mm: filemap: move radix tree hole searching here
[deliverable/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
fe0bfaaf 119 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
3167760f 128 cleancache_invalidate_page(mapping, page);
c515e1fd 129
1da177e4
LT
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
b85e0eff 132 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 133 mapping->nrpages--;
347ce434 134 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
45426812 137 BUG_ON(page_mapped(page));
3a692790
LT
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
1da177e4
LT
150}
151
702cfbf9
MK
152/**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160void delete_from_page_cache(struct page *page)
1da177e4
LT
161{
162 struct address_space *mapping = page->mapping;
6072d13c 163 void (*freepage)(struct page *);
1da177e4 164
cd7619d6 165 BUG_ON(!PageLocked(page));
1da177e4 166
6072d13c 167 freepage = mapping->a_ops->freepage;
19fd6231 168 spin_lock_irq(&mapping->tree_lock);
e64a782f 169 __delete_from_page_cache(page);
19fd6231 170 spin_unlock_irq(&mapping->tree_lock);
e767e056 171 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
172
173 if (freepage)
174 freepage(page);
97cecb5a
MK
175 page_cache_release(page);
176}
177EXPORT_SYMBOL(delete_from_page_cache);
178
7eaceacc 179static int sleep_on_page(void *word)
1da177e4 180{
1da177e4
LT
181 io_schedule();
182 return 0;
183}
184
7eaceacc 185static int sleep_on_page_killable(void *word)
2687a356 186{
7eaceacc 187 sleep_on_page(word);
2687a356
MW
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
865ffef3
DM
191static int filemap_check_errors(struct address_space *mapping)
192{
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200}
201
1da177e4 202/**
485bb99b 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
469eb4d0 206 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 207 * @sync_mode: enable synchronous operation
1da177e4 208 *
485bb99b
RD
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
1da177e4 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 213 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
ebcf28e1
AM
217int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
1da177e4
LT
219{
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
05fe478d 223 .nr_to_write = LONG_MAX,
111ebb6e
OH
224 .range_start = start,
225 .range_end = end,
1da177e4
LT
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233}
234
235static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237{
111ebb6e 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
239}
240
241int filemap_fdatawrite(struct address_space *mapping)
242{
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244}
245EXPORT_SYMBOL(filemap_fdatawrite);
246
f4c0a0fd 247int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 248 loff_t end)
1da177e4
LT
249{
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251}
f4c0a0fd 252EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 253
485bb99b
RD
254/**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
1da177e4
LT
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261int filemap_flush(struct address_space *mapping)
262{
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264}
265EXPORT_SYMBOL(filemap_flush);
266
485bb99b 267/**
94004ed7
CH
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 272 *
94004ed7
CH
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
1da177e4 275 */
94004ed7
CH
276int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
1da177e4 278{
94004ed7
CH
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
281 struct pagevec pvec;
282 int nr_pages;
865ffef3 283 int ret2, ret = 0;
1da177e4 284
94004ed7 285 if (end_byte < start_byte)
865ffef3 286 goto out;
1da177e4
LT
287
288 pagevec_init(&pvec, 0);
1da177e4
LT
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
212260aa 303 if (TestClearPageError(page))
1da177e4
LT
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
865ffef3
DM
309out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
1da177e4
LT
313
314 return ret;
315}
d3bccb6f
JK
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
1da177e4 318/**
485bb99b 319 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 320 * @mapping: address space structure to wait for
485bb99b
RD
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
1da177e4
LT
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
94004ed7 332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
28fd1298 338 int err = 0;
1da177e4
LT
339
340 if (mapping->nrpages) {
28fd1298
OH
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
865ffef3
DM
353 } else {
354 err = filemap_check_errors(mapping);
1da177e4 355 }
28fd1298 356 return err;
1da177e4 357}
28fd1298 358EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 359
485bb99b
RD
360/**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
469eb4d0
AM
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
1da177e4
LT
371int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
94004ed7
CH
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
28fd1298
OH
383 if (!err)
384 err = err2;
385 }
865ffef3
DM
386 } else {
387 err = filemap_check_errors(mapping);
1da177e4 388 }
28fd1298 389 return err;
1da177e4 390}
f6995585 391EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 392
ef6a3c63
MS
393/**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409{
410 int error;
ef6a3c63 411
309381fe
SL
412 VM_BUG_ON_PAGE(!PageLocked(old), old);
413 VM_BUG_ON_PAGE(!PageLocked(new), new);
414 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 415
ef6a3c63
MS
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
e64a782f 429 __delete_from_page_cache(old);
ef6a3c63
MS
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
ef6a3c63
MS
443 }
444
445 return error;
446}
447EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
485bb99b 449/**
e286781d 450 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
e286781d 456 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
457 * This function does not add the page to the LRU. The caller must do that.
458 */
e286781d 459int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 460 pgoff_t offset, gfp_t gfp_mask)
1da177e4 461{
e286781d
NP
462 int error;
463
309381fe
SL
464 VM_BUG_ON_PAGE(!PageLocked(page), page);
465 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d
NP
466
467 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 468 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 469 if (error)
66a0c8ee 470 return error;
1da177e4 471
5e4c0d97 472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 473 if (error) {
69029cd5 474 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
475 return error;
476 }
477
478 page_cache_get(page);
479 page->mapping = mapping;
480 page->index = offset;
481
482 spin_lock_irq(&mapping->tree_lock);
483 error = radix_tree_insert(&mapping->page_tree, offset, page);
484 radix_tree_preload_end();
485 if (unlikely(error))
486 goto err_insert;
487 mapping->nrpages++;
488 __inc_zone_page_state(page, NR_FILE_PAGES);
489 spin_unlock_irq(&mapping->tree_lock);
490 trace_mm_filemap_add_to_page_cache(page);
491 return 0;
492err_insert:
493 page->mapping = NULL;
494 /* Leave page->index set: truncation relies upon it */
495 spin_unlock_irq(&mapping->tree_lock);
496 mem_cgroup_uncharge_cache_page(page);
497 page_cache_release(page);
1da177e4
LT
498 return error;
499}
e286781d 500EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
501
502int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 503 pgoff_t offset, gfp_t gfp_mask)
1da177e4 504{
4f98a2fe
RR
505 int ret;
506
4f98a2fe 507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
508 if (ret == 0)
509 lru_cache_add_file(page);
1da177e4
LT
510 return ret;
511}
18bc0bbd 512EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 513
44110fe3 514#ifdef CONFIG_NUMA
2ae88149 515struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 516{
c0ff7453
MX
517 int n;
518 struct page *page;
519
44110fe3 520 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
521 unsigned int cpuset_mems_cookie;
522 do {
d26914d1 523 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
524 n = cpuset_mem_spread_node();
525 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 526 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 527
c0ff7453 528 return page;
44110fe3 529 }
2ae88149 530 return alloc_pages(gfp, 0);
44110fe3 531}
2ae88149 532EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
533#endif
534
1da177e4
LT
535/*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545static wait_queue_head_t *page_waitqueue(struct page *page)
546{
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550}
551
552static inline void wake_up_page(struct page *page, int bit)
553{
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555}
556
920c7a5d 557void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
558{
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
7eaceacc 562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
563 TASK_UNINTERRUPTIBLE);
564}
565EXPORT_SYMBOL(wait_on_page_bit);
566
f62e00cc
KM
567int wait_on_page_bit_killable(struct page *page, int bit_nr)
568{
569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
570
571 if (!test_bit(bit_nr, &page->flags))
572 return 0;
573
574 return __wait_on_bit(page_waitqueue(page), &wait,
575 sleep_on_page_killable, TASK_KILLABLE);
576}
577
385e1ca5
DH
578/**
579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
580 * @page: Page defining the wait queue of interest
581 * @waiter: Waiter to add to the queue
385e1ca5
DH
582 *
583 * Add an arbitrary @waiter to the wait queue for the nominated @page.
584 */
585void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
586{
587 wait_queue_head_t *q = page_waitqueue(page);
588 unsigned long flags;
589
590 spin_lock_irqsave(&q->lock, flags);
591 __add_wait_queue(q, waiter);
592 spin_unlock_irqrestore(&q->lock, flags);
593}
594EXPORT_SYMBOL_GPL(add_page_wait_queue);
595
1da177e4 596/**
485bb99b 597 * unlock_page - unlock a locked page
1da177e4
LT
598 * @page: the page
599 *
600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
602 * mechananism between PageLocked pages and PageWriteback pages is shared.
603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
604 *
8413ac9d
NP
605 * The mb is necessary to enforce ordering between the clear_bit and the read
606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 607 */
920c7a5d 608void unlock_page(struct page *page)
1da177e4 609{
309381fe 610 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d
NP
611 clear_bit_unlock(PG_locked, &page->flags);
612 smp_mb__after_clear_bit();
1da177e4
LT
613 wake_up_page(page, PG_locked);
614}
615EXPORT_SYMBOL(unlock_page);
616
485bb99b
RD
617/**
618 * end_page_writeback - end writeback against a page
619 * @page: the page
1da177e4
LT
620 */
621void end_page_writeback(struct page *page)
622{
ac6aadb2
MS
623 if (TestClearPageReclaim(page))
624 rotate_reclaimable_page(page);
625
626 if (!test_clear_page_writeback(page))
627 BUG();
628
1da177e4
LT
629 smp_mb__after_clear_bit();
630 wake_up_page(page, PG_writeback);
631}
632EXPORT_SYMBOL(end_page_writeback);
633
485bb99b
RD
634/**
635 * __lock_page - get a lock on the page, assuming we need to sleep to get it
636 * @page: the page to lock
1da177e4 637 */
920c7a5d 638void __lock_page(struct page *page)
1da177e4
LT
639{
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641
7eaceacc 642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
643 TASK_UNINTERRUPTIBLE);
644}
645EXPORT_SYMBOL(__lock_page);
646
b5606c2d 647int __lock_page_killable(struct page *page)
2687a356
MW
648{
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
651 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 652 sleep_on_page_killable, TASK_KILLABLE);
2687a356 653}
18bc0bbd 654EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 655
d065bd81
ML
656int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
657 unsigned int flags)
658{
37b23e05
KM
659 if (flags & FAULT_FLAG_ALLOW_RETRY) {
660 /*
661 * CAUTION! In this case, mmap_sem is not released
662 * even though return 0.
663 */
664 if (flags & FAULT_FLAG_RETRY_NOWAIT)
665 return 0;
666
667 up_read(&mm->mmap_sem);
668 if (flags & FAULT_FLAG_KILLABLE)
669 wait_on_page_locked_killable(page);
670 else
318b275f 671 wait_on_page_locked(page);
d065bd81 672 return 0;
37b23e05
KM
673 } else {
674 if (flags & FAULT_FLAG_KILLABLE) {
675 int ret;
676
677 ret = __lock_page_killable(page);
678 if (ret) {
679 up_read(&mm->mmap_sem);
680 return 0;
681 }
682 } else
683 __lock_page(page);
684 return 1;
d065bd81
ML
685 }
686}
687
e7b563bb
JW
688/**
689 * page_cache_next_hole - find the next hole (not-present entry)
690 * @mapping: mapping
691 * @index: index
692 * @max_scan: maximum range to search
693 *
694 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
695 * lowest indexed hole.
696 *
697 * Returns: the index of the hole if found, otherwise returns an index
698 * outside of the set specified (in which case 'return - index >=
699 * max_scan' will be true). In rare cases of index wrap-around, 0 will
700 * be returned.
701 *
702 * page_cache_next_hole may be called under rcu_read_lock. However,
703 * like radix_tree_gang_lookup, this will not atomically search a
704 * snapshot of the tree at a single point in time. For example, if a
705 * hole is created at index 5, then subsequently a hole is created at
706 * index 10, page_cache_next_hole covering both indexes may return 10
707 * if called under rcu_read_lock.
708 */
709pgoff_t page_cache_next_hole(struct address_space *mapping,
710 pgoff_t index, unsigned long max_scan)
711{
712 unsigned long i;
713
714 for (i = 0; i < max_scan; i++) {
715 if (!radix_tree_lookup(&mapping->page_tree, index))
716 break;
717 index++;
718 if (index == 0)
719 break;
720 }
721
722 return index;
723}
724EXPORT_SYMBOL(page_cache_next_hole);
725
726/**
727 * page_cache_prev_hole - find the prev hole (not-present entry)
728 * @mapping: mapping
729 * @index: index
730 * @max_scan: maximum range to search
731 *
732 * Search backwards in the range [max(index-max_scan+1, 0), index] for
733 * the first hole.
734 *
735 * Returns: the index of the hole if found, otherwise returns an index
736 * outside of the set specified (in which case 'index - return >=
737 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
738 * will be returned.
739 *
740 * page_cache_prev_hole may be called under rcu_read_lock. However,
741 * like radix_tree_gang_lookup, this will not atomically search a
742 * snapshot of the tree at a single point in time. For example, if a
743 * hole is created at index 10, then subsequently a hole is created at
744 * index 5, page_cache_prev_hole covering both indexes may return 5 if
745 * called under rcu_read_lock.
746 */
747pgoff_t page_cache_prev_hole(struct address_space *mapping,
748 pgoff_t index, unsigned long max_scan)
749{
750 unsigned long i;
751
752 for (i = 0; i < max_scan; i++) {
753 if (!radix_tree_lookup(&mapping->page_tree, index))
754 break;
755 index--;
756 if (index == ULONG_MAX)
757 break;
758 }
759
760 return index;
761}
762EXPORT_SYMBOL(page_cache_prev_hole);
763
485bb99b
RD
764/**
765 * find_get_page - find and get a page reference
766 * @mapping: the address_space to search
767 * @offset: the page index
768 *
da6052f7
NP
769 * Is there a pagecache struct page at the given (mapping, offset) tuple?
770 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 771 */
a60637c8 772struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 773{
a60637c8 774 void **pagep;
1da177e4
LT
775 struct page *page;
776
a60637c8
NP
777 rcu_read_lock();
778repeat:
779 page = NULL;
780 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
781 if (pagep) {
782 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
783 if (unlikely(!page))
784 goto out;
a2c16d6c 785 if (radix_tree_exception(page)) {
8079b1c8
HD
786 if (radix_tree_deref_retry(page))
787 goto repeat;
788 /*
789 * Otherwise, shmem/tmpfs must be storing a swap entry
790 * here as an exceptional entry: so return it without
791 * attempting to raise page count.
792 */
793 goto out;
a2c16d6c 794 }
a60637c8
NP
795 if (!page_cache_get_speculative(page))
796 goto repeat;
797
798 /*
799 * Has the page moved?
800 * This is part of the lockless pagecache protocol. See
801 * include/linux/pagemap.h for details.
802 */
803 if (unlikely(page != *pagep)) {
804 page_cache_release(page);
805 goto repeat;
806 }
807 }
27d20fdd 808out:
a60637c8
NP
809 rcu_read_unlock();
810
1da177e4
LT
811 return page;
812}
1da177e4
LT
813EXPORT_SYMBOL(find_get_page);
814
1da177e4
LT
815/**
816 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
817 * @mapping: the address_space to search
818 * @offset: the page index
1da177e4
LT
819 *
820 * Locates the desired pagecache page, locks it, increments its reference
821 * count and returns its address.
822 *
823 * Returns zero if the page was not present. find_lock_page() may sleep.
824 */
a60637c8 825struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
826{
827 struct page *page;
828
1da177e4 829repeat:
a60637c8 830 page = find_get_page(mapping, offset);
a2c16d6c 831 if (page && !radix_tree_exception(page)) {
a60637c8
NP
832 lock_page(page);
833 /* Has the page been truncated? */
834 if (unlikely(page->mapping != mapping)) {
835 unlock_page(page);
836 page_cache_release(page);
837 goto repeat;
1da177e4 838 }
309381fe 839 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 840 }
1da177e4
LT
841 return page;
842}
1da177e4
LT
843EXPORT_SYMBOL(find_lock_page);
844
845/**
846 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
847 * @mapping: the page's address_space
848 * @index: the page's index into the mapping
849 * @gfp_mask: page allocation mode
1da177e4
LT
850 *
851 * Locates a page in the pagecache. If the page is not present, a new page
852 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
853 * LRU list. The returned page is locked and has its reference count
854 * incremented.
855 *
856 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
857 * allocation!
858 *
859 * find_or_create_page() returns the desired page's address, or zero on
860 * memory exhaustion.
861 */
862struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 863 pgoff_t index, gfp_t gfp_mask)
1da177e4 864{
eb2be189 865 struct page *page;
1da177e4
LT
866 int err;
867repeat:
868 page = find_lock_page(mapping, index);
869 if (!page) {
eb2be189
NP
870 page = __page_cache_alloc(gfp_mask);
871 if (!page)
872 return NULL;
67d58ac4
NP
873 /*
874 * We want a regular kernel memory (not highmem or DMA etc)
875 * allocation for the radix tree nodes, but we need to honour
876 * the context-specific requirements the caller has asked for.
877 * GFP_RECLAIM_MASK collects those requirements.
878 */
879 err = add_to_page_cache_lru(page, mapping, index,
880 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
881 if (unlikely(err)) {
882 page_cache_release(page);
883 page = NULL;
884 if (err == -EEXIST)
885 goto repeat;
1da177e4 886 }
1da177e4 887 }
1da177e4
LT
888 return page;
889}
1da177e4
LT
890EXPORT_SYMBOL(find_or_create_page);
891
892/**
893 * find_get_pages - gang pagecache lookup
894 * @mapping: The address_space to search
895 * @start: The starting page index
896 * @nr_pages: The maximum number of pages
897 * @pages: Where the resulting pages are placed
898 *
899 * find_get_pages() will search for and return a group of up to
900 * @nr_pages pages in the mapping. The pages are placed at @pages.
901 * find_get_pages() takes a reference against the returned pages.
902 *
903 * The search returns a group of mapping-contiguous pages with ascending
904 * indexes. There may be holes in the indices due to not-present pages.
905 *
906 * find_get_pages() returns the number of pages which were found.
907 */
908unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
909 unsigned int nr_pages, struct page **pages)
910{
0fc9d104
KK
911 struct radix_tree_iter iter;
912 void **slot;
913 unsigned ret = 0;
914
915 if (unlikely(!nr_pages))
916 return 0;
a60637c8
NP
917
918 rcu_read_lock();
919restart:
0fc9d104 920 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
921 struct page *page;
922repeat:
0fc9d104 923 page = radix_tree_deref_slot(slot);
a60637c8
NP
924 if (unlikely(!page))
925 continue;
9d8aa4ea 926
a2c16d6c 927 if (radix_tree_exception(page)) {
8079b1c8
HD
928 if (radix_tree_deref_retry(page)) {
929 /*
930 * Transient condition which can only trigger
931 * when entry at index 0 moves out of or back
932 * to root: none yet gotten, safe to restart.
933 */
0fc9d104 934 WARN_ON(iter.index);
8079b1c8
HD
935 goto restart;
936 }
a2c16d6c 937 /*
8079b1c8
HD
938 * Otherwise, shmem/tmpfs must be storing a swap entry
939 * here as an exceptional entry: so skip over it -
940 * we only reach this from invalidate_mapping_pages().
a2c16d6c 941 */
8079b1c8 942 continue;
27d20fdd 943 }
a60637c8
NP
944
945 if (!page_cache_get_speculative(page))
946 goto repeat;
947
948 /* Has the page moved? */
0fc9d104 949 if (unlikely(page != *slot)) {
a60637c8
NP
950 page_cache_release(page);
951 goto repeat;
952 }
1da177e4 953
a60637c8 954 pages[ret] = page;
0fc9d104
KK
955 if (++ret == nr_pages)
956 break;
a60637c8 957 }
5b280c0c 958
a60637c8 959 rcu_read_unlock();
1da177e4
LT
960 return ret;
961}
962
ebf43500
JA
963/**
964 * find_get_pages_contig - gang contiguous pagecache lookup
965 * @mapping: The address_space to search
966 * @index: The starting page index
967 * @nr_pages: The maximum number of pages
968 * @pages: Where the resulting pages are placed
969 *
970 * find_get_pages_contig() works exactly like find_get_pages(), except
971 * that the returned number of pages are guaranteed to be contiguous.
972 *
973 * find_get_pages_contig() returns the number of pages which were found.
974 */
975unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
976 unsigned int nr_pages, struct page **pages)
977{
0fc9d104
KK
978 struct radix_tree_iter iter;
979 void **slot;
980 unsigned int ret = 0;
981
982 if (unlikely(!nr_pages))
983 return 0;
a60637c8
NP
984
985 rcu_read_lock();
986restart:
0fc9d104 987 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
988 struct page *page;
989repeat:
0fc9d104
KK
990 page = radix_tree_deref_slot(slot);
991 /* The hole, there no reason to continue */
a60637c8 992 if (unlikely(!page))
0fc9d104 993 break;
9d8aa4ea 994
a2c16d6c 995 if (radix_tree_exception(page)) {
8079b1c8
HD
996 if (radix_tree_deref_retry(page)) {
997 /*
998 * Transient condition which can only trigger
999 * when entry at index 0 moves out of or back
1000 * to root: none yet gotten, safe to restart.
1001 */
1002 goto restart;
1003 }
a2c16d6c 1004 /*
8079b1c8
HD
1005 * Otherwise, shmem/tmpfs must be storing a swap entry
1006 * here as an exceptional entry: so stop looking for
1007 * contiguous pages.
a2c16d6c 1008 */
8079b1c8 1009 break;
a2c16d6c 1010 }
ebf43500 1011
a60637c8
NP
1012 if (!page_cache_get_speculative(page))
1013 goto repeat;
1014
1015 /* Has the page moved? */
0fc9d104 1016 if (unlikely(page != *slot)) {
a60637c8
NP
1017 page_cache_release(page);
1018 goto repeat;
1019 }
1020
9cbb4cb2
NP
1021 /*
1022 * must check mapping and index after taking the ref.
1023 * otherwise we can get both false positives and false
1024 * negatives, which is just confusing to the caller.
1025 */
0fc9d104 1026 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1027 page_cache_release(page);
1028 break;
1029 }
1030
a60637c8 1031 pages[ret] = page;
0fc9d104
KK
1032 if (++ret == nr_pages)
1033 break;
ebf43500 1034 }
a60637c8
NP
1035 rcu_read_unlock();
1036 return ret;
ebf43500 1037}
ef71c15c 1038EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1039
485bb99b
RD
1040/**
1041 * find_get_pages_tag - find and return pages that match @tag
1042 * @mapping: the address_space to search
1043 * @index: the starting page index
1044 * @tag: the tag index
1045 * @nr_pages: the maximum number of pages
1046 * @pages: where the resulting pages are placed
1047 *
1da177e4 1048 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1049 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1050 */
1051unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1052 int tag, unsigned int nr_pages, struct page **pages)
1053{
0fc9d104
KK
1054 struct radix_tree_iter iter;
1055 void **slot;
1056 unsigned ret = 0;
1057
1058 if (unlikely(!nr_pages))
1059 return 0;
a60637c8
NP
1060
1061 rcu_read_lock();
1062restart:
0fc9d104
KK
1063 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1064 &iter, *index, tag) {
a60637c8
NP
1065 struct page *page;
1066repeat:
0fc9d104 1067 page = radix_tree_deref_slot(slot);
a60637c8
NP
1068 if (unlikely(!page))
1069 continue;
9d8aa4ea 1070
a2c16d6c 1071 if (radix_tree_exception(page)) {
8079b1c8
HD
1072 if (radix_tree_deref_retry(page)) {
1073 /*
1074 * Transient condition which can only trigger
1075 * when entry at index 0 moves out of or back
1076 * to root: none yet gotten, safe to restart.
1077 */
1078 goto restart;
1079 }
a2c16d6c 1080 /*
8079b1c8
HD
1081 * This function is never used on a shmem/tmpfs
1082 * mapping, so a swap entry won't be found here.
a2c16d6c 1083 */
8079b1c8 1084 BUG();
a2c16d6c 1085 }
a60637c8
NP
1086
1087 if (!page_cache_get_speculative(page))
1088 goto repeat;
1089
1090 /* Has the page moved? */
0fc9d104 1091 if (unlikely(page != *slot)) {
a60637c8
NP
1092 page_cache_release(page);
1093 goto repeat;
1094 }
1095
1096 pages[ret] = page;
0fc9d104
KK
1097 if (++ret == nr_pages)
1098 break;
a60637c8 1099 }
5b280c0c 1100
a60637c8 1101 rcu_read_unlock();
1da177e4 1102
1da177e4
LT
1103 if (ret)
1104 *index = pages[ret - 1]->index + 1;
a60637c8 1105
1da177e4
LT
1106 return ret;
1107}
ef71c15c 1108EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1109
485bb99b
RD
1110/**
1111 * grab_cache_page_nowait - returns locked page at given index in given cache
1112 * @mapping: target address_space
1113 * @index: the page index
1114 *
72fd4a35 1115 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1116 * This is intended for speculative data generators, where the data can
1117 * be regenerated if the page couldn't be grabbed. This routine should
1118 * be safe to call while holding the lock for another page.
1119 *
1120 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1121 * and deadlock against the caller's locked page.
1122 */
1123struct page *
57f6b96c 1124grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1125{
1126 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1127
1128 if (page) {
529ae9aa 1129 if (trylock_page(page))
1da177e4
LT
1130 return page;
1131 page_cache_release(page);
1132 return NULL;
1133 }
2ae88149 1134 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1135 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1136 page_cache_release(page);
1137 page = NULL;
1138 }
1139 return page;
1140}
1da177e4
LT
1141EXPORT_SYMBOL(grab_cache_page_nowait);
1142
76d42bd9
WF
1143/*
1144 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1145 * a _large_ part of the i/o request. Imagine the worst scenario:
1146 *
1147 * ---R__________________________________________B__________
1148 * ^ reading here ^ bad block(assume 4k)
1149 *
1150 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1151 * => failing the whole request => read(R) => read(R+1) =>
1152 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1153 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1154 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1155 *
1156 * It is going insane. Fix it by quickly scaling down the readahead size.
1157 */
1158static void shrink_readahead_size_eio(struct file *filp,
1159 struct file_ra_state *ra)
1160{
76d42bd9 1161 ra->ra_pages /= 4;
76d42bd9
WF
1162}
1163
485bb99b 1164/**
36e78914 1165 * do_generic_file_read - generic file read routine
485bb99b
RD
1166 * @filp: the file to read
1167 * @ppos: current file position
1168 * @desc: read_descriptor
485bb99b 1169 *
1da177e4 1170 * This is a generic file read routine, and uses the
485bb99b 1171 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1172 *
1173 * This is really ugly. But the goto's actually try to clarify some
1174 * of the logic when it comes to error handling etc.
1da177e4 1175 */
36e78914 1176static void do_generic_file_read(struct file *filp, loff_t *ppos,
b77d88d4 1177 read_descriptor_t *desc)
1da177e4 1178{
36e78914 1179 struct address_space *mapping = filp->f_mapping;
1da177e4 1180 struct inode *inode = mapping->host;
36e78914 1181 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1182 pgoff_t index;
1183 pgoff_t last_index;
1184 pgoff_t prev_index;
1185 unsigned long offset; /* offset into pagecache page */
ec0f1637 1186 unsigned int prev_offset;
1da177e4 1187 int error;
1da177e4 1188
1da177e4 1189 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1190 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1191 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1192 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1193 offset = *ppos & ~PAGE_CACHE_MASK;
1194
1da177e4
LT
1195 for (;;) {
1196 struct page *page;
57f6b96c 1197 pgoff_t end_index;
a32ea1e1 1198 loff_t isize;
1da177e4
LT
1199 unsigned long nr, ret;
1200
1da177e4 1201 cond_resched();
1da177e4
LT
1202find_page:
1203 page = find_get_page(mapping, index);
3ea89ee8 1204 if (!page) {
cf914a7d 1205 page_cache_sync_readahead(mapping,
7ff81078 1206 ra, filp,
3ea89ee8
FW
1207 index, last_index - index);
1208 page = find_get_page(mapping, index);
1209 if (unlikely(page == NULL))
1210 goto no_cached_page;
1211 }
1212 if (PageReadahead(page)) {
cf914a7d 1213 page_cache_async_readahead(mapping,
7ff81078 1214 ra, filp, page,
3ea89ee8 1215 index, last_index - index);
1da177e4 1216 }
8ab22b9a
HH
1217 if (!PageUptodate(page)) {
1218 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1219 !mapping->a_ops->is_partially_uptodate)
1220 goto page_not_up_to_date;
529ae9aa 1221 if (!trylock_page(page))
8ab22b9a 1222 goto page_not_up_to_date;
8d056cb9
DH
1223 /* Did it get truncated before we got the lock? */
1224 if (!page->mapping)
1225 goto page_not_up_to_date_locked;
8ab22b9a
HH
1226 if (!mapping->a_ops->is_partially_uptodate(page,
1227 desc, offset))
1228 goto page_not_up_to_date_locked;
1229 unlock_page(page);
1230 }
1da177e4 1231page_ok:
a32ea1e1
N
1232 /*
1233 * i_size must be checked after we know the page is Uptodate.
1234 *
1235 * Checking i_size after the check allows us to calculate
1236 * the correct value for "nr", which means the zero-filled
1237 * part of the page is not copied back to userspace (unless
1238 * another truncate extends the file - this is desired though).
1239 */
1240
1241 isize = i_size_read(inode);
1242 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1243 if (unlikely(!isize || index > end_index)) {
1244 page_cache_release(page);
1245 goto out;
1246 }
1247
1248 /* nr is the maximum number of bytes to copy from this page */
1249 nr = PAGE_CACHE_SIZE;
1250 if (index == end_index) {
1251 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1252 if (nr <= offset) {
1253 page_cache_release(page);
1254 goto out;
1255 }
1256 }
1257 nr = nr - offset;
1da177e4
LT
1258
1259 /* If users can be writing to this page using arbitrary
1260 * virtual addresses, take care about potential aliasing
1261 * before reading the page on the kernel side.
1262 */
1263 if (mapping_writably_mapped(mapping))
1264 flush_dcache_page(page);
1265
1266 /*
ec0f1637
JK
1267 * When a sequential read accesses a page several times,
1268 * only mark it as accessed the first time.
1da177e4 1269 */
ec0f1637 1270 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1271 mark_page_accessed(page);
1272 prev_index = index;
1273
1274 /*
1275 * Ok, we have the page, and it's up-to-date, so
1276 * now we can copy it to user space...
1277 *
b77d88d4
KS
1278 * The file_read_actor routine returns how many bytes were
1279 * actually used..
1da177e4
LT
1280 * NOTE! This may not be the same as how much of a user buffer
1281 * we filled up (we may be padding etc), so we can only update
1282 * "pos" here (the actor routine has to update the user buffer
1283 * pointers and the remaining count).
1284 */
b77d88d4 1285 ret = file_read_actor(desc, page, offset, nr);
1da177e4
LT
1286 offset += ret;
1287 index += offset >> PAGE_CACHE_SHIFT;
1288 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1289 prev_offset = offset;
1da177e4
LT
1290
1291 page_cache_release(page);
1292 if (ret == nr && desc->count)
1293 continue;
1294 goto out;
1295
1296page_not_up_to_date:
1297 /* Get exclusive access to the page ... */
85462323
ON
1298 error = lock_page_killable(page);
1299 if (unlikely(error))
1300 goto readpage_error;
1da177e4 1301
8ab22b9a 1302page_not_up_to_date_locked:
da6052f7 1303 /* Did it get truncated before we got the lock? */
1da177e4
LT
1304 if (!page->mapping) {
1305 unlock_page(page);
1306 page_cache_release(page);
1307 continue;
1308 }
1309
1310 /* Did somebody else fill it already? */
1311 if (PageUptodate(page)) {
1312 unlock_page(page);
1313 goto page_ok;
1314 }
1315
1316readpage:
91803b49
JM
1317 /*
1318 * A previous I/O error may have been due to temporary
1319 * failures, eg. multipath errors.
1320 * PG_error will be set again if readpage fails.
1321 */
1322 ClearPageError(page);
1da177e4
LT
1323 /* Start the actual read. The read will unlock the page. */
1324 error = mapping->a_ops->readpage(filp, page);
1325
994fc28c
ZB
1326 if (unlikely(error)) {
1327 if (error == AOP_TRUNCATED_PAGE) {
1328 page_cache_release(page);
1329 goto find_page;
1330 }
1da177e4 1331 goto readpage_error;
994fc28c 1332 }
1da177e4
LT
1333
1334 if (!PageUptodate(page)) {
85462323
ON
1335 error = lock_page_killable(page);
1336 if (unlikely(error))
1337 goto readpage_error;
1da177e4
LT
1338 if (!PageUptodate(page)) {
1339 if (page->mapping == NULL) {
1340 /*
2ecdc82e 1341 * invalidate_mapping_pages got it
1da177e4
LT
1342 */
1343 unlock_page(page);
1344 page_cache_release(page);
1345 goto find_page;
1346 }
1347 unlock_page(page);
7ff81078 1348 shrink_readahead_size_eio(filp, ra);
85462323
ON
1349 error = -EIO;
1350 goto readpage_error;
1da177e4
LT
1351 }
1352 unlock_page(page);
1353 }
1354
1da177e4
LT
1355 goto page_ok;
1356
1357readpage_error:
1358 /* UHHUH! A synchronous read error occurred. Report it */
1359 desc->error = error;
1360 page_cache_release(page);
1361 goto out;
1362
1363no_cached_page:
1364 /*
1365 * Ok, it wasn't cached, so we need to create a new
1366 * page..
1367 */
eb2be189
NP
1368 page = page_cache_alloc_cold(mapping);
1369 if (!page) {
1370 desc->error = -ENOMEM;
1371 goto out;
1da177e4 1372 }
eb2be189 1373 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1374 index, GFP_KERNEL);
1375 if (error) {
eb2be189 1376 page_cache_release(page);
1da177e4
LT
1377 if (error == -EEXIST)
1378 goto find_page;
1379 desc->error = error;
1380 goto out;
1381 }
1da177e4
LT
1382 goto readpage;
1383 }
1384
1385out:
7ff81078
FW
1386 ra->prev_pos = prev_index;
1387 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1388 ra->prev_pos |= prev_offset;
1da177e4 1389
f4e6b498 1390 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1391 file_accessed(filp);
1da177e4 1392}
1da177e4
LT
1393
1394int file_read_actor(read_descriptor_t *desc, struct page *page,
1395 unsigned long offset, unsigned long size)
1396{
1397 char *kaddr;
1398 unsigned long left, count = desc->count;
1399
1400 if (size > count)
1401 size = count;
1402
1403 /*
1404 * Faults on the destination of a read are common, so do it before
1405 * taking the kmap.
1406 */
1407 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1408 kaddr = kmap_atomic(page);
1da177e4
LT
1409 left = __copy_to_user_inatomic(desc->arg.buf,
1410 kaddr + offset, size);
9b04c5fe 1411 kunmap_atomic(kaddr);
1da177e4
LT
1412 if (left == 0)
1413 goto success;
1414 }
1415
1416 /* Do it the slow way */
1417 kaddr = kmap(page);
1418 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1419 kunmap(page);
1420
1421 if (left) {
1422 size -= left;
1423 desc->error = -EFAULT;
1424 }
1425success:
1426 desc->count = count - size;
1427 desc->written += size;
1428 desc->arg.buf += size;
1429 return size;
1430}
1431
0ceb3314
DM
1432/*
1433 * Performs necessary checks before doing a write
1434 * @iov: io vector request
1435 * @nr_segs: number of segments in the iovec
1436 * @count: number of bytes to write
1437 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1438 *
1439 * Adjust number of segments and amount of bytes to write (nr_segs should be
1440 * properly initialized first). Returns appropriate error code that caller
1441 * should return or zero in case that write should be allowed.
1442 */
1443int generic_segment_checks(const struct iovec *iov,
1444 unsigned long *nr_segs, size_t *count, int access_flags)
1445{
1446 unsigned long seg;
1447 size_t cnt = 0;
1448 for (seg = 0; seg < *nr_segs; seg++) {
1449 const struct iovec *iv = &iov[seg];
1450
1451 /*
1452 * If any segment has a negative length, or the cumulative
1453 * length ever wraps negative then return -EINVAL.
1454 */
1455 cnt += iv->iov_len;
1456 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1457 return -EINVAL;
1458 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1459 continue;
1460 if (seg == 0)
1461 return -EFAULT;
1462 *nr_segs = seg;
1463 cnt -= iv->iov_len; /* This segment is no good */
1464 break;
1465 }
1466 *count = cnt;
1467 return 0;
1468}
1469EXPORT_SYMBOL(generic_segment_checks);
1470
485bb99b 1471/**
b2abacf3 1472 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1473 * @iocb: kernel I/O control block
1474 * @iov: io vector request
1475 * @nr_segs: number of segments in the iovec
b2abacf3 1476 * @pos: current file position
485bb99b 1477 *
1da177e4
LT
1478 * This is the "read()" routine for all filesystems
1479 * that can use the page cache directly.
1480 */
1481ssize_t
543ade1f
BP
1482generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1483 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1484{
1485 struct file *filp = iocb->ki_filp;
1486 ssize_t retval;
66f998f6 1487 unsigned long seg = 0;
1da177e4 1488 size_t count;
543ade1f 1489 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1490
1491 count = 0;
0ceb3314
DM
1492 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1493 if (retval)
1494 return retval;
1da177e4
LT
1495
1496 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1497 if (filp->f_flags & O_DIRECT) {
543ade1f 1498 loff_t size;
1da177e4
LT
1499 struct address_space *mapping;
1500 struct inode *inode;
1501
1502 mapping = filp->f_mapping;
1503 inode = mapping->host;
1da177e4
LT
1504 if (!count)
1505 goto out; /* skip atime */
1506 size = i_size_read(inode);
9fe55eea 1507 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1508 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1509 if (!retval) {
1510 retval = mapping->a_ops->direct_IO(READ, iocb,
1511 iov, pos, nr_segs);
1512 }
1513 if (retval > 0) {
1514 *ppos = pos + retval;
1515 count -= retval;
1516 }
66f998f6 1517
9fe55eea
SW
1518 /*
1519 * Btrfs can have a short DIO read if we encounter
1520 * compressed extents, so if there was an error, or if
1521 * we've already read everything we wanted to, or if
1522 * there was a short read because we hit EOF, go ahead
1523 * and return. Otherwise fallthrough to buffered io for
1524 * the rest of the read.
1525 */
1526 if (retval < 0 || !count || *ppos >= size) {
1527 file_accessed(filp);
1528 goto out;
0e0bcae3 1529 }
1da177e4
LT
1530 }
1531
66f998f6 1532 count = retval;
11fa977e
HD
1533 for (seg = 0; seg < nr_segs; seg++) {
1534 read_descriptor_t desc;
66f998f6
JB
1535 loff_t offset = 0;
1536
1537 /*
1538 * If we did a short DIO read we need to skip the section of the
1539 * iov that we've already read data into.
1540 */
1541 if (count) {
1542 if (count > iov[seg].iov_len) {
1543 count -= iov[seg].iov_len;
1544 continue;
1545 }
1546 offset = count;
1547 count = 0;
1548 }
1da177e4 1549
11fa977e 1550 desc.written = 0;
66f998f6
JB
1551 desc.arg.buf = iov[seg].iov_base + offset;
1552 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1553 if (desc.count == 0)
1554 continue;
1555 desc.error = 0;
b77d88d4 1556 do_generic_file_read(filp, ppos, &desc);
11fa977e
HD
1557 retval += desc.written;
1558 if (desc.error) {
1559 retval = retval ?: desc.error;
1560 break;
1da177e4 1561 }
11fa977e
HD
1562 if (desc.count > 0)
1563 break;
1da177e4
LT
1564 }
1565out:
1566 return retval;
1567}
1da177e4
LT
1568EXPORT_SYMBOL(generic_file_aio_read);
1569
1da177e4 1570#ifdef CONFIG_MMU
485bb99b
RD
1571/**
1572 * page_cache_read - adds requested page to the page cache if not already there
1573 * @file: file to read
1574 * @offset: page index
1575 *
1da177e4
LT
1576 * This adds the requested page to the page cache if it isn't already there,
1577 * and schedules an I/O to read in its contents from disk.
1578 */
920c7a5d 1579static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1580{
1581 struct address_space *mapping = file->f_mapping;
1582 struct page *page;
994fc28c 1583 int ret;
1da177e4 1584
994fc28c
ZB
1585 do {
1586 page = page_cache_alloc_cold(mapping);
1587 if (!page)
1588 return -ENOMEM;
1589
1590 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1591 if (ret == 0)
1592 ret = mapping->a_ops->readpage(file, page);
1593 else if (ret == -EEXIST)
1594 ret = 0; /* losing race to add is OK */
1da177e4 1595
1da177e4 1596 page_cache_release(page);
1da177e4 1597
994fc28c
ZB
1598 } while (ret == AOP_TRUNCATED_PAGE);
1599
1600 return ret;
1da177e4
LT
1601}
1602
1603#define MMAP_LOTSAMISS (100)
1604
ef00e08e
LT
1605/*
1606 * Synchronous readahead happens when we don't even find
1607 * a page in the page cache at all.
1608 */
1609static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1610 struct file_ra_state *ra,
1611 struct file *file,
1612 pgoff_t offset)
1613{
1614 unsigned long ra_pages;
1615 struct address_space *mapping = file->f_mapping;
1616
1617 /* If we don't want any read-ahead, don't bother */
64363aad 1618 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1619 return;
275b12bf
WF
1620 if (!ra->ra_pages)
1621 return;
ef00e08e 1622
64363aad 1623 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1624 page_cache_sync_readahead(mapping, ra, file, offset,
1625 ra->ra_pages);
ef00e08e
LT
1626 return;
1627 }
1628
207d04ba
AK
1629 /* Avoid banging the cache line if not needed */
1630 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1631 ra->mmap_miss++;
1632
1633 /*
1634 * Do we miss much more than hit in this file? If so,
1635 * stop bothering with read-ahead. It will only hurt.
1636 */
1637 if (ra->mmap_miss > MMAP_LOTSAMISS)
1638 return;
1639
d30a1100
WF
1640 /*
1641 * mmap read-around
1642 */
ef00e08e 1643 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1644 ra->start = max_t(long, 0, offset - ra_pages / 2);
1645 ra->size = ra_pages;
2cbea1d3 1646 ra->async_size = ra_pages / 4;
275b12bf 1647 ra_submit(ra, mapping, file);
ef00e08e
LT
1648}
1649
1650/*
1651 * Asynchronous readahead happens when we find the page and PG_readahead,
1652 * so we want to possibly extend the readahead further..
1653 */
1654static void do_async_mmap_readahead(struct vm_area_struct *vma,
1655 struct file_ra_state *ra,
1656 struct file *file,
1657 struct page *page,
1658 pgoff_t offset)
1659{
1660 struct address_space *mapping = file->f_mapping;
1661
1662 /* If we don't want any read-ahead, don't bother */
64363aad 1663 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1664 return;
1665 if (ra->mmap_miss > 0)
1666 ra->mmap_miss--;
1667 if (PageReadahead(page))
2fad6f5d
WF
1668 page_cache_async_readahead(mapping, ra, file,
1669 page, offset, ra->ra_pages);
ef00e08e
LT
1670}
1671
485bb99b 1672/**
54cb8821 1673 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1674 * @vma: vma in which the fault was taken
1675 * @vmf: struct vm_fault containing details of the fault
485bb99b 1676 *
54cb8821 1677 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1678 * mapped memory region to read in file data during a page fault.
1679 *
1680 * The goto's are kind of ugly, but this streamlines the normal case of having
1681 * it in the page cache, and handles the special cases reasonably without
1682 * having a lot of duplicated code.
1683 */
d0217ac0 1684int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1685{
1686 int error;
54cb8821 1687 struct file *file = vma->vm_file;
1da177e4
LT
1688 struct address_space *mapping = file->f_mapping;
1689 struct file_ra_state *ra = &file->f_ra;
1690 struct inode *inode = mapping->host;
ef00e08e 1691 pgoff_t offset = vmf->pgoff;
1da177e4 1692 struct page *page;
2004dc8e 1693 pgoff_t size;
83c54070 1694 int ret = 0;
1da177e4 1695
1da177e4 1696 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1697 if (offset >= size)
5307cc1a 1698 return VM_FAULT_SIGBUS;
1da177e4 1699
1da177e4 1700 /*
49426420 1701 * Do we have something in the page cache already?
1da177e4 1702 */
ef00e08e 1703 page = find_get_page(mapping, offset);
45cac65b 1704 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1705 /*
ef00e08e
LT
1706 * We found the page, so try async readahead before
1707 * waiting for the lock.
1da177e4 1708 */
ef00e08e 1709 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1710 } else if (!page) {
ef00e08e
LT
1711 /* No page in the page cache at all */
1712 do_sync_mmap_readahead(vma, ra, file, offset);
1713 count_vm_event(PGMAJFAULT);
456f998e 1714 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1715 ret = VM_FAULT_MAJOR;
1716retry_find:
b522c94d 1717 page = find_get_page(mapping, offset);
1da177e4
LT
1718 if (!page)
1719 goto no_cached_page;
1720 }
1721
d88c0922
ML
1722 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1723 page_cache_release(page);
d065bd81 1724 return ret | VM_FAULT_RETRY;
d88c0922 1725 }
b522c94d
ML
1726
1727 /* Did it get truncated? */
1728 if (unlikely(page->mapping != mapping)) {
1729 unlock_page(page);
1730 put_page(page);
1731 goto retry_find;
1732 }
309381fe 1733 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1734
1da177e4 1735 /*
d00806b1
NP
1736 * We have a locked page in the page cache, now we need to check
1737 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1738 */
d00806b1 1739 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1740 goto page_not_uptodate;
1741
ef00e08e
LT
1742 /*
1743 * Found the page and have a reference on it.
1744 * We must recheck i_size under page lock.
1745 */
d00806b1 1746 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1747 if (unlikely(offset >= size)) {
d00806b1 1748 unlock_page(page);
745ad48e 1749 page_cache_release(page);
5307cc1a 1750 return VM_FAULT_SIGBUS;
d00806b1
NP
1751 }
1752
d0217ac0 1753 vmf->page = page;
83c54070 1754 return ret | VM_FAULT_LOCKED;
1da177e4 1755
1da177e4
LT
1756no_cached_page:
1757 /*
1758 * We're only likely to ever get here if MADV_RANDOM is in
1759 * effect.
1760 */
ef00e08e 1761 error = page_cache_read(file, offset);
1da177e4
LT
1762
1763 /*
1764 * The page we want has now been added to the page cache.
1765 * In the unlikely event that someone removed it in the
1766 * meantime, we'll just come back here and read it again.
1767 */
1768 if (error >= 0)
1769 goto retry_find;
1770
1771 /*
1772 * An error return from page_cache_read can result if the
1773 * system is low on memory, or a problem occurs while trying
1774 * to schedule I/O.
1775 */
1776 if (error == -ENOMEM)
d0217ac0
NP
1777 return VM_FAULT_OOM;
1778 return VM_FAULT_SIGBUS;
1da177e4
LT
1779
1780page_not_uptodate:
1da177e4
LT
1781 /*
1782 * Umm, take care of errors if the page isn't up-to-date.
1783 * Try to re-read it _once_. We do this synchronously,
1784 * because there really aren't any performance issues here
1785 * and we need to check for errors.
1786 */
1da177e4 1787 ClearPageError(page);
994fc28c 1788 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1789 if (!error) {
1790 wait_on_page_locked(page);
1791 if (!PageUptodate(page))
1792 error = -EIO;
1793 }
d00806b1
NP
1794 page_cache_release(page);
1795
1796 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1797 goto retry_find;
1da177e4 1798
d00806b1 1799 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1800 shrink_readahead_size_eio(file, ra);
d0217ac0 1801 return VM_FAULT_SIGBUS;
54cb8821
NP
1802}
1803EXPORT_SYMBOL(filemap_fault);
1804
4fcf1c62
JK
1805int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1806{
1807 struct page *page = vmf->page;
496ad9aa 1808 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1809 int ret = VM_FAULT_LOCKED;
1810
14da9200 1811 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1812 file_update_time(vma->vm_file);
1813 lock_page(page);
1814 if (page->mapping != inode->i_mapping) {
1815 unlock_page(page);
1816 ret = VM_FAULT_NOPAGE;
1817 goto out;
1818 }
14da9200
JK
1819 /*
1820 * We mark the page dirty already here so that when freeze is in
1821 * progress, we are guaranteed that writeback during freezing will
1822 * see the dirty page and writeprotect it again.
1823 */
1824 set_page_dirty(page);
1d1d1a76 1825 wait_for_stable_page(page);
4fcf1c62 1826out:
14da9200 1827 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
1828 return ret;
1829}
1830EXPORT_SYMBOL(filemap_page_mkwrite);
1831
f0f37e2f 1832const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1833 .fault = filemap_fault,
4fcf1c62 1834 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 1835 .remap_pages = generic_file_remap_pages,
1da177e4
LT
1836};
1837
1838/* This is used for a general mmap of a disk file */
1839
1840int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1841{
1842 struct address_space *mapping = file->f_mapping;
1843
1844 if (!mapping->a_ops->readpage)
1845 return -ENOEXEC;
1846 file_accessed(file);
1847 vma->vm_ops = &generic_file_vm_ops;
1848 return 0;
1849}
1da177e4
LT
1850
1851/*
1852 * This is for filesystems which do not implement ->writepage.
1853 */
1854int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1855{
1856 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1857 return -EINVAL;
1858 return generic_file_mmap(file, vma);
1859}
1860#else
1861int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1862{
1863 return -ENOSYS;
1864}
1865int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1866{
1867 return -ENOSYS;
1868}
1869#endif /* CONFIG_MMU */
1870
1871EXPORT_SYMBOL(generic_file_mmap);
1872EXPORT_SYMBOL(generic_file_readonly_mmap);
1873
6fe6900e 1874static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1875 pgoff_t index,
5e5358e7 1876 int (*filler)(void *, struct page *),
0531b2aa
LT
1877 void *data,
1878 gfp_t gfp)
1da177e4 1879{
eb2be189 1880 struct page *page;
1da177e4
LT
1881 int err;
1882repeat:
1883 page = find_get_page(mapping, index);
1884 if (!page) {
0531b2aa 1885 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1886 if (!page)
1887 return ERR_PTR(-ENOMEM);
e6f67b8c 1888 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1889 if (unlikely(err)) {
1890 page_cache_release(page);
1891 if (err == -EEXIST)
1892 goto repeat;
1da177e4 1893 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1894 return ERR_PTR(err);
1895 }
1da177e4
LT
1896 err = filler(data, page);
1897 if (err < 0) {
1898 page_cache_release(page);
1899 page = ERR_PTR(err);
1900 }
1901 }
1da177e4
LT
1902 return page;
1903}
1904
0531b2aa 1905static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1906 pgoff_t index,
5e5358e7 1907 int (*filler)(void *, struct page *),
0531b2aa
LT
1908 void *data,
1909 gfp_t gfp)
1910
1da177e4
LT
1911{
1912 struct page *page;
1913 int err;
1914
1915retry:
0531b2aa 1916 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1917 if (IS_ERR(page))
c855ff37 1918 return page;
1da177e4
LT
1919 if (PageUptodate(page))
1920 goto out;
1921
1922 lock_page(page);
1923 if (!page->mapping) {
1924 unlock_page(page);
1925 page_cache_release(page);
1926 goto retry;
1927 }
1928 if (PageUptodate(page)) {
1929 unlock_page(page);
1930 goto out;
1931 }
1932 err = filler(data, page);
1933 if (err < 0) {
1934 page_cache_release(page);
c855ff37 1935 return ERR_PTR(err);
1da177e4 1936 }
c855ff37 1937out:
6fe6900e
NP
1938 mark_page_accessed(page);
1939 return page;
1940}
0531b2aa
LT
1941
1942/**
1943 * read_cache_page_async - read into page cache, fill it if needed
1944 * @mapping: the page's address_space
1945 * @index: the page index
1946 * @filler: function to perform the read
5e5358e7 1947 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1948 *
1949 * Same as read_cache_page, but don't wait for page to become unlocked
1950 * after submitting it to the filler.
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page but don't wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page_async(struct address_space *mapping,
1958 pgoff_t index,
5e5358e7 1959 int (*filler)(void *, struct page *),
0531b2aa
LT
1960 void *data)
1961{
1962 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1963}
6fe6900e
NP
1964EXPORT_SYMBOL(read_cache_page_async);
1965
0531b2aa
LT
1966static struct page *wait_on_page_read(struct page *page)
1967{
1968 if (!IS_ERR(page)) {
1969 wait_on_page_locked(page);
1970 if (!PageUptodate(page)) {
1971 page_cache_release(page);
1972 page = ERR_PTR(-EIO);
1973 }
1974 }
1975 return page;
1976}
1977
1978/**
1979 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1980 * @mapping: the page's address_space
1981 * @index: the page index
1982 * @gfp: the page allocator flags to use if allocating
1983 *
1984 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1985 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1986 *
1987 * If the page does not get brought uptodate, return -EIO.
1988 */
1989struct page *read_cache_page_gfp(struct address_space *mapping,
1990 pgoff_t index,
1991 gfp_t gfp)
1992{
1993 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1994
1995 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1996}
1997EXPORT_SYMBOL(read_cache_page_gfp);
1998
6fe6900e
NP
1999/**
2000 * read_cache_page - read into page cache, fill it if needed
2001 * @mapping: the page's address_space
2002 * @index: the page index
2003 * @filler: function to perform the read
5e5358e7 2004 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
2005 *
2006 * Read into the page cache. If a page already exists, and PageUptodate() is
2007 * not set, try to fill the page then wait for it to become unlocked.
2008 *
2009 * If the page does not get brought uptodate, return -EIO.
2010 */
2011struct page *read_cache_page(struct address_space *mapping,
57f6b96c 2012 pgoff_t index,
5e5358e7 2013 int (*filler)(void *, struct page *),
6fe6900e
NP
2014 void *data)
2015{
0531b2aa 2016 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 2017}
1da177e4
LT
2018EXPORT_SYMBOL(read_cache_page);
2019
2f718ffc 2020static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2021 const struct iovec *iov, size_t base, size_t bytes)
2022{
f1800536 2023 size_t copied = 0, left = 0;
1da177e4
LT
2024
2025 while (bytes) {
2026 char __user *buf = iov->iov_base + base;
2027 int copy = min(bytes, iov->iov_len - base);
2028
2029 base = 0;
f1800536 2030 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2031 copied += copy;
2032 bytes -= copy;
2033 vaddr += copy;
2034 iov++;
2035
01408c49 2036 if (unlikely(left))
1da177e4 2037 break;
1da177e4
LT
2038 }
2039 return copied - left;
2040}
2041
2f718ffc
NP
2042/*
2043 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2044 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2045 * bytes which were copied.
2046 */
2047size_t iov_iter_copy_from_user_atomic(struct page *page,
2048 struct iov_iter *i, unsigned long offset, size_t bytes)
2049{
2050 char *kaddr;
2051 size_t copied;
2052
2053 BUG_ON(!in_atomic());
9b04c5fe 2054 kaddr = kmap_atomic(page);
2f718ffc
NP
2055 if (likely(i->nr_segs == 1)) {
2056 int left;
2057 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2058 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2059 copied = bytes - left;
2060 } else {
2061 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2062 i->iov, i->iov_offset, bytes);
2063 }
9b04c5fe 2064 kunmap_atomic(kaddr);
2f718ffc
NP
2065
2066 return copied;
2067}
89e10787 2068EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2069
2070/*
2071 * This has the same sideeffects and return value as
2072 * iov_iter_copy_from_user_atomic().
2073 * The difference is that it attempts to resolve faults.
2074 * Page must not be locked.
2075 */
2076size_t iov_iter_copy_from_user(struct page *page,
2077 struct iov_iter *i, unsigned long offset, size_t bytes)
2078{
2079 char *kaddr;
2080 size_t copied;
2081
2082 kaddr = kmap(page);
2083 if (likely(i->nr_segs == 1)) {
2084 int left;
2085 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2086 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2087 copied = bytes - left;
2088 } else {
2089 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2090 i->iov, i->iov_offset, bytes);
2091 }
2092 kunmap(page);
2093 return copied;
2094}
89e10787 2095EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2096
f7009264 2097void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2098{
f7009264
NP
2099 BUG_ON(i->count < bytes);
2100
2f718ffc
NP
2101 if (likely(i->nr_segs == 1)) {
2102 i->iov_offset += bytes;
f7009264 2103 i->count -= bytes;
2f718ffc
NP
2104 } else {
2105 const struct iovec *iov = i->iov;
2106 size_t base = i->iov_offset;
39be79c1 2107 unsigned long nr_segs = i->nr_segs;
2f718ffc 2108
124d3b70
NP
2109 /*
2110 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2111 * zero-length segments (without overruning the iovec).
124d3b70 2112 */
94ad374a 2113 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2114 int copy;
2f718ffc 2115
f7009264
NP
2116 copy = min(bytes, iov->iov_len - base);
2117 BUG_ON(!i->count || i->count < copy);
2118 i->count -= copy;
2f718ffc
NP
2119 bytes -= copy;
2120 base += copy;
2121 if (iov->iov_len == base) {
2122 iov++;
39be79c1 2123 nr_segs--;
2f718ffc
NP
2124 base = 0;
2125 }
2126 }
2127 i->iov = iov;
2128 i->iov_offset = base;
39be79c1 2129 i->nr_segs = nr_segs;
2f718ffc
NP
2130 }
2131}
89e10787 2132EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2133
afddba49
NP
2134/*
2135 * Fault in the first iovec of the given iov_iter, to a maximum length
2136 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2137 * accessed (ie. because it is an invalid address).
2138 *
2139 * writev-intensive code may want this to prefault several iovecs -- that
2140 * would be possible (callers must not rely on the fact that _only_ the
2141 * first iovec will be faulted with the current implementation).
2142 */
2143int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2144{
2f718ffc 2145 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2146 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2147 return fault_in_pages_readable(buf, bytes);
2f718ffc 2148}
89e10787 2149EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2150
2151/*
2152 * Return the count of just the current iov_iter segment.
2153 */
d28574e0 2154size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2155{
2156 const struct iovec *iov = i->iov;
2157 if (i->nr_segs == 1)
2158 return i->count;
2159 else
2160 return min(i->count, iov->iov_len - i->iov_offset);
2161}
89e10787 2162EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2163
1da177e4
LT
2164/*
2165 * Performs necessary checks before doing a write
2166 *
485bb99b 2167 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2168 * Returns appropriate error code that caller should return or
2169 * zero in case that write should be allowed.
2170 */
2171inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2172{
2173 struct inode *inode = file->f_mapping->host;
59e99e5b 2174 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2175
2176 if (unlikely(*pos < 0))
2177 return -EINVAL;
2178
1da177e4
LT
2179 if (!isblk) {
2180 /* FIXME: this is for backwards compatibility with 2.4 */
2181 if (file->f_flags & O_APPEND)
2182 *pos = i_size_read(inode);
2183
2184 if (limit != RLIM_INFINITY) {
2185 if (*pos >= limit) {
2186 send_sig(SIGXFSZ, current, 0);
2187 return -EFBIG;
2188 }
2189 if (*count > limit - (typeof(limit))*pos) {
2190 *count = limit - (typeof(limit))*pos;
2191 }
2192 }
2193 }
2194
2195 /*
2196 * LFS rule
2197 */
2198 if (unlikely(*pos + *count > MAX_NON_LFS &&
2199 !(file->f_flags & O_LARGEFILE))) {
2200 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2201 return -EFBIG;
2202 }
2203 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2204 *count = MAX_NON_LFS - (unsigned long)*pos;
2205 }
2206 }
2207
2208 /*
2209 * Are we about to exceed the fs block limit ?
2210 *
2211 * If we have written data it becomes a short write. If we have
2212 * exceeded without writing data we send a signal and return EFBIG.
2213 * Linus frestrict idea will clean these up nicely..
2214 */
2215 if (likely(!isblk)) {
2216 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2217 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2218 return -EFBIG;
2219 }
2220 /* zero-length writes at ->s_maxbytes are OK */
2221 }
2222
2223 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2224 *count = inode->i_sb->s_maxbytes - *pos;
2225 } else {
9361401e 2226#ifdef CONFIG_BLOCK
1da177e4
LT
2227 loff_t isize;
2228 if (bdev_read_only(I_BDEV(inode)))
2229 return -EPERM;
2230 isize = i_size_read(inode);
2231 if (*pos >= isize) {
2232 if (*count || *pos > isize)
2233 return -ENOSPC;
2234 }
2235
2236 if (*pos + *count > isize)
2237 *count = isize - *pos;
9361401e
DH
2238#else
2239 return -EPERM;
2240#endif
1da177e4
LT
2241 }
2242 return 0;
2243}
2244EXPORT_SYMBOL(generic_write_checks);
2245
afddba49
NP
2246int pagecache_write_begin(struct file *file, struct address_space *mapping,
2247 loff_t pos, unsigned len, unsigned flags,
2248 struct page **pagep, void **fsdata)
2249{
2250 const struct address_space_operations *aops = mapping->a_ops;
2251
4e02ed4b 2252 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2253 pagep, fsdata);
afddba49
NP
2254}
2255EXPORT_SYMBOL(pagecache_write_begin);
2256
2257int pagecache_write_end(struct file *file, struct address_space *mapping,
2258 loff_t pos, unsigned len, unsigned copied,
2259 struct page *page, void *fsdata)
2260{
2261 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2262
4e02ed4b
NP
2263 mark_page_accessed(page);
2264 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2265}
2266EXPORT_SYMBOL(pagecache_write_end);
2267
1da177e4
LT
2268ssize_t
2269generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2270 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2271 size_t count, size_t ocount)
2272{
2273 struct file *file = iocb->ki_filp;
2274 struct address_space *mapping = file->f_mapping;
2275 struct inode *inode = mapping->host;
2276 ssize_t written;
a969e903
CH
2277 size_t write_len;
2278 pgoff_t end;
1da177e4
LT
2279
2280 if (count != ocount)
2281 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2282
a969e903
CH
2283 write_len = iov_length(iov, *nr_segs);
2284 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2285
48b47c56 2286 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2287 if (written)
2288 goto out;
2289
2290 /*
2291 * After a write we want buffered reads to be sure to go to disk to get
2292 * the new data. We invalidate clean cached page from the region we're
2293 * about to write. We do this *before* the write so that we can return
6ccfa806 2294 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2295 */
2296 if (mapping->nrpages) {
2297 written = invalidate_inode_pages2_range(mapping,
2298 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2299 /*
2300 * If a page can not be invalidated, return 0 to fall back
2301 * to buffered write.
2302 */
2303 if (written) {
2304 if (written == -EBUSY)
2305 return 0;
a969e903 2306 goto out;
6ccfa806 2307 }
a969e903
CH
2308 }
2309
2310 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2311
2312 /*
2313 * Finally, try again to invalidate clean pages which might have been
2314 * cached by non-direct readahead, or faulted in by get_user_pages()
2315 * if the source of the write was an mmap'ed region of the file
2316 * we're writing. Either one is a pretty crazy thing to do,
2317 * so we don't support it 100%. If this invalidation
2318 * fails, tough, the write still worked...
2319 */
2320 if (mapping->nrpages) {
2321 invalidate_inode_pages2_range(mapping,
2322 pos >> PAGE_CACHE_SHIFT, end);
2323 }
2324
1da177e4 2325 if (written > 0) {
0116651c
NK
2326 pos += written;
2327 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2328 i_size_write(inode, pos);
1da177e4
LT
2329 mark_inode_dirty(inode);
2330 }
0116651c 2331 *ppos = pos;
1da177e4 2332 }
a969e903 2333out:
1da177e4
LT
2334 return written;
2335}
2336EXPORT_SYMBOL(generic_file_direct_write);
2337
eb2be189
NP
2338/*
2339 * Find or create a page at the given pagecache position. Return the locked
2340 * page. This function is specifically for buffered writes.
2341 */
54566b2c
NP
2342struct page *grab_cache_page_write_begin(struct address_space *mapping,
2343 pgoff_t index, unsigned flags)
eb2be189
NP
2344{
2345 int status;
0faa70cb 2346 gfp_t gfp_mask;
eb2be189 2347 struct page *page;
54566b2c 2348 gfp_t gfp_notmask = 0;
0faa70cb 2349
1010bb1b
FW
2350 gfp_mask = mapping_gfp_mask(mapping);
2351 if (mapping_cap_account_dirty(mapping))
2352 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2353 if (flags & AOP_FLAG_NOFS)
2354 gfp_notmask = __GFP_FS;
eb2be189
NP
2355repeat:
2356 page = find_lock_page(mapping, index);
c585a267 2357 if (page)
3d08bcc8 2358 goto found;
eb2be189 2359
0faa70cb 2360 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2361 if (!page)
2362 return NULL;
54566b2c
NP
2363 status = add_to_page_cache_lru(page, mapping, index,
2364 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2365 if (unlikely(status)) {
2366 page_cache_release(page);
2367 if (status == -EEXIST)
2368 goto repeat;
2369 return NULL;
2370 }
3d08bcc8 2371found:
1d1d1a76 2372 wait_for_stable_page(page);
eb2be189
NP
2373 return page;
2374}
54566b2c 2375EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2376
afddba49
NP
2377static ssize_t generic_perform_write(struct file *file,
2378 struct iov_iter *i, loff_t pos)
2379{
2380 struct address_space *mapping = file->f_mapping;
2381 const struct address_space_operations *a_ops = mapping->a_ops;
2382 long status = 0;
2383 ssize_t written = 0;
674b892e
NP
2384 unsigned int flags = 0;
2385
2386 /*
2387 * Copies from kernel address space cannot fail (NFSD is a big user).
2388 */
2389 if (segment_eq(get_fs(), KERNEL_DS))
2390 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2391
2392 do {
2393 struct page *page;
afddba49
NP
2394 unsigned long offset; /* Offset into pagecache page */
2395 unsigned long bytes; /* Bytes to write to page */
2396 size_t copied; /* Bytes copied from user */
2397 void *fsdata;
2398
2399 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2400 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2401 iov_iter_count(i));
2402
2403again:
afddba49
NP
2404 /*
2405 * Bring in the user page that we will copy from _first_.
2406 * Otherwise there's a nasty deadlock on copying from the
2407 * same page as we're writing to, without it being marked
2408 * up-to-date.
2409 *
2410 * Not only is this an optimisation, but it is also required
2411 * to check that the address is actually valid, when atomic
2412 * usercopies are used, below.
2413 */
2414 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2415 status = -EFAULT;
2416 break;
2417 }
2418
674b892e 2419 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2420 &page, &fsdata);
2421 if (unlikely(status))
2422 break;
2423
931e80e4 2424 if (mapping_writably_mapped(mapping))
2425 flush_dcache_page(page);
2426
afddba49
NP
2427 pagefault_disable();
2428 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2429 pagefault_enable();
2430 flush_dcache_page(page);
2431
c8236db9 2432 mark_page_accessed(page);
afddba49
NP
2433 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2434 page, fsdata);
2435 if (unlikely(status < 0))
2436 break;
2437 copied = status;
2438
2439 cond_resched();
2440
124d3b70 2441 iov_iter_advance(i, copied);
afddba49
NP
2442 if (unlikely(copied == 0)) {
2443 /*
2444 * If we were unable to copy any data at all, we must
2445 * fall back to a single segment length write.
2446 *
2447 * If we didn't fallback here, we could livelock
2448 * because not all segments in the iov can be copied at
2449 * once without a pagefault.
2450 */
2451 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2452 iov_iter_single_seg_count(i));
2453 goto again;
2454 }
afddba49
NP
2455 pos += copied;
2456 written += copied;
2457
2458 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2459 if (fatal_signal_pending(current)) {
2460 status = -EINTR;
2461 break;
2462 }
afddba49
NP
2463 } while (iov_iter_count(i));
2464
2465 return written ? written : status;
2466}
2467
2468ssize_t
2469generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2470 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2471 size_t count, ssize_t written)
2472{
2473 struct file *file = iocb->ki_filp;
afddba49
NP
2474 ssize_t status;
2475 struct iov_iter i;
2476
2477 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2478 status = generic_perform_write(file, &i, pos);
1da177e4 2479
1da177e4 2480 if (likely(status >= 0)) {
afddba49
NP
2481 written += status;
2482 *ppos = pos + status;
1da177e4
LT
2483 }
2484
1da177e4
LT
2485 return written ? written : status;
2486}
2487EXPORT_SYMBOL(generic_file_buffered_write);
2488
e4dd9de3
JK
2489/**
2490 * __generic_file_aio_write - write data to a file
2491 * @iocb: IO state structure (file, offset, etc.)
2492 * @iov: vector with data to write
2493 * @nr_segs: number of segments in the vector
2494 * @ppos: position where to write
2495 *
2496 * This function does all the work needed for actually writing data to a
2497 * file. It does all basic checks, removes SUID from the file, updates
2498 * modification times and calls proper subroutines depending on whether we
2499 * do direct IO or a standard buffered write.
2500 *
2501 * It expects i_mutex to be grabbed unless we work on a block device or similar
2502 * object which does not need locking at all.
2503 *
2504 * This function does *not* take care of syncing data in case of O_SYNC write.
2505 * A caller has to handle it. This is mainly due to the fact that we want to
2506 * avoid syncing under i_mutex.
2507 */
2508ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2509 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2510{
2511 struct file *file = iocb->ki_filp;
fb5527e6 2512 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2513 size_t ocount; /* original count */
2514 size_t count; /* after file limit checks */
2515 struct inode *inode = mapping->host;
1da177e4
LT
2516 loff_t pos;
2517 ssize_t written;
2518 ssize_t err;
2519
2520 ocount = 0;
0ceb3314
DM
2521 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2522 if (err)
2523 return err;
1da177e4
LT
2524
2525 count = ocount;
2526 pos = *ppos;
2527
1da177e4
LT
2528 /* We can write back this queue in page reclaim */
2529 current->backing_dev_info = mapping->backing_dev_info;
2530 written = 0;
2531
2532 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2533 if (err)
2534 goto out;
2535
2536 if (count == 0)
2537 goto out;
2538
2f1936b8 2539 err = file_remove_suid(file);
1da177e4
LT
2540 if (err)
2541 goto out;
2542
c3b2da31
JB
2543 err = file_update_time(file);
2544 if (err)
2545 goto out;
1da177e4
LT
2546
2547 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2548 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2549 loff_t endbyte;
2550 ssize_t written_buffered;
2551
2552 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2553 ppos, count, ocount);
1da177e4
LT
2554 if (written < 0 || written == count)
2555 goto out;
2556 /*
2557 * direct-io write to a hole: fall through to buffered I/O
2558 * for completing the rest of the request.
2559 */
2560 pos += written;
2561 count -= written;
fb5527e6
JM
2562 written_buffered = generic_file_buffered_write(iocb, iov,
2563 nr_segs, pos, ppos, count,
2564 written);
2565 /*
2566 * If generic_file_buffered_write() retuned a synchronous error
2567 * then we want to return the number of bytes which were
2568 * direct-written, or the error code if that was zero. Note
2569 * that this differs from normal direct-io semantics, which
2570 * will return -EFOO even if some bytes were written.
2571 */
2572 if (written_buffered < 0) {
2573 err = written_buffered;
2574 goto out;
2575 }
1da177e4 2576
fb5527e6
JM
2577 /*
2578 * We need to ensure that the page cache pages are written to
2579 * disk and invalidated to preserve the expected O_DIRECT
2580 * semantics.
2581 */
2582 endbyte = pos + written_buffered - written - 1;
c05c4edd 2583 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2584 if (err == 0) {
2585 written = written_buffered;
2586 invalidate_mapping_pages(mapping,
2587 pos >> PAGE_CACHE_SHIFT,
2588 endbyte >> PAGE_CACHE_SHIFT);
2589 } else {
2590 /*
2591 * We don't know how much we wrote, so just return
2592 * the number of bytes which were direct-written
2593 */
2594 }
2595 } else {
2596 written = generic_file_buffered_write(iocb, iov, nr_segs,
2597 pos, ppos, count, written);
2598 }
1da177e4
LT
2599out:
2600 current->backing_dev_info = NULL;
2601 return written ? written : err;
2602}
e4dd9de3
JK
2603EXPORT_SYMBOL(__generic_file_aio_write);
2604
e4dd9de3
JK
2605/**
2606 * generic_file_aio_write - write data to a file
2607 * @iocb: IO state structure
2608 * @iov: vector with data to write
2609 * @nr_segs: number of segments in the vector
2610 * @pos: position in file where to write
2611 *
2612 * This is a wrapper around __generic_file_aio_write() to be used by most
2613 * filesystems. It takes care of syncing the file in case of O_SYNC file
2614 * and acquires i_mutex as needed.
2615 */
027445c3
BP
2616ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2617 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2618{
2619 struct file *file = iocb->ki_filp;
148f948b 2620 struct inode *inode = file->f_mapping->host;
1da177e4 2621 ssize_t ret;
1da177e4
LT
2622
2623 BUG_ON(iocb->ki_pos != pos);
2624
1b1dcc1b 2625 mutex_lock(&inode->i_mutex);
e4dd9de3 2626 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2627 mutex_unlock(&inode->i_mutex);
1da177e4 2628
02afc27f 2629 if (ret > 0) {
1da177e4
LT
2630 ssize_t err;
2631
d311d79d
AV
2632 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2633 if (err < 0)
1da177e4
LT
2634 ret = err;
2635 }
2636 return ret;
2637}
2638EXPORT_SYMBOL(generic_file_aio_write);
2639
cf9a2ae8
DH
2640/**
2641 * try_to_release_page() - release old fs-specific metadata on a page
2642 *
2643 * @page: the page which the kernel is trying to free
2644 * @gfp_mask: memory allocation flags (and I/O mode)
2645 *
2646 * The address_space is to try to release any data against the page
2647 * (presumably at page->private). If the release was successful, return `1'.
2648 * Otherwise return zero.
2649 *
266cf658
DH
2650 * This may also be called if PG_fscache is set on a page, indicating that the
2651 * page is known to the local caching routines.
2652 *
cf9a2ae8 2653 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2654 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2655 *
cf9a2ae8
DH
2656 */
2657int try_to_release_page(struct page *page, gfp_t gfp_mask)
2658{
2659 struct address_space * const mapping = page->mapping;
2660
2661 BUG_ON(!PageLocked(page));
2662 if (PageWriteback(page))
2663 return 0;
2664
2665 if (mapping && mapping->a_ops->releasepage)
2666 return mapping->a_ops->releasepage(page, gfp_mask);
2667 return try_to_free_buffers(page);
2668}
2669
2670EXPORT_SYMBOL(try_to_release_page);
This page took 1.281427 seconds and 5 git commands to generate.