workqueue: remove @delayed from cwq_dec_nr_in_flight()
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
b2eb83d1 61 * assoc_mutex of all pools on the gcwq to avoid changing binding
bc2ae0f5
TH
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
1da177e4 128
e22bee78
TH
129/*
130 * The poor guys doing the actual heavy lifting. All on-duty workers
131 * are either serving the manager role, on idle list or on busy hash.
132 */
c34056a3 133struct worker {
c8e55f36
TH
134 /* on idle list while idle, on busy hash table while busy */
135 union {
136 struct list_head entry; /* L: while idle */
137 struct hlist_node hentry; /* L: while busy */
138 };
1da177e4 139
c34056a3 140 struct work_struct *current_work; /* L: work being processed */
8cca0eea 141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 142 struct list_head scheduled; /* L: scheduled works */
c34056a3 143 struct task_struct *task; /* I: worker task */
bd7bdd43 144 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
145 /* 64 bytes boundary on 64bit, 32 on 32bit */
146 unsigned long last_active; /* L: last active timestamp */
147 unsigned int flags; /* X: flags */
c34056a3 148 int id; /* I: worker id */
25511a47
TH
149
150 /* for rebinding worker to CPU */
25511a47 151 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
152};
153
bd7bdd43
TH
154struct worker_pool {
155 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 156 unsigned int flags; /* X: flags */
bd7bdd43
TH
157
158 struct list_head worklist; /* L: list of pending works */
159 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
160
161 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
b2eb83d1 168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
8b03ae3c
TH
188} ____cacheline_aligned_in_smp;
189
1da177e4 190/*
502ca9d8 191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
192 * work_struct->data are used for flags and thus cwqs need to be
193 * aligned at two's power of the number of flag bits.
1da177e4
LT
194 */
195struct cpu_workqueue_struct {
bd7bdd43 196 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 197 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
198 int work_color; /* L: current color */
199 int flush_color; /* L: flushing color */
200 int nr_in_flight[WORK_NR_COLORS];
201 /* L: nr of in_flight works */
1e19ffc6 202 int nr_active; /* L: nr of active works */
a0a1a5fd 203 int max_active; /* L: max active works */
1e19ffc6 204 struct list_head delayed_works; /* L: delayed works */
0f900049 205};
1da177e4 206
73f53c4a
TH
207/*
208 * Structure used to wait for workqueue flush.
209 */
210struct wq_flusher {
211 struct list_head list; /* F: list of flushers */
212 int flush_color; /* F: flush color waiting for */
213 struct completion done; /* flush completion */
214};
215
f2e005aa
TH
216/*
217 * All cpumasks are assumed to be always set on UP and thus can't be
218 * used to determine whether there's something to be done.
219 */
220#ifdef CONFIG_SMP
221typedef cpumask_var_t mayday_mask_t;
222#define mayday_test_and_set_cpu(cpu, mask) \
223 cpumask_test_and_set_cpu((cpu), (mask))
224#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
225#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 226#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
227#define free_mayday_mask(mask) free_cpumask_var((mask))
228#else
229typedef unsigned long mayday_mask_t;
230#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
231#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
232#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
233#define alloc_mayday_mask(maskp, gfp) true
234#define free_mayday_mask(mask) do { } while (0)
235#endif
1da177e4
LT
236
237/*
238 * The externally visible workqueue abstraction is an array of
239 * per-CPU workqueues:
240 */
241struct workqueue_struct {
9c5a2ba7 242 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
243 union {
244 struct cpu_workqueue_struct __percpu *pcpu;
245 struct cpu_workqueue_struct *single;
246 unsigned long v;
247 } cpu_wq; /* I: cwq's */
4690c4ab 248 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
249
250 struct mutex flush_mutex; /* protects wq flushing */
251 int work_color; /* F: current work color */
252 int flush_color; /* F: current flush color */
253 atomic_t nr_cwqs_to_flush; /* flush in progress */
254 struct wq_flusher *first_flusher; /* F: first flusher */
255 struct list_head flusher_queue; /* F: flush waiters */
256 struct list_head flusher_overflow; /* F: flush overflow list */
257
f2e005aa 258 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
259 struct worker *rescuer; /* I: rescue worker */
260
9c5a2ba7 261 int nr_drainers; /* W: drain in progress */
dcd989cb 262 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
b196be89 266 char name[]; /* I: workqueue name */
1da177e4
LT
267};
268
d320c038 269struct workqueue_struct *system_wq __read_mostly;
d320c038 270EXPORT_SYMBOL_GPL(system_wq);
044c782c 271struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 272EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 273struct workqueue_struct *system_long_wq __read_mostly;
d320c038 274EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 275struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 276EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 277struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 278EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 279
97bd2347
TH
280#define CREATE_TRACE_POINTS
281#include <trace/events/workqueue.h>
282
4ce62e9e 283#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
284 for ((pool) = &(gcwq)->pools[0]; \
285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 286
db7bccf4
TH
287#define for_each_busy_worker(worker, i, pos, gcwq) \
288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290
f3421797
TH
291static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 unsigned int sw)
293{
294 if (cpu < nr_cpu_ids) {
295 if (sw & 1) {
296 cpu = cpumask_next(cpu, mask);
297 if (cpu < nr_cpu_ids)
298 return cpu;
299 }
300 if (sw & 2)
301 return WORK_CPU_UNBOUND;
302 }
303 return WORK_CPU_NONE;
304}
305
306static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 struct workqueue_struct *wq)
308{
309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310}
311
09884951
TH
312/*
313 * CPU iterators
314 *
315 * An extra gcwq is defined for an invalid cpu number
316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317 * specific CPU. The following iterators are similar to
318 * for_each_*_cpu() iterators but also considers the unbound gcwq.
319 *
320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
322 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
323 * WORK_CPU_UNBOUND for unbound workqueues
324 */
f3421797
TH
325#define for_each_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329
330#define for_each_online_gcwq_cpu(cpu) \
331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334
335#define for_each_cwq_cpu(cpu, wq) \
336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
337 (cpu) < WORK_CPU_NONE; \
338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339
dc186ad7
TG
340#ifdef CONFIG_DEBUG_OBJECTS_WORK
341
342static struct debug_obj_descr work_debug_descr;
343
99777288
SG
344static void *work_debug_hint(void *addr)
345{
346 return ((struct work_struct *) addr)->func;
347}
348
dc186ad7
TG
349/*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
353static int work_fixup_init(void *addr, enum debug_obj_state state)
354{
355 struct work_struct *work = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 cancel_work_sync(work);
360 debug_object_init(work, &work_debug_descr);
361 return 1;
362 default:
363 return 0;
364 }
365}
366
367/*
368 * fixup_activate is called when:
369 * - an active object is activated
370 * - an unknown object is activated (might be a statically initialized object)
371 */
372static int work_fixup_activate(void *addr, enum debug_obj_state state)
373{
374 struct work_struct *work = addr;
375
376 switch (state) {
377
378 case ODEBUG_STATE_NOTAVAILABLE:
379 /*
380 * This is not really a fixup. The work struct was
381 * statically initialized. We just make sure that it
382 * is tracked in the object tracker.
383 */
22df02bb 384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
385 debug_object_init(work, &work_debug_descr);
386 debug_object_activate(work, &work_debug_descr);
387 return 0;
388 }
389 WARN_ON_ONCE(1);
390 return 0;
391
392 case ODEBUG_STATE_ACTIVE:
393 WARN_ON(1);
394
395 default:
396 return 0;
397 }
398}
399
400/*
401 * fixup_free is called when:
402 * - an active object is freed
403 */
404static int work_fixup_free(void *addr, enum debug_obj_state state)
405{
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_free(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416}
417
418static struct debug_obj_descr work_debug_descr = {
419 .name = "work_struct",
99777288 420 .debug_hint = work_debug_hint,
dc186ad7
TG
421 .fixup_init = work_fixup_init,
422 .fixup_activate = work_fixup_activate,
423 .fixup_free = work_fixup_free,
424};
425
426static inline void debug_work_activate(struct work_struct *work)
427{
428 debug_object_activate(work, &work_debug_descr);
429}
430
431static inline void debug_work_deactivate(struct work_struct *work)
432{
433 debug_object_deactivate(work, &work_debug_descr);
434}
435
436void __init_work(struct work_struct *work, int onstack)
437{
438 if (onstack)
439 debug_object_init_on_stack(work, &work_debug_descr);
440 else
441 debug_object_init(work, &work_debug_descr);
442}
443EXPORT_SYMBOL_GPL(__init_work);
444
445void destroy_work_on_stack(struct work_struct *work)
446{
447 debug_object_free(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450
451#else
452static inline void debug_work_activate(struct work_struct *work) { }
453static inline void debug_work_deactivate(struct work_struct *work) { }
454#endif
455
95402b38
GS
456/* Serializes the accesses to the list of workqueues. */
457static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 458static LIST_HEAD(workqueues);
a0a1a5fd 459static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 460
e22bee78
TH
461/*
462 * The almighty global cpu workqueues. nr_running is the only field
463 * which is expected to be used frequently by other cpus via
464 * try_to_wake_up(). Put it in a separate cacheline.
465 */
8b03ae3c 466static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 467static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 468
f3421797
TH
469/*
470 * Global cpu workqueue and nr_running counter for unbound gcwq. The
471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472 * workers have WORKER_UNBOUND set.
473 */
474static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
475static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
477};
f3421797 478
c34056a3 479static int worker_thread(void *__worker);
1da177e4 480
3270476a
TH
481static int worker_pool_pri(struct worker_pool *pool)
482{
483 return pool - pool->gcwq->pools;
484}
485
8b03ae3c
TH
486static struct global_cwq *get_gcwq(unsigned int cpu)
487{
f3421797
TH
488 if (cpu != WORK_CPU_UNBOUND)
489 return &per_cpu(global_cwq, cpu);
490 else
491 return &unbound_global_cwq;
8b03ae3c
TH
492}
493
63d95a91 494static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 495{
63d95a91 496 int cpu = pool->gcwq->cpu;
3270476a 497 int idx = worker_pool_pri(pool);
63d95a91 498
f3421797 499 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 500 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 501 else
4ce62e9e 502 return &unbound_pool_nr_running[idx];
e22bee78
TH
503}
504
1537663f
TH
505static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 struct workqueue_struct *wq)
b1f4ec17 507{
f3421797 508 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 509 if (likely(cpu < nr_cpu_ids))
f3421797 510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
511 } else if (likely(cpu == WORK_CPU_UNBOUND))
512 return wq->cpu_wq.single;
513 return NULL;
b1f4ec17
ON
514}
515
73f53c4a
TH
516static unsigned int work_color_to_flags(int color)
517{
518 return color << WORK_STRUCT_COLOR_SHIFT;
519}
520
521static int get_work_color(struct work_struct *work)
522{
523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
525}
526
527static int work_next_color(int color)
528{
529 return (color + 1) % WORK_NR_COLORS;
530}
1da177e4 531
14441960 532/*
b5490077
TH
533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534 * contain the pointer to the queued cwq. Once execution starts, the flag
535 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 536 *
bbb68dfa
TH
537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538 * and clear_work_data() can be used to set the cwq, cpu or clear
539 * work->data. These functions should only be called while the work is
540 * owned - ie. while the PENDING bit is set.
541 *
542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543 * a work. gcwq is available once the work has been queued anywhere after
544 * initialization until it is sync canceled. cwq is available only while
545 * the work item is queued.
546 *
547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548 * canceled. While being canceled, a work item may have its PENDING set
549 * but stay off timer and worklist for arbitrarily long and nobody should
550 * try to steal the PENDING bit.
14441960 551 */
7a22ad75
TH
552static inline void set_work_data(struct work_struct *work, unsigned long data,
553 unsigned long flags)
365970a1 554{
4594bf15 555 BUG_ON(!work_pending(work));
7a22ad75
TH
556 atomic_long_set(&work->data, data | flags | work_static(work));
557}
365970a1 558
7a22ad75
TH
559static void set_work_cwq(struct work_struct *work,
560 struct cpu_workqueue_struct *cwq,
561 unsigned long extra_flags)
562{
563 set_work_data(work, (unsigned long)cwq,
e120153d 564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
565}
566
8930caba
TH
567static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 unsigned int cpu)
7a22ad75 569{
23657bb1
TH
570 /*
571 * The following wmb is paired with the implied mb in
572 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 * here are visible to and precede any updates by the next PENDING
574 * owner.
575 */
576 smp_wmb();
b5490077 577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 578}
f756d5e2 579
7a22ad75 580static void clear_work_data(struct work_struct *work)
1da177e4 581{
23657bb1 582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
584}
585
7a22ad75 586static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75 589
e120153d
TH
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
4d707b9f
ON
594}
595
7a22ad75 596static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 597{
e120153d 598 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
599 unsigned int cpu;
600
e120153d
TH
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
bd7bdd43 603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 604
b5490077 605 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 606 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
607 return NULL;
608
f3421797 609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 610 return get_gcwq(cpu);
b1f4ec17
ON
611}
612
bbb68dfa
TH
613static void mark_work_canceling(struct work_struct *work)
614{
615 struct global_cwq *gcwq = get_work_gcwq(work);
616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617
618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 WORK_STRUCT_PENDING);
620}
621
622static bool work_is_canceling(struct work_struct *work)
623{
624 unsigned long data = atomic_long_read(&work->data);
625
626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627}
628
e22bee78 629/*
3270476a
TH
630 * Policy functions. These define the policies on how the global worker
631 * pools are managed. Unless noted otherwise, these functions assume that
632 * they're being called with gcwq->lock held.
e22bee78
TH
633 */
634
63d95a91 635static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 636{
3270476a 637 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
638}
639
4594bf15 640/*
e22bee78
TH
641 * Need to wake up a worker? Called from anything but currently
642 * running workers.
974271c4
TH
643 *
644 * Note that, because unbound workers never contribute to nr_running, this
645 * function will always return %true for unbound gcwq as long as the
646 * worklist isn't empty.
4594bf15 647 */
63d95a91 648static bool need_more_worker(struct worker_pool *pool)
365970a1 649{
63d95a91 650 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 651}
4594bf15 652
e22bee78 653/* Can I start working? Called from busy but !running workers. */
63d95a91 654static bool may_start_working(struct worker_pool *pool)
e22bee78 655{
63d95a91 656 return pool->nr_idle;
e22bee78
TH
657}
658
659/* Do I need to keep working? Called from currently running workers. */
63d95a91 660static bool keep_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 663
3270476a 664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
665}
666
667/* Do we need a new worker? Called from manager. */
63d95a91 668static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 671}
365970a1 672
e22bee78 673/* Do I need to be the manager? */
63d95a91 674static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_to_create_worker(pool) ||
11ebea50 677 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
678}
679
680/* Do we have too many workers and should some go away? */
63d95a91 681static bool too_many_workers(struct worker_pool *pool)
e22bee78 682{
552a37e9 683 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 686
ea1abd61
LJ
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
e22bee78 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
695}
696
4d707b9f 697/*
e22bee78
TH
698 * Wake up functions.
699 */
700
7e11629d 701/* Return the first worker. Safe with preemption disabled */
63d95a91 702static struct worker *first_worker(struct worker_pool *pool)
7e11629d 703{
63d95a91 704 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
705 return NULL;
706
63d95a91 707 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
708}
709
710/**
711 * wake_up_worker - wake up an idle worker
63d95a91 712 * @pool: worker pool to wake worker from
7e11629d 713 *
63d95a91 714 * Wake up the first idle worker of @pool.
7e11629d
TH
715 *
716 * CONTEXT:
717 * spin_lock_irq(gcwq->lock).
718 */
63d95a91 719static void wake_up_worker(struct worker_pool *pool)
7e11629d 720{
63d95a91 721 struct worker *worker = first_worker(pool);
7e11629d
TH
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725}
726
d302f017 727/**
e22bee78
TH
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
738void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739{
740 struct worker *worker = kthread_data(task);
741
2d64672e 742 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 743 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
744}
745
746/**
747 * wq_worker_sleeping - a worker is going to sleep
748 * @task: task going to sleep
749 * @cpu: CPU in question, must be the current CPU number
750 *
751 * This function is called during schedule() when a busy worker is
752 * going to sleep. Worker on the same cpu can be woken up by
753 * returning pointer to its task.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 *
758 * RETURNS:
759 * Worker task on @cpu to wake up, %NULL if none.
760 */
761struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 unsigned int cpu)
763{
764 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 765 struct worker_pool *pool = worker->pool;
63d95a91 766 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 767
2d64672e 768 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
769 return NULL;
770
771 /* this can only happen on the local cpu */
772 BUG_ON(cpu != raw_smp_processor_id());
773
774 /*
775 * The counterpart of the following dec_and_test, implied mb,
776 * worklist not empty test sequence is in insert_work().
777 * Please read comment there.
778 *
628c78e7
TH
779 * NOT_RUNNING is clear. This means that we're bound to and
780 * running on the local cpu w/ rq lock held and preemption
781 * disabled, which in turn means that none else could be
782 * manipulating idle_list, so dereferencing idle_list without gcwq
783 * lock is safe.
e22bee78 784 */
bd7bdd43 785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 786 to_wakeup = first_worker(pool);
e22bee78
TH
787 return to_wakeup ? to_wakeup->task : NULL;
788}
789
790/**
791 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 792 * @worker: self
d302f017
TH
793 * @flags: flags to set
794 * @wakeup: wakeup an idle worker if necessary
795 *
e22bee78
TH
796 * Set @flags in @worker->flags and adjust nr_running accordingly. If
797 * nr_running becomes zero and @wakeup is %true, an idle worker is
798 * woken up.
d302f017 799 *
cb444766
TH
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock)
d302f017
TH
802 */
803static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 bool wakeup)
805{
bd7bdd43 806 struct worker_pool *pool = worker->pool;
e22bee78 807
cb444766
TH
808 WARN_ON_ONCE(worker->task != current);
809
e22bee78
TH
810 /*
811 * If transitioning into NOT_RUNNING, adjust nr_running and
812 * wake up an idle worker as necessary if requested by
813 * @wakeup.
814 */
815 if ((flags & WORKER_NOT_RUNNING) &&
816 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 817 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
818
819 if (wakeup) {
820 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 821 !list_empty(&pool->worklist))
63d95a91 822 wake_up_worker(pool);
e22bee78
TH
823 } else
824 atomic_dec(nr_running);
825 }
826
d302f017
TH
827 worker->flags |= flags;
828}
829
830/**
e22bee78 831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 832 * @worker: self
d302f017
TH
833 * @flags: flags to clear
834 *
e22bee78 835 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 836 *
cb444766
TH
837 * CONTEXT:
838 * spin_lock_irq(gcwq->lock)
d302f017
TH
839 */
840static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841{
63d95a91 842 struct worker_pool *pool = worker->pool;
e22bee78
TH
843 unsigned int oflags = worker->flags;
844
cb444766
TH
845 WARN_ON_ONCE(worker->task != current);
846
d302f017 847 worker->flags &= ~flags;
e22bee78 848
42c025f3
TH
849 /*
850 * If transitioning out of NOT_RUNNING, increment nr_running. Note
851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
852 * of multiple flags, not a single flag.
853 */
e22bee78
TH
854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 856 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
857}
858
c8e55f36
TH
859/**
860 * busy_worker_head - return the busy hash head for a work
861 * @gcwq: gcwq of interest
862 * @work: work to be hashed
863 *
864 * Return hash head of @gcwq for @work.
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to the hash head.
871 */
872static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
873 struct work_struct *work)
874{
875 const int base_shift = ilog2(sizeof(struct work_struct));
876 unsigned long v = (unsigned long)work;
877
878 /* simple shift and fold hash, do we need something better? */
879 v >>= base_shift;
880 v += v >> BUSY_WORKER_HASH_ORDER;
881 v &= BUSY_WORKER_HASH_MASK;
882
883 return &gcwq->busy_hash[v];
884}
885
8cca0eea
TH
886/**
887 * __find_worker_executing_work - find worker which is executing a work
888 * @gcwq: gcwq of interest
889 * @bwh: hash head as returned by busy_worker_head()
890 * @work: work to find worker for
891 *
892 * Find a worker which is executing @work on @gcwq. @bwh should be
893 * the hash head obtained by calling busy_worker_head() with the same
894 * work.
895 *
896 * CONTEXT:
897 * spin_lock_irq(gcwq->lock).
898 *
899 * RETURNS:
900 * Pointer to worker which is executing @work if found, NULL
901 * otherwise.
902 */
903static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
904 struct hlist_head *bwh,
905 struct work_struct *work)
906{
907 struct worker *worker;
908 struct hlist_node *tmp;
909
910 hlist_for_each_entry(worker, tmp, bwh, hentry)
911 if (worker->current_work == work)
912 return worker;
913 return NULL;
914}
915
916/**
917 * find_worker_executing_work - find worker which is executing a work
918 * @gcwq: gcwq of interest
919 * @work: work to find worker for
920 *
921 * Find a worker which is executing @work on @gcwq. This function is
922 * identical to __find_worker_executing_work() except that this
923 * function calculates @bwh itself.
924 *
925 * CONTEXT:
926 * spin_lock_irq(gcwq->lock).
927 *
928 * RETURNS:
929 * Pointer to worker which is executing @work if found, NULL
930 * otherwise.
4d707b9f 931 */
8cca0eea
TH
932static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
933 struct work_struct *work)
4d707b9f 934{
8cca0eea
TH
935 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
936 work);
4d707b9f
ON
937}
938
bf4ede01
TH
939/**
940 * move_linked_works - move linked works to a list
941 * @work: start of series of works to be scheduled
942 * @head: target list to append @work to
943 * @nextp: out paramter for nested worklist walking
944 *
945 * Schedule linked works starting from @work to @head. Work series to
946 * be scheduled starts at @work and includes any consecutive work with
947 * WORK_STRUCT_LINKED set in its predecessor.
948 *
949 * If @nextp is not NULL, it's updated to point to the next work of
950 * the last scheduled work. This allows move_linked_works() to be
951 * nested inside outer list_for_each_entry_safe().
952 *
953 * CONTEXT:
954 * spin_lock_irq(gcwq->lock).
955 */
956static void move_linked_works(struct work_struct *work, struct list_head *head,
957 struct work_struct **nextp)
958{
959 struct work_struct *n;
960
961 /*
962 * Linked worklist will always end before the end of the list,
963 * use NULL for list head.
964 */
965 list_for_each_entry_safe_from(work, n, NULL, entry) {
966 list_move_tail(&work->entry, head);
967 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
968 break;
969 }
970
971 /*
972 * If we're already inside safe list traversal and have moved
973 * multiple works to the scheduled queue, the next position
974 * needs to be updated.
975 */
976 if (nextp)
977 *nextp = n;
978}
979
3aa62497 980static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 981{
3aa62497 982 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
3aa62497
LJ
990static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
991{
992 struct work_struct *work = list_first_entry(&cwq->delayed_works,
993 struct work_struct, entry);
994
995 cwq_activate_delayed_work(work);
996}
997
bf4ede01
TH
998/**
999 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1000 * @cwq: cwq of interest
1001 * @color: color of work which left the queue
bf4ede01
TH
1002 *
1003 * A work either has completed or is removed from pending queue,
1004 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1005 *
1006 * CONTEXT:
1007 * spin_lock_irq(gcwq->lock).
1008 */
b3f9f405 1009static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1010{
1011 /* ignore uncolored works */
1012 if (color == WORK_NO_COLOR)
1013 return;
1014
1015 cwq->nr_in_flight[color]--;
1016
b3f9f405
LJ
1017 cwq->nr_active--;
1018 if (!list_empty(&cwq->delayed_works)) {
1019 /* one down, submit a delayed one */
1020 if (cwq->nr_active < cwq->max_active)
1021 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1022 }
1023
1024 /* is flush in progress and are we at the flushing tip? */
1025 if (likely(cwq->flush_color != color))
1026 return;
1027
1028 /* are there still in-flight works? */
1029 if (cwq->nr_in_flight[color])
1030 return;
1031
1032 /* this cwq is done, clear flush_color */
1033 cwq->flush_color = -1;
1034
1035 /*
1036 * If this was the last cwq, wake up the first flusher. It
1037 * will handle the rest.
1038 */
1039 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1040 complete(&cwq->wq->first_flusher->done);
1041}
1042
36e227d2 1043/**
bbb68dfa 1044 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1045 * @work: work item to steal
1046 * @is_dwork: @work is a delayed_work
bbb68dfa 1047 * @flags: place to store irq state
36e227d2
TH
1048 *
1049 * Try to grab PENDING bit of @work. This function can handle @work in any
1050 * stable state - idle, on timer or on worklist. Return values are
1051 *
1052 * 1 if @work was pending and we successfully stole PENDING
1053 * 0 if @work was idle and we claimed PENDING
1054 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1055 * -ENOENT if someone else is canceling @work, this state may persist
1056 * for arbitrarily long
36e227d2 1057 *
bbb68dfa 1058 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1059 * interrupted while holding PENDING and @work off queue, irq must be
1060 * disabled on entry. This, combined with delayed_work->timer being
1061 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1062 *
1063 * On successful return, >= 0, irq is disabled and the caller is
1064 * responsible for releasing it using local_irq_restore(*@flags).
1065 *
e0aecdd8 1066 * This function is safe to call from any context including IRQ handler.
bf4ede01 1067 */
bbb68dfa
TH
1068static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1069 unsigned long *flags)
bf4ede01
TH
1070{
1071 struct global_cwq *gcwq;
bf4ede01 1072
bbb68dfa
TH
1073 WARN_ON_ONCE(in_irq());
1074
1075 local_irq_save(*flags);
1076
36e227d2
TH
1077 /* try to steal the timer if it exists */
1078 if (is_dwork) {
1079 struct delayed_work *dwork = to_delayed_work(work);
1080
e0aecdd8
TH
1081 /*
1082 * dwork->timer is irqsafe. If del_timer() fails, it's
1083 * guaranteed that the timer is not queued anywhere and not
1084 * running on the local CPU.
1085 */
36e227d2
TH
1086 if (likely(del_timer(&dwork->timer)))
1087 return 1;
1088 }
1089
1090 /* try to claim PENDING the normal way */
bf4ede01
TH
1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 return 0;
1093
1094 /*
1095 * The queueing is in progress, or it is already queued. Try to
1096 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 */
1098 gcwq = get_work_gcwq(work);
1099 if (!gcwq)
bbb68dfa 1100 goto fail;
bf4ede01 1101
bbb68dfa 1102 spin_lock(&gcwq->lock);
bf4ede01
TH
1103 if (!list_empty(&work->entry)) {
1104 /*
1105 * This work is queued, but perhaps we locked the wrong gcwq.
1106 * In that case we must see the new value after rmb(), see
1107 * insert_work()->wmb().
1108 */
1109 smp_rmb();
1110 if (gcwq == get_work_gcwq(work)) {
1111 debug_work_deactivate(work);
3aa62497
LJ
1112
1113 /*
1114 * A delayed work item cannot be grabbed directly
1115 * because it might have linked NO_COLOR work items
1116 * which, if left on the delayed_list, will confuse
1117 * cwq->nr_active management later on and cause
1118 * stall. Make sure the work item is activated
1119 * before grabbing.
1120 */
1121 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1122 cwq_activate_delayed_work(work);
1123
bf4ede01
TH
1124 list_del_init(&work->entry);
1125 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1126 get_work_color(work));
36e227d2 1127
bbb68dfa 1128 spin_unlock(&gcwq->lock);
36e227d2 1129 return 1;
bf4ede01
TH
1130 }
1131 }
bbb68dfa
TH
1132 spin_unlock(&gcwq->lock);
1133fail:
1134 local_irq_restore(*flags);
1135 if (work_is_canceling(work))
1136 return -ENOENT;
1137 cpu_relax();
36e227d2 1138 return -EAGAIN;
bf4ede01
TH
1139}
1140
4690c4ab 1141/**
7e11629d 1142 * insert_work - insert a work into gcwq
4690c4ab
TH
1143 * @cwq: cwq @work belongs to
1144 * @work: work to insert
1145 * @head: insertion point
1146 * @extra_flags: extra WORK_STRUCT_* flags to set
1147 *
7e11629d
TH
1148 * Insert @work which belongs to @cwq into @gcwq after @head.
1149 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1150 *
1151 * CONTEXT:
8b03ae3c 1152 * spin_lock_irq(gcwq->lock).
4690c4ab 1153 */
b89deed3 1154static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1155 struct work_struct *work, struct list_head *head,
1156 unsigned int extra_flags)
b89deed3 1157{
63d95a91 1158 struct worker_pool *pool = cwq->pool;
e22bee78 1159
4690c4ab 1160 /* we own @work, set data and link */
7a22ad75 1161 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1162
6e84d644
ON
1163 /*
1164 * Ensure that we get the right work->data if we see the
1165 * result of list_add() below, see try_to_grab_pending().
1166 */
1167 smp_wmb();
4690c4ab 1168
1a4d9b0a 1169 list_add_tail(&work->entry, head);
e22bee78
TH
1170
1171 /*
1172 * Ensure either worker_sched_deactivated() sees the above
1173 * list_add_tail() or we see zero nr_running to avoid workers
1174 * lying around lazily while there are works to be processed.
1175 */
1176 smp_mb();
1177
63d95a91
TH
1178 if (__need_more_worker(pool))
1179 wake_up_worker(pool);
b89deed3
ON
1180}
1181
c8efcc25
TH
1182/*
1183 * Test whether @work is being queued from another work executing on the
1184 * same workqueue. This is rather expensive and should only be used from
1185 * cold paths.
1186 */
1187static bool is_chained_work(struct workqueue_struct *wq)
1188{
1189 unsigned long flags;
1190 unsigned int cpu;
1191
1192 for_each_gcwq_cpu(cpu) {
1193 struct global_cwq *gcwq = get_gcwq(cpu);
1194 struct worker *worker;
1195 struct hlist_node *pos;
1196 int i;
1197
1198 spin_lock_irqsave(&gcwq->lock, flags);
1199 for_each_busy_worker(worker, i, pos, gcwq) {
1200 if (worker->task != current)
1201 continue;
1202 spin_unlock_irqrestore(&gcwq->lock, flags);
1203 /*
1204 * I'm @worker, no locking necessary. See if @work
1205 * is headed to the same workqueue.
1206 */
1207 return worker->current_cwq->wq == wq;
1208 }
1209 spin_unlock_irqrestore(&gcwq->lock, flags);
1210 }
1211 return false;
1212}
1213
4690c4ab 1214static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1215 struct work_struct *work)
1216{
502ca9d8
TH
1217 struct global_cwq *gcwq;
1218 struct cpu_workqueue_struct *cwq;
1e19ffc6 1219 struct list_head *worklist;
8a2e8e5d 1220 unsigned int work_flags;
b75cac93 1221 unsigned int req_cpu = cpu;
8930caba
TH
1222
1223 /*
1224 * While a work item is PENDING && off queue, a task trying to
1225 * steal the PENDING will busy-loop waiting for it to either get
1226 * queued or lose PENDING. Grabbing PENDING and queueing should
1227 * happen with IRQ disabled.
1228 */
1229 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1230
dc186ad7 1231 debug_work_activate(work);
1e19ffc6 1232
c8efcc25 1233 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1234 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1235 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1236 return;
1237
c7fc77f7
TH
1238 /* determine gcwq to use */
1239 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1240 struct global_cwq *last_gcwq;
1241
57469821 1242 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1243 cpu = raw_smp_processor_id();
1244
18aa9eff 1245 /*
dbf2576e
TH
1246 * It's multi cpu. If @work was previously on a different
1247 * cpu, it might still be running there, in which case the
1248 * work needs to be queued on that cpu to guarantee
1249 * non-reentrancy.
18aa9eff 1250 */
502ca9d8 1251 gcwq = get_gcwq(cpu);
dbf2576e
TH
1252 last_gcwq = get_work_gcwq(work);
1253
1254 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1255 struct worker *worker;
1256
8930caba 1257 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1258
1259 worker = find_worker_executing_work(last_gcwq, work);
1260
1261 if (worker && worker->current_cwq->wq == wq)
1262 gcwq = last_gcwq;
1263 else {
1264 /* meh... not running there, queue here */
8930caba
TH
1265 spin_unlock(&last_gcwq->lock);
1266 spin_lock(&gcwq->lock);
18aa9eff 1267 }
8930caba
TH
1268 } else {
1269 spin_lock(&gcwq->lock);
1270 }
f3421797
TH
1271 } else {
1272 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1273 spin_lock(&gcwq->lock);
502ca9d8
TH
1274 }
1275
1276 /* gcwq determined, get cwq and queue */
1277 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1278 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1279
f5b2552b 1280 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1281 spin_unlock(&gcwq->lock);
f5b2552b
DC
1282 return;
1283 }
1e19ffc6 1284
73f53c4a 1285 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1286 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1287
1288 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1289 trace_workqueue_activate_work(work);
1e19ffc6 1290 cwq->nr_active++;
3270476a 1291 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1292 } else {
1293 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1294 worklist = &cwq->delayed_works;
8a2e8e5d 1295 }
1e19ffc6 1296
8a2e8e5d 1297 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1298
8930caba 1299 spin_unlock(&gcwq->lock);
1da177e4
LT
1300}
1301
c1a220e7
ZR
1302/**
1303 * queue_work_on - queue work on specific cpu
1304 * @cpu: CPU number to execute work on
1305 * @wq: workqueue to use
1306 * @work: work to queue
1307 *
d4283e93 1308 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1309 *
1310 * We queue the work to a specific CPU, the caller must ensure it
1311 * can't go away.
1312 */
d4283e93
TH
1313bool queue_work_on(int cpu, struct workqueue_struct *wq,
1314 struct work_struct *work)
c1a220e7 1315{
d4283e93 1316 bool ret = false;
8930caba
TH
1317 unsigned long flags;
1318
1319 local_irq_save(flags);
c1a220e7 1320
22df02bb 1321 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1322 __queue_work(cpu, wq, work);
d4283e93 1323 ret = true;
c1a220e7 1324 }
8930caba
TH
1325
1326 local_irq_restore(flags);
c1a220e7
ZR
1327 return ret;
1328}
1329EXPORT_SYMBOL_GPL(queue_work_on);
1330
0fcb78c2 1331/**
0a13c00e 1332 * queue_work - queue work on a workqueue
0fcb78c2 1333 * @wq: workqueue to use
0a13c00e 1334 * @work: work to queue
0fcb78c2 1335 *
d4283e93 1336 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1337 *
1338 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1339 * it can be processed by another CPU.
0fcb78c2 1340 */
d4283e93 1341bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1342{
57469821 1343 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1344}
1345EXPORT_SYMBOL_GPL(queue_work);
1346
d8e794df 1347void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1348{
1349 struct delayed_work *dwork = (struct delayed_work *)__data;
1350 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1351
e0aecdd8 1352 /* should have been called from irqsafe timer with irq already off */
1265057f 1353 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1354}
d8e794df 1355EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1356
7beb2edf
TH
1357static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1358 struct delayed_work *dwork, unsigned long delay)
1359{
1360 struct timer_list *timer = &dwork->timer;
1361 struct work_struct *work = &dwork->work;
1362 unsigned int lcpu;
1363
1364 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1365 timer->data != (unsigned long)dwork);
1366 BUG_ON(timer_pending(timer));
1367 BUG_ON(!list_empty(&work->entry));
1368
1369 timer_stats_timer_set_start_info(&dwork->timer);
1370
1371 /*
1372 * This stores cwq for the moment, for the timer_fn. Note that the
1373 * work's gcwq is preserved to allow reentrance detection for
1374 * delayed works.
1375 */
1376 if (!(wq->flags & WQ_UNBOUND)) {
1377 struct global_cwq *gcwq = get_work_gcwq(work);
1378
e42986de
JK
1379 /*
1380 * If we cannot get the last gcwq from @work directly,
1381 * select the last CPU such that it avoids unnecessarily
1382 * triggering non-reentrancy check in __queue_work().
1383 */
1384 lcpu = cpu;
1385 if (gcwq)
7beb2edf 1386 lcpu = gcwq->cpu;
e42986de 1387 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1388 lcpu = raw_smp_processor_id();
1389 } else {
1390 lcpu = WORK_CPU_UNBOUND;
1391 }
1392
1393 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1394
1265057f 1395 dwork->cpu = cpu;
7beb2edf
TH
1396 timer->expires = jiffies + delay;
1397
1398 if (unlikely(cpu != WORK_CPU_UNBOUND))
1399 add_timer_on(timer, cpu);
1400 else
1401 add_timer(timer);
1402}
1403
0fcb78c2
REB
1404/**
1405 * queue_delayed_work_on - queue work on specific CPU after delay
1406 * @cpu: CPU number to execute work on
1407 * @wq: workqueue to use
af9997e4 1408 * @dwork: work to queue
0fcb78c2
REB
1409 * @delay: number of jiffies to wait before queueing
1410 *
715f1300
TH
1411 * Returns %false if @work was already on a queue, %true otherwise. If
1412 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1413 * execution.
0fcb78c2 1414 */
d4283e93
TH
1415bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1416 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1417{
52bad64d 1418 struct work_struct *work = &dwork->work;
d4283e93 1419 bool ret = false;
8930caba
TH
1420 unsigned long flags;
1421
715f1300
TH
1422 if (!delay)
1423 return queue_work_on(cpu, wq, &dwork->work);
1424
8930caba
TH
1425 /* read the comment in __queue_work() */
1426 local_irq_save(flags);
7a6bc1cd 1427
22df02bb 1428 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1429 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1430 ret = true;
7a6bc1cd 1431 }
8930caba
TH
1432
1433 local_irq_restore(flags);
7a6bc1cd
VP
1434 return ret;
1435}
ae90dd5d 1436EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1437
0a13c00e
TH
1438/**
1439 * queue_delayed_work - queue work on a workqueue after delay
1440 * @wq: workqueue to use
1441 * @dwork: delayable work to queue
1442 * @delay: number of jiffies to wait before queueing
1443 *
715f1300 1444 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1445 */
d4283e93 1446bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1447 struct delayed_work *dwork, unsigned long delay)
1448{
57469821 1449 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1450}
1451EXPORT_SYMBOL_GPL(queue_delayed_work);
1452
8376fe22
TH
1453/**
1454 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1455 * @cpu: CPU number to execute work on
1456 * @wq: workqueue to use
1457 * @dwork: work to queue
1458 * @delay: number of jiffies to wait before queueing
1459 *
1460 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1461 * modify @dwork's timer so that it expires after @delay. If @delay is
1462 * zero, @work is guaranteed to be scheduled immediately regardless of its
1463 * current state.
1464 *
1465 * Returns %false if @dwork was idle and queued, %true if @dwork was
1466 * pending and its timer was modified.
1467 *
e0aecdd8 1468 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1469 * See try_to_grab_pending() for details.
1470 */
1471bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1472 struct delayed_work *dwork, unsigned long delay)
1473{
1474 unsigned long flags;
1475 int ret;
1476
1477 do {
1478 ret = try_to_grab_pending(&dwork->work, true, &flags);
1479 } while (unlikely(ret == -EAGAIN));
1480
1481 if (likely(ret >= 0)) {
1482 __queue_delayed_work(cpu, wq, dwork, delay);
1483 local_irq_restore(flags);
1484 }
1485
1486 /* -ENOENT from try_to_grab_pending() becomes %true */
1487 return ret;
1488}
1489EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1490
1491/**
1492 * mod_delayed_work - modify delay of or queue a delayed work
1493 * @wq: workqueue to use
1494 * @dwork: work to queue
1495 * @delay: number of jiffies to wait before queueing
1496 *
1497 * mod_delayed_work_on() on local CPU.
1498 */
1499bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1500 unsigned long delay)
1501{
1502 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1503}
1504EXPORT_SYMBOL_GPL(mod_delayed_work);
1505
c8e55f36
TH
1506/**
1507 * worker_enter_idle - enter idle state
1508 * @worker: worker which is entering idle state
1509 *
1510 * @worker is entering idle state. Update stats and idle timer if
1511 * necessary.
1512 *
1513 * LOCKING:
1514 * spin_lock_irq(gcwq->lock).
1515 */
1516static void worker_enter_idle(struct worker *worker)
1da177e4 1517{
bd7bdd43
TH
1518 struct worker_pool *pool = worker->pool;
1519 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1520
1521 BUG_ON(worker->flags & WORKER_IDLE);
1522 BUG_ON(!list_empty(&worker->entry) &&
1523 (worker->hentry.next || worker->hentry.pprev));
1524
cb444766
TH
1525 /* can't use worker_set_flags(), also called from start_worker() */
1526 worker->flags |= WORKER_IDLE;
bd7bdd43 1527 pool->nr_idle++;
e22bee78 1528 worker->last_active = jiffies;
c8e55f36
TH
1529
1530 /* idle_list is LIFO */
bd7bdd43 1531 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1532
628c78e7
TH
1533 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1534 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1535
544ecf31 1536 /*
628c78e7
TH
1537 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1538 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1539 * nr_running, the warning may trigger spuriously. Check iff
1540 * unbind is not in progress.
544ecf31 1541 */
628c78e7 1542 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1543 pool->nr_workers == pool->nr_idle &&
63d95a91 1544 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1545}
1546
1547/**
1548 * worker_leave_idle - leave idle state
1549 * @worker: worker which is leaving idle state
1550 *
1551 * @worker is leaving idle state. Update stats.
1552 *
1553 * LOCKING:
1554 * spin_lock_irq(gcwq->lock).
1555 */
1556static void worker_leave_idle(struct worker *worker)
1557{
bd7bdd43 1558 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1559
1560 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1561 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1562 pool->nr_idle--;
c8e55f36
TH
1563 list_del_init(&worker->entry);
1564}
1565
e22bee78
TH
1566/**
1567 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1568 * @worker: self
1569 *
1570 * Works which are scheduled while the cpu is online must at least be
1571 * scheduled to a worker which is bound to the cpu so that if they are
1572 * flushed from cpu callbacks while cpu is going down, they are
1573 * guaranteed to execute on the cpu.
1574 *
1575 * This function is to be used by rogue workers and rescuers to bind
1576 * themselves to the target cpu and may race with cpu going down or
1577 * coming online. kthread_bind() can't be used because it may put the
1578 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1579 * verbatim as it's best effort and blocking and gcwq may be
1580 * [dis]associated in the meantime.
1581 *
f2d5a0ee
TH
1582 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1583 * binding against %GCWQ_DISASSOCIATED which is set during
1584 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1585 * enters idle state or fetches works without dropping lock, it can
1586 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1587 *
1588 * CONTEXT:
1589 * Might sleep. Called without any lock but returns with gcwq->lock
1590 * held.
1591 *
1592 * RETURNS:
1593 * %true if the associated gcwq is online (@worker is successfully
1594 * bound), %false if offline.
1595 */
1596static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1597__acquires(&gcwq->lock)
e22bee78 1598{
bd7bdd43 1599 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1600 struct task_struct *task = worker->task;
1601
1602 while (true) {
4e6045f1 1603 /*
e22bee78
TH
1604 * The following call may fail, succeed or succeed
1605 * without actually migrating the task to the cpu if
1606 * it races with cpu hotunplug operation. Verify
1607 * against GCWQ_DISASSOCIATED.
4e6045f1 1608 */
f3421797
TH
1609 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1610 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1611
1612 spin_lock_irq(&gcwq->lock);
1613 if (gcwq->flags & GCWQ_DISASSOCIATED)
1614 return false;
1615 if (task_cpu(task) == gcwq->cpu &&
1616 cpumask_equal(&current->cpus_allowed,
1617 get_cpu_mask(gcwq->cpu)))
1618 return true;
1619 spin_unlock_irq(&gcwq->lock);
1620
5035b20f
TH
1621 /*
1622 * We've raced with CPU hot[un]plug. Give it a breather
1623 * and retry migration. cond_resched() is required here;
1624 * otherwise, we might deadlock against cpu_stop trying to
1625 * bring down the CPU on non-preemptive kernel.
1626 */
e22bee78 1627 cpu_relax();
5035b20f 1628 cond_resched();
e22bee78
TH
1629 }
1630}
1631
25511a47 1632/*
ea1abd61 1633 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1634 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1635 */
1636static void idle_worker_rebind(struct worker *worker)
1637{
1638 struct global_cwq *gcwq = worker->pool->gcwq;
1639
5f7dabfd
LJ
1640 /* CPU may go down again inbetween, clear UNBOUND only on success */
1641 if (worker_maybe_bind_and_lock(worker))
1642 worker_clr_flags(worker, WORKER_UNBOUND);
ea1abd61
LJ
1643
1644 /* rebind complete, become available again */
1645 list_add(&worker->entry, &worker->pool->idle_list);
1646 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1647}
1648
e22bee78 1649/*
25511a47 1650 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1651 * the associated cpu which is coming back online. This is scheduled by
1652 * cpu up but can race with other cpu hotplug operations and may be
1653 * executed twice without intervening cpu down.
e22bee78 1654 */
25511a47 1655static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1656{
1657 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1658 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1659
eab6d828
LJ
1660 if (worker_maybe_bind_and_lock(worker))
1661 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1662
1663 spin_unlock_irq(&gcwq->lock);
1664}
1665
25511a47
TH
1666/**
1667 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1668 * @gcwq: gcwq of interest
1669 *
1670 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1671 * is different for idle and busy ones.
1672 *
ea1abd61
LJ
1673 * Idle ones will be removed from the idle_list and woken up. They will
1674 * add themselves back after completing rebind. This ensures that the
1675 * idle_list doesn't contain any unbound workers when re-bound busy workers
1676 * try to perform local wake-ups for concurrency management.
25511a47 1677 *
ea1abd61
LJ
1678 * Busy workers can rebind after they finish their current work items.
1679 * Queueing the rebind work item at the head of the scheduled list is
1680 * enough. Note that nr_running will be properly bumped as busy workers
1681 * rebind.
25511a47 1682 *
ea1abd61
LJ
1683 * On return, all non-manager workers are scheduled for rebind - see
1684 * manage_workers() for the manager special case. Any idle worker
1685 * including the manager will not appear on @idle_list until rebind is
1686 * complete, making local wake-ups safe.
25511a47
TH
1687 */
1688static void rebind_workers(struct global_cwq *gcwq)
25511a47 1689{
25511a47 1690 struct worker_pool *pool;
ea1abd61 1691 struct worker *worker, *n;
25511a47
TH
1692 struct hlist_node *pos;
1693 int i;
1694
1695 lockdep_assert_held(&gcwq->lock);
1696
1697 for_each_worker_pool(pool, gcwq)
b2eb83d1 1698 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1699
5f7dabfd 1700 /* dequeue and kick idle ones */
25511a47 1701 for_each_worker_pool(pool, gcwq) {
ea1abd61 1702 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1703 /*
1704 * idle workers should be off @pool->idle_list
1705 * until rebind is complete to avoid receiving
1706 * premature local wake-ups.
1707 */
1708 list_del_init(&worker->entry);
25511a47 1709
5f7dabfd
LJ
1710 /*
1711 * worker_thread() will see the above dequeuing
1712 * and call idle_worker_rebind().
1713 */
25511a47
TH
1714 wake_up_process(worker->task);
1715 }
1716 }
1717
ea1abd61 1718 /* rebind busy workers */
25511a47
TH
1719 for_each_busy_worker(worker, i, pos, gcwq) {
1720 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1721 struct workqueue_struct *wq;
25511a47 1722
25511a47
TH
1723 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1724 work_data_bits(rebind_work)))
1725 continue;
1726
25511a47 1727 debug_work_activate(rebind_work);
e2b6a6d5
JK
1728
1729 /*
1730 * wq doesn't really matter but let's keep @worker->pool
1731 * and @cwq->pool consistent for sanity.
1732 */
1733 if (worker_pool_pri(worker->pool))
1734 wq = system_highpri_wq;
1735 else
1736 wq = system_wq;
1737
1738 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1739 worker->scheduled.next,
1740 work_color_to_flags(WORK_NO_COLOR));
25511a47
TH
1741 }
1742}
1743
c34056a3
TH
1744static struct worker *alloc_worker(void)
1745{
1746 struct worker *worker;
1747
1748 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1749 if (worker) {
1750 INIT_LIST_HEAD(&worker->entry);
affee4b2 1751 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1752 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1753 /* on creation a worker is in !idle && prep state */
1754 worker->flags = WORKER_PREP;
c8e55f36 1755 }
c34056a3
TH
1756 return worker;
1757}
1758
1759/**
1760 * create_worker - create a new workqueue worker
63d95a91 1761 * @pool: pool the new worker will belong to
c34056a3 1762 *
63d95a91 1763 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1764 * can be started by calling start_worker() or destroyed using
1765 * destroy_worker().
1766 *
1767 * CONTEXT:
1768 * Might sleep. Does GFP_KERNEL allocations.
1769 *
1770 * RETURNS:
1771 * Pointer to the newly created worker.
1772 */
bc2ae0f5 1773static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1774{
63d95a91 1775 struct global_cwq *gcwq = pool->gcwq;
3270476a 1776 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1777 struct worker *worker = NULL;
f3421797 1778 int id = -1;
c34056a3 1779
8b03ae3c 1780 spin_lock_irq(&gcwq->lock);
bd7bdd43 1781 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1782 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1783 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1784 goto fail;
8b03ae3c 1785 spin_lock_irq(&gcwq->lock);
c34056a3 1786 }
8b03ae3c 1787 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1788
1789 worker = alloc_worker();
1790 if (!worker)
1791 goto fail;
1792
bd7bdd43 1793 worker->pool = pool;
c34056a3
TH
1794 worker->id = id;
1795
bc2ae0f5 1796 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1797 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1798 worker, cpu_to_node(gcwq->cpu),
1799 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1800 else
1801 worker->task = kthread_create(worker_thread, worker,
3270476a 1802 "kworker/u:%d%s", id, pri);
c34056a3
TH
1803 if (IS_ERR(worker->task))
1804 goto fail;
1805
3270476a
TH
1806 if (worker_pool_pri(pool))
1807 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1808
db7bccf4 1809 /*
bc2ae0f5
TH
1810 * Determine CPU binding of the new worker depending on
1811 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1812 * flag remains stable across this function. See the comments
1813 * above the flag definition for details.
1814 *
1815 * As an unbound worker may later become a regular one if CPU comes
1816 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1817 */
bc2ae0f5 1818 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1819 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1820 } else {
db7bccf4 1821 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1822 worker->flags |= WORKER_UNBOUND;
f3421797 1823 }
c34056a3
TH
1824
1825 return worker;
1826fail:
1827 if (id >= 0) {
8b03ae3c 1828 spin_lock_irq(&gcwq->lock);
bd7bdd43 1829 ida_remove(&pool->worker_ida, id);
8b03ae3c 1830 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1831 }
1832 kfree(worker);
1833 return NULL;
1834}
1835
1836/**
1837 * start_worker - start a newly created worker
1838 * @worker: worker to start
1839 *
c8e55f36 1840 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1841 *
1842 * CONTEXT:
8b03ae3c 1843 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1844 */
1845static void start_worker(struct worker *worker)
1846{
cb444766 1847 worker->flags |= WORKER_STARTED;
bd7bdd43 1848 worker->pool->nr_workers++;
c8e55f36 1849 worker_enter_idle(worker);
c34056a3
TH
1850 wake_up_process(worker->task);
1851}
1852
1853/**
1854 * destroy_worker - destroy a workqueue worker
1855 * @worker: worker to be destroyed
1856 *
c8e55f36
TH
1857 * Destroy @worker and adjust @gcwq stats accordingly.
1858 *
1859 * CONTEXT:
1860 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1861 */
1862static void destroy_worker(struct worker *worker)
1863{
bd7bdd43
TH
1864 struct worker_pool *pool = worker->pool;
1865 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1866 int id = worker->id;
1867
1868 /* sanity check frenzy */
1869 BUG_ON(worker->current_work);
affee4b2 1870 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1871
c8e55f36 1872 if (worker->flags & WORKER_STARTED)
bd7bdd43 1873 pool->nr_workers--;
c8e55f36 1874 if (worker->flags & WORKER_IDLE)
bd7bdd43 1875 pool->nr_idle--;
c8e55f36
TH
1876
1877 list_del_init(&worker->entry);
cb444766 1878 worker->flags |= WORKER_DIE;
c8e55f36
TH
1879
1880 spin_unlock_irq(&gcwq->lock);
1881
c34056a3
TH
1882 kthread_stop(worker->task);
1883 kfree(worker);
1884
8b03ae3c 1885 spin_lock_irq(&gcwq->lock);
bd7bdd43 1886 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1887}
1888
63d95a91 1889static void idle_worker_timeout(unsigned long __pool)
e22bee78 1890{
63d95a91
TH
1891 struct worker_pool *pool = (void *)__pool;
1892 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1893
1894 spin_lock_irq(&gcwq->lock);
1895
63d95a91 1896 if (too_many_workers(pool)) {
e22bee78
TH
1897 struct worker *worker;
1898 unsigned long expires;
1899
1900 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1901 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1902 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1903
1904 if (time_before(jiffies, expires))
63d95a91 1905 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1906 else {
1907 /* it's been idle for too long, wake up manager */
11ebea50 1908 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1909 wake_up_worker(pool);
d5abe669 1910 }
e22bee78
TH
1911 }
1912
1913 spin_unlock_irq(&gcwq->lock);
1914}
d5abe669 1915
e22bee78
TH
1916static bool send_mayday(struct work_struct *work)
1917{
1918 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1919 struct workqueue_struct *wq = cwq->wq;
f3421797 1920 unsigned int cpu;
e22bee78
TH
1921
1922 if (!(wq->flags & WQ_RESCUER))
1923 return false;
1924
1925 /* mayday mayday mayday */
bd7bdd43 1926 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1927 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1928 if (cpu == WORK_CPU_UNBOUND)
1929 cpu = 0;
f2e005aa 1930 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1931 wake_up_process(wq->rescuer->task);
1932 return true;
1933}
1934
63d95a91 1935static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1936{
63d95a91
TH
1937 struct worker_pool *pool = (void *)__pool;
1938 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1939 struct work_struct *work;
1940
1941 spin_lock_irq(&gcwq->lock);
1942
63d95a91 1943 if (need_to_create_worker(pool)) {
e22bee78
TH
1944 /*
1945 * We've been trying to create a new worker but
1946 * haven't been successful. We might be hitting an
1947 * allocation deadlock. Send distress signals to
1948 * rescuers.
1949 */
63d95a91 1950 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1951 send_mayday(work);
1da177e4 1952 }
e22bee78
TH
1953
1954 spin_unlock_irq(&gcwq->lock);
1955
63d95a91 1956 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1957}
1958
e22bee78
TH
1959/**
1960 * maybe_create_worker - create a new worker if necessary
63d95a91 1961 * @pool: pool to create a new worker for
e22bee78 1962 *
63d95a91 1963 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1964 * have at least one idle worker on return from this function. If
1965 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1966 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1967 * possible allocation deadlock.
1968 *
1969 * On return, need_to_create_worker() is guaranteed to be false and
1970 * may_start_working() true.
1971 *
1972 * LOCKING:
1973 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1974 * multiple times. Does GFP_KERNEL allocations. Called only from
1975 * manager.
1976 *
1977 * RETURNS:
1978 * false if no action was taken and gcwq->lock stayed locked, true
1979 * otherwise.
1980 */
63d95a91 1981static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1982__releases(&gcwq->lock)
1983__acquires(&gcwq->lock)
1da177e4 1984{
63d95a91
TH
1985 struct global_cwq *gcwq = pool->gcwq;
1986
1987 if (!need_to_create_worker(pool))
e22bee78
TH
1988 return false;
1989restart:
9f9c2364
TH
1990 spin_unlock_irq(&gcwq->lock);
1991
e22bee78 1992 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1993 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1994
1995 while (true) {
1996 struct worker *worker;
1997
bc2ae0f5 1998 worker = create_worker(pool);
e22bee78 1999 if (worker) {
63d95a91 2000 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2001 spin_lock_irq(&gcwq->lock);
2002 start_worker(worker);
63d95a91 2003 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2004 return true;
2005 }
2006
63d95a91 2007 if (!need_to_create_worker(pool))
e22bee78 2008 break;
1da177e4 2009
e22bee78
TH
2010 __set_current_state(TASK_INTERRUPTIBLE);
2011 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2012
63d95a91 2013 if (!need_to_create_worker(pool))
e22bee78
TH
2014 break;
2015 }
2016
63d95a91 2017 del_timer_sync(&pool->mayday_timer);
e22bee78 2018 spin_lock_irq(&gcwq->lock);
63d95a91 2019 if (need_to_create_worker(pool))
e22bee78
TH
2020 goto restart;
2021 return true;
2022}
2023
2024/**
2025 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2026 * @pool: pool to destroy workers for
e22bee78 2027 *
63d95a91 2028 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2029 * IDLE_WORKER_TIMEOUT.
2030 *
2031 * LOCKING:
2032 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2033 * multiple times. Called only from manager.
2034 *
2035 * RETURNS:
2036 * false if no action was taken and gcwq->lock stayed locked, true
2037 * otherwise.
2038 */
63d95a91 2039static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2040{
2041 bool ret = false;
1da177e4 2042
63d95a91 2043 while (too_many_workers(pool)) {
e22bee78
TH
2044 struct worker *worker;
2045 unsigned long expires;
3af24433 2046
63d95a91 2047 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2048 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2049
e22bee78 2050 if (time_before(jiffies, expires)) {
63d95a91 2051 mod_timer(&pool->idle_timer, expires);
3af24433 2052 break;
e22bee78 2053 }
1da177e4 2054
e22bee78
TH
2055 destroy_worker(worker);
2056 ret = true;
1da177e4 2057 }
3af24433 2058
e22bee78
TH
2059 return ret;
2060}
2061
2062/**
2063 * manage_workers - manage worker pool
2064 * @worker: self
2065 *
2066 * Assume the manager role and manage gcwq worker pool @worker belongs
2067 * to. At any given time, there can be only zero or one manager per
2068 * gcwq. The exclusion is handled automatically by this function.
2069 *
2070 * The caller can safely start processing works on false return. On
2071 * true return, it's guaranteed that need_to_create_worker() is false
2072 * and may_start_working() is true.
2073 *
2074 * CONTEXT:
2075 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2076 * multiple times. Does GFP_KERNEL allocations.
2077 *
2078 * RETURNS:
2079 * false if no action was taken and gcwq->lock stayed locked, true if
2080 * some action was taken.
2081 */
2082static bool manage_workers(struct worker *worker)
2083{
63d95a91 2084 struct worker_pool *pool = worker->pool;
e22bee78
TH
2085 bool ret = false;
2086
ee378aa4 2087 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78
TH
2088 return ret;
2089
552a37e9 2090 pool->flags |= POOL_MANAGING_WORKERS;
ee378aa4
LJ
2091
2092 /*
2093 * To simplify both worker management and CPU hotplug, hold off
2094 * management while hotplug is in progress. CPU hotplug path can't
2095 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2096 * lead to idle worker depletion (all become busy thinking someone
2097 * else is managing) which in turn can result in deadlock under
b2eb83d1 2098 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2099 * manager against CPU hotplug.
2100 *
b2eb83d1 2101 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2102 * progress. trylock first without dropping @gcwq->lock.
2103 */
b2eb83d1 2104 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2105 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2106 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2107 /*
2108 * CPU hotplug could have happened while we were waiting
b2eb83d1 2109 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2110 * because manager isn't either on idle or busy list, and
2111 * @gcwq's state and ours could have deviated.
2112 *
b2eb83d1 2113 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2114 * simply try to bind. It will succeed or fail depending
2115 * on @gcwq's current state. Try it and adjust
2116 * %WORKER_UNBOUND accordingly.
2117 */
2118 if (worker_maybe_bind_and_lock(worker))
2119 worker->flags &= ~WORKER_UNBOUND;
2120 else
2121 worker->flags |= WORKER_UNBOUND;
2122
2123 ret = true;
2124 }
2125
11ebea50 2126 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2127
2128 /*
2129 * Destroy and then create so that may_start_working() is true
2130 * on return.
2131 */
63d95a91
TH
2132 ret |= maybe_destroy_workers(pool);
2133 ret |= maybe_create_worker(pool);
e22bee78 2134
552a37e9 2135 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2136 mutex_unlock(&pool->assoc_mutex);
e22bee78
TH
2137 return ret;
2138}
2139
a62428c0
TH
2140/**
2141 * process_one_work - process single work
c34056a3 2142 * @worker: self
a62428c0
TH
2143 * @work: work to process
2144 *
2145 * Process @work. This function contains all the logics necessary to
2146 * process a single work including synchronization against and
2147 * interaction with other workers on the same cpu, queueing and
2148 * flushing. As long as context requirement is met, any worker can
2149 * call this function to process a work.
2150 *
2151 * CONTEXT:
8b03ae3c 2152 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2153 */
c34056a3 2154static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2155__releases(&gcwq->lock)
2156__acquires(&gcwq->lock)
a62428c0 2157{
7e11629d 2158 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2159 struct worker_pool *pool = worker->pool;
2160 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2161 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2162 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2163 work_func_t f = work->func;
73f53c4a 2164 int work_color;
7e11629d 2165 struct worker *collision;
a62428c0
TH
2166#ifdef CONFIG_LOCKDEP
2167 /*
2168 * It is permissible to free the struct work_struct from
2169 * inside the function that is called from it, this we need to
2170 * take into account for lockdep too. To avoid bogus "held
2171 * lock freed" warnings as well as problems when looking into
2172 * work->lockdep_map, make a copy and use that here.
2173 */
4d82a1de
PZ
2174 struct lockdep_map lockdep_map;
2175
2176 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2177#endif
6fec10a1
TH
2178 /*
2179 * Ensure we're on the correct CPU. DISASSOCIATED test is
2180 * necessary to avoid spurious warnings from rescuers servicing the
2181 * unbound or a disassociated gcwq.
2182 */
5f7dabfd 2183 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
6fec10a1 2184 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2185 raw_smp_processor_id() != gcwq->cpu);
2186
7e11629d
TH
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
2193 collision = __find_worker_executing_work(gcwq, bwh, work);
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
8930caba 2199 /* claim and dequeue */
a62428c0 2200 debug_work_deactivate(work);
c8e55f36 2201 hlist_add_head(&worker->hentry, bwh);
c34056a3 2202 worker->current_work = work;
8cca0eea 2203 worker->current_cwq = cwq;
73f53c4a 2204 work_color = get_work_color(work);
7a22ad75 2205
a62428c0
TH
2206 list_del_init(&work->entry);
2207
fb0e7beb
TH
2208 /*
2209 * CPU intensive works don't participate in concurrency
2210 * management. They're the scheduler's responsibility.
2211 */
2212 if (unlikely(cpu_intensive))
2213 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2214
974271c4
TH
2215 /*
2216 * Unbound gcwq isn't concurrency managed and work items should be
2217 * executed ASAP. Wake up another worker if necessary.
2218 */
63d95a91
TH
2219 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2220 wake_up_worker(pool);
974271c4 2221
8930caba 2222 /*
23657bb1
TH
2223 * Record the last CPU and clear PENDING which should be the last
2224 * update to @work. Also, do this inside @gcwq->lock so that
2225 * PENDING and queued state changes happen together while IRQ is
2226 * disabled.
8930caba 2227 */
8930caba 2228 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2229
8930caba 2230 spin_unlock_irq(&gcwq->lock);
959d1af8 2231
e159489b 2232 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2233 lock_map_acquire(&lockdep_map);
e36c886a 2234 trace_workqueue_execute_start(work);
a62428c0 2235 f(work);
e36c886a
AV
2236 /*
2237 * While we must be careful to not use "work" after this, the trace
2238 * point will only record its address.
2239 */
2240 trace_workqueue_execute_end(work);
a62428c0
TH
2241 lock_map_release(&lockdep_map);
2242 lock_map_release(&cwq->wq->lockdep_map);
2243
2244 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2245 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2246 " last function: %pf\n",
2247 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2248 debug_show_held_locks(current);
2249 dump_stack();
2250 }
2251
8b03ae3c 2252 spin_lock_irq(&gcwq->lock);
a62428c0 2253
fb0e7beb
TH
2254 /* clear cpu intensive status */
2255 if (unlikely(cpu_intensive))
2256 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2257
a62428c0 2258 /* we're done with it, release */
c8e55f36 2259 hlist_del_init(&worker->hentry);
c34056a3 2260 worker->current_work = NULL;
8cca0eea 2261 worker->current_cwq = NULL;
b3f9f405 2262 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2263}
2264
affee4b2
TH
2265/**
2266 * process_scheduled_works - process scheduled works
2267 * @worker: self
2268 *
2269 * Process all scheduled works. Please note that the scheduled list
2270 * may change while processing a work, so this function repeatedly
2271 * fetches a work from the top and executes it.
2272 *
2273 * CONTEXT:
8b03ae3c 2274 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2275 * multiple times.
2276 */
2277static void process_scheduled_works(struct worker *worker)
1da177e4 2278{
affee4b2
TH
2279 while (!list_empty(&worker->scheduled)) {
2280 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2281 struct work_struct, entry);
c34056a3 2282 process_one_work(worker, work);
1da177e4 2283 }
1da177e4
LT
2284}
2285
4690c4ab
TH
2286/**
2287 * worker_thread - the worker thread function
c34056a3 2288 * @__worker: self
4690c4ab 2289 *
e22bee78
TH
2290 * The gcwq worker thread function. There's a single dynamic pool of
2291 * these per each cpu. These workers process all works regardless of
2292 * their specific target workqueue. The only exception is works which
2293 * belong to workqueues with a rescuer which will be explained in
2294 * rescuer_thread().
4690c4ab 2295 */
c34056a3 2296static int worker_thread(void *__worker)
1da177e4 2297{
c34056a3 2298 struct worker *worker = __worker;
bd7bdd43
TH
2299 struct worker_pool *pool = worker->pool;
2300 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2301
e22bee78
TH
2302 /* tell the scheduler that this is a workqueue worker */
2303 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2304woke_up:
c8e55f36 2305 spin_lock_irq(&gcwq->lock);
1da177e4 2306
5f7dabfd
LJ
2307 /* we are off idle list if destruction or rebind is requested */
2308 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2309 spin_unlock_irq(&gcwq->lock);
25511a47 2310
5f7dabfd 2311 /* if DIE is set, destruction is requested */
25511a47
TH
2312 if (worker->flags & WORKER_DIE) {
2313 worker->task->flags &= ~PF_WQ_WORKER;
2314 return 0;
2315 }
2316
5f7dabfd 2317 /* otherwise, rebind */
25511a47
TH
2318 idle_worker_rebind(worker);
2319 goto woke_up;
c8e55f36 2320 }
affee4b2 2321
c8e55f36 2322 worker_leave_idle(worker);
db7bccf4 2323recheck:
e22bee78 2324 /* no more worker necessary? */
63d95a91 2325 if (!need_more_worker(pool))
e22bee78
TH
2326 goto sleep;
2327
2328 /* do we need to manage? */
63d95a91 2329 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2330 goto recheck;
2331
c8e55f36
TH
2332 /*
2333 * ->scheduled list can only be filled while a worker is
2334 * preparing to process a work or actually processing it.
2335 * Make sure nobody diddled with it while I was sleeping.
2336 */
2337 BUG_ON(!list_empty(&worker->scheduled));
2338
e22bee78
TH
2339 /*
2340 * When control reaches this point, we're guaranteed to have
2341 * at least one idle worker or that someone else has already
2342 * assumed the manager role.
2343 */
2344 worker_clr_flags(worker, WORKER_PREP);
2345
2346 do {
c8e55f36 2347 struct work_struct *work =
bd7bdd43 2348 list_first_entry(&pool->worklist,
c8e55f36
TH
2349 struct work_struct, entry);
2350
2351 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2352 /* optimization path, not strictly necessary */
2353 process_one_work(worker, work);
2354 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2355 process_scheduled_works(worker);
c8e55f36
TH
2356 } else {
2357 move_linked_works(work, &worker->scheduled, NULL);
2358 process_scheduled_works(worker);
affee4b2 2359 }
63d95a91 2360 } while (keep_working(pool));
e22bee78
TH
2361
2362 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2363sleep:
63d95a91 2364 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2365 goto recheck;
d313dd85 2366
c8e55f36 2367 /*
e22bee78
TH
2368 * gcwq->lock is held and there's no work to process and no
2369 * need to manage, sleep. Workers are woken up only while
2370 * holding gcwq->lock or from local cpu, so setting the
2371 * current state before releasing gcwq->lock is enough to
2372 * prevent losing any event.
c8e55f36
TH
2373 */
2374 worker_enter_idle(worker);
2375 __set_current_state(TASK_INTERRUPTIBLE);
2376 spin_unlock_irq(&gcwq->lock);
2377 schedule();
2378 goto woke_up;
1da177e4
LT
2379}
2380
e22bee78
TH
2381/**
2382 * rescuer_thread - the rescuer thread function
2383 * @__wq: the associated workqueue
2384 *
2385 * Workqueue rescuer thread function. There's one rescuer for each
2386 * workqueue which has WQ_RESCUER set.
2387 *
2388 * Regular work processing on a gcwq may block trying to create a new
2389 * worker which uses GFP_KERNEL allocation which has slight chance of
2390 * developing into deadlock if some works currently on the same queue
2391 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2392 * the problem rescuer solves.
2393 *
2394 * When such condition is possible, the gcwq summons rescuers of all
2395 * workqueues which have works queued on the gcwq and let them process
2396 * those works so that forward progress can be guaranteed.
2397 *
2398 * This should happen rarely.
2399 */
2400static int rescuer_thread(void *__wq)
2401{
2402 struct workqueue_struct *wq = __wq;
2403 struct worker *rescuer = wq->rescuer;
2404 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2405 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2406 unsigned int cpu;
2407
2408 set_user_nice(current, RESCUER_NICE_LEVEL);
2409repeat:
2410 set_current_state(TASK_INTERRUPTIBLE);
2411
2412 if (kthread_should_stop())
2413 return 0;
2414
f3421797
TH
2415 /*
2416 * See whether any cpu is asking for help. Unbounded
2417 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2418 */
f2e005aa 2419 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2420 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2421 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2422 struct worker_pool *pool = cwq->pool;
2423 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2424 struct work_struct *work, *n;
2425
2426 __set_current_state(TASK_RUNNING);
f2e005aa 2427 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2428
2429 /* migrate to the target cpu if possible */
bd7bdd43 2430 rescuer->pool = pool;
e22bee78
TH
2431 worker_maybe_bind_and_lock(rescuer);
2432
2433 /*
2434 * Slurp in all works issued via this workqueue and
2435 * process'em.
2436 */
2437 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2438 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2439 if (get_work_cwq(work) == cwq)
2440 move_linked_works(work, scheduled, &n);
2441
2442 process_scheduled_works(rescuer);
7576958a
TH
2443
2444 /*
2445 * Leave this gcwq. If keep_working() is %true, notify a
2446 * regular worker; otherwise, we end up with 0 concurrency
2447 * and stalling the execution.
2448 */
63d95a91
TH
2449 if (keep_working(pool))
2450 wake_up_worker(pool);
7576958a 2451
e22bee78
TH
2452 spin_unlock_irq(&gcwq->lock);
2453 }
2454
2455 schedule();
2456 goto repeat;
1da177e4
LT
2457}
2458
fc2e4d70
ON
2459struct wq_barrier {
2460 struct work_struct work;
2461 struct completion done;
2462};
2463
2464static void wq_barrier_func(struct work_struct *work)
2465{
2466 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2467 complete(&barr->done);
2468}
2469
4690c4ab
TH
2470/**
2471 * insert_wq_barrier - insert a barrier work
2472 * @cwq: cwq to insert barrier into
2473 * @barr: wq_barrier to insert
affee4b2
TH
2474 * @target: target work to attach @barr to
2475 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2476 *
affee4b2
TH
2477 * @barr is linked to @target such that @barr is completed only after
2478 * @target finishes execution. Please note that the ordering
2479 * guarantee is observed only with respect to @target and on the local
2480 * cpu.
2481 *
2482 * Currently, a queued barrier can't be canceled. This is because
2483 * try_to_grab_pending() can't determine whether the work to be
2484 * grabbed is at the head of the queue and thus can't clear LINKED
2485 * flag of the previous work while there must be a valid next work
2486 * after a work with LINKED flag set.
2487 *
2488 * Note that when @worker is non-NULL, @target may be modified
2489 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2490 *
2491 * CONTEXT:
8b03ae3c 2492 * spin_lock_irq(gcwq->lock).
4690c4ab 2493 */
83c22520 2494static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2495 struct wq_barrier *barr,
2496 struct work_struct *target, struct worker *worker)
fc2e4d70 2497{
affee4b2
TH
2498 struct list_head *head;
2499 unsigned int linked = 0;
2500
dc186ad7 2501 /*
8b03ae3c 2502 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2503 * as we know for sure that this will not trigger any of the
2504 * checks and call back into the fixup functions where we
2505 * might deadlock.
2506 */
ca1cab37 2507 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2508 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2509 init_completion(&barr->done);
83c22520 2510
affee4b2
TH
2511 /*
2512 * If @target is currently being executed, schedule the
2513 * barrier to the worker; otherwise, put it after @target.
2514 */
2515 if (worker)
2516 head = worker->scheduled.next;
2517 else {
2518 unsigned long *bits = work_data_bits(target);
2519
2520 head = target->entry.next;
2521 /* there can already be other linked works, inherit and set */
2522 linked = *bits & WORK_STRUCT_LINKED;
2523 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2524 }
2525
dc186ad7 2526 debug_work_activate(&barr->work);
affee4b2
TH
2527 insert_work(cwq, &barr->work, head,
2528 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2529}
2530
73f53c4a
TH
2531/**
2532 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2533 * @wq: workqueue being flushed
2534 * @flush_color: new flush color, < 0 for no-op
2535 * @work_color: new work color, < 0 for no-op
2536 *
2537 * Prepare cwqs for workqueue flushing.
2538 *
2539 * If @flush_color is non-negative, flush_color on all cwqs should be
2540 * -1. If no cwq has in-flight commands at the specified color, all
2541 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2542 * has in flight commands, its cwq->flush_color is set to
2543 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2544 * wakeup logic is armed and %true is returned.
2545 *
2546 * The caller should have initialized @wq->first_flusher prior to
2547 * calling this function with non-negative @flush_color. If
2548 * @flush_color is negative, no flush color update is done and %false
2549 * is returned.
2550 *
2551 * If @work_color is non-negative, all cwqs should have the same
2552 * work_color which is previous to @work_color and all will be
2553 * advanced to @work_color.
2554 *
2555 * CONTEXT:
2556 * mutex_lock(wq->flush_mutex).
2557 *
2558 * RETURNS:
2559 * %true if @flush_color >= 0 and there's something to flush. %false
2560 * otherwise.
2561 */
2562static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2563 int flush_color, int work_color)
1da177e4 2564{
73f53c4a
TH
2565 bool wait = false;
2566 unsigned int cpu;
1da177e4 2567
73f53c4a
TH
2568 if (flush_color >= 0) {
2569 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2570 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2571 }
2355b70f 2572
f3421797 2573 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2574 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2575 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2576
8b03ae3c 2577 spin_lock_irq(&gcwq->lock);
83c22520 2578
73f53c4a
TH
2579 if (flush_color >= 0) {
2580 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2581
73f53c4a
TH
2582 if (cwq->nr_in_flight[flush_color]) {
2583 cwq->flush_color = flush_color;
2584 atomic_inc(&wq->nr_cwqs_to_flush);
2585 wait = true;
2586 }
2587 }
1da177e4 2588
73f53c4a
TH
2589 if (work_color >= 0) {
2590 BUG_ON(work_color != work_next_color(cwq->work_color));
2591 cwq->work_color = work_color;
2592 }
1da177e4 2593
8b03ae3c 2594 spin_unlock_irq(&gcwq->lock);
1da177e4 2595 }
2355b70f 2596
73f53c4a
TH
2597 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2598 complete(&wq->first_flusher->done);
14441960 2599
73f53c4a 2600 return wait;
1da177e4
LT
2601}
2602
0fcb78c2 2603/**
1da177e4 2604 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2605 * @wq: workqueue to flush
1da177e4
LT
2606 *
2607 * Forces execution of the workqueue and blocks until its completion.
2608 * This is typically used in driver shutdown handlers.
2609 *
fc2e4d70
ON
2610 * We sleep until all works which were queued on entry have been handled,
2611 * but we are not livelocked by new incoming ones.
1da177e4 2612 */
7ad5b3a5 2613void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2614{
73f53c4a
TH
2615 struct wq_flusher this_flusher = {
2616 .list = LIST_HEAD_INIT(this_flusher.list),
2617 .flush_color = -1,
2618 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2619 };
2620 int next_color;
1da177e4 2621
3295f0ef
IM
2622 lock_map_acquire(&wq->lockdep_map);
2623 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2624
2625 mutex_lock(&wq->flush_mutex);
2626
2627 /*
2628 * Start-to-wait phase
2629 */
2630 next_color = work_next_color(wq->work_color);
2631
2632 if (next_color != wq->flush_color) {
2633 /*
2634 * Color space is not full. The current work_color
2635 * becomes our flush_color and work_color is advanced
2636 * by one.
2637 */
2638 BUG_ON(!list_empty(&wq->flusher_overflow));
2639 this_flusher.flush_color = wq->work_color;
2640 wq->work_color = next_color;
2641
2642 if (!wq->first_flusher) {
2643 /* no flush in progress, become the first flusher */
2644 BUG_ON(wq->flush_color != this_flusher.flush_color);
2645
2646 wq->first_flusher = &this_flusher;
2647
2648 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2649 wq->work_color)) {
2650 /* nothing to flush, done */
2651 wq->flush_color = next_color;
2652 wq->first_flusher = NULL;
2653 goto out_unlock;
2654 }
2655 } else {
2656 /* wait in queue */
2657 BUG_ON(wq->flush_color == this_flusher.flush_color);
2658 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2659 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2660 }
2661 } else {
2662 /*
2663 * Oops, color space is full, wait on overflow queue.
2664 * The next flush completion will assign us
2665 * flush_color and transfer to flusher_queue.
2666 */
2667 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2668 }
2669
2670 mutex_unlock(&wq->flush_mutex);
2671
2672 wait_for_completion(&this_flusher.done);
2673
2674 /*
2675 * Wake-up-and-cascade phase
2676 *
2677 * First flushers are responsible for cascading flushes and
2678 * handling overflow. Non-first flushers can simply return.
2679 */
2680 if (wq->first_flusher != &this_flusher)
2681 return;
2682
2683 mutex_lock(&wq->flush_mutex);
2684
4ce48b37
TH
2685 /* we might have raced, check again with mutex held */
2686 if (wq->first_flusher != &this_flusher)
2687 goto out_unlock;
2688
73f53c4a
TH
2689 wq->first_flusher = NULL;
2690
2691 BUG_ON(!list_empty(&this_flusher.list));
2692 BUG_ON(wq->flush_color != this_flusher.flush_color);
2693
2694 while (true) {
2695 struct wq_flusher *next, *tmp;
2696
2697 /* complete all the flushers sharing the current flush color */
2698 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2699 if (next->flush_color != wq->flush_color)
2700 break;
2701 list_del_init(&next->list);
2702 complete(&next->done);
2703 }
2704
2705 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2706 wq->flush_color != work_next_color(wq->work_color));
2707
2708 /* this flush_color is finished, advance by one */
2709 wq->flush_color = work_next_color(wq->flush_color);
2710
2711 /* one color has been freed, handle overflow queue */
2712 if (!list_empty(&wq->flusher_overflow)) {
2713 /*
2714 * Assign the same color to all overflowed
2715 * flushers, advance work_color and append to
2716 * flusher_queue. This is the start-to-wait
2717 * phase for these overflowed flushers.
2718 */
2719 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2720 tmp->flush_color = wq->work_color;
2721
2722 wq->work_color = work_next_color(wq->work_color);
2723
2724 list_splice_tail_init(&wq->flusher_overflow,
2725 &wq->flusher_queue);
2726 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2727 }
2728
2729 if (list_empty(&wq->flusher_queue)) {
2730 BUG_ON(wq->flush_color != wq->work_color);
2731 break;
2732 }
2733
2734 /*
2735 * Need to flush more colors. Make the next flusher
2736 * the new first flusher and arm cwqs.
2737 */
2738 BUG_ON(wq->flush_color == wq->work_color);
2739 BUG_ON(wq->flush_color != next->flush_color);
2740
2741 list_del_init(&next->list);
2742 wq->first_flusher = next;
2743
2744 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2745 break;
2746
2747 /*
2748 * Meh... this color is already done, clear first
2749 * flusher and repeat cascading.
2750 */
2751 wq->first_flusher = NULL;
2752 }
2753
2754out_unlock:
2755 mutex_unlock(&wq->flush_mutex);
1da177e4 2756}
ae90dd5d 2757EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2758
9c5a2ba7
TH
2759/**
2760 * drain_workqueue - drain a workqueue
2761 * @wq: workqueue to drain
2762 *
2763 * Wait until the workqueue becomes empty. While draining is in progress,
2764 * only chain queueing is allowed. IOW, only currently pending or running
2765 * work items on @wq can queue further work items on it. @wq is flushed
2766 * repeatedly until it becomes empty. The number of flushing is detemined
2767 * by the depth of chaining and should be relatively short. Whine if it
2768 * takes too long.
2769 */
2770void drain_workqueue(struct workqueue_struct *wq)
2771{
2772 unsigned int flush_cnt = 0;
2773 unsigned int cpu;
2774
2775 /*
2776 * __queue_work() needs to test whether there are drainers, is much
2777 * hotter than drain_workqueue() and already looks at @wq->flags.
2778 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2779 */
2780 spin_lock(&workqueue_lock);
2781 if (!wq->nr_drainers++)
2782 wq->flags |= WQ_DRAINING;
2783 spin_unlock(&workqueue_lock);
2784reflush:
2785 flush_workqueue(wq);
2786
2787 for_each_cwq_cpu(cpu, wq) {
2788 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2789 bool drained;
9c5a2ba7 2790
bd7bdd43 2791 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2792 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2793 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2794
2795 if (drained)
9c5a2ba7
TH
2796 continue;
2797
2798 if (++flush_cnt == 10 ||
2799 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2800 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2801 wq->name, flush_cnt);
9c5a2ba7
TH
2802 goto reflush;
2803 }
2804
2805 spin_lock(&workqueue_lock);
2806 if (!--wq->nr_drainers)
2807 wq->flags &= ~WQ_DRAINING;
2808 spin_unlock(&workqueue_lock);
2809}
2810EXPORT_SYMBOL_GPL(drain_workqueue);
2811
606a5020 2812static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2813{
affee4b2 2814 struct worker *worker = NULL;
8b03ae3c 2815 struct global_cwq *gcwq;
db700897 2816 struct cpu_workqueue_struct *cwq;
db700897
ON
2817
2818 might_sleep();
7a22ad75
TH
2819 gcwq = get_work_gcwq(work);
2820 if (!gcwq)
baf59022 2821 return false;
db700897 2822
8b03ae3c 2823 spin_lock_irq(&gcwq->lock);
db700897
ON
2824 if (!list_empty(&work->entry)) {
2825 /*
2826 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2827 * If it was re-queued to a different gcwq under us, we
2828 * are not going to wait.
db700897
ON
2829 */
2830 smp_rmb();
7a22ad75 2831 cwq = get_work_cwq(work);
bd7bdd43 2832 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2833 goto already_gone;
606a5020 2834 } else {
7a22ad75 2835 worker = find_worker_executing_work(gcwq, work);
affee4b2 2836 if (!worker)
4690c4ab 2837 goto already_gone;
7a22ad75 2838 cwq = worker->current_cwq;
606a5020 2839 }
db700897 2840
baf59022 2841 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2842 spin_unlock_irq(&gcwq->lock);
7a22ad75 2843
e159489b
TH
2844 /*
2845 * If @max_active is 1 or rescuer is in use, flushing another work
2846 * item on the same workqueue may lead to deadlock. Make sure the
2847 * flusher is not running on the same workqueue by verifying write
2848 * access.
2849 */
2850 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2851 lock_map_acquire(&cwq->wq->lockdep_map);
2852 else
2853 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2854 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2855
401a8d04 2856 return true;
4690c4ab 2857already_gone:
8b03ae3c 2858 spin_unlock_irq(&gcwq->lock);
401a8d04 2859 return false;
db700897 2860}
baf59022
TH
2861
2862/**
2863 * flush_work - wait for a work to finish executing the last queueing instance
2864 * @work: the work to flush
2865 *
606a5020
TH
2866 * Wait until @work has finished execution. @work is guaranteed to be idle
2867 * on return if it hasn't been requeued since flush started.
baf59022
TH
2868 *
2869 * RETURNS:
2870 * %true if flush_work() waited for the work to finish execution,
2871 * %false if it was already idle.
2872 */
2873bool flush_work(struct work_struct *work)
2874{
2875 struct wq_barrier barr;
2876
0976dfc1
SB
2877 lock_map_acquire(&work->lockdep_map);
2878 lock_map_release(&work->lockdep_map);
2879
606a5020 2880 if (start_flush_work(work, &barr)) {
baf59022
TH
2881 wait_for_completion(&barr.done);
2882 destroy_work_on_stack(&barr.work);
2883 return true;
606a5020 2884 } else {
401a8d04 2885 return false;
09383498 2886 }
09383498 2887}
606a5020 2888EXPORT_SYMBOL_GPL(flush_work);
09383498 2889
36e227d2 2890static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2891{
bbb68dfa 2892 unsigned long flags;
1f1f642e
ON
2893 int ret;
2894
2895 do {
bbb68dfa
TH
2896 ret = try_to_grab_pending(work, is_dwork, &flags);
2897 /*
2898 * If someone else is canceling, wait for the same event it
2899 * would be waiting for before retrying.
2900 */
2901 if (unlikely(ret == -ENOENT))
606a5020 2902 flush_work(work);
1f1f642e
ON
2903 } while (unlikely(ret < 0));
2904
bbb68dfa
TH
2905 /* tell other tasks trying to grab @work to back off */
2906 mark_work_canceling(work);
2907 local_irq_restore(flags);
2908
606a5020 2909 flush_work(work);
7a22ad75 2910 clear_work_data(work);
1f1f642e
ON
2911 return ret;
2912}
2913
6e84d644 2914/**
401a8d04
TH
2915 * cancel_work_sync - cancel a work and wait for it to finish
2916 * @work: the work to cancel
6e84d644 2917 *
401a8d04
TH
2918 * Cancel @work and wait for its execution to finish. This function
2919 * can be used even if the work re-queues itself or migrates to
2920 * another workqueue. On return from this function, @work is
2921 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2922 *
401a8d04
TH
2923 * cancel_work_sync(&delayed_work->work) must not be used for
2924 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2925 *
401a8d04 2926 * The caller must ensure that the workqueue on which @work was last
6e84d644 2927 * queued can't be destroyed before this function returns.
401a8d04
TH
2928 *
2929 * RETURNS:
2930 * %true if @work was pending, %false otherwise.
6e84d644 2931 */
401a8d04 2932bool cancel_work_sync(struct work_struct *work)
6e84d644 2933{
36e227d2 2934 return __cancel_work_timer(work, false);
b89deed3 2935}
28e53bdd 2936EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2937
6e84d644 2938/**
401a8d04
TH
2939 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2940 * @dwork: the delayed work to flush
6e84d644 2941 *
401a8d04
TH
2942 * Delayed timer is cancelled and the pending work is queued for
2943 * immediate execution. Like flush_work(), this function only
2944 * considers the last queueing instance of @dwork.
1f1f642e 2945 *
401a8d04
TH
2946 * RETURNS:
2947 * %true if flush_work() waited for the work to finish execution,
2948 * %false if it was already idle.
6e84d644 2949 */
401a8d04
TH
2950bool flush_delayed_work(struct delayed_work *dwork)
2951{
8930caba 2952 local_irq_disable();
401a8d04 2953 if (del_timer_sync(&dwork->timer))
1265057f 2954 __queue_work(dwork->cpu,
401a8d04 2955 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2956 local_irq_enable();
401a8d04
TH
2957 return flush_work(&dwork->work);
2958}
2959EXPORT_SYMBOL(flush_delayed_work);
2960
57b30ae7
TH
2961/**
2962 * cancel_delayed_work - cancel a delayed work
2963 * @dwork: delayed_work to cancel
2964 *
2965 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2966 * and canceled; %false if wasn't pending. Note that the work callback
2967 * function may still be running on return, unless it returns %true and the
2968 * work doesn't re-arm itself. Explicitly flush or use
2969 * cancel_delayed_work_sync() to wait on it.
2970 *
2971 * This function is safe to call from any context including IRQ handler.
2972 */
2973bool cancel_delayed_work(struct delayed_work *dwork)
2974{
2975 unsigned long flags;
2976 int ret;
2977
2978 do {
2979 ret = try_to_grab_pending(&dwork->work, true, &flags);
2980 } while (unlikely(ret == -EAGAIN));
2981
2982 if (unlikely(ret < 0))
2983 return false;
2984
2985 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2986 local_irq_restore(flags);
2987 return true;
2988}
2989EXPORT_SYMBOL(cancel_delayed_work);
2990
401a8d04
TH
2991/**
2992 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2993 * @dwork: the delayed work cancel
2994 *
2995 * This is cancel_work_sync() for delayed works.
2996 *
2997 * RETURNS:
2998 * %true if @dwork was pending, %false otherwise.
2999 */
3000bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3001{
36e227d2 3002 return __cancel_work_timer(&dwork->work, true);
6e84d644 3003}
f5a421a4 3004EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3005
d4283e93 3006/**
0a13c00e
TH
3007 * schedule_work_on - put work task on a specific cpu
3008 * @cpu: cpu to put the work task on
3009 * @work: job to be done
3010 *
3011 * This puts a job on a specific cpu
3012 */
d4283e93 3013bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3014{
3015 return queue_work_on(cpu, system_wq, work);
3016}
3017EXPORT_SYMBOL(schedule_work_on);
3018
0fcb78c2
REB
3019/**
3020 * schedule_work - put work task in global workqueue
3021 * @work: job to be done
3022 *
d4283e93
TH
3023 * Returns %false if @work was already on the kernel-global workqueue and
3024 * %true otherwise.
5b0f437d
BVA
3025 *
3026 * This puts a job in the kernel-global workqueue if it was not already
3027 * queued and leaves it in the same position on the kernel-global
3028 * workqueue otherwise.
0fcb78c2 3029 */
d4283e93 3030bool schedule_work(struct work_struct *work)
1da177e4 3031{
d320c038 3032 return queue_work(system_wq, work);
1da177e4 3033}
ae90dd5d 3034EXPORT_SYMBOL(schedule_work);
1da177e4 3035
0a13c00e
TH
3036/**
3037 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3038 * @cpu: cpu to use
3039 * @dwork: job to be done
3040 * @delay: number of jiffies to wait
c1a220e7 3041 *
0a13c00e
TH
3042 * After waiting for a given time this puts a job in the kernel-global
3043 * workqueue on the specified CPU.
c1a220e7 3044 */
d4283e93
TH
3045bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3046 unsigned long delay)
c1a220e7 3047{
0a13c00e 3048 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3049}
0a13c00e 3050EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3051
0fcb78c2
REB
3052/**
3053 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3054 * @dwork: job to be done
3055 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3056 *
3057 * After waiting for a given time this puts a job in the kernel-global
3058 * workqueue.
3059 */
d4283e93 3060bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3061{
d320c038 3062 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3063}
ae90dd5d 3064EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3065
b6136773 3066/**
31ddd871 3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3068 * @func: the function to call
b6136773 3069 *
31ddd871
TH
3070 * schedule_on_each_cpu() executes @func on each online CPU using the
3071 * system workqueue and blocks until all CPUs have completed.
b6136773 3072 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3073 *
3074 * RETURNS:
3075 * 0 on success, -errno on failure.
b6136773 3076 */
65f27f38 3077int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3078{
3079 int cpu;
38f51568 3080 struct work_struct __percpu *works;
15316ba8 3081
b6136773
AM
3082 works = alloc_percpu(struct work_struct);
3083 if (!works)
15316ba8 3084 return -ENOMEM;
b6136773 3085
93981800
TH
3086 get_online_cpus();
3087
15316ba8 3088 for_each_online_cpu(cpu) {
9bfb1839
IM
3089 struct work_struct *work = per_cpu_ptr(works, cpu);
3090
3091 INIT_WORK(work, func);
b71ab8c2 3092 schedule_work_on(cpu, work);
65a64464 3093 }
93981800
TH
3094
3095 for_each_online_cpu(cpu)
3096 flush_work(per_cpu_ptr(works, cpu));
3097
95402b38 3098 put_online_cpus();
b6136773 3099 free_percpu(works);
15316ba8
CL
3100 return 0;
3101}
3102
eef6a7d5
AS
3103/**
3104 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3105 *
3106 * Forces execution of the kernel-global workqueue and blocks until its
3107 * completion.
3108 *
3109 * Think twice before calling this function! It's very easy to get into
3110 * trouble if you don't take great care. Either of the following situations
3111 * will lead to deadlock:
3112 *
3113 * One of the work items currently on the workqueue needs to acquire
3114 * a lock held by your code or its caller.
3115 *
3116 * Your code is running in the context of a work routine.
3117 *
3118 * They will be detected by lockdep when they occur, but the first might not
3119 * occur very often. It depends on what work items are on the workqueue and
3120 * what locks they need, which you have no control over.
3121 *
3122 * In most situations flushing the entire workqueue is overkill; you merely
3123 * need to know that a particular work item isn't queued and isn't running.
3124 * In such cases you should use cancel_delayed_work_sync() or
3125 * cancel_work_sync() instead.
3126 */
1da177e4
LT
3127void flush_scheduled_work(void)
3128{
d320c038 3129 flush_workqueue(system_wq);
1da177e4 3130}
ae90dd5d 3131EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3132
1fa44eca
JB
3133/**
3134 * execute_in_process_context - reliably execute the routine with user context
3135 * @fn: the function to execute
1fa44eca
JB
3136 * @ew: guaranteed storage for the execute work structure (must
3137 * be available when the work executes)
3138 *
3139 * Executes the function immediately if process context is available,
3140 * otherwise schedules the function for delayed execution.
3141 *
3142 * Returns: 0 - function was executed
3143 * 1 - function was scheduled for execution
3144 */
65f27f38 3145int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3146{
3147 if (!in_interrupt()) {
65f27f38 3148 fn(&ew->work);
1fa44eca
JB
3149 return 0;
3150 }
3151
65f27f38 3152 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3153 schedule_work(&ew->work);
3154
3155 return 1;
3156}
3157EXPORT_SYMBOL_GPL(execute_in_process_context);
3158
1da177e4
LT
3159int keventd_up(void)
3160{
d320c038 3161 return system_wq != NULL;
1da177e4
LT
3162}
3163
bdbc5dd7 3164static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3165{
65a64464 3166 /*
0f900049
TH
3167 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3168 * Make sure that the alignment isn't lower than that of
3169 * unsigned long long.
65a64464 3170 */
0f900049
TH
3171 const size_t size = sizeof(struct cpu_workqueue_struct);
3172 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3173 __alignof__(unsigned long long));
65a64464 3174
e06ffa1e 3175 if (!(wq->flags & WQ_UNBOUND))
f3421797 3176 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3177 else {
f3421797
TH
3178 void *ptr;
3179
3180 /*
3181 * Allocate enough room to align cwq and put an extra
3182 * pointer at the end pointing back to the originally
3183 * allocated pointer which will be used for free.
3184 */
3185 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3186 if (ptr) {
3187 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3188 *(void **)(wq->cpu_wq.single + 1) = ptr;
3189 }
bdbc5dd7 3190 }
f3421797 3191
0415b00d 3192 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3193 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3194 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3195}
3196
bdbc5dd7 3197static void free_cwqs(struct workqueue_struct *wq)
0f900049 3198{
e06ffa1e 3199 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3200 free_percpu(wq->cpu_wq.pcpu);
3201 else if (wq->cpu_wq.single) {
3202 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3203 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3204 }
0f900049
TH
3205}
3206
f3421797
TH
3207static int wq_clamp_max_active(int max_active, unsigned int flags,
3208 const char *name)
b71ab8c2 3209{
f3421797
TH
3210 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3211
3212 if (max_active < 1 || max_active > lim)
044c782c
VI
3213 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3214 max_active, name, 1, lim);
b71ab8c2 3215
f3421797 3216 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3217}
3218
b196be89 3219struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3220 unsigned int flags,
3221 int max_active,
3222 struct lock_class_key *key,
b196be89 3223 const char *lock_name, ...)
1da177e4 3224{
b196be89 3225 va_list args, args1;
1da177e4 3226 struct workqueue_struct *wq;
c34056a3 3227 unsigned int cpu;
b196be89
TH
3228 size_t namelen;
3229
3230 /* determine namelen, allocate wq and format name */
3231 va_start(args, lock_name);
3232 va_copy(args1, args);
3233 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3234
3235 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3236 if (!wq)
3237 goto err;
3238
3239 vsnprintf(wq->name, namelen, fmt, args1);
3240 va_end(args);
3241 va_end(args1);
1da177e4 3242
6370a6ad
TH
3243 /*
3244 * Workqueues which may be used during memory reclaim should
3245 * have a rescuer to guarantee forward progress.
3246 */
3247 if (flags & WQ_MEM_RECLAIM)
3248 flags |= WQ_RESCUER;
3249
d320c038 3250 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3251 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3252
b196be89 3253 /* init wq */
97e37d7b 3254 wq->flags = flags;
a0a1a5fd 3255 wq->saved_max_active = max_active;
73f53c4a
TH
3256 mutex_init(&wq->flush_mutex);
3257 atomic_set(&wq->nr_cwqs_to_flush, 0);
3258 INIT_LIST_HEAD(&wq->flusher_queue);
3259 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3260
eb13ba87 3261 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3262 INIT_LIST_HEAD(&wq->list);
3af24433 3263
bdbc5dd7
TH
3264 if (alloc_cwqs(wq) < 0)
3265 goto err;
3266
f3421797 3267 for_each_cwq_cpu(cpu, wq) {
1537663f 3268 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3269 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3270 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3271
0f900049 3272 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3273 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3274 cwq->wq = wq;
73f53c4a 3275 cwq->flush_color = -1;
1e19ffc6 3276 cwq->max_active = max_active;
1e19ffc6 3277 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3278 }
1537663f 3279
e22bee78
TH
3280 if (flags & WQ_RESCUER) {
3281 struct worker *rescuer;
3282
f2e005aa 3283 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3284 goto err;
3285
3286 wq->rescuer = rescuer = alloc_worker();
3287 if (!rescuer)
3288 goto err;
3289
b196be89
TH
3290 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3291 wq->name);
e22bee78
TH
3292 if (IS_ERR(rescuer->task))
3293 goto err;
3294
e22bee78
TH
3295 rescuer->task->flags |= PF_THREAD_BOUND;
3296 wake_up_process(rescuer->task);
3af24433
ON
3297 }
3298
a0a1a5fd
TH
3299 /*
3300 * workqueue_lock protects global freeze state and workqueues
3301 * list. Grab it, set max_active accordingly and add the new
3302 * workqueue to workqueues list.
3303 */
1537663f 3304 spin_lock(&workqueue_lock);
a0a1a5fd 3305
58a69cb4 3306 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3307 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3308 get_cwq(cpu, wq)->max_active = 0;
3309
1537663f 3310 list_add(&wq->list, &workqueues);
a0a1a5fd 3311
1537663f
TH
3312 spin_unlock(&workqueue_lock);
3313
3af24433 3314 return wq;
4690c4ab
TH
3315err:
3316 if (wq) {
bdbc5dd7 3317 free_cwqs(wq);
f2e005aa 3318 free_mayday_mask(wq->mayday_mask);
e22bee78 3319 kfree(wq->rescuer);
4690c4ab
TH
3320 kfree(wq);
3321 }
3322 return NULL;
3af24433 3323}
d320c038 3324EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3325
3af24433
ON
3326/**
3327 * destroy_workqueue - safely terminate a workqueue
3328 * @wq: target workqueue
3329 *
3330 * Safely destroy a workqueue. All work currently pending will be done first.
3331 */
3332void destroy_workqueue(struct workqueue_struct *wq)
3333{
c8e55f36 3334 unsigned int cpu;
3af24433 3335
9c5a2ba7
TH
3336 /* drain it before proceeding with destruction */
3337 drain_workqueue(wq);
c8efcc25 3338
a0a1a5fd
TH
3339 /*
3340 * wq list is used to freeze wq, remove from list after
3341 * flushing is complete in case freeze races us.
3342 */
95402b38 3343 spin_lock(&workqueue_lock);
b1f4ec17 3344 list_del(&wq->list);
95402b38 3345 spin_unlock(&workqueue_lock);
3af24433 3346
e22bee78 3347 /* sanity check */
f3421797 3348 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3349 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3350 int i;
3351
73f53c4a
TH
3352 for (i = 0; i < WORK_NR_COLORS; i++)
3353 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3354 BUG_ON(cwq->nr_active);
3355 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3356 }
9b41ea72 3357
e22bee78
TH
3358 if (wq->flags & WQ_RESCUER) {
3359 kthread_stop(wq->rescuer->task);
f2e005aa 3360 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3361 kfree(wq->rescuer);
e22bee78
TH
3362 }
3363
bdbc5dd7 3364 free_cwqs(wq);
3af24433
ON
3365 kfree(wq);
3366}
3367EXPORT_SYMBOL_GPL(destroy_workqueue);
3368
dcd989cb
TH
3369/**
3370 * workqueue_set_max_active - adjust max_active of a workqueue
3371 * @wq: target workqueue
3372 * @max_active: new max_active value.
3373 *
3374 * Set max_active of @wq to @max_active.
3375 *
3376 * CONTEXT:
3377 * Don't call from IRQ context.
3378 */
3379void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3380{
3381 unsigned int cpu;
3382
f3421797 3383 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3384
3385 spin_lock(&workqueue_lock);
3386
3387 wq->saved_max_active = max_active;
3388
f3421797 3389 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3390 struct global_cwq *gcwq = get_gcwq(cpu);
3391
3392 spin_lock_irq(&gcwq->lock);
3393
58a69cb4 3394 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3395 !(gcwq->flags & GCWQ_FREEZING))
3396 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3397
dcd989cb 3398 spin_unlock_irq(&gcwq->lock);
65a64464 3399 }
93981800 3400
dcd989cb 3401 spin_unlock(&workqueue_lock);
15316ba8 3402}
dcd989cb 3403EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3404
eef6a7d5 3405/**
dcd989cb
TH
3406 * workqueue_congested - test whether a workqueue is congested
3407 * @cpu: CPU in question
3408 * @wq: target workqueue
eef6a7d5 3409 *
dcd989cb
TH
3410 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3411 * no synchronization around this function and the test result is
3412 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3413 *
dcd989cb
TH
3414 * RETURNS:
3415 * %true if congested, %false otherwise.
eef6a7d5 3416 */
dcd989cb 3417bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3418{
dcd989cb
TH
3419 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3420
3421 return !list_empty(&cwq->delayed_works);
1da177e4 3422}
dcd989cb 3423EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3424
1fa44eca 3425/**
dcd989cb
TH
3426 * work_cpu - return the last known associated cpu for @work
3427 * @work: the work of interest
1fa44eca 3428 *
dcd989cb 3429 * RETURNS:
bdbc5dd7 3430 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3431 */
dcd989cb 3432unsigned int work_cpu(struct work_struct *work)
1fa44eca 3433{
dcd989cb 3434 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3435
bdbc5dd7 3436 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3437}
dcd989cb 3438EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3439
dcd989cb
TH
3440/**
3441 * work_busy - test whether a work is currently pending or running
3442 * @work: the work to be tested
3443 *
3444 * Test whether @work is currently pending or running. There is no
3445 * synchronization around this function and the test result is
3446 * unreliable and only useful as advisory hints or for debugging.
3447 * Especially for reentrant wqs, the pending state might hide the
3448 * running state.
3449 *
3450 * RETURNS:
3451 * OR'd bitmask of WORK_BUSY_* bits.
3452 */
3453unsigned int work_busy(struct work_struct *work)
1da177e4 3454{
dcd989cb
TH
3455 struct global_cwq *gcwq = get_work_gcwq(work);
3456 unsigned long flags;
3457 unsigned int ret = 0;
1da177e4 3458
dcd989cb
TH
3459 if (!gcwq)
3460 return false;
1da177e4 3461
dcd989cb 3462 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3463
dcd989cb
TH
3464 if (work_pending(work))
3465 ret |= WORK_BUSY_PENDING;
3466 if (find_worker_executing_work(gcwq, work))
3467 ret |= WORK_BUSY_RUNNING;
1da177e4 3468
dcd989cb 3469 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3470
dcd989cb 3471 return ret;
1da177e4 3472}
dcd989cb 3473EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3474
db7bccf4
TH
3475/*
3476 * CPU hotplug.
3477 *
e22bee78
TH
3478 * There are two challenges in supporting CPU hotplug. Firstly, there
3479 * are a lot of assumptions on strong associations among work, cwq and
3480 * gcwq which make migrating pending and scheduled works very
3481 * difficult to implement without impacting hot paths. Secondly,
3482 * gcwqs serve mix of short, long and very long running works making
3483 * blocked draining impractical.
3484 *
628c78e7
TH
3485 * This is solved by allowing a gcwq to be disassociated from the CPU
3486 * running as an unbound one and allowing it to be reattached later if the
3487 * cpu comes back online.
db7bccf4 3488 */
1da177e4 3489
60373152 3490/* claim manager positions of all pools */
b2eb83d1 3491static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3492{
3493 struct worker_pool *pool;
3494
3495 for_each_worker_pool(pool, gcwq)
b2eb83d1 3496 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3497 spin_lock_irq(&gcwq->lock);
60373152
TH
3498}
3499
3500/* release manager positions */
b2eb83d1 3501static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3502{
3503 struct worker_pool *pool;
3504
8db25e78 3505 spin_unlock_irq(&gcwq->lock);
60373152 3506 for_each_worker_pool(pool, gcwq)
b2eb83d1 3507 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3508}
3509
628c78e7 3510static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3511{
628c78e7 3512 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3513 struct worker_pool *pool;
db7bccf4
TH
3514 struct worker *worker;
3515 struct hlist_node *pos;
3516 int i;
3af24433 3517
db7bccf4
TH
3518 BUG_ON(gcwq->cpu != smp_processor_id());
3519
b2eb83d1 3520 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3521
f2d5a0ee
TH
3522 /*
3523 * We've claimed all manager positions. Make all workers unbound
3524 * and set DISASSOCIATED. Before this, all workers except for the
3525 * ones which are still executing works from before the last CPU
3526 * down must be on the cpu. After this, they may become diasporas.
3527 */
60373152 3528 for_each_worker_pool(pool, gcwq)
4ce62e9e 3529 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3530 worker->flags |= WORKER_UNBOUND;
3af24433 3531
db7bccf4 3532 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3533 worker->flags |= WORKER_UNBOUND;
06ba38a9 3534
f2d5a0ee
TH
3535 gcwq->flags |= GCWQ_DISASSOCIATED;
3536
b2eb83d1 3537 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3538
e22bee78 3539 /*
403c821d 3540 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3541 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3542 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3543 */
e22bee78 3544 schedule();
06ba38a9 3545
e22bee78 3546 /*
628c78e7
TH
3547 * Sched callbacks are disabled now. Zap nr_running. After this,
3548 * nr_running stays zero and need_more_worker() and keep_working()
3549 * are always true as long as the worklist is not empty. @gcwq now
3550 * behaves as unbound (in terms of concurrency management) gcwq
3551 * which is served by workers tied to the CPU.
3552 *
3553 * On return from this function, the current worker would trigger
3554 * unbound chain execution of pending work items if other workers
3555 * didn't already.
e22bee78 3556 */
4ce62e9e
TH
3557 for_each_worker_pool(pool, gcwq)
3558 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3559}
3af24433 3560
8db25e78
TH
3561/*
3562 * Workqueues should be brought up before normal priority CPU notifiers.
3563 * This will be registered high priority CPU notifier.
3564 */
9fdf9b73 3565static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3566 unsigned long action,
3567 void *hcpu)
3af24433
ON
3568{
3569 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3570 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3571 struct worker_pool *pool;
3ce63377 3572
8db25e78 3573 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3574 case CPU_UP_PREPARE:
4ce62e9e 3575 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3576 struct worker *worker;
3577
3578 if (pool->nr_workers)
3579 continue;
3580
3581 worker = create_worker(pool);
3582 if (!worker)
3583 return NOTIFY_BAD;
3584
3585 spin_lock_irq(&gcwq->lock);
3586 start_worker(worker);
3587 spin_unlock_irq(&gcwq->lock);
3af24433 3588 }
8db25e78 3589 break;
3af24433 3590
db7bccf4
TH
3591 case CPU_DOWN_FAILED:
3592 case CPU_ONLINE:
b2eb83d1 3593 gcwq_claim_assoc_and_lock(gcwq);
bc2ae0f5 3594 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3595 rebind_workers(gcwq);
b2eb83d1 3596 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3597 break;
00dfcaf7 3598 }
65758202
TH
3599 return NOTIFY_OK;
3600}
3601
3602/*
3603 * Workqueues should be brought down after normal priority CPU notifiers.
3604 * This will be registered as low priority CPU notifier.
3605 */
9fdf9b73 3606static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3607 unsigned long action,
3608 void *hcpu)
3609{
8db25e78
TH
3610 unsigned int cpu = (unsigned long)hcpu;
3611 struct work_struct unbind_work;
3612
65758202
TH
3613 switch (action & ~CPU_TASKS_FROZEN) {
3614 case CPU_DOWN_PREPARE:
8db25e78
TH
3615 /* unbinding should happen on the local CPU */
3616 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3617 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3618 flush_work(&unbind_work);
3619 break;
65758202
TH
3620 }
3621 return NOTIFY_OK;
3622}
3623
2d3854a3 3624#ifdef CONFIG_SMP
8ccad40d 3625
2d3854a3 3626struct work_for_cpu {
6b44003e 3627 struct completion completion;
2d3854a3
RR
3628 long (*fn)(void *);
3629 void *arg;
3630 long ret;
3631};
3632
6b44003e 3633static int do_work_for_cpu(void *_wfc)
2d3854a3 3634{
6b44003e 3635 struct work_for_cpu *wfc = _wfc;
2d3854a3 3636 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3637 complete(&wfc->completion);
3638 return 0;
2d3854a3
RR
3639}
3640
3641/**
3642 * work_on_cpu - run a function in user context on a particular cpu
3643 * @cpu: the cpu to run on
3644 * @fn: the function to run
3645 * @arg: the function arg
3646 *
31ad9081
RR
3647 * This will return the value @fn returns.
3648 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3649 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3650 */
3651long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3652{
6b44003e
AM
3653 struct task_struct *sub_thread;
3654 struct work_for_cpu wfc = {
3655 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3656 .fn = fn,
3657 .arg = arg,
3658 };
3659
3660 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3661 if (IS_ERR(sub_thread))
3662 return PTR_ERR(sub_thread);
3663 kthread_bind(sub_thread, cpu);
3664 wake_up_process(sub_thread);
3665 wait_for_completion(&wfc.completion);
2d3854a3
RR
3666 return wfc.ret;
3667}
3668EXPORT_SYMBOL_GPL(work_on_cpu);
3669#endif /* CONFIG_SMP */
3670
a0a1a5fd
TH
3671#ifdef CONFIG_FREEZER
3672
3673/**
3674 * freeze_workqueues_begin - begin freezing workqueues
3675 *
58a69cb4
TH
3676 * Start freezing workqueues. After this function returns, all freezable
3677 * workqueues will queue new works to their frozen_works list instead of
3678 * gcwq->worklist.
a0a1a5fd
TH
3679 *
3680 * CONTEXT:
8b03ae3c 3681 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3682 */
3683void freeze_workqueues_begin(void)
3684{
a0a1a5fd
TH
3685 unsigned int cpu;
3686
3687 spin_lock(&workqueue_lock);
3688
3689 BUG_ON(workqueue_freezing);
3690 workqueue_freezing = true;
3691
f3421797 3692 for_each_gcwq_cpu(cpu) {
8b03ae3c 3693 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3694 struct workqueue_struct *wq;
8b03ae3c
TH
3695
3696 spin_lock_irq(&gcwq->lock);
3697
db7bccf4
TH
3698 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3699 gcwq->flags |= GCWQ_FREEZING;
3700
a0a1a5fd
TH
3701 list_for_each_entry(wq, &workqueues, list) {
3702 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3703
58a69cb4 3704 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3705 cwq->max_active = 0;
a0a1a5fd 3706 }
8b03ae3c
TH
3707
3708 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3709 }
3710
3711 spin_unlock(&workqueue_lock);
3712}
3713
3714/**
58a69cb4 3715 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3716 *
3717 * Check whether freezing is complete. This function must be called
3718 * between freeze_workqueues_begin() and thaw_workqueues().
3719 *
3720 * CONTEXT:
3721 * Grabs and releases workqueue_lock.
3722 *
3723 * RETURNS:
58a69cb4
TH
3724 * %true if some freezable workqueues are still busy. %false if freezing
3725 * is complete.
a0a1a5fd
TH
3726 */
3727bool freeze_workqueues_busy(void)
3728{
a0a1a5fd
TH
3729 unsigned int cpu;
3730 bool busy = false;
3731
3732 spin_lock(&workqueue_lock);
3733
3734 BUG_ON(!workqueue_freezing);
3735
f3421797 3736 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3737 struct workqueue_struct *wq;
a0a1a5fd
TH
3738 /*
3739 * nr_active is monotonically decreasing. It's safe
3740 * to peek without lock.
3741 */
3742 list_for_each_entry(wq, &workqueues, list) {
3743 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3744
58a69cb4 3745 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3746 continue;
3747
3748 BUG_ON(cwq->nr_active < 0);
3749 if (cwq->nr_active) {
3750 busy = true;
3751 goto out_unlock;
3752 }
3753 }
3754 }
3755out_unlock:
3756 spin_unlock(&workqueue_lock);
3757 return busy;
3758}
3759
3760/**
3761 * thaw_workqueues - thaw workqueues
3762 *
3763 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3764 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3765 *
3766 * CONTEXT:
8b03ae3c 3767 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3768 */
3769void thaw_workqueues(void)
3770{
a0a1a5fd
TH
3771 unsigned int cpu;
3772
3773 spin_lock(&workqueue_lock);
3774
3775 if (!workqueue_freezing)
3776 goto out_unlock;
3777
f3421797 3778 for_each_gcwq_cpu(cpu) {
8b03ae3c 3779 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3780 struct worker_pool *pool;
bdbc5dd7 3781 struct workqueue_struct *wq;
8b03ae3c
TH
3782
3783 spin_lock_irq(&gcwq->lock);
3784
db7bccf4
TH
3785 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3786 gcwq->flags &= ~GCWQ_FREEZING;
3787
a0a1a5fd
TH
3788 list_for_each_entry(wq, &workqueues, list) {
3789 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3790
58a69cb4 3791 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3792 continue;
3793
a0a1a5fd
TH
3794 /* restore max_active and repopulate worklist */
3795 cwq->max_active = wq->saved_max_active;
3796
3797 while (!list_empty(&cwq->delayed_works) &&
3798 cwq->nr_active < cwq->max_active)
3799 cwq_activate_first_delayed(cwq);
a0a1a5fd 3800 }
8b03ae3c 3801
4ce62e9e
TH
3802 for_each_worker_pool(pool, gcwq)
3803 wake_up_worker(pool);
e22bee78 3804
8b03ae3c 3805 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3806 }
3807
3808 workqueue_freezing = false;
3809out_unlock:
3810 spin_unlock(&workqueue_lock);
3811}
3812#endif /* CONFIG_FREEZER */
3813
6ee0578b 3814static int __init init_workqueues(void)
1da177e4 3815{
c34056a3 3816 unsigned int cpu;
c8e55f36 3817 int i;
c34056a3 3818
b5490077
TH
3819 /* make sure we have enough bits for OFFQ CPU number */
3820 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3821 WORK_CPU_LAST);
3822
65758202 3823 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3824 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3825
3826 /* initialize gcwqs */
f3421797 3827 for_each_gcwq_cpu(cpu) {
8b03ae3c 3828 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3829 struct worker_pool *pool;
8b03ae3c
TH
3830
3831 spin_lock_init(&gcwq->lock);
3832 gcwq->cpu = cpu;
477a3c33 3833 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3834
c8e55f36
TH
3835 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3836 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3837
4ce62e9e
TH
3838 for_each_worker_pool(pool, gcwq) {
3839 pool->gcwq = gcwq;
3840 INIT_LIST_HEAD(&pool->worklist);
3841 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3842
4ce62e9e
TH
3843 init_timer_deferrable(&pool->idle_timer);
3844 pool->idle_timer.function = idle_worker_timeout;
3845 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3846
4ce62e9e
TH
3847 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3848 (unsigned long)pool);
3849
b2eb83d1 3850 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3851 ida_init(&pool->worker_ida);
3852 }
8b03ae3c
TH
3853 }
3854
e22bee78 3855 /* create the initial worker */
f3421797 3856 for_each_online_gcwq_cpu(cpu) {
e22bee78 3857 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3858 struct worker_pool *pool;
e22bee78 3859
477a3c33
TH
3860 if (cpu != WORK_CPU_UNBOUND)
3861 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3862
3863 for_each_worker_pool(pool, gcwq) {
3864 struct worker *worker;
3865
bc2ae0f5 3866 worker = create_worker(pool);
4ce62e9e
TH
3867 BUG_ON(!worker);
3868 spin_lock_irq(&gcwq->lock);
3869 start_worker(worker);
3870 spin_unlock_irq(&gcwq->lock);
3871 }
e22bee78
TH
3872 }
3873
d320c038 3874 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3875 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3876 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3877 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3878 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3879 system_freezable_wq = alloc_workqueue("events_freezable",
3880 WQ_FREEZABLE, 0);
1aabe902 3881 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3882 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3883 return 0;
1da177e4 3884}
6ee0578b 3885early_initcall(init_workqueues);
This page took 0.882199 seconds and 5 git commands to generate.