thp: skip file huge pmd on copy_huge_pmd()
[deliverable/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
70652f6e
EA
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
7d2eba05
EA
62};
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/huge_memory.h>
66
ba76149f 67/*
8bfa3f9a
JW
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
ba76149f 74 */
71e3aac0 75unsigned long transparent_hugepage_flags __read_mostly =
13ece886 76#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
78#endif
79#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81#endif
444eb2a4 82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
85
86/* default scan 8*512 pte (or vmas) every 30 second */
ff20c2e0 87static unsigned int khugepaged_pages_to_scan __read_mostly;
ba76149f
AA
88static unsigned int khugepaged_pages_collapsed;
89static unsigned int khugepaged_full_scans;
90static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91/* during fragmentation poll the hugepage allocator once every minute */
92static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
f0508977 93static unsigned long khugepaged_sleep_expire;
ba76149f
AA
94static struct task_struct *khugepaged_thread __read_mostly;
95static DEFINE_MUTEX(khugepaged_mutex);
96static DEFINE_SPINLOCK(khugepaged_mm_lock);
97static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98/*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
ff20c2e0 103static unsigned int khugepaged_max_ptes_none __read_mostly;
70652f6e 104static unsigned int khugepaged_max_ptes_swap __read_mostly;
ba76149f
AA
105
106static int khugepaged(void *none);
ba76149f 107static int khugepaged_slab_init(void);
65ebb64f 108static void khugepaged_slab_exit(void);
ba76149f 109
43b5fbbd
SL
110#define MM_SLOTS_HASH_BITS 10
111static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
ba76149f
AA
113static struct kmem_cache *mm_slot_cache __read_mostly;
114
115/**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125};
126
127/**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
2f1da642
HS
139};
140static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142};
143
9a982250 144static struct shrinker deferred_split_shrinker;
f000565a 145
2c0b80d4 146static void set_recommended_min_free_kbytes(void)
f000565a
AA
147{
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
f000565a 151
f000565a
AA
152 for_each_populated_zone(zone)
153 nr_zones++;
154
974a786e 155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
42aa83cb
HP
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
756a025f 174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
175 min_free_kbytes, recommended_min);
176
f000565a 177 min_free_kbytes = recommended_min;
42aa83cb 178 }
f000565a 179 setup_per_zone_wmarks();
f000565a 180}
f000565a 181
79553da2 182static int start_stop_khugepaged(void)
ba76149f
AA
183{
184 int err = 0;
185 if (khugepaged_enabled()) {
ba76149f
AA
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
18e8e5c7 189 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
79553da2 193 goto fail;
ba76149f 194 }
911891af
XG
195
196 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 197 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
198
199 set_recommended_min_free_kbytes();
911891af 200 } else if (khugepaged_thread) {
911891af
XG
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
79553da2 204fail:
ba76149f
AA
205 return err;
206}
71e3aac0 207
97ae1749 208static atomic_t huge_zero_refcount;
56873f43 209struct page *huge_zero_page __read_mostly;
4a6c1297 210
fc437044 211struct page *get_huge_zero_page(void)
97ae1749
KS
212{
213 struct page *zero_page;
214retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 216 return READ_ONCE(huge_zero_page);
97ae1749
KS
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 219 HPAGE_PMD_ORDER);
d8a8e1f0
KS
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 222 return NULL;
d8a8e1f0
KS
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 225 preempt_disable();
5918d10a 226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 227 preempt_enable();
5ddacbe9 228 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
4db0c3c2 235 return READ_ONCE(huge_zero_page);
4a6c1297
KS
236}
237
aa88b68c 238void put_huge_zero_page(void)
4a6c1297 239{
97ae1749
KS
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
245}
246
48896466
GC
247static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
4a6c1297 249{
48896466
GC
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252}
97ae1749 253
48896466
GC
254static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256{
97ae1749 257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
5ddacbe9 260 __free_pages(zero_page, compound_order(zero_page));
48896466 261 return HPAGE_PMD_NR;
97ae1749
KS
262 }
263
264 return 0;
4a6c1297
KS
265}
266
97ae1749 267static struct shrinker huge_zero_page_shrinker = {
48896466
GC
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
270 .seeks = DEFAULT_SEEKS,
271};
272
71e3aac0 273#ifdef CONFIG_SYSFS
ba76149f 274
444eb2a4 275static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
444eb2a4 279 enum transparent_hugepage_flag deferred,
71e3aac0
AA
280 enum transparent_hugepage_flag req_madv)
281{
444eb2a4
MG
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
71e3aac0 290 min(sizeof("always")-1, count))) {
444eb2a4 291 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 292 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 293 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 297 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 303 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
304 } else
305 return -EINVAL;
306
307 return count;
308}
309
310static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
444eb2a4
MG
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
71e3aac0 319}
444eb2a4 320
71e3aac0
AA
321static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324{
ba76149f
AA
325 ssize_t ret;
326
444eb2a4
MG
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
911891af
XG
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
79553da2 336 err = start_stop_khugepaged();
911891af
XG
337 mutex_unlock(&khugepaged_mutex);
338
ba76149f
AA
339 if (err)
340 ret = err;
341 }
342
343 return ret;
71e3aac0
AA
344}
345static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351{
e27e6151
BH
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 354}
e27e6151 355
71e3aac0
AA
356static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360{
e27e6151
BH
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
71e3aac0 371 set_bit(flag, &transparent_hugepage_flags);
e27e6151 372 else
71e3aac0 373 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
374
375 return count;
376}
377
378/*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
444eb2a4
MG
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
71e3aac0
AA
395}
396static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399{
444eb2a4
MG
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404}
405static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
79da5407
KS
408static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410{
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413}
414static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416{
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419}
420static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
422#ifdef CONFIG_DEBUG_VM
423static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425{
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428}
429static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432{
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435}
436static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438#endif /* CONFIG_DEBUG_VM */
439
440static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
79da5407 443 &use_zero_page_attr.attr,
71e3aac0
AA
444#ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446#endif
447 NULL,
448};
449
450static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
ba76149f
AA
452};
453
454static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457{
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459}
460
461static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464{
465 unsigned long msecs;
466 int err;
467
3dbb95f7 468 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
f0508977 473 khugepaged_sleep_expire = 0;
ba76149f
AA
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477}
478static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485{
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487}
488
489static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492{
493 unsigned long msecs;
494 int err;
495
3dbb95f7 496 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
f0508977 501 khugepaged_sleep_expire = 0;
ba76149f
AA
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505}
506static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513{
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515}
516static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519{
520 int err;
521 unsigned long pages;
522
3dbb95f7 523 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530}
531static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538{
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540}
541static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547{
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549}
550static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555{
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558}
559static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562{
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565}
566static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570/*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581{
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583}
584static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587{
588 int err;
589 unsigned long max_ptes_none;
590
3dbb95f7 591 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598}
599static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
70652f6e
EA
603static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606{
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608}
609
610static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613{
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624}
625
626static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
ba76149f
AA
630static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
70652f6e 638 &khugepaged_max_ptes_swap_attr.attr,
ba76149f
AA
639 NULL,
640};
641
642static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
71e3aac0 645};
71e3aac0 646
569e5590 647static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 648{
71e3aac0
AA
649 int err;
650
569e5590
SL
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 653 pr_err("failed to create transparent hugepage kobject\n");
569e5590 654 return -ENOMEM;
ba76149f
AA
655 }
656
569e5590 657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 658 if (err) {
ae3a8c1c 659 pr_err("failed to register transparent hugepage group\n");
569e5590 660 goto delete_obj;
ba76149f
AA
661 }
662
569e5590 663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 664 if (err) {
ae3a8c1c 665 pr_err("failed to register transparent hugepage group\n");
569e5590 666 goto remove_hp_group;
ba76149f 667 }
569e5590
SL
668
669 return 0;
670
671remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676}
677
678static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679{
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683}
684#else
685static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686{
687 return 0;
688}
689
690static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691{
692}
693#endif /* CONFIG_SYSFS */
694
695static int __init hugepage_init(void)
696{
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
ff20c2e0
KS
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
70652f6e 707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
ff20c2e0
KS
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
569e5590
SL
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
65ebb64f 720 goto err_sysfs;
ba76149f
AA
721
722 err = khugepaged_slab_init();
723 if (err)
65ebb64f 724 goto err_slab;
ba76149f 725
65ebb64f
KS
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
9a982250
KS
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
97ae1749 732
97562cd2
RR
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
79553da2 738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 739 transparent_hugepage_flags = 0;
79553da2
KS
740 return 0;
741 }
97562cd2 742
79553da2 743 err = start_stop_khugepaged();
65ebb64f
KS
744 if (err)
745 goto err_khugepaged;
ba76149f 746
569e5590 747 return 0;
65ebb64f 748err_khugepaged:
9a982250
KS
749 unregister_shrinker(&deferred_split_shrinker);
750err_split_shrinker:
65ebb64f
KS
751 unregister_shrinker(&huge_zero_page_shrinker);
752err_hzp_shrinker:
753 khugepaged_slab_exit();
754err_slab:
569e5590 755 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 756err_sysfs:
ba76149f 757 return err;
71e3aac0 758}
a64fb3cd 759subsys_initcall(hugepage_init);
71e3aac0
AA
760
761static int __init setup_transparent_hugepage(char *str)
762{
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785out:
786 if (!ret)
ae3a8c1c 787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
788 return ret;
789}
790__setup("transparent_hugepage=", setup_transparent_hugepage);
791
b32967ff 792pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
793{
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797}
798
9a982250
KS
799static inline struct list_head *page_deferred_list(struct page *page)
800{
801 /*
802 * ->lru in the tail pages is occupied by compound_head.
803 * Let's use ->mapping + ->index in the second tail page as list_head.
804 */
805 return (struct list_head *)&page[2].mapping;
806}
807
808void prep_transhuge_page(struct page *page)
809{
810 /*
811 * we use page->mapping and page->indexlru in second tail page
812 * as list_head: assuming THP order >= 2
813 */
9a982250
KS
814
815 INIT_LIST_HEAD(page_deferred_list(page));
816 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
817}
818
bae473a4
KS
819static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
820 gfp_t gfp)
71e3aac0 821{
bae473a4 822 struct vm_area_struct *vma = fe->vma;
00501b53 823 struct mem_cgroup *memcg;
71e3aac0 824 pgtable_t pgtable;
bae473a4 825 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 826
309381fe 827 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 828
bae473a4 829 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
830 put_page(page);
831 count_vm_event(THP_FAULT_FALLBACK);
832 return VM_FAULT_FALLBACK;
833 }
00501b53 834
bae473a4 835 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 836 if (unlikely(!pgtable)) {
f627c2f5 837 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 838 put_page(page);
71e3aac0 839 return VM_FAULT_OOM;
00501b53 840 }
71e3aac0
AA
841
842 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
843 /*
844 * The memory barrier inside __SetPageUptodate makes sure that
845 * clear_huge_page writes become visible before the set_pmd_at()
846 * write.
847 */
71e3aac0
AA
848 __SetPageUptodate(page);
849
bae473a4
KS
850 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
851 if (unlikely(!pmd_none(*fe->pmd))) {
852 spin_unlock(fe->ptl);
f627c2f5 853 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 854 put_page(page);
bae473a4 855 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
856 } else {
857 pmd_t entry;
6b251fc9
AA
858
859 /* Deliver the page fault to userland */
860 if (userfaultfd_missing(vma)) {
861 int ret;
862
bae473a4 863 spin_unlock(fe->ptl);
f627c2f5 864 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 865 put_page(page);
bae473a4
KS
866 pte_free(vma->vm_mm, pgtable);
867 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
868 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
869 return ret;
870 }
871
3122359a
KS
872 entry = mk_huge_pmd(page, vma->vm_page_prot);
873 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 874 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 875 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 876 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
877 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
878 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
879 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
880 atomic_long_inc(&vma->vm_mm->nr_ptes);
881 spin_unlock(fe->ptl);
6b251fc9 882 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
883 }
884
aa2e878e 885 return 0;
71e3aac0
AA
886}
887
444eb2a4
MG
888/*
889 * If THP is set to always then directly reclaim/compact as necessary
890 * If set to defer then do no reclaim and defer to khugepaged
891 * If set to madvise and the VMA is flagged then directly reclaim/compact
892 */
893static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
894{
895 gfp_t reclaim_flags = 0;
896
897 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
898 (vma->vm_flags & VM_HUGEPAGE))
899 reclaim_flags = __GFP_DIRECT_RECLAIM;
900 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
901 reclaim_flags = __GFP_KSWAPD_RECLAIM;
902 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
903 reclaim_flags = __GFP_DIRECT_RECLAIM;
904
905 return GFP_TRANSHUGE | reclaim_flags;
906}
907
908/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
909static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 910{
444eb2a4 911 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
912}
913
c4088ebd 914/* Caller must hold page table lock. */
d295e341 915static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 916 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 917 struct page *zero_page)
fc9fe822
KS
918{
919 pmd_t entry;
7c414164
AM
920 if (!pmd_none(*pmd))
921 return false;
5918d10a 922 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 923 entry = pmd_mkhuge(entry);
12c9d70b
MW
924 if (pgtable)
925 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 926 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 927 atomic_long_inc(&mm->nr_ptes);
7c414164 928 return true;
fc9fe822
KS
929}
930
bae473a4 931int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 932{
bae473a4 933 struct vm_area_struct *vma = fe->vma;
077fcf11 934 gfp_t gfp;
71e3aac0 935 struct page *page;
bae473a4 936 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 937
128ec037 938 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 939 return VM_FAULT_FALLBACK;
128ec037
KS
940 if (unlikely(anon_vma_prepare(vma)))
941 return VM_FAULT_OOM;
6d50e60c 942 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 943 return VM_FAULT_OOM;
bae473a4
KS
944 if (!(fe->flags & FAULT_FLAG_WRITE) &&
945 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
946 transparent_hugepage_use_zero_page()) {
947 pgtable_t pgtable;
948 struct page *zero_page;
949 bool set;
6b251fc9 950 int ret;
bae473a4 951 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 952 if (unlikely(!pgtable))
ba76149f 953 return VM_FAULT_OOM;
128ec037
KS
954 zero_page = get_huge_zero_page();
955 if (unlikely(!zero_page)) {
bae473a4 956 pte_free(vma->vm_mm, pgtable);
81ab4201 957 count_vm_event(THP_FAULT_FALLBACK);
c0292554 958 return VM_FAULT_FALLBACK;
b9bbfbe3 959 }
bae473a4 960 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
961 ret = 0;
962 set = false;
bae473a4 963 if (pmd_none(*fe->pmd)) {
6b251fc9 964 if (userfaultfd_missing(vma)) {
bae473a4
KS
965 spin_unlock(fe->ptl);
966 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
967 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
968 } else {
bae473a4
KS
969 set_huge_zero_page(pgtable, vma->vm_mm, vma,
970 haddr, fe->pmd, zero_page);
971 spin_unlock(fe->ptl);
6b251fc9
AA
972 set = true;
973 }
974 } else
bae473a4 975 spin_unlock(fe->ptl);
128ec037 976 if (!set) {
bae473a4 977 pte_free(vma->vm_mm, pgtable);
128ec037 978 put_huge_zero_page();
edad9d2c 979 }
6b251fc9 980 return ret;
71e3aac0 981 }
444eb2a4 982 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 983 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
984 if (unlikely(!page)) {
985 count_vm_event(THP_FAULT_FALLBACK);
c0292554 986 return VM_FAULT_FALLBACK;
128ec037 987 }
9a982250 988 prep_transhuge_page(page);
bae473a4 989 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
990}
991
ae18d6dc 992static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 993 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
994{
995 struct mm_struct *mm = vma->vm_mm;
996 pmd_t entry;
997 spinlock_t *ptl;
998
999 ptl = pmd_lock(mm, pmd);
f25748e3
DW
1000 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1001 if (pfn_t_devmap(pfn))
1002 entry = pmd_mkdevmap(entry);
01871e59
RZ
1003 if (write) {
1004 entry = pmd_mkyoung(pmd_mkdirty(entry));
1005 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 1006 }
01871e59
RZ
1007 set_pmd_at(mm, addr, pmd, entry);
1008 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 1009 spin_unlock(ptl);
5cad465d
MW
1010}
1011
1012int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 1013 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
1014{
1015 pgprot_t pgprot = vma->vm_page_prot;
1016 /*
1017 * If we had pmd_special, we could avoid all these restrictions,
1018 * but we need to be consistent with PTEs and architectures that
1019 * can't support a 'special' bit.
1020 */
1021 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1022 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1023 (VM_PFNMAP|VM_MIXEDMAP));
1024 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 1025 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
1026
1027 if (addr < vma->vm_start || addr >= vma->vm_end)
1028 return VM_FAULT_SIGBUS;
1029 if (track_pfn_insert(vma, &pgprot, pfn))
1030 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1031 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1032 return VM_FAULT_NOPAGE;
5cad465d 1033}
dee41079 1034EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 1035
3565fce3
DW
1036static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd)
1038{
1039 pmd_t _pmd;
1040
1041 /*
1042 * We should set the dirty bit only for FOLL_WRITE but for now
1043 * the dirty bit in the pmd is meaningless. And if the dirty
1044 * bit will become meaningful and we'll only set it with
1045 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1046 * set the young bit, instead of the current set_pmd_at.
1047 */
1048 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1049 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1050 pmd, _pmd, 1))
1051 update_mmu_cache_pmd(vma, addr, pmd);
1052}
1053
1054struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1055 pmd_t *pmd, int flags)
1056{
1057 unsigned long pfn = pmd_pfn(*pmd);
1058 struct mm_struct *mm = vma->vm_mm;
1059 struct dev_pagemap *pgmap;
1060 struct page *page;
1061
1062 assert_spin_locked(pmd_lockptr(mm, pmd));
1063
1064 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1065 return NULL;
1066
1067 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1068 /* pass */;
1069 else
1070 return NULL;
1071
1072 if (flags & FOLL_TOUCH)
1073 touch_pmd(vma, addr, pmd);
1074
1075 /*
1076 * device mapped pages can only be returned if the
1077 * caller will manage the page reference count.
1078 */
1079 if (!(flags & FOLL_GET))
1080 return ERR_PTR(-EEXIST);
1081
1082 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1083 pgmap = get_dev_pagemap(pfn, NULL);
1084 if (!pgmap)
1085 return ERR_PTR(-EFAULT);
1086 page = pfn_to_page(pfn);
1087 get_page(page);
1088 put_dev_pagemap(pgmap);
1089
1090 return page;
1091}
1092
71e3aac0
AA
1093int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1095 struct vm_area_struct *vma)
1096{
c4088ebd 1097 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1098 struct page *src_page;
1099 pmd_t pmd;
12c9d70b 1100 pgtable_t pgtable = NULL;
628d47ce 1101 int ret = -ENOMEM;
71e3aac0 1102
628d47ce
KS
1103 /* Skip if can be re-fill on fault */
1104 if (!vma_is_anonymous(vma))
1105 return 0;
1106
1107 pgtable = pte_alloc_one(dst_mm, addr);
1108 if (unlikely(!pgtable))
1109 goto out;
71e3aac0 1110
c4088ebd
KS
1111 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1112 src_ptl = pmd_lockptr(src_mm, src_pmd);
1113 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1114
1115 ret = -EAGAIN;
1116 pmd = *src_pmd;
628d47ce 1117 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1118 pte_free(dst_mm, pgtable);
1119 goto out_unlock;
1120 }
fc9fe822 1121 /*
c4088ebd 1122 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1123 * under splitting since we don't split the page itself, only pmd to
1124 * a page table.
1125 */
1126 if (is_huge_zero_pmd(pmd)) {
5918d10a 1127 struct page *zero_page;
97ae1749
KS
1128 /*
1129 * get_huge_zero_page() will never allocate a new page here,
1130 * since we already have a zero page to copy. It just takes a
1131 * reference.
1132 */
5918d10a 1133 zero_page = get_huge_zero_page();
6b251fc9 1134 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1135 zero_page);
fc9fe822
KS
1136 ret = 0;
1137 goto out_unlock;
1138 }
de466bd6 1139
628d47ce
KS
1140 src_page = pmd_page(pmd);
1141 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1142 get_page(src_page);
1143 page_dup_rmap(src_page, true);
1144 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1145 atomic_long_inc(&dst_mm->nr_ptes);
1146 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1147
1148 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1149 pmd = pmd_mkold(pmd_wrprotect(pmd));
1150 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1151
1152 ret = 0;
1153out_unlock:
c4088ebd
KS
1154 spin_unlock(src_ptl);
1155 spin_unlock(dst_ptl);
71e3aac0
AA
1156out:
1157 return ret;
1158}
1159
bae473a4 1160void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
1161{
1162 pmd_t entry;
1163 unsigned long haddr;
1164
bae473a4
KS
1165 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1166 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
1167 goto unlock;
1168
1169 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
1170 haddr = fe->address & HPAGE_PMD_MASK;
1171 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1172 fe->flags & FAULT_FLAG_WRITE))
1173 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
1174
1175unlock:
bae473a4 1176 spin_unlock(fe->ptl);
a1dd450b
WD
1177}
1178
bae473a4
KS
1179static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1180 struct page *page)
71e3aac0 1181{
bae473a4
KS
1182 struct vm_area_struct *vma = fe->vma;
1183 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 1184 struct mem_cgroup *memcg;
71e3aac0
AA
1185 pgtable_t pgtable;
1186 pmd_t _pmd;
1187 int ret = 0, i;
1188 struct page **pages;
2ec74c3e
SG
1189 unsigned long mmun_start; /* For mmu_notifiers */
1190 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1191
1192 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1193 GFP_KERNEL);
1194 if (unlikely(!pages)) {
1195 ret |= VM_FAULT_OOM;
1196 goto out;
1197 }
1198
1199 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 1200 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
1201 __GFP_OTHER_NODE, vma,
1202 fe->address, page_to_nid(page));
b9bbfbe3 1203 if (unlikely(!pages[i] ||
bae473a4
KS
1204 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1205 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1206 if (pages[i])
71e3aac0 1207 put_page(pages[i]);
b9bbfbe3 1208 while (--i >= 0) {
00501b53
JW
1209 memcg = (void *)page_private(pages[i]);
1210 set_page_private(pages[i], 0);
f627c2f5
KS
1211 mem_cgroup_cancel_charge(pages[i], memcg,
1212 false);
b9bbfbe3
AA
1213 put_page(pages[i]);
1214 }
71e3aac0
AA
1215 kfree(pages);
1216 ret |= VM_FAULT_OOM;
1217 goto out;
1218 }
00501b53 1219 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1220 }
1221
1222 for (i = 0; i < HPAGE_PMD_NR; i++) {
1223 copy_user_highpage(pages[i], page + i,
0089e485 1224 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1225 __SetPageUptodate(pages[i]);
1226 cond_resched();
1227 }
1228
2ec74c3e
SG
1229 mmun_start = haddr;
1230 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1231 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1232
bae473a4
KS
1233 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1234 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 1235 goto out_free_pages;
309381fe 1236 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1237
bae473a4 1238 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
1239 /* leave pmd empty until pte is filled */
1240
bae473a4
KS
1241 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1242 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1243
1244 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1245 pte_t entry;
71e3aac0
AA
1246 entry = mk_pte(pages[i], vma->vm_page_prot);
1247 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1248 memcg = (void *)page_private(pages[i]);
1249 set_page_private(pages[i], 0);
bae473a4 1250 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 1251 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1252 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
1253 fe->pte = pte_offset_map(&_pmd, haddr);
1254 VM_BUG_ON(!pte_none(*fe->pte));
1255 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1256 pte_unmap(fe->pte);
71e3aac0
AA
1257 }
1258 kfree(pages);
1259
71e3aac0 1260 smp_wmb(); /* make pte visible before pmd */
bae473a4 1261 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 1262 page_remove_rmap(page, true);
bae473a4 1263 spin_unlock(fe->ptl);
71e3aac0 1264
bae473a4 1265 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1266
71e3aac0
AA
1267 ret |= VM_FAULT_WRITE;
1268 put_page(page);
1269
1270out:
1271 return ret;
1272
1273out_free_pages:
bae473a4
KS
1274 spin_unlock(fe->ptl);
1275 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1276 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1277 memcg = (void *)page_private(pages[i]);
1278 set_page_private(pages[i], 0);
f627c2f5 1279 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1280 put_page(pages[i]);
b9bbfbe3 1281 }
71e3aac0
AA
1282 kfree(pages);
1283 goto out;
1284}
1285
bae473a4 1286int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 1287{
bae473a4 1288 struct vm_area_struct *vma = fe->vma;
93b4796d 1289 struct page *page = NULL, *new_page;
00501b53 1290 struct mem_cgroup *memcg;
bae473a4 1291 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1292 unsigned long mmun_start; /* For mmu_notifiers */
1293 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1294 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1295 int ret = 0;
71e3aac0 1296
bae473a4 1297 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 1298 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1299 if (is_huge_zero_pmd(orig_pmd))
1300 goto alloc;
bae473a4
KS
1301 spin_lock(fe->ptl);
1302 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
1303 goto out_unlock;
1304
1305 page = pmd_page(orig_pmd);
309381fe 1306 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1307 /*
1308 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1309 * part.
1f25fe20 1310 */
6d0a07ed 1311 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1312 pmd_t entry;
1313 entry = pmd_mkyoung(orig_pmd);
1314 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1315 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1316 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1317 ret |= VM_FAULT_WRITE;
1318 goto out_unlock;
1319 }
ddc58f27 1320 get_page(page);
bae473a4 1321 spin_unlock(fe->ptl);
93b4796d 1322alloc:
71e3aac0 1323 if (transparent_hugepage_enabled(vma) &&
077fcf11 1324 !transparent_hugepage_debug_cow()) {
444eb2a4 1325 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1326 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1327 } else
71e3aac0
AA
1328 new_page = NULL;
1329
9a982250
KS
1330 if (likely(new_page)) {
1331 prep_transhuge_page(new_page);
1332 } else {
eecc1e42 1333 if (!page) {
bae473a4 1334 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1335 ret |= VM_FAULT_FALLBACK;
93b4796d 1336 } else {
bae473a4 1337 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1338 if (ret & VM_FAULT_OOM) {
bae473a4 1339 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1340 ret |= VM_FAULT_FALLBACK;
1341 }
ddc58f27 1342 put_page(page);
93b4796d 1343 }
17766dde 1344 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1345 goto out;
1346 }
1347
bae473a4
KS
1348 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1349 huge_gfp, &memcg, true))) {
b9bbfbe3 1350 put_page(new_page);
bae473a4
KS
1351 split_huge_pmd(vma, fe->pmd, fe->address);
1352 if (page)
ddc58f27 1353 put_page(page);
9845cbbd 1354 ret |= VM_FAULT_FALLBACK;
17766dde 1355 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1356 goto out;
1357 }
1358
17766dde
DR
1359 count_vm_event(THP_FAULT_ALLOC);
1360
eecc1e42 1361 if (!page)
93b4796d
KS
1362 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1363 else
1364 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1365 __SetPageUptodate(new_page);
1366
2ec74c3e
SG
1367 mmun_start = haddr;
1368 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1369 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1370
bae473a4 1371 spin_lock(fe->ptl);
93b4796d 1372 if (page)
ddc58f27 1373 put_page(page);
bae473a4
KS
1374 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1375 spin_unlock(fe->ptl);
f627c2f5 1376 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1377 put_page(new_page);
2ec74c3e 1378 goto out_mn;
b9bbfbe3 1379 } else {
71e3aac0 1380 pmd_t entry;
3122359a
KS
1381 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1382 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1383 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1384 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1385 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1386 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1387 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1388 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1389 if (!page) {
bae473a4 1390 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1391 put_huge_zero_page();
1392 } else {
309381fe 1393 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1394 page_remove_rmap(page, true);
93b4796d
KS
1395 put_page(page);
1396 }
71e3aac0
AA
1397 ret |= VM_FAULT_WRITE;
1398 }
bae473a4 1399 spin_unlock(fe->ptl);
2ec74c3e 1400out_mn:
bae473a4 1401 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1402out:
1403 return ret;
2ec74c3e 1404out_unlock:
bae473a4 1405 spin_unlock(fe->ptl);
2ec74c3e 1406 return ret;
71e3aac0
AA
1407}
1408
b676b293 1409struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1410 unsigned long addr,
1411 pmd_t *pmd,
1412 unsigned int flags)
1413{
b676b293 1414 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1415 struct page *page = NULL;
1416
c4088ebd 1417 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1418
1419 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1420 goto out;
1421
85facf25
KS
1422 /* Avoid dumping huge zero page */
1423 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1424 return ERR_PTR(-EFAULT);
1425
2b4847e7 1426 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1427 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1428 goto out;
1429
71e3aac0 1430 page = pmd_page(*pmd);
309381fe 1431 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1432 if (flags & FOLL_TOUCH)
1433 touch_pmd(vma, addr, pmd);
de60f5f1 1434 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1435 /*
1436 * We don't mlock() pte-mapped THPs. This way we can avoid
1437 * leaking mlocked pages into non-VM_LOCKED VMAs.
1438 *
1439 * In most cases the pmd is the only mapping of the page as we
1440 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1441 * writable private mappings in populate_vma_page_range().
1442 *
1443 * The only scenario when we have the page shared here is if we
1444 * mlocking read-only mapping shared over fork(). We skip
1445 * mlocking such pages.
1446 */
1447 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1448 page->mapping && trylock_page(page)) {
b676b293
DR
1449 lru_add_drain();
1450 if (page->mapping)
1451 mlock_vma_page(page);
1452 unlock_page(page);
1453 }
1454 }
71e3aac0 1455 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1456 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1457 if (flags & FOLL_GET)
ddc58f27 1458 get_page(page);
71e3aac0
AA
1459
1460out:
1461 return page;
1462}
1463
d10e63f2 1464/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1465int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1466{
bae473a4 1467 struct vm_area_struct *vma = fe->vma;
b8916634 1468 struct anon_vma *anon_vma = NULL;
b32967ff 1469 struct page *page;
bae473a4 1470 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1471 int page_nid = -1, this_nid = numa_node_id();
90572890 1472 int target_nid, last_cpupid = -1;
8191acbd
MG
1473 bool page_locked;
1474 bool migrated = false;
b191f9b1 1475 bool was_writable;
6688cc05 1476 int flags = 0;
d10e63f2 1477
c0e7cad9
MG
1478 /* A PROT_NONE fault should not end up here */
1479 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1480
bae473a4
KS
1481 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1482 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1483 goto out_unlock;
1484
de466bd6
MG
1485 /*
1486 * If there are potential migrations, wait for completion and retry
1487 * without disrupting NUMA hinting information. Do not relock and
1488 * check_same as the page may no longer be mapped.
1489 */
bae473a4
KS
1490 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1491 page = pmd_page(*fe->pmd);
1492 spin_unlock(fe->ptl);
5d833062 1493 wait_on_page_locked(page);
de466bd6
MG
1494 goto out;
1495 }
1496
d10e63f2 1497 page = pmd_page(pmd);
a1a46184 1498 BUG_ON(is_huge_zero_page(page));
8191acbd 1499 page_nid = page_to_nid(page);
90572890 1500 last_cpupid = page_cpupid_last(page);
03c5a6e1 1501 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1502 if (page_nid == this_nid) {
03c5a6e1 1503 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1504 flags |= TNF_FAULT_LOCAL;
1505 }
4daae3b4 1506
bea66fbd
MG
1507 /* See similar comment in do_numa_page for explanation */
1508 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1509 flags |= TNF_NO_GROUP;
1510
ff9042b1
MG
1511 /*
1512 * Acquire the page lock to serialise THP migrations but avoid dropping
1513 * page_table_lock if at all possible
1514 */
b8916634
MG
1515 page_locked = trylock_page(page);
1516 target_nid = mpol_misplaced(page, vma, haddr);
1517 if (target_nid == -1) {
1518 /* If the page was locked, there are no parallel migrations */
a54a407f 1519 if (page_locked)
b8916634 1520 goto clear_pmdnuma;
2b4847e7 1521 }
4daae3b4 1522
de466bd6 1523 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1524 if (!page_locked) {
bae473a4 1525 spin_unlock(fe->ptl);
b8916634 1526 wait_on_page_locked(page);
a54a407f 1527 page_nid = -1;
b8916634
MG
1528 goto out;
1529 }
1530
2b4847e7
MG
1531 /*
1532 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533 * to serialises splits
1534 */
b8916634 1535 get_page(page);
bae473a4 1536 spin_unlock(fe->ptl);
b8916634 1537 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1538
c69307d5 1539 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1540 spin_lock(fe->ptl);
1541 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1542 unlock_page(page);
1543 put_page(page);
a54a407f 1544 page_nid = -1;
4daae3b4 1545 goto out_unlock;
b32967ff 1546 }
ff9042b1 1547
c3a489ca
MG
1548 /* Bail if we fail to protect against THP splits for any reason */
1549 if (unlikely(!anon_vma)) {
1550 put_page(page);
1551 page_nid = -1;
1552 goto clear_pmdnuma;
1553 }
1554
a54a407f
MG
1555 /*
1556 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1557 * and access rights restored.
a54a407f 1558 */
bae473a4
KS
1559 spin_unlock(fe->ptl);
1560 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1561 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1562 if (migrated) {
1563 flags |= TNF_MIGRATED;
8191acbd 1564 page_nid = target_nid;
074c2381
MG
1565 } else
1566 flags |= TNF_MIGRATE_FAIL;
b32967ff 1567
8191acbd 1568 goto out;
b32967ff 1569clear_pmdnuma:
a54a407f 1570 BUG_ON(!PageLocked(page));
b191f9b1 1571 was_writable = pmd_write(pmd);
4d942466 1572 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1573 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1574 if (was_writable)
1575 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1576 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1577 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1578 unlock_page(page);
d10e63f2 1579out_unlock:
bae473a4 1580 spin_unlock(fe->ptl);
b8916634
MG
1581
1582out:
1583 if (anon_vma)
1584 page_unlock_anon_vma_read(anon_vma);
1585
8191acbd 1586 if (page_nid != -1)
bae473a4 1587 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1588
d10e63f2
MG
1589 return 0;
1590}
1591
b8d3c4c3
MK
1592int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1593 pmd_t *pmd, unsigned long addr, unsigned long next)
1594
1595{
1596 spinlock_t *ptl;
1597 pmd_t orig_pmd;
1598 struct page *page;
1599 struct mm_struct *mm = tlb->mm;
1600 int ret = 0;
1601
b6ec57f4
KS
1602 ptl = pmd_trans_huge_lock(pmd, vma);
1603 if (!ptl)
25eedabe 1604 goto out_unlocked;
b8d3c4c3
MK
1605
1606 orig_pmd = *pmd;
1607 if (is_huge_zero_pmd(orig_pmd)) {
1608 ret = 1;
1609 goto out;
1610 }
1611
1612 page = pmd_page(orig_pmd);
1613 /*
1614 * If other processes are mapping this page, we couldn't discard
1615 * the page unless they all do MADV_FREE so let's skip the page.
1616 */
1617 if (page_mapcount(page) != 1)
1618 goto out;
1619
1620 if (!trylock_page(page))
1621 goto out;
1622
1623 /*
1624 * If user want to discard part-pages of THP, split it so MADV_FREE
1625 * will deactivate only them.
1626 */
1627 if (next - addr != HPAGE_PMD_SIZE) {
1628 get_page(page);
1629 spin_unlock(ptl);
9818b8cd 1630 split_huge_page(page);
b8d3c4c3
MK
1631 put_page(page);
1632 unlock_page(page);
b8d3c4c3
MK
1633 goto out_unlocked;
1634 }
1635
1636 if (PageDirty(page))
1637 ClearPageDirty(page);
1638 unlock_page(page);
1639
1640 if (PageActive(page))
1641 deactivate_page(page);
1642
1643 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1644 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1645 tlb->fullmm);
1646 orig_pmd = pmd_mkold(orig_pmd);
1647 orig_pmd = pmd_mkclean(orig_pmd);
1648
1649 set_pmd_at(mm, addr, pmd, orig_pmd);
1650 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1651 }
1652 ret = 1;
1653out:
1654 spin_unlock(ptl);
1655out_unlocked:
1656 return ret;
1657}
1658
71e3aac0 1659int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1660 pmd_t *pmd, unsigned long addr)
71e3aac0 1661{
da146769 1662 pmd_t orig_pmd;
bf929152 1663 spinlock_t *ptl;
71e3aac0 1664
b6ec57f4
KS
1665 ptl = __pmd_trans_huge_lock(pmd, vma);
1666 if (!ptl)
da146769
KS
1667 return 0;
1668 /*
1669 * For architectures like ppc64 we look at deposited pgtable
1670 * when calling pmdp_huge_get_and_clear. So do the
1671 * pgtable_trans_huge_withdraw after finishing pmdp related
1672 * operations.
1673 */
1674 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1675 tlb->fullmm);
1676 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1677 if (vma_is_dax(vma)) {
1678 spin_unlock(ptl);
1679 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1680 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1681 } else if (is_huge_zero_pmd(orig_pmd)) {
1682 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1683 atomic_long_dec(&tlb->mm->nr_ptes);
1684 spin_unlock(ptl);
aa88b68c 1685 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1686 } else {
1687 struct page *page = pmd_page(orig_pmd);
d281ee61 1688 page_remove_rmap(page, true);
da146769 1689 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1690 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1691 if (PageAnon(page)) {
1692 pgtable_t pgtable;
1693 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1694 pte_free(tlb->mm, pgtable);
1695 atomic_long_dec(&tlb->mm->nr_ptes);
1696 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1697 } else {
1698 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1699 }
da146769 1700 spin_unlock(ptl);
e77b0852 1701 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1702 }
da146769 1703 return 1;
71e3aac0
AA
1704}
1705
bf8616d5 1706bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1707 unsigned long new_addr, unsigned long old_end,
1708 pmd_t *old_pmd, pmd_t *new_pmd)
1709{
bf929152 1710 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1711 pmd_t pmd;
37a1c49a
AA
1712 struct mm_struct *mm = vma->vm_mm;
1713
1714 if ((old_addr & ~HPAGE_PMD_MASK) ||
1715 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1716 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1717 return false;
37a1c49a
AA
1718
1719 /*
1720 * The destination pmd shouldn't be established, free_pgtables()
1721 * should have release it.
1722 */
1723 if (WARN_ON(!pmd_none(*new_pmd))) {
1724 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1725 return false;
37a1c49a
AA
1726 }
1727
bf929152
KS
1728 /*
1729 * We don't have to worry about the ordering of src and dst
1730 * ptlocks because exclusive mmap_sem prevents deadlock.
1731 */
b6ec57f4
KS
1732 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1733 if (old_ptl) {
bf929152
KS
1734 new_ptl = pmd_lockptr(mm, new_pmd);
1735 if (new_ptl != old_ptl)
1736 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1737 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1738 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1739
69a8ec2d
KS
1740 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1741 vma_is_anonymous(vma)) {
b3084f4d 1742 pgtable_t pgtable;
3592806c
KS
1743 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1744 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1745 }
b3084f4d
AK
1746 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1747 if (new_ptl != old_ptl)
1748 spin_unlock(new_ptl);
bf929152 1749 spin_unlock(old_ptl);
4b471e88 1750 return true;
37a1c49a 1751 }
4b471e88 1752 return false;
37a1c49a
AA
1753}
1754
f123d74a
MG
1755/*
1756 * Returns
1757 * - 0 if PMD could not be locked
1758 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1759 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1760 */
cd7548ab 1761int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1762 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1763{
1764 struct mm_struct *mm = vma->vm_mm;
bf929152 1765 spinlock_t *ptl;
cd7548ab
JW
1766 int ret = 0;
1767
b6ec57f4
KS
1768 ptl = __pmd_trans_huge_lock(pmd, vma);
1769 if (ptl) {
025c5b24 1770 pmd_t entry;
b191f9b1 1771 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1772 ret = 1;
e944fd67
MG
1773
1774 /*
1775 * Avoid trapping faults against the zero page. The read-only
1776 * data is likely to be read-cached on the local CPU and
1777 * local/remote hits to the zero page are not interesting.
1778 */
1779 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1780 spin_unlock(ptl);
ba68bc01 1781 return ret;
e944fd67
MG
1782 }
1783
10c1045f 1784 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1785 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1786 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1787 if (preserve_write)
1788 entry = pmd_mkwrite(entry);
10c1045f
MG
1789 ret = HPAGE_PMD_NR;
1790 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1791 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1792 }
bf929152 1793 spin_unlock(ptl);
025c5b24
NH
1794 }
1795
1796 return ret;
1797}
1798
1799/*
4b471e88 1800 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1801 *
4b471e88
KS
1802 * Note that if it returns true, this routine returns without unlocking page
1803 * table lock. So callers must unlock it.
025c5b24 1804 */
b6ec57f4 1805spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1806{
b6ec57f4
KS
1807 spinlock_t *ptl;
1808 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1809 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1810 return ptl;
1811 spin_unlock(ptl);
1812 return NULL;
cd7548ab
JW
1813}
1814
9050d7eb 1815#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1816
60ab3244
AA
1817int hugepage_madvise(struct vm_area_struct *vma,
1818 unsigned long *vm_flags, int advice)
0af4e98b 1819{
a664b2d8
AA
1820 switch (advice) {
1821 case MADV_HUGEPAGE:
1e1836e8
AT
1822#ifdef CONFIG_S390
1823 /*
1824 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1825 * can't handle this properly after s390_enable_sie, so we simply
1826 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1827 */
1828 if (mm_has_pgste(vma->vm_mm))
1829 return 0;
1830#endif
a664b2d8
AA
1831 /*
1832 * Be somewhat over-protective like KSM for now!
1833 */
1a763615 1834 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1835 return -EINVAL;
1836 *vm_flags &= ~VM_NOHUGEPAGE;
1837 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1838 /*
1839 * If the vma become good for khugepaged to scan,
1840 * register it here without waiting a page fault that
1841 * may not happen any time soon.
1842 */
6d50e60c 1843 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1844 return -ENOMEM;
a664b2d8
AA
1845 break;
1846 case MADV_NOHUGEPAGE:
1847 /*
1848 * Be somewhat over-protective like KSM for now!
1849 */
1a763615 1850 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1851 return -EINVAL;
1852 *vm_flags &= ~VM_HUGEPAGE;
1853 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1854 /*
1855 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1856 * this vma even if we leave the mm registered in khugepaged if
1857 * it got registered before VM_NOHUGEPAGE was set.
1858 */
a664b2d8
AA
1859 break;
1860 }
0af4e98b
AA
1861
1862 return 0;
1863}
1864
ba76149f
AA
1865static int __init khugepaged_slab_init(void)
1866{
1867 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1868 sizeof(struct mm_slot),
1869 __alignof__(struct mm_slot), 0, NULL);
1870 if (!mm_slot_cache)
1871 return -ENOMEM;
1872
1873 return 0;
1874}
1875
65ebb64f
KS
1876static void __init khugepaged_slab_exit(void)
1877{
1878 kmem_cache_destroy(mm_slot_cache);
1879}
1880
ba76149f
AA
1881static inline struct mm_slot *alloc_mm_slot(void)
1882{
1883 if (!mm_slot_cache) /* initialization failed */
1884 return NULL;
1885 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1886}
1887
1888static inline void free_mm_slot(struct mm_slot *mm_slot)
1889{
1890 kmem_cache_free(mm_slot_cache, mm_slot);
1891}
1892
ba76149f
AA
1893static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1894{
1895 struct mm_slot *mm_slot;
ba76149f 1896
b67bfe0d 1897 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1898 if (mm == mm_slot->mm)
1899 return mm_slot;
43b5fbbd 1900
ba76149f
AA
1901 return NULL;
1902}
1903
1904static void insert_to_mm_slots_hash(struct mm_struct *mm,
1905 struct mm_slot *mm_slot)
1906{
ba76149f 1907 mm_slot->mm = mm;
43b5fbbd 1908 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1909}
1910
1911static inline int khugepaged_test_exit(struct mm_struct *mm)
1912{
1913 return atomic_read(&mm->mm_users) == 0;
1914}
1915
1916int __khugepaged_enter(struct mm_struct *mm)
1917{
1918 struct mm_slot *mm_slot;
1919 int wakeup;
1920
1921 mm_slot = alloc_mm_slot();
1922 if (!mm_slot)
1923 return -ENOMEM;
1924
1925 /* __khugepaged_exit() must not run from under us */
96dad67f 1926 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1927 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1928 free_mm_slot(mm_slot);
1929 return 0;
1930 }
1931
1932 spin_lock(&khugepaged_mm_lock);
1933 insert_to_mm_slots_hash(mm, mm_slot);
1934 /*
1935 * Insert just behind the scanning cursor, to let the area settle
1936 * down a little.
1937 */
1938 wakeup = list_empty(&khugepaged_scan.mm_head);
1939 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1940 spin_unlock(&khugepaged_mm_lock);
1941
1942 atomic_inc(&mm->mm_count);
1943 if (wakeup)
1944 wake_up_interruptible(&khugepaged_wait);
1945
1946 return 0;
1947}
1948
6d50e60c
DR
1949int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1950 unsigned long vm_flags)
ba76149f
AA
1951{
1952 unsigned long hstart, hend;
1953 if (!vma->anon_vma)
1954 /*
1955 * Not yet faulted in so we will register later in the
1956 * page fault if needed.
1957 */
1958 return 0;
3486b85a 1959 if (vma->vm_ops || (vm_flags & VM_NO_THP))
ba76149f
AA
1960 /* khugepaged not yet working on file or special mappings */
1961 return 0;
ba76149f
AA
1962 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1963 hend = vma->vm_end & HPAGE_PMD_MASK;
1964 if (hstart < hend)
6d50e60c 1965 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1966 return 0;
1967}
1968
1969void __khugepaged_exit(struct mm_struct *mm)
1970{
1971 struct mm_slot *mm_slot;
1972 int free = 0;
1973
1974 spin_lock(&khugepaged_mm_lock);
1975 mm_slot = get_mm_slot(mm);
1976 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1977 hash_del(&mm_slot->hash);
ba76149f
AA
1978 list_del(&mm_slot->mm_node);
1979 free = 1;
1980 }
d788e80a 1981 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1982
1983 if (free) {
ba76149f
AA
1984 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1985 free_mm_slot(mm_slot);
1986 mmdrop(mm);
1987 } else if (mm_slot) {
ba76149f
AA
1988 /*
1989 * This is required to serialize against
1990 * khugepaged_test_exit() (which is guaranteed to run
1991 * under mmap sem read mode). Stop here (after we
1992 * return all pagetables will be destroyed) until
1993 * khugepaged has finished working on the pagetables
1994 * under the mmap_sem.
1995 */
1996 down_write(&mm->mmap_sem);
1997 up_write(&mm->mmap_sem);
d788e80a 1998 }
ba76149f
AA
1999}
2000
2001static void release_pte_page(struct page *page)
2002{
2003 /* 0 stands for page_is_file_cache(page) == false */
2004 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2005 unlock_page(page);
2006 putback_lru_page(page);
2007}
2008
2009static void release_pte_pages(pte_t *pte, pte_t *_pte)
2010{
2011 while (--_pte >= pte) {
2012 pte_t pteval = *_pte;
ca0984ca 2013 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2014 release_pte_page(pte_page(pteval));
2015 }
2016}
2017
ba76149f
AA
2018static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2019 unsigned long address,
2020 pte_t *pte)
2021{
7d2eba05 2022 struct page *page = NULL;
ba76149f 2023 pte_t *_pte;
7d2eba05 2024 int none_or_zero = 0, result = 0;
10359213 2025 bool referenced = false, writable = false;
7d2eba05 2026
ba76149f
AA
2027 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2028 _pte++, address += PAGE_SIZE) {
2029 pte_t pteval = *_pte;
47aee4d8
MK
2030 if (pte_none(pteval) || (pte_present(pteval) &&
2031 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2032 if (!userfaultfd_armed(vma) &&
7d2eba05 2033 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2034 continue;
7d2eba05
EA
2035 } else {
2036 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2037 goto out;
7d2eba05 2038 }
ba76149f 2039 }
7d2eba05
EA
2040 if (!pte_present(pteval)) {
2041 result = SCAN_PTE_NON_PRESENT;
ba76149f 2042 goto out;
7d2eba05 2043 }
ba76149f 2044 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2045 if (unlikely(!page)) {
2046 result = SCAN_PAGE_NULL;
ba76149f 2047 goto out;
7d2eba05 2048 }
344aa35c 2049
309381fe
SL
2050 VM_BUG_ON_PAGE(PageCompound(page), page);
2051 VM_BUG_ON_PAGE(!PageAnon(page), page);
2052 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2053
ba76149f
AA
2054 /*
2055 * We can do it before isolate_lru_page because the
2056 * page can't be freed from under us. NOTE: PG_lock
2057 * is needed to serialize against split_huge_page
2058 * when invoked from the VM.
2059 */
7d2eba05
EA
2060 if (!trylock_page(page)) {
2061 result = SCAN_PAGE_LOCK;
ba76149f 2062 goto out;
7d2eba05 2063 }
10359213
EA
2064
2065 /*
2066 * cannot use mapcount: can't collapse if there's a gup pin.
2067 * The page must only be referenced by the scanned process
2068 * and page swap cache.
2069 */
2070 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2071 unlock_page(page);
7d2eba05 2072 result = SCAN_PAGE_COUNT;
10359213
EA
2073 goto out;
2074 }
2075 if (pte_write(pteval)) {
2076 writable = true;
2077 } else {
6d0a07ed
AA
2078 if (PageSwapCache(page) &&
2079 !reuse_swap_page(page, NULL)) {
10359213 2080 unlock_page(page);
7d2eba05 2081 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2082 goto out;
2083 }
2084 /*
2085 * Page is not in the swap cache. It can be collapsed
2086 * into a THP.
2087 */
2088 }
2089
ba76149f
AA
2090 /*
2091 * Isolate the page to avoid collapsing an hugepage
2092 * currently in use by the VM.
2093 */
2094 if (isolate_lru_page(page)) {
2095 unlock_page(page);
7d2eba05 2096 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2097 goto out;
2098 }
2099 /* 0 stands for page_is_file_cache(page) == false */
2100 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2101 VM_BUG_ON_PAGE(!PageLocked(page), page);
2102 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2103
2104 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2105 if (pte_young(pteval) ||
2106 page_is_young(page) || PageReferenced(page) ||
8ee53820 2107 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2108 referenced = true;
ba76149f 2109 }
7d2eba05
EA
2110 if (likely(writable)) {
2111 if (likely(referenced)) {
2112 result = SCAN_SUCCEED;
16fd0fe4 2113 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2114 referenced, writable, result);
2115 return 1;
2116 }
2117 } else {
2118 result = SCAN_PAGE_RO;
2119 }
2120
ba76149f 2121out:
344aa35c 2122 release_pte_pages(pte, _pte);
16fd0fe4 2123 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2124 referenced, writable, result);
344aa35c 2125 return 0;
ba76149f
AA
2126}
2127
2128static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2129 struct vm_area_struct *vma,
2130 unsigned long address,
2131 spinlock_t *ptl)
2132{
2133 pte_t *_pte;
2134 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2135 pte_t pteval = *_pte;
2136 struct page *src_page;
2137
ca0984ca 2138 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2139 clear_user_highpage(page, address);
2140 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2141 if (is_zero_pfn(pte_pfn(pteval))) {
2142 /*
2143 * ptl mostly unnecessary.
2144 */
2145 spin_lock(ptl);
2146 /*
2147 * paravirt calls inside pte_clear here are
2148 * superfluous.
2149 */
2150 pte_clear(vma->vm_mm, address, _pte);
2151 spin_unlock(ptl);
2152 }
ba76149f
AA
2153 } else {
2154 src_page = pte_page(pteval);
2155 copy_user_highpage(page, src_page, address, vma);
309381fe 2156 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2157 release_pte_page(src_page);
2158 /*
2159 * ptl mostly unnecessary, but preempt has to
2160 * be disabled to update the per-cpu stats
2161 * inside page_remove_rmap().
2162 */
2163 spin_lock(ptl);
2164 /*
2165 * paravirt calls inside pte_clear here are
2166 * superfluous.
2167 */
2168 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2169 page_remove_rmap(src_page, false);
ba76149f
AA
2170 spin_unlock(ptl);
2171 free_page_and_swap_cache(src_page);
2172 }
2173
2174 address += PAGE_SIZE;
2175 page++;
2176 }
2177}
2178
26234f36 2179static void khugepaged_alloc_sleep(void)
ba76149f 2180{
bde43c6c
PM
2181 DEFINE_WAIT(wait);
2182
2183 add_wait_queue(&khugepaged_wait, &wait);
2184 freezable_schedule_timeout_interruptible(
2185 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2186 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2187}
ba76149f 2188
9f1b868a
BL
2189static int khugepaged_node_load[MAX_NUMNODES];
2190
14a4e214
DR
2191static bool khugepaged_scan_abort(int nid)
2192{
2193 int i;
2194
2195 /*
2196 * If zone_reclaim_mode is disabled, then no extra effort is made to
2197 * allocate memory locally.
2198 */
2199 if (!zone_reclaim_mode)
2200 return false;
2201
2202 /* If there is a count for this node already, it must be acceptable */
2203 if (khugepaged_node_load[nid])
2204 return false;
2205
2206 for (i = 0; i < MAX_NUMNODES; i++) {
2207 if (!khugepaged_node_load[i])
2208 continue;
2209 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2210 return true;
2211 }
2212 return false;
2213}
2214
26234f36 2215#ifdef CONFIG_NUMA
9f1b868a
BL
2216static int khugepaged_find_target_node(void)
2217{
2218 static int last_khugepaged_target_node = NUMA_NO_NODE;
2219 int nid, target_node = 0, max_value = 0;
2220
2221 /* find first node with max normal pages hit */
2222 for (nid = 0; nid < MAX_NUMNODES; nid++)
2223 if (khugepaged_node_load[nid] > max_value) {
2224 max_value = khugepaged_node_load[nid];
2225 target_node = nid;
2226 }
2227
2228 /* do some balance if several nodes have the same hit record */
2229 if (target_node <= last_khugepaged_target_node)
2230 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2231 nid++)
2232 if (max_value == khugepaged_node_load[nid]) {
2233 target_node = nid;
2234 break;
2235 }
2236
2237 last_khugepaged_target_node = target_node;
2238 return target_node;
2239}
2240
26234f36
XG
2241static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2242{
2243 if (IS_ERR(*hpage)) {
2244 if (!*wait)
2245 return false;
2246
2247 *wait = false;
e3b4126c 2248 *hpage = NULL;
26234f36
XG
2249 khugepaged_alloc_sleep();
2250 } else if (*hpage) {
2251 put_page(*hpage);
2252 *hpage = NULL;
2253 }
2254
2255 return true;
2256}
2257
3b363692
MH
2258static struct page *
2259khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2260 unsigned long address, int node)
26234f36 2261{
309381fe 2262 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2263
ce83d217 2264 /*
8b164568
VB
2265 * Before allocating the hugepage, release the mmap_sem read lock.
2266 * The allocation can take potentially a long time if it involves
2267 * sync compaction, and we do not need to hold the mmap_sem during
2268 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2269 */
8b164568
VB
2270 up_read(&mm->mmap_sem);
2271
96db800f 2272 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2273 if (unlikely(!*hpage)) {
81ab4201 2274 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2275 *hpage = ERR_PTR(-ENOMEM);
26234f36 2276 return NULL;
ce83d217 2277 }
26234f36 2278
9a982250 2279 prep_transhuge_page(*hpage);
65b3c07b 2280 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2281 return *hpage;
2282}
2283#else
9f1b868a
BL
2284static int khugepaged_find_target_node(void)
2285{
2286 return 0;
2287}
2288
444eb2a4 2289static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2290{
9a982250
KS
2291 struct page *page;
2292
444eb2a4
MG
2293 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2294 HPAGE_PMD_ORDER);
9a982250
KS
2295 if (page)
2296 prep_transhuge_page(page);
2297 return page;
10dc4155
BL
2298}
2299
26234f36
XG
2300static struct page *khugepaged_alloc_hugepage(bool *wait)
2301{
2302 struct page *hpage;
2303
2304 do {
444eb2a4 2305 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2306 if (!hpage) {
2307 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2308 if (!*wait)
2309 return NULL;
2310
2311 *wait = false;
2312 khugepaged_alloc_sleep();
2313 } else
2314 count_vm_event(THP_COLLAPSE_ALLOC);
2315 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2316
2317 return hpage;
2318}
2319
2320static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2321{
2322 if (!*hpage)
2323 *hpage = khugepaged_alloc_hugepage(wait);
2324
2325 if (unlikely(!*hpage))
2326 return false;
2327
2328 return true;
2329}
2330
3b363692
MH
2331static struct page *
2332khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2333 unsigned long address, int node)
26234f36
XG
2334{
2335 up_read(&mm->mmap_sem);
2336 VM_BUG_ON(!*hpage);
3b363692 2337
26234f36
XG
2338 return *hpage;
2339}
692e0b35
AA
2340#endif
2341
fa475e51
BL
2342static bool hugepage_vma_check(struct vm_area_struct *vma)
2343{
2344 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2345 (vma->vm_flags & VM_NOHUGEPAGE))
2346 return false;
fa475e51
BL
2347 if (!vma->anon_vma || vma->vm_ops)
2348 return false;
2349 if (is_vma_temporary_stack(vma))
2350 return false;
3486b85a 2351 return !(vma->vm_flags & VM_NO_THP);
fa475e51
BL
2352}
2353
72695862
EA
2354/*
2355 * If mmap_sem temporarily dropped, revalidate vma
2356 * before taking mmap_sem.
2357 * Return 0 if succeeds, otherwise return none-zero
2358 * value (scan code).
2359 */
2360
2361static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2362{
2363 struct vm_area_struct *vma;
2364 unsigned long hstart, hend;
2365
2366 if (unlikely(khugepaged_test_exit(mm)))
2367 return SCAN_ANY_PROCESS;
2368
2369 vma = find_vma(mm, address);
2370 if (!vma)
2371 return SCAN_VMA_NULL;
2372
2373 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2374 hend = vma->vm_end & HPAGE_PMD_MASK;
2375 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2376 return SCAN_ADDRESS_RANGE;
2377 if (!hugepage_vma_check(vma))
2378 return SCAN_VMA_CHECK;
2379 return 0;
2380}
2381
8a966ed7
EA
2382/*
2383 * Bring missing pages in from swap, to complete THP collapse.
2384 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2385 *
2386 * Called and returns without pte mapped or spinlocks held,
2387 * but with mmap_sem held to protect against vma changes.
2388 */
2389
72695862 2390static bool __collapse_huge_page_swapin(struct mm_struct *mm,
8a966ed7
EA
2391 struct vm_area_struct *vma,
2392 unsigned long address, pmd_t *pmd)
2393{
bae473a4 2394 pte_t pteval;
8a966ed7 2395 int swapped_in = 0, ret = 0;
bae473a4
KS
2396 struct fault_env fe = {
2397 .vma = vma,
2398 .address = address,
2399 .flags = FAULT_FLAG_ALLOW_RETRY,
2400 .pmd = pmd,
2401 };
2402
2403 fe.pte = pte_offset_map(pmd, address);
2404 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2405 fe.pte++, fe.address += PAGE_SIZE) {
2406 pteval = *fe.pte;
8a966ed7
EA
2407 if (!is_swap_pte(pteval))
2408 continue;
2409 swapped_in++;
bae473a4 2410 ret = do_swap_page(&fe, pteval);
72695862
EA
2411 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2412 if (ret & VM_FAULT_RETRY) {
2413 down_read(&mm->mmap_sem);
2414 /* vma is no longer available, don't continue to swapin */
2415 if (hugepage_vma_revalidate(mm, address))
2416 return false;
1f52e67e
KS
2417 /* check if the pmd is still valid */
2418 if (mm_find_pmd(mm, address) != pmd)
2419 return false;
72695862 2420 }
8a966ed7
EA
2421 if (ret & VM_FAULT_ERROR) {
2422 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
72695862 2423 return false;
8a966ed7
EA
2424 }
2425 /* pte is unmapped now, we need to map it */
bae473a4 2426 fe.pte = pte_offset_map(pmd, fe.address);
8a966ed7 2427 }
bae473a4
KS
2428 fe.pte--;
2429 pte_unmap(fe.pte);
8a966ed7 2430 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
72695862 2431 return true;
8a966ed7
EA
2432}
2433
26234f36
XG
2434static void collapse_huge_page(struct mm_struct *mm,
2435 unsigned long address,
2436 struct page **hpage,
2437 struct vm_area_struct *vma,
2438 int node)
2439{
26234f36
XG
2440 pmd_t *pmd, _pmd;
2441 pte_t *pte;
2442 pgtable_t pgtable;
2443 struct page *new_page;
c4088ebd 2444 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2445 int isolated = 0, result = 0;
00501b53 2446 struct mem_cgroup *memcg;
2ec74c3e
SG
2447 unsigned long mmun_start; /* For mmu_notifiers */
2448 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2449 gfp_t gfp;
26234f36
XG
2450
2451 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2452
3b363692 2453 /* Only allocate from the target node */
444eb2a4 2454 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2455
26234f36 2456 /* release the mmap_sem read lock. */
d6669d68 2457 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2458 if (!new_page) {
2459 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2460 goto out_nolock;
2461 }
26234f36 2462
f627c2f5 2463 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2464 result = SCAN_CGROUP_CHARGE_FAIL;
2465 goto out_nolock;
2466 }
ba76149f 2467
72695862
EA
2468 down_read(&mm->mmap_sem);
2469 result = hugepage_vma_revalidate(mm, address);
8024ee2a
EA
2470 if (result) {
2471 mem_cgroup_cancel_charge(new_page, memcg, true);
2472 up_read(&mm->mmap_sem);
2473 goto out_nolock;
2474 }
ba76149f 2475
6219049a 2476 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2477 if (!pmd) {
2478 result = SCAN_PMD_NULL;
8024ee2a
EA
2479 mem_cgroup_cancel_charge(new_page, memcg, true);
2480 up_read(&mm->mmap_sem);
2481 goto out_nolock;
7d2eba05 2482 }
ba76149f 2483
72695862
EA
2484 /*
2485 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2486 * If it fails, release mmap_sem and jump directly out.
2487 * Continuing to collapse causes inconsistency.
2488 */
2489 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
8024ee2a 2490 mem_cgroup_cancel_charge(new_page, memcg, true);
72695862 2491 up_read(&mm->mmap_sem);
8024ee2a 2492 goto out_nolock;
72695862
EA
2493 }
2494
2495 up_read(&mm->mmap_sem);
2496 /*
2497 * Prevent all access to pagetables with the exception of
2498 * gup_fast later handled by the ptep_clear_flush and the VM
2499 * handled by the anon_vma lock + PG_lock.
2500 */
2501 down_write(&mm->mmap_sem);
2502 result = hugepage_vma_revalidate(mm, address);
2503 if (result)
2504 goto out;
1f52e67e
KS
2505 /* check if the pmd is still valid */
2506 if (mm_find_pmd(mm, address) != pmd)
2507 goto out;
8a966ed7 2508
4fc3f1d6 2509 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2510
2511 pte = pte_offset_map(pmd, address);
c4088ebd 2512 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2513
2ec74c3e
SG
2514 mmun_start = address;
2515 mmun_end = address + HPAGE_PMD_SIZE;
2516 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2517 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2518 /*
2519 * After this gup_fast can't run anymore. This also removes
2520 * any huge TLB entry from the CPU so we won't allow
2521 * huge and small TLB entries for the same virtual address
2522 * to avoid the risk of CPU bugs in that area.
2523 */
15a25b2e 2524 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2525 spin_unlock(pmd_ptl);
2ec74c3e 2526 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2527
c4088ebd 2528 spin_lock(pte_ptl);
ba76149f 2529 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2530 spin_unlock(pte_ptl);
ba76149f
AA
2531
2532 if (unlikely(!isolated)) {
453c7192 2533 pte_unmap(pte);
c4088ebd 2534 spin_lock(pmd_ptl);
ba76149f 2535 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2536 /*
2537 * We can only use set_pmd_at when establishing
2538 * hugepmds and never for establishing regular pmds that
2539 * points to regular pagetables. Use pmd_populate for that
2540 */
2541 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2542 spin_unlock(pmd_ptl);
08b52706 2543 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2544 result = SCAN_FAIL;
ce83d217 2545 goto out;
ba76149f
AA
2546 }
2547
2548 /*
2549 * All pages are isolated and locked so anon_vma rmap
2550 * can't run anymore.
2551 */
08b52706 2552 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2553
c4088ebd 2554 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2555 pte_unmap(pte);
ba76149f
AA
2556 __SetPageUptodate(new_page);
2557 pgtable = pmd_pgtable(_pmd);
ba76149f 2558
3122359a
KS
2559 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2560 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2561
2562 /*
2563 * spin_lock() below is not the equivalent of smp_wmb(), so
2564 * this is needed to avoid the copy_huge_page writes to become
2565 * visible after the set_pmd_at() write.
2566 */
2567 smp_wmb();
2568
c4088ebd 2569 spin_lock(pmd_ptl);
ba76149f 2570 BUG_ON(!pmd_none(*pmd));
d281ee61 2571 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2572 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2573 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2574 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2575 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2576 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2577 spin_unlock(pmd_ptl);
ba76149f
AA
2578
2579 *hpage = NULL;
420256ef 2580
ba76149f 2581 khugepaged_pages_collapsed++;
7d2eba05 2582 result = SCAN_SUCCEED;
ce83d217 2583out_up_write:
ba76149f 2584 up_write(&mm->mmap_sem);
7d2eba05
EA
2585out_nolock:
2586 trace_mm_collapse_huge_page(mm, isolated, result);
2587 return;
ce83d217 2588out:
f627c2f5 2589 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2590 goto out_up_write;
ba76149f
AA
2591}
2592
2593static int khugepaged_scan_pmd(struct mm_struct *mm,
2594 struct vm_area_struct *vma,
2595 unsigned long address,
2596 struct page **hpage)
2597{
ba76149f
AA
2598 pmd_t *pmd;
2599 pte_t *pte, *_pte;
7d2eba05
EA
2600 int ret = 0, none_or_zero = 0, result = 0;
2601 struct page *page = NULL;
ba76149f
AA
2602 unsigned long _address;
2603 spinlock_t *ptl;
70652f6e 2604 int node = NUMA_NO_NODE, unmapped = 0;
10359213 2605 bool writable = false, referenced = false;
ba76149f
AA
2606
2607 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2608
6219049a 2609 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2610 if (!pmd) {
2611 result = SCAN_PMD_NULL;
ba76149f 2612 goto out;
7d2eba05 2613 }
ba76149f 2614
9f1b868a 2615 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2616 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2617 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2618 _pte++, _address += PAGE_SIZE) {
2619 pte_t pteval = *_pte;
70652f6e
EA
2620 if (is_swap_pte(pteval)) {
2621 if (++unmapped <= khugepaged_max_ptes_swap) {
2622 continue;
2623 } else {
2624 result = SCAN_EXCEED_SWAP_PTE;
2625 goto out_unmap;
2626 }
2627 }
ca0984ca 2628 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2629 if (!userfaultfd_armed(vma) &&
7d2eba05 2630 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2631 continue;
7d2eba05
EA
2632 } else {
2633 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2634 goto out_unmap;
7d2eba05 2635 }
ba76149f 2636 }
7d2eba05
EA
2637 if (!pte_present(pteval)) {
2638 result = SCAN_PTE_NON_PRESENT;
ba76149f 2639 goto out_unmap;
7d2eba05 2640 }
10359213
EA
2641 if (pte_write(pteval))
2642 writable = true;
2643
ba76149f 2644 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2645 if (unlikely(!page)) {
2646 result = SCAN_PAGE_NULL;
ba76149f 2647 goto out_unmap;
7d2eba05 2648 }
b1caa957
KS
2649
2650 /* TODO: teach khugepaged to collapse THP mapped with pte */
2651 if (PageCompound(page)) {
2652 result = SCAN_PAGE_COMPOUND;
2653 goto out_unmap;
2654 }
2655
5c4b4be3 2656 /*
9f1b868a
BL
2657 * Record which node the original page is from and save this
2658 * information to khugepaged_node_load[].
2659 * Khupaged will allocate hugepage from the node has the max
2660 * hit record.
5c4b4be3 2661 */
9f1b868a 2662 node = page_to_nid(page);
7d2eba05
EA
2663 if (khugepaged_scan_abort(node)) {
2664 result = SCAN_SCAN_ABORT;
14a4e214 2665 goto out_unmap;
7d2eba05 2666 }
9f1b868a 2667 khugepaged_node_load[node]++;
7d2eba05 2668 if (!PageLRU(page)) {
0fda2788 2669 result = SCAN_PAGE_LRU;
7d2eba05
EA
2670 goto out_unmap;
2671 }
2672 if (PageLocked(page)) {
2673 result = SCAN_PAGE_LOCK;
ba76149f 2674 goto out_unmap;
7d2eba05
EA
2675 }
2676 if (!PageAnon(page)) {
2677 result = SCAN_PAGE_ANON;
2678 goto out_unmap;
2679 }
2680
10359213
EA
2681 /*
2682 * cannot use mapcount: can't collapse if there's a gup pin.
2683 * The page must only be referenced by the scanned process
2684 * and page swap cache.
2685 */
7d2eba05
EA
2686 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2687 result = SCAN_PAGE_COUNT;
ba76149f 2688 goto out_unmap;
7d2eba05 2689 }
33c3fc71
VD
2690 if (pte_young(pteval) ||
2691 page_is_young(page) || PageReferenced(page) ||
8ee53820 2692 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2693 referenced = true;
ba76149f 2694 }
7d2eba05
EA
2695 if (writable) {
2696 if (referenced) {
2697 result = SCAN_SUCCEED;
2698 ret = 1;
2699 } else {
2700 result = SCAN_NO_REFERENCED_PAGE;
2701 }
2702 } else {
2703 result = SCAN_PAGE_RO;
2704 }
ba76149f
AA
2705out_unmap:
2706 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2707 if (ret) {
2708 node = khugepaged_find_target_node();
ce83d217 2709 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2710 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2711 }
ba76149f 2712out:
16fd0fe4 2713 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
70652f6e 2714 none_or_zero, result, unmapped);
ba76149f
AA
2715 return ret;
2716}
2717
2718static void collect_mm_slot(struct mm_slot *mm_slot)
2719{
2720 struct mm_struct *mm = mm_slot->mm;
2721
b9980cdc 2722 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2723
2724 if (khugepaged_test_exit(mm)) {
2725 /* free mm_slot */
43b5fbbd 2726 hash_del(&mm_slot->hash);
ba76149f
AA
2727 list_del(&mm_slot->mm_node);
2728
2729 /*
2730 * Not strictly needed because the mm exited already.
2731 *
2732 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2733 */
2734
2735 /* khugepaged_mm_lock actually not necessary for the below */
2736 free_mm_slot(mm_slot);
2737 mmdrop(mm);
2738 }
2739}
2740
2741static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2742 struct page **hpage)
2f1da642
HS
2743 __releases(&khugepaged_mm_lock)
2744 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2745{
2746 struct mm_slot *mm_slot;
2747 struct mm_struct *mm;
2748 struct vm_area_struct *vma;
2749 int progress = 0;
2750
2751 VM_BUG_ON(!pages);
b9980cdc 2752 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2753
2754 if (khugepaged_scan.mm_slot)
2755 mm_slot = khugepaged_scan.mm_slot;
2756 else {
2757 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2758 struct mm_slot, mm_node);
2759 khugepaged_scan.address = 0;
2760 khugepaged_scan.mm_slot = mm_slot;
2761 }
2762 spin_unlock(&khugepaged_mm_lock);
2763
2764 mm = mm_slot->mm;
2765 down_read(&mm->mmap_sem);
2766 if (unlikely(khugepaged_test_exit(mm)))
2767 vma = NULL;
2768 else
2769 vma = find_vma(mm, khugepaged_scan.address);
2770
2771 progress++;
2772 for (; vma; vma = vma->vm_next) {
2773 unsigned long hstart, hend;
2774
2775 cond_resched();
2776 if (unlikely(khugepaged_test_exit(mm))) {
2777 progress++;
2778 break;
2779 }
fa475e51
BL
2780 if (!hugepage_vma_check(vma)) {
2781skip:
ba76149f
AA
2782 progress++;
2783 continue;
2784 }
ba76149f
AA
2785 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2786 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2787 if (hstart >= hend)
2788 goto skip;
2789 if (khugepaged_scan.address > hend)
2790 goto skip;
ba76149f
AA
2791 if (khugepaged_scan.address < hstart)
2792 khugepaged_scan.address = hstart;
a7d6e4ec 2793 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2794
2795 while (khugepaged_scan.address < hend) {
2796 int ret;
2797 cond_resched();
2798 if (unlikely(khugepaged_test_exit(mm)))
2799 goto breakouterloop;
2800
2801 VM_BUG_ON(khugepaged_scan.address < hstart ||
2802 khugepaged_scan.address + HPAGE_PMD_SIZE >
2803 hend);
2804 ret = khugepaged_scan_pmd(mm, vma,
2805 khugepaged_scan.address,
2806 hpage);
2807 /* move to next address */
2808 khugepaged_scan.address += HPAGE_PMD_SIZE;
2809 progress += HPAGE_PMD_NR;
2810 if (ret)
2811 /* we released mmap_sem so break loop */
2812 goto breakouterloop_mmap_sem;
2813 if (progress >= pages)
2814 goto breakouterloop;
2815 }
2816 }
2817breakouterloop:
2818 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2819breakouterloop_mmap_sem:
2820
2821 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2822 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2823 /*
2824 * Release the current mm_slot if this mm is about to die, or
2825 * if we scanned all vmas of this mm.
2826 */
2827 if (khugepaged_test_exit(mm) || !vma) {
2828 /*
2829 * Make sure that if mm_users is reaching zero while
2830 * khugepaged runs here, khugepaged_exit will find
2831 * mm_slot not pointing to the exiting mm.
2832 */
2833 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2834 khugepaged_scan.mm_slot = list_entry(
2835 mm_slot->mm_node.next,
2836 struct mm_slot, mm_node);
2837 khugepaged_scan.address = 0;
2838 } else {
2839 khugepaged_scan.mm_slot = NULL;
2840 khugepaged_full_scans++;
2841 }
2842
2843 collect_mm_slot(mm_slot);
2844 }
2845
2846 return progress;
2847}
2848
2849static int khugepaged_has_work(void)
2850{
2851 return !list_empty(&khugepaged_scan.mm_head) &&
2852 khugepaged_enabled();
2853}
2854
2855static int khugepaged_wait_event(void)
2856{
2857 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2858 kthread_should_stop();
ba76149f
AA
2859}
2860
d516904b 2861static void khugepaged_do_scan(void)
ba76149f 2862{
d516904b 2863 struct page *hpage = NULL;
ba76149f
AA
2864 unsigned int progress = 0, pass_through_head = 0;
2865 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2866 bool wait = true;
ba76149f
AA
2867
2868 barrier(); /* write khugepaged_pages_to_scan to local stack */
2869
2870 while (progress < pages) {
26234f36 2871 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2872 break;
26234f36 2873
420256ef 2874 cond_resched();
ba76149f 2875
cd092411 2876 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2877 break;
2878
ba76149f
AA
2879 spin_lock(&khugepaged_mm_lock);
2880 if (!khugepaged_scan.mm_slot)
2881 pass_through_head++;
2882 if (khugepaged_has_work() &&
2883 pass_through_head < 2)
2884 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2885 &hpage);
ba76149f
AA
2886 else
2887 progress = pages;
2888 spin_unlock(&khugepaged_mm_lock);
2889 }
ba76149f 2890
d516904b
XG
2891 if (!IS_ERR_OR_NULL(hpage))
2892 put_page(hpage);
0bbbc0b3
AA
2893}
2894
f0508977
DR
2895static bool khugepaged_should_wakeup(void)
2896{
2897 return kthread_should_stop() ||
2898 time_after_eq(jiffies, khugepaged_sleep_expire);
2899}
2900
2017c0bf
XG
2901static void khugepaged_wait_work(void)
2902{
2017c0bf 2903 if (khugepaged_has_work()) {
f0508977
DR
2904 const unsigned long scan_sleep_jiffies =
2905 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2906
2907 if (!scan_sleep_jiffies)
2017c0bf
XG
2908 return;
2909
f0508977 2910 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2017c0bf 2911 wait_event_freezable_timeout(khugepaged_wait,
f0508977
DR
2912 khugepaged_should_wakeup(),
2913 scan_sleep_jiffies);
2017c0bf
XG
2914 return;
2915 }
2916
2917 if (khugepaged_enabled())
2918 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2919}
2920
ba76149f
AA
2921static int khugepaged(void *none)
2922{
2923 struct mm_slot *mm_slot;
2924
878aee7d 2925 set_freezable();
8698a745 2926 set_user_nice(current, MAX_NICE);
ba76149f 2927
b7231789
XG
2928 while (!kthread_should_stop()) {
2929 khugepaged_do_scan();
2930 khugepaged_wait_work();
2931 }
ba76149f
AA
2932
2933 spin_lock(&khugepaged_mm_lock);
2934 mm_slot = khugepaged_scan.mm_slot;
2935 khugepaged_scan.mm_slot = NULL;
2936 if (mm_slot)
2937 collect_mm_slot(mm_slot);
2938 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2939 return 0;
2940}
2941
eef1b3ba
KS
2942static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2943 unsigned long haddr, pmd_t *pmd)
2944{
2945 struct mm_struct *mm = vma->vm_mm;
2946 pgtable_t pgtable;
2947 pmd_t _pmd;
2948 int i;
2949
2950 /* leave pmd empty until pte is filled */
2951 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2952
2953 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2954 pmd_populate(mm, &_pmd, pgtable);
2955
2956 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2957 pte_t *pte, entry;
2958 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2959 entry = pte_mkspecial(entry);
2960 pte = pte_offset_map(&_pmd, haddr);
2961 VM_BUG_ON(!pte_none(*pte));
2962 set_pte_at(mm, haddr, pte, entry);
2963 pte_unmap(pte);
2964 }
2965 smp_wmb(); /* make pte visible before pmd */
2966 pmd_populate(mm, pmd, pgtable);
2967 put_huge_zero_page();
2968}
2969
2970static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2971 unsigned long haddr, bool freeze)
eef1b3ba
KS
2972{
2973 struct mm_struct *mm = vma->vm_mm;
2974 struct page *page;
2975 pgtable_t pgtable;
2976 pmd_t _pmd;
b8d3c4c3 2977 bool young, write, dirty;
2ac015e2 2978 unsigned long addr;
eef1b3ba
KS
2979 int i;
2980
2981 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2982 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2983 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2984 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2985
2986 count_vm_event(THP_SPLIT_PMD);
2987
d21b9e57
KS
2988 if (!vma_is_anonymous(vma)) {
2989 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
eef1b3ba
KS
2990 if (is_huge_zero_pmd(_pmd))
2991 put_huge_zero_page();
d21b9e57
KS
2992 if (vma_is_dax(vma))
2993 return;
2994 page = pmd_page(_pmd);
2995 if (!PageReferenced(page) && pmd_young(_pmd))
2996 SetPageReferenced(page);
2997 page_remove_rmap(page, true);
2998 put_page(page);
2999 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
3000 return;
3001 } else if (is_huge_zero_pmd(*pmd)) {
3002 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3003 }
3004
3005 page = pmd_page(*pmd);
3006 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 3007 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
3008 write = pmd_write(*pmd);
3009 young = pmd_young(*pmd);
b8d3c4c3 3010 dirty = pmd_dirty(*pmd);
eef1b3ba 3011
c777e2a8 3012 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
3013 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3014 pmd_populate(mm, &_pmd, pgtable);
3015
2ac015e2 3016 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
3017 pte_t entry, *pte;
3018 /*
3019 * Note that NUMA hinting access restrictions are not
3020 * transferred to avoid any possibility of altering
3021 * permissions across VMAs.
3022 */
ba988280
KS
3023 if (freeze) {
3024 swp_entry_t swp_entry;
3025 swp_entry = make_migration_entry(page + i, write);
3026 entry = swp_entry_to_pte(swp_entry);
3027 } else {
3028 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 3029 entry = maybe_mkwrite(entry, vma);
ba988280
KS
3030 if (!write)
3031 entry = pte_wrprotect(entry);
3032 if (!young)
3033 entry = pte_mkold(entry);
3034 }
b8d3c4c3
MK
3035 if (dirty)
3036 SetPageDirty(page + i);
2ac015e2 3037 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 3038 BUG_ON(!pte_none(*pte));
2ac015e2 3039 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
3040 atomic_inc(&page[i]._mapcount);
3041 pte_unmap(pte);
3042 }
3043
3044 /*
3045 * Set PG_double_map before dropping compound_mapcount to avoid
3046 * false-negative page_mapped().
3047 */
3048 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3049 for (i = 0; i < HPAGE_PMD_NR; i++)
3050 atomic_inc(&page[i]._mapcount);
3051 }
3052
3053 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3054 /* Last compound_mapcount is gone. */
3055 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3056 if (TestClearPageDoubleMap(page)) {
3057 /* No need in mapcount reference anymore */
3058 for (i = 0; i < HPAGE_PMD_NR; i++)
3059 atomic_dec(&page[i]._mapcount);
3060 }
3061 }
3062
3063 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
3064 /*
3065 * Up to this point the pmd is present and huge and userland has the
3066 * whole access to the hugepage during the split (which happens in
3067 * place). If we overwrite the pmd with the not-huge version pointing
3068 * to the pte here (which of course we could if all CPUs were bug
3069 * free), userland could trigger a small page size TLB miss on the
3070 * small sized TLB while the hugepage TLB entry is still established in
3071 * the huge TLB. Some CPU doesn't like that.
3072 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3073 * 383 on page 93. Intel should be safe but is also warns that it's
3074 * only safe if the permission and cache attributes of the two entries
3075 * loaded in the two TLB is identical (which should be the case here).
3076 * But it is generally safer to never allow small and huge TLB entries
3077 * for the same virtual address to be loaded simultaneously. So instead
3078 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3079 * current pmd notpresent (atomically because here the pmd_trans_huge
3080 * and pmd_trans_splitting must remain set at all times on the pmd
3081 * until the split is complete for this pmd), then we flush the SMP TLB
3082 * and finally we write the non-huge version of the pmd entry with
3083 * pmd_populate.
3084 */
3085 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 3086 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
3087
3088 if (freeze) {
2ac015e2 3089 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
3090 page_remove_rmap(page + i, false);
3091 put_page(page + i);
3092 }
3093 }
eef1b3ba
KS
3094}
3095
3096void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 3097 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
3098{
3099 spinlock_t *ptl;
3100 struct mm_struct *mm = vma->vm_mm;
3101 unsigned long haddr = address & HPAGE_PMD_MASK;
3102
3103 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3104 ptl = pmd_lock(mm, pmd);
33f4751e
NH
3105
3106 /*
3107 * If caller asks to setup a migration entries, we need a page to check
3108 * pmd against. Otherwise we can end up replacing wrong page.
3109 */
3110 VM_BUG_ON(freeze && !page);
3111 if (page && page != pmd_page(*pmd))
3112 goto out;
3113
5c7fb56e 3114 if (pmd_trans_huge(*pmd)) {
33f4751e 3115 page = pmd_page(*pmd);
5c7fb56e 3116 if (PageMlocked(page))
5f737714 3117 clear_page_mlock(page);
5c7fb56e 3118 } else if (!pmd_devmap(*pmd))
e90309c9 3119 goto out;
fec89c10 3120 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 3121out:
eef1b3ba
KS
3122 spin_unlock(ptl);
3123 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3124}
3125
fec89c10
KS
3126void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3127 bool freeze, struct page *page)
94fcc585 3128{
f72e7dcd
HD
3129 pgd_t *pgd;
3130 pud_t *pud;
94fcc585
AA
3131 pmd_t *pmd;
3132
78ddc534 3133 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3134 if (!pgd_present(*pgd))
3135 return;
3136
3137 pud = pud_offset(pgd, address);
3138 if (!pud_present(*pud))
3139 return;
3140
3141 pmd = pmd_offset(pud, address);
fec89c10 3142
33f4751e 3143 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
3144}
3145
e1b9996b 3146void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3147 unsigned long start,
3148 unsigned long end,
3149 long adjust_next)
3150{
3151 /*
3152 * If the new start address isn't hpage aligned and it could
3153 * previously contain an hugepage: check if we need to split
3154 * an huge pmd.
3155 */
3156 if (start & ~HPAGE_PMD_MASK &&
3157 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3158 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3159 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
3160
3161 /*
3162 * If the new end address isn't hpage aligned and it could
3163 * previously contain an hugepage: check if we need to split
3164 * an huge pmd.
3165 */
3166 if (end & ~HPAGE_PMD_MASK &&
3167 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3168 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3169 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
3170
3171 /*
3172 * If we're also updating the vma->vm_next->vm_start, if the new
3173 * vm_next->vm_start isn't page aligned and it could previously
3174 * contain an hugepage: check if we need to split an huge pmd.
3175 */
3176 if (adjust_next > 0) {
3177 struct vm_area_struct *next = vma->vm_next;
3178 unsigned long nstart = next->vm_start;
3179 nstart += adjust_next << PAGE_SHIFT;
3180 if (nstart & ~HPAGE_PMD_MASK &&
3181 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3182 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 3183 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
3184 }
3185}
e9b61f19 3186
fec89c10 3187static void freeze_page(struct page *page)
e9b61f19 3188{
fec89c10
KS
3189 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3190 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3191 int i, ret;
e9b61f19
KS
3192
3193 VM_BUG_ON_PAGE(!PageHead(page), page);
3194
fec89c10
KS
3195 /* We only need TTU_SPLIT_HUGE_PMD once */
3196 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3197 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3198 /* Cut short if the page is unmapped */
3199 if (page_count(page) == 1)
3200 return;
e9b61f19 3201
fec89c10 3202 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 3203 }
fec89c10 3204 VM_BUG_ON(ret);
e9b61f19
KS
3205}
3206
fec89c10 3207static void unfreeze_page(struct page *page)
e9b61f19 3208{
fec89c10 3209 int i;
e9b61f19 3210
fec89c10
KS
3211 for (i = 0; i < HPAGE_PMD_NR; i++)
3212 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
3213}
3214
8df651c7 3215static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3216 struct lruvec *lruvec, struct list_head *list)
3217{
e9b61f19
KS
3218 struct page *page_tail = head + tail;
3219
8df651c7 3220 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3221 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3222
3223 /*
0139aa7b 3224 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 3225 * get_page_unless_zero() may be running from under us on the
8df651c7 3226 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3227 * would then run atomic_set() concurrently with
3228 * get_page_unless_zero(), and atomic_set() is implemented in C not
3229 * using locked ops. spin_unlock on x86 sometime uses locked ops
3230 * because of PPro errata 66, 92, so unless somebody can guarantee
3231 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3232 * it's safer to use atomic_inc().
e9b61f19 3233 */
fe896d18 3234 page_ref_inc(page_tail);
e9b61f19
KS
3235
3236 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3237 page_tail->flags |= (head->flags &
3238 ((1L << PG_referenced) |
3239 (1L << PG_swapbacked) |
3240 (1L << PG_mlocked) |
3241 (1L << PG_uptodate) |
3242 (1L << PG_active) |
3243 (1L << PG_locked) |
b8d3c4c3
MK
3244 (1L << PG_unevictable) |
3245 (1L << PG_dirty)));
e9b61f19
KS
3246
3247 /*
3248 * After clearing PageTail the gup refcount can be released.
3249 * Page flags also must be visible before we make the page non-compound.
3250 */
3251 smp_wmb();
3252
3253 clear_compound_head(page_tail);
3254
3255 if (page_is_young(head))
3256 set_page_young(page_tail);
3257 if (page_is_idle(head))
3258 set_page_idle(page_tail);
3259
3260 /* ->mapping in first tail page is compound_mapcount */
9a982250 3261 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3262 page_tail);
3263 page_tail->mapping = head->mapping;
3264
3265 page_tail->index = head->index + tail;
3266 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3267 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3268}
3269
3270static void __split_huge_page(struct page *page, struct list_head *list)
3271{
3272 struct page *head = compound_head(page);
3273 struct zone *zone = page_zone(head);
3274 struct lruvec *lruvec;
8df651c7 3275 int i;
e9b61f19
KS
3276
3277 /* prevent PageLRU to go away from under us, and freeze lru stats */
3278 spin_lock_irq(&zone->lru_lock);
3279 lruvec = mem_cgroup_page_lruvec(head, zone);
3280
3281 /* complete memcg works before add pages to LRU */
3282 mem_cgroup_split_huge_fixup(head);
3283
e9b61f19 3284 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3285 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3286
3287 ClearPageCompound(head);
3288 spin_unlock_irq(&zone->lru_lock);
3289
fec89c10 3290 unfreeze_page(head);
e9b61f19
KS
3291
3292 for (i = 0; i < HPAGE_PMD_NR; i++) {
3293 struct page *subpage = head + i;
3294 if (subpage == page)
3295 continue;
3296 unlock_page(subpage);
3297
3298 /*
3299 * Subpages may be freed if there wasn't any mapping
3300 * like if add_to_swap() is running on a lru page that
3301 * had its mapping zapped. And freeing these pages
3302 * requires taking the lru_lock so we do the put_page
3303 * of the tail pages after the split is complete.
3304 */
3305 put_page(subpage);
3306 }
3307}
3308
b20ce5e0
KS
3309int total_mapcount(struct page *page)
3310{
dd78fedd 3311 int i, compound, ret;
b20ce5e0
KS
3312
3313 VM_BUG_ON_PAGE(PageTail(page), page);
3314
3315 if (likely(!PageCompound(page)))
3316 return atomic_read(&page->_mapcount) + 1;
3317
dd78fedd 3318 compound = compound_mapcount(page);
b20ce5e0 3319 if (PageHuge(page))
dd78fedd
KS
3320 return compound;
3321 ret = compound;
b20ce5e0
KS
3322 for (i = 0; i < HPAGE_PMD_NR; i++)
3323 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
3324 /* File pages has compound_mapcount included in _mapcount */
3325 if (!PageAnon(page))
3326 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
3327 if (PageDoubleMap(page))
3328 ret -= HPAGE_PMD_NR;
3329 return ret;
3330}
3331
6d0a07ed
AA
3332/*
3333 * This calculates accurately how many mappings a transparent hugepage
3334 * has (unlike page_mapcount() which isn't fully accurate). This full
3335 * accuracy is primarily needed to know if copy-on-write faults can
3336 * reuse the page and change the mapping to read-write instead of
3337 * copying them. At the same time this returns the total_mapcount too.
3338 *
3339 * The function returns the highest mapcount any one of the subpages
3340 * has. If the return value is one, even if different processes are
3341 * mapping different subpages of the transparent hugepage, they can
3342 * all reuse it, because each process is reusing a different subpage.
3343 *
3344 * The total_mapcount is instead counting all virtual mappings of the
3345 * subpages. If the total_mapcount is equal to "one", it tells the
3346 * caller all mappings belong to the same "mm" and in turn the
3347 * anon_vma of the transparent hugepage can become the vma->anon_vma
3348 * local one as no other process may be mapping any of the subpages.
3349 *
3350 * It would be more accurate to replace page_mapcount() with
3351 * page_trans_huge_mapcount(), however we only use
3352 * page_trans_huge_mapcount() in the copy-on-write faults where we
3353 * need full accuracy to avoid breaking page pinning, because
3354 * page_trans_huge_mapcount() is slower than page_mapcount().
3355 */
3356int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3357{
3358 int i, ret, _total_mapcount, mapcount;
3359
3360 /* hugetlbfs shouldn't call it */
3361 VM_BUG_ON_PAGE(PageHuge(page), page);
3362
3363 if (likely(!PageTransCompound(page))) {
3364 mapcount = atomic_read(&page->_mapcount) + 1;
3365 if (total_mapcount)
3366 *total_mapcount = mapcount;
3367 return mapcount;
3368 }
3369
3370 page = compound_head(page);
3371
3372 _total_mapcount = ret = 0;
3373 for (i = 0; i < HPAGE_PMD_NR; i++) {
3374 mapcount = atomic_read(&page[i]._mapcount) + 1;
3375 ret = max(ret, mapcount);
3376 _total_mapcount += mapcount;
3377 }
3378 if (PageDoubleMap(page)) {
3379 ret -= 1;
3380 _total_mapcount -= HPAGE_PMD_NR;
3381 }
3382 mapcount = compound_mapcount(page);
3383 ret += mapcount;
3384 _total_mapcount += mapcount;
3385 if (total_mapcount)
3386 *total_mapcount = _total_mapcount;
3387 return ret;
3388}
3389
e9b61f19
KS
3390/*
3391 * This function splits huge page into normal pages. @page can point to any
3392 * subpage of huge page to split. Split doesn't change the position of @page.
3393 *
3394 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3395 * The huge page must be locked.
3396 *
3397 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3398 *
3399 * Both head page and tail pages will inherit mapping, flags, and so on from
3400 * the hugepage.
3401 *
3402 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3403 * they are not mapped.
3404 *
3405 * Returns 0 if the hugepage is split successfully.
3406 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3407 * us.
3408 */
3409int split_huge_page_to_list(struct page *page, struct list_head *list)
3410{
3411 struct page *head = compound_head(page);
a3d0a918 3412 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3413 struct anon_vma *anon_vma;
3414 int count, mapcount, ret;
d9654322 3415 bool mlocked;
0b9b6fff 3416 unsigned long flags;
e9b61f19
KS
3417
3418 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3419 VM_BUG_ON_PAGE(!PageAnon(page), page);
3420 VM_BUG_ON_PAGE(!PageLocked(page), page);
3421 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3422 VM_BUG_ON_PAGE(!PageCompound(page), page);
3423
3424 /*
3425 * The caller does not necessarily hold an mmap_sem that would prevent
3426 * the anon_vma disappearing so we first we take a reference to it
3427 * and then lock the anon_vma for write. This is similar to
3428 * page_lock_anon_vma_read except the write lock is taken to serialise
3429 * against parallel split or collapse operations.
3430 */
3431 anon_vma = page_get_anon_vma(head);
3432 if (!anon_vma) {
3433 ret = -EBUSY;
3434 goto out;
3435 }
3436 anon_vma_lock_write(anon_vma);
3437
3438 /*
3439 * Racy check if we can split the page, before freeze_page() will
3440 * split PMDs
3441 */
3442 if (total_mapcount(head) != page_count(head) - 1) {
3443 ret = -EBUSY;
3444 goto out_unlock;
3445 }
3446
d9654322 3447 mlocked = PageMlocked(page);
fec89c10 3448 freeze_page(head);
e9b61f19
KS
3449 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3450
d9654322
KS
3451 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3452 if (mlocked)
3453 lru_add_drain();
3454
0139aa7b 3455 /* Prevent deferred_split_scan() touching ->_refcount */
a3d0a918 3456 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3457 count = page_count(head);
3458 mapcount = total_mapcount(head);
bd56086f 3459 if (!mapcount && count == 1) {
9a982250 3460 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3461 pgdata->split_queue_len--;
9a982250
KS
3462 list_del(page_deferred_list(head));
3463 }
a3d0a918 3464 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3465 __split_huge_page(page, list);
3466 ret = 0;
bd56086f 3467 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3468 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3469 pr_alert("total_mapcount: %u, page_count(): %u\n",
3470 mapcount, count);
3471 if (PageTail(page))
3472 dump_page(head, NULL);
bd56086f 3473 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3474 BUG();
3475 } else {
a3d0a918 3476 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
fec89c10 3477 unfreeze_page(head);
e9b61f19
KS
3478 ret = -EBUSY;
3479 }
3480
3481out_unlock:
3482 anon_vma_unlock_write(anon_vma);
3483 put_anon_vma(anon_vma);
3484out:
3485 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3486 return ret;
3487}
9a982250
KS
3488
3489void free_transhuge_page(struct page *page)
3490{
a3d0a918 3491 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3492 unsigned long flags;
3493
a3d0a918 3494 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3495 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3496 pgdata->split_queue_len--;
9a982250
KS
3497 list_del(page_deferred_list(page));
3498 }
a3d0a918 3499 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3500 free_compound_page(page);
3501}
3502
3503void deferred_split_huge_page(struct page *page)
3504{
a3d0a918 3505 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3506 unsigned long flags;
3507
3508 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3509
a3d0a918 3510 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3511 if (list_empty(page_deferred_list(page))) {
f9719a03 3512 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3513 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3514 pgdata->split_queue_len++;
9a982250 3515 }
a3d0a918 3516 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3517}
3518
3519static unsigned long deferred_split_count(struct shrinker *shrink,
3520 struct shrink_control *sc)
3521{
a3d0a918 3522 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3523 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3524}
3525
3526static unsigned long deferred_split_scan(struct shrinker *shrink,
3527 struct shrink_control *sc)
3528{
a3d0a918 3529 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3530 unsigned long flags;
3531 LIST_HEAD(list), *pos, *next;
3532 struct page *page;
3533 int split = 0;
3534
a3d0a918 3535 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3536 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3537 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3538 page = list_entry((void *)pos, struct page, mapping);
3539 page = compound_head(page);
e3ae1953
KS
3540 if (get_page_unless_zero(page)) {
3541 list_move(page_deferred_list(page), &list);
3542 } else {
3543 /* We lost race with put_compound_page() */
9a982250 3544 list_del_init(page_deferred_list(page));
a3d0a918 3545 pgdata->split_queue_len--;
9a982250 3546 }
e3ae1953
KS
3547 if (!--sc->nr_to_scan)
3548 break;
9a982250 3549 }
a3d0a918 3550 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3551
3552 list_for_each_safe(pos, next, &list) {
3553 page = list_entry((void *)pos, struct page, mapping);
3554 lock_page(page);
3555 /* split_huge_page() removes page from list on success */
3556 if (!split_huge_page(page))
3557 split++;
3558 unlock_page(page);
3559 put_page(page);
3560 }
3561
a3d0a918
KS
3562 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3563 list_splice_tail(&list, &pgdata->split_queue);
3564 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3565
cb8d68ec
KS
3566 /*
3567 * Stop shrinker if we didn't split any page, but the queue is empty.
3568 * This can happen if pages were freed under us.
3569 */
3570 if (!split && list_empty(&pgdata->split_queue))
3571 return SHRINK_STOP;
3572 return split;
9a982250
KS
3573}
3574
3575static struct shrinker deferred_split_shrinker = {
3576 .count_objects = deferred_split_count,
3577 .scan_objects = deferred_split_scan,
3578 .seeks = DEFAULT_SEEKS,
a3d0a918 3579 .flags = SHRINKER_NUMA_AWARE,
9a982250 3580};
49071d43
KS
3581
3582#ifdef CONFIG_DEBUG_FS
3583static int split_huge_pages_set(void *data, u64 val)
3584{
3585 struct zone *zone;
3586 struct page *page;
3587 unsigned long pfn, max_zone_pfn;
3588 unsigned long total = 0, split = 0;
3589
3590 if (val != 1)
3591 return -EINVAL;
3592
3593 for_each_populated_zone(zone) {
3594 max_zone_pfn = zone_end_pfn(zone);
3595 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3596 if (!pfn_valid(pfn))
3597 continue;
3598
3599 page = pfn_to_page(pfn);
3600 if (!get_page_unless_zero(page))
3601 continue;
3602
3603 if (zone != page_zone(page))
3604 goto next;
3605
3606 if (!PageHead(page) || !PageAnon(page) ||
3607 PageHuge(page))
3608 goto next;
3609
3610 total++;
3611 lock_page(page);
3612 if (!split_huge_page(page))
3613 split++;
3614 unlock_page(page);
3615next:
3616 put_page(page);
3617 }
3618 }
3619
145bdaa1 3620 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3621
3622 return 0;
3623}
3624DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3625 "%llu\n");
3626
3627static int __init split_huge_pages_debugfs(void)
3628{
3629 void *ret;
3630
145bdaa1 3631 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
3632 &split_huge_pages_fops);
3633 if (!ret)
3634 pr_warn("Failed to create split_huge_pages in debugfs");
3635 return 0;
3636}
3637late_initcall(split_huge_pages_debugfs);
3638#endif
This page took 0.65014 seconds and 5 git commands to generate.