mm/page_owner: use stackdepot to store stacktrace
[deliverable/linux.git] / mm / compaction.c
CommitLineData
748446bb
MG
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
698b1b30 10#include <linux/cpu.h>
748446bb
MG
11#include <linux/swap.h>
12#include <linux/migrate.h>
13#include <linux/compaction.h>
14#include <linux/mm_inline.h>
15#include <linux/backing-dev.h>
76ab0f53 16#include <linux/sysctl.h>
ed4a6d7f 17#include <linux/sysfs.h>
194159fb 18#include <linux/page-isolation.h>
b8c73fc2 19#include <linux/kasan.h>
698b1b30
VB
20#include <linux/kthread.h>
21#include <linux/freezer.h>
83358ece 22#include <linux/page_owner.h>
748446bb
MG
23#include "internal.h"
24
010fc29a
MK
25#ifdef CONFIG_COMPACTION
26static inline void count_compact_event(enum vm_event_item item)
27{
28 count_vm_event(item);
29}
30
31static inline void count_compact_events(enum vm_event_item item, long delta)
32{
33 count_vm_events(item, delta);
34}
35#else
36#define count_compact_event(item) do { } while (0)
37#define count_compact_events(item, delta) do { } while (0)
38#endif
39
ff9543fd
MN
40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
b7aba698
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/compaction.h>
44
06b6640a
VB
45#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
748446bb
MG
50static unsigned long release_freepages(struct list_head *freelist)
51{
52 struct page *page, *next;
6bace090 53 unsigned long high_pfn = 0;
748446bb
MG
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 56 unsigned long pfn = page_to_pfn(page);
748446bb
MG
57 list_del(&page->lru);
58 __free_page(page);
6bace090
VB
59 if (pfn > high_pfn)
60 high_pfn = pfn;
748446bb
MG
61 }
62
6bace090 63 return high_pfn;
748446bb
MG
64}
65
ff9543fd
MN
66static void map_pages(struct list_head *list)
67{
66c64223
JK
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
71
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
74
75 order = page_private(page);
76 nr_pages = 1 << order;
77 set_page_private(page, 0);
78 set_page_refcounted(page);
79
80 arch_alloc_page(page, order);
81 kernel_map_pages(page, nr_pages, 1);
82 kasan_alloc_pages(page, order);
83358ece
JK
83
84 set_page_owner(page, order, __GFP_MOVABLE);
66c64223
JK
85 if (order)
86 split_page(page, order);
ff9543fd 87
66c64223
JK
88 for (i = 0; i < nr_pages; i++) {
89 list_add(&page->lru, &tmp_list);
90 page++;
91 }
ff9543fd 92 }
66c64223
JK
93
94 list_splice(&tmp_list, list);
ff9543fd
MN
95}
96
47118af0
MN
97static inline bool migrate_async_suitable(int migratetype)
98{
99 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
100}
101
bb13ffeb 102#ifdef CONFIG_COMPACTION
24e2716f 103
bda807d4
MK
104int PageMovable(struct page *page)
105{
106 struct address_space *mapping;
107
108 VM_BUG_ON_PAGE(!PageLocked(page), page);
109 if (!__PageMovable(page))
110 return 0;
111
112 mapping = page_mapping(page);
113 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
114 return 1;
115
116 return 0;
117}
118EXPORT_SYMBOL(PageMovable);
119
120void __SetPageMovable(struct page *page, struct address_space *mapping)
121{
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
124 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
125}
126EXPORT_SYMBOL(__SetPageMovable);
127
128void __ClearPageMovable(struct page *page)
129{
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 VM_BUG_ON_PAGE(!PageMovable(page), page);
132 /*
133 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
134 * flag so that VM can catch up released page by driver after isolation.
135 * With it, VM migration doesn't try to put it back.
136 */
137 page->mapping = (void *)((unsigned long)page->mapping &
138 PAGE_MAPPING_MOVABLE);
139}
140EXPORT_SYMBOL(__ClearPageMovable);
141
24e2716f
JK
142/* Do not skip compaction more than 64 times */
143#define COMPACT_MAX_DEFER_SHIFT 6
144
145/*
146 * Compaction is deferred when compaction fails to result in a page
147 * allocation success. 1 << compact_defer_limit compactions are skipped up
148 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
149 */
150void defer_compaction(struct zone *zone, int order)
151{
152 zone->compact_considered = 0;
153 zone->compact_defer_shift++;
154
155 if (order < zone->compact_order_failed)
156 zone->compact_order_failed = order;
157
158 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
159 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
160
161 trace_mm_compaction_defer_compaction(zone, order);
162}
163
164/* Returns true if compaction should be skipped this time */
165bool compaction_deferred(struct zone *zone, int order)
166{
167 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
168
169 if (order < zone->compact_order_failed)
170 return false;
171
172 /* Avoid possible overflow */
173 if (++zone->compact_considered > defer_limit)
174 zone->compact_considered = defer_limit;
175
176 if (zone->compact_considered >= defer_limit)
177 return false;
178
179 trace_mm_compaction_deferred(zone, order);
180
181 return true;
182}
183
184/*
185 * Update defer tracking counters after successful compaction of given order,
186 * which means an allocation either succeeded (alloc_success == true) or is
187 * expected to succeed.
188 */
189void compaction_defer_reset(struct zone *zone, int order,
190 bool alloc_success)
191{
192 if (alloc_success) {
193 zone->compact_considered = 0;
194 zone->compact_defer_shift = 0;
195 }
196 if (order >= zone->compact_order_failed)
197 zone->compact_order_failed = order + 1;
198
199 trace_mm_compaction_defer_reset(zone, order);
200}
201
202/* Returns true if restarting compaction after many failures */
203bool compaction_restarting(struct zone *zone, int order)
204{
205 if (order < zone->compact_order_failed)
206 return false;
207
208 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
209 zone->compact_considered >= 1UL << zone->compact_defer_shift;
210}
211
bb13ffeb
MG
212/* Returns true if the pageblock should be scanned for pages to isolate. */
213static inline bool isolation_suitable(struct compact_control *cc,
214 struct page *page)
215{
216 if (cc->ignore_skip_hint)
217 return true;
218
219 return !get_pageblock_skip(page);
220}
221
02333641
VB
222static void reset_cached_positions(struct zone *zone)
223{
224 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
225 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 226 zone->compact_cached_free_pfn =
06b6640a 227 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
228}
229
bb13ffeb
MG
230/*
231 * This function is called to clear all cached information on pageblocks that
232 * should be skipped for page isolation when the migrate and free page scanner
233 * meet.
234 */
62997027 235static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
236{
237 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 238 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
239 unsigned long pfn;
240
62997027 241 zone->compact_blockskip_flush = false;
bb13ffeb
MG
242
243 /* Walk the zone and mark every pageblock as suitable for isolation */
244 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
245 struct page *page;
246
247 cond_resched();
248
249 if (!pfn_valid(pfn))
250 continue;
251
252 page = pfn_to_page(pfn);
253 if (zone != page_zone(page))
254 continue;
255
256 clear_pageblock_skip(page);
257 }
02333641
VB
258
259 reset_cached_positions(zone);
bb13ffeb
MG
260}
261
62997027
MG
262void reset_isolation_suitable(pg_data_t *pgdat)
263{
264 int zoneid;
265
266 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
267 struct zone *zone = &pgdat->node_zones[zoneid];
268 if (!populated_zone(zone))
269 continue;
270
271 /* Only flush if a full compaction finished recently */
272 if (zone->compact_blockskip_flush)
273 __reset_isolation_suitable(zone);
274 }
275}
276
bb13ffeb
MG
277/*
278 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 279 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 280 */
c89511ab
MG
281static void update_pageblock_skip(struct compact_control *cc,
282 struct page *page, unsigned long nr_isolated,
edc2ca61 283 bool migrate_scanner)
bb13ffeb 284{
c89511ab 285 struct zone *zone = cc->zone;
35979ef3 286 unsigned long pfn;
6815bf3f
JK
287
288 if (cc->ignore_skip_hint)
289 return;
290
bb13ffeb
MG
291 if (!page)
292 return;
293
35979ef3
DR
294 if (nr_isolated)
295 return;
296
edc2ca61 297 set_pageblock_skip(page);
c89511ab 298
35979ef3
DR
299 pfn = page_to_pfn(page);
300
301 /* Update where async and sync compaction should restart */
302 if (migrate_scanner) {
35979ef3
DR
303 if (pfn > zone->compact_cached_migrate_pfn[0])
304 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
305 if (cc->mode != MIGRATE_ASYNC &&
306 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
307 zone->compact_cached_migrate_pfn[1] = pfn;
308 } else {
35979ef3
DR
309 if (pfn < zone->compact_cached_free_pfn)
310 zone->compact_cached_free_pfn = pfn;
c89511ab 311 }
bb13ffeb
MG
312}
313#else
314static inline bool isolation_suitable(struct compact_control *cc,
315 struct page *page)
316{
317 return true;
318}
319
c89511ab
MG
320static void update_pageblock_skip(struct compact_control *cc,
321 struct page *page, unsigned long nr_isolated,
edc2ca61 322 bool migrate_scanner)
bb13ffeb
MG
323{
324}
325#endif /* CONFIG_COMPACTION */
326
8b44d279
VB
327/*
328 * Compaction requires the taking of some coarse locks that are potentially
329 * very heavily contended. For async compaction, back out if the lock cannot
330 * be taken immediately. For sync compaction, spin on the lock if needed.
331 *
332 * Returns true if the lock is held
333 * Returns false if the lock is not held and compaction should abort
334 */
335static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
336 struct compact_control *cc)
2a1402aa 337{
8b44d279
VB
338 if (cc->mode == MIGRATE_ASYNC) {
339 if (!spin_trylock_irqsave(lock, *flags)) {
340 cc->contended = COMPACT_CONTENDED_LOCK;
341 return false;
342 }
343 } else {
344 spin_lock_irqsave(lock, *flags);
345 }
1f9efdef 346
8b44d279 347 return true;
2a1402aa
MG
348}
349
c67fe375
MG
350/*
351 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
352 * very heavily contended. The lock should be periodically unlocked to avoid
353 * having disabled IRQs for a long time, even when there is nobody waiting on
354 * the lock. It might also be that allowing the IRQs will result in
355 * need_resched() becoming true. If scheduling is needed, async compaction
356 * aborts. Sync compaction schedules.
357 * Either compaction type will also abort if a fatal signal is pending.
358 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 359 *
8b44d279
VB
360 * Returns true if compaction should abort due to fatal signal pending, or
361 * async compaction due to need_resched()
362 * Returns false when compaction can continue (sync compaction might have
363 * scheduled)
c67fe375 364 */
8b44d279
VB
365static bool compact_unlock_should_abort(spinlock_t *lock,
366 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 367{
8b44d279
VB
368 if (*locked) {
369 spin_unlock_irqrestore(lock, flags);
370 *locked = false;
371 }
1f9efdef 372
8b44d279
VB
373 if (fatal_signal_pending(current)) {
374 cc->contended = COMPACT_CONTENDED_SCHED;
375 return true;
376 }
c67fe375 377
8b44d279 378 if (need_resched()) {
e0b9daeb 379 if (cc->mode == MIGRATE_ASYNC) {
8b44d279
VB
380 cc->contended = COMPACT_CONTENDED_SCHED;
381 return true;
c67fe375 382 }
c67fe375 383 cond_resched();
c67fe375
MG
384 }
385
8b44d279 386 return false;
c67fe375
MG
387}
388
be976572
VB
389/*
390 * Aside from avoiding lock contention, compaction also periodically checks
391 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 392 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
393 * is used where no lock is concerned.
394 *
395 * Returns false when no scheduling was needed, or sync compaction scheduled.
396 * Returns true when async compaction should abort.
397 */
398static inline bool compact_should_abort(struct compact_control *cc)
399{
400 /* async compaction aborts if contended */
401 if (need_resched()) {
402 if (cc->mode == MIGRATE_ASYNC) {
1f9efdef 403 cc->contended = COMPACT_CONTENDED_SCHED;
be976572
VB
404 return true;
405 }
406
407 cond_resched();
408 }
409
410 return false;
411}
412
85aa125f 413/*
9e4be470
JM
414 * Isolate free pages onto a private freelist. If @strict is true, will abort
415 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
416 * (even though it may still end up isolating some pages).
85aa125f 417 */
f40d1e42 418static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 419 unsigned long *start_pfn,
85aa125f
MN
420 unsigned long end_pfn,
421 struct list_head *freelist,
422 bool strict)
748446bb 423{
b7aba698 424 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 425 struct page *cursor, *valid_page = NULL;
b8b2d825 426 unsigned long flags = 0;
f40d1e42 427 bool locked = false;
e14c720e 428 unsigned long blockpfn = *start_pfn;
66c64223 429 unsigned int order;
748446bb 430
748446bb
MG
431 cursor = pfn_to_page(blockpfn);
432
f40d1e42 433 /* Isolate free pages. */
748446bb 434 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 435 int isolated;
748446bb
MG
436 struct page *page = cursor;
437
8b44d279
VB
438 /*
439 * Periodically drop the lock (if held) regardless of its
440 * contention, to give chance to IRQs. Abort if fatal signal
441 * pending or async compaction detects need_resched()
442 */
443 if (!(blockpfn % SWAP_CLUSTER_MAX)
444 && compact_unlock_should_abort(&cc->zone->lock, flags,
445 &locked, cc))
446 break;
447
b7aba698 448 nr_scanned++;
f40d1e42 449 if (!pfn_valid_within(blockpfn))
2af120bc
LA
450 goto isolate_fail;
451
bb13ffeb
MG
452 if (!valid_page)
453 valid_page = page;
9fcd6d2e
VB
454
455 /*
456 * For compound pages such as THP and hugetlbfs, we can save
457 * potentially a lot of iterations if we skip them at once.
458 * The check is racy, but we can consider only valid values
459 * and the only danger is skipping too much.
460 */
461 if (PageCompound(page)) {
462 unsigned int comp_order = compound_order(page);
463
464 if (likely(comp_order < MAX_ORDER)) {
465 blockpfn += (1UL << comp_order) - 1;
466 cursor += (1UL << comp_order) - 1;
467 }
468
469 goto isolate_fail;
470 }
471
f40d1e42 472 if (!PageBuddy(page))
2af120bc 473 goto isolate_fail;
f40d1e42
MG
474
475 /*
69b7189f
VB
476 * If we already hold the lock, we can skip some rechecking.
477 * Note that if we hold the lock now, checked_pageblock was
478 * already set in some previous iteration (or strict is true),
479 * so it is correct to skip the suitable migration target
480 * recheck as well.
f40d1e42 481 */
69b7189f
VB
482 if (!locked) {
483 /*
484 * The zone lock must be held to isolate freepages.
485 * Unfortunately this is a very coarse lock and can be
486 * heavily contended if there are parallel allocations
487 * or parallel compactions. For async compaction do not
488 * spin on the lock and we acquire the lock as late as
489 * possible.
490 */
8b44d279
VB
491 locked = compact_trylock_irqsave(&cc->zone->lock,
492 &flags, cc);
69b7189f
VB
493 if (!locked)
494 break;
f40d1e42 495
69b7189f
VB
496 /* Recheck this is a buddy page under lock */
497 if (!PageBuddy(page))
498 goto isolate_fail;
499 }
748446bb 500
66c64223
JK
501 /* Found a free page, will break it into order-0 pages */
502 order = page_order(page);
503 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
504 if (!isolated)
505 break;
66c64223 506 set_page_private(page, order);
a4f04f2c 507
748446bb 508 total_isolated += isolated;
a4f04f2c 509 cc->nr_freepages += isolated;
66c64223
JK
510 list_add_tail(&page->lru, freelist);
511
a4f04f2c
DR
512 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
513 blockpfn += isolated;
514 break;
748446bb 515 }
a4f04f2c
DR
516 /* Advance to the end of split page */
517 blockpfn += isolated - 1;
518 cursor += isolated - 1;
519 continue;
2af120bc
LA
520
521isolate_fail:
522 if (strict)
523 break;
524 else
525 continue;
526
748446bb
MG
527 }
528
a4f04f2c
DR
529 if (locked)
530 spin_unlock_irqrestore(&cc->zone->lock, flags);
531
9fcd6d2e
VB
532 /*
533 * There is a tiny chance that we have read bogus compound_order(),
534 * so be careful to not go outside of the pageblock.
535 */
536 if (unlikely(blockpfn > end_pfn))
537 blockpfn = end_pfn;
538
e34d85f0
JK
539 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
540 nr_scanned, total_isolated);
541
e14c720e
VB
542 /* Record how far we have got within the block */
543 *start_pfn = blockpfn;
544
f40d1e42
MG
545 /*
546 * If strict isolation is requested by CMA then check that all the
547 * pages requested were isolated. If there were any failures, 0 is
548 * returned and CMA will fail.
549 */
2af120bc 550 if (strict && blockpfn < end_pfn)
f40d1e42
MG
551 total_isolated = 0;
552
bb13ffeb
MG
553 /* Update the pageblock-skip if the whole pageblock was scanned */
554 if (blockpfn == end_pfn)
edc2ca61 555 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 556
010fc29a 557 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
397487db 558 if (total_isolated)
010fc29a 559 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
560 return total_isolated;
561}
562
85aa125f
MN
563/**
564 * isolate_freepages_range() - isolate free pages.
565 * @start_pfn: The first PFN to start isolating.
566 * @end_pfn: The one-past-last PFN.
567 *
568 * Non-free pages, invalid PFNs, or zone boundaries within the
569 * [start_pfn, end_pfn) range are considered errors, cause function to
570 * undo its actions and return zero.
571 *
572 * Otherwise, function returns one-past-the-last PFN of isolated page
573 * (which may be greater then end_pfn if end fell in a middle of
574 * a free page).
575 */
ff9543fd 576unsigned long
bb13ffeb
MG
577isolate_freepages_range(struct compact_control *cc,
578 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 579{
e1409c32 580 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
581 LIST_HEAD(freelist);
582
7d49d886 583 pfn = start_pfn;
06b6640a 584 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
585 if (block_start_pfn < cc->zone->zone_start_pfn)
586 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 587 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
588
589 for (; pfn < end_pfn; pfn += isolated,
e1409c32 590 block_start_pfn = block_end_pfn,
7d49d886 591 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
592 /* Protect pfn from changing by isolate_freepages_block */
593 unsigned long isolate_start_pfn = pfn;
85aa125f 594
85aa125f
MN
595 block_end_pfn = min(block_end_pfn, end_pfn);
596
58420016
JK
597 /*
598 * pfn could pass the block_end_pfn if isolated freepage
599 * is more than pageblock order. In this case, we adjust
600 * scanning range to right one.
601 */
602 if (pfn >= block_end_pfn) {
06b6640a
VB
603 block_start_pfn = pageblock_start_pfn(pfn);
604 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
605 block_end_pfn = min(block_end_pfn, end_pfn);
606 }
607
e1409c32
JK
608 if (!pageblock_pfn_to_page(block_start_pfn,
609 block_end_pfn, cc->zone))
7d49d886
VB
610 break;
611
e14c720e
VB
612 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
613 block_end_pfn, &freelist, true);
85aa125f
MN
614
615 /*
616 * In strict mode, isolate_freepages_block() returns 0 if
617 * there are any holes in the block (ie. invalid PFNs or
618 * non-free pages).
619 */
620 if (!isolated)
621 break;
622
623 /*
624 * If we managed to isolate pages, it is always (1 << n) *
625 * pageblock_nr_pages for some non-negative n. (Max order
626 * page may span two pageblocks).
627 */
628 }
629
66c64223 630 /* __isolate_free_page() does not map the pages */
85aa125f
MN
631 map_pages(&freelist);
632
633 if (pfn < end_pfn) {
634 /* Loop terminated early, cleanup. */
635 release_freepages(&freelist);
636 return 0;
637 }
638
639 /* We don't use freelists for anything. */
640 return pfn;
641}
642
748446bb 643/* Update the number of anon and file isolated pages in the zone */
edc2ca61 644static void acct_isolated(struct zone *zone, struct compact_control *cc)
748446bb
MG
645{
646 struct page *page;
b9e84ac1 647 unsigned int count[2] = { 0, };
748446bb 648
edc2ca61
VB
649 if (list_empty(&cc->migratepages))
650 return;
651
b9e84ac1
MK
652 list_for_each_entry(page, &cc->migratepages, lru)
653 count[!!page_is_file_cache(page)]++;
748446bb 654
edc2ca61
VB
655 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
656 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
748446bb
MG
657}
658
659/* Similar to reclaim, but different enough that they don't share logic */
660static bool too_many_isolated(struct zone *zone)
661{
bc693045 662 unsigned long active, inactive, isolated;
748446bb
MG
663
664 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
665 zone_page_state(zone, NR_INACTIVE_ANON);
bc693045
MK
666 active = zone_page_state(zone, NR_ACTIVE_FILE) +
667 zone_page_state(zone, NR_ACTIVE_ANON);
748446bb
MG
668 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
669 zone_page_state(zone, NR_ISOLATED_ANON);
670
bc693045 671 return isolated > (inactive + active) / 2;
748446bb
MG
672}
673
2fe86e00 674/**
edc2ca61
VB
675 * isolate_migratepages_block() - isolate all migrate-able pages within
676 * a single pageblock
2fe86e00 677 * @cc: Compaction control structure.
edc2ca61
VB
678 * @low_pfn: The first PFN to isolate
679 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
680 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
681 *
682 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
683 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
684 * Returns zero if there is a fatal signal pending, otherwise PFN of the
685 * first page that was not scanned (which may be both less, equal to or more
686 * than end_pfn).
2fe86e00 687 *
edc2ca61
VB
688 * The pages are isolated on cc->migratepages list (not required to be empty),
689 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
690 * is neither read nor updated.
748446bb 691 */
edc2ca61
VB
692static unsigned long
693isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
694 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 695{
edc2ca61 696 struct zone *zone = cc->zone;
b7aba698 697 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 698 struct lruvec *lruvec;
b8b2d825 699 unsigned long flags = 0;
2a1402aa 700 bool locked = false;
bb13ffeb 701 struct page *page = NULL, *valid_page = NULL;
e34d85f0 702 unsigned long start_pfn = low_pfn;
fdd048e1
VB
703 bool skip_on_failure = false;
704 unsigned long next_skip_pfn = 0;
748446bb 705
748446bb
MG
706 /*
707 * Ensure that there are not too many pages isolated from the LRU
708 * list by either parallel reclaimers or compaction. If there are,
709 * delay for some time until fewer pages are isolated
710 */
711 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 712 /* async migration should just abort */
e0b9daeb 713 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 714 return 0;
f9e35b3b 715
748446bb
MG
716 congestion_wait(BLK_RW_ASYNC, HZ/10);
717
718 if (fatal_signal_pending(current))
2fe86e00 719 return 0;
748446bb
MG
720 }
721
be976572
VB
722 if (compact_should_abort(cc))
723 return 0;
aeef4b83 724
fdd048e1
VB
725 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
726 skip_on_failure = true;
727 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
728 }
729
748446bb 730 /* Time to isolate some pages for migration */
748446bb 731 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 732
fdd048e1
VB
733 if (skip_on_failure && low_pfn >= next_skip_pfn) {
734 /*
735 * We have isolated all migration candidates in the
736 * previous order-aligned block, and did not skip it due
737 * to failure. We should migrate the pages now and
738 * hopefully succeed compaction.
739 */
740 if (nr_isolated)
741 break;
742
743 /*
744 * We failed to isolate in the previous order-aligned
745 * block. Set the new boundary to the end of the
746 * current block. Note we can't simply increase
747 * next_skip_pfn by 1 << order, as low_pfn might have
748 * been incremented by a higher number due to skipping
749 * a compound or a high-order buddy page in the
750 * previous loop iteration.
751 */
752 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
753 }
754
8b44d279
VB
755 /*
756 * Periodically drop the lock (if held) regardless of its
757 * contention, to give chance to IRQs. Abort async compaction
758 * if contended.
759 */
760 if (!(low_pfn % SWAP_CLUSTER_MAX)
761 && compact_unlock_should_abort(&zone->lru_lock, flags,
762 &locked, cc))
763 break;
c67fe375 764
748446bb 765 if (!pfn_valid_within(low_pfn))
fdd048e1 766 goto isolate_fail;
b7aba698 767 nr_scanned++;
748446bb 768
748446bb 769 page = pfn_to_page(low_pfn);
dc908600 770
bb13ffeb
MG
771 if (!valid_page)
772 valid_page = page;
773
6c14466c 774 /*
99c0fd5e
VB
775 * Skip if free. We read page order here without zone lock
776 * which is generally unsafe, but the race window is small and
777 * the worst thing that can happen is that we skip some
778 * potential isolation targets.
6c14466c 779 */
99c0fd5e
VB
780 if (PageBuddy(page)) {
781 unsigned long freepage_order = page_order_unsafe(page);
782
783 /*
784 * Without lock, we cannot be sure that what we got is
785 * a valid page order. Consider only values in the
786 * valid order range to prevent low_pfn overflow.
787 */
788 if (freepage_order > 0 && freepage_order < MAX_ORDER)
789 low_pfn += (1UL << freepage_order) - 1;
748446bb 790 continue;
99c0fd5e 791 }
748446bb 792
bc835011 793 /*
29c0dde8
VB
794 * Regardless of being on LRU, compound pages such as THP and
795 * hugetlbfs are not to be compacted. We can potentially save
796 * a lot of iterations if we skip them at once. The check is
797 * racy, but we can consider only valid values and the only
798 * danger is skipping too much.
bc835011 799 */
29c0dde8
VB
800 if (PageCompound(page)) {
801 unsigned int comp_order = compound_order(page);
802
803 if (likely(comp_order < MAX_ORDER))
804 low_pfn += (1UL << comp_order) - 1;
edc2ca61 805
fdd048e1 806 goto isolate_fail;
2a1402aa
MG
807 }
808
bda807d4
MK
809 /*
810 * Check may be lockless but that's ok as we recheck later.
811 * It's possible to migrate LRU and non-lru movable pages.
812 * Skip any other type of page
813 */
814 if (!PageLRU(page)) {
bda807d4
MK
815 /*
816 * __PageMovable can return false positive so we need
817 * to verify it under page_lock.
818 */
819 if (unlikely(__PageMovable(page)) &&
820 !PageIsolated(page)) {
821 if (locked) {
822 spin_unlock_irqrestore(&zone->lru_lock,
823 flags);
824 locked = false;
825 }
826
827 if (isolate_movable_page(page, isolate_mode))
828 goto isolate_success;
829 }
830
fdd048e1 831 goto isolate_fail;
bda807d4 832 }
29c0dde8 833
119d6d59
DR
834 /*
835 * Migration will fail if an anonymous page is pinned in memory,
836 * so avoid taking lru_lock and isolating it unnecessarily in an
837 * admittedly racy check.
838 */
839 if (!page_mapping(page) &&
840 page_count(page) > page_mapcount(page))
fdd048e1 841 goto isolate_fail;
119d6d59 842
69b7189f
VB
843 /* If we already hold the lock, we can skip some rechecking */
844 if (!locked) {
8b44d279
VB
845 locked = compact_trylock_irqsave(&zone->lru_lock,
846 &flags, cc);
69b7189f
VB
847 if (!locked)
848 break;
2a1402aa 849
29c0dde8 850 /* Recheck PageLRU and PageCompound under lock */
69b7189f 851 if (!PageLRU(page))
fdd048e1 852 goto isolate_fail;
29c0dde8
VB
853
854 /*
855 * Page become compound since the non-locked check,
856 * and it's on LRU. It can only be a THP so the order
857 * is safe to read and it's 0 for tail pages.
858 */
859 if (unlikely(PageCompound(page))) {
860 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 861 goto isolate_fail;
69b7189f 862 }
bc835011
AA
863 }
864
fa9add64
HD
865 lruvec = mem_cgroup_page_lruvec(page, zone);
866
748446bb 867 /* Try isolate the page */
edc2ca61 868 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 869 goto isolate_fail;
748446bb 870
29c0dde8 871 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 872
748446bb 873 /* Successfully isolated */
fa9add64 874 del_page_from_lru_list(page, lruvec, page_lru(page));
b6c75016
JK
875
876isolate_success:
fdd048e1 877 list_add(&page->lru, &cc->migratepages);
748446bb 878 cc->nr_migratepages++;
b7aba698 879 nr_isolated++;
748446bb 880
a34753d2
VB
881 /*
882 * Record where we could have freed pages by migration and not
883 * yet flushed them to buddy allocator.
884 * - this is the lowest page that was isolated and likely be
885 * then freed by migration.
886 */
887 if (!cc->last_migrated_pfn)
888 cc->last_migrated_pfn = low_pfn;
889
748446bb 890 /* Avoid isolating too much */
31b8384a
HD
891 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
892 ++low_pfn;
748446bb 893 break;
31b8384a 894 }
fdd048e1
VB
895
896 continue;
897isolate_fail:
898 if (!skip_on_failure)
899 continue;
900
901 /*
902 * We have isolated some pages, but then failed. Release them
903 * instead of migrating, as we cannot form the cc->order buddy
904 * page anyway.
905 */
906 if (nr_isolated) {
907 if (locked) {
908 spin_unlock_irqrestore(&zone->lru_lock, flags);
909 locked = false;
910 }
911 acct_isolated(zone, cc);
912 putback_movable_pages(&cc->migratepages);
913 cc->nr_migratepages = 0;
914 cc->last_migrated_pfn = 0;
915 nr_isolated = 0;
916 }
917
918 if (low_pfn < next_skip_pfn) {
919 low_pfn = next_skip_pfn - 1;
920 /*
921 * The check near the loop beginning would have updated
922 * next_skip_pfn too, but this is a bit simpler.
923 */
924 next_skip_pfn += 1UL << cc->order;
925 }
748446bb
MG
926 }
927
99c0fd5e
VB
928 /*
929 * The PageBuddy() check could have potentially brought us outside
930 * the range to be scanned.
931 */
932 if (unlikely(low_pfn > end_pfn))
933 low_pfn = end_pfn;
934
c67fe375
MG
935 if (locked)
936 spin_unlock_irqrestore(&zone->lru_lock, flags);
748446bb 937
50b5b094
VB
938 /*
939 * Update the pageblock-skip information and cached scanner pfn,
940 * if the whole pageblock was scanned without isolating any page.
50b5b094 941 */
35979ef3 942 if (low_pfn == end_pfn)
edc2ca61 943 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 944
e34d85f0
JK
945 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
946 nr_scanned, nr_isolated);
b7aba698 947
010fc29a 948 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
397487db 949 if (nr_isolated)
010fc29a 950 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 951
2fe86e00
MN
952 return low_pfn;
953}
954
edc2ca61
VB
955/**
956 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
957 * @cc: Compaction control structure.
958 * @start_pfn: The first PFN to start isolating.
959 * @end_pfn: The one-past-last PFN.
960 *
961 * Returns zero if isolation fails fatally due to e.g. pending signal.
962 * Otherwise, function returns one-past-the-last PFN of isolated page
963 * (which may be greater than end_pfn if end fell in a middle of a THP page).
964 */
965unsigned long
966isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
967 unsigned long end_pfn)
968{
e1409c32 969 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
970
971 /* Scan block by block. First and last block may be incomplete */
972 pfn = start_pfn;
06b6640a 973 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
974 if (block_start_pfn < cc->zone->zone_start_pfn)
975 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 976 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
977
978 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 979 block_start_pfn = block_end_pfn,
edc2ca61
VB
980 block_end_pfn += pageblock_nr_pages) {
981
982 block_end_pfn = min(block_end_pfn, end_pfn);
983
e1409c32
JK
984 if (!pageblock_pfn_to_page(block_start_pfn,
985 block_end_pfn, cc->zone))
edc2ca61
VB
986 continue;
987
988 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
989 ISOLATE_UNEVICTABLE);
990
14af4a5e 991 if (!pfn)
edc2ca61 992 break;
6ea41c0c
JK
993
994 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
995 break;
edc2ca61
VB
996 }
997 acct_isolated(cc->zone, cc);
998
999 return pfn;
1000}
1001
ff9543fd
MN
1002#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1003#ifdef CONFIG_COMPACTION
018e9a49
AM
1004
1005/* Returns true if the page is within a block suitable for migration to */
1006static bool suitable_migration_target(struct page *page)
1007{
1008 /* If the page is a large free page, then disallow migration */
1009 if (PageBuddy(page)) {
1010 /*
1011 * We are checking page_order without zone->lock taken. But
1012 * the only small danger is that we skip a potentially suitable
1013 * pageblock, so it's not worth to check order for valid range.
1014 */
1015 if (page_order_unsafe(page) >= pageblock_order)
1016 return false;
1017 }
1018
1019 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1020 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1021 return true;
1022
1023 /* Otherwise skip the block */
1024 return false;
1025}
1026
f2849aa0
VB
1027/*
1028 * Test whether the free scanner has reached the same or lower pageblock than
1029 * the migration scanner, and compaction should thus terminate.
1030 */
1031static inline bool compact_scanners_met(struct compact_control *cc)
1032{
1033 return (cc->free_pfn >> pageblock_order)
1034 <= (cc->migrate_pfn >> pageblock_order);
1035}
1036
2fe86e00 1037/*
ff9543fd
MN
1038 * Based on information in the current compact_control, find blocks
1039 * suitable for isolating free pages from and then isolate them.
2fe86e00 1040 */
edc2ca61 1041static void isolate_freepages(struct compact_control *cc)
2fe86e00 1042{
edc2ca61 1043 struct zone *zone = cc->zone;
ff9543fd 1044 struct page *page;
c96b9e50 1045 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1046 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1047 unsigned long block_end_pfn; /* end of current pageblock */
1048 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1049 struct list_head *freelist = &cc->freepages;
2fe86e00 1050
ff9543fd
MN
1051 /*
1052 * Initialise the free scanner. The starting point is where we last
49e068f0 1053 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1054 * zone when isolating for the first time. For looping we also need
1055 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1056 * block_start_pfn -= pageblock_nr_pages in the for loop.
1057 * For ending point, take care when isolating in last pageblock of a
1058 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1059 * The low boundary is the end of the pageblock the migration scanner
1060 * is using.
ff9543fd 1061 */
e14c720e 1062 isolate_start_pfn = cc->free_pfn;
06b6640a 1063 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
1064 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1065 zone_end_pfn(zone));
06b6640a 1066 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1067
ff9543fd
MN
1068 /*
1069 * Isolate free pages until enough are available to migrate the
1070 * pages on cc->migratepages. We stop searching if the migrate
1071 * and free page scanners meet or enough free pages are isolated.
1072 */
f5f61a32 1073 for (; block_start_pfn >= low_pfn;
c96b9e50 1074 block_end_pfn = block_start_pfn,
e14c720e
VB
1075 block_start_pfn -= pageblock_nr_pages,
1076 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1077 /*
1078 * This can iterate a massively long zone without finding any
1079 * suitable migration targets, so periodically check if we need
be976572 1080 * to schedule, or even abort async compaction.
f6ea3adb 1081 */
be976572
VB
1082 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1083 && compact_should_abort(cc))
1084 break;
f6ea3adb 1085
7d49d886
VB
1086 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1087 zone);
1088 if (!page)
ff9543fd
MN
1089 continue;
1090
1091 /* Check the block is suitable for migration */
68e3e926 1092 if (!suitable_migration_target(page))
ff9543fd 1093 continue;
68e3e926 1094
bb13ffeb
MG
1095 /* If isolation recently failed, do not retry */
1096 if (!isolation_suitable(cc, page))
1097 continue;
1098
e14c720e 1099 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1100 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1101 freelist, false);
ff9543fd 1102
e14c720e 1103 /*
a46cbf3b
DR
1104 * If we isolated enough freepages, or aborted due to lock
1105 * contention, terminate.
e14c720e 1106 */
f5f61a32
VB
1107 if ((cc->nr_freepages >= cc->nr_migratepages)
1108 || cc->contended) {
a46cbf3b
DR
1109 if (isolate_start_pfn >= block_end_pfn) {
1110 /*
1111 * Restart at previous pageblock if more
1112 * freepages can be isolated next time.
1113 */
f5f61a32
VB
1114 isolate_start_pfn =
1115 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1116 }
be976572 1117 break;
a46cbf3b 1118 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1119 /*
a46cbf3b
DR
1120 * If isolation failed early, do not continue
1121 * needlessly.
f5f61a32 1122 */
a46cbf3b 1123 break;
f5f61a32 1124 }
ff9543fd
MN
1125 }
1126
66c64223 1127 /* __isolate_free_page() does not map the pages */
ff9543fd
MN
1128 map_pages(freelist);
1129
7ed695e0 1130 /*
f5f61a32
VB
1131 * Record where the free scanner will restart next time. Either we
1132 * broke from the loop and set isolate_start_pfn based on the last
1133 * call to isolate_freepages_block(), or we met the migration scanner
1134 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1135 */
f5f61a32 1136 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1137}
1138
1139/*
1140 * This is a migrate-callback that "allocates" freepages by taking pages
1141 * from the isolated freelists in the block we are migrating to.
1142 */
1143static struct page *compaction_alloc(struct page *migratepage,
1144 unsigned long data,
1145 int **result)
1146{
1147 struct compact_control *cc = (struct compact_control *)data;
1148 struct page *freepage;
1149
be976572
VB
1150 /*
1151 * Isolate free pages if necessary, and if we are not aborting due to
1152 * contention.
1153 */
748446bb 1154 if (list_empty(&cc->freepages)) {
be976572 1155 if (!cc->contended)
edc2ca61 1156 isolate_freepages(cc);
748446bb
MG
1157
1158 if (list_empty(&cc->freepages))
1159 return NULL;
1160 }
1161
1162 freepage = list_entry(cc->freepages.next, struct page, lru);
1163 list_del(&freepage->lru);
1164 cc->nr_freepages--;
1165
1166 return freepage;
1167}
1168
1169/*
d53aea3d
DR
1170 * This is a migrate-callback that "frees" freepages back to the isolated
1171 * freelist. All pages on the freelist are from the same zone, so there is no
1172 * special handling needed for NUMA.
1173 */
1174static void compaction_free(struct page *page, unsigned long data)
1175{
1176 struct compact_control *cc = (struct compact_control *)data;
1177
1178 list_add(&page->lru, &cc->freepages);
1179 cc->nr_freepages++;
1180}
1181
ff9543fd
MN
1182/* possible outcome of isolate_migratepages */
1183typedef enum {
1184 ISOLATE_ABORT, /* Abort compaction now */
1185 ISOLATE_NONE, /* No pages isolated, continue scanning */
1186 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1187} isolate_migrate_t;
1188
5bbe3547
EM
1189/*
1190 * Allow userspace to control policy on scanning the unevictable LRU for
1191 * compactable pages.
1192 */
1193int sysctl_compact_unevictable_allowed __read_mostly = 1;
1194
ff9543fd 1195/*
edc2ca61
VB
1196 * Isolate all pages that can be migrated from the first suitable block,
1197 * starting at the block pointed to by the migrate scanner pfn within
1198 * compact_control.
ff9543fd
MN
1199 */
1200static isolate_migrate_t isolate_migratepages(struct zone *zone,
1201 struct compact_control *cc)
1202{
e1409c32
JK
1203 unsigned long block_start_pfn;
1204 unsigned long block_end_pfn;
1205 unsigned long low_pfn;
edc2ca61
VB
1206 struct page *page;
1207 const isolate_mode_t isolate_mode =
5bbe3547 1208 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
edc2ca61 1209 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1210
edc2ca61
VB
1211 /*
1212 * Start at where we last stopped, or beginning of the zone as
1213 * initialized by compact_zone()
1214 */
1215 low_pfn = cc->migrate_pfn;
06b6640a 1216 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1217 if (block_start_pfn < zone->zone_start_pfn)
1218 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1219
1220 /* Only scan within a pageblock boundary */
06b6640a 1221 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1222
edc2ca61
VB
1223 /*
1224 * Iterate over whole pageblocks until we find the first suitable.
1225 * Do not cross the free scanner.
1226 */
e1409c32
JK
1227 for (; block_end_pfn <= cc->free_pfn;
1228 low_pfn = block_end_pfn,
1229 block_start_pfn = block_end_pfn,
1230 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1231
edc2ca61
VB
1232 /*
1233 * This can potentially iterate a massively long zone with
1234 * many pageblocks unsuitable, so periodically check if we
1235 * need to schedule, or even abort async compaction.
1236 */
1237 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1238 && compact_should_abort(cc))
1239 break;
ff9543fd 1240
e1409c32
JK
1241 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1242 zone);
7d49d886 1243 if (!page)
edc2ca61
VB
1244 continue;
1245
edc2ca61
VB
1246 /* If isolation recently failed, do not retry */
1247 if (!isolation_suitable(cc, page))
1248 continue;
1249
1250 /*
1251 * For async compaction, also only scan in MOVABLE blocks.
1252 * Async compaction is optimistic to see if the minimum amount
1253 * of work satisfies the allocation.
1254 */
1255 if (cc->mode == MIGRATE_ASYNC &&
1256 !migrate_async_suitable(get_pageblock_migratetype(page)))
1257 continue;
1258
1259 /* Perform the isolation */
e1409c32
JK
1260 low_pfn = isolate_migratepages_block(cc, low_pfn,
1261 block_end_pfn, isolate_mode);
edc2ca61 1262
ff59909a
HD
1263 if (!low_pfn || cc->contended) {
1264 acct_isolated(zone, cc);
edc2ca61 1265 return ISOLATE_ABORT;
ff59909a 1266 }
edc2ca61
VB
1267
1268 /*
1269 * Either we isolated something and proceed with migration. Or
1270 * we failed and compact_zone should decide if we should
1271 * continue or not.
1272 */
1273 break;
1274 }
1275
1276 acct_isolated(zone, cc);
f2849aa0
VB
1277 /* Record where migration scanner will be restarted. */
1278 cc->migrate_pfn = low_pfn;
ff9543fd 1279
edc2ca61 1280 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1281}
1282
21c527a3
YB
1283/*
1284 * order == -1 is expected when compacting via
1285 * /proc/sys/vm/compact_memory
1286 */
1287static inline bool is_via_compact_memory(int order)
1288{
1289 return order == -1;
1290}
1291
ea7ab982 1292static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
6d7ce559 1293 const int migratetype)
748446bb 1294{
8fb74b9f 1295 unsigned int order;
5a03b051 1296 unsigned long watermark;
56de7263 1297
be976572 1298 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1299 return COMPACT_CONTENDED;
748446bb 1300
753341a4 1301 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1302 if (compact_scanners_met(cc)) {
55b7c4c9 1303 /* Let the next compaction start anew. */
02333641 1304 reset_cached_positions(zone);
55b7c4c9 1305
62997027
MG
1306 /*
1307 * Mark that the PG_migrate_skip information should be cleared
accf6242 1308 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1309 * flag itself as the decision to be clear should be directly
1310 * based on an allocation request.
1311 */
accf6242 1312 if (cc->direct_compaction)
62997027
MG
1313 zone->compact_blockskip_flush = true;
1314
c8f7de0b
MH
1315 if (cc->whole_zone)
1316 return COMPACT_COMPLETE;
1317 else
1318 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1319 }
748446bb 1320
21c527a3 1321 if (is_via_compact_memory(cc->order))
56de7263
MG
1322 return COMPACT_CONTINUE;
1323
3957c776
MH
1324 /* Compaction run is not finished if the watermark is not met */
1325 watermark = low_wmark_pages(zone);
3957c776 1326
ebff3980
VB
1327 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1328 cc->alloc_flags))
3957c776
MH
1329 return COMPACT_CONTINUE;
1330
56de7263 1331 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1332 for (order = cc->order; order < MAX_ORDER; order++) {
1333 struct free_area *area = &zone->free_area[order];
2149cdae 1334 bool can_steal;
8fb74b9f
MG
1335
1336 /* Job done if page is free of the right migratetype */
6d7ce559 1337 if (!list_empty(&area->free_list[migratetype]))
8fb74b9f
MG
1338 return COMPACT_PARTIAL;
1339
2149cdae
JK
1340#ifdef CONFIG_CMA
1341 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1342 if (migratetype == MIGRATE_MOVABLE &&
1343 !list_empty(&area->free_list[MIGRATE_CMA]))
1344 return COMPACT_PARTIAL;
1345#endif
1346 /*
1347 * Job done if allocation would steal freepages from
1348 * other migratetype buddy lists.
1349 */
1350 if (find_suitable_fallback(area, order, migratetype,
1351 true, &can_steal) != -1)
56de7263
MG
1352 return COMPACT_PARTIAL;
1353 }
1354
837d026d
JK
1355 return COMPACT_NO_SUITABLE_PAGE;
1356}
1357
ea7ab982
MH
1358static enum compact_result compact_finished(struct zone *zone,
1359 struct compact_control *cc,
1360 const int migratetype)
837d026d
JK
1361{
1362 int ret;
1363
1364 ret = __compact_finished(zone, cc, migratetype);
1365 trace_mm_compaction_finished(zone, cc->order, ret);
1366 if (ret == COMPACT_NO_SUITABLE_PAGE)
1367 ret = COMPACT_CONTINUE;
1368
1369 return ret;
748446bb
MG
1370}
1371
3e7d3449
MG
1372/*
1373 * compaction_suitable: Is this suitable to run compaction on this zone now?
1374 * Returns
1375 * COMPACT_SKIPPED - If there are too few free pages for compaction
1376 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1377 * COMPACT_CONTINUE - If compaction should run now
1378 */
ea7ab982 1379static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1380 unsigned int alloc_flags,
86a294a8
MH
1381 int classzone_idx,
1382 unsigned long wmark_target)
3e7d3449
MG
1383{
1384 int fragindex;
1385 unsigned long watermark;
1386
21c527a3 1387 if (is_via_compact_memory(order))
3957c776
MH
1388 return COMPACT_CONTINUE;
1389
ebff3980
VB
1390 watermark = low_wmark_pages(zone);
1391 /*
1392 * If watermarks for high-order allocation are already met, there
1393 * should be no need for compaction at all.
1394 */
1395 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1396 alloc_flags))
1397 return COMPACT_PARTIAL;
1398
3e7d3449
MG
1399 /*
1400 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1401 * This is because during migration, copies of pages need to be
1402 * allocated and for a short time, the footprint is higher
1403 */
ebff3980 1404 watermark += (2UL << order);
86a294a8
MH
1405 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1406 alloc_flags, wmark_target))
3e7d3449
MG
1407 return COMPACT_SKIPPED;
1408
1409 /*
1410 * fragmentation index determines if allocation failures are due to
1411 * low memory or external fragmentation
1412 *
ebff3980
VB
1413 * index of -1000 would imply allocations might succeed depending on
1414 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1415 * index towards 0 implies failure is due to lack of memory
1416 * index towards 1000 implies failure is due to fragmentation
1417 *
1418 * Only compact if a failure would be due to fragmentation.
1419 */
1420 fragindex = fragmentation_index(zone, order);
1421 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
837d026d 1422 return COMPACT_NOT_SUITABLE_ZONE;
3e7d3449 1423
3e7d3449
MG
1424 return COMPACT_CONTINUE;
1425}
1426
ea7ab982 1427enum compact_result compaction_suitable(struct zone *zone, int order,
c603844b
MG
1428 unsigned int alloc_flags,
1429 int classzone_idx)
837d026d 1430{
ea7ab982 1431 enum compact_result ret;
837d026d 1432
86a294a8
MH
1433 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1434 zone_page_state(zone, NR_FREE_PAGES));
837d026d
JK
1435 trace_mm_compaction_suitable(zone, order, ret);
1436 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1437 ret = COMPACT_SKIPPED;
1438
1439 return ret;
1440}
1441
86a294a8
MH
1442bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1443 int alloc_flags)
1444{
1445 struct zone *zone;
1446 struct zoneref *z;
1447
1448 /*
1449 * Make sure at least one zone would pass __compaction_suitable if we continue
1450 * retrying the reclaim.
1451 */
1452 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1453 ac->nodemask) {
1454 unsigned long available;
1455 enum compact_result compact_result;
1456
1457 /*
1458 * Do not consider all the reclaimable memory because we do not
1459 * want to trash just for a single high order allocation which
1460 * is even not guaranteed to appear even if __compaction_suitable
1461 * is happy about the watermark check.
1462 */
1463 available = zone_reclaimable_pages(zone) / order;
1464 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1465 compact_result = __compaction_suitable(zone, order, alloc_flags,
1466 ac_classzone_idx(ac), available);
1467 if (compact_result != COMPACT_SKIPPED &&
1468 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1469 return true;
1470 }
1471
1472 return false;
1473}
1474
ea7ab982 1475static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1476{
ea7ab982 1477 enum compact_result ret;
c89511ab 1478 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1479 unsigned long end_pfn = zone_end_pfn(zone);
6d7ce559 1480 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
e0b9daeb 1481 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1482
ebff3980
VB
1483 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1484 cc->classzone_idx);
c46649de
MH
1485 /* Compaction is likely to fail */
1486 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
3e7d3449 1487 return ret;
c46649de
MH
1488
1489 /* huh, compaction_suitable is returning something unexpected */
1490 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1491
d3132e4b
VB
1492 /*
1493 * Clear pageblock skip if there were failures recently and compaction
accf6242 1494 * is about to be retried after being deferred.
d3132e4b 1495 */
accf6242 1496 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1497 __reset_isolation_suitable(zone);
1498
c89511ab
MG
1499 /*
1500 * Setup to move all movable pages to the end of the zone. Used cached
1501 * information on where the scanners should start but check that it
1502 * is initialised by ensuring the values are within zone boundaries.
1503 */
e0b9daeb 1504 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
c89511ab 1505 cc->free_pfn = zone->compact_cached_free_pfn;
623446e4 1506 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
06b6640a 1507 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
c89511ab
MG
1508 zone->compact_cached_free_pfn = cc->free_pfn;
1509 }
623446e4 1510 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
c89511ab 1511 cc->migrate_pfn = start_pfn;
35979ef3
DR
1512 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1513 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
c89511ab 1514 }
c8f7de0b
MH
1515
1516 if (cc->migrate_pfn == start_pfn)
1517 cc->whole_zone = true;
1518
1a16718c 1519 cc->last_migrated_pfn = 0;
748446bb 1520
16c4a097
JK
1521 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1522 cc->free_pfn, end_pfn, sync);
0eb927c0 1523
748446bb
MG
1524 migrate_prep_local();
1525
6d7ce559
DR
1526 while ((ret = compact_finished(zone, cc, migratetype)) ==
1527 COMPACT_CONTINUE) {
9d502c1c 1528 int err;
748446bb 1529
f9e35b3b
MG
1530 switch (isolate_migratepages(zone, cc)) {
1531 case ISOLATE_ABORT:
2d1e1041 1532 ret = COMPACT_CONTENDED;
5733c7d1 1533 putback_movable_pages(&cc->migratepages);
e64c5237 1534 cc->nr_migratepages = 0;
f9e35b3b
MG
1535 goto out;
1536 case ISOLATE_NONE:
fdaf7f5c
VB
1537 /*
1538 * We haven't isolated and migrated anything, but
1539 * there might still be unflushed migrations from
1540 * previous cc->order aligned block.
1541 */
1542 goto check_drain;
f9e35b3b
MG
1543 case ISOLATE_SUCCESS:
1544 ;
1545 }
748446bb 1546
d53aea3d 1547 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1548 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1549 MR_COMPACTION);
748446bb 1550
f8c9301f
VB
1551 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1552 &cc->migratepages);
748446bb 1553
f8c9301f
VB
1554 /* All pages were either migrated or will be released */
1555 cc->nr_migratepages = 0;
9d502c1c 1556 if (err) {
5733c7d1 1557 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1558 /*
1559 * migrate_pages() may return -ENOMEM when scanners meet
1560 * and we want compact_finished() to detect it
1561 */
f2849aa0 1562 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1563 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1564 goto out;
1565 }
fdd048e1
VB
1566 /*
1567 * We failed to migrate at least one page in the current
1568 * order-aligned block, so skip the rest of it.
1569 */
1570 if (cc->direct_compaction &&
1571 (cc->mode == MIGRATE_ASYNC)) {
1572 cc->migrate_pfn = block_end_pfn(
1573 cc->migrate_pfn - 1, cc->order);
1574 /* Draining pcplists is useless in this case */
1575 cc->last_migrated_pfn = 0;
1576
1577 }
748446bb 1578 }
fdaf7f5c 1579
fdaf7f5c
VB
1580check_drain:
1581 /*
1582 * Has the migration scanner moved away from the previous
1583 * cc->order aligned block where we migrated from? If yes,
1584 * flush the pages that were freed, so that they can merge and
1585 * compact_finished() can detect immediately if allocation
1586 * would succeed.
1587 */
1a16718c 1588 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1589 int cpu;
1590 unsigned long current_block_start =
06b6640a 1591 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1592
1a16718c 1593 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1594 cpu = get_cpu();
1595 lru_add_drain_cpu(cpu);
1596 drain_local_pages(zone);
1597 put_cpu();
1598 /* No more flushing until we migrate again */
1a16718c 1599 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1600 }
1601 }
1602
748446bb
MG
1603 }
1604
f9e35b3b 1605out:
6bace090
VB
1606 /*
1607 * Release free pages and update where the free scanner should restart,
1608 * so we don't leave any returned pages behind in the next attempt.
1609 */
1610 if (cc->nr_freepages > 0) {
1611 unsigned long free_pfn = release_freepages(&cc->freepages);
1612
1613 cc->nr_freepages = 0;
1614 VM_BUG_ON(free_pfn == 0);
1615 /* The cached pfn is always the first in a pageblock */
06b6640a 1616 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1617 /*
1618 * Only go back, not forward. The cached pfn might have been
1619 * already reset to zone end in compact_finished()
1620 */
1621 if (free_pfn > zone->compact_cached_free_pfn)
1622 zone->compact_cached_free_pfn = free_pfn;
1623 }
748446bb 1624
16c4a097
JK
1625 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1626 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1627
2d1e1041
VB
1628 if (ret == COMPACT_CONTENDED)
1629 ret = COMPACT_PARTIAL;
1630
748446bb
MG
1631 return ret;
1632}
76ab0f53 1633
ea7ab982 1634static enum compact_result compact_zone_order(struct zone *zone, int order,
ebff3980 1635 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
c603844b 1636 unsigned int alloc_flags, int classzone_idx)
56de7263 1637{
ea7ab982 1638 enum compact_result ret;
56de7263
MG
1639 struct compact_control cc = {
1640 .nr_freepages = 0,
1641 .nr_migratepages = 0,
1642 .order = order,
6d7ce559 1643 .gfp_mask = gfp_mask,
56de7263 1644 .zone = zone,
e0b9daeb 1645 .mode = mode,
ebff3980
VB
1646 .alloc_flags = alloc_flags,
1647 .classzone_idx = classzone_idx,
accf6242 1648 .direct_compaction = true,
56de7263
MG
1649 };
1650 INIT_LIST_HEAD(&cc.freepages);
1651 INIT_LIST_HEAD(&cc.migratepages);
1652
e64c5237
SL
1653 ret = compact_zone(zone, &cc);
1654
1655 VM_BUG_ON(!list_empty(&cc.freepages));
1656 VM_BUG_ON(!list_empty(&cc.migratepages));
1657
1658 *contended = cc.contended;
1659 return ret;
56de7263
MG
1660}
1661
5e771905
MG
1662int sysctl_extfrag_threshold = 500;
1663
56de7263
MG
1664/**
1665 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1666 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1667 * @order: The order of the current allocation
1668 * @alloc_flags: The allocation flags of the current allocation
1669 * @ac: The context of current allocation
e0b9daeb 1670 * @mode: The migration mode for async, sync light, or sync migration
1f9efdef
VB
1671 * @contended: Return value that determines if compaction was aborted due to
1672 * need_resched() or lock contention
56de7263
MG
1673 *
1674 * This is the main entry point for direct page compaction.
1675 */
ea7ab982 1676enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b
MG
1677 unsigned int alloc_flags, const struct alloc_context *ac,
1678 enum migrate_mode mode, int *contended)
56de7263 1679{
56de7263
MG
1680 int may_enter_fs = gfp_mask & __GFP_FS;
1681 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1682 struct zoneref *z;
1683 struct zone *zone;
1d4746d3 1684 enum compact_result rc = COMPACT_SKIPPED;
1f9efdef
VB
1685 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1686
1687 *contended = COMPACT_CONTENDED_NONE;
56de7263 1688
4ffb6335 1689 /* Check if the GFP flags allow compaction */
c5a73c3d 1690 if (!order || !may_enter_fs || !may_perform_io)
53853e2d 1691 return COMPACT_SKIPPED;
56de7263 1692
837d026d
JK
1693 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1694
56de7263 1695 /* Compact each zone in the list */
1a6d53a1
VB
1696 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1697 ac->nodemask) {
ea7ab982 1698 enum compact_result status;
1f9efdef 1699 int zone_contended;
56de7263 1700
1d4746d3
MH
1701 if (compaction_deferred(zone, order)) {
1702 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1703 continue;
1d4746d3 1704 }
53853e2d 1705
e0b9daeb 1706 status = compact_zone_order(zone, order, gfp_mask, mode,
1a6d53a1 1707 &zone_contended, alloc_flags,
93ea9964 1708 ac_classzone_idx(ac));
56de7263 1709 rc = max(status, rc);
1f9efdef
VB
1710 /*
1711 * It takes at least one zone that wasn't lock contended
1712 * to clear all_zones_contended.
1713 */
1714 all_zones_contended &= zone_contended;
56de7263 1715
3e7d3449 1716 /* If a normal allocation would succeed, stop compacting */
ebff3980 1717 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
93ea9964 1718 ac_classzone_idx(ac), alloc_flags)) {
53853e2d
VB
1719 /*
1720 * We think the allocation will succeed in this zone,
1721 * but it is not certain, hence the false. The caller
1722 * will repeat this with true if allocation indeed
1723 * succeeds in this zone.
1724 */
1725 compaction_defer_reset(zone, order, false);
1f9efdef
VB
1726 /*
1727 * It is possible that async compaction aborted due to
1728 * need_resched() and the watermarks were ok thanks to
1729 * somebody else freeing memory. The allocation can
1730 * however still fail so we better signal the
1731 * need_resched() contention anyway (this will not
1732 * prevent the allocation attempt).
1733 */
1734 if (zone_contended == COMPACT_CONTENDED_SCHED)
1735 *contended = COMPACT_CONTENDED_SCHED;
1736
1737 goto break_loop;
1738 }
1739
c8f7de0b
MH
1740 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1741 status == COMPACT_PARTIAL_SKIPPED)) {
53853e2d
VB
1742 /*
1743 * We think that allocation won't succeed in this zone
1744 * so we defer compaction there. If it ends up
1745 * succeeding after all, it will be reset.
1746 */
1747 defer_compaction(zone, order);
1748 }
1f9efdef
VB
1749
1750 /*
1751 * We might have stopped compacting due to need_resched() in
1752 * async compaction, or due to a fatal signal detected. In that
1753 * case do not try further zones and signal need_resched()
1754 * contention.
1755 */
1756 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1757 || fatal_signal_pending(current)) {
1758 *contended = COMPACT_CONTENDED_SCHED;
1759 goto break_loop;
1760 }
1761
1762 continue;
1763break_loop:
1764 /*
1765 * We might not have tried all the zones, so be conservative
1766 * and assume they are not all lock contended.
1767 */
1768 all_zones_contended = 0;
1769 break;
56de7263
MG
1770 }
1771
1f9efdef
VB
1772 /*
1773 * If at least one zone wasn't deferred or skipped, we report if all
1774 * zones that were tried were lock contended.
1775 */
1d4746d3 1776 if (rc > COMPACT_INACTIVE && all_zones_contended)
1f9efdef
VB
1777 *contended = COMPACT_CONTENDED_LOCK;
1778
56de7263
MG
1779 return rc;
1780}
1781
1782
76ab0f53 1783/* Compact all zones within a node */
7103f16d 1784static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
76ab0f53
MG
1785{
1786 int zoneid;
76ab0f53
MG
1787 struct zone *zone;
1788
76ab0f53 1789 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1790
1791 zone = &pgdat->node_zones[zoneid];
1792 if (!populated_zone(zone))
1793 continue;
1794
7be62de9
RR
1795 cc->nr_freepages = 0;
1796 cc->nr_migratepages = 0;
1797 cc->zone = zone;
1798 INIT_LIST_HEAD(&cc->freepages);
1799 INIT_LIST_HEAD(&cc->migratepages);
76ab0f53 1800
195b0c60
GK
1801 /*
1802 * When called via /proc/sys/vm/compact_memory
1803 * this makes sure we compact the whole zone regardless of
1804 * cached scanner positions.
1805 */
21c527a3 1806 if (is_via_compact_memory(cc->order))
195b0c60
GK
1807 __reset_isolation_suitable(zone);
1808
21c527a3
YB
1809 if (is_via_compact_memory(cc->order) ||
1810 !compaction_deferred(zone, cc->order))
7be62de9 1811 compact_zone(zone, cc);
76ab0f53 1812
7be62de9
RR
1813 VM_BUG_ON(!list_empty(&cc->freepages));
1814 VM_BUG_ON(!list_empty(&cc->migratepages));
75469345
JK
1815
1816 if (is_via_compact_memory(cc->order))
1817 continue;
1818
1819 if (zone_watermark_ok(zone, cc->order,
1820 low_wmark_pages(zone), 0, 0))
1821 compaction_defer_reset(zone, cc->order, false);
76ab0f53 1822 }
76ab0f53
MG
1823}
1824
7103f16d 1825void compact_pgdat(pg_data_t *pgdat, int order)
7be62de9
RR
1826{
1827 struct compact_control cc = {
1828 .order = order,
e0b9daeb 1829 .mode = MIGRATE_ASYNC,
7be62de9
RR
1830 };
1831
3a7200af
MG
1832 if (!order)
1833 return;
1834
7103f16d 1835 __compact_pgdat(pgdat, &cc);
7be62de9
RR
1836}
1837
7103f16d 1838static void compact_node(int nid)
7be62de9 1839{
7be62de9
RR
1840 struct compact_control cc = {
1841 .order = -1,
e0b9daeb 1842 .mode = MIGRATE_SYNC,
91ca9186 1843 .ignore_skip_hint = true,
7be62de9
RR
1844 };
1845
7103f16d 1846 __compact_pgdat(NODE_DATA(nid), &cc);
7be62de9
RR
1847}
1848
76ab0f53 1849/* Compact all nodes in the system */
7964c06d 1850static void compact_nodes(void)
76ab0f53
MG
1851{
1852 int nid;
1853
8575ec29
HD
1854 /* Flush pending updates to the LRU lists */
1855 lru_add_drain_all();
1856
76ab0f53
MG
1857 for_each_online_node(nid)
1858 compact_node(nid);
76ab0f53
MG
1859}
1860
1861/* The written value is actually unused, all memory is compacted */
1862int sysctl_compact_memory;
1863
fec4eb2c
YB
1864/*
1865 * This is the entry point for compacting all nodes via
1866 * /proc/sys/vm/compact_memory
1867 */
76ab0f53
MG
1868int sysctl_compaction_handler(struct ctl_table *table, int write,
1869 void __user *buffer, size_t *length, loff_t *ppos)
1870{
1871 if (write)
7964c06d 1872 compact_nodes();
76ab0f53
MG
1873
1874 return 0;
1875}
ed4a6d7f 1876
5e771905
MG
1877int sysctl_extfrag_handler(struct ctl_table *table, int write,
1878 void __user *buffer, size_t *length, loff_t *ppos)
1879{
1880 proc_dointvec_minmax(table, write, buffer, length, ppos);
1881
1882 return 0;
1883}
1884
ed4a6d7f 1885#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1886static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1887 struct device_attribute *attr,
ed4a6d7f
MG
1888 const char *buf, size_t count)
1889{
8575ec29
HD
1890 int nid = dev->id;
1891
1892 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1893 /* Flush pending updates to the LRU lists */
1894 lru_add_drain_all();
1895
1896 compact_node(nid);
1897 }
ed4a6d7f
MG
1898
1899 return count;
1900}
10fbcf4c 1901static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1902
1903int compaction_register_node(struct node *node)
1904{
10fbcf4c 1905 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1906}
1907
1908void compaction_unregister_node(struct node *node)
1909{
10fbcf4c 1910 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1911}
1912#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1913
698b1b30
VB
1914static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1915{
172400c6 1916 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1917}
1918
1919static bool kcompactd_node_suitable(pg_data_t *pgdat)
1920{
1921 int zoneid;
1922 struct zone *zone;
1923 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1924
6cd9dc3e 1925 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1926 zone = &pgdat->node_zones[zoneid];
1927
1928 if (!populated_zone(zone))
1929 continue;
1930
1931 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1932 classzone_idx) == COMPACT_CONTINUE)
1933 return true;
1934 }
1935
1936 return false;
1937}
1938
1939static void kcompactd_do_work(pg_data_t *pgdat)
1940{
1941 /*
1942 * With no special task, compact all zones so that a page of requested
1943 * order is allocatable.
1944 */
1945 int zoneid;
1946 struct zone *zone;
1947 struct compact_control cc = {
1948 .order = pgdat->kcompactd_max_order,
1949 .classzone_idx = pgdat->kcompactd_classzone_idx,
1950 .mode = MIGRATE_SYNC_LIGHT,
1951 .ignore_skip_hint = true,
1952
1953 };
1954 bool success = false;
1955
1956 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1957 cc.classzone_idx);
1958 count_vm_event(KCOMPACTD_WAKE);
1959
6cd9dc3e 1960 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1961 int status;
1962
1963 zone = &pgdat->node_zones[zoneid];
1964 if (!populated_zone(zone))
1965 continue;
1966
1967 if (compaction_deferred(zone, cc.order))
1968 continue;
1969
1970 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1971 COMPACT_CONTINUE)
1972 continue;
1973
1974 cc.nr_freepages = 0;
1975 cc.nr_migratepages = 0;
1976 cc.zone = zone;
1977 INIT_LIST_HEAD(&cc.freepages);
1978 INIT_LIST_HEAD(&cc.migratepages);
1979
172400c6
VB
1980 if (kthread_should_stop())
1981 return;
698b1b30
VB
1982 status = compact_zone(zone, &cc);
1983
1984 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1985 cc.classzone_idx, 0)) {
1986 success = true;
1987 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1988 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1989 /*
1990 * We use sync migration mode here, so we defer like
1991 * sync direct compaction does.
1992 */
1993 defer_compaction(zone, cc.order);
1994 }
1995
1996 VM_BUG_ON(!list_empty(&cc.freepages));
1997 VM_BUG_ON(!list_empty(&cc.migratepages));
1998 }
1999
2000 /*
2001 * Regardless of success, we are done until woken up next. But remember
2002 * the requested order/classzone_idx in case it was higher/tighter than
2003 * our current ones
2004 */
2005 if (pgdat->kcompactd_max_order <= cc.order)
2006 pgdat->kcompactd_max_order = 0;
2007 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2008 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2009}
2010
2011void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2012{
2013 if (!order)
2014 return;
2015
2016 if (pgdat->kcompactd_max_order < order)
2017 pgdat->kcompactd_max_order = order;
2018
2019 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2020 pgdat->kcompactd_classzone_idx = classzone_idx;
2021
2022 if (!waitqueue_active(&pgdat->kcompactd_wait))
2023 return;
2024
2025 if (!kcompactd_node_suitable(pgdat))
2026 return;
2027
2028 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2029 classzone_idx);
2030 wake_up_interruptible(&pgdat->kcompactd_wait);
2031}
2032
2033/*
2034 * The background compaction daemon, started as a kernel thread
2035 * from the init process.
2036 */
2037static int kcompactd(void *p)
2038{
2039 pg_data_t *pgdat = (pg_data_t*)p;
2040 struct task_struct *tsk = current;
2041
2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2043
2044 if (!cpumask_empty(cpumask))
2045 set_cpus_allowed_ptr(tsk, cpumask);
2046
2047 set_freezable();
2048
2049 pgdat->kcompactd_max_order = 0;
2050 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2051
2052 while (!kthread_should_stop()) {
2053 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2054 wait_event_freezable(pgdat->kcompactd_wait,
2055 kcompactd_work_requested(pgdat));
2056
2057 kcompactd_do_work(pgdat);
2058 }
2059
2060 return 0;
2061}
2062
2063/*
2064 * This kcompactd start function will be called by init and node-hot-add.
2065 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2066 */
2067int kcompactd_run(int nid)
2068{
2069 pg_data_t *pgdat = NODE_DATA(nid);
2070 int ret = 0;
2071
2072 if (pgdat->kcompactd)
2073 return 0;
2074
2075 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2076 if (IS_ERR(pgdat->kcompactd)) {
2077 pr_err("Failed to start kcompactd on node %d\n", nid);
2078 ret = PTR_ERR(pgdat->kcompactd);
2079 pgdat->kcompactd = NULL;
2080 }
2081 return ret;
2082}
2083
2084/*
2085 * Called by memory hotplug when all memory in a node is offlined. Caller must
2086 * hold mem_hotplug_begin/end().
2087 */
2088void kcompactd_stop(int nid)
2089{
2090 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2091
2092 if (kcompactd) {
2093 kthread_stop(kcompactd);
2094 NODE_DATA(nid)->kcompactd = NULL;
2095 }
2096}
2097
2098/*
2099 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2100 * not required for correctness. So if the last cpu in a node goes
2101 * away, we get changed to run anywhere: as the first one comes back,
2102 * restore their cpu bindings.
2103 */
2104static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2105 void *hcpu)
2106{
2107 int nid;
2108
2109 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2110 for_each_node_state(nid, N_MEMORY) {
2111 pg_data_t *pgdat = NODE_DATA(nid);
2112 const struct cpumask *mask;
2113
2114 mask = cpumask_of_node(pgdat->node_id);
2115
2116 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2117 /* One of our CPUs online: restore mask */
2118 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2119 }
2120 }
2121 return NOTIFY_OK;
2122}
2123
2124static int __init kcompactd_init(void)
2125{
2126 int nid;
2127
2128 for_each_node_state(nid, N_MEMORY)
2129 kcompactd_run(nid);
2130 hotcpu_notifier(cpu_callback, 0);
2131 return 0;
2132}
2133subsys_initcall(kcompactd_init)
2134
ff9543fd 2135#endif /* CONFIG_COMPACTION */
This page took 0.485773 seconds and 5 git commands to generate.