ASoC: WM8996 only needs bandgap for analogue functionality
[deliverable/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
3d48ae45 61 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
3d48ae45 67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
68 *
69 * ->mmap_sem
3d48ae45 70 * ->i_mmap_mutex
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
f758eeab 80 * bdi->wb.list_lock
a66979ab 81 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
82 * ->mapping->tree_lock (__sync_single_inode)
83 *
3d48ae45 84 * ->i_mmap_mutex
1da177e4
LT
85 * ->anon_vma.lock (vma_adjust)
86 *
87 * ->anon_vma.lock
b8072f09 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 89 *
b8072f09 90 * ->page_table_lock or pte_lock
5d337b91 91 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 *
6a46079c
AK
104 * (code doesn't rely on that order, so you could switch it around)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
3d48ae45 106 * ->i_mmap_mutex
1da177e4
LT
107 */
108
109/*
e64a782f 110 * Delete a page from the page cache and free it. Caller has to make
1da177e4 111 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 112 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 113 */
e64a782f 114void __delete_from_page_cache(struct page *page)
1da177e4
LT
115{
116 struct address_space *mapping = page->mapping;
117
c515e1fd
DM
118 /*
119 * if we're uptodate, flush out into the cleancache, otherwise
120 * invalidate any existing cleancache entries. We can't leave
121 * stale data around in the cleancache once our page is gone
122 */
123 if (PageUptodate(page) && PageMappedToDisk(page))
124 cleancache_put_page(page);
125 else
126 cleancache_flush_page(mapping, page);
127
1da177e4
LT
128 radix_tree_delete(&mapping->page_tree, page->index);
129 page->mapping = NULL;
b85e0eff 130 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 131 mapping->nrpages--;
347ce434 132 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
133 if (PageSwapBacked(page))
134 __dec_zone_page_state(page, NR_SHMEM);
45426812 135 BUG_ON(page_mapped(page));
3a692790
LT
136
137 /*
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
140 *
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
143 */
144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 dec_zone_page_state(page, NR_FILE_DIRTY);
146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147 }
1da177e4
LT
148}
149
702cfbf9
MK
150/**
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
153 *
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
157 */
158void delete_from_page_cache(struct page *page)
1da177e4
LT
159{
160 struct address_space *mapping = page->mapping;
6072d13c 161 void (*freepage)(struct page *);
1da177e4 162
cd7619d6 163 BUG_ON(!PageLocked(page));
1da177e4 164
6072d13c 165 freepage = mapping->a_ops->freepage;
19fd6231 166 spin_lock_irq(&mapping->tree_lock);
e64a782f 167 __delete_from_page_cache(page);
19fd6231 168 spin_unlock_irq(&mapping->tree_lock);
e767e056 169 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
170
171 if (freepage)
172 freepage(page);
97cecb5a
MK
173 page_cache_release(page);
174}
175EXPORT_SYMBOL(delete_from_page_cache);
176
7eaceacc 177static int sleep_on_page(void *word)
1da177e4 178{
1da177e4
LT
179 io_schedule();
180 return 0;
181}
182
7eaceacc 183static int sleep_on_page_killable(void *word)
2687a356 184{
7eaceacc 185 sleep_on_page(word);
2687a356
MW
186 return fatal_signal_pending(current) ? -EINTR : 0;
187}
188
1da177e4 189/**
485bb99b 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
469eb4d0 193 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 194 * @sync_mode: enable synchronous operation
1da177e4 195 *
485bb99b
RD
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
198 *
1da177e4 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 200 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
203 */
ebcf28e1
AM
204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 loff_t end, int sync_mode)
1da177e4
LT
206{
207 int ret;
208 struct writeback_control wbc = {
209 .sync_mode = sync_mode,
05fe478d 210 .nr_to_write = LONG_MAX,
111ebb6e
OH
211 .range_start = start,
212 .range_end = end,
1da177e4
LT
213 };
214
215 if (!mapping_cap_writeback_dirty(mapping))
216 return 0;
217
218 ret = do_writepages(mapping, &wbc);
219 return ret;
220}
221
222static inline int __filemap_fdatawrite(struct address_space *mapping,
223 int sync_mode)
224{
111ebb6e 225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
226}
227
228int filemap_fdatawrite(struct address_space *mapping)
229{
230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231}
232EXPORT_SYMBOL(filemap_fdatawrite);
233
f4c0a0fd 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 235 loff_t end)
1da177e4
LT
236{
237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238}
f4c0a0fd 239EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 240
485bb99b
RD
241/**
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
244 *
1da177e4
LT
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
247 */
248int filemap_flush(struct address_space *mapping)
249{
250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251}
252EXPORT_SYMBOL(filemap_flush);
253
485bb99b 254/**
94004ed7
CH
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 259 *
94004ed7
CH
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
1da177e4 262 */
94004ed7
CH
263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 loff_t end_byte)
1da177e4 265{
94004ed7
CH
266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
1da177e4 271
94004ed7 272 if (end_byte < start_byte)
1da177e4
LT
273 return 0;
274
275 pagevec_init(&pvec, 0);
1da177e4
LT
276 while ((index <= end) &&
277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 PAGECACHE_TAG_WRITEBACK,
279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 unsigned i;
281
282 for (i = 0; i < nr_pages; i++) {
283 struct page *page = pvec.pages[i];
284
285 /* until radix tree lookup accepts end_index */
286 if (page->index > end)
287 continue;
288
289 wait_on_page_writeback(page);
212260aa 290 if (TestClearPageError(page))
1da177e4
LT
291 ret = -EIO;
292 }
293 pagevec_release(&pvec);
294 cond_resched();
295 }
296
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 ret = -EIO;
302
303 return ret;
304}
d3bccb6f
JK
305EXPORT_SYMBOL(filemap_fdatawait_range);
306
1da177e4 307/**
485bb99b 308 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 309 * @mapping: address space structure to wait for
485bb99b
RD
310 *
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
1da177e4
LT
313 */
314int filemap_fdatawait(struct address_space *mapping)
315{
316 loff_t i_size = i_size_read(mapping->host);
317
318 if (i_size == 0)
319 return 0;
320
94004ed7 321 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
322}
323EXPORT_SYMBOL(filemap_fdatawait);
324
325int filemap_write_and_wait(struct address_space *mapping)
326{
28fd1298 327 int err = 0;
1da177e4
LT
328
329 if (mapping->nrpages) {
28fd1298
OH
330 err = filemap_fdatawrite(mapping);
331 /*
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
336 */
337 if (err != -EIO) {
338 int err2 = filemap_fdatawait(mapping);
339 if (!err)
340 err = err2;
341 }
1da177e4 342 }
28fd1298 343 return err;
1da177e4 344}
28fd1298 345EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 346
485bb99b
RD
347/**
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
352 *
469eb4d0
AM
353 * Write out and wait upon file offsets lstart->lend, inclusive.
354 *
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
357 */
1da177e4
LT
358int filemap_write_and_wait_range(struct address_space *mapping,
359 loff_t lstart, loff_t lend)
360{
28fd1298 361 int err = 0;
1da177e4
LT
362
363 if (mapping->nrpages) {
28fd1298
OH
364 err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 WB_SYNC_ALL);
366 /* See comment of filemap_write_and_wait() */
367 if (err != -EIO) {
94004ed7
CH
368 int err2 = filemap_fdatawait_range(mapping,
369 lstart, lend);
28fd1298
OH
370 if (!err)
371 err = err2;
372 }
1da177e4 373 }
28fd1298 374 return err;
1da177e4 375}
f6995585 376EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 377
ef6a3c63
MS
378/**
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
383 *
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
389 *
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
392 */
393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394{
395 int error;
396 struct mem_cgroup *memcg = NULL;
397
398 VM_BUG_ON(!PageLocked(old));
399 VM_BUG_ON(!PageLocked(new));
400 VM_BUG_ON(new->mapping);
401
402 /*
403 * This is not page migration, but prepare_migration and
404 * end_migration does enough work for charge replacement.
405 *
406 * In the longer term we probably want a specialized function
407 * for moving the charge from old to new in a more efficient
408 * manner.
409 */
410 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411 if (error)
412 return error;
413
414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415 if (!error) {
416 struct address_space *mapping = old->mapping;
417 void (*freepage)(struct page *);
418
419 pgoff_t offset = old->index;
420 freepage = mapping->a_ops->freepage;
421
422 page_cache_get(new);
423 new->mapping = mapping;
424 new->index = offset;
425
426 spin_lock_irq(&mapping->tree_lock);
e64a782f 427 __delete_from_page_cache(old);
ef6a3c63
MS
428 error = radix_tree_insert(&mapping->page_tree, offset, new);
429 BUG_ON(error);
430 mapping->nrpages++;
431 __inc_zone_page_state(new, NR_FILE_PAGES);
432 if (PageSwapBacked(new))
433 __inc_zone_page_state(new, NR_SHMEM);
434 spin_unlock_irq(&mapping->tree_lock);
435 radix_tree_preload_end();
436 if (freepage)
437 freepage(old);
438 page_cache_release(old);
439 mem_cgroup_end_migration(memcg, old, new, true);
440 } else {
441 mem_cgroup_end_migration(memcg, old, new, false);
442 }
443
444 return error;
445}
446EXPORT_SYMBOL_GPL(replace_page_cache_page);
447
485bb99b 448/**
e286781d 449 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
450 * @page: page to add
451 * @mapping: the page's address_space
452 * @offset: page index
453 * @gfp_mask: page allocation mode
454 *
e286781d 455 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
456 * This function does not add the page to the LRU. The caller must do that.
457 */
e286781d 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 459 pgoff_t offset, gfp_t gfp_mask)
1da177e4 460{
e286781d
NP
461 int error;
462
463 VM_BUG_ON(!PageLocked(page));
31475dd6 464 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
465
466 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 467 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
468 if (error)
469 goto out;
1da177e4 470
35c754d7 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 472 if (error == 0) {
e286781d
NP
473 page_cache_get(page);
474 page->mapping = mapping;
475 page->index = offset;
476
19fd6231 477 spin_lock_irq(&mapping->tree_lock);
1da177e4 478 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 479 if (likely(!error)) {
1da177e4 480 mapping->nrpages++;
347ce434 481 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 482 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
483 } else {
484 page->mapping = NULL;
b85e0eff 485 /* Leave page->index set: truncation relies upon it */
e767e056 486 spin_unlock_irq(&mapping->tree_lock);
69029cd5 487 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
488 page_cache_release(page);
489 }
1da177e4 490 radix_tree_preload_end();
35c754d7 491 } else
69029cd5 492 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 493out:
1da177e4
LT
494 return error;
495}
e286781d 496EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
497
498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 499 pgoff_t offset, gfp_t gfp_mask)
1da177e4 500{
4f98a2fe
RR
501 int ret;
502
4f98a2fe 503 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
504 if (ret == 0)
505 lru_cache_add_file(page);
1da177e4
LT
506 return ret;
507}
18bc0bbd 508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 509
44110fe3 510#ifdef CONFIG_NUMA
2ae88149 511struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 512{
c0ff7453
MX
513 int n;
514 struct page *page;
515
44110fe3 516 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
517 get_mems_allowed();
518 n = cpuset_mem_spread_node();
519 page = alloc_pages_exact_node(n, gfp, 0);
520 put_mems_allowed();
521 return page;
44110fe3 522 }
2ae88149 523 return alloc_pages(gfp, 0);
44110fe3 524}
2ae88149 525EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
526#endif
527
1da177e4
LT
528/*
529 * In order to wait for pages to become available there must be
530 * waitqueues associated with pages. By using a hash table of
531 * waitqueues where the bucket discipline is to maintain all
532 * waiters on the same queue and wake all when any of the pages
533 * become available, and for the woken contexts to check to be
534 * sure the appropriate page became available, this saves space
535 * at a cost of "thundering herd" phenomena during rare hash
536 * collisions.
537 */
538static wait_queue_head_t *page_waitqueue(struct page *page)
539{
540 const struct zone *zone = page_zone(page);
541
542 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
543}
544
545static inline void wake_up_page(struct page *page, int bit)
546{
547 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
548}
549
920c7a5d 550void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
551{
552 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
553
554 if (test_bit(bit_nr, &page->flags))
7eaceacc 555 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
556 TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(wait_on_page_bit);
559
f62e00cc
KM
560int wait_on_page_bit_killable(struct page *page, int bit_nr)
561{
562 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
563
564 if (!test_bit(bit_nr, &page->flags))
565 return 0;
566
567 return __wait_on_bit(page_waitqueue(page), &wait,
568 sleep_on_page_killable, TASK_KILLABLE);
569}
570
385e1ca5
DH
571/**
572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
573 * @page: Page defining the wait queue of interest
574 * @waiter: Waiter to add to the queue
385e1ca5
DH
575 *
576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
577 */
578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
579{
580 wait_queue_head_t *q = page_waitqueue(page);
581 unsigned long flags;
582
583 spin_lock_irqsave(&q->lock, flags);
584 __add_wait_queue(q, waiter);
585 spin_unlock_irqrestore(&q->lock, flags);
586}
587EXPORT_SYMBOL_GPL(add_page_wait_queue);
588
1da177e4 589/**
485bb99b 590 * unlock_page - unlock a locked page
1da177e4
LT
591 * @page: the page
592 *
593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
595 * mechananism between PageLocked pages and PageWriteback pages is shared.
596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
597 *
8413ac9d
NP
598 * The mb is necessary to enforce ordering between the clear_bit and the read
599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 600 */
920c7a5d 601void unlock_page(struct page *page)
1da177e4 602{
8413ac9d
NP
603 VM_BUG_ON(!PageLocked(page));
604 clear_bit_unlock(PG_locked, &page->flags);
605 smp_mb__after_clear_bit();
1da177e4
LT
606 wake_up_page(page, PG_locked);
607}
608EXPORT_SYMBOL(unlock_page);
609
485bb99b
RD
610/**
611 * end_page_writeback - end writeback against a page
612 * @page: the page
1da177e4
LT
613 */
614void end_page_writeback(struct page *page)
615{
ac6aadb2
MS
616 if (TestClearPageReclaim(page))
617 rotate_reclaimable_page(page);
618
619 if (!test_clear_page_writeback(page))
620 BUG();
621
1da177e4
LT
622 smp_mb__after_clear_bit();
623 wake_up_page(page, PG_writeback);
624}
625EXPORT_SYMBOL(end_page_writeback);
626
485bb99b
RD
627/**
628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
629 * @page: the page to lock
1da177e4 630 */
920c7a5d 631void __lock_page(struct page *page)
1da177e4
LT
632{
633 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
634
7eaceacc 635 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
636 TASK_UNINTERRUPTIBLE);
637}
638EXPORT_SYMBOL(__lock_page);
639
b5606c2d 640int __lock_page_killable(struct page *page)
2687a356
MW
641{
642 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
643
644 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 645 sleep_on_page_killable, TASK_KILLABLE);
2687a356 646}
18bc0bbd 647EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 648
d065bd81
ML
649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
650 unsigned int flags)
651{
37b23e05
KM
652 if (flags & FAULT_FLAG_ALLOW_RETRY) {
653 /*
654 * CAUTION! In this case, mmap_sem is not released
655 * even though return 0.
656 */
657 if (flags & FAULT_FLAG_RETRY_NOWAIT)
658 return 0;
659
660 up_read(&mm->mmap_sem);
661 if (flags & FAULT_FLAG_KILLABLE)
662 wait_on_page_locked_killable(page);
663 else
318b275f 664 wait_on_page_locked(page);
d065bd81 665 return 0;
37b23e05
KM
666 } else {
667 if (flags & FAULT_FLAG_KILLABLE) {
668 int ret;
669
670 ret = __lock_page_killable(page);
671 if (ret) {
672 up_read(&mm->mmap_sem);
673 return 0;
674 }
675 } else
676 __lock_page(page);
677 return 1;
d065bd81
ML
678 }
679}
680
485bb99b
RD
681/**
682 * find_get_page - find and get a page reference
683 * @mapping: the address_space to search
684 * @offset: the page index
685 *
da6052f7
NP
686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
687 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 688 */
a60637c8 689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 690{
a60637c8 691 void **pagep;
1da177e4
LT
692 struct page *page;
693
a60637c8
NP
694 rcu_read_lock();
695repeat:
696 page = NULL;
697 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
698 if (pagep) {
699 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
700 if (unlikely(!page))
701 goto out;
a2c16d6c 702 if (radix_tree_exception(page)) {
8079b1c8
HD
703 if (radix_tree_deref_retry(page))
704 goto repeat;
705 /*
706 * Otherwise, shmem/tmpfs must be storing a swap entry
707 * here as an exceptional entry: so return it without
708 * attempting to raise page count.
709 */
710 goto out;
a2c16d6c 711 }
a60637c8
NP
712 if (!page_cache_get_speculative(page))
713 goto repeat;
714
715 /*
716 * Has the page moved?
717 * This is part of the lockless pagecache protocol. See
718 * include/linux/pagemap.h for details.
719 */
720 if (unlikely(page != *pagep)) {
721 page_cache_release(page);
722 goto repeat;
723 }
724 }
27d20fdd 725out:
a60637c8
NP
726 rcu_read_unlock();
727
1da177e4
LT
728 return page;
729}
1da177e4
LT
730EXPORT_SYMBOL(find_get_page);
731
1da177e4
LT
732/**
733 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
734 * @mapping: the address_space to search
735 * @offset: the page index
1da177e4
LT
736 *
737 * Locates the desired pagecache page, locks it, increments its reference
738 * count and returns its address.
739 *
740 * Returns zero if the page was not present. find_lock_page() may sleep.
741 */
a60637c8 742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
743{
744 struct page *page;
745
1da177e4 746repeat:
a60637c8 747 page = find_get_page(mapping, offset);
a2c16d6c 748 if (page && !radix_tree_exception(page)) {
a60637c8
NP
749 lock_page(page);
750 /* Has the page been truncated? */
751 if (unlikely(page->mapping != mapping)) {
752 unlock_page(page);
753 page_cache_release(page);
754 goto repeat;
1da177e4 755 }
a60637c8 756 VM_BUG_ON(page->index != offset);
1da177e4 757 }
1da177e4
LT
758 return page;
759}
1da177e4
LT
760EXPORT_SYMBOL(find_lock_page);
761
762/**
763 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
764 * @mapping: the page's address_space
765 * @index: the page's index into the mapping
766 * @gfp_mask: page allocation mode
1da177e4
LT
767 *
768 * Locates a page in the pagecache. If the page is not present, a new page
769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
770 * LRU list. The returned page is locked and has its reference count
771 * incremented.
772 *
773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * allocation!
775 *
776 * find_or_create_page() returns the desired page's address, or zero on
777 * memory exhaustion.
778 */
779struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 780 pgoff_t index, gfp_t gfp_mask)
1da177e4 781{
eb2be189 782 struct page *page;
1da177e4
LT
783 int err;
784repeat:
785 page = find_lock_page(mapping, index);
786 if (!page) {
eb2be189
NP
787 page = __page_cache_alloc(gfp_mask);
788 if (!page)
789 return NULL;
67d58ac4
NP
790 /*
791 * We want a regular kernel memory (not highmem or DMA etc)
792 * allocation for the radix tree nodes, but we need to honour
793 * the context-specific requirements the caller has asked for.
794 * GFP_RECLAIM_MASK collects those requirements.
795 */
796 err = add_to_page_cache_lru(page, mapping, index,
797 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
798 if (unlikely(err)) {
799 page_cache_release(page);
800 page = NULL;
801 if (err == -EEXIST)
802 goto repeat;
1da177e4 803 }
1da177e4 804 }
1da177e4
LT
805 return page;
806}
1da177e4
LT
807EXPORT_SYMBOL(find_or_create_page);
808
809/**
810 * find_get_pages - gang pagecache lookup
811 * @mapping: The address_space to search
812 * @start: The starting page index
813 * @nr_pages: The maximum number of pages
814 * @pages: Where the resulting pages are placed
815 *
816 * find_get_pages() will search for and return a group of up to
817 * @nr_pages pages in the mapping. The pages are placed at @pages.
818 * find_get_pages() takes a reference against the returned pages.
819 *
820 * The search returns a group of mapping-contiguous pages with ascending
821 * indexes. There may be holes in the indices due to not-present pages.
822 *
823 * find_get_pages() returns the number of pages which were found.
824 */
825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
826 unsigned int nr_pages, struct page **pages)
827{
828 unsigned int i;
829 unsigned int ret;
a60637c8
NP
830 unsigned int nr_found;
831
832 rcu_read_lock();
833restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 835 (void ***)pages, NULL, start, nr_pages);
a60637c8
NP
836 ret = 0;
837 for (i = 0; i < nr_found; i++) {
838 struct page *page;
839repeat:
840 page = radix_tree_deref_slot((void **)pages[i]);
841 if (unlikely(!page))
842 continue;
9d8aa4ea 843
a2c16d6c 844 if (radix_tree_exception(page)) {
8079b1c8
HD
845 if (radix_tree_deref_retry(page)) {
846 /*
847 * Transient condition which can only trigger
848 * when entry at index 0 moves out of or back
849 * to root: none yet gotten, safe to restart.
850 */
851 WARN_ON(start | i);
852 goto restart;
853 }
a2c16d6c 854 /*
8079b1c8
HD
855 * Otherwise, shmem/tmpfs must be storing a swap entry
856 * here as an exceptional entry: so skip over it -
857 * we only reach this from invalidate_mapping_pages().
a2c16d6c 858 */
8079b1c8 859 continue;
27d20fdd 860 }
a60637c8
NP
861
862 if (!page_cache_get_speculative(page))
863 goto repeat;
864
865 /* Has the page moved? */
866 if (unlikely(page != *((void **)pages[i]))) {
867 page_cache_release(page);
868 goto repeat;
869 }
1da177e4 870
a60637c8
NP
871 pages[ret] = page;
872 ret++;
873 }
5b280c0c
HD
874
875 /*
876 * If all entries were removed before we could secure them,
877 * try again, because callers stop trying once 0 is returned.
878 */
879 if (unlikely(!ret && nr_found))
880 goto restart;
a60637c8 881 rcu_read_unlock();
1da177e4
LT
882 return ret;
883}
884
ebf43500
JA
885/**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899{
900 unsigned int i;
901 unsigned int ret;
a60637c8
NP
902 unsigned int nr_found;
903
904 rcu_read_lock();
905restart:
906 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 907 (void ***)pages, NULL, index, nr_pages);
a60637c8
NP
908 ret = 0;
909 for (i = 0; i < nr_found; i++) {
910 struct page *page;
911repeat:
912 page = radix_tree_deref_slot((void **)pages[i]);
913 if (unlikely(!page))
914 continue;
9d8aa4ea 915
a2c16d6c 916 if (radix_tree_exception(page)) {
8079b1c8
HD
917 if (radix_tree_deref_retry(page)) {
918 /*
919 * Transient condition which can only trigger
920 * when entry at index 0 moves out of or back
921 * to root: none yet gotten, safe to restart.
922 */
923 goto restart;
924 }
a2c16d6c 925 /*
8079b1c8
HD
926 * Otherwise, shmem/tmpfs must be storing a swap entry
927 * here as an exceptional entry: so stop looking for
928 * contiguous pages.
a2c16d6c 929 */
8079b1c8 930 break;
a2c16d6c 931 }
ebf43500 932
a60637c8
NP
933 if (!page_cache_get_speculative(page))
934 goto repeat;
935
936 /* Has the page moved? */
937 if (unlikely(page != *((void **)pages[i]))) {
938 page_cache_release(page);
939 goto repeat;
940 }
941
9cbb4cb2
NP
942 /*
943 * must check mapping and index after taking the ref.
944 * otherwise we can get both false positives and false
945 * negatives, which is just confusing to the caller.
946 */
947 if (page->mapping == NULL || page->index != index) {
948 page_cache_release(page);
949 break;
950 }
951
a60637c8
NP
952 pages[ret] = page;
953 ret++;
ebf43500
JA
954 index++;
955 }
a60637c8
NP
956 rcu_read_unlock();
957 return ret;
ebf43500 958}
ef71c15c 959EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 960
485bb99b
RD
961/**
962 * find_get_pages_tag - find and return pages that match @tag
963 * @mapping: the address_space to search
964 * @index: the starting page index
965 * @tag: the tag index
966 * @nr_pages: the maximum number of pages
967 * @pages: where the resulting pages are placed
968 *
1da177e4 969 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 970 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
971 */
972unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
973 int tag, unsigned int nr_pages, struct page **pages)
974{
975 unsigned int i;
976 unsigned int ret;
a60637c8
NP
977 unsigned int nr_found;
978
979 rcu_read_lock();
980restart:
981 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
982 (void ***)pages, *index, nr_pages, tag);
983 ret = 0;
984 for (i = 0; i < nr_found; i++) {
985 struct page *page;
986repeat:
987 page = radix_tree_deref_slot((void **)pages[i]);
988 if (unlikely(!page))
989 continue;
9d8aa4ea 990
a2c16d6c 991 if (radix_tree_exception(page)) {
8079b1c8
HD
992 if (radix_tree_deref_retry(page)) {
993 /*
994 * Transient condition which can only trigger
995 * when entry at index 0 moves out of or back
996 * to root: none yet gotten, safe to restart.
997 */
998 goto restart;
999 }
a2c16d6c 1000 /*
8079b1c8
HD
1001 * This function is never used on a shmem/tmpfs
1002 * mapping, so a swap entry won't be found here.
a2c16d6c 1003 */
8079b1c8 1004 BUG();
a2c16d6c 1005 }
a60637c8
NP
1006
1007 if (!page_cache_get_speculative(page))
1008 goto repeat;
1009
1010 /* Has the page moved? */
1011 if (unlikely(page != *((void **)pages[i]))) {
1012 page_cache_release(page);
1013 goto repeat;
1014 }
1015
1016 pages[ret] = page;
1017 ret++;
1018 }
5b280c0c
HD
1019
1020 /*
1021 * If all entries were removed before we could secure them,
1022 * try again, because callers stop trying once 0 is returned.
1023 */
1024 if (unlikely(!ret && nr_found))
1025 goto restart;
a60637c8 1026 rcu_read_unlock();
1da177e4 1027
1da177e4
LT
1028 if (ret)
1029 *index = pages[ret - 1]->index + 1;
a60637c8 1030
1da177e4
LT
1031 return ret;
1032}
ef71c15c 1033EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1034
485bb99b
RD
1035/**
1036 * grab_cache_page_nowait - returns locked page at given index in given cache
1037 * @mapping: target address_space
1038 * @index: the page index
1039 *
72fd4a35 1040 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1041 * This is intended for speculative data generators, where the data can
1042 * be regenerated if the page couldn't be grabbed. This routine should
1043 * be safe to call while holding the lock for another page.
1044 *
1045 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1046 * and deadlock against the caller's locked page.
1047 */
1048struct page *
57f6b96c 1049grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1050{
1051 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1052
1053 if (page) {
529ae9aa 1054 if (trylock_page(page))
1da177e4
LT
1055 return page;
1056 page_cache_release(page);
1057 return NULL;
1058 }
2ae88149 1059 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1060 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1061 page_cache_release(page);
1062 page = NULL;
1063 }
1064 return page;
1065}
1da177e4
LT
1066EXPORT_SYMBOL(grab_cache_page_nowait);
1067
76d42bd9
WF
1068/*
1069 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1070 * a _large_ part of the i/o request. Imagine the worst scenario:
1071 *
1072 * ---R__________________________________________B__________
1073 * ^ reading here ^ bad block(assume 4k)
1074 *
1075 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1076 * => failing the whole request => read(R) => read(R+1) =>
1077 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1078 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1079 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1080 *
1081 * It is going insane. Fix it by quickly scaling down the readahead size.
1082 */
1083static void shrink_readahead_size_eio(struct file *filp,
1084 struct file_ra_state *ra)
1085{
76d42bd9 1086 ra->ra_pages /= 4;
76d42bd9
WF
1087}
1088
485bb99b 1089/**
36e78914 1090 * do_generic_file_read - generic file read routine
485bb99b
RD
1091 * @filp: the file to read
1092 * @ppos: current file position
1093 * @desc: read_descriptor
1094 * @actor: read method
1095 *
1da177e4 1096 * This is a generic file read routine, and uses the
485bb99b 1097 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1098 *
1099 * This is really ugly. But the goto's actually try to clarify some
1100 * of the logic when it comes to error handling etc.
1da177e4 1101 */
36e78914
CH
1102static void do_generic_file_read(struct file *filp, loff_t *ppos,
1103 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1104{
36e78914 1105 struct address_space *mapping = filp->f_mapping;
1da177e4 1106 struct inode *inode = mapping->host;
36e78914 1107 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1108 pgoff_t index;
1109 pgoff_t last_index;
1110 pgoff_t prev_index;
1111 unsigned long offset; /* offset into pagecache page */
ec0f1637 1112 unsigned int prev_offset;
1da177e4 1113 int error;
1da177e4 1114
1da177e4 1115 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1116 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1117 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1118 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1119 offset = *ppos & ~PAGE_CACHE_MASK;
1120
1da177e4
LT
1121 for (;;) {
1122 struct page *page;
57f6b96c 1123 pgoff_t end_index;
a32ea1e1 1124 loff_t isize;
1da177e4
LT
1125 unsigned long nr, ret;
1126
1da177e4 1127 cond_resched();
1da177e4
LT
1128find_page:
1129 page = find_get_page(mapping, index);
3ea89ee8 1130 if (!page) {
cf914a7d 1131 page_cache_sync_readahead(mapping,
7ff81078 1132 ra, filp,
3ea89ee8
FW
1133 index, last_index - index);
1134 page = find_get_page(mapping, index);
1135 if (unlikely(page == NULL))
1136 goto no_cached_page;
1137 }
1138 if (PageReadahead(page)) {
cf914a7d 1139 page_cache_async_readahead(mapping,
7ff81078 1140 ra, filp, page,
3ea89ee8 1141 index, last_index - index);
1da177e4 1142 }
8ab22b9a
HH
1143 if (!PageUptodate(page)) {
1144 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1145 !mapping->a_ops->is_partially_uptodate)
1146 goto page_not_up_to_date;
529ae9aa 1147 if (!trylock_page(page))
8ab22b9a 1148 goto page_not_up_to_date;
8d056cb9
DH
1149 /* Did it get truncated before we got the lock? */
1150 if (!page->mapping)
1151 goto page_not_up_to_date_locked;
8ab22b9a
HH
1152 if (!mapping->a_ops->is_partially_uptodate(page,
1153 desc, offset))
1154 goto page_not_up_to_date_locked;
1155 unlock_page(page);
1156 }
1da177e4 1157page_ok:
a32ea1e1
N
1158 /*
1159 * i_size must be checked after we know the page is Uptodate.
1160 *
1161 * Checking i_size after the check allows us to calculate
1162 * the correct value for "nr", which means the zero-filled
1163 * part of the page is not copied back to userspace (unless
1164 * another truncate extends the file - this is desired though).
1165 */
1166
1167 isize = i_size_read(inode);
1168 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1169 if (unlikely(!isize || index > end_index)) {
1170 page_cache_release(page);
1171 goto out;
1172 }
1173
1174 /* nr is the maximum number of bytes to copy from this page */
1175 nr = PAGE_CACHE_SIZE;
1176 if (index == end_index) {
1177 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1178 if (nr <= offset) {
1179 page_cache_release(page);
1180 goto out;
1181 }
1182 }
1183 nr = nr - offset;
1da177e4
LT
1184
1185 /* If users can be writing to this page using arbitrary
1186 * virtual addresses, take care about potential aliasing
1187 * before reading the page on the kernel side.
1188 */
1189 if (mapping_writably_mapped(mapping))
1190 flush_dcache_page(page);
1191
1192 /*
ec0f1637
JK
1193 * When a sequential read accesses a page several times,
1194 * only mark it as accessed the first time.
1da177e4 1195 */
ec0f1637 1196 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1197 mark_page_accessed(page);
1198 prev_index = index;
1199
1200 /*
1201 * Ok, we have the page, and it's up-to-date, so
1202 * now we can copy it to user space...
1203 *
1204 * The actor routine returns how many bytes were actually used..
1205 * NOTE! This may not be the same as how much of a user buffer
1206 * we filled up (we may be padding etc), so we can only update
1207 * "pos" here (the actor routine has to update the user buffer
1208 * pointers and the remaining count).
1209 */
1210 ret = actor(desc, page, offset, nr);
1211 offset += ret;
1212 index += offset >> PAGE_CACHE_SHIFT;
1213 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1214 prev_offset = offset;
1da177e4
LT
1215
1216 page_cache_release(page);
1217 if (ret == nr && desc->count)
1218 continue;
1219 goto out;
1220
1221page_not_up_to_date:
1222 /* Get exclusive access to the page ... */
85462323
ON
1223 error = lock_page_killable(page);
1224 if (unlikely(error))
1225 goto readpage_error;
1da177e4 1226
8ab22b9a 1227page_not_up_to_date_locked:
da6052f7 1228 /* Did it get truncated before we got the lock? */
1da177e4
LT
1229 if (!page->mapping) {
1230 unlock_page(page);
1231 page_cache_release(page);
1232 continue;
1233 }
1234
1235 /* Did somebody else fill it already? */
1236 if (PageUptodate(page)) {
1237 unlock_page(page);
1238 goto page_ok;
1239 }
1240
1241readpage:
91803b49
JM
1242 /*
1243 * A previous I/O error may have been due to temporary
1244 * failures, eg. multipath errors.
1245 * PG_error will be set again if readpage fails.
1246 */
1247 ClearPageError(page);
1da177e4
LT
1248 /* Start the actual read. The read will unlock the page. */
1249 error = mapping->a_ops->readpage(filp, page);
1250
994fc28c
ZB
1251 if (unlikely(error)) {
1252 if (error == AOP_TRUNCATED_PAGE) {
1253 page_cache_release(page);
1254 goto find_page;
1255 }
1da177e4 1256 goto readpage_error;
994fc28c 1257 }
1da177e4
LT
1258
1259 if (!PageUptodate(page)) {
85462323
ON
1260 error = lock_page_killable(page);
1261 if (unlikely(error))
1262 goto readpage_error;
1da177e4
LT
1263 if (!PageUptodate(page)) {
1264 if (page->mapping == NULL) {
1265 /*
2ecdc82e 1266 * invalidate_mapping_pages got it
1da177e4
LT
1267 */
1268 unlock_page(page);
1269 page_cache_release(page);
1270 goto find_page;
1271 }
1272 unlock_page(page);
7ff81078 1273 shrink_readahead_size_eio(filp, ra);
85462323
ON
1274 error = -EIO;
1275 goto readpage_error;
1da177e4
LT
1276 }
1277 unlock_page(page);
1278 }
1279
1da177e4
LT
1280 goto page_ok;
1281
1282readpage_error:
1283 /* UHHUH! A synchronous read error occurred. Report it */
1284 desc->error = error;
1285 page_cache_release(page);
1286 goto out;
1287
1288no_cached_page:
1289 /*
1290 * Ok, it wasn't cached, so we need to create a new
1291 * page..
1292 */
eb2be189
NP
1293 page = page_cache_alloc_cold(mapping);
1294 if (!page) {
1295 desc->error = -ENOMEM;
1296 goto out;
1da177e4 1297 }
eb2be189 1298 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1299 index, GFP_KERNEL);
1300 if (error) {
eb2be189 1301 page_cache_release(page);
1da177e4
LT
1302 if (error == -EEXIST)
1303 goto find_page;
1304 desc->error = error;
1305 goto out;
1306 }
1da177e4
LT
1307 goto readpage;
1308 }
1309
1310out:
7ff81078
FW
1311 ra->prev_pos = prev_index;
1312 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1313 ra->prev_pos |= prev_offset;
1da177e4 1314
f4e6b498 1315 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1316 file_accessed(filp);
1da177e4 1317}
1da177e4
LT
1318
1319int file_read_actor(read_descriptor_t *desc, struct page *page,
1320 unsigned long offset, unsigned long size)
1321{
1322 char *kaddr;
1323 unsigned long left, count = desc->count;
1324
1325 if (size > count)
1326 size = count;
1327
1328 /*
1329 * Faults on the destination of a read are common, so do it before
1330 * taking the kmap.
1331 */
1332 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1333 kaddr = kmap_atomic(page, KM_USER0);
1334 left = __copy_to_user_inatomic(desc->arg.buf,
1335 kaddr + offset, size);
1336 kunmap_atomic(kaddr, KM_USER0);
1337 if (left == 0)
1338 goto success;
1339 }
1340
1341 /* Do it the slow way */
1342 kaddr = kmap(page);
1343 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1344 kunmap(page);
1345
1346 if (left) {
1347 size -= left;
1348 desc->error = -EFAULT;
1349 }
1350success:
1351 desc->count = count - size;
1352 desc->written += size;
1353 desc->arg.buf += size;
1354 return size;
1355}
1356
0ceb3314
DM
1357/*
1358 * Performs necessary checks before doing a write
1359 * @iov: io vector request
1360 * @nr_segs: number of segments in the iovec
1361 * @count: number of bytes to write
1362 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1363 *
1364 * Adjust number of segments and amount of bytes to write (nr_segs should be
1365 * properly initialized first). Returns appropriate error code that caller
1366 * should return or zero in case that write should be allowed.
1367 */
1368int generic_segment_checks(const struct iovec *iov,
1369 unsigned long *nr_segs, size_t *count, int access_flags)
1370{
1371 unsigned long seg;
1372 size_t cnt = 0;
1373 for (seg = 0; seg < *nr_segs; seg++) {
1374 const struct iovec *iv = &iov[seg];
1375
1376 /*
1377 * If any segment has a negative length, or the cumulative
1378 * length ever wraps negative then return -EINVAL.
1379 */
1380 cnt += iv->iov_len;
1381 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1382 return -EINVAL;
1383 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1384 continue;
1385 if (seg == 0)
1386 return -EFAULT;
1387 *nr_segs = seg;
1388 cnt -= iv->iov_len; /* This segment is no good */
1389 break;
1390 }
1391 *count = cnt;
1392 return 0;
1393}
1394EXPORT_SYMBOL(generic_segment_checks);
1395
485bb99b 1396/**
b2abacf3 1397 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1398 * @iocb: kernel I/O control block
1399 * @iov: io vector request
1400 * @nr_segs: number of segments in the iovec
b2abacf3 1401 * @pos: current file position
485bb99b 1402 *
1da177e4
LT
1403 * This is the "read()" routine for all filesystems
1404 * that can use the page cache directly.
1405 */
1406ssize_t
543ade1f
BP
1407generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1408 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1409{
1410 struct file *filp = iocb->ki_filp;
1411 ssize_t retval;
66f998f6 1412 unsigned long seg = 0;
1da177e4 1413 size_t count;
543ade1f 1414 loff_t *ppos = &iocb->ki_pos;
55602dd6 1415 struct blk_plug plug;
1da177e4
LT
1416
1417 count = 0;
0ceb3314
DM
1418 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1419 if (retval)
1420 return retval;
1da177e4 1421
55602dd6
JA
1422 blk_start_plug(&plug);
1423
1da177e4
LT
1424 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1425 if (filp->f_flags & O_DIRECT) {
543ade1f 1426 loff_t size;
1da177e4
LT
1427 struct address_space *mapping;
1428 struct inode *inode;
1429
1430 mapping = filp->f_mapping;
1431 inode = mapping->host;
1da177e4
LT
1432 if (!count)
1433 goto out; /* skip atime */
1434 size = i_size_read(inode);
1435 if (pos < size) {
48b47c56
NP
1436 retval = filemap_write_and_wait_range(mapping, pos,
1437 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1438 if (!retval) {
1439 retval = mapping->a_ops->direct_IO(READ, iocb,
1440 iov, pos, nr_segs);
1441 }
66f998f6 1442 if (retval > 0) {
1da177e4 1443 *ppos = pos + retval;
66f998f6
JB
1444 count -= retval;
1445 }
1446
1447 /*
1448 * Btrfs can have a short DIO read if we encounter
1449 * compressed extents, so if there was an error, or if
1450 * we've already read everything we wanted to, or if
1451 * there was a short read because we hit EOF, go ahead
1452 * and return. Otherwise fallthrough to buffered io for
1453 * the rest of the read.
1454 */
1455 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1456 file_accessed(filp);
1457 goto out;
1458 }
0e0bcae3 1459 }
1da177e4
LT
1460 }
1461
66f998f6 1462 count = retval;
11fa977e
HD
1463 for (seg = 0; seg < nr_segs; seg++) {
1464 read_descriptor_t desc;
66f998f6
JB
1465 loff_t offset = 0;
1466
1467 /*
1468 * If we did a short DIO read we need to skip the section of the
1469 * iov that we've already read data into.
1470 */
1471 if (count) {
1472 if (count > iov[seg].iov_len) {
1473 count -= iov[seg].iov_len;
1474 continue;
1475 }
1476 offset = count;
1477 count = 0;
1478 }
1da177e4 1479
11fa977e 1480 desc.written = 0;
66f998f6
JB
1481 desc.arg.buf = iov[seg].iov_base + offset;
1482 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1483 if (desc.count == 0)
1484 continue;
1485 desc.error = 0;
1486 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1487 retval += desc.written;
1488 if (desc.error) {
1489 retval = retval ?: desc.error;
1490 break;
1da177e4 1491 }
11fa977e
HD
1492 if (desc.count > 0)
1493 break;
1da177e4
LT
1494 }
1495out:
55602dd6 1496 blk_finish_plug(&plug);
1da177e4
LT
1497 return retval;
1498}
1da177e4
LT
1499EXPORT_SYMBOL(generic_file_aio_read);
1500
1da177e4
LT
1501static ssize_t
1502do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1503 pgoff_t index, unsigned long nr)
1da177e4
LT
1504{
1505 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1506 return -EINVAL;
1507
f7e839dd 1508 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1509 return 0;
1510}
1511
6673e0c3 1512SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1513{
1514 ssize_t ret;
1515 struct file *file;
1516
1517 ret = -EBADF;
1518 file = fget(fd);
1519 if (file) {
1520 if (file->f_mode & FMODE_READ) {
1521 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1522 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1523 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1524 unsigned long len = end - start + 1;
1525 ret = do_readahead(mapping, file, start, len);
1526 }
1527 fput(file);
1528 }
1529 return ret;
1530}
6673e0c3
HC
1531#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1532asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1533{
1534 return SYSC_readahead((int) fd, offset, (size_t) count);
1535}
1536SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1537#endif
1da177e4
LT
1538
1539#ifdef CONFIG_MMU
485bb99b
RD
1540/**
1541 * page_cache_read - adds requested page to the page cache if not already there
1542 * @file: file to read
1543 * @offset: page index
1544 *
1da177e4
LT
1545 * This adds the requested page to the page cache if it isn't already there,
1546 * and schedules an I/O to read in its contents from disk.
1547 */
920c7a5d 1548static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1549{
1550 struct address_space *mapping = file->f_mapping;
1551 struct page *page;
994fc28c 1552 int ret;
1da177e4 1553
994fc28c
ZB
1554 do {
1555 page = page_cache_alloc_cold(mapping);
1556 if (!page)
1557 return -ENOMEM;
1558
1559 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1560 if (ret == 0)
1561 ret = mapping->a_ops->readpage(file, page);
1562 else if (ret == -EEXIST)
1563 ret = 0; /* losing race to add is OK */
1da177e4 1564
1da177e4 1565 page_cache_release(page);
1da177e4 1566
994fc28c
ZB
1567 } while (ret == AOP_TRUNCATED_PAGE);
1568
1569 return ret;
1da177e4
LT
1570}
1571
1572#define MMAP_LOTSAMISS (100)
1573
ef00e08e
LT
1574/*
1575 * Synchronous readahead happens when we don't even find
1576 * a page in the page cache at all.
1577 */
1578static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1579 struct file_ra_state *ra,
1580 struct file *file,
1581 pgoff_t offset)
1582{
1583 unsigned long ra_pages;
1584 struct address_space *mapping = file->f_mapping;
1585
1586 /* If we don't want any read-ahead, don't bother */
1587 if (VM_RandomReadHint(vma))
1588 return;
275b12bf
WF
1589 if (!ra->ra_pages)
1590 return;
ef00e08e 1591
2cbea1d3 1592 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1593 page_cache_sync_readahead(mapping, ra, file, offset,
1594 ra->ra_pages);
ef00e08e
LT
1595 return;
1596 }
1597
207d04ba
AK
1598 /* Avoid banging the cache line if not needed */
1599 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1600 ra->mmap_miss++;
1601
1602 /*
1603 * Do we miss much more than hit in this file? If so,
1604 * stop bothering with read-ahead. It will only hurt.
1605 */
1606 if (ra->mmap_miss > MMAP_LOTSAMISS)
1607 return;
1608
d30a1100
WF
1609 /*
1610 * mmap read-around
1611 */
ef00e08e 1612 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1613 ra->start = max_t(long, 0, offset - ra_pages / 2);
1614 ra->size = ra_pages;
2cbea1d3 1615 ra->async_size = ra_pages / 4;
275b12bf 1616 ra_submit(ra, mapping, file);
ef00e08e
LT
1617}
1618
1619/*
1620 * Asynchronous readahead happens when we find the page and PG_readahead,
1621 * so we want to possibly extend the readahead further..
1622 */
1623static void do_async_mmap_readahead(struct vm_area_struct *vma,
1624 struct file_ra_state *ra,
1625 struct file *file,
1626 struct page *page,
1627 pgoff_t offset)
1628{
1629 struct address_space *mapping = file->f_mapping;
1630
1631 /* If we don't want any read-ahead, don't bother */
1632 if (VM_RandomReadHint(vma))
1633 return;
1634 if (ra->mmap_miss > 0)
1635 ra->mmap_miss--;
1636 if (PageReadahead(page))
2fad6f5d
WF
1637 page_cache_async_readahead(mapping, ra, file,
1638 page, offset, ra->ra_pages);
ef00e08e
LT
1639}
1640
485bb99b 1641/**
54cb8821 1642 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1643 * @vma: vma in which the fault was taken
1644 * @vmf: struct vm_fault containing details of the fault
485bb99b 1645 *
54cb8821 1646 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1647 * mapped memory region to read in file data during a page fault.
1648 *
1649 * The goto's are kind of ugly, but this streamlines the normal case of having
1650 * it in the page cache, and handles the special cases reasonably without
1651 * having a lot of duplicated code.
1652 */
d0217ac0 1653int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1654{
1655 int error;
54cb8821 1656 struct file *file = vma->vm_file;
1da177e4
LT
1657 struct address_space *mapping = file->f_mapping;
1658 struct file_ra_state *ra = &file->f_ra;
1659 struct inode *inode = mapping->host;
ef00e08e 1660 pgoff_t offset = vmf->pgoff;
1da177e4 1661 struct page *page;
2004dc8e 1662 pgoff_t size;
83c54070 1663 int ret = 0;
1da177e4 1664
1da177e4 1665 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1666 if (offset >= size)
5307cc1a 1667 return VM_FAULT_SIGBUS;
1da177e4 1668
1da177e4
LT
1669 /*
1670 * Do we have something in the page cache already?
1671 */
ef00e08e
LT
1672 page = find_get_page(mapping, offset);
1673 if (likely(page)) {
1da177e4 1674 /*
ef00e08e
LT
1675 * We found the page, so try async readahead before
1676 * waiting for the lock.
1da177e4 1677 */
ef00e08e 1678 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1679 } else {
1680 /* No page in the page cache at all */
1681 do_sync_mmap_readahead(vma, ra, file, offset);
1682 count_vm_event(PGMAJFAULT);
456f998e 1683 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1684 ret = VM_FAULT_MAJOR;
1685retry_find:
b522c94d 1686 page = find_get_page(mapping, offset);
1da177e4
LT
1687 if (!page)
1688 goto no_cached_page;
1689 }
1690
d88c0922
ML
1691 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1692 page_cache_release(page);
d065bd81 1693 return ret | VM_FAULT_RETRY;
d88c0922 1694 }
b522c94d
ML
1695
1696 /* Did it get truncated? */
1697 if (unlikely(page->mapping != mapping)) {
1698 unlock_page(page);
1699 put_page(page);
1700 goto retry_find;
1701 }
1702 VM_BUG_ON(page->index != offset);
1703
1da177e4 1704 /*
d00806b1
NP
1705 * We have a locked page in the page cache, now we need to check
1706 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1707 */
d00806b1 1708 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1709 goto page_not_uptodate;
1710
ef00e08e
LT
1711 /*
1712 * Found the page and have a reference on it.
1713 * We must recheck i_size under page lock.
1714 */
d00806b1 1715 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1716 if (unlikely(offset >= size)) {
d00806b1 1717 unlock_page(page);
745ad48e 1718 page_cache_release(page);
5307cc1a 1719 return VM_FAULT_SIGBUS;
d00806b1
NP
1720 }
1721
d0217ac0 1722 vmf->page = page;
83c54070 1723 return ret | VM_FAULT_LOCKED;
1da177e4 1724
1da177e4
LT
1725no_cached_page:
1726 /*
1727 * We're only likely to ever get here if MADV_RANDOM is in
1728 * effect.
1729 */
ef00e08e 1730 error = page_cache_read(file, offset);
1da177e4
LT
1731
1732 /*
1733 * The page we want has now been added to the page cache.
1734 * In the unlikely event that someone removed it in the
1735 * meantime, we'll just come back here and read it again.
1736 */
1737 if (error >= 0)
1738 goto retry_find;
1739
1740 /*
1741 * An error return from page_cache_read can result if the
1742 * system is low on memory, or a problem occurs while trying
1743 * to schedule I/O.
1744 */
1745 if (error == -ENOMEM)
d0217ac0
NP
1746 return VM_FAULT_OOM;
1747 return VM_FAULT_SIGBUS;
1da177e4
LT
1748
1749page_not_uptodate:
1da177e4
LT
1750 /*
1751 * Umm, take care of errors if the page isn't up-to-date.
1752 * Try to re-read it _once_. We do this synchronously,
1753 * because there really aren't any performance issues here
1754 * and we need to check for errors.
1755 */
1da177e4 1756 ClearPageError(page);
994fc28c 1757 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1758 if (!error) {
1759 wait_on_page_locked(page);
1760 if (!PageUptodate(page))
1761 error = -EIO;
1762 }
d00806b1
NP
1763 page_cache_release(page);
1764
1765 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1766 goto retry_find;
1da177e4 1767
d00806b1 1768 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1769 shrink_readahead_size_eio(file, ra);
d0217ac0 1770 return VM_FAULT_SIGBUS;
54cb8821
NP
1771}
1772EXPORT_SYMBOL(filemap_fault);
1773
f0f37e2f 1774const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1775 .fault = filemap_fault,
1da177e4
LT
1776};
1777
1778/* This is used for a general mmap of a disk file */
1779
1780int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1781{
1782 struct address_space *mapping = file->f_mapping;
1783
1784 if (!mapping->a_ops->readpage)
1785 return -ENOEXEC;
1786 file_accessed(file);
1787 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1788 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1789 return 0;
1790}
1da177e4
LT
1791
1792/*
1793 * This is for filesystems which do not implement ->writepage.
1794 */
1795int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1796{
1797 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1798 return -EINVAL;
1799 return generic_file_mmap(file, vma);
1800}
1801#else
1802int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1803{
1804 return -ENOSYS;
1805}
1806int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1807{
1808 return -ENOSYS;
1809}
1810#endif /* CONFIG_MMU */
1811
1812EXPORT_SYMBOL(generic_file_mmap);
1813EXPORT_SYMBOL(generic_file_readonly_mmap);
1814
6fe6900e 1815static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1816 pgoff_t index,
5e5358e7 1817 int (*filler)(void *, struct page *),
0531b2aa
LT
1818 void *data,
1819 gfp_t gfp)
1da177e4 1820{
eb2be189 1821 struct page *page;
1da177e4
LT
1822 int err;
1823repeat:
1824 page = find_get_page(mapping, index);
1825 if (!page) {
0531b2aa 1826 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1827 if (!page)
1828 return ERR_PTR(-ENOMEM);
1829 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1830 if (unlikely(err)) {
1831 page_cache_release(page);
1832 if (err == -EEXIST)
1833 goto repeat;
1da177e4 1834 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1835 return ERR_PTR(err);
1836 }
1da177e4
LT
1837 err = filler(data, page);
1838 if (err < 0) {
1839 page_cache_release(page);
1840 page = ERR_PTR(err);
1841 }
1842 }
1da177e4
LT
1843 return page;
1844}
1845
0531b2aa 1846static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1847 pgoff_t index,
5e5358e7 1848 int (*filler)(void *, struct page *),
0531b2aa
LT
1849 void *data,
1850 gfp_t gfp)
1851
1da177e4
LT
1852{
1853 struct page *page;
1854 int err;
1855
1856retry:
0531b2aa 1857 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1858 if (IS_ERR(page))
c855ff37 1859 return page;
1da177e4
LT
1860 if (PageUptodate(page))
1861 goto out;
1862
1863 lock_page(page);
1864 if (!page->mapping) {
1865 unlock_page(page);
1866 page_cache_release(page);
1867 goto retry;
1868 }
1869 if (PageUptodate(page)) {
1870 unlock_page(page);
1871 goto out;
1872 }
1873 err = filler(data, page);
1874 if (err < 0) {
1875 page_cache_release(page);
c855ff37 1876 return ERR_PTR(err);
1da177e4 1877 }
c855ff37 1878out:
6fe6900e
NP
1879 mark_page_accessed(page);
1880 return page;
1881}
0531b2aa
LT
1882
1883/**
1884 * read_cache_page_async - read into page cache, fill it if needed
1885 * @mapping: the page's address_space
1886 * @index: the page index
1887 * @filler: function to perform the read
5e5358e7 1888 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1889 *
1890 * Same as read_cache_page, but don't wait for page to become unlocked
1891 * after submitting it to the filler.
1892 *
1893 * Read into the page cache. If a page already exists, and PageUptodate() is
1894 * not set, try to fill the page but don't wait for it to become unlocked.
1895 *
1896 * If the page does not get brought uptodate, return -EIO.
1897 */
1898struct page *read_cache_page_async(struct address_space *mapping,
1899 pgoff_t index,
5e5358e7 1900 int (*filler)(void *, struct page *),
0531b2aa
LT
1901 void *data)
1902{
1903 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1904}
6fe6900e
NP
1905EXPORT_SYMBOL(read_cache_page_async);
1906
0531b2aa
LT
1907static struct page *wait_on_page_read(struct page *page)
1908{
1909 if (!IS_ERR(page)) {
1910 wait_on_page_locked(page);
1911 if (!PageUptodate(page)) {
1912 page_cache_release(page);
1913 page = ERR_PTR(-EIO);
1914 }
1915 }
1916 return page;
1917}
1918
1919/**
1920 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1921 * @mapping: the page's address_space
1922 * @index: the page index
1923 * @gfp: the page allocator flags to use if allocating
1924 *
1925 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1926 * any new page allocations done using the specified allocation flags. Note
1927 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1928 * expect to do this atomically or anything like that - but you can pass in
1929 * other page requirements.
1930 *
1931 * If the page does not get brought uptodate, return -EIO.
1932 */
1933struct page *read_cache_page_gfp(struct address_space *mapping,
1934 pgoff_t index,
1935 gfp_t gfp)
1936{
1937 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1938
1939 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1940}
1941EXPORT_SYMBOL(read_cache_page_gfp);
1942
6fe6900e
NP
1943/**
1944 * read_cache_page - read into page cache, fill it if needed
1945 * @mapping: the page's address_space
1946 * @index: the page index
1947 * @filler: function to perform the read
5e5358e7 1948 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1949 *
1950 * Read into the page cache. If a page already exists, and PageUptodate() is
1951 * not set, try to fill the page then wait for it to become unlocked.
1952 *
1953 * If the page does not get brought uptodate, return -EIO.
1954 */
1955struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1956 pgoff_t index,
5e5358e7 1957 int (*filler)(void *, struct page *),
6fe6900e
NP
1958 void *data)
1959{
0531b2aa 1960 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1961}
1da177e4
LT
1962EXPORT_SYMBOL(read_cache_page);
1963
1da177e4
LT
1964/*
1965 * The logic we want is
1966 *
1967 * if suid or (sgid and xgrp)
1968 * remove privs
1969 */
01de85e0 1970int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1971{
1972 mode_t mode = dentry->d_inode->i_mode;
1973 int kill = 0;
1da177e4
LT
1974
1975 /* suid always must be killed */
1976 if (unlikely(mode & S_ISUID))
1977 kill = ATTR_KILL_SUID;
1978
1979 /*
1980 * sgid without any exec bits is just a mandatory locking mark; leave
1981 * it alone. If some exec bits are set, it's a real sgid; kill it.
1982 */
1983 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1984 kill |= ATTR_KILL_SGID;
1985
7f5ff766 1986 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1987 return kill;
1da177e4 1988
01de85e0
JA
1989 return 0;
1990}
d23a147b 1991EXPORT_SYMBOL(should_remove_suid);
01de85e0 1992
7f3d4ee1 1993static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1994{
1995 struct iattr newattrs;
1996
1997 newattrs.ia_valid = ATTR_FORCE | kill;
1998 return notify_change(dentry, &newattrs);
1999}
2000
2f1936b8 2001int file_remove_suid(struct file *file)
01de85e0 2002{
2f1936b8 2003 struct dentry *dentry = file->f_path.dentry;
69b45732
AK
2004 struct inode *inode = dentry->d_inode;
2005 int killsuid;
2006 int killpriv;
b5376771 2007 int error = 0;
01de85e0 2008
69b45732
AK
2009 /* Fast path for nothing security related */
2010 if (IS_NOSEC(inode))
2011 return 0;
2012
2013 killsuid = should_remove_suid(dentry);
2014 killpriv = security_inode_need_killpriv(dentry);
2015
b5376771
SH
2016 if (killpriv < 0)
2017 return killpriv;
2018 if (killpriv)
2019 error = security_inode_killpriv(dentry);
2020 if (!error && killsuid)
2021 error = __remove_suid(dentry, killsuid);
9e1f1de0 2022 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
69b45732 2023 inode->i_flags |= S_NOSEC;
01de85e0 2024
b5376771 2025 return error;
1da177e4 2026}
2f1936b8 2027EXPORT_SYMBOL(file_remove_suid);
1da177e4 2028
2f718ffc 2029static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2030 const struct iovec *iov, size_t base, size_t bytes)
2031{
f1800536 2032 size_t copied = 0, left = 0;
1da177e4
LT
2033
2034 while (bytes) {
2035 char __user *buf = iov->iov_base + base;
2036 int copy = min(bytes, iov->iov_len - base);
2037
2038 base = 0;
f1800536 2039 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2040 copied += copy;
2041 bytes -= copy;
2042 vaddr += copy;
2043 iov++;
2044
01408c49 2045 if (unlikely(left))
1da177e4 2046 break;
1da177e4
LT
2047 }
2048 return copied - left;
2049}
2050
2f718ffc
NP
2051/*
2052 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2053 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2054 * bytes which were copied.
2055 */
2056size_t iov_iter_copy_from_user_atomic(struct page *page,
2057 struct iov_iter *i, unsigned long offset, size_t bytes)
2058{
2059 char *kaddr;
2060 size_t copied;
2061
2062 BUG_ON(!in_atomic());
2063 kaddr = kmap_atomic(page, KM_USER0);
2064 if (likely(i->nr_segs == 1)) {
2065 int left;
2066 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2067 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2068 copied = bytes - left;
2069 } else {
2070 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2071 i->iov, i->iov_offset, bytes);
2072 }
2073 kunmap_atomic(kaddr, KM_USER0);
2074
2075 return copied;
2076}
89e10787 2077EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2078
2079/*
2080 * This has the same sideeffects and return value as
2081 * iov_iter_copy_from_user_atomic().
2082 * The difference is that it attempts to resolve faults.
2083 * Page must not be locked.
2084 */
2085size_t iov_iter_copy_from_user(struct page *page,
2086 struct iov_iter *i, unsigned long offset, size_t bytes)
2087{
2088 char *kaddr;
2089 size_t copied;
2090
2091 kaddr = kmap(page);
2092 if (likely(i->nr_segs == 1)) {
2093 int left;
2094 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2095 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2096 copied = bytes - left;
2097 } else {
2098 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2099 i->iov, i->iov_offset, bytes);
2100 }
2101 kunmap(page);
2102 return copied;
2103}
89e10787 2104EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2105
f7009264 2106void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2107{
f7009264
NP
2108 BUG_ON(i->count < bytes);
2109
2f718ffc
NP
2110 if (likely(i->nr_segs == 1)) {
2111 i->iov_offset += bytes;
f7009264 2112 i->count -= bytes;
2f718ffc
NP
2113 } else {
2114 const struct iovec *iov = i->iov;
2115 size_t base = i->iov_offset;
2116
124d3b70
NP
2117 /*
2118 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2119 * zero-length segments (without overruning the iovec).
124d3b70 2120 */
94ad374a 2121 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2122 int copy;
2f718ffc 2123
f7009264
NP
2124 copy = min(bytes, iov->iov_len - base);
2125 BUG_ON(!i->count || i->count < copy);
2126 i->count -= copy;
2f718ffc
NP
2127 bytes -= copy;
2128 base += copy;
2129 if (iov->iov_len == base) {
2130 iov++;
2131 base = 0;
2132 }
2133 }
2134 i->iov = iov;
2135 i->iov_offset = base;
2136 }
2137}
89e10787 2138EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2139
afddba49
NP
2140/*
2141 * Fault in the first iovec of the given iov_iter, to a maximum length
2142 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2143 * accessed (ie. because it is an invalid address).
2144 *
2145 * writev-intensive code may want this to prefault several iovecs -- that
2146 * would be possible (callers must not rely on the fact that _only_ the
2147 * first iovec will be faulted with the current implementation).
2148 */
2149int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2150{
2f718ffc 2151 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2152 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2153 return fault_in_pages_readable(buf, bytes);
2f718ffc 2154}
89e10787 2155EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2156
2157/*
2158 * Return the count of just the current iov_iter segment.
2159 */
2160size_t iov_iter_single_seg_count(struct iov_iter *i)
2161{
2162 const struct iovec *iov = i->iov;
2163 if (i->nr_segs == 1)
2164 return i->count;
2165 else
2166 return min(i->count, iov->iov_len - i->iov_offset);
2167}
89e10787 2168EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2169
1da177e4
LT
2170/*
2171 * Performs necessary checks before doing a write
2172 *
485bb99b 2173 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2174 * Returns appropriate error code that caller should return or
2175 * zero in case that write should be allowed.
2176 */
2177inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2178{
2179 struct inode *inode = file->f_mapping->host;
59e99e5b 2180 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2181
2182 if (unlikely(*pos < 0))
2183 return -EINVAL;
2184
1da177e4
LT
2185 if (!isblk) {
2186 /* FIXME: this is for backwards compatibility with 2.4 */
2187 if (file->f_flags & O_APPEND)
2188 *pos = i_size_read(inode);
2189
2190 if (limit != RLIM_INFINITY) {
2191 if (*pos >= limit) {
2192 send_sig(SIGXFSZ, current, 0);
2193 return -EFBIG;
2194 }
2195 if (*count > limit - (typeof(limit))*pos) {
2196 *count = limit - (typeof(limit))*pos;
2197 }
2198 }
2199 }
2200
2201 /*
2202 * LFS rule
2203 */
2204 if (unlikely(*pos + *count > MAX_NON_LFS &&
2205 !(file->f_flags & O_LARGEFILE))) {
2206 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2207 return -EFBIG;
2208 }
2209 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2210 *count = MAX_NON_LFS - (unsigned long)*pos;
2211 }
2212 }
2213
2214 /*
2215 * Are we about to exceed the fs block limit ?
2216 *
2217 * If we have written data it becomes a short write. If we have
2218 * exceeded without writing data we send a signal and return EFBIG.
2219 * Linus frestrict idea will clean these up nicely..
2220 */
2221 if (likely(!isblk)) {
2222 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2223 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2224 return -EFBIG;
2225 }
2226 /* zero-length writes at ->s_maxbytes are OK */
2227 }
2228
2229 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2230 *count = inode->i_sb->s_maxbytes - *pos;
2231 } else {
9361401e 2232#ifdef CONFIG_BLOCK
1da177e4
LT
2233 loff_t isize;
2234 if (bdev_read_only(I_BDEV(inode)))
2235 return -EPERM;
2236 isize = i_size_read(inode);
2237 if (*pos >= isize) {
2238 if (*count || *pos > isize)
2239 return -ENOSPC;
2240 }
2241
2242 if (*pos + *count > isize)
2243 *count = isize - *pos;
9361401e
DH
2244#else
2245 return -EPERM;
2246#endif
1da177e4
LT
2247 }
2248 return 0;
2249}
2250EXPORT_SYMBOL(generic_write_checks);
2251
afddba49
NP
2252int pagecache_write_begin(struct file *file, struct address_space *mapping,
2253 loff_t pos, unsigned len, unsigned flags,
2254 struct page **pagep, void **fsdata)
2255{
2256 const struct address_space_operations *aops = mapping->a_ops;
2257
4e02ed4b 2258 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2259 pagep, fsdata);
afddba49
NP
2260}
2261EXPORT_SYMBOL(pagecache_write_begin);
2262
2263int pagecache_write_end(struct file *file, struct address_space *mapping,
2264 loff_t pos, unsigned len, unsigned copied,
2265 struct page *page, void *fsdata)
2266{
2267 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2268
4e02ed4b
NP
2269 mark_page_accessed(page);
2270 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2271}
2272EXPORT_SYMBOL(pagecache_write_end);
2273
1da177e4
LT
2274ssize_t
2275generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2276 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2277 size_t count, size_t ocount)
2278{
2279 struct file *file = iocb->ki_filp;
2280 struct address_space *mapping = file->f_mapping;
2281 struct inode *inode = mapping->host;
2282 ssize_t written;
a969e903
CH
2283 size_t write_len;
2284 pgoff_t end;
1da177e4
LT
2285
2286 if (count != ocount)
2287 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2288
a969e903
CH
2289 write_len = iov_length(iov, *nr_segs);
2290 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2291
48b47c56 2292 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2293 if (written)
2294 goto out;
2295
2296 /*
2297 * After a write we want buffered reads to be sure to go to disk to get
2298 * the new data. We invalidate clean cached page from the region we're
2299 * about to write. We do this *before* the write so that we can return
6ccfa806 2300 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2301 */
2302 if (mapping->nrpages) {
2303 written = invalidate_inode_pages2_range(mapping,
2304 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2305 /*
2306 * If a page can not be invalidated, return 0 to fall back
2307 * to buffered write.
2308 */
2309 if (written) {
2310 if (written == -EBUSY)
2311 return 0;
a969e903 2312 goto out;
6ccfa806 2313 }
a969e903
CH
2314 }
2315
2316 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2317
2318 /*
2319 * Finally, try again to invalidate clean pages which might have been
2320 * cached by non-direct readahead, or faulted in by get_user_pages()
2321 * if the source of the write was an mmap'ed region of the file
2322 * we're writing. Either one is a pretty crazy thing to do,
2323 * so we don't support it 100%. If this invalidation
2324 * fails, tough, the write still worked...
2325 */
2326 if (mapping->nrpages) {
2327 invalidate_inode_pages2_range(mapping,
2328 pos >> PAGE_CACHE_SHIFT, end);
2329 }
2330
1da177e4 2331 if (written > 0) {
0116651c
NK
2332 pos += written;
2333 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2334 i_size_write(inode, pos);
1da177e4
LT
2335 mark_inode_dirty(inode);
2336 }
0116651c 2337 *ppos = pos;
1da177e4 2338 }
a969e903 2339out:
1da177e4
LT
2340 return written;
2341}
2342EXPORT_SYMBOL(generic_file_direct_write);
2343
eb2be189
NP
2344/*
2345 * Find or create a page at the given pagecache position. Return the locked
2346 * page. This function is specifically for buffered writes.
2347 */
54566b2c
NP
2348struct page *grab_cache_page_write_begin(struct address_space *mapping,
2349 pgoff_t index, unsigned flags)
eb2be189
NP
2350{
2351 int status;
2352 struct page *page;
54566b2c
NP
2353 gfp_t gfp_notmask = 0;
2354 if (flags & AOP_FLAG_NOFS)
2355 gfp_notmask = __GFP_FS;
eb2be189
NP
2356repeat:
2357 page = find_lock_page(mapping, index);
c585a267 2358 if (page)
3d08bcc8 2359 goto found;
eb2be189 2360
54566b2c 2361 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2362 if (!page)
2363 return NULL;
54566b2c
NP
2364 status = add_to_page_cache_lru(page, mapping, index,
2365 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2366 if (unlikely(status)) {
2367 page_cache_release(page);
2368 if (status == -EEXIST)
2369 goto repeat;
2370 return NULL;
2371 }
3d08bcc8
DW
2372found:
2373 wait_on_page_writeback(page);
eb2be189
NP
2374 return page;
2375}
54566b2c 2376EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2377
afddba49
NP
2378static ssize_t generic_perform_write(struct file *file,
2379 struct iov_iter *i, loff_t pos)
2380{
2381 struct address_space *mapping = file->f_mapping;
2382 const struct address_space_operations *a_ops = mapping->a_ops;
2383 long status = 0;
2384 ssize_t written = 0;
674b892e
NP
2385 unsigned int flags = 0;
2386
2387 /*
2388 * Copies from kernel address space cannot fail (NFSD is a big user).
2389 */
2390 if (segment_eq(get_fs(), KERNEL_DS))
2391 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2392
2393 do {
2394 struct page *page;
afddba49
NP
2395 unsigned long offset; /* Offset into pagecache page */
2396 unsigned long bytes; /* Bytes to write to page */
2397 size_t copied; /* Bytes copied from user */
2398 void *fsdata;
2399
2400 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2401 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2402 iov_iter_count(i));
2403
2404again:
2405
2406 /*
2407 * Bring in the user page that we will copy from _first_.
2408 * Otherwise there's a nasty deadlock on copying from the
2409 * same page as we're writing to, without it being marked
2410 * up-to-date.
2411 *
2412 * Not only is this an optimisation, but it is also required
2413 * to check that the address is actually valid, when atomic
2414 * usercopies are used, below.
2415 */
2416 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2417 status = -EFAULT;
2418 break;
2419 }
2420
674b892e 2421 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2422 &page, &fsdata);
2423 if (unlikely(status))
2424 break;
2425
931e80e4 2426 if (mapping_writably_mapped(mapping))
2427 flush_dcache_page(page);
2428
afddba49
NP
2429 pagefault_disable();
2430 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2431 pagefault_enable();
2432 flush_dcache_page(page);
2433
c8236db9 2434 mark_page_accessed(page);
afddba49
NP
2435 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2436 page, fsdata);
2437 if (unlikely(status < 0))
2438 break;
2439 copied = status;
2440
2441 cond_resched();
2442
124d3b70 2443 iov_iter_advance(i, copied);
afddba49
NP
2444 if (unlikely(copied == 0)) {
2445 /*
2446 * If we were unable to copy any data at all, we must
2447 * fall back to a single segment length write.
2448 *
2449 * If we didn't fallback here, we could livelock
2450 * because not all segments in the iov can be copied at
2451 * once without a pagefault.
2452 */
2453 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2454 iov_iter_single_seg_count(i));
2455 goto again;
2456 }
afddba49
NP
2457 pos += copied;
2458 written += copied;
2459
2460 balance_dirty_pages_ratelimited(mapping);
2461
2462 } while (iov_iter_count(i));
2463
2464 return written ? written : status;
2465}
2466
2467ssize_t
2468generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2469 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2470 size_t count, ssize_t written)
2471{
2472 struct file *file = iocb->ki_filp;
afddba49
NP
2473 ssize_t status;
2474 struct iov_iter i;
2475
2476 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2477 status = generic_perform_write(file, &i, pos);
1da177e4 2478
1da177e4 2479 if (likely(status >= 0)) {
afddba49
NP
2480 written += status;
2481 *ppos = pos + status;
1da177e4
LT
2482 }
2483
1da177e4
LT
2484 return written ? written : status;
2485}
2486EXPORT_SYMBOL(generic_file_buffered_write);
2487
e4dd9de3
JK
2488/**
2489 * __generic_file_aio_write - write data to a file
2490 * @iocb: IO state structure (file, offset, etc.)
2491 * @iov: vector with data to write
2492 * @nr_segs: number of segments in the vector
2493 * @ppos: position where to write
2494 *
2495 * This function does all the work needed for actually writing data to a
2496 * file. It does all basic checks, removes SUID from the file, updates
2497 * modification times and calls proper subroutines depending on whether we
2498 * do direct IO or a standard buffered write.
2499 *
2500 * It expects i_mutex to be grabbed unless we work on a block device or similar
2501 * object which does not need locking at all.
2502 *
2503 * This function does *not* take care of syncing data in case of O_SYNC write.
2504 * A caller has to handle it. This is mainly due to the fact that we want to
2505 * avoid syncing under i_mutex.
2506 */
2507ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2508 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2509{
2510 struct file *file = iocb->ki_filp;
fb5527e6 2511 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2512 size_t ocount; /* original count */
2513 size_t count; /* after file limit checks */
2514 struct inode *inode = mapping->host;
1da177e4
LT
2515 loff_t pos;
2516 ssize_t written;
2517 ssize_t err;
2518
2519 ocount = 0;
0ceb3314
DM
2520 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2521 if (err)
2522 return err;
1da177e4
LT
2523
2524 count = ocount;
2525 pos = *ppos;
2526
2527 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2528
2529 /* We can write back this queue in page reclaim */
2530 current->backing_dev_info = mapping->backing_dev_info;
2531 written = 0;
2532
2533 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2534 if (err)
2535 goto out;
2536
2537 if (count == 0)
2538 goto out;
2539
2f1936b8 2540 err = file_remove_suid(file);
1da177e4
LT
2541 if (err)
2542 goto out;
2543
870f4817 2544 file_update_time(file);
1da177e4
LT
2545
2546 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2547 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2548 loff_t endbyte;
2549 ssize_t written_buffered;
2550
2551 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2552 ppos, count, ocount);
1da177e4
LT
2553 if (written < 0 || written == count)
2554 goto out;
2555 /*
2556 * direct-io write to a hole: fall through to buffered I/O
2557 * for completing the rest of the request.
2558 */
2559 pos += written;
2560 count -= written;
fb5527e6
JM
2561 written_buffered = generic_file_buffered_write(iocb, iov,
2562 nr_segs, pos, ppos, count,
2563 written);
2564 /*
2565 * If generic_file_buffered_write() retuned a synchronous error
2566 * then we want to return the number of bytes which were
2567 * direct-written, or the error code if that was zero. Note
2568 * that this differs from normal direct-io semantics, which
2569 * will return -EFOO even if some bytes were written.
2570 */
2571 if (written_buffered < 0) {
2572 err = written_buffered;
2573 goto out;
2574 }
1da177e4 2575
fb5527e6
JM
2576 /*
2577 * We need to ensure that the page cache pages are written to
2578 * disk and invalidated to preserve the expected O_DIRECT
2579 * semantics.
2580 */
2581 endbyte = pos + written_buffered - written - 1;
c05c4edd 2582 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2583 if (err == 0) {
2584 written = written_buffered;
2585 invalidate_mapping_pages(mapping,
2586 pos >> PAGE_CACHE_SHIFT,
2587 endbyte >> PAGE_CACHE_SHIFT);
2588 } else {
2589 /*
2590 * We don't know how much we wrote, so just return
2591 * the number of bytes which were direct-written
2592 */
2593 }
2594 } else {
2595 written = generic_file_buffered_write(iocb, iov, nr_segs,
2596 pos, ppos, count, written);
2597 }
1da177e4
LT
2598out:
2599 current->backing_dev_info = NULL;
2600 return written ? written : err;
2601}
e4dd9de3
JK
2602EXPORT_SYMBOL(__generic_file_aio_write);
2603
e4dd9de3
JK
2604/**
2605 * generic_file_aio_write - write data to a file
2606 * @iocb: IO state structure
2607 * @iov: vector with data to write
2608 * @nr_segs: number of segments in the vector
2609 * @pos: position in file where to write
2610 *
2611 * This is a wrapper around __generic_file_aio_write() to be used by most
2612 * filesystems. It takes care of syncing the file in case of O_SYNC file
2613 * and acquires i_mutex as needed.
2614 */
027445c3
BP
2615ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2616 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2617{
2618 struct file *file = iocb->ki_filp;
148f948b 2619 struct inode *inode = file->f_mapping->host;
55602dd6 2620 struct blk_plug plug;
1da177e4 2621 ssize_t ret;
1da177e4
LT
2622
2623 BUG_ON(iocb->ki_pos != pos);
2624
1b1dcc1b 2625 mutex_lock(&inode->i_mutex);
55602dd6 2626 blk_start_plug(&plug);
e4dd9de3 2627 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2628 mutex_unlock(&inode->i_mutex);
1da177e4 2629
148f948b 2630 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2631 ssize_t err;
2632
148f948b 2633 err = generic_write_sync(file, pos, ret);
c7b50db2 2634 if (err < 0 && ret > 0)
1da177e4
LT
2635 ret = err;
2636 }
55602dd6 2637 blk_finish_plug(&plug);
1da177e4
LT
2638 return ret;
2639}
2640EXPORT_SYMBOL(generic_file_aio_write);
2641
cf9a2ae8
DH
2642/**
2643 * try_to_release_page() - release old fs-specific metadata on a page
2644 *
2645 * @page: the page which the kernel is trying to free
2646 * @gfp_mask: memory allocation flags (and I/O mode)
2647 *
2648 * The address_space is to try to release any data against the page
2649 * (presumably at page->private). If the release was successful, return `1'.
2650 * Otherwise return zero.
2651 *
266cf658
DH
2652 * This may also be called if PG_fscache is set on a page, indicating that the
2653 * page is known to the local caching routines.
2654 *
cf9a2ae8 2655 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2656 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2657 *
cf9a2ae8
DH
2658 */
2659int try_to_release_page(struct page *page, gfp_t gfp_mask)
2660{
2661 struct address_space * const mapping = page->mapping;
2662
2663 BUG_ON(!PageLocked(page));
2664 if (PageWriteback(page))
2665 return 0;
2666
2667 if (mapping && mapping->a_ops->releasepage)
2668 return mapping->a_ops->releasepage(page, gfp_mask);
2669 return try_to_free_buffers(page);
2670}
2671
2672EXPORT_SYMBOL(try_to_release_page);
This page took 0.778181 seconds and 5 git commands to generate.