
3538 */
2d5f0764
LJ
3539 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3540 if (!ctx->dfl_pwq)
3541 goto out_free;
4c16bd32
TH
3542
3543 for_each_node(node) {
042f7df1 3544 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3545 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3546 if (!ctx->pwq_tbl[node])
3547 goto out_free;
4c16bd32 3548 } else {
2d5f0764
LJ
3549 ctx->dfl_pwq->refcnt++;
3550 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3551 }
3552 }
3553
042f7df1
LJ
3554 /* save the user configured attrs and sanitize it. */
3555 copy_workqueue_attrs(new_attrs, attrs);
3556 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3557 ctx->attrs = new_attrs;
042f7df1 3558
2d5f0764
LJ
3559 ctx->wq = wq;
3560 free_workqueue_attrs(tmp_attrs);
3561 return ctx;
3562
3563out_free:
3564 free_workqueue_attrs(tmp_attrs);
3565 free_workqueue_attrs(new_attrs);
3566 apply_wqattrs_cleanup(ctx);
3567 return NULL;
3568}
3569
3570/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3571static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3572{
3573 int node;
9e8cd2f5 3574
4c16bd32 3575 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3576 mutex_lock(&ctx->wq->mutex);
a892cacc 3577
2d5f0764 3578 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3579
3580 /* save the previous pwq and install the new one */
f147f29e 3581 for_each_node(node)
2d5f0764
LJ
3582 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3583 ctx->pwq_tbl[node]);
4c16bd32
TH
3584
3585 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3586 link_pwq(ctx->dfl_pwq);
3587 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3588
2d5f0764
LJ
3589 mutex_unlock(&ctx->wq->mutex);
3590}
9e8cd2f5 3591
a0111cf6
LJ
3592static void apply_wqattrs_lock(void)
3593{
3594 /* CPUs should stay stable across pwq creations and installations */
3595 get_online_cpus();
3596 mutex_lock(&wq_pool_mutex);
3597}
3598
3599static void apply_wqattrs_unlock(void)
3600{
3601 mutex_unlock(&wq_pool_mutex);
3602 put_online_cpus();
3603}
3604
3605static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3606 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3607{
3608 struct apply_wqattrs_ctx *ctx;
3609 int ret = -ENOMEM;
4c16bd32 3610
2d5f0764
LJ
3611 /* only unbound workqueues can change attributes */
3612 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3613 return -EINVAL;
13e2e556 3614
2d5f0764
LJ
3615 /* creating multiple pwqs breaks ordering guarantee */
3616 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3617 return -EINVAL;
3618
2d5f0764 3619 ctx = apply_wqattrs_prepare(wq, attrs);
2d5f0764
LJ
3620
3621 /* the ctx has been prepared successfully, let's commit it */
3622 if (ctx) {
3623 apply_wqattrs_commit(ctx);
3624 ret = 0;
3625 }
3626
2d5f0764
LJ
3627 apply_wqattrs_cleanup(ctx);
3628
3629 return ret;
9e8cd2f5
TH
3630}
3631
a0111cf6
LJ
3632/**
3633 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3634 * @wq: the target workqueue
3635 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3636 *
3637 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3638 * machines, this function maps a separate pwq to each NUMA node with
3639 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3640 * NUMA node it was issued on. Older pwqs are released as in-flight work
3641 * items finish. Note that a work item which repeatedly requeues itself
3642 * back-to-back will stay on its current pwq.
3643 *
3644 * Performs GFP_KERNEL allocations.
3645 *
3646 * Return: 0 on success and -errno on failure.
3647 */
3648int apply_workqueue_attrs(struct workqueue_struct *wq,
3649 const struct workqueue_attrs *attrs)
3650{
3651 int ret;
3652
3653 apply_wqattrs_lock();
3654 ret = apply_workqueue_attrs_locked(wq, attrs);
3655 apply_wqattrs_unlock();
3656
3657 return ret;
3658}
3659
4c16bd32
TH
3660/**
3661 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3662 * @wq: the target workqueue
3663 * @cpu: the CPU coming up or going down
3664 * @online: whether @cpu is coming up or going down
3665 *
3666 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3667 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3668 * @wq accordingly.
3669 *
3670 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3671 * falls back to @wq->dfl_pwq which may not be optimal but is always
3672 * correct.
3673 *
3674 * Note that when the last allowed CPU of a NUMA node goes offline for a
3675 * workqueue with a cpumask spanning multiple nodes, the workers which were
3676 * already executing the work items for the workqueue will lose their CPU
3677 * affinity and may execute on any CPU. This is similar to how per-cpu
3678 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3679 * affinity, it's the user's responsibility to flush the work item from
3680 * CPU_DOWN_PREPARE.
3681 */
3682static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3683 bool online)
3684{
3685 int node = cpu_to_node(cpu);
3686 int cpu_off = online ? -1 : cpu;
3687 struct pool_workqueue *old_pwq = NULL, *pwq;
3688 struct workqueue_attrs *target_attrs;
3689 cpumask_t *cpumask;
3690
3691 lockdep_assert_held(&wq_pool_mutex);
3692
f7142ed4
LJ
3693 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3694 wq->unbound_attrs->no_numa)
4c16bd32
TH
3695 return;
3696
3697 /*
3698 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3699 * Let's use a preallocated one. The following buf is protected by
3700 * CPU hotplug exclusion.
3701 */
3702 target_attrs = wq_update_unbound_numa_attrs_buf;
3703 cpumask = target_attrs->cpumask;
3704
4c16bd32
TH
3705 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3706 pwq = unbound_pwq_by_node(wq, node);
3707
3708 /*
3709 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3710 * different from the default pwq's, we need to compare it to @pwq's
3711 * and create a new one if they don't match. If the target cpumask
3712 * equals the default pwq's, the default pwq should be used.
4c16bd32 3713 */
042f7df1 3714 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3715 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3716 return;
4c16bd32 3717 } else {
534a3fbb 3718 goto use_dfl_pwq;
4c16bd32
TH
3719 }
3720
4c16bd32
TH
3721 /* create a new pwq */
3722 pwq = alloc_unbound_pwq(wq, target_attrs);
3723 if (!pwq) {
2d916033
FF
3724 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3725 wq->name);
77f300b1 3726 goto use_dfl_pwq;
4c16bd32
TH
3727 }
3728
f7142ed4 3729 /* Install the new pwq. */
4c16bd32
TH
3730 mutex_lock(&wq->mutex);
3731 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3732 goto out_unlock;
3733
3734use_dfl_pwq:
f7142ed4 3735 mutex_lock(&wq->mutex);
4c16bd32
TH
3736 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3737 get_pwq(wq->dfl_pwq);
3738 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3739 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3740out_unlock:
3741 mutex_unlock(&wq->mutex);
3742 put_pwq_unlocked(old_pwq);
3743}
3744
30cdf249 3745static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3746{
49e3cf44 3747 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3748 int cpu, ret;
30cdf249
TH
3749
3750 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3751 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3752 if (!wq->cpu_pwqs)
30cdf249
TH
3753 return -ENOMEM;
3754
3755 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3756 struct pool_workqueue *pwq =
3757 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3758 struct worker_pool *cpu_pools =
f02ae73a 3759 per_cpu(cpu_worker_pools, cpu);
f3421797 3760
f147f29e
TH
3761 init_pwq(pwq, wq, &cpu_pools[highpri]);
3762
3763 mutex_lock(&wq->mutex);
1befcf30 3764 link_pwq(pwq);
f147f29e 3765 mutex_unlock(&wq->mutex);
30cdf249 3766 }
9e8cd2f5 3767 return 0;
8a2b7538
TH
3768 } else if (wq->flags & __WQ_ORDERED) {
3769 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3770 /* there should only be single pwq for ordering guarantee */
3771 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3772 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3773 "ordering guarantee broken for workqueue %s\n", wq->name);
3774 return ret;
30cdf249 3775 } else {
9e8cd2f5 3776 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3777 }
0f900049
TH
3778}
3779
f3421797
TH
3780static int wq_clamp_max_active(int max_active, unsigned int flags,
3781 const char *name)
b71ab8c2 3782{
f3421797
TH
3783 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3784
3785 if (max_active < 1 || max_active > lim)
044c782c
VI
3786 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3787 max_active, name, 1, lim);
b71ab8c2 3788
f3421797 3789 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3790}
3791
b196be89 3792struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3793 unsigned int flags,
3794 int max_active,
3795 struct lock_class_key *key,
b196be89 3796 const char *lock_name, ...)
1da177e4 3797{
df2d5ae4 3798 size_t tbl_size = 0;
ecf6881f 3799 va_list args;
1da177e4 3800 struct workqueue_struct *wq;
49e3cf44 3801 struct pool_workqueue *pwq;
b196be89 3802
cee22a15
VK
3803 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3804 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3805 flags |= WQ_UNBOUND;
3806
ecf6881f 3807 /* allocate wq and format name */
df2d5ae4 3808 if (flags & WQ_UNBOUND)
ddcb57e2 3809 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3810
3811 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3812 if (!wq)
d2c1d404 3813 return NULL;
b196be89 3814
6029a918
TH
3815 if (flags & WQ_UNBOUND) {
3816 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3817 if (!wq->unbound_attrs)
3818 goto err_free_wq;
3819 }
3820
ecf6881f
TH
3821 va_start(args, lock_name);
3822 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3823 va_end(args);
1da177e4 3824
d320c038 3825 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3826 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3827
b196be89 3828 /* init wq */
97e37d7b 3829 wq->flags = flags;
a0a1a5fd 3830 wq->saved_max_active = max_active;
3c25a55d 3831 mutex_init(&wq->mutex);
112202d9 3832 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3833 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3834 INIT_LIST_HEAD(&wq->flusher_queue);
3835 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3836 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3837
eb13ba87 3838 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3839 INIT_LIST_HEAD(&wq->list);
3af24433 3840
30cdf249 3841 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3842 goto err_free_wq;
1537663f 3843
493008a8
TH
3844 /*
3845 * Workqueues which may be used during memory reclaim should
3846 * have a rescuer to guarantee forward progress.
3847 */
3848 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3849 struct worker *rescuer;
3850
f7537df5 3851 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3852 if (!rescuer)
d2c1d404 3853 goto err_destroy;
e22bee78 3854
111c225a
TH
3855 rescuer->rescue_wq = wq;
3856 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3857 wq->name);
d2c1d404
TH
3858 if (IS_ERR(rescuer->task)) {
3859 kfree(rescuer);
3860 goto err_destroy;
3861 }
e22bee78 3862
d2c1d404 3863 wq->rescuer = rescuer;
14a40ffc 3864 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3865 wake_up_process(rescuer->task);
3af24433
ON
3866 }
3867
226223ab
TH
3868 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3869 goto err_destroy;
3870
a0a1a5fd 3871 /*
68e13a67
LJ
3872 * wq_pool_mutex protects global freeze state and workqueues list.
3873 * Grab it, adjust max_active and add the new @wq to workqueues
3874 * list.
a0a1a5fd 3875 */
68e13a67 3876 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3877
a357fc03 3878 mutex_lock(&wq->mutex);
699ce097
TH
3879 for_each_pwq(pwq, wq)
3880 pwq_adjust_max_active(pwq);
a357fc03 3881 mutex_unlock(&wq->mutex);
a0a1a5fd 3882
e2dca7ad 3883 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3884
68e13a67 3885 mutex_unlock(&wq_pool_mutex);
1537663f 3886
3af24433 3887 return wq;
d2c1d404
TH
3888
3889err_free_wq:
6029a918 3890 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3891 kfree(wq);
3892 return NULL;
3893err_destroy:
3894 destroy_workqueue(wq);
4690c4ab 3895 return NULL;
3af24433 3896}
d320c038 3897EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3898
3af24433
ON
3899/**
3900 * destroy_workqueue - safely terminate a workqueue
3901 * @wq: target workqueue
3902 *
3903 * Safely destroy a workqueue. All work currently pending will be done first.
3904 */
3905void destroy_workqueue(struct workqueue_struct *wq)
3906{
49e3cf44 3907 struct pool_workqueue *pwq;
4c16bd32 3908 int node;
3af24433 3909
9c5a2ba7
TH
3910 /* drain it before proceeding with destruction */
3911 drain_workqueue(wq);
c8efcc25 3912
6183c009 3913 /* sanity checks */
b09f4fd3 3914 mutex_lock(&wq->mutex);
49e3cf44 3915 for_each_pwq(pwq, wq) {
6183c009
TH
3916 int i;
3917
76af4d93
TH
3918 for (i = 0; i < WORK_NR_COLORS; i++) {
3919 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3920 mutex_unlock(&wq->mutex);
6183c009 3921 return;
76af4d93
TH
3922 }
3923 }
3924
5c529597 3925 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 3926 WARN_ON(pwq->nr_active) ||
76af4d93 3927 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3928 mutex_unlock(&wq->mutex);
6183c009 3929 return;
76af4d93 3930 }
6183c009 3931 }
b09f4fd3 3932 mutex_unlock(&wq->mutex);
6183c009 3933
a0a1a5fd
TH
3934 /*
3935 * wq list is used to freeze wq, remove from list after
3936 * flushing is complete in case freeze races us.
3937 */
68e13a67 3938 mutex_lock(&wq_pool_mutex);
e2dca7ad 3939 list_del_rcu(&wq->list);
68e13a67 3940 mutex_unlock(&wq_pool_mutex);
3af24433 3941
226223ab
TH
3942 workqueue_sysfs_unregister(wq);
3943
e2dca7ad 3944 if (wq->rescuer)
e22bee78 3945 kthread_stop(wq->rescuer->task);
e22bee78 3946
8864b4e5
TH
3947 if (!(wq->flags & WQ_UNBOUND)) {
3948 /*
3949 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 3950 * schedule RCU free.
8864b4e5 3951 */
e2dca7ad 3952 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
3953 } else {
3954 /*
3955 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
3956 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3957 * @wq will be freed when the last pwq is released.
8864b4e5 3958 */
4c16bd32
TH
3959 for_each_node(node) {
3960 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3961 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3962 put_pwq_unlocked(pwq);
3963 }
3964
3965 /*
3966 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
3967 * put. Don't access it afterwards.
3968 */
3969 pwq = wq->dfl_pwq;
3970 wq->dfl_pwq = NULL;
dce90d47 3971 put_pwq_unlocked(pwq);
29c91e99 3972 }
3af24433
ON
3973}
3974EXPORT_SYMBOL_GPL(destroy_workqueue);
3975
dcd989cb
TH
3976/**
3977 * workqueue_set_max_active - adjust max_active of a workqueue
3978 * @wq: target workqueue
3979 * @max_active: new max_active value.
3980 *
3981 * Set max_active of @wq to @max_active.
3982 *
3983 * CONTEXT:
3984 * Don't call from IRQ context.
3985 */
3986void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3987{
49e3cf44 3988 struct pool_workqueue *pwq;
dcd989cb 3989
8719dcea
TH
3990 /* disallow meddling with max_active for ordered workqueues */
3991 if (WARN_ON(wq->flags & __WQ_ORDERED))
3992 return;
3993
f3421797 3994 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3995
a357fc03 3996 mutex_lock(&wq->mutex);
dcd989cb
TH
3997
3998 wq->saved_max_active = max_active;
3999
699ce097
TH
4000 for_each_pwq(pwq, wq)
4001 pwq_adjust_max_active(pwq);
93981800 4002
a357fc03 4003 mutex_unlock(&wq->mutex);
15316ba8 4004}
dcd989cb 4005EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4006
e6267616
TH
4007/**
4008 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4009 *
4010 * Determine whether %current is a workqueue rescuer. Can be used from
4011 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4012 *
4013 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4014 */
4015bool current_is_workqueue_rescuer(void)
4016{
4017 struct worker *worker = current_wq_worker();
4018
6a092dfd 4019 return worker && worker->rescue_wq;
e6267616
TH
4020}
4021
eef6a7d5 4022/**
dcd989cb
TH
4023 * workqueue_congested - test whether a workqueue is congested
4024 * @cpu: CPU in question
4025 * @wq: target workqueue
eef6a7d5 4026 *
dcd989cb
TH
4027 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4028 * no synchronization around this function and the test result is
4029 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4030 *
d3251859
TH
4031 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4032 * Note that both per-cpu and unbound workqueues may be associated with
4033 * multiple pool_workqueues which have separate congested states. A
4034 * workqueue being congested on one CPU doesn't mean the workqueue is also
4035 * contested on other CPUs / NUMA nodes.
4036 *
d185af30 4037 * Return:
dcd989cb 4038 * %true if congested, %false otherwise.
eef6a7d5 4039 */
d84ff051 4040bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4041{
7fb98ea7 4042 struct pool_workqueue *pwq;
76af4d93
TH
4043 bool ret;
4044
88109453 4045 rcu_read_lock_sched();
7fb98ea7 4046
d3251859
TH
4047 if (cpu == WORK_CPU_UNBOUND)
4048 cpu = smp_processor_id();
4049
7fb98ea7
TH
4050 if (!(wq->flags & WQ_UNBOUND))
4051 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4052 else
df2d5ae4 4053 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4054
76af4d93 4055 ret = !list_empty(&pwq->delayed_works);
88109453 4056 rcu_read_unlock_sched();
76af4d93
TH
4057
4058 return ret;
1da177e4 4059}
dcd989cb 4060EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4061
dcd989cb
TH
4062/**
4063 * work_busy - test whether a work is currently pending or running
4064 * @work: the work to be tested
4065 *
4066 * Test whether @work is currently pending or running. There is no
4067 * synchronization around this function and the test result is
4068 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4069 *
d185af30 4070 * Return:
dcd989cb
TH
4071 * OR'd bitmask of WORK_BUSY_* bits.
4072 */
4073unsigned int work_busy(struct work_struct *work)
1da177e4 4074{
fa1b54e6 4075 struct worker_pool *pool;
dcd989cb
TH
4076 unsigned long flags;
4077 unsigned int ret = 0;
1da177e4 4078
dcd989cb
TH
4079 if (work_pending(work))
4080 ret |= WORK_BUSY_PENDING;
1da177e4 4081
fa1b54e6
TH
4082 local_irq_save(flags);
4083 pool = get_work_pool(work);
038366c5 4084 if (pool) {
fa1b54e6 4085 spin_lock(&pool->lock);
038366c5
LJ
4086 if (find_worker_executing_work(pool, work))
4087 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4088 spin_unlock(&pool->lock);
038366c5 4089 }
fa1b54e6 4090 local_irq_restore(flags);
1da177e4 4091
dcd989cb 4092 return ret;
1da177e4 4093}
dcd989cb 4094EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4095
3d1cb205
TH
4096/**
4097 * set_worker_desc - set description for the current work item
4098 * @fmt: printf-style format string
4099 * @...: arguments for the format string
4100 *
4101 * This function can be called by a running work function to describe what
4102 * the work item is about. If the worker task gets dumped, this
4103 * information will be printed out together to help debugging. The
4104 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4105 */
4106void set_worker_desc(const char *fmt, ...)
4107{
4108 struct worker *worker = current_wq_worker();
4109 va_list args;
4110
4111 if (worker) {
4112 va_start(args, fmt);
4113 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4114 va_end(args);
4115 worker->desc_valid = true;
4116 }
4117}
4118
4119/**
4120 * print_worker_info - print out worker information and description
4121 * @log_lvl: the log level to use when printing
4122 * @task: target task
4123 *
4124 * If @task is a worker and currently executing a work item, print out the
4125 * name of the workqueue being serviced and worker description set with
4126 * set_worker_desc() by the currently executing work item.
4127 *
4128 * This function can be safely called on any task as long as the
4129 * task_struct itself is accessible. While safe, this function isn't
4130 * synchronized and may print out mixups or garbages of limited length.
4131 */
4132void print_worker_info(const char *log_lvl, struct task_struct *task)
4133{
4134 work_func_t *fn = NULL;
4135 char name[WQ_NAME_LEN] = { };
4136 char desc[WORKER_DESC_LEN] = { };
4137 struct pool_workqueue *pwq = NULL;
4138 struct workqueue_struct *wq = NULL;
4139 bool desc_valid = false;
4140 struct worker *worker;
4141
4142 if (!(task->flags & PF_WQ_WORKER))
4143 return;
4144
4145 /*
4146 * This function is called without any synchronization and @task
4147 * could be in any state. Be careful with dereferences.
4148 */
4149 worker = probe_kthread_data(task);
4150
4151 /*
4152 * Carefully copy the associated workqueue's workfn and name. Keep
4153 * the original last '\0' in case the original contains garbage.
4154 */
4155 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4156 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4157 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4158 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4159
4160 /* copy worker description */
4161 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4162 if (desc_valid)
4163 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4164
4165 if (fn || name[0] || desc[0]) {
4166 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4167 if (desc[0])
4168 pr_cont(" (%s)", desc);
4169 pr_cont("\n");
4170 }
4171}
4172
3494fc30
TH
4173static void pr_cont_pool_info(struct worker_pool *pool)
4174{
4175 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4176 if (pool->node != NUMA_NO_NODE)
4177 pr_cont(" node=%d", pool->node);
4178 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4179}
4180
4181static void pr_cont_work(bool comma, struct work_struct *work)
4182{
4183 if (work->func == wq_barrier_func) {
4184 struct wq_barrier *barr;
4185
4186 barr = container_of(work, struct wq_barrier, work);
4187
4188 pr_cont("%s BAR(%d)", comma ? "," : "",
4189 task_pid_nr(barr->task));
4190 } else {
4191 pr_cont("%s %pf", comma ? "," : "", work->func);
4192 }
4193}
4194
4195static void show_pwq(struct pool_workqueue *pwq)
4196{
4197 struct worker_pool *pool = pwq->pool;
4198 struct work_struct *work;
4199 struct worker *worker;
4200 bool has_in_flight = false, has_pending = false;
4201 int bkt;
4202
4203 pr_info(" pwq %d:", pool->id);
4204 pr_cont_pool_info(pool);
4205
4206 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4207 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4208
4209 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4210 if (worker->current_pwq == pwq) {
4211 has_in_flight = true;
4212 break;
4213 }
4214 }
4215 if (has_in_flight) {
4216 bool comma = false;
4217
4218 pr_info(" in-flight:");
4219 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4220 if (worker->current_pwq != pwq)
4221 continue;
4222
4223 pr_cont("%s %d%s:%pf", comma ? "," : "",
4224 task_pid_nr(worker->task),
4225 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4226 worker->current_func);
4227 list_for_each_entry(work, &worker->scheduled, entry)
4228 pr_cont_work(false, work);
4229 comma = true;
4230 }
4231 pr_cont("\n");
4232 }
4233
4234 list_for_each_entry(work, &pool->worklist, entry) {
4235 if (get_work_pwq(work) == pwq) {
4236 has_pending = true;
4237 break;
4238 }
4239 }
4240 if (has_pending) {
4241 bool comma = false;
4242
4243 pr_info(" pending:");
4244 list_for_each_entry(work, &pool->worklist, entry) {
4245 if (get_work_pwq(work) != pwq)
4246 continue;
4247
4248 pr_cont_work(comma, work);
4249 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4250 }
4251 pr_cont("\n");
4252 }
4253
4254 if (!list_empty(&pwq->delayed_works)) {
4255 bool comma = false;
4256
4257 pr_info(" delayed:");
4258 list_for_each_entry(work, &pwq->delayed_works, entry) {
4259 pr_cont_work(comma, work);
4260 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4261 }
4262 pr_cont("\n");
4263 }
4264}
4265
4266/**
4267 * show_workqueue_state - dump workqueue state
4268 *
4269 * Called from a sysrq handler and prints out all busy workqueues and
4270 * pools.
4271 */
4272void show_workqueue_state(void)
4273{
4274 struct workqueue_struct *wq;
4275 struct worker_pool *pool;
4276 unsigned long flags;
4277 int pi;
4278
4279 rcu_read_lock_sched();
4280
4281 pr_info("Showing busy workqueues and worker pools:\n");
4282
4283 list_for_each_entry_rcu(wq, &workqueues, list) {
4284 struct pool_workqueue *pwq;
4285 bool idle = true;
4286
4287 for_each_pwq(pwq, wq) {
4288 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4289 idle = false;
4290 break;
4291 }
4292 }
4293 if (idle)
4294 continue;
4295
4296 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4297
4298 for_each_pwq(pwq, wq) {
4299 spin_lock_irqsave(&pwq->pool->lock, flags);
4300 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4301 show_pwq(pwq);
4302 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4303 }
4304 }
4305
4306 for_each_pool(pool, pi) {
4307 struct worker *worker;
4308 bool first = true;
4309
4310 spin_lock_irqsave(&pool->lock, flags);
4311 if (pool->nr_workers == pool->nr_idle)
4312 goto next_pool;
4313
4314 pr_info("pool %d:", pool->id);
4315 pr_cont_pool_info(pool);
4316 pr_cont(" workers=%d", pool->nr_workers);
4317 if (pool->manager)
4318 pr_cont(" manager: %d",
4319 task_pid_nr(pool->manager->task));
4320 list_for_each_entry(worker, &pool->idle_list, entry) {
4321 pr_cont(" %s%d", first ? "idle: " : "",
4322 task_pid_nr(worker->task));
4323 first = false;
4324 }
4325 pr_cont("\n");
4326 next_pool:
4327 spin_unlock_irqrestore(&pool->lock, flags);
4328 }
4329
4330 rcu_read_unlock_sched();
4331}
4332
db7bccf4
TH
4333/*
4334 * CPU hotplug.
4335 *
e22bee78 4336 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4337 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4338 * pool which make migrating pending and scheduled works very
e22bee78 4339 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4340 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4341 * blocked draining impractical.
4342 *
24647570 4343 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4344 * running as an unbound one and allowing it to be reattached later if the
4345 * cpu comes back online.
db7bccf4 4346 */
1da177e4 4347
706026c2 4348static void wq_unbind_fn(struct work_struct *work)
3af24433 4349{
38db41d9 4350 int cpu = smp_processor_id();
4ce62e9e 4351 struct worker_pool *pool;
db7bccf4 4352 struct worker *worker;
3af24433 4353
f02ae73a 4354 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4355 mutex_lock(&pool->attach_mutex);
94cf58bb 4356 spin_lock_irq(&pool->lock);
3af24433 4357
94cf58bb 4358 /*
92f9c5c4 4359 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4360 * unbound and set DISASSOCIATED. Before this, all workers
4361 * except for the ones which are still executing works from
4362 * before the last CPU down must be on the cpu. After
4363 * this, they may become diasporas.
4364 */
da028469 4365 for_each_pool_worker(worker, pool)
c9e7cf27 4366 worker->flags |= WORKER_UNBOUND;
06ba38a9 4367
24647570 4368 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4369
94cf58bb 4370 spin_unlock_irq(&pool->lock);
92f9c5c4 4371 mutex_unlock(&pool->attach_mutex);
628c78e7 4372
eb283428
LJ
4373 /*
4374 * Call schedule() so that we cross rq->lock and thus can
4375 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4376 * This is necessary as scheduler callbacks may be invoked
4377 * from other cpus.
4378 */
4379 schedule();
06ba38a9 4380
eb283428
LJ
4381 /*
4382 * Sched callbacks are disabled now. Zap nr_running.
4383 * After this, nr_running stays zero and need_more_worker()
4384 * and keep_working() are always true as long as the
4385 * worklist is not empty. This pool now behaves as an
4386 * unbound (in terms of concurrency management) pool which
4387 * are served by workers tied to the pool.
4388 */
e19e397a 4389 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4390
4391 /*
4392 * With concurrency management just turned off, a busy
4393 * worker blocking could lead to lengthy stalls. Kick off
4394 * unbound chain execution of currently pending work items.
4395 */
4396 spin_lock_irq(&pool->lock);
4397 wake_up_worker(pool);
4398 spin_unlock_irq(&pool->lock);
4399 }
3af24433 4400}
3af24433 4401
bd7c089e
TH
4402/**
4403 * rebind_workers - rebind all workers of a pool to the associated CPU
4404 * @pool: pool of interest
4405 *
a9ab775b 4406 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4407 */
4408static void rebind_workers(struct worker_pool *pool)
4409{
a9ab775b 4410 struct worker *worker;
bd7c089e 4411
92f9c5c4 4412 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4413
a9ab775b
TH
4414 /*
4415 * Restore CPU affinity of all workers. As all idle workers should
4416 * be on the run-queue of the associated CPU before any local
4417 * wake-ups for concurrency management happen, restore CPU affinty
4418 * of all workers first and then clear UNBOUND. As we're called
4419 * from CPU_ONLINE, the following shouldn't fail.
4420 */
da028469 4421 for_each_pool_worker(worker, pool)
a9ab775b
TH
4422 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4423 pool->attrs->cpumask) < 0);
bd7c089e 4424
a9ab775b 4425 spin_lock_irq(&pool->lock);
3de5e884 4426 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4427
da028469 4428 for_each_pool_worker(worker, pool) {
a9ab775b 4429 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4430
4431 /*
a9ab775b
TH
4432 * A bound idle worker should actually be on the runqueue
4433 * of the associated CPU for local wake-ups targeting it to
4434 * work. Kick all idle workers so that they migrate to the
4435 * associated CPU. Doing this in the same loop as
4436 * replacing UNBOUND with REBOUND is safe as no worker will
4437 * be bound before @pool->lock is released.
bd7c089e 4438 */
a9ab775b
TH
4439 if (worker_flags & WORKER_IDLE)
4440 wake_up_process(worker->task);
bd7c089e 4441
a9ab775b
TH
4442 /*
4443 * We want to clear UNBOUND but can't directly call
4444 * worker_clr_flags() or adjust nr_running. Atomically
4445 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4446 * @worker will clear REBOUND using worker_clr_flags() when
4447 * it initiates the next execution cycle thus restoring
4448 * concurrency management. Note that when or whether
4449 * @worker clears REBOUND doesn't affect correctness.
4450 *
4451 * ACCESS_ONCE() is necessary because @worker->flags may be
4452 * tested without holding any lock in
4453 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4454 * fail incorrectly leading to premature concurrency
4455 * management operations.
4456 */
4457 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4458 worker_flags |= WORKER_REBOUND;
4459 worker_flags &= ~WORKER_UNBOUND;
4460 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4461 }
a9ab775b
TH
4462
4463 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4464}
4465
7dbc725e
TH
4466/**
4467 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4468 * @pool: unbound pool of interest
4469 * @cpu: the CPU which is coming up
4470 *
4471 * An unbound pool may end up with a cpumask which doesn't have any online
4472 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4473 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4474 * online CPU before, cpus_allowed of all its workers should be restored.
4475 */
4476static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4477{
4478 static cpumask_t cpumask;
4479 struct worker *worker;
7dbc725e 4480
92f9c5c4 4481 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4482
4483 /* is @cpu allowed for @pool? */
4484 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4485 return;
4486
4487 /* is @cpu the only online CPU? */
4488 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4489 if (cpumask_weight(&cpumask) != 1)
4490 return;
4491
4492 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4493 for_each_pool_worker(worker, pool)
7dbc725e
TH
4494 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4495 pool->attrs->cpumask) < 0);
4496}
4497
8db25e78
TH
4498/*
4499 * Workqueues should be brought up before normal priority CPU notifiers.
4500 * This will be registered high priority CPU notifier.
4501 */
0db0628d 4502static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4503 unsigned long action,
4504 void *hcpu)
3af24433 4505{
d84ff051 4506 int cpu = (unsigned long)hcpu;
4ce62e9e 4507 struct worker_pool *pool;
4c16bd32 4508 struct workqueue_struct *wq;
7dbc725e 4509 int pi;
3ce63377 4510
8db25e78 4511 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4512 case CPU_UP_PREPARE:
f02ae73a 4513 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4514 if (pool->nr_workers)
4515 continue;
051e1850 4516 if (!create_worker(pool))
3ce63377 4517 return NOTIFY_BAD;
3af24433 4518 }
8db25e78 4519 break;
3af24433 4520
db7bccf4
TH
4521 case CPU_DOWN_FAILED:
4522 case CPU_ONLINE:
68e13a67 4523 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4524
4525 for_each_pool(pool, pi) {
92f9c5c4 4526 mutex_lock(&pool->attach_mutex);
94cf58bb 4527
f05b558d 4528 if (pool->cpu == cpu)
7dbc725e 4529 rebind_workers(pool);
f05b558d 4530 else if (pool->cpu < 0)
7dbc725e 4531 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4532
6ba94429
FW
4533 mutex_unlock(&pool->attach_mutex);
4534 }
4535
4536 /* update NUMA affinity of unbound workqueues */
4537 list_for_each_entry(wq, &workqueues, list)
4538 wq_update_unbound_numa(wq, cpu, true);
4539
4540 mutex_unlock(&wq_pool_mutex);
4541 break;
4542 }
4543 return NOTIFY_OK;
4544}
4545
4546/*
4547 * Workqueues should be brought down after normal priority CPU notifiers.
4548 * This will be registered as low priority CPU notifier.
4549 */
4550static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4551 unsigned long action,
4552 void *hcpu)
4553{
4554 int cpu = (unsigned long)hcpu;
4555 struct work_struct unbind_work;
4556 struct workqueue_struct *wq;
4557
4558 switch (action & ~CPU_TASKS_FROZEN) {
4559 case CPU_DOWN_PREPARE:
4560 /* unbinding per-cpu workers should happen on the local CPU */
4561 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4562 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4563
4564 /* update NUMA affinity of unbound workqueues */
4565 mutex_lock(&wq_pool_mutex);
4566 list_for_each_entry(wq, &workqueues, list)
4567 wq_update_unbound_numa(wq, cpu, false);
4568 mutex_unlock(&wq_pool_mutex);
4569
4570 /* wait for per-cpu unbinding to finish */
4571 flush_work(&unbind_work);
4572 destroy_work_on_stack(&unbind_work);
4573 break;
4574 }
4575 return NOTIFY_OK;
4576}
4577
4578#ifdef CONFIG_SMP
4579
4580struct work_for_cpu {
4581 struct work_struct work;
4582 long (*fn)(void *);
4583 void *arg;
4584 long ret;
4585};
4586
4587static void work_for_cpu_fn(struct work_struct *work)
4588{
4589 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4590
4591 wfc->ret = wfc->fn(wfc->arg);
4592}
4593
4594/**
4595 * work_on_cpu - run a function in user context on a particular cpu
4596 * @cpu: the cpu to run on
4597 * @fn: the function to run
4598 * @arg: the function arg
4599 *
4600 * It is up to the caller to ensure that the cpu doesn't go offline.
4601 * The caller must not hold any locks which would prevent @fn from completing.
4602 *
4603 * Return: The value @fn returns.
4604 */
4605long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4606{
4607 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4608
4609 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4610 schedule_work_on(cpu, &wfc.work);
4611 flush_work(&wfc.work);
4612 destroy_work_on_stack(&wfc.work);
4613 return wfc.ret;
4614}
4615EXPORT_SYMBOL_GPL(work_on_cpu);
4616#endif /* CONFIG_SMP */
4617
4618#ifdef CONFIG_FREEZER
4619
4620/**
4621 * freeze_workqueues_begin - begin freezing workqueues
4622 *
4623 * Start freezing workqueues. After this function returns, all freezable
4624 * workqueues will queue new works to their delayed_works list instead of
4625 * pool->worklist.
4626 *
4627 * CONTEXT:
4628 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4629 */
4630void freeze_workqueues_begin(void)
4631{
4632 struct workqueue_struct *wq;
4633 struct pool_workqueue *pwq;
4634
4635 mutex_lock(&wq_pool_mutex);
4636
4637 WARN_ON_ONCE(workqueue_freezing);
4638 workqueue_freezing = true;
4639
4640 list_for_each_entry(wq, &workqueues, list) {
4641 mutex_lock(&wq->mutex);
4642 for_each_pwq(pwq, wq)
4643 pwq_adjust_max_active(pwq);
4644 mutex_unlock(&wq->mutex);
4645 }
4646
4647 mutex_unlock(&wq_pool_mutex);
4648}
4649
4650/**
4651 * freeze_workqueues_busy - are freezable workqueues still busy?
4652 *
4653 * Check whether freezing is complete. This function must be called
4654 * between freeze_workqueues_begin() and thaw_workqueues().
4655 *
4656 * CONTEXT:
4657 * Grabs and releases wq_pool_mutex.
4658 *
4659 * Return:
4660 * %true if some freezable workqueues are still busy. %false if freezing
4661 * is complete.
4662 */
4663bool freeze_workqueues_busy(void)
4664{
4665 bool busy = false;
4666 struct workqueue_struct *wq;
4667 struct pool_workqueue *pwq;
4668
4669 mutex_lock(&wq_pool_mutex);
4670
4671 WARN_ON_ONCE(!workqueue_freezing);
4672
4673 list_for_each_entry(wq, &workqueues, list) {
4674 if (!(wq->flags & WQ_FREEZABLE))
4675 continue;
4676 /*
4677 * nr_active is monotonically decreasing. It's safe
4678 * to peek without lock.
4679 */
4680 rcu_read_lock_sched();
4681 for_each_pwq(pwq, wq) {
4682 WARN_ON_ONCE(pwq->nr_active < 0);
4683 if (pwq->nr_active) {
4684 busy = true;
4685 rcu_read_unlock_sched();
4686 goto out_unlock;
4687 }
4688 }
4689 rcu_read_unlock_sched();
4690 }
4691out_unlock:
4692 mutex_unlock(&wq_pool_mutex);
4693 return busy;
4694}
4695
4696/**
4697 * thaw_workqueues - thaw workqueues
4698 *
4699 * Thaw workqueues. Normal queueing is restored and all collected
4700 * frozen works are transferred to their respective pool worklists.
4701 *
4702 * CONTEXT:
4703 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4704 */
4705void thaw_workqueues(void)
4706{
4707 struct workqueue_struct *wq;
4708 struct pool_workqueue *pwq;
4709
4710 mutex_lock(&wq_pool_mutex);
4711
4712 if (!workqueue_freezing)
4713 goto out_unlock;
4714
4715 workqueue_freezing = false;
4716
4717 /* restore max_active and repopulate worklist */
4718 list_for_each_entry(wq, &workqueues, list) {
4719 mutex_lock(&wq->mutex);
4720 for_each_pwq(pwq, wq)
4721 pwq_adjust_max_active(pwq);
4722 mutex_unlock(&wq->mutex);
4723 }
4724
4725out_unlock:
4726 mutex_unlock(&wq_pool_mutex);
4727}
4728#endif /* CONFIG_FREEZER */
4729
042f7df1
LJ
4730static int workqueue_apply_unbound_cpumask(void)
4731{
4732 LIST_HEAD(ctxs);
4733 int ret = 0;
4734 struct workqueue_struct *wq;
4735 struct apply_wqattrs_ctx *ctx, *n;
4736
4737 lockdep_assert_held(&wq_pool_mutex);
4738
4739 list_for_each_entry(wq, &workqueues, list) {
4740 if (!(wq->flags & WQ_UNBOUND))
4741 continue;
4742 /* creating multiple pwqs breaks ordering guarantee */
4743 if (wq->flags & __WQ_ORDERED)
4744 continue;
4745
4746 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4747 if (!ctx) {
4748 ret = -ENOMEM;
4749 break;
4750 }
4751
4752 list_add_tail(&ctx->list, &ctxs);
4753 }
4754
4755 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4756 if (!ret)
4757 apply_wqattrs_commit(ctx);
4758 apply_wqattrs_cleanup(ctx);
4759 }
4760
4761 return ret;
4762}
4763
4764/**
4765 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4766 * @cpumask: the cpumask to set
4767 *
4768 * The low-level workqueues cpumask is a global cpumask that limits
4769 * the affinity of all unbound workqueues. This function check the @cpumask
4770 * and apply it to all unbound workqueues and updates all pwqs of them.
4771 *
4772 * Retun: 0 - Success
4773 * -EINVAL - Invalid @cpumask
4774 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4775 */
4776int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4777{
4778 int ret = -EINVAL;
4779 cpumask_var_t saved_cpumask;
4780
4781 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4782 return -ENOMEM;
4783
042f7df1
LJ
4784 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4785 if (!cpumask_empty(cpumask)) {
a0111cf6 4786 apply_wqattrs_lock();
042f7df1
LJ
4787
4788 /* save the old wq_unbound_cpumask. */
4789 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4790
4791 /* update wq_unbound_cpumask at first and apply it to wqs. */
4792 cpumask_copy(wq_unbound_cpumask, cpumask);
4793 ret = workqueue_apply_unbound_cpumask();
4794
4795 /* restore the wq_unbound_cpumask when failed. */
4796 if (ret < 0)
4797 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4798
a0111cf6 4799 apply_wqattrs_unlock();
042f7df1 4800 }
042f7df1
LJ
4801
4802 free_cpumask_var(saved_cpumask);
4803 return ret;
4804}
4805
6ba94429
FW
4806#ifdef CONFIG_SYSFS
4807/*
4808 * Workqueues with WQ_SYSFS flag set is visible to userland via
4809 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4810 * following attributes.
4811 *
4812 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4813 * max_active RW int : maximum number of in-flight work items
4814 *
4815 * Unbound workqueues have the following extra attributes.
4816 *
4817 * id RO int : the associated pool ID
4818 * nice RW int : nice value of the workers
4819 * cpumask RW mask : bitmask of allowed CPUs for the workers
4820 */
4821struct wq_device {
4822 struct workqueue_struct *wq;
4823 struct device dev;
4824};
4825
4826static struct workqueue_struct *dev_to_wq(struct device *dev)
4827{
4828 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4829
4830 return wq_dev->wq;
4831}
4832
4833static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4834 char *buf)
4835{
4836 struct workqueue_struct *wq = dev_to_wq(dev);
4837
4838 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4839}
4840static DEVICE_ATTR_RO(per_cpu);
4841
4842static ssize_t max_active_show(struct device *dev,
4843 struct device_attribute *attr, char *buf)
4844{
4845 struct workqueue_struct *wq = dev_to_wq(dev);
4846
4847 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4848}
4849
4850static ssize_t max_active_store(struct device *dev,
4851 struct device_attribute *attr, const char *buf,
4852 size_t count)
4853{
4854 struct workqueue_struct *wq = dev_to_wq(dev);
4855 int val;
4856
4857 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4858 return -EINVAL;
4859
4860 workqueue_set_max_active(wq, val);
4861 return count;
4862}
4863static DEVICE_ATTR_RW(max_active);
4864
4865static struct attribute *wq_sysfs_attrs[] = {
4866 &dev_attr_per_cpu.attr,
4867 &dev_attr_max_active.attr,
4868 NULL,
4869};
4870ATTRIBUTE_GROUPS(wq_sysfs);
4871
4872static ssize_t wq_pool_ids_show(struct device *dev,
4873 struct device_attribute *attr, char *buf)
4874{
4875 struct workqueue_struct *wq = dev_to_wq(dev);
4876 const char *delim = "";
4877 int node, written = 0;
4878
4879 rcu_read_lock_sched();
4880 for_each_node(node) {
4881 written += scnprintf(buf + written, PAGE_SIZE - written,
4882 "%s%d:%d", delim, node,
4883 unbound_pwq_by_node(wq, node)->pool->id);
4884 delim = " ";
4885 }
4886 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4887 rcu_read_unlock_sched();
4888
4889 return written;
4890}
4891
4892static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4893 char *buf)
4894{
4895 struct workqueue_struct *wq = dev_to_wq(dev);
4896 int written;
4897
4898 mutex_lock(&wq->mutex);
4899 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4900 mutex_unlock(&wq->mutex);
4901
4902 return written;
4903}
4904
4905/* prepare workqueue_attrs for sysfs store operations */
4906static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4907{
4908 struct workqueue_attrs *attrs;
4909
899a94fe
LJ
4910 lockdep_assert_held(&wq_pool_mutex);
4911
6ba94429
FW
4912 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4913 if (!attrs)
4914 return NULL;
4915
6ba94429 4916 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
4917 return attrs;
4918}
4919
4920static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4921 const char *buf, size_t count)
4922{
4923 struct workqueue_struct *wq = dev_to_wq(dev);
4924 struct workqueue_attrs *attrs;
d4d3e257
LJ
4925 int ret = -ENOMEM;
4926
4927 apply_wqattrs_lock();
6ba94429
FW
4928
4929 attrs = wq_sysfs_prep_attrs(wq);
4930 if (!attrs)
d4d3e257 4931 goto out_unlock;
6ba94429
FW
4932
4933 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4934 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 4935 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
4936 else
4937 ret = -EINVAL;
4938
d4d3e257
LJ
4939out_unlock:
4940 apply_wqattrs_unlock();
6ba94429
FW
4941 free_workqueue_attrs(attrs);
4942 return ret ?: count;
4943}
4944
4945static ssize_t wq_cpumask_show(struct device *dev,
4946 struct device_attribute *attr, char *buf)
4947{
4948 struct workqueue_struct *wq = dev_to_wq(dev);
4949 int written;
4950
4951 mutex_lock(&wq->mutex);
4952 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4953 cpumask_pr_args(wq->unbound_attrs->cpumask));
4954 mutex_unlock(&wq->mutex);
4955 return written;
4956}
4957
4958static ssize_t wq_cpumask_store(struct device *dev,
4959 struct device_attribute *attr,
4960 const char *buf, size_t count)
4961{
4962 struct workqueue_struct *wq = dev_to_wq(dev);
4963 struct workqueue_attrs *attrs;
d4d3e257
LJ
4964 int ret = -ENOMEM;
4965
4966 apply_wqattrs_lock();
6ba94429
FW
4967
4968 attrs = wq_sysfs_prep_attrs(wq);
4969 if (!attrs)
d4d3e257 4970 goto out_unlock;
6ba94429
FW
4971
4972 ret = cpumask_parse(buf, attrs->cpumask);
4973 if (!ret)
d4d3e257 4974 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 4975
d4d3e257
LJ
4976out_unlock:
4977 apply_wqattrs_unlock();
6ba94429
FW
4978 free_workqueue_attrs(attrs);
4979 return ret ?: count;
4980}
4981
4982static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
4983 char *buf)
4984{
4985 struct workqueue_struct *wq = dev_to_wq(dev);
4986 int written;
7dbc725e 4987
6ba94429
FW
4988 mutex_lock(&wq->mutex);
4989 written = scnprintf(buf, PAGE_SIZE, "%d\n",
4990 !wq->unbound_attrs->no_numa);
4991 mutex_unlock(&wq->mutex);
4c16bd32 4992
6ba94429 4993 return written;
65758202
TH
4994}
4995
6ba94429
FW
4996static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
4997 const char *buf, size_t count)
65758202 4998{
6ba94429
FW
4999 struct workqueue_struct *wq = dev_to_wq(dev);
5000 struct workqueue_attrs *attrs;
d4d3e257
LJ
5001 int v, ret = -ENOMEM;
5002
5003 apply_wqattrs_lock();
4c16bd32 5004
6ba94429
FW
5005 attrs = wq_sysfs_prep_attrs(wq);
5006 if (!attrs)
d4d3e257 5007 goto out_unlock;
4c16bd32 5008
6ba94429
FW
5009 ret = -EINVAL;
5010 if (sscanf(buf, "%d", &v) == 1) {
5011 attrs->no_numa = !v;
d4d3e257 5012 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5013 }
6ba94429 5014
d4d3e257
LJ
5015out_unlock:
5016 apply_wqattrs_unlock();
6ba94429
FW
5017 free_workqueue_attrs(attrs);
5018 return ret ?: count;
65758202
TH
5019}
5020
6ba94429
FW
5021static struct device_attribute wq_sysfs_unbound_attrs[] = {
5022 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5023 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5024 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5025 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5026 __ATTR_NULL,
5027};
8ccad40d 5028
6ba94429
FW
5029static struct bus_type wq_subsys = {
5030 .name = "workqueue",
5031 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5032};
5033
b05a7928
FW
5034static ssize_t wq_unbound_cpumask_show(struct device *dev,
5035 struct device_attribute *attr, char *buf)
5036{
5037 int written;
5038
042f7df1 5039 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5040 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5041 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5042 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5043
5044 return written;
5045}
5046
042f7df1
LJ
5047static ssize_t wq_unbound_cpumask_store(struct device *dev,
5048 struct device_attribute *attr, const char *buf, size_t count)
5049{
5050 cpumask_var_t cpumask;
5051 int ret;
5052
5053 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5054 return -ENOMEM;
5055
5056 ret = cpumask_parse(buf, cpumask);
5057 if (!ret)
5058 ret = workqueue_set_unbound_cpumask(cpumask);
5059
5060 free_cpumask_var(cpumask);
5061 return ret ? ret : count;
5062}
5063
b05a7928 5064static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5065 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5066 wq_unbound_cpumask_store);
b05a7928 5067
6ba94429 5068static int __init wq_sysfs_init(void)
2d3854a3 5069{
b05a7928
FW
5070 int err;
5071
5072 err = subsys_virtual_register(&wq_subsys, NULL);
5073 if (err)
5074 return err;
5075
5076 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5077}
6ba94429 5078core_initcall(wq_sysfs_init);
2d3854a3 5079
6ba94429 5080static void wq_device_release(struct device *dev)
2d3854a3 5081{
6ba94429 5082 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5083
6ba94429 5084 kfree(wq_dev);
2d3854a3 5085}
a0a1a5fd
TH
5086
5087/**
6ba94429
FW
5088 * workqueue_sysfs_register - make a workqueue visible in sysfs
5089 * @wq: the workqueue to register
a0a1a5fd 5090 *
6ba94429
FW
5091 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5092 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5093 * which is the preferred method.
a0a1a5fd 5094 *
6ba94429
FW
5095 * Workqueue user should use this function directly iff it wants to apply
5096 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5097 * apply_workqueue_attrs() may race against userland updating the
5098 * attributes.
5099 *
5100 * Return: 0 on success, -errno on failure.
a0a1a5fd 5101 */
6ba94429 5102int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5103{
6ba94429
FW
5104 struct wq_device *wq_dev;
5105 int ret;
a0a1a5fd 5106
6ba94429
FW
5107 /*
5108 * Adjusting max_active or creating new pwqs by applyting
5109 * attributes breaks ordering guarantee. Disallow exposing ordered
5110 * workqueues.
5111 */
5112 if (WARN_ON(wq->flags & __WQ_ORDERED))
5113 return -EINVAL;
a0a1a5fd 5114
6ba94429
FW
5115 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5116 if (!wq_dev)
5117 return -ENOMEM;
5bcab335 5118
6ba94429
FW
5119 wq_dev->wq = wq;
5120 wq_dev->dev.bus = &wq_subsys;
5121 wq_dev->dev.init_name = wq->name;
5122 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5123
6ba94429
FW
5124 /*
5125 * unbound_attrs are created separately. Suppress uevent until
5126 * everything is ready.
5127 */
5128 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5129
6ba94429
FW
5130 ret = device_register(&wq_dev->dev);
5131 if (ret) {
5132 kfree(wq_dev);
5133 wq->wq_dev = NULL;
5134 return ret;
5135 }
a0a1a5fd 5136
6ba94429
FW
5137 if (wq->flags & WQ_UNBOUND) {
5138 struct device_attribute *attr;
a0a1a5fd 5139
6ba94429
FW
5140 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5141 ret = device_create_file(&wq_dev->dev, attr);
5142 if (ret) {
5143 device_unregister(&wq_dev->dev);
5144 wq->wq_dev = NULL;
5145 return ret;
a0a1a5fd
TH
5146 }
5147 }
5148 }
6ba94429
FW
5149
5150 dev_set_uevent_suppress(&wq_dev->dev, false);
5151 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5152 return 0;
a0a1a5fd
TH
5153}
5154
5155/**
6ba94429
FW
5156 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5157 * @wq: the workqueue to unregister
a0a1a5fd 5158 *
6ba94429 5159 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5160 */
6ba94429 5161static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5162{
6ba94429 5163 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5164
6ba94429
FW
5165 if (!wq->wq_dev)
5166 return;
a0a1a5fd 5167
6ba94429
FW
5168 wq->wq_dev = NULL;
5169 device_unregister(&wq_dev->dev);
a0a1a5fd 5170}
6ba94429
FW
5171#else /* CONFIG_SYSFS */
5172static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5173#endif /* CONFIG_SYSFS */
a0a1a5fd 5174
bce90380
TH
5175static void __init wq_numa_init(void)
5176{
5177 cpumask_var_t *tbl;
5178 int node, cpu;
5179
bce90380
TH
5180 if (num_possible_nodes() <= 1)
5181 return;
5182
d55262c4
TH
5183 if (wq_disable_numa) {
5184 pr_info("workqueue: NUMA affinity support disabled\n");
5185 return;
5186 }
5187
4c16bd32
TH
5188 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5189 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5190
bce90380
TH
5191 /*
5192 * We want masks of possible CPUs of each node which isn't readily
5193 * available. Build one from cpu_to_node() which should have been
5194 * fully initialized by now.
5195 */
ddcb57e2 5196 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5197 BUG_ON(!tbl);
5198
5199 for_each_node(node)
5a6024f1 5200 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5201 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5202
5203 for_each_possible_cpu(cpu) {
5204 node = cpu_to_node(cpu);
5205 if (WARN_ON(node == NUMA_NO_NODE)) {
5206 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5207 /* happens iff arch is bonkers, let's just proceed */
5208 return;
5209 }
5210 cpumask_set_cpu(cpu, tbl[node]);
5211 }
5212
5213 wq_numa_possible_cpumask = tbl;
5214 wq_numa_enabled = true;
5215}
5216
6ee0578b 5217static int __init init_workqueues(void)
1da177e4 5218{
7a4e344c
TH
5219 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5220 int i, cpu;
c34056a3 5221
e904e6c2
TH
5222 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5223
b05a7928
FW
5224 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5225 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5226
e904e6c2
TH
5227 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5228
65758202 5229 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5230 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5231
bce90380
TH
5232 wq_numa_init();
5233
706026c2 5234 /* initialize CPU pools */
29c91e99 5235 for_each_possible_cpu(cpu) {
4ce62e9e 5236 struct worker_pool *pool;
8b03ae3c 5237
7a4e344c 5238 i = 0;
f02ae73a 5239 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5240 BUG_ON(init_worker_pool(pool));
ec22ca5e 5241 pool->cpu = cpu;
29c91e99 5242 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5243 pool->attrs->nice = std_nice[i++];
f3f90ad4 5244 pool->node = cpu_to_node(cpu);
7a4e344c 5245
9daf9e67 5246 /* alloc pool ID */
68e13a67 5247 mutex_lock(&wq_pool_mutex);
9daf9e67 5248 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5249 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5250 }
8b03ae3c
TH
5251 }
5252
e22bee78 5253 /* create the initial worker */
29c91e99 5254 for_each_online_cpu(cpu) {
4ce62e9e 5255 struct worker_pool *pool;
e22bee78 5256
f02ae73a 5257 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5258 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5259 BUG_ON(!create_worker(pool));
4ce62e9e 5260 }
e22bee78
TH
5261 }
5262
8a2b7538 5263 /* create default unbound and ordered wq attrs */
29c91e99
TH
5264 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5265 struct workqueue_attrs *attrs;
5266
5267 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5268 attrs->nice = std_nice[i];
29c91e99 5269 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5270
5271 /*
5272 * An ordered wq should have only one pwq as ordering is
5273 * guaranteed by max_active which is enforced by pwqs.
5274 * Turn off NUMA so that dfl_pwq is used for all nodes.
5275 */
5276 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5277 attrs->nice = std_nice[i];
5278 attrs->no_numa = true;
5279 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5280 }
5281
d320c038 5282 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5283 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5284 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5285 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5286 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5287 system_freezable_wq = alloc_workqueue("events_freezable",
5288 WQ_FREEZABLE, 0);
0668106c
VK
5289 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5290 WQ_POWER_EFFICIENT, 0);
5291 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5292 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5293 0);
1aabe902 5294 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5295 !system_unbound_wq || !system_freezable_wq ||
5296 !system_power_efficient_wq ||
5297 !system_freezable_power_efficient_wq);
6ee0578b 5298 return 0;
1da177e4 5299}
6ee0578b 5300early_initcall(init_workqueues);
This page took 1.258032 seconds and 5 git commands to generate.