mm: numa: Introduce last_nid to the page frame
[deliverable/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
4daae3b4 21#include <linux/migrate.h>
71e3aac0
AA
22#include <asm/tlb.h>
23#include <asm/pgalloc.h>
24#include "internal.h"
25
ba76149f
AA
26/*
27 * By default transparent hugepage support is enabled for all mappings
28 * and khugepaged scans all mappings. Defrag is only invoked by
29 * khugepaged hugepage allocations and by page faults inside
30 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31 * allocations.
32 */
71e3aac0 33unsigned long transparent_hugepage_flags __read_mostly =
13ece886 34#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 35 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
36#endif
37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
38 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
39#endif
d39d33c3 40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
41 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
42
43/* default scan 8*512 pte (or vmas) every 30 second */
44static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
45static unsigned int khugepaged_pages_collapsed;
46static unsigned int khugepaged_full_scans;
47static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
48/* during fragmentation poll the hugepage allocator once every minute */
49static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
50static struct task_struct *khugepaged_thread __read_mostly;
51static DEFINE_MUTEX(khugepaged_mutex);
52static DEFINE_SPINLOCK(khugepaged_mm_lock);
53static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54/*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61static int khugepaged(void *none);
62static int mm_slots_hash_init(void);
63static int khugepaged_slab_init(void);
64static void khugepaged_slab_free(void);
65
66#define MM_SLOTS_HASH_HEADS 1024
67static struct hlist_head *mm_slots_hash __read_mostly;
68static struct kmem_cache *mm_slot_cache __read_mostly;
69
70/**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80};
81
82/**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
2f1da642
HS
94};
95static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97};
98
f000565a
AA
99
100static int set_recommended_min_free_kbytes(void)
101{
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
17c230af 107 if (!khugepaged_enabled())
f000565a
AA
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
ba76149f
AA
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
ba76149f
AA
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
911891af
XG
150
151 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 152 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
153
154 set_recommended_min_free_kbytes();
911891af 155 } else if (khugepaged_thread) {
911891af
XG
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
637e3a27 159
ba76149f
AA
160 return err;
161}
71e3aac0
AA
162
163#ifdef CONFIG_SYSFS
ba76149f 164
71e3aac0
AA
165static ssize_t double_flag_show(struct kobject *kobj,
166 struct kobj_attribute *attr, char *buf,
167 enum transparent_hugepage_flag enabled,
168 enum transparent_hugepage_flag req_madv)
169{
170 if (test_bit(enabled, &transparent_hugepage_flags)) {
171 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
172 return sprintf(buf, "[always] madvise never\n");
173 } else if (test_bit(req_madv, &transparent_hugepage_flags))
174 return sprintf(buf, "always [madvise] never\n");
175 else
176 return sprintf(buf, "always madvise [never]\n");
177}
178static ssize_t double_flag_store(struct kobject *kobj,
179 struct kobj_attribute *attr,
180 const char *buf, size_t count,
181 enum transparent_hugepage_flag enabled,
182 enum transparent_hugepage_flag req_madv)
183{
184 if (!memcmp("always", buf,
185 min(sizeof("always")-1, count))) {
186 set_bit(enabled, &transparent_hugepage_flags);
187 clear_bit(req_madv, &transparent_hugepage_flags);
188 } else if (!memcmp("madvise", buf,
189 min(sizeof("madvise")-1, count))) {
190 clear_bit(enabled, &transparent_hugepage_flags);
191 set_bit(req_madv, &transparent_hugepage_flags);
192 } else if (!memcmp("never", buf,
193 min(sizeof("never")-1, count))) {
194 clear_bit(enabled, &transparent_hugepage_flags);
195 clear_bit(req_madv, &transparent_hugepage_flags);
196 } else
197 return -EINVAL;
198
199 return count;
200}
201
202static ssize_t enabled_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf)
204{
205 return double_flag_show(kobj, attr, buf,
206 TRANSPARENT_HUGEPAGE_FLAG,
207 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
208}
209static ssize_t enabled_store(struct kobject *kobj,
210 struct kobj_attribute *attr,
211 const char *buf, size_t count)
212{
ba76149f
AA
213 ssize_t ret;
214
215 ret = double_flag_store(kobj, attr, buf, count,
216 TRANSPARENT_HUGEPAGE_FLAG,
217 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
218
219 if (ret > 0) {
911891af
XG
220 int err;
221
222 mutex_lock(&khugepaged_mutex);
223 err = start_khugepaged();
224 mutex_unlock(&khugepaged_mutex);
225
ba76149f
AA
226 if (err)
227 ret = err;
228 }
229
230 return ret;
71e3aac0
AA
231}
232static struct kobj_attribute enabled_attr =
233 __ATTR(enabled, 0644, enabled_show, enabled_store);
234
235static ssize_t single_flag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf,
237 enum transparent_hugepage_flag flag)
238{
e27e6151
BH
239 return sprintf(buf, "%d\n",
240 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 241}
e27e6151 242
71e3aac0
AA
243static ssize_t single_flag_store(struct kobject *kobj,
244 struct kobj_attribute *attr,
245 const char *buf, size_t count,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 unsigned long value;
249 int ret;
250
251 ret = kstrtoul(buf, 10, &value);
252 if (ret < 0)
253 return ret;
254 if (value > 1)
255 return -EINVAL;
256
257 if (value)
71e3aac0 258 set_bit(flag, &transparent_hugepage_flags);
e27e6151 259 else
71e3aac0 260 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
261
262 return count;
263}
264
265/*
266 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
267 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
268 * memory just to allocate one more hugepage.
269 */
270static ssize_t defrag_show(struct kobject *kobj,
271 struct kobj_attribute *attr, char *buf)
272{
273 return double_flag_show(kobj, attr, buf,
274 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
275 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
276}
277static ssize_t defrag_store(struct kobject *kobj,
278 struct kobj_attribute *attr,
279 const char *buf, size_t count)
280{
281 return double_flag_store(kobj, attr, buf, count,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static struct kobj_attribute defrag_attr =
286 __ATTR(defrag, 0644, defrag_show, defrag_store);
287
288#ifdef CONFIG_DEBUG_VM
289static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
292 return single_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294}
295static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298{
299 return single_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301}
302static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304#endif /* CONFIG_DEBUG_VM */
305
306static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309#ifdef CONFIG_DEBUG_VM
310 &debug_cow_attr.attr,
311#endif
312 NULL,
313};
314
315static struct attribute_group hugepage_attr_group = {
316 .attrs = hugepage_attr,
ba76149f
AA
317};
318
319static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 char *buf)
322{
323 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
324}
325
326static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
327 struct kobj_attribute *attr,
328 const char *buf, size_t count)
329{
330 unsigned long msecs;
331 int err;
332
333 err = strict_strtoul(buf, 10, &msecs);
334 if (err || msecs > UINT_MAX)
335 return -EINVAL;
336
337 khugepaged_scan_sleep_millisecs = msecs;
338 wake_up_interruptible(&khugepaged_wait);
339
340 return count;
341}
342static struct kobj_attribute scan_sleep_millisecs_attr =
343 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
344 scan_sleep_millisecs_store);
345
346static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 char *buf)
349{
350 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
351}
352
353static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 const char *buf, size_t count)
356{
357 unsigned long msecs;
358 int err;
359
360 err = strict_strtoul(buf, 10, &msecs);
361 if (err || msecs > UINT_MAX)
362 return -EINVAL;
363
364 khugepaged_alloc_sleep_millisecs = msecs;
365 wake_up_interruptible(&khugepaged_wait);
366
367 return count;
368}
369static struct kobj_attribute alloc_sleep_millisecs_attr =
370 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
371 alloc_sleep_millisecs_store);
372
373static ssize_t pages_to_scan_show(struct kobject *kobj,
374 struct kobj_attribute *attr,
375 char *buf)
376{
377 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
378}
379static ssize_t pages_to_scan_store(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 const char *buf, size_t count)
382{
383 int err;
384 unsigned long pages;
385
386 err = strict_strtoul(buf, 10, &pages);
387 if (err || !pages || pages > UINT_MAX)
388 return -EINVAL;
389
390 khugepaged_pages_to_scan = pages;
391
392 return count;
393}
394static struct kobj_attribute pages_to_scan_attr =
395 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
396 pages_to_scan_store);
397
398static ssize_t pages_collapsed_show(struct kobject *kobj,
399 struct kobj_attribute *attr,
400 char *buf)
401{
402 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
403}
404static struct kobj_attribute pages_collapsed_attr =
405 __ATTR_RO(pages_collapsed);
406
407static ssize_t full_scans_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_full_scans);
412}
413static struct kobj_attribute full_scans_attr =
414 __ATTR_RO(full_scans);
415
416static ssize_t khugepaged_defrag_show(struct kobject *kobj,
417 struct kobj_attribute *attr, char *buf)
418{
419 return single_flag_show(kobj, attr, buf,
420 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
421}
422static ssize_t khugepaged_defrag_store(struct kobject *kobj,
423 struct kobj_attribute *attr,
424 const char *buf, size_t count)
425{
426 return single_flag_store(kobj, attr, buf, count,
427 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
428}
429static struct kobj_attribute khugepaged_defrag_attr =
430 __ATTR(defrag, 0644, khugepaged_defrag_show,
431 khugepaged_defrag_store);
432
433/*
434 * max_ptes_none controls if khugepaged should collapse hugepages over
435 * any unmapped ptes in turn potentially increasing the memory
436 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
437 * reduce the available free memory in the system as it
438 * runs. Increasing max_ptes_none will instead potentially reduce the
439 * free memory in the system during the khugepaged scan.
440 */
441static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
446}
447static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 const char *buf, size_t count)
450{
451 int err;
452 unsigned long max_ptes_none;
453
454 err = strict_strtoul(buf, 10, &max_ptes_none);
455 if (err || max_ptes_none > HPAGE_PMD_NR-1)
456 return -EINVAL;
457
458 khugepaged_max_ptes_none = max_ptes_none;
459
460 return count;
461}
462static struct kobj_attribute khugepaged_max_ptes_none_attr =
463 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
464 khugepaged_max_ptes_none_store);
465
466static struct attribute *khugepaged_attr[] = {
467 &khugepaged_defrag_attr.attr,
468 &khugepaged_max_ptes_none_attr.attr,
469 &pages_to_scan_attr.attr,
470 &pages_collapsed_attr.attr,
471 &full_scans_attr.attr,
472 &scan_sleep_millisecs_attr.attr,
473 &alloc_sleep_millisecs_attr.attr,
474 NULL,
475};
476
477static struct attribute_group khugepaged_attr_group = {
478 .attrs = khugepaged_attr,
479 .name = "khugepaged",
71e3aac0 480};
71e3aac0 481
569e5590 482static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 483{
71e3aac0
AA
484 int err;
485
569e5590
SL
486 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
487 if (unlikely(!*hugepage_kobj)) {
ba76149f 488 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 489 return -ENOMEM;
ba76149f
AA
490 }
491
569e5590 492 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
493 if (err) {
494 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 495 goto delete_obj;
ba76149f
AA
496 }
497
569e5590 498 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
499 if (err) {
500 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 501 goto remove_hp_group;
ba76149f 502 }
569e5590
SL
503
504 return 0;
505
506remove_hp_group:
507 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
508delete_obj:
509 kobject_put(*hugepage_kobj);
510 return err;
511}
512
513static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
514{
515 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
516 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
517 kobject_put(hugepage_kobj);
518}
519#else
520static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
521{
522 return 0;
523}
524
525static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
526{
527}
528#endif /* CONFIG_SYSFS */
529
530static int __init hugepage_init(void)
531{
532 int err;
533 struct kobject *hugepage_kobj;
534
535 if (!has_transparent_hugepage()) {
536 transparent_hugepage_flags = 0;
537 return -EINVAL;
538 }
539
540 err = hugepage_init_sysfs(&hugepage_kobj);
541 if (err)
542 return err;
ba76149f
AA
543
544 err = khugepaged_slab_init();
545 if (err)
546 goto out;
547
548 err = mm_slots_hash_init();
549 if (err) {
550 khugepaged_slab_free();
551 goto out;
552 }
553
97562cd2
RR
554 /*
555 * By default disable transparent hugepages on smaller systems,
556 * where the extra memory used could hurt more than TLB overhead
557 * is likely to save. The admin can still enable it through /sys.
558 */
559 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
560 transparent_hugepage_flags = 0;
561
ba76149f
AA
562 start_khugepaged();
563
569e5590 564 return 0;
ba76149f 565out:
569e5590 566 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 567 return err;
71e3aac0
AA
568}
569module_init(hugepage_init)
570
571static int __init setup_transparent_hugepage(char *str)
572{
573 int ret = 0;
574 if (!str)
575 goto out;
576 if (!strcmp(str, "always")) {
577 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
578 &transparent_hugepage_flags);
579 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
580 &transparent_hugepage_flags);
581 ret = 1;
582 } else if (!strcmp(str, "madvise")) {
583 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
584 &transparent_hugepage_flags);
585 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
586 &transparent_hugepage_flags);
587 ret = 1;
588 } else if (!strcmp(str, "never")) {
589 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
590 &transparent_hugepage_flags);
591 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
592 &transparent_hugepage_flags);
593 ret = 1;
594 }
595out:
596 if (!ret)
597 printk(KERN_WARNING
598 "transparent_hugepage= cannot parse, ignored\n");
599 return ret;
600}
601__setup("transparent_hugepage=", setup_transparent_hugepage);
602
71e3aac0
AA
603static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
604{
605 if (likely(vma->vm_flags & VM_WRITE))
606 pmd = pmd_mkwrite(pmd);
607 return pmd;
608}
609
610static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
611 struct vm_area_struct *vma,
612 unsigned long haddr, pmd_t *pmd,
613 struct page *page)
614{
71e3aac0
AA
615 pgtable_t pgtable;
616
617 VM_BUG_ON(!PageCompound(page));
618 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 619 if (unlikely(!pgtable))
71e3aac0 620 return VM_FAULT_OOM;
71e3aac0
AA
621
622 clear_huge_page(page, haddr, HPAGE_PMD_NR);
623 __SetPageUptodate(page);
624
625 spin_lock(&mm->page_table_lock);
626 if (unlikely(!pmd_none(*pmd))) {
627 spin_unlock(&mm->page_table_lock);
b9bbfbe3 628 mem_cgroup_uncharge_page(page);
71e3aac0
AA
629 put_page(page);
630 pte_free(mm, pgtable);
631 } else {
632 pmd_t entry;
633 entry = mk_pmd(page, vma->vm_page_prot);
634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635 entry = pmd_mkhuge(entry);
636 /*
637 * The spinlocking to take the lru_lock inside
638 * page_add_new_anon_rmap() acts as a full memory
639 * barrier to be sure clear_huge_page writes become
640 * visible after the set_pmd_at() write.
641 */
642 page_add_new_anon_rmap(page, vma, haddr);
643 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 644 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 645 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 646 mm->nr_ptes++;
71e3aac0
AA
647 spin_unlock(&mm->page_table_lock);
648 }
649
aa2e878e 650 return 0;
71e3aac0
AA
651}
652
cc5d462f 653static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 654{
cc5d462f 655 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
656}
657
658static inline struct page *alloc_hugepage_vma(int defrag,
659 struct vm_area_struct *vma,
cc5d462f
AK
660 unsigned long haddr, int nd,
661 gfp_t extra_gfp)
0bbbc0b3 662{
cc5d462f 663 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 664 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
665}
666
667#ifndef CONFIG_NUMA
71e3aac0
AA
668static inline struct page *alloc_hugepage(int defrag)
669{
cc5d462f 670 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
671 HPAGE_PMD_ORDER);
672}
0bbbc0b3 673#endif
71e3aac0
AA
674
675int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
676 unsigned long address, pmd_t *pmd,
677 unsigned int flags)
678{
679 struct page *page;
680 unsigned long haddr = address & HPAGE_PMD_MASK;
681 pte_t *pte;
682
683 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
684 if (unlikely(anon_vma_prepare(vma)))
685 return VM_FAULT_OOM;
ba76149f
AA
686 if (unlikely(khugepaged_enter(vma)))
687 return VM_FAULT_OOM;
0bbbc0b3 688 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 689 vma, haddr, numa_node_id(), 0);
81ab4201
AK
690 if (unlikely(!page)) {
691 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 692 goto out;
81ab4201
AK
693 }
694 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
695 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
696 put_page(page);
697 goto out;
698 }
edad9d2c
DR
699 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
700 page))) {
701 mem_cgroup_uncharge_page(page);
702 put_page(page);
703 goto out;
704 }
71e3aac0 705
edad9d2c 706 return 0;
71e3aac0
AA
707 }
708out:
709 /*
710 * Use __pte_alloc instead of pte_alloc_map, because we can't
711 * run pte_offset_map on the pmd, if an huge pmd could
712 * materialize from under us from a different thread.
713 */
4fd01770
MG
714 if (unlikely(pmd_none(*pmd)) &&
715 unlikely(__pte_alloc(mm, vma, pmd, address)))
71e3aac0
AA
716 return VM_FAULT_OOM;
717 /* if an huge pmd materialized from under us just retry later */
718 if (unlikely(pmd_trans_huge(*pmd)))
719 return 0;
720 /*
721 * A regular pmd is established and it can't morph into a huge pmd
722 * from under us anymore at this point because we hold the mmap_sem
723 * read mode and khugepaged takes it in write mode. So now it's
724 * safe to run pte_offset_map().
725 */
726 pte = pte_offset_map(pmd, address);
727 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
728}
729
730int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
731 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
732 struct vm_area_struct *vma)
733{
734 struct page *src_page;
735 pmd_t pmd;
736 pgtable_t pgtable;
737 int ret;
738
739 ret = -ENOMEM;
740 pgtable = pte_alloc_one(dst_mm, addr);
741 if (unlikely(!pgtable))
742 goto out;
743
744 spin_lock(&dst_mm->page_table_lock);
745 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
746
747 ret = -EAGAIN;
748 pmd = *src_pmd;
749 if (unlikely(!pmd_trans_huge(pmd))) {
750 pte_free(dst_mm, pgtable);
751 goto out_unlock;
752 }
753 if (unlikely(pmd_trans_splitting(pmd))) {
754 /* split huge page running from under us */
755 spin_unlock(&src_mm->page_table_lock);
756 spin_unlock(&dst_mm->page_table_lock);
757 pte_free(dst_mm, pgtable);
758
759 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
760 goto out;
761 }
762 src_page = pmd_page(pmd);
763 VM_BUG_ON(!PageHead(src_page));
764 get_page(src_page);
765 page_dup_rmap(src_page);
766 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
767
768 pmdp_set_wrprotect(src_mm, addr, src_pmd);
769 pmd = pmd_mkold(pmd_wrprotect(pmd));
770 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 771 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 772 dst_mm->nr_ptes++;
71e3aac0
AA
773
774 ret = 0;
775out_unlock:
776 spin_unlock(&src_mm->page_table_lock);
777 spin_unlock(&dst_mm->page_table_lock);
778out:
779 return ret;
780}
781
71e3aac0
AA
782static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
783 struct vm_area_struct *vma,
784 unsigned long address,
785 pmd_t *pmd, pmd_t orig_pmd,
786 struct page *page,
787 unsigned long haddr)
788{
789 pgtable_t pgtable;
790 pmd_t _pmd;
791 int ret = 0, i;
792 struct page **pages;
2ec74c3e
SG
793 unsigned long mmun_start; /* For mmu_notifiers */
794 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
795
796 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
797 GFP_KERNEL);
798 if (unlikely(!pages)) {
799 ret |= VM_FAULT_OOM;
800 goto out;
801 }
802
803 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
804 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
805 __GFP_OTHER_NODE,
19ee151e 806 vma, address, page_to_nid(page));
b9bbfbe3
AA
807 if (unlikely(!pages[i] ||
808 mem_cgroup_newpage_charge(pages[i], mm,
809 GFP_KERNEL))) {
810 if (pages[i])
71e3aac0 811 put_page(pages[i]);
b9bbfbe3
AA
812 mem_cgroup_uncharge_start();
813 while (--i >= 0) {
814 mem_cgroup_uncharge_page(pages[i]);
815 put_page(pages[i]);
816 }
817 mem_cgroup_uncharge_end();
71e3aac0
AA
818 kfree(pages);
819 ret |= VM_FAULT_OOM;
820 goto out;
821 }
822 }
823
824 for (i = 0; i < HPAGE_PMD_NR; i++) {
825 copy_user_highpage(pages[i], page + i,
0089e485 826 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
827 __SetPageUptodate(pages[i]);
828 cond_resched();
829 }
830
2ec74c3e
SG
831 mmun_start = haddr;
832 mmun_end = haddr + HPAGE_PMD_SIZE;
833 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
834
71e3aac0
AA
835 spin_lock(&mm->page_table_lock);
836 if (unlikely(!pmd_same(*pmd, orig_pmd)))
837 goto out_free_pages;
838 VM_BUG_ON(!PageHead(page));
839
2ec74c3e 840 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
841 /* leave pmd empty until pte is filled */
842
e3ebcf64 843 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
844 pmd_populate(mm, &_pmd, pgtable);
845
846 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
847 pte_t *pte, entry;
848 entry = mk_pte(pages[i], vma->vm_page_prot);
849 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
850 page_add_new_anon_rmap(pages[i], vma, haddr);
851 pte = pte_offset_map(&_pmd, haddr);
852 VM_BUG_ON(!pte_none(*pte));
853 set_pte_at(mm, haddr, pte, entry);
854 pte_unmap(pte);
855 }
856 kfree(pages);
857
71e3aac0
AA
858 smp_wmb(); /* make pte visible before pmd */
859 pmd_populate(mm, pmd, pgtable);
860 page_remove_rmap(page);
861 spin_unlock(&mm->page_table_lock);
862
2ec74c3e
SG
863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
864
71e3aac0
AA
865 ret |= VM_FAULT_WRITE;
866 put_page(page);
867
868out:
869 return ret;
870
871out_free_pages:
872 spin_unlock(&mm->page_table_lock);
2ec74c3e 873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 877 put_page(pages[i]);
b9bbfbe3
AA
878 }
879 mem_cgroup_uncharge_end();
71e3aac0
AA
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
2ec74c3e
SG
890 unsigned long mmun_start; /* For mmu_notifiers */
891 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
892
893 VM_BUG_ON(!vma->anon_vma);
894 spin_lock(&mm->page_table_lock);
895 if (unlikely(!pmd_same(*pmd, orig_pmd)))
896 goto out_unlock;
897
898 page = pmd_page(orig_pmd);
899 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
900 haddr = address & HPAGE_PMD_MASK;
901 if (page_mapcount(page) == 1) {
902 pmd_t entry;
903 entry = pmd_mkyoung(orig_pmd);
904 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
905 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 906 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
907 ret |= VM_FAULT_WRITE;
908 goto out_unlock;
909 }
910 get_page(page);
911 spin_unlock(&mm->page_table_lock);
912
913 if (transparent_hugepage_enabled(vma) &&
914 !transparent_hugepage_debug_cow())
0bbbc0b3 915 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 916 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
917 else
918 new_page = NULL;
919
920 if (unlikely(!new_page)) {
81ab4201 921 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
922 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
923 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
924 if (ret & VM_FAULT_OOM)
925 split_huge_page(page);
71e3aac0
AA
926 put_page(page);
927 goto out;
928 }
81ab4201 929 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 930
b9bbfbe3
AA
931 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
932 put_page(new_page);
1f1d06c3 933 split_huge_page(page);
b9bbfbe3
AA
934 put_page(page);
935 ret |= VM_FAULT_OOM;
936 goto out;
937 }
938
71e3aac0
AA
939 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
940 __SetPageUptodate(new_page);
941
2ec74c3e
SG
942 mmun_start = haddr;
943 mmun_end = haddr + HPAGE_PMD_SIZE;
944 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
945
71e3aac0
AA
946 spin_lock(&mm->page_table_lock);
947 put_page(page);
b9bbfbe3 948 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 949 spin_unlock(&mm->page_table_lock);
b9bbfbe3 950 mem_cgroup_uncharge_page(new_page);
71e3aac0 951 put_page(new_page);
2ec74c3e 952 goto out_mn;
b9bbfbe3 953 } else {
71e3aac0
AA
954 pmd_t entry;
955 VM_BUG_ON(!PageHead(page));
956 entry = mk_pmd(new_page, vma->vm_page_prot);
957 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
958 entry = pmd_mkhuge(entry);
2ec74c3e 959 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
960 page_add_new_anon_rmap(new_page, vma, haddr);
961 set_pmd_at(mm, haddr, pmd, entry);
b113da65 962 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
963 page_remove_rmap(page);
964 put_page(page);
965 ret |= VM_FAULT_WRITE;
966 }
71e3aac0 967 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
968out_mn:
969 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
970out:
971 return ret;
2ec74c3e
SG
972out_unlock:
973 spin_unlock(&mm->page_table_lock);
974 return ret;
71e3aac0
AA
975}
976
b676b293 977struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
978 unsigned long addr,
979 pmd_t *pmd,
980 unsigned int flags)
981{
b676b293 982 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
983 struct page *page = NULL;
984
985 assert_spin_locked(&mm->page_table_lock);
986
987 if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 goto out;
989
990 page = pmd_page(*pmd);
991 VM_BUG_ON(!PageHead(page));
992 if (flags & FOLL_TOUCH) {
993 pmd_t _pmd;
994 /*
995 * We should set the dirty bit only for FOLL_WRITE but
996 * for now the dirty bit in the pmd is meaningless.
997 * And if the dirty bit will become meaningful and
998 * we'll only set it with FOLL_WRITE, an atomic
999 * set_bit will be required on the pmd to set the
1000 * young bit, instead of the current set_pmd_at.
1001 */
1002 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1003 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1004 }
b676b293
DR
1005 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1006 if (page->mapping && trylock_page(page)) {
1007 lru_add_drain();
1008 if (page->mapping)
1009 mlock_vma_page(page);
1010 unlock_page(page);
1011 }
1012 }
71e3aac0
AA
1013 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1014 VM_BUG_ON(!PageCompound(page));
1015 if (flags & FOLL_GET)
70b50f94 1016 get_page_foll(page);
71e3aac0
AA
1017
1018out:
1019 return page;
1020}
1021
d10e63f2 1022/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1023int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1024 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1025{
4daae3b4 1026 struct page *page = NULL;
d10e63f2 1027 unsigned long haddr = addr & HPAGE_PMD_MASK;
4daae3b4 1028 int target_nid;
03c5a6e1 1029 int current_nid = -1;
d10e63f2
MG
1030
1031 spin_lock(&mm->page_table_lock);
1032 if (unlikely(!pmd_same(pmd, *pmdp)))
1033 goto out_unlock;
1034
1035 page = pmd_page(pmd);
4daae3b4
MG
1036 get_page(page);
1037 spin_unlock(&mm->page_table_lock);
03c5a6e1
MG
1038 current_nid = page_to_nid(page);
1039 count_vm_numa_event(NUMA_HINT_FAULTS);
1040 if (current_nid == numa_node_id())
1041 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4daae3b4
MG
1042
1043 target_nid = mpol_misplaced(page, vma, haddr);
1044 if (target_nid == -1)
1045 goto clear_pmdnuma;
1046
1047 /*
1048 * Due to lacking code to migrate thp pages, we'll split
1049 * (which preserves the special PROT_NONE) and re-take the
1050 * fault on the normal pages.
1051 */
1052 split_huge_page(page);
1053 put_page(page);
cbee9f88 1054
4daae3b4
MG
1055 return 0;
1056
1057clear_pmdnuma:
1058 spin_lock(&mm->page_table_lock);
1059 if (unlikely(!pmd_same(pmd, *pmdp)))
1060 goto out_unlock;
1061
d10e63f2
MG
1062 pmd = pmd_mknonnuma(pmd);
1063 set_pmd_at(mm, haddr, pmdp, pmd);
1064 VM_BUG_ON(pmd_numa(*pmdp));
1065 update_mmu_cache_pmd(vma, addr, pmdp);
1066
1067out_unlock:
1068 spin_unlock(&mm->page_table_lock);
cbee9f88 1069 if (page) {
4daae3b4 1070 put_page(page);
cbee9f88
PZ
1071 task_numa_fault(numa_node_id(), HPAGE_PMD_NR);
1072 }
d10e63f2
MG
1073 return 0;
1074}
1075
71e3aac0 1076int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1077 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1078{
1079 int ret = 0;
1080
025c5b24
NH
1081 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1082 struct page *page;
1083 pgtable_t pgtable;
f5c8ad47 1084 pmd_t orig_pmd;
e3ebcf64 1085 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47
DM
1086 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1087 page = pmd_page(orig_pmd);
025c5b24
NH
1088 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1089 page_remove_rmap(page);
1090 VM_BUG_ON(page_mapcount(page) < 0);
1091 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1092 VM_BUG_ON(!PageHead(page));
1093 tlb->mm->nr_ptes--;
71e3aac0 1094 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1095 tlb_remove_page(tlb, page);
1096 pte_free(tlb->mm, pgtable);
1097 ret = 1;
1098 }
71e3aac0
AA
1099 return ret;
1100}
1101
0ca1634d
JW
1102int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1103 unsigned long addr, unsigned long end,
1104 unsigned char *vec)
1105{
1106 int ret = 0;
1107
025c5b24
NH
1108 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1109 /*
1110 * All logical pages in the range are present
1111 * if backed by a huge page.
1112 */
0ca1634d 1113 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1114 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1115 ret = 1;
1116 }
0ca1634d
JW
1117
1118 return ret;
1119}
1120
37a1c49a
AA
1121int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1122 unsigned long old_addr,
1123 unsigned long new_addr, unsigned long old_end,
1124 pmd_t *old_pmd, pmd_t *new_pmd)
1125{
1126 int ret = 0;
1127 pmd_t pmd;
1128
1129 struct mm_struct *mm = vma->vm_mm;
1130
1131 if ((old_addr & ~HPAGE_PMD_MASK) ||
1132 (new_addr & ~HPAGE_PMD_MASK) ||
1133 old_end - old_addr < HPAGE_PMD_SIZE ||
1134 (new_vma->vm_flags & VM_NOHUGEPAGE))
1135 goto out;
1136
1137 /*
1138 * The destination pmd shouldn't be established, free_pgtables()
1139 * should have release it.
1140 */
1141 if (WARN_ON(!pmd_none(*new_pmd))) {
1142 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1143 goto out;
1144 }
1145
025c5b24
NH
1146 ret = __pmd_trans_huge_lock(old_pmd, vma);
1147 if (ret == 1) {
1148 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1149 VM_BUG_ON(!pmd_none(*new_pmd));
1150 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1151 spin_unlock(&mm->page_table_lock);
1152 }
1153out:
1154 return ret;
1155}
1156
cd7548ab 1157int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1158 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1159{
1160 struct mm_struct *mm = vma->vm_mm;
1161 int ret = 0;
1162
025c5b24
NH
1163 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1164 pmd_t entry;
1165 entry = pmdp_get_and_clear(mm, addr, pmd);
4b10e7d5
MG
1166 if (!prot_numa)
1167 entry = pmd_modify(entry, newprot);
1168 else {
1169 struct page *page = pmd_page(*pmd);
1170
1171 /* only check non-shared pages */
1172 if (page_mapcount(page) == 1 &&
1173 !pmd_numa(*pmd)) {
1174 entry = pmd_mknuma(entry);
1175 }
1176 }
025c5b24
NH
1177 set_pmd_at(mm, addr, pmd, entry);
1178 spin_unlock(&vma->vm_mm->page_table_lock);
1179 ret = 1;
1180 }
1181
1182 return ret;
1183}
1184
1185/*
1186 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1187 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1188 *
1189 * Note that if it returns 1, this routine returns without unlocking page
1190 * table locks. So callers must unlock them.
1191 */
1192int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1193{
1194 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1195 if (likely(pmd_trans_huge(*pmd))) {
1196 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1197 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1198 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1199 return -1;
cd7548ab 1200 } else {
025c5b24
NH
1201 /* Thp mapped by 'pmd' is stable, so we can
1202 * handle it as it is. */
1203 return 1;
cd7548ab 1204 }
025c5b24
NH
1205 }
1206 spin_unlock(&vma->vm_mm->page_table_lock);
1207 return 0;
cd7548ab
JW
1208}
1209
71e3aac0
AA
1210pmd_t *page_check_address_pmd(struct page *page,
1211 struct mm_struct *mm,
1212 unsigned long address,
1213 enum page_check_address_pmd_flag flag)
1214{
1215 pgd_t *pgd;
1216 pud_t *pud;
1217 pmd_t *pmd, *ret = NULL;
1218
1219 if (address & ~HPAGE_PMD_MASK)
1220 goto out;
1221
1222 pgd = pgd_offset(mm, address);
1223 if (!pgd_present(*pgd))
1224 goto out;
1225
1226 pud = pud_offset(pgd, address);
1227 if (!pud_present(*pud))
1228 goto out;
1229
1230 pmd = pmd_offset(pud, address);
1231 if (pmd_none(*pmd))
1232 goto out;
1233 if (pmd_page(*pmd) != page)
1234 goto out;
94fcc585
AA
1235 /*
1236 * split_vma() may create temporary aliased mappings. There is
1237 * no risk as long as all huge pmd are found and have their
1238 * splitting bit set before __split_huge_page_refcount
1239 * runs. Finding the same huge pmd more than once during the
1240 * same rmap walk is not a problem.
1241 */
1242 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1243 pmd_trans_splitting(*pmd))
1244 goto out;
71e3aac0
AA
1245 if (pmd_trans_huge(*pmd)) {
1246 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1247 !pmd_trans_splitting(*pmd));
1248 ret = pmd;
1249 }
1250out:
1251 return ret;
1252}
1253
1254static int __split_huge_page_splitting(struct page *page,
1255 struct vm_area_struct *vma,
1256 unsigned long address)
1257{
1258 struct mm_struct *mm = vma->vm_mm;
1259 pmd_t *pmd;
1260 int ret = 0;
2ec74c3e
SG
1261 /* For mmu_notifiers */
1262 const unsigned long mmun_start = address;
1263 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1264
2ec74c3e 1265 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1266 spin_lock(&mm->page_table_lock);
1267 pmd = page_check_address_pmd(page, mm, address,
1268 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1269 if (pmd) {
1270 /*
1271 * We can't temporarily set the pmd to null in order
1272 * to split it, the pmd must remain marked huge at all
1273 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1274 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1275 * serialize against split_huge_page*.
1276 */
2ec74c3e 1277 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1278 ret = 1;
1279 }
1280 spin_unlock(&mm->page_table_lock);
2ec74c3e 1281 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1282
1283 return ret;
1284}
1285
1286static void __split_huge_page_refcount(struct page *page)
1287{
1288 int i;
71e3aac0 1289 struct zone *zone = page_zone(page);
fa9add64 1290 struct lruvec *lruvec;
70b50f94 1291 int tail_count = 0;
71e3aac0
AA
1292
1293 /* prevent PageLRU to go away from under us, and freeze lru stats */
1294 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1295 lruvec = mem_cgroup_page_lruvec(page, zone);
1296
71e3aac0 1297 compound_lock(page);
e94c8a9c
KH
1298 /* complete memcg works before add pages to LRU */
1299 mem_cgroup_split_huge_fixup(page);
71e3aac0 1300
45676885 1301 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1302 struct page *page_tail = page + i;
1303
70b50f94
AA
1304 /* tail_page->_mapcount cannot change */
1305 BUG_ON(page_mapcount(page_tail) < 0);
1306 tail_count += page_mapcount(page_tail);
1307 /* check for overflow */
1308 BUG_ON(tail_count < 0);
1309 BUG_ON(atomic_read(&page_tail->_count) != 0);
1310 /*
1311 * tail_page->_count is zero and not changing from
1312 * under us. But get_page_unless_zero() may be running
1313 * from under us on the tail_page. If we used
1314 * atomic_set() below instead of atomic_add(), we
1315 * would then run atomic_set() concurrently with
1316 * get_page_unless_zero(), and atomic_set() is
1317 * implemented in C not using locked ops. spin_unlock
1318 * on x86 sometime uses locked ops because of PPro
1319 * errata 66, 92, so unless somebody can guarantee
1320 * atomic_set() here would be safe on all archs (and
1321 * not only on x86), it's safer to use atomic_add().
1322 */
1323 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1324 &page_tail->_count);
71e3aac0
AA
1325
1326 /* after clearing PageTail the gup refcount can be released */
1327 smp_mb();
1328
a6d30ddd
JD
1329 /*
1330 * retain hwpoison flag of the poisoned tail page:
1331 * fix for the unsuitable process killed on Guest Machine(KVM)
1332 * by the memory-failure.
1333 */
1334 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1335 page_tail->flags |= (page->flags &
1336 ((1L << PG_referenced) |
1337 (1L << PG_swapbacked) |
1338 (1L << PG_mlocked) |
1339 (1L << PG_uptodate)));
1340 page_tail->flags |= (1L << PG_dirty);
1341
70b50f94 1342 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1343 smp_wmb();
1344
1345 /*
1346 * __split_huge_page_splitting() already set the
1347 * splitting bit in all pmd that could map this
1348 * hugepage, that will ensure no CPU can alter the
1349 * mapcount on the head page. The mapcount is only
1350 * accounted in the head page and it has to be
1351 * transferred to all tail pages in the below code. So
1352 * for this code to be safe, the split the mapcount
1353 * can't change. But that doesn't mean userland can't
1354 * keep changing and reading the page contents while
1355 * we transfer the mapcount, so the pmd splitting
1356 * status is achieved setting a reserved bit in the
1357 * pmd, not by clearing the present bit.
1358 */
71e3aac0
AA
1359 page_tail->_mapcount = page->_mapcount;
1360
1361 BUG_ON(page_tail->mapping);
1362 page_tail->mapping = page->mapping;
1363
45676885 1364 page_tail->index = page->index + i;
71e3aac0
AA
1365
1366 BUG_ON(!PageAnon(page_tail));
1367 BUG_ON(!PageUptodate(page_tail));
1368 BUG_ON(!PageDirty(page_tail));
1369 BUG_ON(!PageSwapBacked(page_tail));
1370
fa9add64 1371 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1372 }
70b50f94
AA
1373 atomic_sub(tail_count, &page->_count);
1374 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1375
fa9add64 1376 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1377 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1378
71e3aac0
AA
1379 ClearPageCompound(page);
1380 compound_unlock(page);
1381 spin_unlock_irq(&zone->lru_lock);
1382
1383 for (i = 1; i < HPAGE_PMD_NR; i++) {
1384 struct page *page_tail = page + i;
1385 BUG_ON(page_count(page_tail) <= 0);
1386 /*
1387 * Tail pages may be freed if there wasn't any mapping
1388 * like if add_to_swap() is running on a lru page that
1389 * had its mapping zapped. And freeing these pages
1390 * requires taking the lru_lock so we do the put_page
1391 * of the tail pages after the split is complete.
1392 */
1393 put_page(page_tail);
1394 }
1395
1396 /*
1397 * Only the head page (now become a regular page) is required
1398 * to be pinned by the caller.
1399 */
1400 BUG_ON(page_count(page) <= 0);
1401}
1402
1403static int __split_huge_page_map(struct page *page,
1404 struct vm_area_struct *vma,
1405 unsigned long address)
1406{
1407 struct mm_struct *mm = vma->vm_mm;
1408 pmd_t *pmd, _pmd;
1409 int ret = 0, i;
1410 pgtable_t pgtable;
1411 unsigned long haddr;
1412
1413 spin_lock(&mm->page_table_lock);
1414 pmd = page_check_address_pmd(page, mm, address,
1415 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1416 if (pmd) {
e3ebcf64 1417 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1418 pmd_populate(mm, &_pmd, pgtable);
1419
e3ebcf64
GS
1420 haddr = address;
1421 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1422 pte_t *pte, entry;
1423 BUG_ON(PageCompound(page+i));
1424 entry = mk_pte(page + i, vma->vm_page_prot);
1425 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1426 if (!pmd_write(*pmd))
1427 entry = pte_wrprotect(entry);
1428 else
1429 BUG_ON(page_mapcount(page) != 1);
1430 if (!pmd_young(*pmd))
1431 entry = pte_mkold(entry);
1ba6e0b5
AA
1432 if (pmd_numa(*pmd))
1433 entry = pte_mknuma(entry);
71e3aac0
AA
1434 pte = pte_offset_map(&_pmd, haddr);
1435 BUG_ON(!pte_none(*pte));
1436 set_pte_at(mm, haddr, pte, entry);
1437 pte_unmap(pte);
1438 }
1439
71e3aac0
AA
1440 smp_wmb(); /* make pte visible before pmd */
1441 /*
1442 * Up to this point the pmd is present and huge and
1443 * userland has the whole access to the hugepage
1444 * during the split (which happens in place). If we
1445 * overwrite the pmd with the not-huge version
1446 * pointing to the pte here (which of course we could
1447 * if all CPUs were bug free), userland could trigger
1448 * a small page size TLB miss on the small sized TLB
1449 * while the hugepage TLB entry is still established
1450 * in the huge TLB. Some CPU doesn't like that. See
1451 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1452 * Erratum 383 on page 93. Intel should be safe but is
1453 * also warns that it's only safe if the permission
1454 * and cache attributes of the two entries loaded in
1455 * the two TLB is identical (which should be the case
1456 * here). But it is generally safer to never allow
1457 * small and huge TLB entries for the same virtual
1458 * address to be loaded simultaneously. So instead of
1459 * doing "pmd_populate(); flush_tlb_range();" we first
1460 * mark the current pmd notpresent (atomically because
1461 * here the pmd_trans_huge and pmd_trans_splitting
1462 * must remain set at all times on the pmd until the
1463 * split is complete for this pmd), then we flush the
1464 * SMP TLB and finally we write the non-huge version
1465 * of the pmd entry with pmd_populate.
1466 */
46dcde73 1467 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1468 pmd_populate(mm, pmd, pgtable);
1469 ret = 1;
1470 }
1471 spin_unlock(&mm->page_table_lock);
1472
1473 return ret;
1474}
1475
2b575eb6 1476/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1477static void __split_huge_page(struct page *page,
1478 struct anon_vma *anon_vma)
1479{
1480 int mapcount, mapcount2;
bf181b9f 1481 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1482 struct anon_vma_chain *avc;
1483
1484 BUG_ON(!PageHead(page));
1485 BUG_ON(PageTail(page));
1486
1487 mapcount = 0;
bf181b9f 1488 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1489 struct vm_area_struct *vma = avc->vma;
1490 unsigned long addr = vma_address(page, vma);
1491 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1492 mapcount += __split_huge_page_splitting(page, vma, addr);
1493 }
05759d38
AA
1494 /*
1495 * It is critical that new vmas are added to the tail of the
1496 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1497 * and establishes a child pmd before
1498 * __split_huge_page_splitting() freezes the parent pmd (so if
1499 * we fail to prevent copy_huge_pmd() from running until the
1500 * whole __split_huge_page() is complete), we will still see
1501 * the newly established pmd of the child later during the
1502 * walk, to be able to set it as pmd_trans_splitting too.
1503 */
1504 if (mapcount != page_mapcount(page))
1505 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1506 mapcount, page_mapcount(page));
71e3aac0
AA
1507 BUG_ON(mapcount != page_mapcount(page));
1508
1509 __split_huge_page_refcount(page);
1510
1511 mapcount2 = 0;
bf181b9f 1512 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1513 struct vm_area_struct *vma = avc->vma;
1514 unsigned long addr = vma_address(page, vma);
1515 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1516 mapcount2 += __split_huge_page_map(page, vma, addr);
1517 }
05759d38
AA
1518 if (mapcount != mapcount2)
1519 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1520 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1521 BUG_ON(mapcount != mapcount2);
1522}
1523
1524int split_huge_page(struct page *page)
1525{
1526 struct anon_vma *anon_vma;
1527 int ret = 1;
1528
1529 BUG_ON(!PageAnon(page));
1530 anon_vma = page_lock_anon_vma(page);
1531 if (!anon_vma)
1532 goto out;
1533 ret = 0;
1534 if (!PageCompound(page))
1535 goto out_unlock;
1536
1537 BUG_ON(!PageSwapBacked(page));
1538 __split_huge_page(page, anon_vma);
81ab4201 1539 count_vm_event(THP_SPLIT);
71e3aac0
AA
1540
1541 BUG_ON(PageCompound(page));
1542out_unlock:
1543 page_unlock_anon_vma(anon_vma);
1544out:
1545 return ret;
1546}
1547
4b6e1e37 1548#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1549
60ab3244
AA
1550int hugepage_madvise(struct vm_area_struct *vma,
1551 unsigned long *vm_flags, int advice)
0af4e98b 1552{
8e72033f
GS
1553 struct mm_struct *mm = vma->vm_mm;
1554
a664b2d8
AA
1555 switch (advice) {
1556 case MADV_HUGEPAGE:
1557 /*
1558 * Be somewhat over-protective like KSM for now!
1559 */
78f11a25 1560 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1561 return -EINVAL;
8e72033f
GS
1562 if (mm->def_flags & VM_NOHUGEPAGE)
1563 return -EINVAL;
a664b2d8
AA
1564 *vm_flags &= ~VM_NOHUGEPAGE;
1565 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1566 /*
1567 * If the vma become good for khugepaged to scan,
1568 * register it here without waiting a page fault that
1569 * may not happen any time soon.
1570 */
1571 if (unlikely(khugepaged_enter_vma_merge(vma)))
1572 return -ENOMEM;
a664b2d8
AA
1573 break;
1574 case MADV_NOHUGEPAGE:
1575 /*
1576 * Be somewhat over-protective like KSM for now!
1577 */
78f11a25 1578 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1579 return -EINVAL;
1580 *vm_flags &= ~VM_HUGEPAGE;
1581 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1582 /*
1583 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1584 * this vma even if we leave the mm registered in khugepaged if
1585 * it got registered before VM_NOHUGEPAGE was set.
1586 */
a664b2d8
AA
1587 break;
1588 }
0af4e98b
AA
1589
1590 return 0;
1591}
1592
ba76149f
AA
1593static int __init khugepaged_slab_init(void)
1594{
1595 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1596 sizeof(struct mm_slot),
1597 __alignof__(struct mm_slot), 0, NULL);
1598 if (!mm_slot_cache)
1599 return -ENOMEM;
1600
1601 return 0;
1602}
1603
1604static void __init khugepaged_slab_free(void)
1605{
1606 kmem_cache_destroy(mm_slot_cache);
1607 mm_slot_cache = NULL;
1608}
1609
1610static inline struct mm_slot *alloc_mm_slot(void)
1611{
1612 if (!mm_slot_cache) /* initialization failed */
1613 return NULL;
1614 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1615}
1616
1617static inline void free_mm_slot(struct mm_slot *mm_slot)
1618{
1619 kmem_cache_free(mm_slot_cache, mm_slot);
1620}
1621
1622static int __init mm_slots_hash_init(void)
1623{
1624 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1625 GFP_KERNEL);
1626 if (!mm_slots_hash)
1627 return -ENOMEM;
1628 return 0;
1629}
1630
1631#if 0
1632static void __init mm_slots_hash_free(void)
1633{
1634 kfree(mm_slots_hash);
1635 mm_slots_hash = NULL;
1636}
1637#endif
1638
1639static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1640{
1641 struct mm_slot *mm_slot;
1642 struct hlist_head *bucket;
1643 struct hlist_node *node;
1644
1645 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1646 % MM_SLOTS_HASH_HEADS];
1647 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1648 if (mm == mm_slot->mm)
1649 return mm_slot;
1650 }
1651 return NULL;
1652}
1653
1654static void insert_to_mm_slots_hash(struct mm_struct *mm,
1655 struct mm_slot *mm_slot)
1656{
1657 struct hlist_head *bucket;
1658
1659 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1660 % MM_SLOTS_HASH_HEADS];
1661 mm_slot->mm = mm;
1662 hlist_add_head(&mm_slot->hash, bucket);
1663}
1664
1665static inline int khugepaged_test_exit(struct mm_struct *mm)
1666{
1667 return atomic_read(&mm->mm_users) == 0;
1668}
1669
1670int __khugepaged_enter(struct mm_struct *mm)
1671{
1672 struct mm_slot *mm_slot;
1673 int wakeup;
1674
1675 mm_slot = alloc_mm_slot();
1676 if (!mm_slot)
1677 return -ENOMEM;
1678
1679 /* __khugepaged_exit() must not run from under us */
1680 VM_BUG_ON(khugepaged_test_exit(mm));
1681 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1682 free_mm_slot(mm_slot);
1683 return 0;
1684 }
1685
1686 spin_lock(&khugepaged_mm_lock);
1687 insert_to_mm_slots_hash(mm, mm_slot);
1688 /*
1689 * Insert just behind the scanning cursor, to let the area settle
1690 * down a little.
1691 */
1692 wakeup = list_empty(&khugepaged_scan.mm_head);
1693 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1694 spin_unlock(&khugepaged_mm_lock);
1695
1696 atomic_inc(&mm->mm_count);
1697 if (wakeup)
1698 wake_up_interruptible(&khugepaged_wait);
1699
1700 return 0;
1701}
1702
1703int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1704{
1705 unsigned long hstart, hend;
1706 if (!vma->anon_vma)
1707 /*
1708 * Not yet faulted in so we will register later in the
1709 * page fault if needed.
1710 */
1711 return 0;
78f11a25 1712 if (vma->vm_ops)
ba76149f
AA
1713 /* khugepaged not yet working on file or special mappings */
1714 return 0;
b3b9c293 1715 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1716 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1717 hend = vma->vm_end & HPAGE_PMD_MASK;
1718 if (hstart < hend)
1719 return khugepaged_enter(vma);
1720 return 0;
1721}
1722
1723void __khugepaged_exit(struct mm_struct *mm)
1724{
1725 struct mm_slot *mm_slot;
1726 int free = 0;
1727
1728 spin_lock(&khugepaged_mm_lock);
1729 mm_slot = get_mm_slot(mm);
1730 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1731 hlist_del(&mm_slot->hash);
1732 list_del(&mm_slot->mm_node);
1733 free = 1;
1734 }
d788e80a 1735 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1736
1737 if (free) {
ba76149f
AA
1738 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1739 free_mm_slot(mm_slot);
1740 mmdrop(mm);
1741 } else if (mm_slot) {
ba76149f
AA
1742 /*
1743 * This is required to serialize against
1744 * khugepaged_test_exit() (which is guaranteed to run
1745 * under mmap sem read mode). Stop here (after we
1746 * return all pagetables will be destroyed) until
1747 * khugepaged has finished working on the pagetables
1748 * under the mmap_sem.
1749 */
1750 down_write(&mm->mmap_sem);
1751 up_write(&mm->mmap_sem);
d788e80a 1752 }
ba76149f
AA
1753}
1754
1755static void release_pte_page(struct page *page)
1756{
1757 /* 0 stands for page_is_file_cache(page) == false */
1758 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1759 unlock_page(page);
1760 putback_lru_page(page);
1761}
1762
1763static void release_pte_pages(pte_t *pte, pte_t *_pte)
1764{
1765 while (--_pte >= pte) {
1766 pte_t pteval = *_pte;
1767 if (!pte_none(pteval))
1768 release_pte_page(pte_page(pteval));
1769 }
1770}
1771
1772static void release_all_pte_pages(pte_t *pte)
1773{
1774 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1775}
1776
1777static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1778 unsigned long address,
1779 pte_t *pte)
1780{
1781 struct page *page;
1782 pte_t *_pte;
1783 int referenced = 0, isolated = 0, none = 0;
1784 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1785 _pte++, address += PAGE_SIZE) {
1786 pte_t pteval = *_pte;
1787 if (pte_none(pteval)) {
1788 if (++none <= khugepaged_max_ptes_none)
1789 continue;
1790 else {
1791 release_pte_pages(pte, _pte);
1792 goto out;
1793 }
1794 }
1795 if (!pte_present(pteval) || !pte_write(pteval)) {
1796 release_pte_pages(pte, _pte);
1797 goto out;
1798 }
1799 page = vm_normal_page(vma, address, pteval);
1800 if (unlikely(!page)) {
1801 release_pte_pages(pte, _pte);
1802 goto out;
1803 }
1804 VM_BUG_ON(PageCompound(page));
1805 BUG_ON(!PageAnon(page));
1806 VM_BUG_ON(!PageSwapBacked(page));
1807
1808 /* cannot use mapcount: can't collapse if there's a gup pin */
1809 if (page_count(page) != 1) {
1810 release_pte_pages(pte, _pte);
1811 goto out;
1812 }
1813 /*
1814 * We can do it before isolate_lru_page because the
1815 * page can't be freed from under us. NOTE: PG_lock
1816 * is needed to serialize against split_huge_page
1817 * when invoked from the VM.
1818 */
1819 if (!trylock_page(page)) {
1820 release_pte_pages(pte, _pte);
1821 goto out;
1822 }
1823 /*
1824 * Isolate the page to avoid collapsing an hugepage
1825 * currently in use by the VM.
1826 */
1827 if (isolate_lru_page(page)) {
1828 unlock_page(page);
1829 release_pte_pages(pte, _pte);
1830 goto out;
1831 }
1832 /* 0 stands for page_is_file_cache(page) == false */
1833 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1834 VM_BUG_ON(!PageLocked(page));
1835 VM_BUG_ON(PageLRU(page));
1836
1837 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1838 if (pte_young(pteval) || PageReferenced(page) ||
1839 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1840 referenced = 1;
1841 }
1842 if (unlikely(!referenced))
1843 release_all_pte_pages(pte);
1844 else
1845 isolated = 1;
1846out:
1847 return isolated;
1848}
1849
1850static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1851 struct vm_area_struct *vma,
1852 unsigned long address,
1853 spinlock_t *ptl)
1854{
1855 pte_t *_pte;
1856 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1857 pte_t pteval = *_pte;
1858 struct page *src_page;
1859
1860 if (pte_none(pteval)) {
1861 clear_user_highpage(page, address);
1862 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1863 } else {
1864 src_page = pte_page(pteval);
1865 copy_user_highpage(page, src_page, address, vma);
1866 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1867 release_pte_page(src_page);
1868 /*
1869 * ptl mostly unnecessary, but preempt has to
1870 * be disabled to update the per-cpu stats
1871 * inside page_remove_rmap().
1872 */
1873 spin_lock(ptl);
1874 /*
1875 * paravirt calls inside pte_clear here are
1876 * superfluous.
1877 */
1878 pte_clear(vma->vm_mm, address, _pte);
1879 page_remove_rmap(src_page);
1880 spin_unlock(ptl);
1881 free_page_and_swap_cache(src_page);
1882 }
1883
1884 address += PAGE_SIZE;
1885 page++;
1886 }
1887}
1888
26234f36 1889static void khugepaged_alloc_sleep(void)
ba76149f 1890{
26234f36
XG
1891 wait_event_freezable_timeout(khugepaged_wait, false,
1892 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1893}
ba76149f 1894
26234f36
XG
1895#ifdef CONFIG_NUMA
1896static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1897{
1898 if (IS_ERR(*hpage)) {
1899 if (!*wait)
1900 return false;
1901
1902 *wait = false;
e3b4126c 1903 *hpage = NULL;
26234f36
XG
1904 khugepaged_alloc_sleep();
1905 } else if (*hpage) {
1906 put_page(*hpage);
1907 *hpage = NULL;
1908 }
1909
1910 return true;
1911}
1912
1913static struct page
1914*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1915 struct vm_area_struct *vma, unsigned long address,
1916 int node)
1917{
0bbbc0b3 1918 VM_BUG_ON(*hpage);
ce83d217
AA
1919 /*
1920 * Allocate the page while the vma is still valid and under
1921 * the mmap_sem read mode so there is no memory allocation
1922 * later when we take the mmap_sem in write mode. This is more
1923 * friendly behavior (OTOH it may actually hide bugs) to
1924 * filesystems in userland with daemons allocating memory in
1925 * the userland I/O paths. Allocating memory with the
1926 * mmap_sem in read mode is good idea also to allow greater
1927 * scalability.
1928 */
26234f36 1929 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1930 node, __GFP_OTHER_NODE);
692e0b35
AA
1931
1932 /*
1933 * After allocating the hugepage, release the mmap_sem read lock in
1934 * preparation for taking it in write mode.
1935 */
1936 up_read(&mm->mmap_sem);
26234f36 1937 if (unlikely(!*hpage)) {
81ab4201 1938 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1939 *hpage = ERR_PTR(-ENOMEM);
26234f36 1940 return NULL;
ce83d217 1941 }
26234f36 1942
65b3c07b 1943 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1944 return *hpage;
1945}
1946#else
1947static struct page *khugepaged_alloc_hugepage(bool *wait)
1948{
1949 struct page *hpage;
1950
1951 do {
1952 hpage = alloc_hugepage(khugepaged_defrag());
1953 if (!hpage) {
1954 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1955 if (!*wait)
1956 return NULL;
1957
1958 *wait = false;
1959 khugepaged_alloc_sleep();
1960 } else
1961 count_vm_event(THP_COLLAPSE_ALLOC);
1962 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1963
1964 return hpage;
1965}
1966
1967static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1968{
1969 if (!*hpage)
1970 *hpage = khugepaged_alloc_hugepage(wait);
1971
1972 if (unlikely(!*hpage))
1973 return false;
1974
1975 return true;
1976}
1977
1978static struct page
1979*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1980 struct vm_area_struct *vma, unsigned long address,
1981 int node)
1982{
1983 up_read(&mm->mmap_sem);
1984 VM_BUG_ON(!*hpage);
1985 return *hpage;
1986}
692e0b35
AA
1987#endif
1988
26234f36
XG
1989static void collapse_huge_page(struct mm_struct *mm,
1990 unsigned long address,
1991 struct page **hpage,
1992 struct vm_area_struct *vma,
1993 int node)
1994{
1995 pgd_t *pgd;
1996 pud_t *pud;
1997 pmd_t *pmd, _pmd;
1998 pte_t *pte;
1999 pgtable_t pgtable;
2000 struct page *new_page;
2001 spinlock_t *ptl;
2002 int isolated;
2003 unsigned long hstart, hend;
2ec74c3e
SG
2004 unsigned long mmun_start; /* For mmu_notifiers */
2005 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2006
2007 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2008
2009 /* release the mmap_sem read lock. */
2010 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2011 if (!new_page)
2012 return;
2013
420256ef 2014 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2015 return;
ba76149f
AA
2016
2017 /*
2018 * Prevent all access to pagetables with the exception of
2019 * gup_fast later hanlded by the ptep_clear_flush and the VM
2020 * handled by the anon_vma lock + PG_lock.
2021 */
2022 down_write(&mm->mmap_sem);
2023 if (unlikely(khugepaged_test_exit(mm)))
2024 goto out;
2025
2026 vma = find_vma(mm, address);
2027 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2028 hend = vma->vm_end & HPAGE_PMD_MASK;
2029 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2030 goto out;
2031
60ab3244
AA
2032 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2033 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
2034 goto out;
2035
78f11a25 2036 if (!vma->anon_vma || vma->vm_ops)
ba76149f 2037 goto out;
a7d6e4ec
AA
2038 if (is_vma_temporary_stack(vma))
2039 goto out;
b3b9c293 2040 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2041
2042 pgd = pgd_offset(mm, address);
2043 if (!pgd_present(*pgd))
2044 goto out;
2045
2046 pud = pud_offset(pgd, address);
2047 if (!pud_present(*pud))
2048 goto out;
2049
2050 pmd = pmd_offset(pud, address);
2051 /* pmd can't go away or become huge under us */
2052 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2053 goto out;
2054
ba76149f
AA
2055 anon_vma_lock(vma->anon_vma);
2056
2057 pte = pte_offset_map(pmd, address);
2058 ptl = pte_lockptr(mm, pmd);
2059
2ec74c3e
SG
2060 mmun_start = address;
2061 mmun_end = address + HPAGE_PMD_SIZE;
2062 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2063 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2064 /*
2065 * After this gup_fast can't run anymore. This also removes
2066 * any huge TLB entry from the CPU so we won't allow
2067 * huge and small TLB entries for the same virtual address
2068 * to avoid the risk of CPU bugs in that area.
2069 */
2ec74c3e 2070 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2071 spin_unlock(&mm->page_table_lock);
2ec74c3e 2072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2073
2074 spin_lock(ptl);
2075 isolated = __collapse_huge_page_isolate(vma, address, pte);
2076 spin_unlock(ptl);
ba76149f
AA
2077
2078 if (unlikely(!isolated)) {
453c7192 2079 pte_unmap(pte);
ba76149f
AA
2080 spin_lock(&mm->page_table_lock);
2081 BUG_ON(!pmd_none(*pmd));
2082 set_pmd_at(mm, address, pmd, _pmd);
2083 spin_unlock(&mm->page_table_lock);
2084 anon_vma_unlock(vma->anon_vma);
ce83d217 2085 goto out;
ba76149f
AA
2086 }
2087
2088 /*
2089 * All pages are isolated and locked so anon_vma rmap
2090 * can't run anymore.
2091 */
2092 anon_vma_unlock(vma->anon_vma);
2093
2094 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2095 pte_unmap(pte);
ba76149f
AA
2096 __SetPageUptodate(new_page);
2097 pgtable = pmd_pgtable(_pmd);
ba76149f
AA
2098
2099 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2100 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2101 _pmd = pmd_mkhuge(_pmd);
2102
2103 /*
2104 * spin_lock() below is not the equivalent of smp_wmb(), so
2105 * this is needed to avoid the copy_huge_page writes to become
2106 * visible after the set_pmd_at() write.
2107 */
2108 smp_wmb();
2109
2110 spin_lock(&mm->page_table_lock);
2111 BUG_ON(!pmd_none(*pmd));
2112 page_add_new_anon_rmap(new_page, vma, address);
2113 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2114 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2115 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2116 spin_unlock(&mm->page_table_lock);
2117
2118 *hpage = NULL;
420256ef 2119
ba76149f 2120 khugepaged_pages_collapsed++;
ce83d217 2121out_up_write:
ba76149f 2122 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2123 return;
2124
ce83d217 2125out:
678ff896 2126 mem_cgroup_uncharge_page(new_page);
ce83d217 2127 goto out_up_write;
ba76149f
AA
2128}
2129
2130static int khugepaged_scan_pmd(struct mm_struct *mm,
2131 struct vm_area_struct *vma,
2132 unsigned long address,
2133 struct page **hpage)
2134{
2135 pgd_t *pgd;
2136 pud_t *pud;
2137 pmd_t *pmd;
2138 pte_t *pte, *_pte;
2139 int ret = 0, referenced = 0, none = 0;
2140 struct page *page;
2141 unsigned long _address;
2142 spinlock_t *ptl;
5c4b4be3 2143 int node = -1;
ba76149f
AA
2144
2145 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2146
2147 pgd = pgd_offset(mm, address);
2148 if (!pgd_present(*pgd))
2149 goto out;
2150
2151 pud = pud_offset(pgd, address);
2152 if (!pud_present(*pud))
2153 goto out;
2154
2155 pmd = pmd_offset(pud, address);
2156 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2157 goto out;
2158
2159 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2160 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2161 _pte++, _address += PAGE_SIZE) {
2162 pte_t pteval = *_pte;
2163 if (pte_none(pteval)) {
2164 if (++none <= khugepaged_max_ptes_none)
2165 continue;
2166 else
2167 goto out_unmap;
2168 }
2169 if (!pte_present(pteval) || !pte_write(pteval))
2170 goto out_unmap;
2171 page = vm_normal_page(vma, _address, pteval);
2172 if (unlikely(!page))
2173 goto out_unmap;
5c4b4be3
AK
2174 /*
2175 * Chose the node of the first page. This could
2176 * be more sophisticated and look at more pages,
2177 * but isn't for now.
2178 */
2179 if (node == -1)
2180 node = page_to_nid(page);
ba76149f
AA
2181 VM_BUG_ON(PageCompound(page));
2182 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2183 goto out_unmap;
2184 /* cannot use mapcount: can't collapse if there's a gup pin */
2185 if (page_count(page) != 1)
2186 goto out_unmap;
8ee53820
AA
2187 if (pte_young(pteval) || PageReferenced(page) ||
2188 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2189 referenced = 1;
2190 }
2191 if (referenced)
2192 ret = 1;
2193out_unmap:
2194 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2195 if (ret)
2196 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2197 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2198out:
2199 return ret;
2200}
2201
2202static void collect_mm_slot(struct mm_slot *mm_slot)
2203{
2204 struct mm_struct *mm = mm_slot->mm;
2205
b9980cdc 2206 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2207
2208 if (khugepaged_test_exit(mm)) {
2209 /* free mm_slot */
2210 hlist_del(&mm_slot->hash);
2211 list_del(&mm_slot->mm_node);
2212
2213 /*
2214 * Not strictly needed because the mm exited already.
2215 *
2216 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2217 */
2218
2219 /* khugepaged_mm_lock actually not necessary for the below */
2220 free_mm_slot(mm_slot);
2221 mmdrop(mm);
2222 }
2223}
2224
2225static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2226 struct page **hpage)
2f1da642
HS
2227 __releases(&khugepaged_mm_lock)
2228 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2229{
2230 struct mm_slot *mm_slot;
2231 struct mm_struct *mm;
2232 struct vm_area_struct *vma;
2233 int progress = 0;
2234
2235 VM_BUG_ON(!pages);
b9980cdc 2236 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2237
2238 if (khugepaged_scan.mm_slot)
2239 mm_slot = khugepaged_scan.mm_slot;
2240 else {
2241 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2242 struct mm_slot, mm_node);
2243 khugepaged_scan.address = 0;
2244 khugepaged_scan.mm_slot = mm_slot;
2245 }
2246 spin_unlock(&khugepaged_mm_lock);
2247
2248 mm = mm_slot->mm;
2249 down_read(&mm->mmap_sem);
2250 if (unlikely(khugepaged_test_exit(mm)))
2251 vma = NULL;
2252 else
2253 vma = find_vma(mm, khugepaged_scan.address);
2254
2255 progress++;
2256 for (; vma; vma = vma->vm_next) {
2257 unsigned long hstart, hend;
2258
2259 cond_resched();
2260 if (unlikely(khugepaged_test_exit(mm))) {
2261 progress++;
2262 break;
2263 }
2264
60ab3244
AA
2265 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2266 !khugepaged_always()) ||
2267 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2268 skip:
ba76149f
AA
2269 progress++;
2270 continue;
2271 }
78f11a25 2272 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2273 goto skip;
2274 if (is_vma_temporary_stack(vma))
2275 goto skip;
b3b9c293 2276 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2277
2278 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2279 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2280 if (hstart >= hend)
2281 goto skip;
2282 if (khugepaged_scan.address > hend)
2283 goto skip;
ba76149f
AA
2284 if (khugepaged_scan.address < hstart)
2285 khugepaged_scan.address = hstart;
a7d6e4ec 2286 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2287
2288 while (khugepaged_scan.address < hend) {
2289 int ret;
2290 cond_resched();
2291 if (unlikely(khugepaged_test_exit(mm)))
2292 goto breakouterloop;
2293
2294 VM_BUG_ON(khugepaged_scan.address < hstart ||
2295 khugepaged_scan.address + HPAGE_PMD_SIZE >
2296 hend);
2297 ret = khugepaged_scan_pmd(mm, vma,
2298 khugepaged_scan.address,
2299 hpage);
2300 /* move to next address */
2301 khugepaged_scan.address += HPAGE_PMD_SIZE;
2302 progress += HPAGE_PMD_NR;
2303 if (ret)
2304 /* we released mmap_sem so break loop */
2305 goto breakouterloop_mmap_sem;
2306 if (progress >= pages)
2307 goto breakouterloop;
2308 }
2309 }
2310breakouterloop:
2311 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2312breakouterloop_mmap_sem:
2313
2314 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2315 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2316 /*
2317 * Release the current mm_slot if this mm is about to die, or
2318 * if we scanned all vmas of this mm.
2319 */
2320 if (khugepaged_test_exit(mm) || !vma) {
2321 /*
2322 * Make sure that if mm_users is reaching zero while
2323 * khugepaged runs here, khugepaged_exit will find
2324 * mm_slot not pointing to the exiting mm.
2325 */
2326 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2327 khugepaged_scan.mm_slot = list_entry(
2328 mm_slot->mm_node.next,
2329 struct mm_slot, mm_node);
2330 khugepaged_scan.address = 0;
2331 } else {
2332 khugepaged_scan.mm_slot = NULL;
2333 khugepaged_full_scans++;
2334 }
2335
2336 collect_mm_slot(mm_slot);
2337 }
2338
2339 return progress;
2340}
2341
2342static int khugepaged_has_work(void)
2343{
2344 return !list_empty(&khugepaged_scan.mm_head) &&
2345 khugepaged_enabled();
2346}
2347
2348static int khugepaged_wait_event(void)
2349{
2350 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2351 kthread_should_stop();
ba76149f
AA
2352}
2353
d516904b 2354static void khugepaged_do_scan(void)
ba76149f 2355{
d516904b 2356 struct page *hpage = NULL;
ba76149f
AA
2357 unsigned int progress = 0, pass_through_head = 0;
2358 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2359 bool wait = true;
ba76149f
AA
2360
2361 barrier(); /* write khugepaged_pages_to_scan to local stack */
2362
2363 while (progress < pages) {
26234f36 2364 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2365 break;
26234f36 2366
420256ef 2367 cond_resched();
ba76149f 2368
878aee7d
AA
2369 if (unlikely(kthread_should_stop() || freezing(current)))
2370 break;
2371
ba76149f
AA
2372 spin_lock(&khugepaged_mm_lock);
2373 if (!khugepaged_scan.mm_slot)
2374 pass_through_head++;
2375 if (khugepaged_has_work() &&
2376 pass_through_head < 2)
2377 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2378 &hpage);
ba76149f
AA
2379 else
2380 progress = pages;
2381 spin_unlock(&khugepaged_mm_lock);
2382 }
ba76149f 2383
d516904b
XG
2384 if (!IS_ERR_OR_NULL(hpage))
2385 put_page(hpage);
0bbbc0b3
AA
2386}
2387
2017c0bf
XG
2388static void khugepaged_wait_work(void)
2389{
2390 try_to_freeze();
2391
2392 if (khugepaged_has_work()) {
2393 if (!khugepaged_scan_sleep_millisecs)
2394 return;
2395
2396 wait_event_freezable_timeout(khugepaged_wait,
2397 kthread_should_stop(),
2398 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2399 return;
2400 }
2401
2402 if (khugepaged_enabled())
2403 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2404}
2405
ba76149f
AA
2406static int khugepaged(void *none)
2407{
2408 struct mm_slot *mm_slot;
2409
878aee7d 2410 set_freezable();
ba76149f
AA
2411 set_user_nice(current, 19);
2412
b7231789
XG
2413 while (!kthread_should_stop()) {
2414 khugepaged_do_scan();
2415 khugepaged_wait_work();
2416 }
ba76149f
AA
2417
2418 spin_lock(&khugepaged_mm_lock);
2419 mm_slot = khugepaged_scan.mm_slot;
2420 khugepaged_scan.mm_slot = NULL;
2421 if (mm_slot)
2422 collect_mm_slot(mm_slot);
2423 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2424 return 0;
2425}
2426
71e3aac0
AA
2427void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2428{
2429 struct page *page;
2430
2431 spin_lock(&mm->page_table_lock);
2432 if (unlikely(!pmd_trans_huge(*pmd))) {
2433 spin_unlock(&mm->page_table_lock);
2434 return;
2435 }
2436 page = pmd_page(*pmd);
2437 VM_BUG_ON(!page_count(page));
2438 get_page(page);
2439 spin_unlock(&mm->page_table_lock);
2440
2441 split_huge_page(page);
2442
2443 put_page(page);
2444 BUG_ON(pmd_trans_huge(*pmd));
2445}
94fcc585
AA
2446
2447static void split_huge_page_address(struct mm_struct *mm,
2448 unsigned long address)
2449{
2450 pgd_t *pgd;
2451 pud_t *pud;
2452 pmd_t *pmd;
2453
2454 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2455
2456 pgd = pgd_offset(mm, address);
2457 if (!pgd_present(*pgd))
2458 return;
2459
2460 pud = pud_offset(pgd, address);
2461 if (!pud_present(*pud))
2462 return;
2463
2464 pmd = pmd_offset(pud, address);
2465 if (!pmd_present(*pmd))
2466 return;
2467 /*
2468 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2469 * materialize from under us.
2470 */
2471 split_huge_page_pmd(mm, pmd);
2472}
2473
2474void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2475 unsigned long start,
2476 unsigned long end,
2477 long adjust_next)
2478{
2479 /*
2480 * If the new start address isn't hpage aligned and it could
2481 * previously contain an hugepage: check if we need to split
2482 * an huge pmd.
2483 */
2484 if (start & ~HPAGE_PMD_MASK &&
2485 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2486 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2487 split_huge_page_address(vma->vm_mm, start);
2488
2489 /*
2490 * If the new end address isn't hpage aligned and it could
2491 * previously contain an hugepage: check if we need to split
2492 * an huge pmd.
2493 */
2494 if (end & ~HPAGE_PMD_MASK &&
2495 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2496 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2497 split_huge_page_address(vma->vm_mm, end);
2498
2499 /*
2500 * If we're also updating the vma->vm_next->vm_start, if the new
2501 * vm_next->vm_start isn't page aligned and it could previously
2502 * contain an hugepage: check if we need to split an huge pmd.
2503 */
2504 if (adjust_next > 0) {
2505 struct vm_area_struct *next = vma->vm_next;
2506 unsigned long nstart = next->vm_start;
2507 nstart += adjust_next << PAGE_SHIFT;
2508 if (nstart & ~HPAGE_PMD_MASK &&
2509 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2510 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2511 split_huge_page_address(next->vm_mm, nstart);
2512 }
2513}
This page took 0.290613 seconds and 5 git commands to generate.