merge from gcc
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
5f9624e3 2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
e2eaf477
ILT
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <sys/types.h>
39
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47
e2eaf477
ILT
48#include <stdio.h>
49
50#include "libiberty.h"
51#include "hashtab.h"
52
e2eaf477
ILT
53/* This macro defines reserved value for empty table entry. */
54
e0f3df8f 55#define EMPTY_ENTRY ((PTR) 0)
e2eaf477
ILT
56
57/* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
e0f3df8f 60#define DELETED_ENTRY ((PTR) 1)
e2eaf477 61
eb383413
L
62static unsigned long higher_prime_number PARAMS ((unsigned long));
63static hashval_t hash_pointer PARAMS ((const void *));
64static int eq_pointer PARAMS ((const void *, const void *));
99a4c1bd 65static int htab_expand PARAMS ((htab_t));
e0f3df8f 66static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
eb383413
L
67
68/* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71htab_hash htab_hash_pointer = hash_pointer;
72htab_eq htab_eq_pointer = eq_pointer;
73
5ca0f83d
DD
74/* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
e2eaf477
ILT
76
77static unsigned long
b4fe2683
JM
78higher_prime_number (n)
79 unsigned long n;
e2eaf477 80{
5ca0f83d
DD
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
e6450fe5 83 static const unsigned long primes[] = {
b1e51b3c
DD
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
06b0287c 114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
5ca0f83d
DD
115 };
116
e6450fe5
DD
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
5ca0f83d
DD
119
120 while (low != high)
121 {
e6450fe5 122 const unsigned long *mid = low + (high - low) / 2;
5ca0f83d
DD
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
e2eaf477
ILT
137}
138
eb383413
L
139/* Returns a hash code for P. */
140
141static hashval_t
142hash_pointer (p)
e0f3df8f 143 const PTR p;
eb383413
L
144{
145 return (hashval_t) ((long)p >> 3);
146}
147
148/* Returns non-zero if P1 and P2 are equal. */
149
150static int
151eq_pointer (p1, p2)
e0f3df8f
HPN
152 const PTR p1;
153 const PTR p2;
eb383413
L
154{
155 return p1 == p2;
156}
157
e2eaf477
ILT
158/* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
18893690 161 created hash table, or NULL if memory allocation fails. */
e2eaf477 162
b4fe2683 163htab_t
18893690 164htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
e2eaf477 165 size_t size;
b4fe2683
JM
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
18893690
DD
169 htab_alloc alloc_f;
170 htab_free free_f;
e2eaf477 171{
b4fe2683 172 htab_t result;
e2eaf477
ILT
173
174 size = higher_prime_number (size);
18893690
DD
175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
176 if (result == NULL)
177 return NULL;
178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
179 if (result->entries == NULL)
180 {
181 if (free_f != NULL)
182 (*free_f) (result);
183 return NULL;
184 }
e2eaf477 185 result->size = size;
b4fe2683
JM
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
18893690
DD
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
99a4c1bd
HPN
191 return result;
192}
193
5f9624e3
DJ
194/* As above, but use the variants of alloc_f and free_f which accept
195 an extra argument. */
196
197htab_t
198htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
199 free_f)
200 size_t size;
201 htab_hash hash_f;
202 htab_eq eq_f;
203 htab_del del_f;
204 PTR alloc_arg;
205 htab_alloc_with_arg alloc_f;
206 htab_free_with_arg free_f;
207{
208 htab_t result;
209
210 size = higher_prime_number (size);
211 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
212 if (result == NULL)
213 return NULL;
214 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
215 if (result->entries == NULL)
216 {
217 if (free_f != NULL)
218 (*free_f) (alloc_arg, result);
219 return NULL;
220 }
221 result->size = size;
222 result->hash_f = hash_f;
223 result->eq_f = eq_f;
224 result->del_f = del_f;
225 result->alloc_arg = alloc_arg;
226 result->alloc_with_arg_f = alloc_f;
227 result->free_with_arg_f = free_f;
228 return result;
229}
230
231/* Update the function pointers and allocation parameter in the htab_t. */
232
233void
234htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
235 htab_t htab;
236 htab_hash hash_f;
237 htab_eq eq_f;
238 htab_del del_f;
239 PTR alloc_arg;
240 htab_alloc_with_arg alloc_f;
241 htab_free_with_arg free_f;
242{
243 htab->hash_f = hash_f;
244 htab->eq_f = eq_f;
245 htab->del_f = del_f;
246 htab->alloc_arg = alloc_arg;
247 htab->alloc_with_arg_f = alloc_f;
248 htab->free_with_arg_f = free_f;
249}
250
18893690 251/* These functions exist solely for backward compatibility. */
99a4c1bd 252
18893690 253#undef htab_create
99a4c1bd 254htab_t
18893690 255htab_create (size, hash_f, eq_f, del_f)
99a4c1bd
HPN
256 size_t size;
257 htab_hash hash_f;
258 htab_eq eq_f;
259 htab_del del_f;
260{
18893690
DD
261 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
262}
99a4c1bd 263
18893690
DD
264htab_t
265htab_try_create (size, hash_f, eq_f, del_f)
266 size_t size;
267 htab_hash hash_f;
268 htab_eq eq_f;
269 htab_del del_f;
270{
271 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
272}
273
274/* This function frees all memory allocated for given hash table.
275 Naturally the hash table must already exist. */
276
277void
b4fe2683
JM
278htab_delete (htab)
279 htab_t htab;
e2eaf477 280{
b4fe2683 281 int i;
eb383413 282
b4fe2683
JM
283 if (htab->del_f)
284 for (i = htab->size - 1; i >= 0; i--)
eb383413
L
285 if (htab->entries[i] != EMPTY_ENTRY
286 && htab->entries[i] != DELETED_ENTRY)
287 (*htab->del_f) (htab->entries[i]);
b4fe2683 288
18893690
DD
289 if (htab->free_f != NULL)
290 {
291 (*htab->free_f) (htab->entries);
292 (*htab->free_f) (htab);
293 }
5f9624e3
DJ
294 else if (htab->free_with_arg_f != NULL)
295 {
296 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
297 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
298 }
e2eaf477
ILT
299}
300
301/* This function clears all entries in the given hash table. */
302
303void
b4fe2683
JM
304htab_empty (htab)
305 htab_t htab;
306{
307 int i;
eb383413 308
b4fe2683
JM
309 if (htab->del_f)
310 for (i = htab->size - 1; i >= 0; i--)
eb383413
L
311 if (htab->entries[i] != EMPTY_ENTRY
312 && htab->entries[i] != DELETED_ENTRY)
313 (*htab->del_f) (htab->entries[i]);
b4fe2683 314
e0f3df8f 315 memset (htab->entries, 0, htab->size * sizeof (PTR));
b4fe2683
JM
316}
317
318/* Similar to htab_find_slot, but without several unwanted side effects:
319 - Does not call htab->eq_f when it finds an existing entry.
320 - Does not change the count of elements/searches/collisions in the
321 hash table.
322 This function also assumes there are no deleted entries in the table.
323 HASH is the hash value for the element to be inserted. */
eb383413 324
e0f3df8f 325static PTR *
b4fe2683
JM
326find_empty_slot_for_expand (htab, hash)
327 htab_t htab;
eb383413 328 hashval_t hash;
e2eaf477 329{
b4fe2683 330 size_t size = htab->size;
b4fe2683 331 unsigned int index = hash % size;
b1c933fc
RH
332 PTR *slot = htab->entries + index;
333 hashval_t hash2;
334
335 if (*slot == EMPTY_ENTRY)
336 return slot;
337 else if (*slot == DELETED_ENTRY)
338 abort ();
b4fe2683 339
b1c933fc 340 hash2 = 1 + hash % (size - 2);
b4fe2683
JM
341 for (;;)
342 {
b1c933fc
RH
343 index += hash2;
344 if (index >= size)
345 index -= size;
eb383413 346
b1c933fc 347 slot = htab->entries + index;
b4fe2683
JM
348 if (*slot == EMPTY_ENTRY)
349 return slot;
eb383413 350 else if (*slot == DELETED_ENTRY)
b4fe2683 351 abort ();
b4fe2683 352 }
e2eaf477
ILT
353}
354
355/* The following function changes size of memory allocated for the
356 entries and repeatedly inserts the table elements. The occupancy
357 of the table after the call will be about 50%. Naturally the hash
358 table must already exist. Remember also that the place of the
99a4c1bd
HPN
359 table entries is changed. If memory allocation failures are allowed,
360 this function will return zero, indicating that the table could not be
361 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 362
99a4c1bd 363static int
b4fe2683
JM
364htab_expand (htab)
365 htab_t htab;
e2eaf477 366{
e0f3df8f
HPN
367 PTR *oentries;
368 PTR *olimit;
369 PTR *p;
18893690 370 PTR *nentries;
eed2b28c 371 size_t nsize;
b4fe2683
JM
372
373 oentries = htab->entries;
374 olimit = oentries + htab->size;
375
c4d8feb2
DD
376 /* Resize only when table after removal of unused elements is either
377 too full or too empty. */
378 if ((htab->n_elements - htab->n_deleted) * 2 > htab->size
2336e177
DD
379 || ((htab->n_elements - htab->n_deleted) * 8 < htab->size
380 && htab->size > 32))
c4d8feb2
DD
381 nsize = higher_prime_number ((htab->n_elements - htab->n_deleted) * 2);
382 else
383 nsize = htab->size;
99a4c1bd 384
5f9624e3
DJ
385 if (htab->alloc_with_arg_f != NULL)
386 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
387 sizeof (PTR *));
388 else
389 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
390 if (nentries == NULL)
391 return 0;
392 htab->entries = nentries;
eed2b28c 393 htab->size = nsize;
b4fe2683
JM
394
395 htab->n_elements -= htab->n_deleted;
396 htab->n_deleted = 0;
397
398 p = oentries;
399 do
400 {
e0f3df8f 401 PTR x = *p;
eb383413 402
b4fe2683
JM
403 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
404 {
e0f3df8f 405 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 406
b4fe2683
JM
407 *q = x;
408 }
eb383413 409
b4fe2683
JM
410 p++;
411 }
412 while (p < olimit);
eb383413 413
18893690
DD
414 if (htab->free_f != NULL)
415 (*htab->free_f) (oentries);
5f9624e3
DJ
416 else if (htab->free_with_arg_f != NULL)
417 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 418 return 1;
e2eaf477
ILT
419}
420
b4fe2683
JM
421/* This function searches for a hash table entry equal to the given
422 element. It cannot be used to insert or delete an element. */
423
e0f3df8f 424PTR
b4fe2683
JM
425htab_find_with_hash (htab, element, hash)
426 htab_t htab;
e0f3df8f 427 const PTR element;
eb383413 428 hashval_t hash;
e2eaf477 429{
eb383413
L
430 unsigned int index;
431 hashval_t hash2;
b4fe2683 432 size_t size;
e0f3df8f 433 PTR entry;
e2eaf477 434
b4fe2683
JM
435 htab->searches++;
436 size = htab->size;
b4fe2683
JM
437 index = hash % size;
438
eb383413
L
439 entry = htab->entries[index];
440 if (entry == EMPTY_ENTRY
441 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
442 return entry;
443
444 hash2 = 1 + hash % (size - 2);
445
b4fe2683 446 for (;;)
e2eaf477 447 {
b4fe2683
JM
448 htab->collisions++;
449 index += hash2;
450 if (index >= size)
451 index -= size;
eb383413
L
452
453 entry = htab->entries[index];
454 if (entry == EMPTY_ENTRY
455 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
456 return entry;
e2eaf477 457 }
b4fe2683
JM
458}
459
460/* Like htab_find_slot_with_hash, but compute the hash value from the
461 element. */
eb383413 462
e0f3df8f 463PTR
b4fe2683
JM
464htab_find (htab, element)
465 htab_t htab;
e0f3df8f 466 const PTR element;
b4fe2683
JM
467{
468 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
469}
470
471/* This function searches for a hash table slot containing an entry
472 equal to the given element. To delete an entry, call this with
473 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
474 after doing some checks). To insert an entry, call this with
99a4c1bd
HPN
475 INSERT = 1, then write the value you want into the returned slot.
476 When inserting an entry, NULL may be returned if memory allocation
477 fails. */
b4fe2683 478
e0f3df8f 479PTR *
b4fe2683
JM
480htab_find_slot_with_hash (htab, element, hash, insert)
481 htab_t htab;
e0f3df8f 482 const PTR element;
eb383413
L
483 hashval_t hash;
484 enum insert_option insert;
b4fe2683 485{
e0f3df8f 486 PTR *first_deleted_slot;
eb383413
L
487 unsigned int index;
488 hashval_t hash2;
b4fe2683 489 size_t size;
b1c933fc 490 PTR entry;
b4fe2683 491
99a4c1bd
HPN
492 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
493 && htab_expand (htab) == 0)
494 return NULL;
b4fe2683
JM
495
496 size = htab->size;
b4fe2683
JM
497 index = hash % size;
498
e2eaf477 499 htab->searches++;
b4fe2683
JM
500 first_deleted_slot = NULL;
501
b1c933fc
RH
502 entry = htab->entries[index];
503 if (entry == EMPTY_ENTRY)
504 goto empty_entry;
505 else if (entry == DELETED_ENTRY)
506 first_deleted_slot = &htab->entries[index];
507 else if ((*htab->eq_f) (entry, element))
508 return &htab->entries[index];
509
510 hash2 = 1 + hash % (size - 2);
b4fe2683 511 for (;;)
e2eaf477 512 {
b1c933fc
RH
513 htab->collisions++;
514 index += hash2;
515 if (index >= size)
516 index -= size;
517
518 entry = htab->entries[index];
b4fe2683 519 if (entry == EMPTY_ENTRY)
b1c933fc
RH
520 goto empty_entry;
521 else if (entry == DELETED_ENTRY)
b4fe2683
JM
522 {
523 if (!first_deleted_slot)
524 first_deleted_slot = &htab->entries[index];
525 }
b1c933fc 526 else if ((*htab->eq_f) (entry, element))
eb383413 527 return &htab->entries[index];
e2eaf477 528 }
b1c933fc
RH
529
530 empty_entry:
531 if (insert == NO_INSERT)
532 return NULL;
533
534 htab->n_elements++;
535
536 if (first_deleted_slot)
537 {
538 *first_deleted_slot = EMPTY_ENTRY;
539 return first_deleted_slot;
540 }
541
542 return &htab->entries[index];
e2eaf477
ILT
543}
544
b4fe2683
JM
545/* Like htab_find_slot_with_hash, but compute the hash value from the
546 element. */
eb383413 547
e0f3df8f 548PTR *
b4fe2683
JM
549htab_find_slot (htab, element, insert)
550 htab_t htab;
e0f3df8f 551 const PTR element;
eb383413 552 enum insert_option insert;
b4fe2683
JM
553{
554 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
555 insert);
556}
557
558/* This function deletes an element with the given value from hash
559 table. If there is no matching element in the hash table, this
560 function does nothing. */
e2eaf477
ILT
561
562void
b4fe2683
JM
563htab_remove_elt (htab, element)
564 htab_t htab;
e0f3df8f 565 PTR element;
e2eaf477 566{
e0f3df8f 567 PTR *slot;
b4fe2683 568
eb383413 569 slot = htab_find_slot (htab, element, NO_INSERT);
b4fe2683
JM
570 if (*slot == EMPTY_ENTRY)
571 return;
572
573 if (htab->del_f)
574 (*htab->del_f) (*slot);
e2eaf477 575
b4fe2683
JM
576 *slot = DELETED_ENTRY;
577 htab->n_deleted++;
e2eaf477
ILT
578}
579
b4fe2683
JM
580/* This function clears a specified slot in a hash table. It is
581 useful when you've already done the lookup and don't want to do it
582 again. */
e2eaf477
ILT
583
584void
b4fe2683
JM
585htab_clear_slot (htab, slot)
586 htab_t htab;
e0f3df8f 587 PTR *slot;
e2eaf477
ILT
588{
589 if (slot < htab->entries || slot >= htab->entries + htab->size
590 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
591 abort ();
eb383413 592
b4fe2683
JM
593 if (htab->del_f)
594 (*htab->del_f) (*slot);
eb383413 595
e2eaf477 596 *slot = DELETED_ENTRY;
b4fe2683 597 htab->n_deleted++;
e2eaf477
ILT
598}
599
600/* This function scans over the entire hash table calling
601 CALLBACK for each live entry. If CALLBACK returns false,
602 the iteration stops. INFO is passed as CALLBACK's second
603 argument. */
604
605void
f77ed96c 606htab_traverse_noresize (htab, callback, info)
b4fe2683
JM
607 htab_t htab;
608 htab_trav callback;
e0f3df8f 609 PTR info;
e2eaf477 610{
c4d8feb2
DD
611 PTR *slot;
612 PTR *limit;
613
c4d8feb2
DD
614 slot = htab->entries;
615 limit = slot + htab->size;
eb383413 616
b4fe2683
JM
617 do
618 {
e0f3df8f 619 PTR x = *slot;
eb383413 620
b4fe2683
JM
621 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
622 if (!(*callback) (slot, info))
623 break;
624 }
625 while (++slot < limit);
e2eaf477
ILT
626}
627
f77ed96c
DD
628/* Like htab_traverse_noresize, but does resize the table when it is
629 too empty to improve effectivity of subsequent calls. */
630
631void
632htab_traverse (htab, callback, info)
633 htab_t htab;
634 htab_trav callback;
635 PTR info;
636{
637 PTR *slot;
638 PTR *limit;
639
640 if ((htab->n_elements - htab->n_deleted) * 8 < htab->size)
641 htab_expand (htab);
642
643 htab_traverse_noresize (htab, callback, info);
644}
645
eb383413 646/* Return the current size of given hash table. */
e2eaf477
ILT
647
648size_t
b4fe2683
JM
649htab_size (htab)
650 htab_t htab;
e2eaf477
ILT
651{
652 return htab->size;
653}
654
eb383413 655/* Return the current number of elements in given hash table. */
e2eaf477
ILT
656
657size_t
b4fe2683
JM
658htab_elements (htab)
659 htab_t htab;
e2eaf477 660{
b4fe2683 661 return htab->n_elements - htab->n_deleted;
e2eaf477
ILT
662}
663
eb383413
L
664/* Return the fraction of fixed collisions during all work with given
665 hash table. */
e2eaf477 666
b4fe2683
JM
667double
668htab_collisions (htab)
669 htab_t htab;
e2eaf477 670{
eb383413 671 if (htab->searches == 0)
b4fe2683 672 return 0.0;
eb383413
L
673
674 return (double) htab->collisions / (double) htab->searches;
e2eaf477 675}
8fc34799 676
68a41de7
DD
677/* Hash P as a null-terminated string.
678
679 Copied from gcc/hashtable.c. Zack had the following to say with respect
680 to applicability, though note that unlike hashtable.c, this hash table
681 implementation re-hashes rather than chain buckets.
682
683 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
684 From: Zack Weinberg <zackw@panix.com>
685 Date: Fri, 17 Aug 2001 02:15:56 -0400
686
687 I got it by extracting all the identifiers from all the source code
688 I had lying around in mid-1999, and testing many recurrences of
689 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
690 prime numbers or the appropriate identity. This was the best one.
691 I don't remember exactly what constituted "best", except I was
692 looking at bucket-length distributions mostly.
693
694 So it should be very good at hashing identifiers, but might not be
695 as good at arbitrary strings.
696
697 I'll add that it thoroughly trounces the hash functions recommended
698 for this use at http://burtleburtle.net/bob/hash/index.html, both
699 on speed and bucket distribution. I haven't tried it against the
700 function they just started using for Perl's hashes. */
8fc34799
DD
701
702hashval_t
703htab_hash_string (p)
704 const PTR p;
705{
706 const unsigned char *str = (const unsigned char *) p;
707 hashval_t r = 0;
708 unsigned char c;
709
710 while ((c = *str++) != 0)
711 r = r * 67 + c - 113;
712
713 return r;
714}
This page took 0.167765 seconds and 4 git commands to generate.