workqueue: use system_highpri_wq for highpri workers in rebind_workers()
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038 271struct workqueue_struct *system_wq __read_mostly;
1aabe902 272struct workqueue_struct *system_highpri_wq __read_mostly;
d320c038
TH
273struct workqueue_struct *system_long_wq __read_mostly;
274struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 275struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 276struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 277struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038 278EXPORT_SYMBOL_GPL(system_wq);
1aabe902 279EXPORT_SYMBOL_GPL(system_highpri_wq);
d320c038
TH
280EXPORT_SYMBOL_GPL(system_long_wq);
281EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 282EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 283EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 284EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 285
97bd2347
TH
286#define CREATE_TRACE_POINTS
287#include <trace/events/workqueue.h>
288
4ce62e9e 289#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
290 for ((pool) = &(gcwq)->pools[0]; \
291 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 292
db7bccf4
TH
293#define for_each_busy_worker(worker, i, pos, gcwq) \
294 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
295 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
296
f3421797
TH
297static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 unsigned int sw)
299{
300 if (cpu < nr_cpu_ids) {
301 if (sw & 1) {
302 cpu = cpumask_next(cpu, mask);
303 if (cpu < nr_cpu_ids)
304 return cpu;
305 }
306 if (sw & 2)
307 return WORK_CPU_UNBOUND;
308 }
309 return WORK_CPU_NONE;
310}
311
312static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
313 struct workqueue_struct *wq)
314{
315 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
316}
317
09884951
TH
318/*
319 * CPU iterators
320 *
321 * An extra gcwq is defined for an invalid cpu number
322 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
323 * specific CPU. The following iterators are similar to
324 * for_each_*_cpu() iterators but also considers the unbound gcwq.
325 *
326 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
327 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
328 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
329 * WORK_CPU_UNBOUND for unbound workqueues
330 */
f3421797
TH
331#define for_each_gcwq_cpu(cpu) \
332 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
333 (cpu) < WORK_CPU_NONE; \
334 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
335
336#define for_each_online_gcwq_cpu(cpu) \
337 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
338 (cpu) < WORK_CPU_NONE; \
339 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
340
341#define for_each_cwq_cpu(cpu, wq) \
342 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
343 (cpu) < WORK_CPU_NONE; \
344 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
345
dc186ad7
TG
346#ifdef CONFIG_DEBUG_OBJECTS_WORK
347
348static struct debug_obj_descr work_debug_descr;
349
99777288
SG
350static void *work_debug_hint(void *addr)
351{
352 return ((struct work_struct *) addr)->func;
353}
354
dc186ad7
TG
355/*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359static int work_fixup_init(void *addr, enum debug_obj_state state)
360{
361 struct work_struct *work = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 cancel_work_sync(work);
366 debug_object_init(work, &work_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371}
372
373/*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378static int work_fixup_activate(void *addr, enum debug_obj_state state)
379{
380 struct work_struct *work = addr;
381
382 switch (state) {
383
384 case ODEBUG_STATE_NOTAVAILABLE:
385 /*
386 * This is not really a fixup. The work struct was
387 * statically initialized. We just make sure that it
388 * is tracked in the object tracker.
389 */
22df02bb 390 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
391 debug_object_init(work, &work_debug_descr);
392 debug_object_activate(work, &work_debug_descr);
393 return 0;
394 }
395 WARN_ON_ONCE(1);
396 return 0;
397
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400
401 default:
402 return 0;
403 }
404}
405
406/*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
410static int work_fixup_free(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_free(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424static struct debug_obj_descr work_debug_descr = {
425 .name = "work_struct",
99777288 426 .debug_hint = work_debug_hint,
dc186ad7
TG
427 .fixup_init = work_fixup_init,
428 .fixup_activate = work_fixup_activate,
429 .fixup_free = work_fixup_free,
430};
431
432static inline void debug_work_activate(struct work_struct *work)
433{
434 debug_object_activate(work, &work_debug_descr);
435}
436
437static inline void debug_work_deactivate(struct work_struct *work)
438{
439 debug_object_deactivate(work, &work_debug_descr);
440}
441
442void __init_work(struct work_struct *work, int onstack)
443{
444 if (onstack)
445 debug_object_init_on_stack(work, &work_debug_descr);
446 else
447 debug_object_init(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(__init_work);
450
451void destroy_work_on_stack(struct work_struct *work)
452{
453 debug_object_free(work, &work_debug_descr);
454}
455EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456
457#else
458static inline void debug_work_activate(struct work_struct *work) { }
459static inline void debug_work_deactivate(struct work_struct *work) { }
460#endif
461
95402b38
GS
462/* Serializes the accesses to the list of workqueues. */
463static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 464static LIST_HEAD(workqueues);
a0a1a5fd 465static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 466
e22bee78
TH
467/*
468 * The almighty global cpu workqueues. nr_running is the only field
469 * which is expected to be used frequently by other cpus via
470 * try_to_wake_up(). Put it in a separate cacheline.
471 */
8b03ae3c 472static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 473static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 474
f3421797
TH
475/*
476 * Global cpu workqueue and nr_running counter for unbound gcwq. The
477 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
478 * workers have WORKER_UNBOUND set.
479 */
480static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
481static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
482 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483};
f3421797 484
c34056a3 485static int worker_thread(void *__worker);
1da177e4 486
3270476a
TH
487static int worker_pool_pri(struct worker_pool *pool)
488{
489 return pool - pool->gcwq->pools;
490}
491
8b03ae3c
TH
492static struct global_cwq *get_gcwq(unsigned int cpu)
493{
f3421797
TH
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(global_cwq, cpu);
496 else
497 return &unbound_global_cwq;
8b03ae3c
TH
498}
499
63d95a91 500static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 501{
63d95a91 502 int cpu = pool->gcwq->cpu;
3270476a 503 int idx = worker_pool_pri(pool);
63d95a91 504
f3421797 505 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 506 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 507 else
4ce62e9e 508 return &unbound_pool_nr_running[idx];
e22bee78
TH
509}
510
1537663f
TH
511static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
512 struct workqueue_struct *wq)
b1f4ec17 513{
f3421797 514 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 515 if (likely(cpu < nr_cpu_ids))
f3421797 516 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
517 } else if (likely(cpu == WORK_CPU_UNBOUND))
518 return wq->cpu_wq.single;
519 return NULL;
b1f4ec17
ON
520}
521
73f53c4a
TH
522static unsigned int work_color_to_flags(int color)
523{
524 return color << WORK_STRUCT_COLOR_SHIFT;
525}
526
527static int get_work_color(struct work_struct *work)
528{
529 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
530 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531}
532
533static int work_next_color(int color)
534{
535 return (color + 1) % WORK_NR_COLORS;
536}
1da177e4 537
14441960 538/*
b5490077
TH
539 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
540 * contain the pointer to the queued cwq. Once execution starts, the flag
541 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 542 *
bbb68dfa
TH
543 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
544 * and clear_work_data() can be used to set the cwq, cpu or clear
545 * work->data. These functions should only be called while the work is
546 * owned - ie. while the PENDING bit is set.
547 *
548 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
549 * a work. gcwq is available once the work has been queued anywhere after
550 * initialization until it is sync canceled. cwq is available only while
551 * the work item is queued.
552 *
553 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
554 * canceled. While being canceled, a work item may have its PENDING set
555 * but stay off timer and worklist for arbitrarily long and nobody should
556 * try to steal the PENDING bit.
14441960 557 */
7a22ad75
TH
558static inline void set_work_data(struct work_struct *work, unsigned long data,
559 unsigned long flags)
365970a1 560{
4594bf15 561 BUG_ON(!work_pending(work));
7a22ad75
TH
562 atomic_long_set(&work->data, data | flags | work_static(work));
563}
365970a1 564
7a22ad75
TH
565static void set_work_cwq(struct work_struct *work,
566 struct cpu_workqueue_struct *cwq,
567 unsigned long extra_flags)
568{
569 set_work_data(work, (unsigned long)cwq,
e120153d 570 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
571}
572
8930caba
TH
573static void set_work_cpu_and_clear_pending(struct work_struct *work,
574 unsigned int cpu)
7a22ad75 575{
23657bb1
TH
576 /*
577 * The following wmb is paired with the implied mb in
578 * test_and_set_bit(PENDING) and ensures all updates to @work made
579 * here are visible to and precede any updates by the next PENDING
580 * owner.
581 */
582 smp_wmb();
b5490077 583 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 584}
f756d5e2 585
7a22ad75 586static void clear_work_data(struct work_struct *work)
1da177e4 587{
23657bb1 588 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 589 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
590}
591
7a22ad75 592static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 593{
e120153d 594 unsigned long data = atomic_long_read(&work->data);
7a22ad75 595
e120153d
TH
596 if (data & WORK_STRUCT_CWQ)
597 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
598 else
599 return NULL;
4d707b9f
ON
600}
601
7a22ad75 602static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 603{
e120153d 604 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
605 unsigned int cpu;
606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
bd7bdd43 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 610
b5490077 611 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 612 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
613 return NULL;
614
f3421797 615 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 616 return get_gcwq(cpu);
b1f4ec17
ON
617}
618
bbb68dfa
TH
619static void mark_work_canceling(struct work_struct *work)
620{
621 struct global_cwq *gcwq = get_work_gcwq(work);
622 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
623
624 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
625 WORK_STRUCT_PENDING);
626}
627
628static bool work_is_canceling(struct work_struct *work)
629{
630 unsigned long data = atomic_long_read(&work->data);
631
632 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
633}
634
e22bee78 635/*
3270476a
TH
636 * Policy functions. These define the policies on how the global worker
637 * pools are managed. Unless noted otherwise, these functions assume that
638 * they're being called with gcwq->lock held.
e22bee78
TH
639 */
640
63d95a91 641static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 642{
3270476a 643 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
644}
645
4594bf15 646/*
e22bee78
TH
647 * Need to wake up a worker? Called from anything but currently
648 * running workers.
974271c4
TH
649 *
650 * Note that, because unbound workers never contribute to nr_running, this
651 * function will always return %true for unbound gcwq as long as the
652 * worklist isn't empty.
4594bf15 653 */
63d95a91 654static bool need_more_worker(struct worker_pool *pool)
365970a1 655{
63d95a91 656 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 657}
4594bf15 658
e22bee78 659/* Can I start working? Called from busy but !running workers. */
63d95a91 660static bool may_start_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 return pool->nr_idle;
e22bee78
TH
663}
664
665/* Do I need to keep working? Called from currently running workers. */
63d95a91 666static bool keep_working(struct worker_pool *pool)
e22bee78 667{
63d95a91 668 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 669
3270476a 670 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
671}
672
673/* Do we need a new worker? Called from manager. */
63d95a91 674static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 677}
365970a1 678
e22bee78 679/* Do I need to be the manager? */
63d95a91 680static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_to_create_worker(pool) ||
11ebea50 683 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
684}
685
686/* Do we have too many workers and should some go away? */
63d95a91 687static bool too_many_workers(struct worker_pool *pool)
e22bee78 688{
60373152 689 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
692
693 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
694}
695
4d707b9f 696/*
e22bee78
TH
697 * Wake up functions.
698 */
699
7e11629d 700/* Return the first worker. Safe with preemption disabled */
63d95a91 701static struct worker *first_worker(struct worker_pool *pool)
7e11629d 702{
63d95a91 703 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
704 return NULL;
705
63d95a91 706 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
707}
708
709/**
710 * wake_up_worker - wake up an idle worker
63d95a91 711 * @pool: worker pool to wake worker from
7e11629d 712 *
63d95a91 713 * Wake up the first idle worker of @pool.
7e11629d
TH
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 */
63d95a91 718static void wake_up_worker(struct worker_pool *pool)
7e11629d 719{
63d95a91 720 struct worker *worker = first_worker(pool);
7e11629d
TH
721
722 if (likely(worker))
723 wake_up_process(worker->task);
724}
725
d302f017 726/**
e22bee78
TH
727 * wq_worker_waking_up - a worker is waking up
728 * @task: task waking up
729 * @cpu: CPU @task is waking up to
730 *
731 * This function is called during try_to_wake_up() when a worker is
732 * being awoken.
733 *
734 * CONTEXT:
735 * spin_lock_irq(rq->lock)
736 */
737void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
738{
739 struct worker *worker = kthread_data(task);
740
2d64672e 741 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 742 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
743}
744
745/**
746 * wq_worker_sleeping - a worker is going to sleep
747 * @task: task going to sleep
748 * @cpu: CPU in question, must be the current CPU number
749 *
750 * This function is called during schedule() when a busy worker is
751 * going to sleep. Worker on the same cpu can be woken up by
752 * returning pointer to its task.
753 *
754 * CONTEXT:
755 * spin_lock_irq(rq->lock)
756 *
757 * RETURNS:
758 * Worker task on @cpu to wake up, %NULL if none.
759 */
760struct task_struct *wq_worker_sleeping(struct task_struct *task,
761 unsigned int cpu)
762{
763 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 764 struct worker_pool *pool = worker->pool;
63d95a91 765 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 766
2d64672e 767 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
768 return NULL;
769
770 /* this can only happen on the local cpu */
771 BUG_ON(cpu != raw_smp_processor_id());
772
773 /*
774 * The counterpart of the following dec_and_test, implied mb,
775 * worklist not empty test sequence is in insert_work().
776 * Please read comment there.
777 *
628c78e7
TH
778 * NOT_RUNNING is clear. This means that we're bound to and
779 * running on the local cpu w/ rq lock held and preemption
780 * disabled, which in turn means that none else could be
781 * manipulating idle_list, so dereferencing idle_list without gcwq
782 * lock is safe.
e22bee78 783 */
bd7bdd43 784 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 785 to_wakeup = first_worker(pool);
e22bee78
TH
786 return to_wakeup ? to_wakeup->task : NULL;
787}
788
789/**
790 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 791 * @worker: self
d302f017
TH
792 * @flags: flags to set
793 * @wakeup: wakeup an idle worker if necessary
794 *
e22bee78
TH
795 * Set @flags in @worker->flags and adjust nr_running accordingly. If
796 * nr_running becomes zero and @wakeup is %true, an idle worker is
797 * woken up.
d302f017 798 *
cb444766
TH
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock)
d302f017
TH
801 */
802static inline void worker_set_flags(struct worker *worker, unsigned int flags,
803 bool wakeup)
804{
bd7bdd43 805 struct worker_pool *pool = worker->pool;
e22bee78 806
cb444766
TH
807 WARN_ON_ONCE(worker->task != current);
808
e22bee78
TH
809 /*
810 * If transitioning into NOT_RUNNING, adjust nr_running and
811 * wake up an idle worker as necessary if requested by
812 * @wakeup.
813 */
814 if ((flags & WORKER_NOT_RUNNING) &&
815 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 816 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
817
818 if (wakeup) {
819 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 820 !list_empty(&pool->worklist))
63d95a91 821 wake_up_worker(pool);
e22bee78
TH
822 } else
823 atomic_dec(nr_running);
824 }
825
d302f017
TH
826 worker->flags |= flags;
827}
828
829/**
e22bee78 830 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 831 * @worker: self
d302f017
TH
832 * @flags: flags to clear
833 *
e22bee78 834 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 835 *
cb444766
TH
836 * CONTEXT:
837 * spin_lock_irq(gcwq->lock)
d302f017
TH
838 */
839static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
840{
63d95a91 841 struct worker_pool *pool = worker->pool;
e22bee78
TH
842 unsigned int oflags = worker->flags;
843
cb444766
TH
844 WARN_ON_ONCE(worker->task != current);
845
d302f017 846 worker->flags &= ~flags;
e22bee78 847
42c025f3
TH
848 /*
849 * If transitioning out of NOT_RUNNING, increment nr_running. Note
850 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
851 * of multiple flags, not a single flag.
852 */
e22bee78
TH
853 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
854 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 855 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
856}
857
c8e55f36
TH
858/**
859 * busy_worker_head - return the busy hash head for a work
860 * @gcwq: gcwq of interest
861 * @work: work to be hashed
862 *
863 * Return hash head of @gcwq for @work.
864 *
865 * CONTEXT:
866 * spin_lock_irq(gcwq->lock).
867 *
868 * RETURNS:
869 * Pointer to the hash head.
870 */
871static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
872 struct work_struct *work)
873{
874 const int base_shift = ilog2(sizeof(struct work_struct));
875 unsigned long v = (unsigned long)work;
876
877 /* simple shift and fold hash, do we need something better? */
878 v >>= base_shift;
879 v += v >> BUSY_WORKER_HASH_ORDER;
880 v &= BUSY_WORKER_HASH_MASK;
881
882 return &gcwq->busy_hash[v];
883}
884
8cca0eea
TH
885/**
886 * __find_worker_executing_work - find worker which is executing a work
887 * @gcwq: gcwq of interest
888 * @bwh: hash head as returned by busy_worker_head()
889 * @work: work to find worker for
890 *
891 * Find a worker which is executing @work on @gcwq. @bwh should be
892 * the hash head obtained by calling busy_worker_head() with the same
893 * work.
894 *
895 * CONTEXT:
896 * spin_lock_irq(gcwq->lock).
897 *
898 * RETURNS:
899 * Pointer to worker which is executing @work if found, NULL
900 * otherwise.
901 */
902static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
903 struct hlist_head *bwh,
904 struct work_struct *work)
905{
906 struct worker *worker;
907 struct hlist_node *tmp;
908
909 hlist_for_each_entry(worker, tmp, bwh, hentry)
910 if (worker->current_work == work)
911 return worker;
912 return NULL;
913}
914
915/**
916 * find_worker_executing_work - find worker which is executing a work
917 * @gcwq: gcwq of interest
918 * @work: work to find worker for
919 *
920 * Find a worker which is executing @work on @gcwq. This function is
921 * identical to __find_worker_executing_work() except that this
922 * function calculates @bwh itself.
923 *
924 * CONTEXT:
925 * spin_lock_irq(gcwq->lock).
926 *
927 * RETURNS:
928 * Pointer to worker which is executing @work if found, NULL
929 * otherwise.
4d707b9f 930 */
8cca0eea
TH
931static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
932 struct work_struct *work)
4d707b9f 933{
8cca0eea
TH
934 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
935 work);
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
953 * spin_lock_irq(gcwq->lock).
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
979static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
980{
981 struct work_struct *work = list_first_entry(&cwq->delayed_works,
982 struct work_struct, entry);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
990/**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 * @delayed: for a delayed work
995 *
996 * A work either has completed or is removed from pending queue,
997 * decrement nr_in_flight of its cwq and handle workqueue flushing.
998 *
999 * CONTEXT:
1000 * spin_lock_irq(gcwq->lock).
1001 */
1002static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1003 bool delayed)
1004{
1005 /* ignore uncolored works */
1006 if (color == WORK_NO_COLOR)
1007 return;
1008
1009 cwq->nr_in_flight[color]--;
1010
1011 if (!delayed) {
1012 cwq->nr_active--;
1013 if (!list_empty(&cwq->delayed_works)) {
1014 /* one down, submit a delayed one */
1015 if (cwq->nr_active < cwq->max_active)
1016 cwq_activate_first_delayed(cwq);
1017 }
1018 }
1019
1020 /* is flush in progress and are we at the flushing tip? */
1021 if (likely(cwq->flush_color != color))
1022 return;
1023
1024 /* are there still in-flight works? */
1025 if (cwq->nr_in_flight[color])
1026 return;
1027
1028 /* this cwq is done, clear flush_color */
1029 cwq->flush_color = -1;
1030
1031 /*
1032 * If this was the last cwq, wake up the first flusher. It
1033 * will handle the rest.
1034 */
1035 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1036 complete(&cwq->wq->first_flusher->done);
1037}
1038
36e227d2 1039/**
bbb68dfa 1040 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1041 * @work: work item to steal
1042 * @is_dwork: @work is a delayed_work
bbb68dfa 1043 * @flags: place to store irq state
36e227d2
TH
1044 *
1045 * Try to grab PENDING bit of @work. This function can handle @work in any
1046 * stable state - idle, on timer or on worklist. Return values are
1047 *
1048 * 1 if @work was pending and we successfully stole PENDING
1049 * 0 if @work was idle and we claimed PENDING
1050 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1051 * -ENOENT if someone else is canceling @work, this state may persist
1052 * for arbitrarily long
36e227d2 1053 *
bbb68dfa
TH
1054 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1055 * preempted while holding PENDING and @work off queue, preemption must be
1056 * disabled on entry. This ensures that we don't return -EAGAIN while
1057 * another task is preempted in this function.
1058 *
1059 * On successful return, >= 0, irq is disabled and the caller is
1060 * responsible for releasing it using local_irq_restore(*@flags).
1061 *
1062 * This function is safe to call from any context other than IRQ handler.
1063 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1064 * this function return -EAGAIN perpetually.
bf4ede01 1065 */
bbb68dfa
TH
1066static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1067 unsigned long *flags)
bf4ede01
TH
1068{
1069 struct global_cwq *gcwq;
bf4ede01 1070
bbb68dfa
TH
1071 WARN_ON_ONCE(in_irq());
1072
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 if (likely(del_timer(&dwork->timer)))
1080 return 1;
1081 }
1082
1083 /* try to claim PENDING the normal way */
bf4ede01
TH
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1085 return 0;
1086
1087 /*
1088 * The queueing is in progress, or it is already queued. Try to
1089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1090 */
1091 gcwq = get_work_gcwq(work);
1092 if (!gcwq)
bbb68dfa 1093 goto fail;
bf4ede01 1094
bbb68dfa 1095 spin_lock(&gcwq->lock);
bf4ede01
TH
1096 if (!list_empty(&work->entry)) {
1097 /*
1098 * This work is queued, but perhaps we locked the wrong gcwq.
1099 * In that case we must see the new value after rmb(), see
1100 * insert_work()->wmb().
1101 */
1102 smp_rmb();
1103 if (gcwq == get_work_gcwq(work)) {
1104 debug_work_deactivate(work);
1105 list_del_init(&work->entry);
1106 cwq_dec_nr_in_flight(get_work_cwq(work),
1107 get_work_color(work),
1108 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1109
bbb68dfa 1110 spin_unlock(&gcwq->lock);
36e227d2 1111 return 1;
bf4ede01
TH
1112 }
1113 }
bbb68dfa
TH
1114 spin_unlock(&gcwq->lock);
1115fail:
1116 local_irq_restore(*flags);
1117 if (work_is_canceling(work))
1118 return -ENOENT;
1119 cpu_relax();
36e227d2 1120 return -EAGAIN;
bf4ede01
TH
1121}
1122
4690c4ab 1123/**
7e11629d 1124 * insert_work - insert a work into gcwq
4690c4ab
TH
1125 * @cwq: cwq @work belongs to
1126 * @work: work to insert
1127 * @head: insertion point
1128 * @extra_flags: extra WORK_STRUCT_* flags to set
1129 *
7e11629d
TH
1130 * Insert @work which belongs to @cwq into @gcwq after @head.
1131 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1132 *
1133 * CONTEXT:
8b03ae3c 1134 * spin_lock_irq(gcwq->lock).
4690c4ab 1135 */
b89deed3 1136static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1137 struct work_struct *work, struct list_head *head,
1138 unsigned int extra_flags)
b89deed3 1139{
63d95a91 1140 struct worker_pool *pool = cwq->pool;
e22bee78 1141
4690c4ab 1142 /* we own @work, set data and link */
7a22ad75 1143 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1144
6e84d644
ON
1145 /*
1146 * Ensure that we get the right work->data if we see the
1147 * result of list_add() below, see try_to_grab_pending().
1148 */
1149 smp_wmb();
4690c4ab 1150
1a4d9b0a 1151 list_add_tail(&work->entry, head);
e22bee78
TH
1152
1153 /*
1154 * Ensure either worker_sched_deactivated() sees the above
1155 * list_add_tail() or we see zero nr_running to avoid workers
1156 * lying around lazily while there are works to be processed.
1157 */
1158 smp_mb();
1159
63d95a91
TH
1160 if (__need_more_worker(pool))
1161 wake_up_worker(pool);
b89deed3
ON
1162}
1163
c8efcc25
TH
1164/*
1165 * Test whether @work is being queued from another work executing on the
1166 * same workqueue. This is rather expensive and should only be used from
1167 * cold paths.
1168 */
1169static bool is_chained_work(struct workqueue_struct *wq)
1170{
1171 unsigned long flags;
1172 unsigned int cpu;
1173
1174 for_each_gcwq_cpu(cpu) {
1175 struct global_cwq *gcwq = get_gcwq(cpu);
1176 struct worker *worker;
1177 struct hlist_node *pos;
1178 int i;
1179
1180 spin_lock_irqsave(&gcwq->lock, flags);
1181 for_each_busy_worker(worker, i, pos, gcwq) {
1182 if (worker->task != current)
1183 continue;
1184 spin_unlock_irqrestore(&gcwq->lock, flags);
1185 /*
1186 * I'm @worker, no locking necessary. See if @work
1187 * is headed to the same workqueue.
1188 */
1189 return worker->current_cwq->wq == wq;
1190 }
1191 spin_unlock_irqrestore(&gcwq->lock, flags);
1192 }
1193 return false;
1194}
1195
4690c4ab 1196static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1197 struct work_struct *work)
1198{
502ca9d8
TH
1199 struct global_cwq *gcwq;
1200 struct cpu_workqueue_struct *cwq;
1e19ffc6 1201 struct list_head *worklist;
8a2e8e5d 1202 unsigned int work_flags;
b75cac93 1203 unsigned int req_cpu = cpu;
8930caba
TH
1204
1205 /*
1206 * While a work item is PENDING && off queue, a task trying to
1207 * steal the PENDING will busy-loop waiting for it to either get
1208 * queued or lose PENDING. Grabbing PENDING and queueing should
1209 * happen with IRQ disabled.
1210 */
1211 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1212
dc186ad7 1213 debug_work_activate(work);
1e19ffc6 1214
c8efcc25 1215 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1216 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1217 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1218 return;
1219
c7fc77f7
TH
1220 /* determine gcwq to use */
1221 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1222 struct global_cwq *last_gcwq;
1223
57469821 1224 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1225 cpu = raw_smp_processor_id();
1226
18aa9eff
TH
1227 /*
1228 * It's multi cpu. If @wq is non-reentrant and @work
1229 * was previously on a different cpu, it might still
1230 * be running there, in which case the work needs to
1231 * be queued on that cpu to guarantee non-reentrance.
1232 */
502ca9d8 1233 gcwq = get_gcwq(cpu);
18aa9eff
TH
1234 if (wq->flags & WQ_NON_REENTRANT &&
1235 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1236 struct worker *worker;
1237
8930caba 1238 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1239
1240 worker = find_worker_executing_work(last_gcwq, work);
1241
1242 if (worker && worker->current_cwq->wq == wq)
1243 gcwq = last_gcwq;
1244 else {
1245 /* meh... not running there, queue here */
8930caba
TH
1246 spin_unlock(&last_gcwq->lock);
1247 spin_lock(&gcwq->lock);
18aa9eff 1248 }
8930caba
TH
1249 } else {
1250 spin_lock(&gcwq->lock);
1251 }
f3421797
TH
1252 } else {
1253 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1254 spin_lock(&gcwq->lock);
502ca9d8
TH
1255 }
1256
1257 /* gcwq determined, get cwq and queue */
1258 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1259 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1260
f5b2552b 1261 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1262 spin_unlock(&gcwq->lock);
f5b2552b
DC
1263 return;
1264 }
1e19ffc6 1265
73f53c4a 1266 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1267 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1268
1269 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1270 trace_workqueue_activate_work(work);
1e19ffc6 1271 cwq->nr_active++;
3270476a 1272 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1273 } else {
1274 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1275 worklist = &cwq->delayed_works;
8a2e8e5d 1276 }
1e19ffc6 1277
8a2e8e5d 1278 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1279
8930caba 1280 spin_unlock(&gcwq->lock);
1da177e4
LT
1281}
1282
c1a220e7
ZR
1283/**
1284 * queue_work_on - queue work on specific cpu
1285 * @cpu: CPU number to execute work on
1286 * @wq: workqueue to use
1287 * @work: work to queue
1288 *
d4283e93 1289 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1290 *
1291 * We queue the work to a specific CPU, the caller must ensure it
1292 * can't go away.
1293 */
d4283e93
TH
1294bool queue_work_on(int cpu, struct workqueue_struct *wq,
1295 struct work_struct *work)
c1a220e7 1296{
d4283e93 1297 bool ret = false;
8930caba
TH
1298 unsigned long flags;
1299
1300 local_irq_save(flags);
c1a220e7 1301
22df02bb 1302 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1303 __queue_work(cpu, wq, work);
d4283e93 1304 ret = true;
c1a220e7 1305 }
8930caba
TH
1306
1307 local_irq_restore(flags);
c1a220e7
ZR
1308 return ret;
1309}
1310EXPORT_SYMBOL_GPL(queue_work_on);
1311
0fcb78c2 1312/**
0a13c00e 1313 * queue_work - queue work on a workqueue
0fcb78c2 1314 * @wq: workqueue to use
0a13c00e 1315 * @work: work to queue
0fcb78c2 1316 *
d4283e93 1317 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1318 *
1319 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1320 * it can be processed by another CPU.
0fcb78c2 1321 */
d4283e93 1322bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1323{
57469821 1324 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1325}
1326EXPORT_SYMBOL_GPL(queue_work);
1327
d8e794df 1328void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1329{
1330 struct delayed_work *dwork = (struct delayed_work *)__data;
1331 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1332
8930caba 1333 local_irq_disable();
1265057f 1334 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1335 local_irq_enable();
1da177e4 1336}
d8e794df 1337EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1338
7beb2edf
TH
1339static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1340 struct delayed_work *dwork, unsigned long delay)
1341{
1342 struct timer_list *timer = &dwork->timer;
1343 struct work_struct *work = &dwork->work;
1344 unsigned int lcpu;
1345
1346 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1347 timer->data != (unsigned long)dwork);
1348 BUG_ON(timer_pending(timer));
1349 BUG_ON(!list_empty(&work->entry));
1350
1351 timer_stats_timer_set_start_info(&dwork->timer);
1352
1353 /*
1354 * This stores cwq for the moment, for the timer_fn. Note that the
1355 * work's gcwq is preserved to allow reentrance detection for
1356 * delayed works.
1357 */
1358 if (!(wq->flags & WQ_UNBOUND)) {
1359 struct global_cwq *gcwq = get_work_gcwq(work);
1360
e42986de
JK
1361 /*
1362 * If we cannot get the last gcwq from @work directly,
1363 * select the last CPU such that it avoids unnecessarily
1364 * triggering non-reentrancy check in __queue_work().
1365 */
1366 lcpu = cpu;
1367 if (gcwq)
7beb2edf 1368 lcpu = gcwq->cpu;
e42986de 1369 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1370 lcpu = raw_smp_processor_id();
1371 } else {
1372 lcpu = WORK_CPU_UNBOUND;
1373 }
1374
1375 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1376
1265057f 1377 dwork->cpu = cpu;
7beb2edf
TH
1378 timer->expires = jiffies + delay;
1379
1380 if (unlikely(cpu != WORK_CPU_UNBOUND))
1381 add_timer_on(timer, cpu);
1382 else
1383 add_timer(timer);
1384}
1385
0fcb78c2
REB
1386/**
1387 * queue_delayed_work_on - queue work on specific CPU after delay
1388 * @cpu: CPU number to execute work on
1389 * @wq: workqueue to use
af9997e4 1390 * @dwork: work to queue
0fcb78c2
REB
1391 * @delay: number of jiffies to wait before queueing
1392 *
715f1300
TH
1393 * Returns %false if @work was already on a queue, %true otherwise. If
1394 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1395 * execution.
0fcb78c2 1396 */
d4283e93
TH
1397bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1398 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1399{
52bad64d 1400 struct work_struct *work = &dwork->work;
d4283e93 1401 bool ret = false;
8930caba
TH
1402 unsigned long flags;
1403
715f1300
TH
1404 if (!delay)
1405 return queue_work_on(cpu, wq, &dwork->work);
1406
8930caba
TH
1407 /* read the comment in __queue_work() */
1408 local_irq_save(flags);
7a6bc1cd 1409
22df02bb 1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1411 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1412 ret = true;
7a6bc1cd 1413 }
8930caba
TH
1414
1415 local_irq_restore(flags);
7a6bc1cd
VP
1416 return ret;
1417}
ae90dd5d 1418EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1419
0a13c00e
TH
1420/**
1421 * queue_delayed_work - queue work on a workqueue after delay
1422 * @wq: workqueue to use
1423 * @dwork: delayable work to queue
1424 * @delay: number of jiffies to wait before queueing
1425 *
715f1300 1426 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1427 */
d4283e93 1428bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1429 struct delayed_work *dwork, unsigned long delay)
1430{
57469821 1431 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1432}
1433EXPORT_SYMBOL_GPL(queue_delayed_work);
1434
8376fe22
TH
1435/**
1436 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1437 * @cpu: CPU number to execute work on
1438 * @wq: workqueue to use
1439 * @dwork: work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
1442 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1443 * modify @dwork's timer so that it expires after @delay. If @delay is
1444 * zero, @work is guaranteed to be scheduled immediately regardless of its
1445 * current state.
1446 *
1447 * Returns %false if @dwork was idle and queued, %true if @dwork was
1448 * pending and its timer was modified.
1449 *
1450 * This function is safe to call from any context other than IRQ handler.
1451 * See try_to_grab_pending() for details.
1452 */
1453bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455{
1456 unsigned long flags;
1457 int ret;
1458
1459 do {
1460 ret = try_to_grab_pending(&dwork->work, true, &flags);
1461 } while (unlikely(ret == -EAGAIN));
1462
1463 if (likely(ret >= 0)) {
1464 __queue_delayed_work(cpu, wq, dwork, delay);
1465 local_irq_restore(flags);
1466 }
1467
1468 /* -ENOENT from try_to_grab_pending() becomes %true */
1469 return ret;
1470}
1471EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1472
1473/**
1474 * mod_delayed_work - modify delay of or queue a delayed work
1475 * @wq: workqueue to use
1476 * @dwork: work to queue
1477 * @delay: number of jiffies to wait before queueing
1478 *
1479 * mod_delayed_work_on() on local CPU.
1480 */
1481bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1482 unsigned long delay)
1483{
1484 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1485}
1486EXPORT_SYMBOL_GPL(mod_delayed_work);
1487
c8e55f36
TH
1488/**
1489 * worker_enter_idle - enter idle state
1490 * @worker: worker which is entering idle state
1491 *
1492 * @worker is entering idle state. Update stats and idle timer if
1493 * necessary.
1494 *
1495 * LOCKING:
1496 * spin_lock_irq(gcwq->lock).
1497 */
1498static void worker_enter_idle(struct worker *worker)
1da177e4 1499{
bd7bdd43
TH
1500 struct worker_pool *pool = worker->pool;
1501 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1502
1503 BUG_ON(worker->flags & WORKER_IDLE);
1504 BUG_ON(!list_empty(&worker->entry) &&
1505 (worker->hentry.next || worker->hentry.pprev));
1506
cb444766
TH
1507 /* can't use worker_set_flags(), also called from start_worker() */
1508 worker->flags |= WORKER_IDLE;
bd7bdd43 1509 pool->nr_idle++;
e22bee78 1510 worker->last_active = jiffies;
c8e55f36
TH
1511
1512 /* idle_list is LIFO */
bd7bdd43 1513 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1514
628c78e7
TH
1515 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1516 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1517
544ecf31 1518 /*
628c78e7
TH
1519 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1520 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1521 * nr_running, the warning may trigger spuriously. Check iff
1522 * unbind is not in progress.
544ecf31 1523 */
628c78e7 1524 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1525 pool->nr_workers == pool->nr_idle &&
63d95a91 1526 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1527}
1528
1529/**
1530 * worker_leave_idle - leave idle state
1531 * @worker: worker which is leaving idle state
1532 *
1533 * @worker is leaving idle state. Update stats.
1534 *
1535 * LOCKING:
1536 * spin_lock_irq(gcwq->lock).
1537 */
1538static void worker_leave_idle(struct worker *worker)
1539{
bd7bdd43 1540 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1541
1542 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1543 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1544 pool->nr_idle--;
c8e55f36
TH
1545 list_del_init(&worker->entry);
1546}
1547
e22bee78
TH
1548/**
1549 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1550 * @worker: self
1551 *
1552 * Works which are scheduled while the cpu is online must at least be
1553 * scheduled to a worker which is bound to the cpu so that if they are
1554 * flushed from cpu callbacks while cpu is going down, they are
1555 * guaranteed to execute on the cpu.
1556 *
1557 * This function is to be used by rogue workers and rescuers to bind
1558 * themselves to the target cpu and may race with cpu going down or
1559 * coming online. kthread_bind() can't be used because it may put the
1560 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1561 * verbatim as it's best effort and blocking and gcwq may be
1562 * [dis]associated in the meantime.
1563 *
f2d5a0ee
TH
1564 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1565 * binding against %GCWQ_DISASSOCIATED which is set during
1566 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1567 * enters idle state or fetches works without dropping lock, it can
1568 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1569 *
1570 * CONTEXT:
1571 * Might sleep. Called without any lock but returns with gcwq->lock
1572 * held.
1573 *
1574 * RETURNS:
1575 * %true if the associated gcwq is online (@worker is successfully
1576 * bound), %false if offline.
1577 */
1578static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1579__acquires(&gcwq->lock)
e22bee78 1580{
bd7bdd43 1581 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1582 struct task_struct *task = worker->task;
1583
1584 while (true) {
4e6045f1 1585 /*
e22bee78
TH
1586 * The following call may fail, succeed or succeed
1587 * without actually migrating the task to the cpu if
1588 * it races with cpu hotunplug operation. Verify
1589 * against GCWQ_DISASSOCIATED.
4e6045f1 1590 */
f3421797
TH
1591 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1592 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1593
1594 spin_lock_irq(&gcwq->lock);
1595 if (gcwq->flags & GCWQ_DISASSOCIATED)
1596 return false;
1597 if (task_cpu(task) == gcwq->cpu &&
1598 cpumask_equal(&current->cpus_allowed,
1599 get_cpu_mask(gcwq->cpu)))
1600 return true;
1601 spin_unlock_irq(&gcwq->lock);
1602
5035b20f
TH
1603 /*
1604 * We've raced with CPU hot[un]plug. Give it a breather
1605 * and retry migration. cond_resched() is required here;
1606 * otherwise, we might deadlock against cpu_stop trying to
1607 * bring down the CPU on non-preemptive kernel.
1608 */
e22bee78 1609 cpu_relax();
5035b20f 1610 cond_resched();
e22bee78
TH
1611 }
1612}
1613
25511a47
TH
1614struct idle_rebind {
1615 int cnt; /* # workers to be rebound */
1616 struct completion done; /* all workers rebound */
1617};
1618
1619/*
1620 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1621 * happen synchronously for idle workers. worker_thread() will test
1622 * %WORKER_REBIND before leaving idle and call this function.
1623 */
1624static void idle_worker_rebind(struct worker *worker)
1625{
1626 struct global_cwq *gcwq = worker->pool->gcwq;
1627
1628 /* CPU must be online at this point */
1629 WARN_ON(!worker_maybe_bind_and_lock(worker));
1630 if (!--worker->idle_rebind->cnt)
1631 complete(&worker->idle_rebind->done);
1632 spin_unlock_irq(&worker->pool->gcwq->lock);
1633
1634 /* we did our part, wait for rebind_workers() to finish up */
1635 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1636}
1637
e22bee78 1638/*
25511a47 1639 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1640 * the associated cpu which is coming back online. This is scheduled by
1641 * cpu up but can race with other cpu hotplug operations and may be
1642 * executed twice without intervening cpu down.
e22bee78 1643 */
25511a47 1644static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1645{
1646 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1647 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1648
1649 if (worker_maybe_bind_and_lock(worker))
1650 worker_clr_flags(worker, WORKER_REBIND);
1651
1652 spin_unlock_irq(&gcwq->lock);
1653}
1654
25511a47
TH
1655/**
1656 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1657 * @gcwq: gcwq of interest
1658 *
1659 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1660 * is different for idle and busy ones.
1661 *
1662 * The idle ones should be rebound synchronously and idle rebinding should
1663 * be complete before any worker starts executing work items with
1664 * concurrency management enabled; otherwise, scheduler may oops trying to
1665 * wake up non-local idle worker from wq_worker_sleeping().
1666 *
1667 * This is achieved by repeatedly requesting rebinding until all idle
1668 * workers are known to have been rebound under @gcwq->lock and holding all
1669 * idle workers from becoming busy until idle rebinding is complete.
1670 *
1671 * Once idle workers are rebound, busy workers can be rebound as they
1672 * finish executing their current work items. Queueing the rebind work at
1673 * the head of their scheduled lists is enough. Note that nr_running will
1674 * be properbly bumped as busy workers rebind.
1675 *
1676 * On return, all workers are guaranteed to either be bound or have rebind
1677 * work item scheduled.
1678 */
1679static void rebind_workers(struct global_cwq *gcwq)
1680 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1681{
1682 struct idle_rebind idle_rebind;
1683 struct worker_pool *pool;
1684 struct worker *worker;
1685 struct hlist_node *pos;
1686 int i;
1687
1688 lockdep_assert_held(&gcwq->lock);
1689
1690 for_each_worker_pool(pool, gcwq)
1691 lockdep_assert_held(&pool->manager_mutex);
1692
1693 /*
1694 * Rebind idle workers. Interlocked both ways. We wait for
1695 * workers to rebind via @idle_rebind.done. Workers will wait for
1696 * us to finish up by watching %WORKER_REBIND.
1697 */
1698 init_completion(&idle_rebind.done);
1699retry:
1700 idle_rebind.cnt = 1;
1701 INIT_COMPLETION(idle_rebind.done);
1702
1703 /* set REBIND and kick idle ones, we'll wait for these later */
1704 for_each_worker_pool(pool, gcwq) {
1705 list_for_each_entry(worker, &pool->idle_list, entry) {
1706 if (worker->flags & WORKER_REBIND)
1707 continue;
1708
1709 /* morph UNBOUND to REBIND */
1710 worker->flags &= ~WORKER_UNBOUND;
1711 worker->flags |= WORKER_REBIND;
1712
1713 idle_rebind.cnt++;
1714 worker->idle_rebind = &idle_rebind;
1715
1716 /* worker_thread() will call idle_worker_rebind() */
1717 wake_up_process(worker->task);
1718 }
1719 }
1720
1721 if (--idle_rebind.cnt) {
1722 spin_unlock_irq(&gcwq->lock);
1723 wait_for_completion(&idle_rebind.done);
1724 spin_lock_irq(&gcwq->lock);
1725 /* busy ones might have become idle while waiting, retry */
1726 goto retry;
1727 }
1728
1729 /*
1730 * All idle workers are rebound and waiting for %WORKER_REBIND to
1731 * be cleared inside idle_worker_rebind(). Clear and release.
1732 * Clearing %WORKER_REBIND from this foreign context is safe
1733 * because these workers are still guaranteed to be idle.
1734 */
1735 for_each_worker_pool(pool, gcwq)
1736 list_for_each_entry(worker, &pool->idle_list, entry)
1737 worker->flags &= ~WORKER_REBIND;
1738
1739 wake_up_all(&gcwq->rebind_hold);
1740
1741 /* rebind busy workers */
1742 for_each_busy_worker(worker, i, pos, gcwq) {
1743 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1744 struct workqueue_struct *wq;
25511a47
TH
1745
1746 /* morph UNBOUND to REBIND */
1747 worker->flags &= ~WORKER_UNBOUND;
1748 worker->flags |= WORKER_REBIND;
1749
1750 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1751 work_data_bits(rebind_work)))
1752 continue;
1753
25511a47 1754 debug_work_activate(rebind_work);
e2b6a6d5
JK
1755
1756 /*
1757 * wq doesn't really matter but let's keep @worker->pool
1758 * and @cwq->pool consistent for sanity.
1759 */
1760 if (worker_pool_pri(worker->pool))
1761 wq = system_highpri_wq;
1762 else
1763 wq = system_wq;
1764
1765 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1766 worker->scheduled.next,
1767 work_color_to_flags(WORK_NO_COLOR));
25511a47
TH
1768 }
1769}
1770
c34056a3
TH
1771static struct worker *alloc_worker(void)
1772{
1773 struct worker *worker;
1774
1775 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1776 if (worker) {
1777 INIT_LIST_HEAD(&worker->entry);
affee4b2 1778 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1779 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1780 /* on creation a worker is in !idle && prep state */
1781 worker->flags = WORKER_PREP;
c8e55f36 1782 }
c34056a3
TH
1783 return worker;
1784}
1785
1786/**
1787 * create_worker - create a new workqueue worker
63d95a91 1788 * @pool: pool the new worker will belong to
c34056a3 1789 *
63d95a91 1790 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1791 * can be started by calling start_worker() or destroyed using
1792 * destroy_worker().
1793 *
1794 * CONTEXT:
1795 * Might sleep. Does GFP_KERNEL allocations.
1796 *
1797 * RETURNS:
1798 * Pointer to the newly created worker.
1799 */
bc2ae0f5 1800static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1801{
63d95a91 1802 struct global_cwq *gcwq = pool->gcwq;
3270476a 1803 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1804 struct worker *worker = NULL;
f3421797 1805 int id = -1;
c34056a3 1806
8b03ae3c 1807 spin_lock_irq(&gcwq->lock);
bd7bdd43 1808 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1809 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1810 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1811 goto fail;
8b03ae3c 1812 spin_lock_irq(&gcwq->lock);
c34056a3 1813 }
8b03ae3c 1814 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1815
1816 worker = alloc_worker();
1817 if (!worker)
1818 goto fail;
1819
bd7bdd43 1820 worker->pool = pool;
c34056a3
TH
1821 worker->id = id;
1822
bc2ae0f5 1823 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1824 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1825 worker, cpu_to_node(gcwq->cpu),
1826 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1827 else
1828 worker->task = kthread_create(worker_thread, worker,
3270476a 1829 "kworker/u:%d%s", id, pri);
c34056a3
TH
1830 if (IS_ERR(worker->task))
1831 goto fail;
1832
3270476a
TH
1833 if (worker_pool_pri(pool))
1834 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1835
db7bccf4 1836 /*
bc2ae0f5
TH
1837 * Determine CPU binding of the new worker depending on
1838 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1839 * flag remains stable across this function. See the comments
1840 * above the flag definition for details.
1841 *
1842 * As an unbound worker may later become a regular one if CPU comes
1843 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1844 */
bc2ae0f5 1845 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1846 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1847 } else {
db7bccf4 1848 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1849 worker->flags |= WORKER_UNBOUND;
f3421797 1850 }
c34056a3
TH
1851
1852 return worker;
1853fail:
1854 if (id >= 0) {
8b03ae3c 1855 spin_lock_irq(&gcwq->lock);
bd7bdd43 1856 ida_remove(&pool->worker_ida, id);
8b03ae3c 1857 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1858 }
1859 kfree(worker);
1860 return NULL;
1861}
1862
1863/**
1864 * start_worker - start a newly created worker
1865 * @worker: worker to start
1866 *
c8e55f36 1867 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1868 *
1869 * CONTEXT:
8b03ae3c 1870 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1871 */
1872static void start_worker(struct worker *worker)
1873{
cb444766 1874 worker->flags |= WORKER_STARTED;
bd7bdd43 1875 worker->pool->nr_workers++;
c8e55f36 1876 worker_enter_idle(worker);
c34056a3
TH
1877 wake_up_process(worker->task);
1878}
1879
1880/**
1881 * destroy_worker - destroy a workqueue worker
1882 * @worker: worker to be destroyed
1883 *
c8e55f36
TH
1884 * Destroy @worker and adjust @gcwq stats accordingly.
1885 *
1886 * CONTEXT:
1887 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1888 */
1889static void destroy_worker(struct worker *worker)
1890{
bd7bdd43
TH
1891 struct worker_pool *pool = worker->pool;
1892 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1893 int id = worker->id;
1894
1895 /* sanity check frenzy */
1896 BUG_ON(worker->current_work);
affee4b2 1897 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1898
c8e55f36 1899 if (worker->flags & WORKER_STARTED)
bd7bdd43 1900 pool->nr_workers--;
c8e55f36 1901 if (worker->flags & WORKER_IDLE)
bd7bdd43 1902 pool->nr_idle--;
c8e55f36
TH
1903
1904 list_del_init(&worker->entry);
cb444766 1905 worker->flags |= WORKER_DIE;
c8e55f36
TH
1906
1907 spin_unlock_irq(&gcwq->lock);
1908
c34056a3
TH
1909 kthread_stop(worker->task);
1910 kfree(worker);
1911
8b03ae3c 1912 spin_lock_irq(&gcwq->lock);
bd7bdd43 1913 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1914}
1915
63d95a91 1916static void idle_worker_timeout(unsigned long __pool)
e22bee78 1917{
63d95a91
TH
1918 struct worker_pool *pool = (void *)__pool;
1919 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1920
1921 spin_lock_irq(&gcwq->lock);
1922
63d95a91 1923 if (too_many_workers(pool)) {
e22bee78
TH
1924 struct worker *worker;
1925 unsigned long expires;
1926
1927 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1928 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1929 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1930
1931 if (time_before(jiffies, expires))
63d95a91 1932 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1933 else {
1934 /* it's been idle for too long, wake up manager */
11ebea50 1935 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1936 wake_up_worker(pool);
d5abe669 1937 }
e22bee78
TH
1938 }
1939
1940 spin_unlock_irq(&gcwq->lock);
1941}
d5abe669 1942
e22bee78
TH
1943static bool send_mayday(struct work_struct *work)
1944{
1945 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1946 struct workqueue_struct *wq = cwq->wq;
f3421797 1947 unsigned int cpu;
e22bee78
TH
1948
1949 if (!(wq->flags & WQ_RESCUER))
1950 return false;
1951
1952 /* mayday mayday mayday */
bd7bdd43 1953 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1954 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1955 if (cpu == WORK_CPU_UNBOUND)
1956 cpu = 0;
f2e005aa 1957 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1958 wake_up_process(wq->rescuer->task);
1959 return true;
1960}
1961
63d95a91 1962static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1963{
63d95a91
TH
1964 struct worker_pool *pool = (void *)__pool;
1965 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1966 struct work_struct *work;
1967
1968 spin_lock_irq(&gcwq->lock);
1969
63d95a91 1970 if (need_to_create_worker(pool)) {
e22bee78
TH
1971 /*
1972 * We've been trying to create a new worker but
1973 * haven't been successful. We might be hitting an
1974 * allocation deadlock. Send distress signals to
1975 * rescuers.
1976 */
63d95a91 1977 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1978 send_mayday(work);
1da177e4 1979 }
e22bee78
TH
1980
1981 spin_unlock_irq(&gcwq->lock);
1982
63d95a91 1983 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1984}
1985
e22bee78
TH
1986/**
1987 * maybe_create_worker - create a new worker if necessary
63d95a91 1988 * @pool: pool to create a new worker for
e22bee78 1989 *
63d95a91 1990 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1991 * have at least one idle worker on return from this function. If
1992 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1993 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1994 * possible allocation deadlock.
1995 *
1996 * On return, need_to_create_worker() is guaranteed to be false and
1997 * may_start_working() true.
1998 *
1999 * LOCKING:
2000 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2001 * multiple times. Does GFP_KERNEL allocations. Called only from
2002 * manager.
2003 *
2004 * RETURNS:
2005 * false if no action was taken and gcwq->lock stayed locked, true
2006 * otherwise.
2007 */
63d95a91 2008static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
2009__releases(&gcwq->lock)
2010__acquires(&gcwq->lock)
1da177e4 2011{
63d95a91
TH
2012 struct global_cwq *gcwq = pool->gcwq;
2013
2014 if (!need_to_create_worker(pool))
e22bee78
TH
2015 return false;
2016restart:
9f9c2364
TH
2017 spin_unlock_irq(&gcwq->lock);
2018
e22bee78 2019 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2020 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2021
2022 while (true) {
2023 struct worker *worker;
2024
bc2ae0f5 2025 worker = create_worker(pool);
e22bee78 2026 if (worker) {
63d95a91 2027 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2028 spin_lock_irq(&gcwq->lock);
2029 start_worker(worker);
63d95a91 2030 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2031 return true;
2032 }
2033
63d95a91 2034 if (!need_to_create_worker(pool))
e22bee78 2035 break;
1da177e4 2036
e22bee78
TH
2037 __set_current_state(TASK_INTERRUPTIBLE);
2038 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2039
63d95a91 2040 if (!need_to_create_worker(pool))
e22bee78
TH
2041 break;
2042 }
2043
63d95a91 2044 del_timer_sync(&pool->mayday_timer);
e22bee78 2045 spin_lock_irq(&gcwq->lock);
63d95a91 2046 if (need_to_create_worker(pool))
e22bee78
TH
2047 goto restart;
2048 return true;
2049}
2050
2051/**
2052 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2053 * @pool: pool to destroy workers for
e22bee78 2054 *
63d95a91 2055 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2056 * IDLE_WORKER_TIMEOUT.
2057 *
2058 * LOCKING:
2059 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2060 * multiple times. Called only from manager.
2061 *
2062 * RETURNS:
2063 * false if no action was taken and gcwq->lock stayed locked, true
2064 * otherwise.
2065 */
63d95a91 2066static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2067{
2068 bool ret = false;
1da177e4 2069
63d95a91 2070 while (too_many_workers(pool)) {
e22bee78
TH
2071 struct worker *worker;
2072 unsigned long expires;
3af24433 2073
63d95a91 2074 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2075 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2076
e22bee78 2077 if (time_before(jiffies, expires)) {
63d95a91 2078 mod_timer(&pool->idle_timer, expires);
3af24433 2079 break;
e22bee78 2080 }
1da177e4 2081
e22bee78
TH
2082 destroy_worker(worker);
2083 ret = true;
1da177e4 2084 }
3af24433 2085
e22bee78
TH
2086 return ret;
2087}
2088
2089/**
2090 * manage_workers - manage worker pool
2091 * @worker: self
2092 *
2093 * Assume the manager role and manage gcwq worker pool @worker belongs
2094 * to. At any given time, there can be only zero or one manager per
2095 * gcwq. The exclusion is handled automatically by this function.
2096 *
2097 * The caller can safely start processing works on false return. On
2098 * true return, it's guaranteed that need_to_create_worker() is false
2099 * and may_start_working() is true.
2100 *
2101 * CONTEXT:
2102 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2103 * multiple times. Does GFP_KERNEL allocations.
2104 *
2105 * RETURNS:
2106 * false if no action was taken and gcwq->lock stayed locked, true if
2107 * some action was taken.
2108 */
2109static bool manage_workers(struct worker *worker)
2110{
63d95a91 2111 struct worker_pool *pool = worker->pool;
e22bee78
TH
2112 bool ret = false;
2113
60373152 2114 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2115 return ret;
2116
11ebea50 2117 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2118
2119 /*
2120 * Destroy and then create so that may_start_working() is true
2121 * on return.
2122 */
63d95a91
TH
2123 ret |= maybe_destroy_workers(pool);
2124 ret |= maybe_create_worker(pool);
e22bee78 2125
60373152 2126 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2127 return ret;
2128}
2129
a62428c0
TH
2130/**
2131 * process_one_work - process single work
c34056a3 2132 * @worker: self
a62428c0
TH
2133 * @work: work to process
2134 *
2135 * Process @work. This function contains all the logics necessary to
2136 * process a single work including synchronization against and
2137 * interaction with other workers on the same cpu, queueing and
2138 * flushing. As long as context requirement is met, any worker can
2139 * call this function to process a work.
2140 *
2141 * CONTEXT:
8b03ae3c 2142 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2143 */
c34056a3 2144static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2145__releases(&gcwq->lock)
2146__acquires(&gcwq->lock)
a62428c0 2147{
7e11629d 2148 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2149 struct worker_pool *pool = worker->pool;
2150 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2151 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2152 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2153 work_func_t f = work->func;
73f53c4a 2154 int work_color;
7e11629d 2155 struct worker *collision;
a62428c0
TH
2156#ifdef CONFIG_LOCKDEP
2157 /*
2158 * It is permissible to free the struct work_struct from
2159 * inside the function that is called from it, this we need to
2160 * take into account for lockdep too. To avoid bogus "held
2161 * lock freed" warnings as well as problems when looking into
2162 * work->lockdep_map, make a copy and use that here.
2163 */
4d82a1de
PZ
2164 struct lockdep_map lockdep_map;
2165
2166 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2167#endif
6fec10a1
TH
2168 /*
2169 * Ensure we're on the correct CPU. DISASSOCIATED test is
2170 * necessary to avoid spurious warnings from rescuers servicing the
2171 * unbound or a disassociated gcwq.
2172 */
25511a47 2173 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2174 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2175 raw_smp_processor_id() != gcwq->cpu);
2176
7e11629d
TH
2177 /*
2178 * A single work shouldn't be executed concurrently by
2179 * multiple workers on a single cpu. Check whether anyone is
2180 * already processing the work. If so, defer the work to the
2181 * currently executing one.
2182 */
2183 collision = __find_worker_executing_work(gcwq, bwh, work);
2184 if (unlikely(collision)) {
2185 move_linked_works(work, &collision->scheduled, NULL);
2186 return;
2187 }
2188
8930caba 2189 /* claim and dequeue */
a62428c0 2190 debug_work_deactivate(work);
c8e55f36 2191 hlist_add_head(&worker->hentry, bwh);
c34056a3 2192 worker->current_work = work;
8cca0eea 2193 worker->current_cwq = cwq;
73f53c4a 2194 work_color = get_work_color(work);
7a22ad75 2195
a62428c0
TH
2196 list_del_init(&work->entry);
2197
fb0e7beb
TH
2198 /*
2199 * CPU intensive works don't participate in concurrency
2200 * management. They're the scheduler's responsibility.
2201 */
2202 if (unlikely(cpu_intensive))
2203 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2204
974271c4
TH
2205 /*
2206 * Unbound gcwq isn't concurrency managed and work items should be
2207 * executed ASAP. Wake up another worker if necessary.
2208 */
63d95a91
TH
2209 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2210 wake_up_worker(pool);
974271c4 2211
8930caba 2212 /*
23657bb1
TH
2213 * Record the last CPU and clear PENDING which should be the last
2214 * update to @work. Also, do this inside @gcwq->lock so that
2215 * PENDING and queued state changes happen together while IRQ is
2216 * disabled.
8930caba 2217 */
8930caba 2218 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2219
8930caba 2220 spin_unlock_irq(&gcwq->lock);
959d1af8 2221
e159489b 2222 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2223 lock_map_acquire(&lockdep_map);
e36c886a 2224 trace_workqueue_execute_start(work);
a62428c0 2225 f(work);
e36c886a
AV
2226 /*
2227 * While we must be careful to not use "work" after this, the trace
2228 * point will only record its address.
2229 */
2230 trace_workqueue_execute_end(work);
a62428c0
TH
2231 lock_map_release(&lockdep_map);
2232 lock_map_release(&cwq->wq->lockdep_map);
2233
2234 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2235 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2236 "%s/0x%08x/%d\n",
2237 current->comm, preempt_count(), task_pid_nr(current));
2238 printk(KERN_ERR " last function: ");
2239 print_symbol("%s\n", (unsigned long)f);
2240 debug_show_held_locks(current);
2241 dump_stack();
2242 }
2243
8b03ae3c 2244 spin_lock_irq(&gcwq->lock);
a62428c0 2245
fb0e7beb
TH
2246 /* clear cpu intensive status */
2247 if (unlikely(cpu_intensive))
2248 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2249
a62428c0 2250 /* we're done with it, release */
c8e55f36 2251 hlist_del_init(&worker->hentry);
c34056a3 2252 worker->current_work = NULL;
8cca0eea 2253 worker->current_cwq = NULL;
8a2e8e5d 2254 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2255}
2256
affee4b2
TH
2257/**
2258 * process_scheduled_works - process scheduled works
2259 * @worker: self
2260 *
2261 * Process all scheduled works. Please note that the scheduled list
2262 * may change while processing a work, so this function repeatedly
2263 * fetches a work from the top and executes it.
2264 *
2265 * CONTEXT:
8b03ae3c 2266 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2267 * multiple times.
2268 */
2269static void process_scheduled_works(struct worker *worker)
1da177e4 2270{
affee4b2
TH
2271 while (!list_empty(&worker->scheduled)) {
2272 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2273 struct work_struct, entry);
c34056a3 2274 process_one_work(worker, work);
1da177e4 2275 }
1da177e4
LT
2276}
2277
4690c4ab
TH
2278/**
2279 * worker_thread - the worker thread function
c34056a3 2280 * @__worker: self
4690c4ab 2281 *
e22bee78
TH
2282 * The gcwq worker thread function. There's a single dynamic pool of
2283 * these per each cpu. These workers process all works regardless of
2284 * their specific target workqueue. The only exception is works which
2285 * belong to workqueues with a rescuer which will be explained in
2286 * rescuer_thread().
4690c4ab 2287 */
c34056a3 2288static int worker_thread(void *__worker)
1da177e4 2289{
c34056a3 2290 struct worker *worker = __worker;
bd7bdd43
TH
2291 struct worker_pool *pool = worker->pool;
2292 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2293
e22bee78
TH
2294 /* tell the scheduler that this is a workqueue worker */
2295 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2296woke_up:
c8e55f36 2297 spin_lock_irq(&gcwq->lock);
1da177e4 2298
25511a47
TH
2299 /*
2300 * DIE can be set only while idle and REBIND set while busy has
2301 * @worker->rebind_work scheduled. Checking here is enough.
2302 */
2303 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2304 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2305
2306 if (worker->flags & WORKER_DIE) {
2307 worker->task->flags &= ~PF_WQ_WORKER;
2308 return 0;
2309 }
2310
2311 idle_worker_rebind(worker);
2312 goto woke_up;
c8e55f36 2313 }
affee4b2 2314
c8e55f36 2315 worker_leave_idle(worker);
db7bccf4 2316recheck:
e22bee78 2317 /* no more worker necessary? */
63d95a91 2318 if (!need_more_worker(pool))
e22bee78
TH
2319 goto sleep;
2320
2321 /* do we need to manage? */
63d95a91 2322 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2323 goto recheck;
2324
c8e55f36
TH
2325 /*
2326 * ->scheduled list can only be filled while a worker is
2327 * preparing to process a work or actually processing it.
2328 * Make sure nobody diddled with it while I was sleeping.
2329 */
2330 BUG_ON(!list_empty(&worker->scheduled));
2331
e22bee78
TH
2332 /*
2333 * When control reaches this point, we're guaranteed to have
2334 * at least one idle worker or that someone else has already
2335 * assumed the manager role.
2336 */
2337 worker_clr_flags(worker, WORKER_PREP);
2338
2339 do {
c8e55f36 2340 struct work_struct *work =
bd7bdd43 2341 list_first_entry(&pool->worklist,
c8e55f36
TH
2342 struct work_struct, entry);
2343
2344 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2345 /* optimization path, not strictly necessary */
2346 process_one_work(worker, work);
2347 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2348 process_scheduled_works(worker);
c8e55f36
TH
2349 } else {
2350 move_linked_works(work, &worker->scheduled, NULL);
2351 process_scheduled_works(worker);
affee4b2 2352 }
63d95a91 2353 } while (keep_working(pool));
e22bee78
TH
2354
2355 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2356sleep:
63d95a91 2357 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2358 goto recheck;
d313dd85 2359
c8e55f36 2360 /*
e22bee78
TH
2361 * gcwq->lock is held and there's no work to process and no
2362 * need to manage, sleep. Workers are woken up only while
2363 * holding gcwq->lock or from local cpu, so setting the
2364 * current state before releasing gcwq->lock is enough to
2365 * prevent losing any event.
c8e55f36
TH
2366 */
2367 worker_enter_idle(worker);
2368 __set_current_state(TASK_INTERRUPTIBLE);
2369 spin_unlock_irq(&gcwq->lock);
2370 schedule();
2371 goto woke_up;
1da177e4
LT
2372}
2373
e22bee78
TH
2374/**
2375 * rescuer_thread - the rescuer thread function
2376 * @__wq: the associated workqueue
2377 *
2378 * Workqueue rescuer thread function. There's one rescuer for each
2379 * workqueue which has WQ_RESCUER set.
2380 *
2381 * Regular work processing on a gcwq may block trying to create a new
2382 * worker which uses GFP_KERNEL allocation which has slight chance of
2383 * developing into deadlock if some works currently on the same queue
2384 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2385 * the problem rescuer solves.
2386 *
2387 * When such condition is possible, the gcwq summons rescuers of all
2388 * workqueues which have works queued on the gcwq and let them process
2389 * those works so that forward progress can be guaranteed.
2390 *
2391 * This should happen rarely.
2392 */
2393static int rescuer_thread(void *__wq)
2394{
2395 struct workqueue_struct *wq = __wq;
2396 struct worker *rescuer = wq->rescuer;
2397 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2398 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2399 unsigned int cpu;
2400
2401 set_user_nice(current, RESCUER_NICE_LEVEL);
2402repeat:
2403 set_current_state(TASK_INTERRUPTIBLE);
2404
2405 if (kthread_should_stop())
2406 return 0;
2407
f3421797
TH
2408 /*
2409 * See whether any cpu is asking for help. Unbounded
2410 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2411 */
f2e005aa 2412 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2413 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2414 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2415 struct worker_pool *pool = cwq->pool;
2416 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2417 struct work_struct *work, *n;
2418
2419 __set_current_state(TASK_RUNNING);
f2e005aa 2420 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2421
2422 /* migrate to the target cpu if possible */
bd7bdd43 2423 rescuer->pool = pool;
e22bee78
TH
2424 worker_maybe_bind_and_lock(rescuer);
2425
2426 /*
2427 * Slurp in all works issued via this workqueue and
2428 * process'em.
2429 */
2430 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2431 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2432 if (get_work_cwq(work) == cwq)
2433 move_linked_works(work, scheduled, &n);
2434
2435 process_scheduled_works(rescuer);
7576958a
TH
2436
2437 /*
2438 * Leave this gcwq. If keep_working() is %true, notify a
2439 * regular worker; otherwise, we end up with 0 concurrency
2440 * and stalling the execution.
2441 */
63d95a91
TH
2442 if (keep_working(pool))
2443 wake_up_worker(pool);
7576958a 2444
e22bee78
TH
2445 spin_unlock_irq(&gcwq->lock);
2446 }
2447
2448 schedule();
2449 goto repeat;
1da177e4
LT
2450}
2451
fc2e4d70
ON
2452struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
4690c4ab
TH
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @cwq: cwq to insert barrier into
2466 * @barr: wq_barrier to insert
affee4b2
TH
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2469 *
affee4b2
TH
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2483 *
2484 * CONTEXT:
8b03ae3c 2485 * spin_lock_irq(gcwq->lock).
4690c4ab 2486 */
83c22520 2487static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
fc2e4d70 2490{
affee4b2
TH
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
dc186ad7 2494 /*
8b03ae3c 2495 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
ca1cab37 2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2502 init_completion(&barr->done);
83c22520 2503
affee4b2
TH
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
dc186ad7 2519 debug_work_activate(&barr->work);
affee4b2
TH
2520 insert_work(cwq, &barr->work, head,
2521 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2522}
2523
73f53c4a
TH
2524/**
2525 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
2530 * Prepare cwqs for workqueue flushing.
2531 *
2532 * If @flush_color is non-negative, flush_color on all cwqs should be
2533 * -1. If no cwq has in-flight commands at the specified color, all
2534 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2535 * has in flight commands, its cwq->flush_color is set to
2536 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
2544 * If @work_color is non-negative, all cwqs should have the same
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
2555static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2556 int flush_color, int work_color)
1da177e4 2557{
73f53c4a
TH
2558 bool wait = false;
2559 unsigned int cpu;
1da177e4 2560
73f53c4a
TH
2561 if (flush_color >= 0) {
2562 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2563 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2564 }
2355b70f 2565
f3421797 2566 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2567 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2568 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2569
8b03ae3c 2570 spin_lock_irq(&gcwq->lock);
83c22520 2571
73f53c4a
TH
2572 if (flush_color >= 0) {
2573 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2574
73f53c4a
TH
2575 if (cwq->nr_in_flight[flush_color]) {
2576 cwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_cwqs_to_flush);
2578 wait = true;
2579 }
2580 }
1da177e4 2581
73f53c4a
TH
2582 if (work_color >= 0) {
2583 BUG_ON(work_color != work_next_color(cwq->work_color));
2584 cwq->work_color = work_color;
2585 }
1da177e4 2586
8b03ae3c 2587 spin_unlock_irq(&gcwq->lock);
1da177e4 2588 }
2355b70f 2589
73f53c4a
TH
2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2591 complete(&wq->first_flusher->done);
14441960 2592
73f53c4a 2593 return wait;
1da177e4
LT
2594}
2595
0fcb78c2 2596/**
1da177e4 2597 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2598 * @wq: workqueue to flush
1da177e4
LT
2599 *
2600 * Forces execution of the workqueue and blocks until its completion.
2601 * This is typically used in driver shutdown handlers.
2602 *
fc2e4d70
ON
2603 * We sleep until all works which were queued on entry have been handled,
2604 * but we are not livelocked by new incoming ones.
1da177e4 2605 */
7ad5b3a5 2606void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2607{
73f53c4a
TH
2608 struct wq_flusher this_flusher = {
2609 .list = LIST_HEAD_INIT(this_flusher.list),
2610 .flush_color = -1,
2611 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2612 };
2613 int next_color;
1da177e4 2614
3295f0ef
IM
2615 lock_map_acquire(&wq->lockdep_map);
2616 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2617
2618 mutex_lock(&wq->flush_mutex);
2619
2620 /*
2621 * Start-to-wait phase
2622 */
2623 next_color = work_next_color(wq->work_color);
2624
2625 if (next_color != wq->flush_color) {
2626 /*
2627 * Color space is not full. The current work_color
2628 * becomes our flush_color and work_color is advanced
2629 * by one.
2630 */
2631 BUG_ON(!list_empty(&wq->flusher_overflow));
2632 this_flusher.flush_color = wq->work_color;
2633 wq->work_color = next_color;
2634
2635 if (!wq->first_flusher) {
2636 /* no flush in progress, become the first flusher */
2637 BUG_ON(wq->flush_color != this_flusher.flush_color);
2638
2639 wq->first_flusher = &this_flusher;
2640
2641 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2642 wq->work_color)) {
2643 /* nothing to flush, done */
2644 wq->flush_color = next_color;
2645 wq->first_flusher = NULL;
2646 goto out_unlock;
2647 }
2648 } else {
2649 /* wait in queue */
2650 BUG_ON(wq->flush_color == this_flusher.flush_color);
2651 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2652 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2653 }
2654 } else {
2655 /*
2656 * Oops, color space is full, wait on overflow queue.
2657 * The next flush completion will assign us
2658 * flush_color and transfer to flusher_queue.
2659 */
2660 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 }
2662
2663 mutex_unlock(&wq->flush_mutex);
2664
2665 wait_for_completion(&this_flusher.done);
2666
2667 /*
2668 * Wake-up-and-cascade phase
2669 *
2670 * First flushers are responsible for cascading flushes and
2671 * handling overflow. Non-first flushers can simply return.
2672 */
2673 if (wq->first_flusher != &this_flusher)
2674 return;
2675
2676 mutex_lock(&wq->flush_mutex);
2677
4ce48b37
TH
2678 /* we might have raced, check again with mutex held */
2679 if (wq->first_flusher != &this_flusher)
2680 goto out_unlock;
2681
73f53c4a
TH
2682 wq->first_flusher = NULL;
2683
2684 BUG_ON(!list_empty(&this_flusher.list));
2685 BUG_ON(wq->flush_color != this_flusher.flush_color);
2686
2687 while (true) {
2688 struct wq_flusher *next, *tmp;
2689
2690 /* complete all the flushers sharing the current flush color */
2691 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2692 if (next->flush_color != wq->flush_color)
2693 break;
2694 list_del_init(&next->list);
2695 complete(&next->done);
2696 }
2697
2698 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2699 wq->flush_color != work_next_color(wq->work_color));
2700
2701 /* this flush_color is finished, advance by one */
2702 wq->flush_color = work_next_color(wq->flush_color);
2703
2704 /* one color has been freed, handle overflow queue */
2705 if (!list_empty(&wq->flusher_overflow)) {
2706 /*
2707 * Assign the same color to all overflowed
2708 * flushers, advance work_color and append to
2709 * flusher_queue. This is the start-to-wait
2710 * phase for these overflowed flushers.
2711 */
2712 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2713 tmp->flush_color = wq->work_color;
2714
2715 wq->work_color = work_next_color(wq->work_color);
2716
2717 list_splice_tail_init(&wq->flusher_overflow,
2718 &wq->flusher_queue);
2719 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2720 }
2721
2722 if (list_empty(&wq->flusher_queue)) {
2723 BUG_ON(wq->flush_color != wq->work_color);
2724 break;
2725 }
2726
2727 /*
2728 * Need to flush more colors. Make the next flusher
2729 * the new first flusher and arm cwqs.
2730 */
2731 BUG_ON(wq->flush_color == wq->work_color);
2732 BUG_ON(wq->flush_color != next->flush_color);
2733
2734 list_del_init(&next->list);
2735 wq->first_flusher = next;
2736
2737 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2738 break;
2739
2740 /*
2741 * Meh... this color is already done, clear first
2742 * flusher and repeat cascading.
2743 */
2744 wq->first_flusher = NULL;
2745 }
2746
2747out_unlock:
2748 mutex_unlock(&wq->flush_mutex);
1da177e4 2749}
ae90dd5d 2750EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2751
9c5a2ba7
TH
2752/**
2753 * drain_workqueue - drain a workqueue
2754 * @wq: workqueue to drain
2755 *
2756 * Wait until the workqueue becomes empty. While draining is in progress,
2757 * only chain queueing is allowed. IOW, only currently pending or running
2758 * work items on @wq can queue further work items on it. @wq is flushed
2759 * repeatedly until it becomes empty. The number of flushing is detemined
2760 * by the depth of chaining and should be relatively short. Whine if it
2761 * takes too long.
2762 */
2763void drain_workqueue(struct workqueue_struct *wq)
2764{
2765 unsigned int flush_cnt = 0;
2766 unsigned int cpu;
2767
2768 /*
2769 * __queue_work() needs to test whether there are drainers, is much
2770 * hotter than drain_workqueue() and already looks at @wq->flags.
2771 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2772 */
2773 spin_lock(&workqueue_lock);
2774 if (!wq->nr_drainers++)
2775 wq->flags |= WQ_DRAINING;
2776 spin_unlock(&workqueue_lock);
2777reflush:
2778 flush_workqueue(wq);
2779
2780 for_each_cwq_cpu(cpu, wq) {
2781 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2782 bool drained;
9c5a2ba7 2783
bd7bdd43 2784 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2785 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2786 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2787
2788 if (drained)
9c5a2ba7
TH
2789 continue;
2790
2791 if (++flush_cnt == 10 ||
2792 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2794 wq->name, flush_cnt);
2795 goto reflush;
2796 }
2797
2798 spin_lock(&workqueue_lock);
2799 if (!--wq->nr_drainers)
2800 wq->flags &= ~WQ_DRAINING;
2801 spin_unlock(&workqueue_lock);
2802}
2803EXPORT_SYMBOL_GPL(drain_workqueue);
2804
baf59022
TH
2805static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2806 bool wait_executing)
db700897 2807{
affee4b2 2808 struct worker *worker = NULL;
8b03ae3c 2809 struct global_cwq *gcwq;
db700897 2810 struct cpu_workqueue_struct *cwq;
db700897
ON
2811
2812 might_sleep();
7a22ad75
TH
2813 gcwq = get_work_gcwq(work);
2814 if (!gcwq)
baf59022 2815 return false;
db700897 2816
8b03ae3c 2817 spin_lock_irq(&gcwq->lock);
db700897
ON
2818 if (!list_empty(&work->entry)) {
2819 /*
2820 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2821 * If it was re-queued to a different gcwq under us, we
2822 * are not going to wait.
db700897
ON
2823 */
2824 smp_rmb();
7a22ad75 2825 cwq = get_work_cwq(work);
bd7bdd43 2826 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2827 goto already_gone;
baf59022 2828 } else if (wait_executing) {
7a22ad75 2829 worker = find_worker_executing_work(gcwq, work);
affee4b2 2830 if (!worker)
4690c4ab 2831 goto already_gone;
7a22ad75 2832 cwq = worker->current_cwq;
baf59022
TH
2833 } else
2834 goto already_gone;
db700897 2835
baf59022 2836 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2837 spin_unlock_irq(&gcwq->lock);
7a22ad75 2838
e159489b
TH
2839 /*
2840 * If @max_active is 1 or rescuer is in use, flushing another work
2841 * item on the same workqueue may lead to deadlock. Make sure the
2842 * flusher is not running on the same workqueue by verifying write
2843 * access.
2844 */
2845 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2846 lock_map_acquire(&cwq->wq->lockdep_map);
2847 else
2848 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2849 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2850
401a8d04 2851 return true;
4690c4ab 2852already_gone:
8b03ae3c 2853 spin_unlock_irq(&gcwq->lock);
401a8d04 2854 return false;
db700897 2855}
baf59022
TH
2856
2857/**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution. This function considers
2862 * only the last queueing instance of @work. If @work has been
2863 * enqueued across different CPUs on a non-reentrant workqueue or on
2864 * multiple workqueues, @work might still be executing on return on
2865 * some of the CPUs from earlier queueing.
2866 *
2867 * If @work was queued only on a non-reentrant, ordered or unbound
2868 * workqueue, @work is guaranteed to be idle on return if it hasn't
2869 * been requeued since flush started.
2870 *
2871 * RETURNS:
2872 * %true if flush_work() waited for the work to finish execution,
2873 * %false if it was already idle.
2874 */
2875bool flush_work(struct work_struct *work)
2876{
2877 struct wq_barrier barr;
2878
0976dfc1
SB
2879 lock_map_acquire(&work->lockdep_map);
2880 lock_map_release(&work->lockdep_map);
2881
baf59022
TH
2882 if (start_flush_work(work, &barr, true)) {
2883 wait_for_completion(&barr.done);
2884 destroy_work_on_stack(&barr.work);
2885 return true;
2886 } else
2887 return false;
2888}
db700897
ON
2889EXPORT_SYMBOL_GPL(flush_work);
2890
401a8d04
TH
2891static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2892{
2893 struct wq_barrier barr;
2894 struct worker *worker;
2895
2896 spin_lock_irq(&gcwq->lock);
2897
2898 worker = find_worker_executing_work(gcwq, work);
2899 if (unlikely(worker))
2900 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2901
2902 spin_unlock_irq(&gcwq->lock);
2903
2904 if (unlikely(worker)) {
2905 wait_for_completion(&barr.done);
2906 destroy_work_on_stack(&barr.work);
2907 return true;
2908 } else
2909 return false;
2910}
2911
2912static bool wait_on_work(struct work_struct *work)
2913{
2914 bool ret = false;
2915 int cpu;
2916
2917 might_sleep();
2918
2919 lock_map_acquire(&work->lockdep_map);
2920 lock_map_release(&work->lockdep_map);
2921
2922 for_each_gcwq_cpu(cpu)
2923 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2924 return ret;
2925}
2926
09383498
TH
2927/**
2928 * flush_work_sync - wait until a work has finished execution
2929 * @work: the work to flush
2930 *
2931 * Wait until @work has finished execution. On return, it's
2932 * guaranteed that all queueing instances of @work which happened
2933 * before this function is called are finished. In other words, if
2934 * @work hasn't been requeued since this function was called, @work is
2935 * guaranteed to be idle on return.
2936 *
2937 * RETURNS:
2938 * %true if flush_work_sync() waited for the work to finish execution,
2939 * %false if it was already idle.
2940 */
2941bool flush_work_sync(struct work_struct *work)
2942{
2943 struct wq_barrier barr;
2944 bool pending, waited;
2945
2946 /* we'll wait for executions separately, queue barr only if pending */
2947 pending = start_flush_work(work, &barr, false);
2948
2949 /* wait for executions to finish */
2950 waited = wait_on_work(work);
2951
2952 /* wait for the pending one */
2953 if (pending) {
2954 wait_for_completion(&barr.done);
2955 destroy_work_on_stack(&barr.work);
2956 }
2957
2958 return pending || waited;
2959}
2960EXPORT_SYMBOL_GPL(flush_work_sync);
2961
36e227d2 2962static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2963{
bbb68dfa 2964 unsigned long flags;
1f1f642e
ON
2965 int ret;
2966
2967 do {
bbb68dfa
TH
2968 ret = try_to_grab_pending(work, is_dwork, &flags);
2969 /*
2970 * If someone else is canceling, wait for the same event it
2971 * would be waiting for before retrying.
2972 */
2973 if (unlikely(ret == -ENOENT))
2974 wait_on_work(work);
1f1f642e
ON
2975 } while (unlikely(ret < 0));
2976
bbb68dfa
TH
2977 /* tell other tasks trying to grab @work to back off */
2978 mark_work_canceling(work);
2979 local_irq_restore(flags);
2980
2981 wait_on_work(work);
7a22ad75 2982 clear_work_data(work);
1f1f642e
ON
2983 return ret;
2984}
2985
6e84d644 2986/**
401a8d04
TH
2987 * cancel_work_sync - cancel a work and wait for it to finish
2988 * @work: the work to cancel
6e84d644 2989 *
401a8d04
TH
2990 * Cancel @work and wait for its execution to finish. This function
2991 * can be used even if the work re-queues itself or migrates to
2992 * another workqueue. On return from this function, @work is
2993 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2994 *
401a8d04
TH
2995 * cancel_work_sync(&delayed_work->work) must not be used for
2996 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2997 *
401a8d04 2998 * The caller must ensure that the workqueue on which @work was last
6e84d644 2999 * queued can't be destroyed before this function returns.
401a8d04
TH
3000 *
3001 * RETURNS:
3002 * %true if @work was pending, %false otherwise.
6e84d644 3003 */
401a8d04 3004bool cancel_work_sync(struct work_struct *work)
6e84d644 3005{
36e227d2 3006 return __cancel_work_timer(work, false);
b89deed3 3007}
28e53bdd 3008EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3009
6e84d644 3010/**
401a8d04
TH
3011 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3012 * @dwork: the delayed work to flush
6e84d644 3013 *
401a8d04
TH
3014 * Delayed timer is cancelled and the pending work is queued for
3015 * immediate execution. Like flush_work(), this function only
3016 * considers the last queueing instance of @dwork.
1f1f642e 3017 *
401a8d04
TH
3018 * RETURNS:
3019 * %true if flush_work() waited for the work to finish execution,
3020 * %false if it was already idle.
6e84d644 3021 */
401a8d04
TH
3022bool flush_delayed_work(struct delayed_work *dwork)
3023{
8930caba 3024 local_irq_disable();
401a8d04 3025 if (del_timer_sync(&dwork->timer))
1265057f 3026 __queue_work(dwork->cpu,
401a8d04 3027 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3028 local_irq_enable();
401a8d04
TH
3029 return flush_work(&dwork->work);
3030}
3031EXPORT_SYMBOL(flush_delayed_work);
3032
09383498
TH
3033/**
3034 * flush_delayed_work_sync - wait for a dwork to finish
3035 * @dwork: the delayed work to flush
3036 *
3037 * Delayed timer is cancelled and the pending work is queued for
3038 * execution immediately. Other than timer handling, its behavior
3039 * is identical to flush_work_sync().
3040 *
3041 * RETURNS:
3042 * %true if flush_work_sync() waited for the work to finish execution,
3043 * %false if it was already idle.
3044 */
3045bool flush_delayed_work_sync(struct delayed_work *dwork)
3046{
8930caba 3047 local_irq_disable();
09383498 3048 if (del_timer_sync(&dwork->timer))
1265057f 3049 __queue_work(dwork->cpu,
09383498 3050 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3051 local_irq_enable();
09383498
TH
3052 return flush_work_sync(&dwork->work);
3053}
3054EXPORT_SYMBOL(flush_delayed_work_sync);
3055
401a8d04
TH
3056/**
3057 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3058 * @dwork: the delayed work cancel
3059 *
3060 * This is cancel_work_sync() for delayed works.
3061 *
3062 * RETURNS:
3063 * %true if @dwork was pending, %false otherwise.
3064 */
3065bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3066{
36e227d2 3067 return __cancel_work_timer(&dwork->work, true);
6e84d644 3068}
f5a421a4 3069EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3070
d4283e93 3071/**
0a13c00e
TH
3072 * schedule_work_on - put work task on a specific cpu
3073 * @cpu: cpu to put the work task on
3074 * @work: job to be done
3075 *
3076 * This puts a job on a specific cpu
3077 */
d4283e93 3078bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3079{
3080 return queue_work_on(cpu, system_wq, work);
3081}
3082EXPORT_SYMBOL(schedule_work_on);
3083
0fcb78c2
REB
3084/**
3085 * schedule_work - put work task in global workqueue
3086 * @work: job to be done
3087 *
d4283e93
TH
3088 * Returns %false if @work was already on the kernel-global workqueue and
3089 * %true otherwise.
5b0f437d
BVA
3090 *
3091 * This puts a job in the kernel-global workqueue if it was not already
3092 * queued and leaves it in the same position on the kernel-global
3093 * workqueue otherwise.
0fcb78c2 3094 */
d4283e93 3095bool schedule_work(struct work_struct *work)
1da177e4 3096{
d320c038 3097 return queue_work(system_wq, work);
1da177e4 3098}
ae90dd5d 3099EXPORT_SYMBOL(schedule_work);
1da177e4 3100
0a13c00e
TH
3101/**
3102 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3103 * @cpu: cpu to use
3104 * @dwork: job to be done
3105 * @delay: number of jiffies to wait
c1a220e7 3106 *
0a13c00e
TH
3107 * After waiting for a given time this puts a job in the kernel-global
3108 * workqueue on the specified CPU.
c1a220e7 3109 */
d4283e93
TH
3110bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3111 unsigned long delay)
c1a220e7 3112{
0a13c00e 3113 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3114}
0a13c00e 3115EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3116
0fcb78c2
REB
3117/**
3118 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3119 * @dwork: job to be done
3120 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3121 *
3122 * After waiting for a given time this puts a job in the kernel-global
3123 * workqueue.
3124 */
d4283e93 3125bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3126{
d320c038 3127 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3128}
ae90dd5d 3129EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3130
b6136773 3131/**
31ddd871 3132 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3133 * @func: the function to call
b6136773 3134 *
31ddd871
TH
3135 * schedule_on_each_cpu() executes @func on each online CPU using the
3136 * system workqueue and blocks until all CPUs have completed.
b6136773 3137 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3138 *
3139 * RETURNS:
3140 * 0 on success, -errno on failure.
b6136773 3141 */
65f27f38 3142int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3143{
3144 int cpu;
38f51568 3145 struct work_struct __percpu *works;
15316ba8 3146
b6136773
AM
3147 works = alloc_percpu(struct work_struct);
3148 if (!works)
15316ba8 3149 return -ENOMEM;
b6136773 3150
93981800
TH
3151 get_online_cpus();
3152
15316ba8 3153 for_each_online_cpu(cpu) {
9bfb1839
IM
3154 struct work_struct *work = per_cpu_ptr(works, cpu);
3155
3156 INIT_WORK(work, func);
b71ab8c2 3157 schedule_work_on(cpu, work);
65a64464 3158 }
93981800
TH
3159
3160 for_each_online_cpu(cpu)
3161 flush_work(per_cpu_ptr(works, cpu));
3162
95402b38 3163 put_online_cpus();
b6136773 3164 free_percpu(works);
15316ba8
CL
3165 return 0;
3166}
3167
eef6a7d5
AS
3168/**
3169 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3170 *
3171 * Forces execution of the kernel-global workqueue and blocks until its
3172 * completion.
3173 *
3174 * Think twice before calling this function! It's very easy to get into
3175 * trouble if you don't take great care. Either of the following situations
3176 * will lead to deadlock:
3177 *
3178 * One of the work items currently on the workqueue needs to acquire
3179 * a lock held by your code or its caller.
3180 *
3181 * Your code is running in the context of a work routine.
3182 *
3183 * They will be detected by lockdep when they occur, but the first might not
3184 * occur very often. It depends on what work items are on the workqueue and
3185 * what locks they need, which you have no control over.
3186 *
3187 * In most situations flushing the entire workqueue is overkill; you merely
3188 * need to know that a particular work item isn't queued and isn't running.
3189 * In such cases you should use cancel_delayed_work_sync() or
3190 * cancel_work_sync() instead.
3191 */
1da177e4
LT
3192void flush_scheduled_work(void)
3193{
d320c038 3194 flush_workqueue(system_wq);
1da177e4 3195}
ae90dd5d 3196EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3197
1fa44eca
JB
3198/**
3199 * execute_in_process_context - reliably execute the routine with user context
3200 * @fn: the function to execute
1fa44eca
JB
3201 * @ew: guaranteed storage for the execute work structure (must
3202 * be available when the work executes)
3203 *
3204 * Executes the function immediately if process context is available,
3205 * otherwise schedules the function for delayed execution.
3206 *
3207 * Returns: 0 - function was executed
3208 * 1 - function was scheduled for execution
3209 */
65f27f38 3210int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3211{
3212 if (!in_interrupt()) {
65f27f38 3213 fn(&ew->work);
1fa44eca
JB
3214 return 0;
3215 }
3216
65f27f38 3217 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3218 schedule_work(&ew->work);
3219
3220 return 1;
3221}
3222EXPORT_SYMBOL_GPL(execute_in_process_context);
3223
1da177e4
LT
3224int keventd_up(void)
3225{
d320c038 3226 return system_wq != NULL;
1da177e4
LT
3227}
3228
bdbc5dd7 3229static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3230{
65a64464 3231 /*
0f900049
TH
3232 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3233 * Make sure that the alignment isn't lower than that of
3234 * unsigned long long.
65a64464 3235 */
0f900049
TH
3236 const size_t size = sizeof(struct cpu_workqueue_struct);
3237 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3238 __alignof__(unsigned long long));
65a64464 3239
e06ffa1e 3240 if (!(wq->flags & WQ_UNBOUND))
f3421797 3241 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3242 else {
f3421797
TH
3243 void *ptr;
3244
3245 /*
3246 * Allocate enough room to align cwq and put an extra
3247 * pointer at the end pointing back to the originally
3248 * allocated pointer which will be used for free.
3249 */
3250 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3251 if (ptr) {
3252 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3253 *(void **)(wq->cpu_wq.single + 1) = ptr;
3254 }
bdbc5dd7 3255 }
f3421797 3256
0415b00d 3257 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3258 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3259 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3260}
3261
bdbc5dd7 3262static void free_cwqs(struct workqueue_struct *wq)
0f900049 3263{
e06ffa1e 3264 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3265 free_percpu(wq->cpu_wq.pcpu);
3266 else if (wq->cpu_wq.single) {
3267 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3268 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3269 }
0f900049
TH
3270}
3271
f3421797
TH
3272static int wq_clamp_max_active(int max_active, unsigned int flags,
3273 const char *name)
b71ab8c2 3274{
f3421797
TH
3275 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3276
3277 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3278 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3279 "is out of range, clamping between %d and %d\n",
f3421797 3280 max_active, name, 1, lim);
b71ab8c2 3281
f3421797 3282 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3283}
3284
b196be89 3285struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3286 unsigned int flags,
3287 int max_active,
3288 struct lock_class_key *key,
b196be89 3289 const char *lock_name, ...)
1da177e4 3290{
b196be89 3291 va_list args, args1;
1da177e4 3292 struct workqueue_struct *wq;
c34056a3 3293 unsigned int cpu;
b196be89
TH
3294 size_t namelen;
3295
3296 /* determine namelen, allocate wq and format name */
3297 va_start(args, lock_name);
3298 va_copy(args1, args);
3299 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3300
3301 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3302 if (!wq)
3303 goto err;
3304
3305 vsnprintf(wq->name, namelen, fmt, args1);
3306 va_end(args);
3307 va_end(args1);
1da177e4 3308
6370a6ad
TH
3309 /*
3310 * Workqueues which may be used during memory reclaim should
3311 * have a rescuer to guarantee forward progress.
3312 */
3313 if (flags & WQ_MEM_RECLAIM)
3314 flags |= WQ_RESCUER;
3315
d320c038 3316 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3317 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3318
b196be89 3319 /* init wq */
97e37d7b 3320 wq->flags = flags;
a0a1a5fd 3321 wq->saved_max_active = max_active;
73f53c4a
TH
3322 mutex_init(&wq->flush_mutex);
3323 atomic_set(&wq->nr_cwqs_to_flush, 0);
3324 INIT_LIST_HEAD(&wq->flusher_queue);
3325 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3326
eb13ba87 3327 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3328 INIT_LIST_HEAD(&wq->list);
3af24433 3329
bdbc5dd7
TH
3330 if (alloc_cwqs(wq) < 0)
3331 goto err;
3332
f3421797 3333 for_each_cwq_cpu(cpu, wq) {
1537663f 3334 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3335 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3336 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3337
0f900049 3338 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3339 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3340 cwq->wq = wq;
73f53c4a 3341 cwq->flush_color = -1;
1e19ffc6 3342 cwq->max_active = max_active;
1e19ffc6 3343 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3344 }
1537663f 3345
e22bee78
TH
3346 if (flags & WQ_RESCUER) {
3347 struct worker *rescuer;
3348
f2e005aa 3349 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3350 goto err;
3351
3352 wq->rescuer = rescuer = alloc_worker();
3353 if (!rescuer)
3354 goto err;
3355
b196be89
TH
3356 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3357 wq->name);
e22bee78
TH
3358 if (IS_ERR(rescuer->task))
3359 goto err;
3360
e22bee78
TH
3361 rescuer->task->flags |= PF_THREAD_BOUND;
3362 wake_up_process(rescuer->task);
3af24433
ON
3363 }
3364
a0a1a5fd
TH
3365 /*
3366 * workqueue_lock protects global freeze state and workqueues
3367 * list. Grab it, set max_active accordingly and add the new
3368 * workqueue to workqueues list.
3369 */
1537663f 3370 spin_lock(&workqueue_lock);
a0a1a5fd 3371
58a69cb4 3372 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3373 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3374 get_cwq(cpu, wq)->max_active = 0;
3375
1537663f 3376 list_add(&wq->list, &workqueues);
a0a1a5fd 3377
1537663f
TH
3378 spin_unlock(&workqueue_lock);
3379
3af24433 3380 return wq;
4690c4ab
TH
3381err:
3382 if (wq) {
bdbc5dd7 3383 free_cwqs(wq);
f2e005aa 3384 free_mayday_mask(wq->mayday_mask);
e22bee78 3385 kfree(wq->rescuer);
4690c4ab
TH
3386 kfree(wq);
3387 }
3388 return NULL;
3af24433 3389}
d320c038 3390EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3391
3af24433
ON
3392/**
3393 * destroy_workqueue - safely terminate a workqueue
3394 * @wq: target workqueue
3395 *
3396 * Safely destroy a workqueue. All work currently pending will be done first.
3397 */
3398void destroy_workqueue(struct workqueue_struct *wq)
3399{
c8e55f36 3400 unsigned int cpu;
3af24433 3401
9c5a2ba7
TH
3402 /* drain it before proceeding with destruction */
3403 drain_workqueue(wq);
c8efcc25 3404
a0a1a5fd
TH
3405 /*
3406 * wq list is used to freeze wq, remove from list after
3407 * flushing is complete in case freeze races us.
3408 */
95402b38 3409 spin_lock(&workqueue_lock);
b1f4ec17 3410 list_del(&wq->list);
95402b38 3411 spin_unlock(&workqueue_lock);
3af24433 3412
e22bee78 3413 /* sanity check */
f3421797 3414 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3415 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3416 int i;
3417
73f53c4a
TH
3418 for (i = 0; i < WORK_NR_COLORS; i++)
3419 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3420 BUG_ON(cwq->nr_active);
3421 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3422 }
9b41ea72 3423
e22bee78
TH
3424 if (wq->flags & WQ_RESCUER) {
3425 kthread_stop(wq->rescuer->task);
f2e005aa 3426 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3427 kfree(wq->rescuer);
e22bee78
TH
3428 }
3429
bdbc5dd7 3430 free_cwqs(wq);
3af24433
ON
3431 kfree(wq);
3432}
3433EXPORT_SYMBOL_GPL(destroy_workqueue);
3434
dcd989cb
TH
3435/**
3436 * workqueue_set_max_active - adjust max_active of a workqueue
3437 * @wq: target workqueue
3438 * @max_active: new max_active value.
3439 *
3440 * Set max_active of @wq to @max_active.
3441 *
3442 * CONTEXT:
3443 * Don't call from IRQ context.
3444 */
3445void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3446{
3447 unsigned int cpu;
3448
f3421797 3449 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3450
3451 spin_lock(&workqueue_lock);
3452
3453 wq->saved_max_active = max_active;
3454
f3421797 3455 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3456 struct global_cwq *gcwq = get_gcwq(cpu);
3457
3458 spin_lock_irq(&gcwq->lock);
3459
58a69cb4 3460 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3461 !(gcwq->flags & GCWQ_FREEZING))
3462 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3463
dcd989cb 3464 spin_unlock_irq(&gcwq->lock);
65a64464 3465 }
93981800 3466
dcd989cb 3467 spin_unlock(&workqueue_lock);
15316ba8 3468}
dcd989cb 3469EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3470
eef6a7d5 3471/**
dcd989cb
TH
3472 * workqueue_congested - test whether a workqueue is congested
3473 * @cpu: CPU in question
3474 * @wq: target workqueue
eef6a7d5 3475 *
dcd989cb
TH
3476 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3477 * no synchronization around this function and the test result is
3478 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3479 *
dcd989cb
TH
3480 * RETURNS:
3481 * %true if congested, %false otherwise.
eef6a7d5 3482 */
dcd989cb 3483bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3484{
dcd989cb
TH
3485 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3486
3487 return !list_empty(&cwq->delayed_works);
1da177e4 3488}
dcd989cb 3489EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3490
1fa44eca 3491/**
dcd989cb
TH
3492 * work_cpu - return the last known associated cpu for @work
3493 * @work: the work of interest
1fa44eca 3494 *
dcd989cb 3495 * RETURNS:
bdbc5dd7 3496 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3497 */
dcd989cb 3498unsigned int work_cpu(struct work_struct *work)
1fa44eca 3499{
dcd989cb 3500 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3501
bdbc5dd7 3502 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3503}
dcd989cb 3504EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3505
dcd989cb
TH
3506/**
3507 * work_busy - test whether a work is currently pending or running
3508 * @work: the work to be tested
3509 *
3510 * Test whether @work is currently pending or running. There is no
3511 * synchronization around this function and the test result is
3512 * unreliable and only useful as advisory hints or for debugging.
3513 * Especially for reentrant wqs, the pending state might hide the
3514 * running state.
3515 *
3516 * RETURNS:
3517 * OR'd bitmask of WORK_BUSY_* bits.
3518 */
3519unsigned int work_busy(struct work_struct *work)
1da177e4 3520{
dcd989cb
TH
3521 struct global_cwq *gcwq = get_work_gcwq(work);
3522 unsigned long flags;
3523 unsigned int ret = 0;
1da177e4 3524
dcd989cb
TH
3525 if (!gcwq)
3526 return false;
1da177e4 3527
dcd989cb 3528 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3529
dcd989cb
TH
3530 if (work_pending(work))
3531 ret |= WORK_BUSY_PENDING;
3532 if (find_worker_executing_work(gcwq, work))
3533 ret |= WORK_BUSY_RUNNING;
1da177e4 3534
dcd989cb 3535 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3536
dcd989cb 3537 return ret;
1da177e4 3538}
dcd989cb 3539EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3540
db7bccf4
TH
3541/*
3542 * CPU hotplug.
3543 *
e22bee78
TH
3544 * There are two challenges in supporting CPU hotplug. Firstly, there
3545 * are a lot of assumptions on strong associations among work, cwq and
3546 * gcwq which make migrating pending and scheduled works very
3547 * difficult to implement without impacting hot paths. Secondly,
3548 * gcwqs serve mix of short, long and very long running works making
3549 * blocked draining impractical.
3550 *
628c78e7
TH
3551 * This is solved by allowing a gcwq to be disassociated from the CPU
3552 * running as an unbound one and allowing it to be reattached later if the
3553 * cpu comes back online.
db7bccf4 3554 */
1da177e4 3555
60373152 3556/* claim manager positions of all pools */
8db25e78 3557static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3558{
3559 struct worker_pool *pool;
3560
3561 for_each_worker_pool(pool, gcwq)
3562 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3563 spin_lock_irq(&gcwq->lock);
60373152
TH
3564}
3565
3566/* release manager positions */
8db25e78 3567static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3568{
3569 struct worker_pool *pool;
3570
8db25e78 3571 spin_unlock_irq(&gcwq->lock);
60373152
TH
3572 for_each_worker_pool(pool, gcwq)
3573 mutex_unlock(&pool->manager_mutex);
3574}
3575
628c78e7 3576static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3577{
628c78e7 3578 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3579 struct worker_pool *pool;
db7bccf4
TH
3580 struct worker *worker;
3581 struct hlist_node *pos;
3582 int i;
3af24433 3583
db7bccf4
TH
3584 BUG_ON(gcwq->cpu != smp_processor_id());
3585
8db25e78 3586 gcwq_claim_management_and_lock(gcwq);
3af24433 3587
f2d5a0ee
TH
3588 /*
3589 * We've claimed all manager positions. Make all workers unbound
3590 * and set DISASSOCIATED. Before this, all workers except for the
3591 * ones which are still executing works from before the last CPU
3592 * down must be on the cpu. After this, they may become diasporas.
3593 */
60373152 3594 for_each_worker_pool(pool, gcwq)
4ce62e9e 3595 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3596 worker->flags |= WORKER_UNBOUND;
3af24433 3597
db7bccf4 3598 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3599 worker->flags |= WORKER_UNBOUND;
06ba38a9 3600
f2d5a0ee
TH
3601 gcwq->flags |= GCWQ_DISASSOCIATED;
3602
8db25e78 3603 gcwq_release_management_and_unlock(gcwq);
628c78e7 3604
e22bee78 3605 /*
403c821d 3606 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3607 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3608 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3609 */
e22bee78 3610 schedule();
06ba38a9 3611
e22bee78 3612 /*
628c78e7
TH
3613 * Sched callbacks are disabled now. Zap nr_running. After this,
3614 * nr_running stays zero and need_more_worker() and keep_working()
3615 * are always true as long as the worklist is not empty. @gcwq now
3616 * behaves as unbound (in terms of concurrency management) gcwq
3617 * which is served by workers tied to the CPU.
3618 *
3619 * On return from this function, the current worker would trigger
3620 * unbound chain execution of pending work items if other workers
3621 * didn't already.
e22bee78 3622 */
4ce62e9e
TH
3623 for_each_worker_pool(pool, gcwq)
3624 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3625}
3af24433 3626
8db25e78
TH
3627/*
3628 * Workqueues should be brought up before normal priority CPU notifiers.
3629 * This will be registered high priority CPU notifier.
3630 */
3631static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3632 unsigned long action,
3633 void *hcpu)
3af24433
ON
3634{
3635 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3636 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3637 struct worker_pool *pool;
3ce63377 3638
8db25e78 3639 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3640 case CPU_UP_PREPARE:
4ce62e9e 3641 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3642 struct worker *worker;
3643
3644 if (pool->nr_workers)
3645 continue;
3646
3647 worker = create_worker(pool);
3648 if (!worker)
3649 return NOTIFY_BAD;
3650
3651 spin_lock_irq(&gcwq->lock);
3652 start_worker(worker);
3653 spin_unlock_irq(&gcwq->lock);
3af24433 3654 }
8db25e78 3655 break;
3af24433 3656
db7bccf4
TH
3657 case CPU_DOWN_FAILED:
3658 case CPU_ONLINE:
8db25e78 3659 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3660 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3661 rebind_workers(gcwq);
8db25e78 3662 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3663 break;
00dfcaf7 3664 }
65758202
TH
3665 return NOTIFY_OK;
3666}
3667
3668/*
3669 * Workqueues should be brought down after normal priority CPU notifiers.
3670 * This will be registered as low priority CPU notifier.
3671 */
3672static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3673 unsigned long action,
3674 void *hcpu)
3675{
8db25e78
TH
3676 unsigned int cpu = (unsigned long)hcpu;
3677 struct work_struct unbind_work;
3678
65758202
TH
3679 switch (action & ~CPU_TASKS_FROZEN) {
3680 case CPU_DOWN_PREPARE:
8db25e78
TH
3681 /* unbinding should happen on the local CPU */
3682 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3683 schedule_work_on(cpu, &unbind_work);
3684 flush_work(&unbind_work);
3685 break;
65758202
TH
3686 }
3687 return NOTIFY_OK;
3688}
3689
2d3854a3 3690#ifdef CONFIG_SMP
8ccad40d 3691
2d3854a3 3692struct work_for_cpu {
6b44003e 3693 struct completion completion;
2d3854a3
RR
3694 long (*fn)(void *);
3695 void *arg;
3696 long ret;
3697};
3698
6b44003e 3699static int do_work_for_cpu(void *_wfc)
2d3854a3 3700{
6b44003e 3701 struct work_for_cpu *wfc = _wfc;
2d3854a3 3702 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3703 complete(&wfc->completion);
3704 return 0;
2d3854a3
RR
3705}
3706
3707/**
3708 * work_on_cpu - run a function in user context on a particular cpu
3709 * @cpu: the cpu to run on
3710 * @fn: the function to run
3711 * @arg: the function arg
3712 *
31ad9081
RR
3713 * This will return the value @fn returns.
3714 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3715 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3716 */
3717long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3718{
6b44003e
AM
3719 struct task_struct *sub_thread;
3720 struct work_for_cpu wfc = {
3721 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3722 .fn = fn,
3723 .arg = arg,
3724 };
3725
3726 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3727 if (IS_ERR(sub_thread))
3728 return PTR_ERR(sub_thread);
3729 kthread_bind(sub_thread, cpu);
3730 wake_up_process(sub_thread);
3731 wait_for_completion(&wfc.completion);
2d3854a3
RR
3732 return wfc.ret;
3733}
3734EXPORT_SYMBOL_GPL(work_on_cpu);
3735#endif /* CONFIG_SMP */
3736
a0a1a5fd
TH
3737#ifdef CONFIG_FREEZER
3738
3739/**
3740 * freeze_workqueues_begin - begin freezing workqueues
3741 *
58a69cb4
TH
3742 * Start freezing workqueues. After this function returns, all freezable
3743 * workqueues will queue new works to their frozen_works list instead of
3744 * gcwq->worklist.
a0a1a5fd
TH
3745 *
3746 * CONTEXT:
8b03ae3c 3747 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3748 */
3749void freeze_workqueues_begin(void)
3750{
a0a1a5fd
TH
3751 unsigned int cpu;
3752
3753 spin_lock(&workqueue_lock);
3754
3755 BUG_ON(workqueue_freezing);
3756 workqueue_freezing = true;
3757
f3421797 3758 for_each_gcwq_cpu(cpu) {
8b03ae3c 3759 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3760 struct workqueue_struct *wq;
8b03ae3c
TH
3761
3762 spin_lock_irq(&gcwq->lock);
3763
db7bccf4
TH
3764 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3765 gcwq->flags |= GCWQ_FREEZING;
3766
a0a1a5fd
TH
3767 list_for_each_entry(wq, &workqueues, list) {
3768 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3769
58a69cb4 3770 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3771 cwq->max_active = 0;
a0a1a5fd 3772 }
8b03ae3c
TH
3773
3774 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3775 }
3776
3777 spin_unlock(&workqueue_lock);
3778}
3779
3780/**
58a69cb4 3781 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3782 *
3783 * Check whether freezing is complete. This function must be called
3784 * between freeze_workqueues_begin() and thaw_workqueues().
3785 *
3786 * CONTEXT:
3787 * Grabs and releases workqueue_lock.
3788 *
3789 * RETURNS:
58a69cb4
TH
3790 * %true if some freezable workqueues are still busy. %false if freezing
3791 * is complete.
a0a1a5fd
TH
3792 */
3793bool freeze_workqueues_busy(void)
3794{
a0a1a5fd
TH
3795 unsigned int cpu;
3796 bool busy = false;
3797
3798 spin_lock(&workqueue_lock);
3799
3800 BUG_ON(!workqueue_freezing);
3801
f3421797 3802 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3803 struct workqueue_struct *wq;
a0a1a5fd
TH
3804 /*
3805 * nr_active is monotonically decreasing. It's safe
3806 * to peek without lock.
3807 */
3808 list_for_each_entry(wq, &workqueues, list) {
3809 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3810
58a69cb4 3811 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3812 continue;
3813
3814 BUG_ON(cwq->nr_active < 0);
3815 if (cwq->nr_active) {
3816 busy = true;
3817 goto out_unlock;
3818 }
3819 }
3820 }
3821out_unlock:
3822 spin_unlock(&workqueue_lock);
3823 return busy;
3824}
3825
3826/**
3827 * thaw_workqueues - thaw workqueues
3828 *
3829 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3830 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3831 *
3832 * CONTEXT:
8b03ae3c 3833 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3834 */
3835void thaw_workqueues(void)
3836{
a0a1a5fd
TH
3837 unsigned int cpu;
3838
3839 spin_lock(&workqueue_lock);
3840
3841 if (!workqueue_freezing)
3842 goto out_unlock;
3843
f3421797 3844 for_each_gcwq_cpu(cpu) {
8b03ae3c 3845 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3846 struct worker_pool *pool;
bdbc5dd7 3847 struct workqueue_struct *wq;
8b03ae3c
TH
3848
3849 spin_lock_irq(&gcwq->lock);
3850
db7bccf4
TH
3851 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3852 gcwq->flags &= ~GCWQ_FREEZING;
3853
a0a1a5fd
TH
3854 list_for_each_entry(wq, &workqueues, list) {
3855 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3856
58a69cb4 3857 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3858 continue;
3859
a0a1a5fd
TH
3860 /* restore max_active and repopulate worklist */
3861 cwq->max_active = wq->saved_max_active;
3862
3863 while (!list_empty(&cwq->delayed_works) &&
3864 cwq->nr_active < cwq->max_active)
3865 cwq_activate_first_delayed(cwq);
a0a1a5fd 3866 }
8b03ae3c 3867
4ce62e9e
TH
3868 for_each_worker_pool(pool, gcwq)
3869 wake_up_worker(pool);
e22bee78 3870
8b03ae3c 3871 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3872 }
3873
3874 workqueue_freezing = false;
3875out_unlock:
3876 spin_unlock(&workqueue_lock);
3877}
3878#endif /* CONFIG_FREEZER */
3879
6ee0578b 3880static int __init init_workqueues(void)
1da177e4 3881{
c34056a3 3882 unsigned int cpu;
c8e55f36 3883 int i;
c34056a3 3884
b5490077
TH
3885 /* make sure we have enough bits for OFFQ CPU number */
3886 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3887 WORK_CPU_LAST);
3888
65758202
TH
3889 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3890 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3891
3892 /* initialize gcwqs */
f3421797 3893 for_each_gcwq_cpu(cpu) {
8b03ae3c 3894 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3895 struct worker_pool *pool;
8b03ae3c
TH
3896
3897 spin_lock_init(&gcwq->lock);
3898 gcwq->cpu = cpu;
477a3c33 3899 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3900
c8e55f36
TH
3901 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3902 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3903
4ce62e9e
TH
3904 for_each_worker_pool(pool, gcwq) {
3905 pool->gcwq = gcwq;
3906 INIT_LIST_HEAD(&pool->worklist);
3907 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3908
4ce62e9e
TH
3909 init_timer_deferrable(&pool->idle_timer);
3910 pool->idle_timer.function = idle_worker_timeout;
3911 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3912
4ce62e9e
TH
3913 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3914 (unsigned long)pool);
3915
60373152 3916 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3917 ida_init(&pool->worker_ida);
3918 }
db7bccf4 3919
25511a47 3920 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3921 }
3922
e22bee78 3923 /* create the initial worker */
f3421797 3924 for_each_online_gcwq_cpu(cpu) {
e22bee78 3925 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3926 struct worker_pool *pool;
e22bee78 3927
477a3c33
TH
3928 if (cpu != WORK_CPU_UNBOUND)
3929 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3930
3931 for_each_worker_pool(pool, gcwq) {
3932 struct worker *worker;
3933
bc2ae0f5 3934 worker = create_worker(pool);
4ce62e9e
TH
3935 BUG_ON(!worker);
3936 spin_lock_irq(&gcwq->lock);
3937 start_worker(worker);
3938 spin_unlock_irq(&gcwq->lock);
3939 }
e22bee78
TH
3940 }
3941
d320c038 3942 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3943 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038
TH
3944 system_long_wq = alloc_workqueue("events_long", 0, 0);
3945 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3946 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3947 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3948 system_freezable_wq = alloc_workqueue("events_freezable",
3949 WQ_FREEZABLE, 0);
62d3c543
AS
3950 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3951 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
1aabe902
JK
3952 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3953 !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
3954 !system_nrt_freezable_wq);
6ee0578b 3955 return 0;
1da177e4 3956}
6ee0578b 3957early_initcall(init_workqueues);
This page took 0.856631 seconds and 5 git commands to generate.