2005-09-08 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
bb6a587d
DD
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
5f73c378 56
e2eaf477
ILT
57#include <stdio.h>
58
59#include "libiberty.h"
bb6a587d 60#include "ansidecl.h"
e2eaf477
ILT
61#include "hashtab.h"
62
bb6a587d
DD
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
49b1fae4
DD
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
75
76/* At some point, we could make these be NULL, and modify the
77 hash-table routines to handle NULL specially; that would avoid
78 function-call overhead for the common case of hashing pointers. */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
81
bb6a587d
DD
82/* Table of primes and multiplicative inverses.
83
84 Note that these are not minimally reduced inverses. Unlike when generating
85 code to divide by a constant, we want to be able to use the same algorithm
86 all the time. All of these inverses (are implied to) have bit 32 set.
87
88 For the record, here's the function that computed the table; it's a
89 vastly simplified version of the function of the same name from gcc. */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95 int i;
96 for (i = 31; i >= 0 ; --i)
97 if (x > (1u << i))
98 return i+1;
99 abort ();
100}
e2eaf477 101
bb6a587d
DD
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105 unsigned long long mhigh;
106 double nx;
107 int lgup, post_shift;
108 int pow, pow2;
109 int n = 32, precision = 32;
110
111 lgup = ceil_log2 (d);
112 pow = n + lgup;
113 pow2 = n + lgup - precision;
114
115 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116 mhigh = nx / d;
117
118 *shiftp = lgup - 1;
119 *mlp = mhigh;
120 return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126 hashval_t prime;
127 hashval_t inv;
128 hashval_t inv_m2; /* inverse of prime-2 */
129 hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133 { 7, 0x24924925, 0x9999999b, 2 },
134 { 13, 0x3b13b13c, 0x745d1747, 3 },
135 { 31, 0x08421085, 0x1a7b9612, 4 },
136 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
137 { 127, 0x02040811, 0x0624dd30, 6 },
138 { 251, 0x05197f7e, 0x073260a5, 7 },
139 { 509, 0x01824366, 0x02864fc8, 8 },
140 { 1021, 0x00c0906d, 0x014191f7, 9 },
141 { 2039, 0x0121456f, 0x0161e69e, 10 },
142 { 4093, 0x00300902, 0x00501908, 11 },
143 { 8191, 0x00080041, 0x00180241, 12 },
144 { 16381, 0x000c0091, 0x00140191, 13 },
145 { 32749, 0x002605a5, 0x002a06e6, 14 },
146 { 65521, 0x000f00e2, 0x00110122, 15 },
147 { 131071, 0x00008001, 0x00018003, 16 },
148 { 262139, 0x00014002, 0x0001c004, 17 },
149 { 524287, 0x00002001, 0x00006001, 18 },
150 { 1048573, 0x00003001, 0x00005001, 19 },
151 { 2097143, 0x00004801, 0x00005801, 20 },
152 { 4194301, 0x00000c01, 0x00001401, 21 },
153 { 8388593, 0x00001e01, 0x00002201, 22 },
154 { 16777213, 0x00000301, 0x00000501, 23 },
155 { 33554393, 0x00001381, 0x00001481, 24 },
156 { 67108859, 0x00000141, 0x000001c1, 25 },
157 { 134217689, 0x000004e1, 0x00000521, 26 },
158 { 268435399, 0x00000391, 0x000003b1, 27 },
159 { 536870909, 0x00000019, 0x00000029, 28 },
160 { 1073741789, 0x0000008d, 0x00000095, 29 },
161 { 2147483647, 0x00000003, 0x00000007, 30 },
162 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
163 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167 nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
49b1fae4 170higher_prime_index (unsigned long n)
e2eaf477 171{
bb6a587d
DD
172 unsigned int low = 0;
173 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
174
175 while (low != high)
176 {
bb6a587d
DD
177 unsigned int mid = low + (high - low) / 2;
178 if (n > prime_tab[mid].prime)
5ca0f83d
DD
179 low = mid + 1;
180 else
181 high = mid;
182 }
183
184 /* If we've run out of primes, abort. */
bb6a587d 185 if (n > prime_tab[low].prime)
5ca0f83d
DD
186 {
187 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188 abort ();
189 }
190
bb6a587d 191 return low;
e2eaf477
ILT
192}
193
eb383413
L
194/* Returns a hash code for P. */
195
196static hashval_t
49b1fae4 197hash_pointer (const PTR p)
eb383413
L
198{
199 return (hashval_t) ((long)p >> 3);
200}
201
202/* Returns non-zero if P1 and P2 are equal. */
203
204static int
49b1fae4 205eq_pointer (const PTR p1, const PTR p2)
eb383413
L
206{
207 return p1 == p2;
208}
209
fe046a17 210
abf6a75b
DD
211/* The parens around the function names in the next two definitions
212 are essential in order to prevent macro expansions of the name.
213 The bodies, however, are expanded as expected, so they are not
214 recursive definitions. */
215
216/* Return the current size of given hash table. */
217
218#define htab_size(htab) ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
fe046a17 222{
abf6a75b 223 return htab_size (htab);
fe046a17
DD
224}
225
226/* Return the current number of elements in given hash table. */
227
abf6a75b
DD
228#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
fe046a17 232{
abf6a75b 233 return htab_elements (htab);
fe046a17
DD
234}
235
bb6a587d
DD
236/* Return X % Y. */
237
238static inline hashval_t
49b1fae4 239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
240{
241 /* The multiplicative inverses computed above are for 32-bit types, and
242 requires that we be able to compute a highpart multiply. */
243#ifdef UNSIGNED_64BIT_TYPE
244 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245 if (sizeof (hashval_t) * CHAR_BIT <= 32)
246 {
247 hashval_t t1, t2, t3, t4, q, r;
248
249 t1 = ((ull)x * inv) >> 32;
250 t2 = x - t1;
251 t3 = t2 >> 1;
252 t4 = t1 + t3;
253 q = t4 >> shift;
254 r = x - (q * y);
255
256 return r;
257 }
258#endif
259
260 /* Otherwise just use the native division routines. */
261 return x % y;
262}
263
fe046a17
DD
264/* Compute the primary hash for HASH given HTAB's current size. */
265
266static inline hashval_t
49b1fae4 267htab_mod (hashval_t hash, htab_t htab)
fe046a17 268{
bb6a587d
DD
269 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
49b1fae4 276htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 277{
bb6a587d
DD
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
280}
281
e2eaf477
ILT
282/* This function creates table with length slightly longer than given
283 source length. Created hash table is initiated as empty (all the
c3cca4c9 284 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 285 created hash table, or NULL if memory allocation fails. */
e2eaf477 286
b4fe2683 287htab_t
49b1fae4
DD
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
e2eaf477 290{
b4fe2683 291 htab_t result;
bb6a587d
DD
292 unsigned int size_prime_index;
293
294 size_prime_index = higher_prime_index (size);
295 size = prime_tab[size_prime_index].prime;
e2eaf477 296
18893690
DD
297 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298 if (result == NULL)
299 return NULL;
300 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301 if (result->entries == NULL)
302 {
303 if (free_f != NULL)
304 (*free_f) (result);
305 return NULL;
306 }
e2eaf477 307 result->size = size;
bb6a587d 308 result->size_prime_index = size_prime_index;
b4fe2683
JM
309 result->hash_f = hash_f;
310 result->eq_f = eq_f;
311 result->del_f = del_f;
18893690
DD
312 result->alloc_f = alloc_f;
313 result->free_f = free_f;
99a4c1bd
HPN
314 return result;
315}
316
5f9624e3
DJ
317/* As above, but use the variants of alloc_f and free_f which accept
318 an extra argument. */
319
320htab_t
abf6a75b
DD
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322 htab_del del_f, void *alloc_arg,
323 htab_alloc_with_arg alloc_f,
324 htab_free_with_arg free_f)
5f9624e3
DJ
325{
326 htab_t result;
bb6a587d
DD
327 unsigned int size_prime_index;
328
329 size_prime_index = higher_prime_index (size);
330 size = prime_tab[size_prime_index].prime;
5f9624e3 331
5f9624e3
DJ
332 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333 if (result == NULL)
334 return NULL;
335 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336 if (result->entries == NULL)
337 {
338 if (free_f != NULL)
339 (*free_f) (alloc_arg, result);
340 return NULL;
341 }
342 result->size = size;
bb6a587d 343 result->size_prime_index = size_prime_index;
5f9624e3
DJ
344 result->hash_f = hash_f;
345 result->eq_f = eq_f;
346 result->del_f = del_f;
347 result->alloc_arg = alloc_arg;
348 result->alloc_with_arg_f = alloc_f;
349 result->free_with_arg_f = free_f;
350 return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t. */
354
355void
49b1fae4
DD
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, PTR alloc_arg,
358 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
359{
360 htab->hash_f = hash_f;
361 htab->eq_f = eq_f;
362 htab->del_f = del_f;
363 htab->alloc_arg = alloc_arg;
364 htab->alloc_with_arg_f = alloc_f;
365 htab->free_with_arg_f = free_f;
366}
367
18893690 368/* These functions exist solely for backward compatibility. */
99a4c1bd 369
18893690 370#undef htab_create
99a4c1bd 371htab_t
49b1fae4 372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 373{
18893690
DD
374 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
99a4c1bd 376
18893690 377htab_t
49b1fae4 378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
379{
380 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
381}
382
383/* This function frees all memory allocated for given hash table.
384 Naturally the hash table must already exist. */
385
386void
49b1fae4 387htab_delete (htab_t htab)
e2eaf477 388{
fe046a17
DD
389 size_t size = htab_size (htab);
390 PTR *entries = htab->entries;
b4fe2683 391 int i;
eb383413 392
b4fe2683 393 if (htab->del_f)
fe046a17 394 for (i = size - 1; i >= 0; i--)
c3cca4c9 395 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 396 (*htab->del_f) (entries[i]);
b4fe2683 397
18893690
DD
398 if (htab->free_f != NULL)
399 {
fe046a17 400 (*htab->free_f) (entries);
18893690
DD
401 (*htab->free_f) (htab);
402 }
5f9624e3
DJ
403 else if (htab->free_with_arg_f != NULL)
404 {
fe046a17 405 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
406 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407 }
e2eaf477
ILT
408}
409
410/* This function clears all entries in the given hash table. */
411
412void
49b1fae4 413htab_empty (htab_t htab)
b4fe2683 414{
fe046a17
DD
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
b4fe2683 417 int i;
eb383413 418
b4fe2683 419 if (htab->del_f)
fe046a17 420 for (i = size - 1; i >= 0; i--)
c3cca4c9 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 422 (*htab->del_f) (entries[i]);
b4fe2683 423
fe046a17 424 memset (entries, 0, size * sizeof (PTR));
b4fe2683
JM
425}
426
427/* Similar to htab_find_slot, but without several unwanted side effects:
428 - Does not call htab->eq_f when it finds an existing entry.
429 - Does not change the count of elements/searches/collisions in the
430 hash table.
431 This function also assumes there are no deleted entries in the table.
432 HASH is the hash value for the element to be inserted. */
eb383413 433
e0f3df8f 434static PTR *
49b1fae4 435find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 436{
fe046a17
DD
437 hashval_t index = htab_mod (hash, htab);
438 size_t size = htab_size (htab);
b1c933fc
RH
439 PTR *slot = htab->entries + index;
440 hashval_t hash2;
441
c3cca4c9 442 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 443 return slot;
c3cca4c9 444 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 445 abort ();
b4fe2683 446
fe046a17 447 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
448 for (;;)
449 {
b1c933fc
RH
450 index += hash2;
451 if (index >= size)
452 index -= size;
eb383413 453
b1c933fc 454 slot = htab->entries + index;
c3cca4c9 455 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 456 return slot;
c3cca4c9 457 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 458 abort ();
b4fe2683 459 }
e2eaf477
ILT
460}
461
462/* The following function changes size of memory allocated for the
463 entries and repeatedly inserts the table elements. The occupancy
464 of the table after the call will be about 50%. Naturally the hash
465 table must already exist. Remember also that the place of the
99a4c1bd
HPN
466 table entries is changed. If memory allocation failures are allowed,
467 this function will return zero, indicating that the table could not be
468 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 469
99a4c1bd 470static int
49b1fae4 471htab_expand (htab_t htab)
e2eaf477 472{
e0f3df8f
HPN
473 PTR *oentries;
474 PTR *olimit;
475 PTR *p;
18893690 476 PTR *nentries;
bb6a587d
DD
477 size_t nsize, osize, elts;
478 unsigned int oindex, nindex;
b4fe2683
JM
479
480 oentries = htab->entries;
bb6a587d
DD
481 oindex = htab->size_prime_index;
482 osize = htab->size;
483 olimit = oentries + osize;
484 elts = htab_elements (htab);
b4fe2683 485
c4d8feb2
DD
486 /* Resize only when table after removal of unused elements is either
487 too full or too empty. */
bb6a587d
DD
488 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
489 {
490 nindex = higher_prime_index (elts * 2);
491 nsize = prime_tab[nindex].prime;
492 }
c4d8feb2 493 else
bb6a587d
DD
494 {
495 nindex = oindex;
496 nsize = osize;
497 }
99a4c1bd 498
5f9624e3
DJ
499 if (htab->alloc_with_arg_f != NULL)
500 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
501 sizeof (PTR *));
502 else
503 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
504 if (nentries == NULL)
505 return 0;
506 htab->entries = nentries;
eed2b28c 507 htab->size = nsize;
bb6a587d 508 htab->size_prime_index = nindex;
b4fe2683
JM
509 htab->n_elements -= htab->n_deleted;
510 htab->n_deleted = 0;
511
512 p = oentries;
513 do
514 {
e0f3df8f 515 PTR x = *p;
eb383413 516
c3cca4c9 517 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 518 {
e0f3df8f 519 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 520
b4fe2683
JM
521 *q = x;
522 }
eb383413 523
b4fe2683
JM
524 p++;
525 }
526 while (p < olimit);
eb383413 527
18893690
DD
528 if (htab->free_f != NULL)
529 (*htab->free_f) (oentries);
5f9624e3
DJ
530 else if (htab->free_with_arg_f != NULL)
531 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 532 return 1;
e2eaf477
ILT
533}
534
b4fe2683
JM
535/* This function searches for a hash table entry equal to the given
536 element. It cannot be used to insert or delete an element. */
537
e0f3df8f 538PTR
49b1fae4 539htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 540{
fe046a17 541 hashval_t index, hash2;
b4fe2683 542 size_t size;
e0f3df8f 543 PTR entry;
e2eaf477 544
b4fe2683 545 htab->searches++;
fe046a17
DD
546 size = htab_size (htab);
547 index = htab_mod (hash, htab);
b4fe2683 548
eb383413 549 entry = htab->entries[index];
c3cca4c9
DD
550 if (entry == HTAB_EMPTY_ENTRY
551 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
552 return entry;
553
fe046a17 554 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 555 for (;;)
e2eaf477 556 {
b4fe2683
JM
557 htab->collisions++;
558 index += hash2;
559 if (index >= size)
560 index -= size;
eb383413
L
561
562 entry = htab->entries[index];
c3cca4c9
DD
563 if (entry == HTAB_EMPTY_ENTRY
564 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 565 return entry;
e2eaf477 566 }
b4fe2683
JM
567}
568
569/* Like htab_find_slot_with_hash, but compute the hash value from the
570 element. */
eb383413 571
e0f3df8f 572PTR
49b1fae4 573htab_find (htab_t htab, const PTR element)
b4fe2683
JM
574{
575 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
576}
577
578/* This function searches for a hash table slot containing an entry
579 equal to the given element. To delete an entry, call this with
bac7199c
DD
580 insert=NO_INSERT, then call htab_clear_slot on the slot returned
581 (possibly after doing some checks). To insert an entry, call this
582 with insert=INSERT, then write the value you want into the returned
583 slot. When inserting an entry, NULL may be returned if memory
584 allocation fails. */
b4fe2683 585
e0f3df8f 586PTR *
49b1fae4
DD
587htab_find_slot_with_hash (htab_t htab, const PTR element,
588 hashval_t hash, enum insert_option insert)
b4fe2683 589{
e0f3df8f 590 PTR *first_deleted_slot;
fe046a17 591 hashval_t index, hash2;
b4fe2683 592 size_t size;
b1c933fc 593 PTR entry;
b4fe2683 594
fe046a17
DD
595 size = htab_size (htab);
596 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
597 {
598 if (htab_expand (htab) == 0)
599 return NULL;
600 size = htab_size (htab);
601 }
b4fe2683 602
fe046a17 603 index = htab_mod (hash, htab);
b4fe2683 604
e2eaf477 605 htab->searches++;
b4fe2683
JM
606 first_deleted_slot = NULL;
607
b1c933fc 608 entry = htab->entries[index];
c3cca4c9 609 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 610 goto empty_entry;
c3cca4c9 611 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
612 first_deleted_slot = &htab->entries[index];
613 else if ((*htab->eq_f) (entry, element))
614 return &htab->entries[index];
615
fe046a17 616 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 617 for (;;)
e2eaf477 618 {
b1c933fc
RH
619 htab->collisions++;
620 index += hash2;
621 if (index >= size)
622 index -= size;
623
624 entry = htab->entries[index];
c3cca4c9 625 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 626 goto empty_entry;
c3cca4c9 627 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
628 {
629 if (!first_deleted_slot)
630 first_deleted_slot = &htab->entries[index];
631 }
b1c933fc 632 else if ((*htab->eq_f) (entry, element))
eb383413 633 return &htab->entries[index];
e2eaf477 634 }
b1c933fc
RH
635
636 empty_entry:
637 if (insert == NO_INSERT)
638 return NULL;
639
b1c933fc
RH
640 if (first_deleted_slot)
641 {
686e72d7 642 htab->n_deleted--;
c3cca4c9 643 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
644 return first_deleted_slot;
645 }
646
686e72d7 647 htab->n_elements++;
b1c933fc 648 return &htab->entries[index];
e2eaf477
ILT
649}
650
b4fe2683
JM
651/* Like htab_find_slot_with_hash, but compute the hash value from the
652 element. */
eb383413 653
e0f3df8f 654PTR *
49b1fae4 655htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
656{
657 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
658 insert);
659}
660
d6ea4e80
DD
661/* This function deletes an element with the given value from hash
662 table (the hash is computed from the element). If there is no matching
663 element in the hash table, this function does nothing. */
664
665void
49b1fae4 666htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
667{
668 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
669}
670
671
b4fe2683
JM
672/* This function deletes an element with the given value from hash
673 table. If there is no matching element in the hash table, this
674 function does nothing. */
e2eaf477
ILT
675
676void
49b1fae4 677htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 678{
e0f3df8f 679 PTR *slot;
b4fe2683 680
d6ea4e80 681 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
c3cca4c9 682 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683
JM
683 return;
684
685 if (htab->del_f)
686 (*htab->del_f) (*slot);
e2eaf477 687
c3cca4c9 688 *slot = HTAB_DELETED_ENTRY;
b4fe2683 689 htab->n_deleted++;
e2eaf477
ILT
690}
691
b4fe2683
JM
692/* This function clears a specified slot in a hash table. It is
693 useful when you've already done the lookup and don't want to do it
694 again. */
e2eaf477
ILT
695
696void
49b1fae4 697htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 698{
fe046a17 699 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 700 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 701 abort ();
eb383413 702
b4fe2683
JM
703 if (htab->del_f)
704 (*htab->del_f) (*slot);
eb383413 705
c3cca4c9 706 *slot = HTAB_DELETED_ENTRY;
b4fe2683 707 htab->n_deleted++;
e2eaf477
ILT
708}
709
710/* This function scans over the entire hash table calling
711 CALLBACK for each live entry. If CALLBACK returns false,
712 the iteration stops. INFO is passed as CALLBACK's second
713 argument. */
714
715void
49b1fae4 716htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 717{
c4d8feb2
DD
718 PTR *slot;
719 PTR *limit;
c3cca4c9 720
c4d8feb2 721 slot = htab->entries;
fe046a17 722 limit = slot + htab_size (htab);
eb383413 723
b4fe2683
JM
724 do
725 {
e0f3df8f 726 PTR x = *slot;
eb383413 727
c3cca4c9 728 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
729 if (!(*callback) (slot, info))
730 break;
731 }
732 while (++slot < limit);
e2eaf477
ILT
733}
734
f77ed96c
DD
735/* Like htab_traverse_noresize, but does resize the table when it is
736 too empty to improve effectivity of subsequent calls. */
737
738void
49b1fae4 739htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 740{
fe046a17 741 if (htab_elements (htab) * 8 < htab_size (htab))
f77ed96c
DD
742 htab_expand (htab);
743
744 htab_traverse_noresize (htab, callback, info);
745}
746
eb383413
L
747/* Return the fraction of fixed collisions during all work with given
748 hash table. */
e2eaf477 749
b4fe2683 750double
49b1fae4 751htab_collisions (htab_t htab)
e2eaf477 752{
eb383413 753 if (htab->searches == 0)
b4fe2683 754 return 0.0;
eb383413
L
755
756 return (double) htab->collisions / (double) htab->searches;
e2eaf477 757}
8fc34799 758
68a41de7
DD
759/* Hash P as a null-terminated string.
760
761 Copied from gcc/hashtable.c. Zack had the following to say with respect
762 to applicability, though note that unlike hashtable.c, this hash table
763 implementation re-hashes rather than chain buckets.
764
765 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
766 From: Zack Weinberg <zackw@panix.com>
767 Date: Fri, 17 Aug 2001 02:15:56 -0400
768
769 I got it by extracting all the identifiers from all the source code
770 I had lying around in mid-1999, and testing many recurrences of
771 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
772 prime numbers or the appropriate identity. This was the best one.
773 I don't remember exactly what constituted "best", except I was
774 looking at bucket-length distributions mostly.
775
776 So it should be very good at hashing identifiers, but might not be
777 as good at arbitrary strings.
778
779 I'll add that it thoroughly trounces the hash functions recommended
780 for this use at http://burtleburtle.net/bob/hash/index.html, both
781 on speed and bucket distribution. I haven't tried it against the
782 function they just started using for Perl's hashes. */
8fc34799
DD
783
784hashval_t
49b1fae4 785htab_hash_string (const PTR p)
8fc34799
DD
786{
787 const unsigned char *str = (const unsigned char *) p;
788 hashval_t r = 0;
789 unsigned char c;
790
791 while ((c = *str++) != 0)
792 r = r * 67 + c - 113;
793
794 return r;
795}
7108c5dc
JM
796
797/* DERIVED FROM:
798--------------------------------------------------------------------
799lookup2.c, by Bob Jenkins, December 1996, Public Domain.
800hash(), hash2(), hash3, and mix() are externally useful functions.
801Routines to test the hash are included if SELF_TEST is defined.
802You can use this free for any purpose. It has no warranty.
803--------------------------------------------------------------------
804*/
805
806/*
807--------------------------------------------------------------------
808mix -- mix 3 32-bit values reversibly.
809For every delta with one or two bit set, and the deltas of all three
810 high bits or all three low bits, whether the original value of a,b,c
811 is almost all zero or is uniformly distributed,
812* If mix() is run forward or backward, at least 32 bits in a,b,c
813 have at least 1/4 probability of changing.
814* If mix() is run forward, every bit of c will change between 1/3 and
815 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
816mix() was built out of 36 single-cycle latency instructions in a
817 structure that could supported 2x parallelism, like so:
818 a -= b;
819 a -= c; x = (c>>13);
820 b -= c; a ^= x;
821 b -= a; x = (a<<8);
822 c -= a; b ^= x;
823 c -= b; x = (b>>13);
824 ...
825 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
826 of that parallelism. They've also turned some of those single-cycle
827 latency instructions into multi-cycle latency instructions. Still,
828 this is the fastest good hash I could find. There were about 2^^68
829 to choose from. I only looked at a billion or so.
830--------------------------------------------------------------------
831*/
832/* same, but slower, works on systems that might have 8 byte hashval_t's */
833#define mix(a,b,c) \
834{ \
835 a -= b; a -= c; a ^= (c>>13); \
836 b -= c; b -= a; b ^= (a<< 8); \
837 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
838 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
839 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
840 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
841 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
842 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
843 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
844}
845
846/*
847--------------------------------------------------------------------
848hash() -- hash a variable-length key into a 32-bit value
849 k : the key (the unaligned variable-length array of bytes)
850 len : the length of the key, counting by bytes
851 level : can be any 4-byte value
852Returns a 32-bit value. Every bit of the key affects every bit of
853the return value. Every 1-bit and 2-bit delta achieves avalanche.
854About 36+6len instructions.
855
856The best hash table sizes are powers of 2. There is no need to do
857mod a prime (mod is sooo slow!). If you need less than 32 bits,
858use a bitmask. For example, if you need only 10 bits, do
859 h = (h & hashmask(10));
860In which case, the hash table should have hashsize(10) elements.
861
862If you are hashing n strings (ub1 **)k, do it like this:
863 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
864
865By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
866code any way you wish, private, educational, or commercial. It's free.
867
868See http://burtleburtle.net/bob/hash/evahash.html
869Use for hash table lookup, or anything where one collision in 2^32 is
870acceptable. Do NOT use for cryptographic purposes.
871--------------------------------------------------------------------
872*/
873
49b1fae4
DD
874hashval_t
875iterative_hash (const PTR k_in /* the key */,
876 register size_t length /* the length of the key */,
877 register hashval_t initval /* the previous hash, or
878 an arbitrary value */)
7108c5dc
JM
879{
880 register const unsigned char *k = (const unsigned char *)k_in;
881 register hashval_t a,b,c,len;
882
883 /* Set up the internal state */
884 len = length;
885 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
886 c = initval; /* the previous hash value */
887
888 /*---------------------------------------- handle most of the key */
889#ifndef WORDS_BIGENDIAN
890 /* On a little-endian machine, if the data is 4-byte aligned we can hash
891 by word for better speed. This gives nondeterministic results on
892 big-endian machines. */
893 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
894 while (len >= 12) /* aligned */
895 {
896 a += *(hashval_t *)(k+0);
897 b += *(hashval_t *)(k+4);
898 c += *(hashval_t *)(k+8);
899 mix(a,b,c);
900 k += 12; len -= 12;
901 }
902 else /* unaligned */
903#endif
904 while (len >= 12)
905 {
906 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
907 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
908 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
909 mix(a,b,c);
910 k += 12; len -= 12;
911 }
912
913 /*------------------------------------- handle the last 11 bytes */
914 c += length;
915 switch(len) /* all the case statements fall through */
916 {
917 case 11: c+=((hashval_t)k[10]<<24);
918 case 10: c+=((hashval_t)k[9]<<16);
919 case 9 : c+=((hashval_t)k[8]<<8);
920 /* the first byte of c is reserved for the length */
921 case 8 : b+=((hashval_t)k[7]<<24);
922 case 7 : b+=((hashval_t)k[6]<<16);
923 case 6 : b+=((hashval_t)k[5]<<8);
924 case 5 : b+=k[4];
925 case 4 : a+=((hashval_t)k[3]<<24);
926 case 3 : a+=((hashval_t)k[2]<<16);
927 case 2 : a+=((hashval_t)k[1]<<8);
928 case 1 : a+=k[0];
929 /* case 0: nothing left to add */
930 }
931 mix(a,b,c);
932 /*-------------------------------------------- report the result */
933 return c;
934}
This page took 0.294666 seconds and 4 git commands to generate.