memory_hotplug: introduce memhp_default_state= command line parameter
[deliverable/linux.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4 36
753162cd 37int hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
9fee021d 54static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
09a95e29
MK
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
90481622
DG
165 return ret;
166}
167
1c5ecae3
MK
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
175 long delta)
176{
1c5ecae3
MK
177 long ret = delta;
178
90481622 179 if (!spool)
1c5ecae3 180 return delta;
90481622
DG
181
182 spin_lock(&spool->lock);
1c5ecae3
MK
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
90481622 203 unlock_or_release_subpool(spool);
1c5ecae3
MK
204
205 return ret;
90481622
DG
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
496ad9aa 215 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
216}
217
96822904
AW
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
84afd99b 221 *
1dd308a7
MK
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
96822904
AW
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
1dd308a7
MK
243/*
244 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
cf3ad20b
MK
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
1dd308a7 256 */
1406ec9b 257static long region_add(struct resv_map *resv, long f, long t)
96822904 258{
1406ec9b 259 struct list_head *head = &resv->regions;
96822904 260 struct file_region *rg, *nrg, *trg;
cf3ad20b 261 long add = 0;
96822904 262
7b24d861 263 spin_lock(&resv->lock);
96822904
AW
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
5e911373
MK
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
96822904
AW
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
cf3ad20b
MK
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
96822904
AW
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
cf3ad20b
MK
318
319 add += (nrg->from - f); /* Added to beginning of region */
96822904 320 nrg->from = f;
cf3ad20b 321 add += t - nrg->to; /* Added to end of region */
96822904 322 nrg->to = t;
cf3ad20b 323
5e911373
MK
324out_locked:
325 resv->adds_in_progress--;
7b24d861 326 spin_unlock(&resv->lock);
cf3ad20b
MK
327 VM_BUG_ON(add < 0);
328 return add;
96822904
AW
329}
330
1dd308a7
MK
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
5e911373
MK
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
1dd308a7 352 */
1406ec9b 353static long region_chg(struct resv_map *resv, long f, long t)
96822904 354{
1406ec9b 355 struct list_head *head = &resv->regions;
7b24d861 356 struct file_region *rg, *nrg = NULL;
96822904
AW
357 long chg = 0;
358
7b24d861
DB
359retry:
360 spin_lock(&resv->lock);
5e911373
MK
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
377 if (!trg) {
378 kfree(nrg);
5e911373 379 return -ENOMEM;
dbe409e4 380 }
5e911373
MK
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
96822904
AW
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
7b24d861 397 if (!nrg) {
5e911373 398 resv->adds_in_progress--;
7b24d861
DB
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
96822904 409
7b24d861
DB
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
96822904
AW
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
7b24d861 425 goto out;
96822904 426
25985edc 427 /* We overlap with this area, if it extends further than
96822904
AW
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
7b24d861
DB
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
96822904
AW
444 return chg;
445}
446
5e911373
MK
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
1dd308a7 466/*
feba16e2
MK
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 479 */
feba16e2 480static long region_del(struct resv_map *resv, long f, long t)
96822904 481{
1406ec9b 482 struct list_head *head = &resv->regions;
96822904 483 struct file_region *rg, *trg;
feba16e2
MK
484 struct file_region *nrg = NULL;
485 long del = 0;
96822904 486
feba16e2 487retry:
7b24d861 488 spin_lock(&resv->lock);
feba16e2 489 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 498 continue;
dbe409e4 499
feba16e2 500 if (rg->from >= t)
96822904 501 break;
96822904 502
feba16e2
MK
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
96822904 516
feba16e2
MK
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
96822904 537 break;
feba16e2
MK
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
96822904 554 }
7b24d861 555
7b24d861 556 spin_unlock(&resv->lock);
feba16e2
MK
557 kfree(nrg);
558 return del;
96822904
AW
559}
560
b5cec28d
MK
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
1dd308a7
MK
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
1406ec9b 587static long region_count(struct resv_map *resv, long f, long t)
84afd99b 588{
1406ec9b 589 struct list_head *head = &resv->regions;
84afd99b
AW
590 struct file_region *rg;
591 long chg = 0;
592
7b24d861 593 spin_lock(&resv->lock);
84afd99b
AW
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
596 long seg_from;
597 long seg_to;
84afd99b
AW
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
7b24d861 609 spin_unlock(&resv->lock);
84afd99b
AW
610
611 return chg;
612}
613
e7c4b0bf
AW
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
a5516438
AK
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 620{
a5516438
AK
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
623}
624
0fe6e20b
NH
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
630
08fba699
MG
631/*
632 * Return the size of the pages allocated when backing a VMA. In the majority
633 * cases this will be same size as used by the page table entries.
634 */
635unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
636{
637 struct hstate *hstate;
638
639 if (!is_vm_hugetlb_page(vma))
640 return PAGE_SIZE;
641
642 hstate = hstate_vma(vma);
643
2415cf12 644 return 1UL << huge_page_shift(hstate);
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific version of this
652 * function is required.
653 */
654#ifndef vma_mmu_pagesize
655unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656{
657 return vma_kernel_pagesize(vma);
658}
659#endif
660
84afd99b
AW
661/*
662 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
663 * bits of the reservation map pointer, which are always clear due to
664 * alignment.
665 */
666#define HPAGE_RESV_OWNER (1UL << 0)
667#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 668#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 669
a1e78772
MG
670/*
671 * These helpers are used to track how many pages are reserved for
672 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
673 * is guaranteed to have their future faults succeed.
674 *
675 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
676 * the reserve counters are updated with the hugetlb_lock held. It is safe
677 * to reset the VMA at fork() time as it is not in use yet and there is no
678 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
679 *
680 * The private mapping reservation is represented in a subtly different
681 * manner to a shared mapping. A shared mapping has a region map associated
682 * with the underlying file, this region map represents the backing file
683 * pages which have ever had a reservation assigned which this persists even
684 * after the page is instantiated. A private mapping has a region map
685 * associated with the original mmap which is attached to all VMAs which
686 * reference it, this region map represents those offsets which have consumed
687 * reservation ie. where pages have been instantiated.
a1e78772 688 */
e7c4b0bf
AW
689static unsigned long get_vma_private_data(struct vm_area_struct *vma)
690{
691 return (unsigned long)vma->vm_private_data;
692}
693
694static void set_vma_private_data(struct vm_area_struct *vma,
695 unsigned long value)
696{
697 vma->vm_private_data = (void *)value;
698}
699
9119a41e 700struct resv_map *resv_map_alloc(void)
84afd99b
AW
701{
702 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
703 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
704
705 if (!resv_map || !rg) {
706 kfree(resv_map);
707 kfree(rg);
84afd99b 708 return NULL;
5e911373 709 }
84afd99b
AW
710
711 kref_init(&resv_map->refs);
7b24d861 712 spin_lock_init(&resv_map->lock);
84afd99b
AW
713 INIT_LIST_HEAD(&resv_map->regions);
714
5e911373
MK
715 resv_map->adds_in_progress = 0;
716
717 INIT_LIST_HEAD(&resv_map->region_cache);
718 list_add(&rg->link, &resv_map->region_cache);
719 resv_map->region_cache_count = 1;
720
84afd99b
AW
721 return resv_map;
722}
723
9119a41e 724void resv_map_release(struct kref *ref)
84afd99b
AW
725{
726 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
727 struct list_head *head = &resv_map->region_cache;
728 struct file_region *rg, *trg;
84afd99b
AW
729
730 /* Clear out any active regions before we release the map. */
feba16e2 731 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
732
733 /* ... and any entries left in the cache */
734 list_for_each_entry_safe(rg, trg, head, link) {
735 list_del(&rg->link);
736 kfree(rg);
737 }
738
739 VM_BUG_ON(resv_map->adds_in_progress);
740
84afd99b
AW
741 kfree(resv_map);
742}
743
4e35f483
JK
744static inline struct resv_map *inode_resv_map(struct inode *inode)
745{
746 return inode->i_mapping->private_data;
747}
748
84afd99b 749static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 750{
81d1b09c 751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
752 if (vma->vm_flags & VM_MAYSHARE) {
753 struct address_space *mapping = vma->vm_file->f_mapping;
754 struct inode *inode = mapping->host;
755
756 return inode_resv_map(inode);
757
758 } else {
84afd99b
AW
759 return (struct resv_map *)(get_vma_private_data(vma) &
760 ~HPAGE_RESV_MASK);
4e35f483 761 }
a1e78772
MG
762}
763
84afd99b 764static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 765{
81d1b09c
SL
766 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
767 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 768
84afd99b
AW
769 set_vma_private_data(vma, (get_vma_private_data(vma) &
770 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
771}
772
773static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
774{
81d1b09c
SL
775 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
776 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
777
778 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
779}
780
781static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
782{
81d1b09c 783 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
784
785 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
786}
787
04f2cbe3 788/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
789void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
790{
81d1b09c 791 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 792 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
793 vma->vm_private_data = (void *)0;
794}
795
796/* Returns true if the VMA has associated reserve pages */
559ec2f8 797static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 798{
af0ed73e
JK
799 if (vma->vm_flags & VM_NORESERVE) {
800 /*
801 * This address is already reserved by other process(chg == 0),
802 * so, we should decrement reserved count. Without decrementing,
803 * reserve count remains after releasing inode, because this
804 * allocated page will go into page cache and is regarded as
805 * coming from reserved pool in releasing step. Currently, we
806 * don't have any other solution to deal with this situation
807 * properly, so add work-around here.
808 */
809 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 810 return true;
af0ed73e 811 else
559ec2f8 812 return false;
af0ed73e 813 }
a63884e9
JK
814
815 /* Shared mappings always use reserves */
1fb1b0e9
MK
816 if (vma->vm_flags & VM_MAYSHARE) {
817 /*
818 * We know VM_NORESERVE is not set. Therefore, there SHOULD
819 * be a region map for all pages. The only situation where
820 * there is no region map is if a hole was punched via
821 * fallocate. In this case, there really are no reverves to
822 * use. This situation is indicated if chg != 0.
823 */
824 if (chg)
825 return false;
826 else
827 return true;
828 }
a63884e9
JK
829
830 /*
831 * Only the process that called mmap() has reserves for
832 * private mappings.
833 */
7f09ca51 834 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 835 return true;
a63884e9 836
559ec2f8 837 return false;
a1e78772
MG
838}
839
a5516438 840static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
841{
842 int nid = page_to_nid(page);
0edaecfa 843 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
844 h->free_huge_pages++;
845 h->free_huge_pages_node[nid]++;
1da177e4
LT
846}
847
bf50bab2
NH
848static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
849{
850 struct page *page;
851
c8721bbb
NH
852 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
853 if (!is_migrate_isolate_page(page))
854 break;
855 /*
856 * if 'non-isolated free hugepage' not found on the list,
857 * the allocation fails.
858 */
859 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 860 return NULL;
0edaecfa 861 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 862 set_page_refcounted(page);
bf50bab2
NH
863 h->free_huge_pages--;
864 h->free_huge_pages_node[nid]--;
865 return page;
866}
867
86cdb465
NH
868/* Movability of hugepages depends on migration support. */
869static inline gfp_t htlb_alloc_mask(struct hstate *h)
870{
100873d7 871 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
872 return GFP_HIGHUSER_MOVABLE;
873 else
874 return GFP_HIGHUSER;
875}
876
a5516438
AK
877static struct page *dequeue_huge_page_vma(struct hstate *h,
878 struct vm_area_struct *vma,
af0ed73e
JK
879 unsigned long address, int avoid_reserve,
880 long chg)
1da177e4 881{
b1c12cbc 882 struct page *page = NULL;
480eccf9 883 struct mempolicy *mpol;
19770b32 884 nodemask_t *nodemask;
c0ff7453 885 struct zonelist *zonelist;
dd1a239f
MG
886 struct zone *zone;
887 struct zoneref *z;
cc9a6c87 888 unsigned int cpuset_mems_cookie;
1da177e4 889
a1e78772
MG
890 /*
891 * A child process with MAP_PRIVATE mappings created by their parent
892 * have no page reserves. This check ensures that reservations are
893 * not "stolen". The child may still get SIGKILLed
894 */
af0ed73e 895 if (!vma_has_reserves(vma, chg) &&
a5516438 896 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 897 goto err;
a1e78772 898
04f2cbe3 899 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 900 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 901 goto err;
04f2cbe3 902
9966c4bb 903retry_cpuset:
d26914d1 904 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 905 zonelist = huge_zonelist(vma, address,
86cdb465 906 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 907
19770b32
MG
908 for_each_zone_zonelist_nodemask(zone, z, zonelist,
909 MAX_NR_ZONES - 1, nodemask) {
344736f2 910 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
911 page = dequeue_huge_page_node(h, zone_to_nid(zone));
912 if (page) {
af0ed73e
JK
913 if (avoid_reserve)
914 break;
915 if (!vma_has_reserves(vma, chg))
916 break;
917
07443a85 918 SetPagePrivate(page);
af0ed73e 919 h->resv_huge_pages--;
bf50bab2
NH
920 break;
921 }
3abf7afd 922 }
1da177e4 923 }
cc9a6c87 924
52cd3b07 925 mpol_cond_put(mpol);
d26914d1 926 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 927 goto retry_cpuset;
1da177e4 928 return page;
cc9a6c87
MG
929
930err:
cc9a6c87 931 return NULL;
1da177e4
LT
932}
933
1cac6f2c
LC
934/*
935 * common helper functions for hstate_next_node_to_{alloc|free}.
936 * We may have allocated or freed a huge page based on a different
937 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
938 * be outside of *nodes_allowed. Ensure that we use an allowed
939 * node for alloc or free.
940 */
941static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
942{
0edaf86c 943 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
944 VM_BUG_ON(nid >= MAX_NUMNODES);
945
946 return nid;
947}
948
949static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950{
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
954}
955
956/*
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
961 */
962static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
964{
965 int nid;
966
967 VM_BUG_ON(!nodes_allowed);
968
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972 return nid;
973}
974
975/*
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
980 */
981static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982{
983 int nid;
984
985 VM_BUG_ON(!nodes_allowed);
986
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990 return nid;
991}
992
993#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
998
999#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1004
080fe206 1005#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
944d9fec 1006static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1007 unsigned int order)
944d9fec
LC
1008{
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1012
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1014 clear_compound_head(p);
944d9fec 1015 set_page_refcounted(p);
944d9fec
LC
1016 }
1017
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1020}
1021
d00181b9 1022static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1023{
1024 free_contig_range(page_to_pfn(page), 1 << order);
1025}
1026
1027static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1029{
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032}
1033
f44b2dda
JK
1034static bool pfn_range_valid_gigantic(struct zone *z,
1035 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1036{
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1039
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1043
1044 page = pfn_to_page(i);
1045
f44b2dda
JK
1046 if (page_zone(page) != z)
1047 return false;
1048
944d9fec
LC
1049 if (PageReserved(page))
1050 return false;
1051
1052 if (page_count(page) > 0)
1053 return false;
1054
1055 if (PageHuge(page))
1056 return false;
1057 }
1058
1059 return true;
1060}
1061
1062static bool zone_spans_last_pfn(const struct zone *zone,
1063 unsigned long start_pfn, unsigned long nr_pages)
1064{
1065 unsigned long last_pfn = start_pfn + nr_pages - 1;
1066 return zone_spans_pfn(zone, last_pfn);
1067}
1068
d00181b9 1069static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1070{
1071 unsigned long nr_pages = 1 << order;
1072 unsigned long ret, pfn, flags;
1073 struct zone *z;
1074
1075 z = NODE_DATA(nid)->node_zones;
1076 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1077 spin_lock_irqsave(&z->lock, flags);
1078
1079 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1080 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1081 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1082 /*
1083 * We release the zone lock here because
1084 * alloc_contig_range() will also lock the zone
1085 * at some point. If there's an allocation
1086 * spinning on this lock, it may win the race
1087 * and cause alloc_contig_range() to fail...
1088 */
1089 spin_unlock_irqrestore(&z->lock, flags);
1090 ret = __alloc_gigantic_page(pfn, nr_pages);
1091 if (!ret)
1092 return pfn_to_page(pfn);
1093 spin_lock_irqsave(&z->lock, flags);
1094 }
1095 pfn += nr_pages;
1096 }
1097
1098 spin_unlock_irqrestore(&z->lock, flags);
1099 }
1100
1101 return NULL;
1102}
1103
1104static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1105static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1106
1107static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1108{
1109 struct page *page;
1110
1111 page = alloc_gigantic_page(nid, huge_page_order(h));
1112 if (page) {
1113 prep_compound_gigantic_page(page, huge_page_order(h));
1114 prep_new_huge_page(h, page, nid);
1115 }
1116
1117 return page;
1118}
1119
1120static int alloc_fresh_gigantic_page(struct hstate *h,
1121 nodemask_t *nodes_allowed)
1122{
1123 struct page *page = NULL;
1124 int nr_nodes, node;
1125
1126 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1127 page = alloc_fresh_gigantic_page_node(h, node);
1128 if (page)
1129 return 1;
1130 }
1131
1132 return 0;
1133}
1134
1135static inline bool gigantic_page_supported(void) { return true; }
1136#else
1137static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1138static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1139static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1140 unsigned int order) { }
944d9fec
LC
1141static inline int alloc_fresh_gigantic_page(struct hstate *h,
1142 nodemask_t *nodes_allowed) { return 0; }
1143#endif
1144
a5516438 1145static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1146{
1147 int i;
a5516438 1148
944d9fec
LC
1149 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1150 return;
18229df5 1151
a5516438
AK
1152 h->nr_huge_pages--;
1153 h->nr_huge_pages_node[page_to_nid(page)]--;
1154 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1155 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1156 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1157 1 << PG_active | 1 << PG_private |
1158 1 << PG_writeback);
6af2acb6 1159 }
309381fe 1160 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1161 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1162 set_page_refcounted(page);
944d9fec
LC
1163 if (hstate_is_gigantic(h)) {
1164 destroy_compound_gigantic_page(page, huge_page_order(h));
1165 free_gigantic_page(page, huge_page_order(h));
1166 } else {
944d9fec
LC
1167 __free_pages(page, huge_page_order(h));
1168 }
6af2acb6
AL
1169}
1170
e5ff2159
AK
1171struct hstate *size_to_hstate(unsigned long size)
1172{
1173 struct hstate *h;
1174
1175 for_each_hstate(h) {
1176 if (huge_page_size(h) == size)
1177 return h;
1178 }
1179 return NULL;
1180}
1181
bcc54222
NH
1182/*
1183 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1184 * to hstate->hugepage_activelist.)
1185 *
1186 * This function can be called for tail pages, but never returns true for them.
1187 */
1188bool page_huge_active(struct page *page)
1189{
1190 VM_BUG_ON_PAGE(!PageHuge(page), page);
1191 return PageHead(page) && PagePrivate(&page[1]);
1192}
1193
1194/* never called for tail page */
1195static void set_page_huge_active(struct page *page)
1196{
1197 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1198 SetPagePrivate(&page[1]);
1199}
1200
1201static void clear_page_huge_active(struct page *page)
1202{
1203 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1204 ClearPagePrivate(&page[1]);
1205}
1206
8f1d26d0 1207void free_huge_page(struct page *page)
27a85ef1 1208{
a5516438
AK
1209 /*
1210 * Can't pass hstate in here because it is called from the
1211 * compound page destructor.
1212 */
e5ff2159 1213 struct hstate *h = page_hstate(page);
7893d1d5 1214 int nid = page_to_nid(page);
90481622
DG
1215 struct hugepage_subpool *spool =
1216 (struct hugepage_subpool *)page_private(page);
07443a85 1217 bool restore_reserve;
27a85ef1 1218
e5df70ab 1219 set_page_private(page, 0);
23be7468 1220 page->mapping = NULL;
b4330afb
MK
1221 VM_BUG_ON_PAGE(page_count(page), page);
1222 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1223 restore_reserve = PagePrivate(page);
16c794b4 1224 ClearPagePrivate(page);
27a85ef1 1225
1c5ecae3
MK
1226 /*
1227 * A return code of zero implies that the subpool will be under its
1228 * minimum size if the reservation is not restored after page is free.
1229 * Therefore, force restore_reserve operation.
1230 */
1231 if (hugepage_subpool_put_pages(spool, 1) == 0)
1232 restore_reserve = true;
1233
27a85ef1 1234 spin_lock(&hugetlb_lock);
bcc54222 1235 clear_page_huge_active(page);
6d76dcf4
AK
1236 hugetlb_cgroup_uncharge_page(hstate_index(h),
1237 pages_per_huge_page(h), page);
07443a85
JK
1238 if (restore_reserve)
1239 h->resv_huge_pages++;
1240
944d9fec 1241 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1242 /* remove the page from active list */
1243 list_del(&page->lru);
a5516438
AK
1244 update_and_free_page(h, page);
1245 h->surplus_huge_pages--;
1246 h->surplus_huge_pages_node[nid]--;
7893d1d5 1247 } else {
5d3a551c 1248 arch_clear_hugepage_flags(page);
a5516438 1249 enqueue_huge_page(h, page);
7893d1d5 1250 }
27a85ef1
DG
1251 spin_unlock(&hugetlb_lock);
1252}
1253
a5516438 1254static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1255{
0edaecfa 1256 INIT_LIST_HEAD(&page->lru);
f1e61557 1257 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1258 spin_lock(&hugetlb_lock);
9dd540e2 1259 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1260 h->nr_huge_pages++;
1261 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1262 spin_unlock(&hugetlb_lock);
1263 put_page(page); /* free it into the hugepage allocator */
1264}
1265
d00181b9 1266static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1267{
1268 int i;
1269 int nr_pages = 1 << order;
1270 struct page *p = page + 1;
1271
1272 /* we rely on prep_new_huge_page to set the destructor */
1273 set_compound_order(page, order);
ef5a22be 1274 __ClearPageReserved(page);
de09d31d 1275 __SetPageHead(page);
20a0307c 1276 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1277 /*
1278 * For gigantic hugepages allocated through bootmem at
1279 * boot, it's safer to be consistent with the not-gigantic
1280 * hugepages and clear the PG_reserved bit from all tail pages
1281 * too. Otherwse drivers using get_user_pages() to access tail
1282 * pages may get the reference counting wrong if they see
1283 * PG_reserved set on a tail page (despite the head page not
1284 * having PG_reserved set). Enforcing this consistency between
1285 * head and tail pages allows drivers to optimize away a check
1286 * on the head page when they need know if put_page() is needed
1287 * after get_user_pages().
1288 */
1289 __ClearPageReserved(p);
58a84aa9 1290 set_page_count(p, 0);
1d798ca3 1291 set_compound_head(p, page);
20a0307c 1292 }
b4330afb 1293 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1294}
1295
7795912c
AM
1296/*
1297 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1298 * transparent huge pages. See the PageTransHuge() documentation for more
1299 * details.
1300 */
20a0307c
WF
1301int PageHuge(struct page *page)
1302{
20a0307c
WF
1303 if (!PageCompound(page))
1304 return 0;
1305
1306 page = compound_head(page);
f1e61557 1307 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1308}
43131e14
NH
1309EXPORT_SYMBOL_GPL(PageHuge);
1310
27c73ae7
AA
1311/*
1312 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1313 * normal or transparent huge pages.
1314 */
1315int PageHeadHuge(struct page *page_head)
1316{
27c73ae7
AA
1317 if (!PageHead(page_head))
1318 return 0;
1319
758f66a2 1320 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1321}
27c73ae7 1322
13d60f4b
ZY
1323pgoff_t __basepage_index(struct page *page)
1324{
1325 struct page *page_head = compound_head(page);
1326 pgoff_t index = page_index(page_head);
1327 unsigned long compound_idx;
1328
1329 if (!PageHuge(page_head))
1330 return page_index(page);
1331
1332 if (compound_order(page_head) >= MAX_ORDER)
1333 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1334 else
1335 compound_idx = page - page_head;
1336
1337 return (index << compound_order(page_head)) + compound_idx;
1338}
1339
a5516438 1340static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1341{
1da177e4 1342 struct page *page;
f96efd58 1343
96db800f 1344 page = __alloc_pages_node(nid,
86cdb465 1345 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1346 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1347 huge_page_order(h));
1da177e4 1348 if (page) {
a5516438 1349 prep_new_huge_page(h, page, nid);
1da177e4 1350 }
63b4613c
NA
1351
1352 return page;
1353}
1354
b2261026
JK
1355static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1356{
1357 struct page *page;
1358 int nr_nodes, node;
1359 int ret = 0;
1360
1361 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1362 page = alloc_fresh_huge_page_node(h, node);
1363 if (page) {
1364 ret = 1;
1365 break;
1366 }
1367 }
1368
1369 if (ret)
1370 count_vm_event(HTLB_BUDDY_PGALLOC);
1371 else
1372 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1373
1374 return ret;
1375}
1376
e8c5c824
LS
1377/*
1378 * Free huge page from pool from next node to free.
1379 * Attempt to keep persistent huge pages more or less
1380 * balanced over allowed nodes.
1381 * Called with hugetlb_lock locked.
1382 */
6ae11b27
LS
1383static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1384 bool acct_surplus)
e8c5c824 1385{
b2261026 1386 int nr_nodes, node;
e8c5c824
LS
1387 int ret = 0;
1388
b2261026 1389 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1390 /*
1391 * If we're returning unused surplus pages, only examine
1392 * nodes with surplus pages.
1393 */
b2261026
JK
1394 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1395 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1396 struct page *page =
b2261026 1397 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1398 struct page, lru);
1399 list_del(&page->lru);
1400 h->free_huge_pages--;
b2261026 1401 h->free_huge_pages_node[node]--;
685f3457
LS
1402 if (acct_surplus) {
1403 h->surplus_huge_pages--;
b2261026 1404 h->surplus_huge_pages_node[node]--;
685f3457 1405 }
e8c5c824
LS
1406 update_and_free_page(h, page);
1407 ret = 1;
9a76db09 1408 break;
e8c5c824 1409 }
b2261026 1410 }
e8c5c824
LS
1411
1412 return ret;
1413}
1414
c8721bbb
NH
1415/*
1416 * Dissolve a given free hugepage into free buddy pages. This function does
1417 * nothing for in-use (including surplus) hugepages.
1418 */
1419static void dissolve_free_huge_page(struct page *page)
1420{
1421 spin_lock(&hugetlb_lock);
1422 if (PageHuge(page) && !page_count(page)) {
1423 struct hstate *h = page_hstate(page);
1424 int nid = page_to_nid(page);
1425 list_del(&page->lru);
1426 h->free_huge_pages--;
1427 h->free_huge_pages_node[nid]--;
1428 update_and_free_page(h, page);
1429 }
1430 spin_unlock(&hugetlb_lock);
1431}
1432
1433/*
1434 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1435 * make specified memory blocks removable from the system.
1436 * Note that start_pfn should aligned with (minimum) hugepage size.
1437 */
1438void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1439{
c8721bbb 1440 unsigned long pfn;
c8721bbb 1441
d0177639
LZ
1442 if (!hugepages_supported())
1443 return;
1444
641844f5
NH
1445 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1446 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1447 dissolve_free_huge_page(pfn_to_page(pfn));
1448}
1449
099730d6
DH
1450/*
1451 * There are 3 ways this can get called:
1452 * 1. With vma+addr: we use the VMA's memory policy
1453 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1454 * page from any node, and let the buddy allocator itself figure
1455 * it out.
1456 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1457 * strictly from 'nid'
1458 */
1459static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1460 struct vm_area_struct *vma, unsigned long addr, int nid)
1461{
1462 int order = huge_page_order(h);
1463 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1464 unsigned int cpuset_mems_cookie;
1465
1466 /*
1467 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1468 * have one, we use the 'nid' argument.
1469 *
1470 * The mempolicy stuff below has some non-inlined bits
1471 * and calls ->vm_ops. That makes it hard to optimize at
1472 * compile-time, even when NUMA is off and it does
1473 * nothing. This helps the compiler optimize it out.
099730d6 1474 */
e0ec90ee 1475 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1476 /*
1477 * If a specific node is requested, make sure to
1478 * get memory from there, but only when a node
1479 * is explicitly specified.
1480 */
1481 if (nid != NUMA_NO_NODE)
1482 gfp |= __GFP_THISNODE;
1483 /*
1484 * Make sure to call something that can handle
1485 * nid=NUMA_NO_NODE
1486 */
1487 return alloc_pages_node(nid, gfp, order);
1488 }
1489
1490 /*
1491 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1492 * allocate a huge page with it. We will only reach this
1493 * when CONFIG_NUMA=y.
099730d6
DH
1494 */
1495 do {
1496 struct page *page;
1497 struct mempolicy *mpol;
1498 struct zonelist *zl;
1499 nodemask_t *nodemask;
1500
1501 cpuset_mems_cookie = read_mems_allowed_begin();
1502 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1503 mpol_cond_put(mpol);
1504 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1505 if (page)
1506 return page;
1507 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1508
1509 return NULL;
1510}
1511
1512/*
1513 * There are two ways to allocate a huge page:
1514 * 1. When you have a VMA and an address (like a fault)
1515 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1516 *
1517 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1518 * this case which signifies that the allocation should be done with
1519 * respect for the VMA's memory policy.
1520 *
1521 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1522 * implies that memory policies will not be taken in to account.
1523 */
1524static struct page *__alloc_buddy_huge_page(struct hstate *h,
1525 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1526{
1527 struct page *page;
bf50bab2 1528 unsigned int r_nid;
7893d1d5 1529
bae7f4ae 1530 if (hstate_is_gigantic(h))
aa888a74
AK
1531 return NULL;
1532
099730d6
DH
1533 /*
1534 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1535 * This makes sure the caller is picking _one_ of the modes with which
1536 * we can call this function, not both.
1537 */
1538 if (vma || (addr != -1)) {
e0ec90ee
DH
1539 VM_WARN_ON_ONCE(addr == -1);
1540 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1541 }
d1c3fb1f
NA
1542 /*
1543 * Assume we will successfully allocate the surplus page to
1544 * prevent racing processes from causing the surplus to exceed
1545 * overcommit
1546 *
1547 * This however introduces a different race, where a process B
1548 * tries to grow the static hugepage pool while alloc_pages() is
1549 * called by process A. B will only examine the per-node
1550 * counters in determining if surplus huge pages can be
1551 * converted to normal huge pages in adjust_pool_surplus(). A
1552 * won't be able to increment the per-node counter, until the
1553 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1554 * no more huge pages can be converted from surplus to normal
1555 * state (and doesn't try to convert again). Thus, we have a
1556 * case where a surplus huge page exists, the pool is grown, and
1557 * the surplus huge page still exists after, even though it
1558 * should just have been converted to a normal huge page. This
1559 * does not leak memory, though, as the hugepage will be freed
1560 * once it is out of use. It also does not allow the counters to
1561 * go out of whack in adjust_pool_surplus() as we don't modify
1562 * the node values until we've gotten the hugepage and only the
1563 * per-node value is checked there.
1564 */
1565 spin_lock(&hugetlb_lock);
a5516438 1566 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1567 spin_unlock(&hugetlb_lock);
1568 return NULL;
1569 } else {
a5516438
AK
1570 h->nr_huge_pages++;
1571 h->surplus_huge_pages++;
d1c3fb1f
NA
1572 }
1573 spin_unlock(&hugetlb_lock);
1574
099730d6 1575 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1576
1577 spin_lock(&hugetlb_lock);
7893d1d5 1578 if (page) {
0edaecfa 1579 INIT_LIST_HEAD(&page->lru);
bf50bab2 1580 r_nid = page_to_nid(page);
f1e61557 1581 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1582 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1583 /*
1584 * We incremented the global counters already
1585 */
bf50bab2
NH
1586 h->nr_huge_pages_node[r_nid]++;
1587 h->surplus_huge_pages_node[r_nid]++;
3b116300 1588 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1589 } else {
a5516438
AK
1590 h->nr_huge_pages--;
1591 h->surplus_huge_pages--;
3b116300 1592 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1593 }
d1c3fb1f 1594 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1595
1596 return page;
1597}
1598
099730d6
DH
1599/*
1600 * Allocate a huge page from 'nid'. Note, 'nid' may be
1601 * NUMA_NO_NODE, which means that it may be allocated
1602 * anywhere.
1603 */
e0ec90ee 1604static
099730d6
DH
1605struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1606{
1607 unsigned long addr = -1;
1608
1609 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1610}
1611
1612/*
1613 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614 */
e0ec90ee 1615static
099730d6
DH
1616struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1617 struct vm_area_struct *vma, unsigned long addr)
1618{
1619 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1620}
1621
bf50bab2
NH
1622/*
1623 * This allocation function is useful in the context where vma is irrelevant.
1624 * E.g. soft-offlining uses this function because it only cares physical
1625 * address of error page.
1626 */
1627struct page *alloc_huge_page_node(struct hstate *h, int nid)
1628{
4ef91848 1629 struct page *page = NULL;
bf50bab2
NH
1630
1631 spin_lock(&hugetlb_lock);
4ef91848
JK
1632 if (h->free_huge_pages - h->resv_huge_pages > 0)
1633 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1634 spin_unlock(&hugetlb_lock);
1635
94ae8ba7 1636 if (!page)
099730d6 1637 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1638
1639 return page;
1640}
1641
e4e574b7 1642/*
25985edc 1643 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1644 * of size 'delta'.
1645 */
a5516438 1646static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1647{
1648 struct list_head surplus_list;
1649 struct page *page, *tmp;
1650 int ret, i;
1651 int needed, allocated;
28073b02 1652 bool alloc_ok = true;
e4e574b7 1653
a5516438 1654 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1655 if (needed <= 0) {
a5516438 1656 h->resv_huge_pages += delta;
e4e574b7 1657 return 0;
ac09b3a1 1658 }
e4e574b7
AL
1659
1660 allocated = 0;
1661 INIT_LIST_HEAD(&surplus_list);
1662
1663 ret = -ENOMEM;
1664retry:
1665 spin_unlock(&hugetlb_lock);
1666 for (i = 0; i < needed; i++) {
099730d6 1667 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1668 if (!page) {
1669 alloc_ok = false;
1670 break;
1671 }
e4e574b7
AL
1672 list_add(&page->lru, &surplus_list);
1673 }
28073b02 1674 allocated += i;
e4e574b7
AL
1675
1676 /*
1677 * After retaking hugetlb_lock, we need to recalculate 'needed'
1678 * because either resv_huge_pages or free_huge_pages may have changed.
1679 */
1680 spin_lock(&hugetlb_lock);
a5516438
AK
1681 needed = (h->resv_huge_pages + delta) -
1682 (h->free_huge_pages + allocated);
28073b02
HD
1683 if (needed > 0) {
1684 if (alloc_ok)
1685 goto retry;
1686 /*
1687 * We were not able to allocate enough pages to
1688 * satisfy the entire reservation so we free what
1689 * we've allocated so far.
1690 */
1691 goto free;
1692 }
e4e574b7
AL
1693 /*
1694 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1695 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1696 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1697 * allocator. Commit the entire reservation here to prevent another
1698 * process from stealing the pages as they are added to the pool but
1699 * before they are reserved.
e4e574b7
AL
1700 */
1701 needed += allocated;
a5516438 1702 h->resv_huge_pages += delta;
e4e574b7 1703 ret = 0;
a9869b83 1704
19fc3f0a 1705 /* Free the needed pages to the hugetlb pool */
e4e574b7 1706 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1707 if ((--needed) < 0)
1708 break;
a9869b83
NH
1709 /*
1710 * This page is now managed by the hugetlb allocator and has
1711 * no users -- drop the buddy allocator's reference.
1712 */
1713 put_page_testzero(page);
309381fe 1714 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1715 enqueue_huge_page(h, page);
19fc3f0a 1716 }
28073b02 1717free:
b0365c8d 1718 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1719
1720 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1721 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1722 put_page(page);
a9869b83 1723 spin_lock(&hugetlb_lock);
e4e574b7
AL
1724
1725 return ret;
1726}
1727
1728/*
1729 * When releasing a hugetlb pool reservation, any surplus pages that were
1730 * allocated to satisfy the reservation must be explicitly freed if they were
1731 * never used.
685f3457 1732 * Called with hugetlb_lock held.
e4e574b7 1733 */
a5516438
AK
1734static void return_unused_surplus_pages(struct hstate *h,
1735 unsigned long unused_resv_pages)
e4e574b7 1736{
e4e574b7
AL
1737 unsigned long nr_pages;
1738
ac09b3a1 1739 /* Uncommit the reservation */
a5516438 1740 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1741
aa888a74 1742 /* Cannot return gigantic pages currently */
bae7f4ae 1743 if (hstate_is_gigantic(h))
aa888a74
AK
1744 return;
1745
a5516438 1746 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1747
685f3457
LS
1748 /*
1749 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1750 * evenly across all nodes with memory. Iterate across these nodes
1751 * until we can no longer free unreserved surplus pages. This occurs
1752 * when the nodes with surplus pages have no free pages.
1753 * free_pool_huge_page() will balance the the freed pages across the
1754 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1755 */
1756 while (nr_pages--) {
8cebfcd0 1757 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1758 break;
7848a4bf 1759 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1760 }
1761}
1762
5e911373 1763
c37f9fb1 1764/*
feba16e2 1765 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1766 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1767 *
1768 * vma_needs_reservation is called to determine if the huge page at addr
1769 * within the vma has an associated reservation. If a reservation is
1770 * needed, the value 1 is returned. The caller is then responsible for
1771 * managing the global reservation and subpool usage counts. After
1772 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1773 * to add the page to the reservation map. If the page allocation fails,
1774 * the reservation must be ended instead of committed. vma_end_reservation
1775 * is called in such cases.
cf3ad20b
MK
1776 *
1777 * In the normal case, vma_commit_reservation returns the same value
1778 * as the preceding vma_needs_reservation call. The only time this
1779 * is not the case is if a reserve map was changed between calls. It
1780 * is the responsibility of the caller to notice the difference and
1781 * take appropriate action.
c37f9fb1 1782 */
5e911373
MK
1783enum vma_resv_mode {
1784 VMA_NEEDS_RESV,
1785 VMA_COMMIT_RESV,
feba16e2 1786 VMA_END_RESV,
5e911373 1787};
cf3ad20b
MK
1788static long __vma_reservation_common(struct hstate *h,
1789 struct vm_area_struct *vma, unsigned long addr,
5e911373 1790 enum vma_resv_mode mode)
c37f9fb1 1791{
4e35f483
JK
1792 struct resv_map *resv;
1793 pgoff_t idx;
cf3ad20b 1794 long ret;
c37f9fb1 1795
4e35f483
JK
1796 resv = vma_resv_map(vma);
1797 if (!resv)
84afd99b 1798 return 1;
c37f9fb1 1799
4e35f483 1800 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1801 switch (mode) {
1802 case VMA_NEEDS_RESV:
cf3ad20b 1803 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1804 break;
1805 case VMA_COMMIT_RESV:
1806 ret = region_add(resv, idx, idx + 1);
1807 break;
feba16e2 1808 case VMA_END_RESV:
5e911373
MK
1809 region_abort(resv, idx, idx + 1);
1810 ret = 0;
1811 break;
1812 default:
1813 BUG();
1814 }
84afd99b 1815
4e35f483 1816 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1817 return ret;
4e35f483 1818 else
cf3ad20b 1819 return ret < 0 ? ret : 0;
c37f9fb1 1820}
cf3ad20b
MK
1821
1822static long vma_needs_reservation(struct hstate *h,
a5516438 1823 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1824{
5e911373 1825 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1826}
84afd99b 1827
cf3ad20b
MK
1828static long vma_commit_reservation(struct hstate *h,
1829 struct vm_area_struct *vma, unsigned long addr)
1830{
5e911373
MK
1831 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1832}
1833
feba16e2 1834static void vma_end_reservation(struct hstate *h,
5e911373
MK
1835 struct vm_area_struct *vma, unsigned long addr)
1836{
feba16e2 1837 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1838}
1839
70c3547e 1840struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1841 unsigned long addr, int avoid_reserve)
1da177e4 1842{
90481622 1843 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1844 struct hstate *h = hstate_vma(vma);
348ea204 1845 struct page *page;
d85f69b0
MK
1846 long map_chg, map_commit;
1847 long gbl_chg;
6d76dcf4
AK
1848 int ret, idx;
1849 struct hugetlb_cgroup *h_cg;
a1e78772 1850
6d76dcf4 1851 idx = hstate_index(h);
a1e78772 1852 /*
d85f69b0
MK
1853 * Examine the region/reserve map to determine if the process
1854 * has a reservation for the page to be allocated. A return
1855 * code of zero indicates a reservation exists (no change).
a1e78772 1856 */
d85f69b0
MK
1857 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1858 if (map_chg < 0)
76dcee75 1859 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1860
1861 /*
1862 * Processes that did not create the mapping will have no
1863 * reserves as indicated by the region/reserve map. Check
1864 * that the allocation will not exceed the subpool limit.
1865 * Allocations for MAP_NORESERVE mappings also need to be
1866 * checked against any subpool limit.
1867 */
1868 if (map_chg || avoid_reserve) {
1869 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1870 if (gbl_chg < 0) {
feba16e2 1871 vma_end_reservation(h, vma, addr);
76dcee75 1872 return ERR_PTR(-ENOSPC);
5e911373 1873 }
1da177e4 1874
d85f69b0
MK
1875 /*
1876 * Even though there was no reservation in the region/reserve
1877 * map, there could be reservations associated with the
1878 * subpool that can be used. This would be indicated if the
1879 * return value of hugepage_subpool_get_pages() is zero.
1880 * However, if avoid_reserve is specified we still avoid even
1881 * the subpool reservations.
1882 */
1883 if (avoid_reserve)
1884 gbl_chg = 1;
1885 }
1886
6d76dcf4 1887 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1888 if (ret)
1889 goto out_subpool_put;
1890
1da177e4 1891 spin_lock(&hugetlb_lock);
d85f69b0
MK
1892 /*
1893 * glb_chg is passed to indicate whether or not a page must be taken
1894 * from the global free pool (global change). gbl_chg == 0 indicates
1895 * a reservation exists for the allocation.
1896 */
1897 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1898 if (!page) {
94ae8ba7 1899 spin_unlock(&hugetlb_lock);
099730d6 1900 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
1901 if (!page)
1902 goto out_uncharge_cgroup;
a88c7695
NH
1903 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1904 SetPagePrivate(page);
1905 h->resv_huge_pages--;
1906 }
79dbb236
AK
1907 spin_lock(&hugetlb_lock);
1908 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1909 /* Fall through */
68842c9b 1910 }
81a6fcae
JK
1911 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1912 spin_unlock(&hugetlb_lock);
348ea204 1913
90481622 1914 set_page_private(page, (unsigned long)spool);
90d8b7e6 1915
d85f69b0
MK
1916 map_commit = vma_commit_reservation(h, vma, addr);
1917 if (unlikely(map_chg > map_commit)) {
33039678
MK
1918 /*
1919 * The page was added to the reservation map between
1920 * vma_needs_reservation and vma_commit_reservation.
1921 * This indicates a race with hugetlb_reserve_pages.
1922 * Adjust for the subpool count incremented above AND
1923 * in hugetlb_reserve_pages for the same page. Also,
1924 * the reservation count added in hugetlb_reserve_pages
1925 * no longer applies.
1926 */
1927 long rsv_adjust;
1928
1929 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1930 hugetlb_acct_memory(h, -rsv_adjust);
1931 }
90d8b7e6 1932 return page;
8f34af6f
JZ
1933
1934out_uncharge_cgroup:
1935 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1936out_subpool_put:
d85f69b0 1937 if (map_chg || avoid_reserve)
8f34af6f 1938 hugepage_subpool_put_pages(spool, 1);
feba16e2 1939 vma_end_reservation(h, vma, addr);
8f34af6f 1940 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1941}
1942
74060e4d
NH
1943/*
1944 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1945 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1946 * where no ERR_VALUE is expected to be returned.
1947 */
1948struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1949 unsigned long addr, int avoid_reserve)
1950{
1951 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1952 if (IS_ERR(page))
1953 page = NULL;
1954 return page;
1955}
1956
91f47662 1957int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1958{
1959 struct huge_bootmem_page *m;
b2261026 1960 int nr_nodes, node;
aa888a74 1961
b2261026 1962 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1963 void *addr;
1964
8b89a116
GS
1965 addr = memblock_virt_alloc_try_nid_nopanic(
1966 huge_page_size(h), huge_page_size(h),
1967 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1968 if (addr) {
1969 /*
1970 * Use the beginning of the huge page to store the
1971 * huge_bootmem_page struct (until gather_bootmem
1972 * puts them into the mem_map).
1973 */
1974 m = addr;
91f47662 1975 goto found;
aa888a74 1976 }
aa888a74
AK
1977 }
1978 return 0;
1979
1980found:
df994ead 1981 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1982 /* Put them into a private list first because mem_map is not up yet */
1983 list_add(&m->list, &huge_boot_pages);
1984 m->hstate = h;
1985 return 1;
1986}
1987
d00181b9
KS
1988static void __init prep_compound_huge_page(struct page *page,
1989 unsigned int order)
18229df5
AW
1990{
1991 if (unlikely(order > (MAX_ORDER - 1)))
1992 prep_compound_gigantic_page(page, order);
1993 else
1994 prep_compound_page(page, order);
1995}
1996
aa888a74
AK
1997/* Put bootmem huge pages into the standard lists after mem_map is up */
1998static void __init gather_bootmem_prealloc(void)
1999{
2000 struct huge_bootmem_page *m;
2001
2002 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2003 struct hstate *h = m->hstate;
ee8f248d
BB
2004 struct page *page;
2005
2006#ifdef CONFIG_HIGHMEM
2007 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2008 memblock_free_late(__pa(m),
2009 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2010#else
2011 page = virt_to_page(m);
2012#endif
aa888a74 2013 WARN_ON(page_count(page) != 1);
18229df5 2014 prep_compound_huge_page(page, h->order);
ef5a22be 2015 WARN_ON(PageReserved(page));
aa888a74 2016 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2017 /*
2018 * If we had gigantic hugepages allocated at boot time, we need
2019 * to restore the 'stolen' pages to totalram_pages in order to
2020 * fix confusing memory reports from free(1) and another
2021 * side-effects, like CommitLimit going negative.
2022 */
bae7f4ae 2023 if (hstate_is_gigantic(h))
3dcc0571 2024 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2025 }
2026}
2027
8faa8b07 2028static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2029{
2030 unsigned long i;
a5516438 2031
e5ff2159 2032 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2033 if (hstate_is_gigantic(h)) {
aa888a74
AK
2034 if (!alloc_bootmem_huge_page(h))
2035 break;
9b5e5d0f 2036 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2037 &node_states[N_MEMORY]))
1da177e4 2038 break;
1da177e4 2039 }
8faa8b07 2040 h->max_huge_pages = i;
e5ff2159
AK
2041}
2042
2043static void __init hugetlb_init_hstates(void)
2044{
2045 struct hstate *h;
2046
2047 for_each_hstate(h) {
641844f5
NH
2048 if (minimum_order > huge_page_order(h))
2049 minimum_order = huge_page_order(h);
2050
8faa8b07 2051 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2052 if (!hstate_is_gigantic(h))
8faa8b07 2053 hugetlb_hstate_alloc_pages(h);
e5ff2159 2054 }
641844f5 2055 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2056}
2057
4abd32db
AK
2058static char * __init memfmt(char *buf, unsigned long n)
2059{
2060 if (n >= (1UL << 30))
2061 sprintf(buf, "%lu GB", n >> 30);
2062 else if (n >= (1UL << 20))
2063 sprintf(buf, "%lu MB", n >> 20);
2064 else
2065 sprintf(buf, "%lu KB", n >> 10);
2066 return buf;
2067}
2068
e5ff2159
AK
2069static void __init report_hugepages(void)
2070{
2071 struct hstate *h;
2072
2073 for_each_hstate(h) {
4abd32db 2074 char buf[32];
ffb22af5 2075 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2076 memfmt(buf, huge_page_size(h)),
2077 h->free_huge_pages);
e5ff2159
AK
2078 }
2079}
2080
1da177e4 2081#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2082static void try_to_free_low(struct hstate *h, unsigned long count,
2083 nodemask_t *nodes_allowed)
1da177e4 2084{
4415cc8d
CL
2085 int i;
2086
bae7f4ae 2087 if (hstate_is_gigantic(h))
aa888a74
AK
2088 return;
2089
6ae11b27 2090 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2091 struct page *page, *next;
a5516438
AK
2092 struct list_head *freel = &h->hugepage_freelists[i];
2093 list_for_each_entry_safe(page, next, freel, lru) {
2094 if (count >= h->nr_huge_pages)
6b0c880d 2095 return;
1da177e4
LT
2096 if (PageHighMem(page))
2097 continue;
2098 list_del(&page->lru);
e5ff2159 2099 update_and_free_page(h, page);
a5516438
AK
2100 h->free_huge_pages--;
2101 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2102 }
2103 }
2104}
2105#else
6ae11b27
LS
2106static inline void try_to_free_low(struct hstate *h, unsigned long count,
2107 nodemask_t *nodes_allowed)
1da177e4
LT
2108{
2109}
2110#endif
2111
20a0307c
WF
2112/*
2113 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2114 * balanced by operating on them in a round-robin fashion.
2115 * Returns 1 if an adjustment was made.
2116 */
6ae11b27
LS
2117static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2118 int delta)
20a0307c 2119{
b2261026 2120 int nr_nodes, node;
20a0307c
WF
2121
2122 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2123
b2261026
JK
2124 if (delta < 0) {
2125 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2126 if (h->surplus_huge_pages_node[node])
2127 goto found;
e8c5c824 2128 }
b2261026
JK
2129 } else {
2130 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2131 if (h->surplus_huge_pages_node[node] <
2132 h->nr_huge_pages_node[node])
2133 goto found;
e8c5c824 2134 }
b2261026
JK
2135 }
2136 return 0;
20a0307c 2137
b2261026
JK
2138found:
2139 h->surplus_huge_pages += delta;
2140 h->surplus_huge_pages_node[node] += delta;
2141 return 1;
20a0307c
WF
2142}
2143
a5516438 2144#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2145static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2146 nodemask_t *nodes_allowed)
1da177e4 2147{
7893d1d5 2148 unsigned long min_count, ret;
1da177e4 2149
944d9fec 2150 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2151 return h->max_huge_pages;
2152
7893d1d5
AL
2153 /*
2154 * Increase the pool size
2155 * First take pages out of surplus state. Then make up the
2156 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2157 *
d15c7c09 2158 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2159 * to convert a surplus huge page to a normal huge page. That is
2160 * not critical, though, it just means the overall size of the
2161 * pool might be one hugepage larger than it needs to be, but
2162 * within all the constraints specified by the sysctls.
7893d1d5 2163 */
1da177e4 2164 spin_lock(&hugetlb_lock);
a5516438 2165 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2166 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2167 break;
2168 }
2169
a5516438 2170 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2171 /*
2172 * If this allocation races such that we no longer need the
2173 * page, free_huge_page will handle it by freeing the page
2174 * and reducing the surplus.
2175 */
2176 spin_unlock(&hugetlb_lock);
944d9fec
LC
2177 if (hstate_is_gigantic(h))
2178 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2179 else
2180 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2181 spin_lock(&hugetlb_lock);
2182 if (!ret)
2183 goto out;
2184
536240f2
MG
2185 /* Bail for signals. Probably ctrl-c from user */
2186 if (signal_pending(current))
2187 goto out;
7893d1d5 2188 }
7893d1d5
AL
2189
2190 /*
2191 * Decrease the pool size
2192 * First return free pages to the buddy allocator (being careful
2193 * to keep enough around to satisfy reservations). Then place
2194 * pages into surplus state as needed so the pool will shrink
2195 * to the desired size as pages become free.
d1c3fb1f
NA
2196 *
2197 * By placing pages into the surplus state independent of the
2198 * overcommit value, we are allowing the surplus pool size to
2199 * exceed overcommit. There are few sane options here. Since
d15c7c09 2200 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2201 * though, we'll note that we're not allowed to exceed surplus
2202 * and won't grow the pool anywhere else. Not until one of the
2203 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2204 */
a5516438 2205 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2206 min_count = max(count, min_count);
6ae11b27 2207 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2208 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2209 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2210 break;
55f67141 2211 cond_resched_lock(&hugetlb_lock);
1da177e4 2212 }
a5516438 2213 while (count < persistent_huge_pages(h)) {
6ae11b27 2214 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2215 break;
2216 }
2217out:
a5516438 2218 ret = persistent_huge_pages(h);
1da177e4 2219 spin_unlock(&hugetlb_lock);
7893d1d5 2220 return ret;
1da177e4
LT
2221}
2222
a3437870
NA
2223#define HSTATE_ATTR_RO(_name) \
2224 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2225
2226#define HSTATE_ATTR(_name) \
2227 static struct kobj_attribute _name##_attr = \
2228 __ATTR(_name, 0644, _name##_show, _name##_store)
2229
2230static struct kobject *hugepages_kobj;
2231static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2232
9a305230
LS
2233static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2234
2235static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2236{
2237 int i;
9a305230 2238
a3437870 2239 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2240 if (hstate_kobjs[i] == kobj) {
2241 if (nidp)
2242 *nidp = NUMA_NO_NODE;
a3437870 2243 return &hstates[i];
9a305230
LS
2244 }
2245
2246 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2247}
2248
06808b08 2249static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2250 struct kobj_attribute *attr, char *buf)
2251{
9a305230
LS
2252 struct hstate *h;
2253 unsigned long nr_huge_pages;
2254 int nid;
2255
2256 h = kobj_to_hstate(kobj, &nid);
2257 if (nid == NUMA_NO_NODE)
2258 nr_huge_pages = h->nr_huge_pages;
2259 else
2260 nr_huge_pages = h->nr_huge_pages_node[nid];
2261
2262 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2263}
adbe8726 2264
238d3c13
DR
2265static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2266 struct hstate *h, int nid,
2267 unsigned long count, size_t len)
a3437870
NA
2268{
2269 int err;
bad44b5b 2270 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2271
944d9fec 2272 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2273 err = -EINVAL;
2274 goto out;
2275 }
2276
9a305230
LS
2277 if (nid == NUMA_NO_NODE) {
2278 /*
2279 * global hstate attribute
2280 */
2281 if (!(obey_mempolicy &&
2282 init_nodemask_of_mempolicy(nodes_allowed))) {
2283 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2284 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2285 }
2286 } else if (nodes_allowed) {
2287 /*
2288 * per node hstate attribute: adjust count to global,
2289 * but restrict alloc/free to the specified node.
2290 */
2291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2292 init_nodemask_of_node(nodes_allowed, nid);
2293 } else
8cebfcd0 2294 nodes_allowed = &node_states[N_MEMORY];
9a305230 2295
06808b08 2296 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2297
8cebfcd0 2298 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2299 NODEMASK_FREE(nodes_allowed);
2300
2301 return len;
adbe8726
EM
2302out:
2303 NODEMASK_FREE(nodes_allowed);
2304 return err;
06808b08
LS
2305}
2306
238d3c13
DR
2307static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2308 struct kobject *kobj, const char *buf,
2309 size_t len)
2310{
2311 struct hstate *h;
2312 unsigned long count;
2313 int nid;
2314 int err;
2315
2316 err = kstrtoul(buf, 10, &count);
2317 if (err)
2318 return err;
2319
2320 h = kobj_to_hstate(kobj, &nid);
2321 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2322}
2323
06808b08
LS
2324static ssize_t nr_hugepages_show(struct kobject *kobj,
2325 struct kobj_attribute *attr, char *buf)
2326{
2327 return nr_hugepages_show_common(kobj, attr, buf);
2328}
2329
2330static ssize_t nr_hugepages_store(struct kobject *kobj,
2331 struct kobj_attribute *attr, const char *buf, size_t len)
2332{
238d3c13 2333 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2334}
2335HSTATE_ATTR(nr_hugepages);
2336
06808b08
LS
2337#ifdef CONFIG_NUMA
2338
2339/*
2340 * hstate attribute for optionally mempolicy-based constraint on persistent
2341 * huge page alloc/free.
2342 */
2343static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2344 struct kobj_attribute *attr, char *buf)
2345{
2346 return nr_hugepages_show_common(kobj, attr, buf);
2347}
2348
2349static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2350 struct kobj_attribute *attr, const char *buf, size_t len)
2351{
238d3c13 2352 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2353}
2354HSTATE_ATTR(nr_hugepages_mempolicy);
2355#endif
2356
2357
a3437870
NA
2358static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2359 struct kobj_attribute *attr, char *buf)
2360{
9a305230 2361 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2362 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2363}
adbe8726 2364
a3437870
NA
2365static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2366 struct kobj_attribute *attr, const char *buf, size_t count)
2367{
2368 int err;
2369 unsigned long input;
9a305230 2370 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2371
bae7f4ae 2372 if (hstate_is_gigantic(h))
adbe8726
EM
2373 return -EINVAL;
2374
3dbb95f7 2375 err = kstrtoul(buf, 10, &input);
a3437870 2376 if (err)
73ae31e5 2377 return err;
a3437870
NA
2378
2379 spin_lock(&hugetlb_lock);
2380 h->nr_overcommit_huge_pages = input;
2381 spin_unlock(&hugetlb_lock);
2382
2383 return count;
2384}
2385HSTATE_ATTR(nr_overcommit_hugepages);
2386
2387static ssize_t free_hugepages_show(struct kobject *kobj,
2388 struct kobj_attribute *attr, char *buf)
2389{
9a305230
LS
2390 struct hstate *h;
2391 unsigned long free_huge_pages;
2392 int nid;
2393
2394 h = kobj_to_hstate(kobj, &nid);
2395 if (nid == NUMA_NO_NODE)
2396 free_huge_pages = h->free_huge_pages;
2397 else
2398 free_huge_pages = h->free_huge_pages_node[nid];
2399
2400 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2401}
2402HSTATE_ATTR_RO(free_hugepages);
2403
2404static ssize_t resv_hugepages_show(struct kobject *kobj,
2405 struct kobj_attribute *attr, char *buf)
2406{
9a305230 2407 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2408 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2409}
2410HSTATE_ATTR_RO(resv_hugepages);
2411
2412static ssize_t surplus_hugepages_show(struct kobject *kobj,
2413 struct kobj_attribute *attr, char *buf)
2414{
9a305230
LS
2415 struct hstate *h;
2416 unsigned long surplus_huge_pages;
2417 int nid;
2418
2419 h = kobj_to_hstate(kobj, &nid);
2420 if (nid == NUMA_NO_NODE)
2421 surplus_huge_pages = h->surplus_huge_pages;
2422 else
2423 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2424
2425 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2426}
2427HSTATE_ATTR_RO(surplus_hugepages);
2428
2429static struct attribute *hstate_attrs[] = {
2430 &nr_hugepages_attr.attr,
2431 &nr_overcommit_hugepages_attr.attr,
2432 &free_hugepages_attr.attr,
2433 &resv_hugepages_attr.attr,
2434 &surplus_hugepages_attr.attr,
06808b08
LS
2435#ifdef CONFIG_NUMA
2436 &nr_hugepages_mempolicy_attr.attr,
2437#endif
a3437870
NA
2438 NULL,
2439};
2440
2441static struct attribute_group hstate_attr_group = {
2442 .attrs = hstate_attrs,
2443};
2444
094e9539
JM
2445static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2446 struct kobject **hstate_kobjs,
2447 struct attribute_group *hstate_attr_group)
a3437870
NA
2448{
2449 int retval;
972dc4de 2450 int hi = hstate_index(h);
a3437870 2451
9a305230
LS
2452 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2453 if (!hstate_kobjs[hi])
a3437870
NA
2454 return -ENOMEM;
2455
9a305230 2456 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2457 if (retval)
9a305230 2458 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2459
2460 return retval;
2461}
2462
2463static void __init hugetlb_sysfs_init(void)
2464{
2465 struct hstate *h;
2466 int err;
2467
2468 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2469 if (!hugepages_kobj)
2470 return;
2471
2472 for_each_hstate(h) {
9a305230
LS
2473 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2474 hstate_kobjs, &hstate_attr_group);
a3437870 2475 if (err)
ffb22af5 2476 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2477 }
2478}
2479
9a305230
LS
2480#ifdef CONFIG_NUMA
2481
2482/*
2483 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2484 * with node devices in node_devices[] using a parallel array. The array
2485 * index of a node device or _hstate == node id.
2486 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2487 * the base kernel, on the hugetlb module.
2488 */
2489struct node_hstate {
2490 struct kobject *hugepages_kobj;
2491 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2492};
b4e289a6 2493static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2494
2495/*
10fbcf4c 2496 * A subset of global hstate attributes for node devices
9a305230
LS
2497 */
2498static struct attribute *per_node_hstate_attrs[] = {
2499 &nr_hugepages_attr.attr,
2500 &free_hugepages_attr.attr,
2501 &surplus_hugepages_attr.attr,
2502 NULL,
2503};
2504
2505static struct attribute_group per_node_hstate_attr_group = {
2506 .attrs = per_node_hstate_attrs,
2507};
2508
2509/*
10fbcf4c 2510 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2511 * Returns node id via non-NULL nidp.
2512 */
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2514{
2515 int nid;
2516
2517 for (nid = 0; nid < nr_node_ids; nid++) {
2518 struct node_hstate *nhs = &node_hstates[nid];
2519 int i;
2520 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521 if (nhs->hstate_kobjs[i] == kobj) {
2522 if (nidp)
2523 *nidp = nid;
2524 return &hstates[i];
2525 }
2526 }
2527
2528 BUG();
2529 return NULL;
2530}
2531
2532/*
10fbcf4c 2533 * Unregister hstate attributes from a single node device.
9a305230
LS
2534 * No-op if no hstate attributes attached.
2535 */
3cd8b44f 2536static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2537{
2538 struct hstate *h;
10fbcf4c 2539 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2540
2541 if (!nhs->hugepages_kobj)
9b5e5d0f 2542 return; /* no hstate attributes */
9a305230 2543
972dc4de
AK
2544 for_each_hstate(h) {
2545 int idx = hstate_index(h);
2546 if (nhs->hstate_kobjs[idx]) {
2547 kobject_put(nhs->hstate_kobjs[idx]);
2548 nhs->hstate_kobjs[idx] = NULL;
9a305230 2549 }
972dc4de 2550 }
9a305230
LS
2551
2552 kobject_put(nhs->hugepages_kobj);
2553 nhs->hugepages_kobj = NULL;
2554}
2555
9a305230
LS
2556
2557/*
10fbcf4c 2558 * Register hstate attributes for a single node device.
9a305230
LS
2559 * No-op if attributes already registered.
2560 */
3cd8b44f 2561static void hugetlb_register_node(struct node *node)
9a305230
LS
2562{
2563 struct hstate *h;
10fbcf4c 2564 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2565 int err;
2566
2567 if (nhs->hugepages_kobj)
2568 return; /* already allocated */
2569
2570 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2571 &node->dev.kobj);
9a305230
LS
2572 if (!nhs->hugepages_kobj)
2573 return;
2574
2575 for_each_hstate(h) {
2576 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2577 nhs->hstate_kobjs,
2578 &per_node_hstate_attr_group);
2579 if (err) {
ffb22af5
AM
2580 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2581 h->name, node->dev.id);
9a305230
LS
2582 hugetlb_unregister_node(node);
2583 break;
2584 }
2585 }
2586}
2587
2588/*
9b5e5d0f 2589 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2590 * devices of nodes that have memory. All on-line nodes should have
2591 * registered their associated device by this time.
9a305230 2592 */
7d9ca000 2593static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2594{
2595 int nid;
2596
8cebfcd0 2597 for_each_node_state(nid, N_MEMORY) {
8732794b 2598 struct node *node = node_devices[nid];
10fbcf4c 2599 if (node->dev.id == nid)
9a305230
LS
2600 hugetlb_register_node(node);
2601 }
2602
2603 /*
10fbcf4c 2604 * Let the node device driver know we're here so it can
9a305230
LS
2605 * [un]register hstate attributes on node hotplug.
2606 */
2607 register_hugetlbfs_with_node(hugetlb_register_node,
2608 hugetlb_unregister_node);
2609}
2610#else /* !CONFIG_NUMA */
2611
2612static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2613{
2614 BUG();
2615 if (nidp)
2616 *nidp = -1;
2617 return NULL;
2618}
2619
9a305230
LS
2620static void hugetlb_register_all_nodes(void) { }
2621
2622#endif
2623
a3437870
NA
2624static int __init hugetlb_init(void)
2625{
8382d914
DB
2626 int i;
2627
457c1b27 2628 if (!hugepages_supported())
0ef89d25 2629 return 0;
a3437870 2630
e11bfbfc
NP
2631 if (!size_to_hstate(default_hstate_size)) {
2632 default_hstate_size = HPAGE_SIZE;
2633 if (!size_to_hstate(default_hstate_size))
2634 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2635 }
972dc4de 2636 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2637 if (default_hstate_max_huge_pages) {
2638 if (!default_hstate.max_huge_pages)
2639 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2640 }
a3437870
NA
2641
2642 hugetlb_init_hstates();
aa888a74 2643 gather_bootmem_prealloc();
a3437870
NA
2644 report_hugepages();
2645
2646 hugetlb_sysfs_init();
9a305230 2647 hugetlb_register_all_nodes();
7179e7bf 2648 hugetlb_cgroup_file_init();
9a305230 2649
8382d914
DB
2650#ifdef CONFIG_SMP
2651 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2652#else
2653 num_fault_mutexes = 1;
2654#endif
c672c7f2 2655 hugetlb_fault_mutex_table =
8382d914 2656 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2657 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2658
2659 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2660 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2661 return 0;
2662}
3e89e1c5 2663subsys_initcall(hugetlb_init);
a3437870
NA
2664
2665/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2666void __init hugetlb_bad_size(void)
2667{
2668 parsed_valid_hugepagesz = false;
2669}
2670
d00181b9 2671void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2672{
2673 struct hstate *h;
8faa8b07
AK
2674 unsigned long i;
2675
a3437870 2676 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2677 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2678 return;
2679 }
47d38344 2680 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2681 BUG_ON(order == 0);
47d38344 2682 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2683 h->order = order;
2684 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2685 h->nr_huge_pages = 0;
2686 h->free_huge_pages = 0;
2687 for (i = 0; i < MAX_NUMNODES; ++i)
2688 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2689 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2690 h->next_nid_to_alloc = first_memory_node;
2691 h->next_nid_to_free = first_memory_node;
a3437870
NA
2692 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2693 huge_page_size(h)/1024);
8faa8b07 2694
a3437870
NA
2695 parsed_hstate = h;
2696}
2697
e11bfbfc 2698static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2699{
2700 unsigned long *mhp;
8faa8b07 2701 static unsigned long *last_mhp;
a3437870 2702
9fee021d
VT
2703 if (!parsed_valid_hugepagesz) {
2704 pr_warn("hugepages = %s preceded by "
2705 "an unsupported hugepagesz, ignoring\n", s);
2706 parsed_valid_hugepagesz = true;
2707 return 1;
2708 }
a3437870 2709 /*
47d38344 2710 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2711 * so this hugepages= parameter goes to the "default hstate".
2712 */
9fee021d 2713 else if (!hugetlb_max_hstate)
a3437870
NA
2714 mhp = &default_hstate_max_huge_pages;
2715 else
2716 mhp = &parsed_hstate->max_huge_pages;
2717
8faa8b07 2718 if (mhp == last_mhp) {
598d8091 2719 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2720 return 1;
2721 }
2722
a3437870
NA
2723 if (sscanf(s, "%lu", mhp) <= 0)
2724 *mhp = 0;
2725
8faa8b07
AK
2726 /*
2727 * Global state is always initialized later in hugetlb_init.
2728 * But we need to allocate >= MAX_ORDER hstates here early to still
2729 * use the bootmem allocator.
2730 */
47d38344 2731 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2732 hugetlb_hstate_alloc_pages(parsed_hstate);
2733
2734 last_mhp = mhp;
2735
a3437870
NA
2736 return 1;
2737}
e11bfbfc
NP
2738__setup("hugepages=", hugetlb_nrpages_setup);
2739
2740static int __init hugetlb_default_setup(char *s)
2741{
2742 default_hstate_size = memparse(s, &s);
2743 return 1;
2744}
2745__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2746
8a213460
NA
2747static unsigned int cpuset_mems_nr(unsigned int *array)
2748{
2749 int node;
2750 unsigned int nr = 0;
2751
2752 for_each_node_mask(node, cpuset_current_mems_allowed)
2753 nr += array[node];
2754
2755 return nr;
2756}
2757
2758#ifdef CONFIG_SYSCTL
06808b08
LS
2759static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2760 struct ctl_table *table, int write,
2761 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2762{
e5ff2159 2763 struct hstate *h = &default_hstate;
238d3c13 2764 unsigned long tmp = h->max_huge_pages;
08d4a246 2765 int ret;
e5ff2159 2766
457c1b27 2767 if (!hugepages_supported())
86613628 2768 return -EOPNOTSUPP;
457c1b27 2769
e5ff2159
AK
2770 table->data = &tmp;
2771 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2772 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2773 if (ret)
2774 goto out;
e5ff2159 2775
238d3c13
DR
2776 if (write)
2777 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2778 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2779out:
2780 return ret;
1da177e4 2781}
396faf03 2782
06808b08
LS
2783int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2784 void __user *buffer, size_t *length, loff_t *ppos)
2785{
2786
2787 return hugetlb_sysctl_handler_common(false, table, write,
2788 buffer, length, ppos);
2789}
2790
2791#ifdef CONFIG_NUMA
2792int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2793 void __user *buffer, size_t *length, loff_t *ppos)
2794{
2795 return hugetlb_sysctl_handler_common(true, table, write,
2796 buffer, length, ppos);
2797}
2798#endif /* CONFIG_NUMA */
2799
a3d0c6aa 2800int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2801 void __user *buffer,
a3d0c6aa
NA
2802 size_t *length, loff_t *ppos)
2803{
a5516438 2804 struct hstate *h = &default_hstate;
e5ff2159 2805 unsigned long tmp;
08d4a246 2806 int ret;
e5ff2159 2807
457c1b27 2808 if (!hugepages_supported())
86613628 2809 return -EOPNOTSUPP;
457c1b27 2810
c033a93c 2811 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2812
bae7f4ae 2813 if (write && hstate_is_gigantic(h))
adbe8726
EM
2814 return -EINVAL;
2815
e5ff2159
AK
2816 table->data = &tmp;
2817 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2818 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819 if (ret)
2820 goto out;
e5ff2159
AK
2821
2822 if (write) {
2823 spin_lock(&hugetlb_lock);
2824 h->nr_overcommit_huge_pages = tmp;
2825 spin_unlock(&hugetlb_lock);
2826 }
08d4a246
MH
2827out:
2828 return ret;
a3d0c6aa
NA
2829}
2830
1da177e4
LT
2831#endif /* CONFIG_SYSCTL */
2832
e1759c21 2833void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2834{
a5516438 2835 struct hstate *h = &default_hstate;
457c1b27
NA
2836 if (!hugepages_supported())
2837 return;
e1759c21 2838 seq_printf(m,
4f98a2fe
RR
2839 "HugePages_Total: %5lu\n"
2840 "HugePages_Free: %5lu\n"
2841 "HugePages_Rsvd: %5lu\n"
2842 "HugePages_Surp: %5lu\n"
2843 "Hugepagesize: %8lu kB\n",
a5516438
AK
2844 h->nr_huge_pages,
2845 h->free_huge_pages,
2846 h->resv_huge_pages,
2847 h->surplus_huge_pages,
2848 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2849}
2850
2851int hugetlb_report_node_meminfo(int nid, char *buf)
2852{
a5516438 2853 struct hstate *h = &default_hstate;
457c1b27
NA
2854 if (!hugepages_supported())
2855 return 0;
1da177e4
LT
2856 return sprintf(buf,
2857 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2858 "Node %d HugePages_Free: %5u\n"
2859 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2860 nid, h->nr_huge_pages_node[nid],
2861 nid, h->free_huge_pages_node[nid],
2862 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2863}
2864
949f7ec5
DR
2865void hugetlb_show_meminfo(void)
2866{
2867 struct hstate *h;
2868 int nid;
2869
457c1b27
NA
2870 if (!hugepages_supported())
2871 return;
2872
949f7ec5
DR
2873 for_each_node_state(nid, N_MEMORY)
2874 for_each_hstate(h)
2875 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2876 nid,
2877 h->nr_huge_pages_node[nid],
2878 h->free_huge_pages_node[nid],
2879 h->surplus_huge_pages_node[nid],
2880 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2881}
2882
5d317b2b
NH
2883void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2884{
2885 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2886 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2887}
2888
1da177e4
LT
2889/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2890unsigned long hugetlb_total_pages(void)
2891{
d0028588
WL
2892 struct hstate *h;
2893 unsigned long nr_total_pages = 0;
2894
2895 for_each_hstate(h)
2896 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2897 return nr_total_pages;
1da177e4 2898}
1da177e4 2899
a5516438 2900static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2901{
2902 int ret = -ENOMEM;
2903
2904 spin_lock(&hugetlb_lock);
2905 /*
2906 * When cpuset is configured, it breaks the strict hugetlb page
2907 * reservation as the accounting is done on a global variable. Such
2908 * reservation is completely rubbish in the presence of cpuset because
2909 * the reservation is not checked against page availability for the
2910 * current cpuset. Application can still potentially OOM'ed by kernel
2911 * with lack of free htlb page in cpuset that the task is in.
2912 * Attempt to enforce strict accounting with cpuset is almost
2913 * impossible (or too ugly) because cpuset is too fluid that
2914 * task or memory node can be dynamically moved between cpusets.
2915 *
2916 * The change of semantics for shared hugetlb mapping with cpuset is
2917 * undesirable. However, in order to preserve some of the semantics,
2918 * we fall back to check against current free page availability as
2919 * a best attempt and hopefully to minimize the impact of changing
2920 * semantics that cpuset has.
2921 */
2922 if (delta > 0) {
a5516438 2923 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2924 goto out;
2925
a5516438
AK
2926 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2927 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2928 goto out;
2929 }
2930 }
2931
2932 ret = 0;
2933 if (delta < 0)
a5516438 2934 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2935
2936out:
2937 spin_unlock(&hugetlb_lock);
2938 return ret;
2939}
2940
84afd99b
AW
2941static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2942{
f522c3ac 2943 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2944
2945 /*
2946 * This new VMA should share its siblings reservation map if present.
2947 * The VMA will only ever have a valid reservation map pointer where
2948 * it is being copied for another still existing VMA. As that VMA
25985edc 2949 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2950 * after this open call completes. It is therefore safe to take a
2951 * new reference here without additional locking.
2952 */
4e35f483 2953 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2954 kref_get(&resv->refs);
84afd99b
AW
2955}
2956
a1e78772
MG
2957static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2958{
a5516438 2959 struct hstate *h = hstate_vma(vma);
f522c3ac 2960 struct resv_map *resv = vma_resv_map(vma);
90481622 2961 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2962 unsigned long reserve, start, end;
1c5ecae3 2963 long gbl_reserve;
84afd99b 2964
4e35f483
JK
2965 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2966 return;
84afd99b 2967
4e35f483
JK
2968 start = vma_hugecache_offset(h, vma, vma->vm_start);
2969 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2970
4e35f483 2971 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2972
4e35f483
JK
2973 kref_put(&resv->refs, resv_map_release);
2974
2975 if (reserve) {
1c5ecae3
MK
2976 /*
2977 * Decrement reserve counts. The global reserve count may be
2978 * adjusted if the subpool has a minimum size.
2979 */
2980 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2981 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2982 }
a1e78772
MG
2983}
2984
1da177e4
LT
2985/*
2986 * We cannot handle pagefaults against hugetlb pages at all. They cause
2987 * handle_mm_fault() to try to instantiate regular-sized pages in the
2988 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2989 * this far.
2990 */
d0217ac0 2991static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2992{
2993 BUG();
d0217ac0 2994 return 0;
1da177e4
LT
2995}
2996
f0f37e2f 2997const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2998 .fault = hugetlb_vm_op_fault,
84afd99b 2999 .open = hugetlb_vm_op_open,
a1e78772 3000 .close = hugetlb_vm_op_close,
1da177e4
LT
3001};
3002
1e8f889b
DG
3003static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3004 int writable)
63551ae0
DG
3005{
3006 pte_t entry;
3007
1e8f889b 3008 if (writable) {
106c992a
GS
3009 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3010 vma->vm_page_prot)));
63551ae0 3011 } else {
106c992a
GS
3012 entry = huge_pte_wrprotect(mk_huge_pte(page,
3013 vma->vm_page_prot));
63551ae0
DG
3014 }
3015 entry = pte_mkyoung(entry);
3016 entry = pte_mkhuge(entry);
d9ed9faa 3017 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3018
3019 return entry;
3020}
3021
1e8f889b
DG
3022static void set_huge_ptep_writable(struct vm_area_struct *vma,
3023 unsigned long address, pte_t *ptep)
3024{
3025 pte_t entry;
3026
106c992a 3027 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3028 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3029 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3030}
3031
4a705fef
NH
3032static int is_hugetlb_entry_migration(pte_t pte)
3033{
3034 swp_entry_t swp;
3035
3036 if (huge_pte_none(pte) || pte_present(pte))
3037 return 0;
3038 swp = pte_to_swp_entry(pte);
3039 if (non_swap_entry(swp) && is_migration_entry(swp))
3040 return 1;
3041 else
3042 return 0;
3043}
3044
3045static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3046{
3047 swp_entry_t swp;
3048
3049 if (huge_pte_none(pte) || pte_present(pte))
3050 return 0;
3051 swp = pte_to_swp_entry(pte);
3052 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3053 return 1;
3054 else
3055 return 0;
3056}
1e8f889b 3057
63551ae0
DG
3058int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3059 struct vm_area_struct *vma)
3060{
3061 pte_t *src_pte, *dst_pte, entry;
3062 struct page *ptepage;
1c59827d 3063 unsigned long addr;
1e8f889b 3064 int cow;
a5516438
AK
3065 struct hstate *h = hstate_vma(vma);
3066 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3067 unsigned long mmun_start; /* For mmu_notifiers */
3068 unsigned long mmun_end; /* For mmu_notifiers */
3069 int ret = 0;
1e8f889b
DG
3070
3071 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3072
e8569dd2
AS
3073 mmun_start = vma->vm_start;
3074 mmun_end = vma->vm_end;
3075 if (cow)
3076 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3077
a5516438 3078 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3079 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3080 src_pte = huge_pte_offset(src, addr);
3081 if (!src_pte)
3082 continue;
a5516438 3083 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3084 if (!dst_pte) {
3085 ret = -ENOMEM;
3086 break;
3087 }
c5c99429
LW
3088
3089 /* If the pagetables are shared don't copy or take references */
3090 if (dst_pte == src_pte)
3091 continue;
3092
cb900f41
KS
3093 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3094 src_ptl = huge_pte_lockptr(h, src, src_pte);
3095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3096 entry = huge_ptep_get(src_pte);
3097 if (huge_pte_none(entry)) { /* skip none entry */
3098 ;
3099 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3100 is_hugetlb_entry_hwpoisoned(entry))) {
3101 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3102
3103 if (is_write_migration_entry(swp_entry) && cow) {
3104 /*
3105 * COW mappings require pages in both
3106 * parent and child to be set to read.
3107 */
3108 make_migration_entry_read(&swp_entry);
3109 entry = swp_entry_to_pte(swp_entry);
3110 set_huge_pte_at(src, addr, src_pte, entry);
3111 }
3112 set_huge_pte_at(dst, addr, dst_pte, entry);
3113 } else {
34ee645e 3114 if (cow) {
7f2e9525 3115 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3116 mmu_notifier_invalidate_range(src, mmun_start,
3117 mmun_end);
3118 }
0253d634 3119 entry = huge_ptep_get(src_pte);
1c59827d
HD
3120 ptepage = pte_page(entry);
3121 get_page(ptepage);
53f9263b 3122 page_dup_rmap(ptepage, true);
1c59827d 3123 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3124 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3125 }
cb900f41
KS
3126 spin_unlock(src_ptl);
3127 spin_unlock(dst_ptl);
63551ae0 3128 }
63551ae0 3129
e8569dd2
AS
3130 if (cow)
3131 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3132
3133 return ret;
63551ae0
DG
3134}
3135
24669e58
AK
3136void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3137 unsigned long start, unsigned long end,
3138 struct page *ref_page)
63551ae0 3139{
24669e58 3140 int force_flush = 0;
63551ae0
DG
3141 struct mm_struct *mm = vma->vm_mm;
3142 unsigned long address;
c7546f8f 3143 pte_t *ptep;
63551ae0 3144 pte_t pte;
cb900f41 3145 spinlock_t *ptl;
63551ae0 3146 struct page *page;
a5516438
AK
3147 struct hstate *h = hstate_vma(vma);
3148 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3149 const unsigned long mmun_start = start; /* For mmu_notifiers */
3150 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3151
63551ae0 3152 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3153 BUG_ON(start & ~huge_page_mask(h));
3154 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3155
24669e58 3156 tlb_start_vma(tlb, vma);
2ec74c3e 3157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3158 address = start;
24669e58 3159again:
569f48b8 3160 for (; address < end; address += sz) {
c7546f8f 3161 ptep = huge_pte_offset(mm, address);
4c887265 3162 if (!ptep)
c7546f8f
DG
3163 continue;
3164
cb900f41 3165 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3166 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3167 goto unlock;
39dde65c 3168
6629326b
HD
3169 pte = huge_ptep_get(ptep);
3170 if (huge_pte_none(pte))
cb900f41 3171 goto unlock;
6629326b
HD
3172
3173 /*
9fbc1f63
NH
3174 * Migrating hugepage or HWPoisoned hugepage is already
3175 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3176 */
9fbc1f63 3177 if (unlikely(!pte_present(pte))) {
106c992a 3178 huge_pte_clear(mm, address, ptep);
cb900f41 3179 goto unlock;
8c4894c6 3180 }
6629326b
HD
3181
3182 page = pte_page(pte);
04f2cbe3
MG
3183 /*
3184 * If a reference page is supplied, it is because a specific
3185 * page is being unmapped, not a range. Ensure the page we
3186 * are about to unmap is the actual page of interest.
3187 */
3188 if (ref_page) {
04f2cbe3 3189 if (page != ref_page)
cb900f41 3190 goto unlock;
04f2cbe3
MG
3191
3192 /*
3193 * Mark the VMA as having unmapped its page so that
3194 * future faults in this VMA will fail rather than
3195 * looking like data was lost
3196 */
3197 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3198 }
3199
c7546f8f 3200 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3201 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3202 if (huge_pte_dirty(pte))
6649a386 3203 set_page_dirty(page);
9e81130b 3204
5d317b2b 3205 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3206 page_remove_rmap(page, true);
24669e58 3207 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3208 if (force_flush) {
569f48b8 3209 address += sz;
cb900f41 3210 spin_unlock(ptl);
24669e58 3211 break;
cb900f41 3212 }
9e81130b 3213 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3214 if (ref_page) {
3215 spin_unlock(ptl);
9e81130b 3216 break;
cb900f41
KS
3217 }
3218unlock:
3219 spin_unlock(ptl);
63551ae0 3220 }
24669e58
AK
3221 /*
3222 * mmu_gather ran out of room to batch pages, we break out of
3223 * the PTE lock to avoid doing the potential expensive TLB invalidate
3224 * and page-free while holding it.
3225 */
3226 if (force_flush) {
3227 force_flush = 0;
3228 tlb_flush_mmu(tlb);
3229 if (address < end && !ref_page)
3230 goto again;
fe1668ae 3231 }
2ec74c3e 3232 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3233 tlb_end_vma(tlb, vma);
1da177e4 3234}
63551ae0 3235
d833352a
MG
3236void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3237 struct vm_area_struct *vma, unsigned long start,
3238 unsigned long end, struct page *ref_page)
3239{
3240 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3241
3242 /*
3243 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3244 * test will fail on a vma being torn down, and not grab a page table
3245 * on its way out. We're lucky that the flag has such an appropriate
3246 * name, and can in fact be safely cleared here. We could clear it
3247 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3248 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3249 * because in the context this is called, the VMA is about to be
c8c06efa 3250 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3251 */
3252 vma->vm_flags &= ~VM_MAYSHARE;
3253}
3254
502717f4 3255void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3256 unsigned long end, struct page *ref_page)
502717f4 3257{
24669e58
AK
3258 struct mm_struct *mm;
3259 struct mmu_gather tlb;
3260
3261 mm = vma->vm_mm;
3262
2b047252 3263 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3264 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3265 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3266}
3267
04f2cbe3
MG
3268/*
3269 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3270 * mappping it owns the reserve page for. The intention is to unmap the page
3271 * from other VMAs and let the children be SIGKILLed if they are faulting the
3272 * same region.
3273 */
2f4612af
DB
3274static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3275 struct page *page, unsigned long address)
04f2cbe3 3276{
7526674d 3277 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3278 struct vm_area_struct *iter_vma;
3279 struct address_space *mapping;
04f2cbe3
MG
3280 pgoff_t pgoff;
3281
3282 /*
3283 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3284 * from page cache lookup which is in HPAGE_SIZE units.
3285 */
7526674d 3286 address = address & huge_page_mask(h);
36e4f20a
MH
3287 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3288 vma->vm_pgoff;
496ad9aa 3289 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3290
4eb2b1dc
MG
3291 /*
3292 * Take the mapping lock for the duration of the table walk. As
3293 * this mapping should be shared between all the VMAs,
3294 * __unmap_hugepage_range() is called as the lock is already held
3295 */
83cde9e8 3296 i_mmap_lock_write(mapping);
6b2dbba8 3297 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3298 /* Do not unmap the current VMA */
3299 if (iter_vma == vma)
3300 continue;
3301
2f84a899
MG
3302 /*
3303 * Shared VMAs have their own reserves and do not affect
3304 * MAP_PRIVATE accounting but it is possible that a shared
3305 * VMA is using the same page so check and skip such VMAs.
3306 */
3307 if (iter_vma->vm_flags & VM_MAYSHARE)
3308 continue;
3309
04f2cbe3
MG
3310 /*
3311 * Unmap the page from other VMAs without their own reserves.
3312 * They get marked to be SIGKILLed if they fault in these
3313 * areas. This is because a future no-page fault on this VMA
3314 * could insert a zeroed page instead of the data existing
3315 * from the time of fork. This would look like data corruption
3316 */
3317 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3318 unmap_hugepage_range(iter_vma, address,
3319 address + huge_page_size(h), page);
04f2cbe3 3320 }
83cde9e8 3321 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3322}
3323
0fe6e20b
NH
3324/*
3325 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3326 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3327 * cannot race with other handlers or page migration.
3328 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3329 */
1e8f889b 3330static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3331 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3332 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3333{
a5516438 3334 struct hstate *h = hstate_vma(vma);
1e8f889b 3335 struct page *old_page, *new_page;
ad4404a2 3336 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3337 unsigned long mmun_start; /* For mmu_notifiers */
3338 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3339
3340 old_page = pte_page(pte);
3341
04f2cbe3 3342retry_avoidcopy:
1e8f889b
DG
3343 /* If no-one else is actually using this page, avoid the copy
3344 * and just make the page writable */
37a2140d
JK
3345 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3346 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3347 set_huge_ptep_writable(vma, address, ptep);
83c54070 3348 return 0;
1e8f889b
DG
3349 }
3350
04f2cbe3
MG
3351 /*
3352 * If the process that created a MAP_PRIVATE mapping is about to
3353 * perform a COW due to a shared page count, attempt to satisfy
3354 * the allocation without using the existing reserves. The pagecache
3355 * page is used to determine if the reserve at this address was
3356 * consumed or not. If reserves were used, a partial faulted mapping
3357 * at the time of fork() could consume its reserves on COW instead
3358 * of the full address range.
3359 */
5944d011 3360 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3361 old_page != pagecache_page)
3362 outside_reserve = 1;
3363
09cbfeaf 3364 get_page(old_page);
b76c8cfb 3365
ad4404a2
DB
3366 /*
3367 * Drop page table lock as buddy allocator may be called. It will
3368 * be acquired again before returning to the caller, as expected.
3369 */
cb900f41 3370 spin_unlock(ptl);
04f2cbe3 3371 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3372
2fc39cec 3373 if (IS_ERR(new_page)) {
04f2cbe3
MG
3374 /*
3375 * If a process owning a MAP_PRIVATE mapping fails to COW,
3376 * it is due to references held by a child and an insufficient
3377 * huge page pool. To guarantee the original mappers
3378 * reliability, unmap the page from child processes. The child
3379 * may get SIGKILLed if it later faults.
3380 */
3381 if (outside_reserve) {
09cbfeaf 3382 put_page(old_page);
04f2cbe3 3383 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3384 unmap_ref_private(mm, vma, old_page, address);
3385 BUG_ON(huge_pte_none(pte));
3386 spin_lock(ptl);
3387 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3388 if (likely(ptep &&
3389 pte_same(huge_ptep_get(ptep), pte)))
3390 goto retry_avoidcopy;
3391 /*
3392 * race occurs while re-acquiring page table
3393 * lock, and our job is done.
3394 */
3395 return 0;
04f2cbe3
MG
3396 }
3397
ad4404a2
DB
3398 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3399 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3400 goto out_release_old;
1e8f889b
DG
3401 }
3402
0fe6e20b
NH
3403 /*
3404 * When the original hugepage is shared one, it does not have
3405 * anon_vma prepared.
3406 */
44e2aa93 3407 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3408 ret = VM_FAULT_OOM;
3409 goto out_release_all;
44e2aa93 3410 }
0fe6e20b 3411
47ad8475
AA
3412 copy_user_huge_page(new_page, old_page, address, vma,
3413 pages_per_huge_page(h));
0ed361de 3414 __SetPageUptodate(new_page);
bcc54222 3415 set_page_huge_active(new_page);
1e8f889b 3416
2ec74c3e
SG
3417 mmun_start = address & huge_page_mask(h);
3418 mmun_end = mmun_start + huge_page_size(h);
3419 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3420
b76c8cfb 3421 /*
cb900f41 3422 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3423 * before the page tables are altered
3424 */
cb900f41 3425 spin_lock(ptl);
a5516438 3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3427 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3428 ClearPagePrivate(new_page);
3429
1e8f889b 3430 /* Break COW */
8fe627ec 3431 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3432 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3433 set_huge_pte_at(mm, address, ptep,
3434 make_huge_pte(vma, new_page, 1));
d281ee61 3435 page_remove_rmap(old_page, true);
cd67f0d2 3436 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3437 /* Make the old page be freed below */
3438 new_page = old_page;
3439 }
cb900f41 3440 spin_unlock(ptl);
2ec74c3e 3441 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3442out_release_all:
09cbfeaf 3443 put_page(new_page);
ad4404a2 3444out_release_old:
09cbfeaf 3445 put_page(old_page);
8312034f 3446
ad4404a2
DB
3447 spin_lock(ptl); /* Caller expects lock to be held */
3448 return ret;
1e8f889b
DG
3449}
3450
04f2cbe3 3451/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3452static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3453 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3454{
3455 struct address_space *mapping;
e7c4b0bf 3456 pgoff_t idx;
04f2cbe3
MG
3457
3458 mapping = vma->vm_file->f_mapping;
a5516438 3459 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3460
3461 return find_lock_page(mapping, idx);
3462}
3463
3ae77f43
HD
3464/*
3465 * Return whether there is a pagecache page to back given address within VMA.
3466 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3467 */
3468static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3469 struct vm_area_struct *vma, unsigned long address)
3470{
3471 struct address_space *mapping;
3472 pgoff_t idx;
3473 struct page *page;
3474
3475 mapping = vma->vm_file->f_mapping;
3476 idx = vma_hugecache_offset(h, vma, address);
3477
3478 page = find_get_page(mapping, idx);
3479 if (page)
3480 put_page(page);
3481 return page != NULL;
3482}
3483
ab76ad54
MK
3484int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3485 pgoff_t idx)
3486{
3487 struct inode *inode = mapping->host;
3488 struct hstate *h = hstate_inode(inode);
3489 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3490
3491 if (err)
3492 return err;
3493 ClearPagePrivate(page);
3494
3495 spin_lock(&inode->i_lock);
3496 inode->i_blocks += blocks_per_huge_page(h);
3497 spin_unlock(&inode->i_lock);
3498 return 0;
3499}
3500
a1ed3dda 3501static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3502 struct address_space *mapping, pgoff_t idx,
3503 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3504{
a5516438 3505 struct hstate *h = hstate_vma(vma);
ac9b9c66 3506 int ret = VM_FAULT_SIGBUS;
409eb8c2 3507 int anon_rmap = 0;
4c887265 3508 unsigned long size;
4c887265 3509 struct page *page;
1e8f889b 3510 pte_t new_pte;
cb900f41 3511 spinlock_t *ptl;
4c887265 3512
04f2cbe3
MG
3513 /*
3514 * Currently, we are forced to kill the process in the event the
3515 * original mapper has unmapped pages from the child due to a failed
25985edc 3516 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3517 */
3518 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3519 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3520 current->pid);
04f2cbe3
MG
3521 return ret;
3522 }
3523
4c887265
AL
3524 /*
3525 * Use page lock to guard against racing truncation
3526 * before we get page_table_lock.
3527 */
6bda666a
CL
3528retry:
3529 page = find_lock_page(mapping, idx);
3530 if (!page) {
a5516438 3531 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3532 if (idx >= size)
3533 goto out;
04f2cbe3 3534 page = alloc_huge_page(vma, address, 0);
2fc39cec 3535 if (IS_ERR(page)) {
76dcee75
AK
3536 ret = PTR_ERR(page);
3537 if (ret == -ENOMEM)
3538 ret = VM_FAULT_OOM;
3539 else
3540 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3541 goto out;
3542 }
47ad8475 3543 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3544 __SetPageUptodate(page);
bcc54222 3545 set_page_huge_active(page);
ac9b9c66 3546
f83a275d 3547 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3548 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3549 if (err) {
3550 put_page(page);
6bda666a
CL
3551 if (err == -EEXIST)
3552 goto retry;
3553 goto out;
3554 }
23be7468 3555 } else {
6bda666a 3556 lock_page(page);
0fe6e20b
NH
3557 if (unlikely(anon_vma_prepare(vma))) {
3558 ret = VM_FAULT_OOM;
3559 goto backout_unlocked;
3560 }
409eb8c2 3561 anon_rmap = 1;
23be7468 3562 }
0fe6e20b 3563 } else {
998b4382
NH
3564 /*
3565 * If memory error occurs between mmap() and fault, some process
3566 * don't have hwpoisoned swap entry for errored virtual address.
3567 * So we need to block hugepage fault by PG_hwpoison bit check.
3568 */
3569 if (unlikely(PageHWPoison(page))) {
32f84528 3570 ret = VM_FAULT_HWPOISON |
972dc4de 3571 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3572 goto backout_unlocked;
3573 }
6bda666a 3574 }
1e8f889b 3575
57303d80
AW
3576 /*
3577 * If we are going to COW a private mapping later, we examine the
3578 * pending reservations for this page now. This will ensure that
3579 * any allocations necessary to record that reservation occur outside
3580 * the spinlock.
3581 */
5e911373 3582 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3583 if (vma_needs_reservation(h, vma, address) < 0) {
3584 ret = VM_FAULT_OOM;
3585 goto backout_unlocked;
3586 }
5e911373 3587 /* Just decrements count, does not deallocate */
feba16e2 3588 vma_end_reservation(h, vma, address);
5e911373 3589 }
57303d80 3590
cb900f41
KS
3591 ptl = huge_pte_lockptr(h, mm, ptep);
3592 spin_lock(ptl);
a5516438 3593 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3594 if (idx >= size)
3595 goto backout;
3596
83c54070 3597 ret = 0;
7f2e9525 3598 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3599 goto backout;
3600
07443a85
JK
3601 if (anon_rmap) {
3602 ClearPagePrivate(page);
409eb8c2 3603 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3604 } else
53f9263b 3605 page_dup_rmap(page, true);
1e8f889b
DG
3606 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3607 && (vma->vm_flags & VM_SHARED)));
3608 set_huge_pte_at(mm, address, ptep, new_pte);
3609
5d317b2b 3610 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3611 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3612 /* Optimization, do the COW without a second fault */
cb900f41 3613 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3614 }
3615
cb900f41 3616 spin_unlock(ptl);
4c887265
AL
3617 unlock_page(page);
3618out:
ac9b9c66 3619 return ret;
4c887265
AL
3620
3621backout:
cb900f41 3622 spin_unlock(ptl);
2b26736c 3623backout_unlocked:
4c887265
AL
3624 unlock_page(page);
3625 put_page(page);
3626 goto out;
ac9b9c66
HD
3627}
3628
8382d914 3629#ifdef CONFIG_SMP
c672c7f2 3630u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3631 struct vm_area_struct *vma,
3632 struct address_space *mapping,
3633 pgoff_t idx, unsigned long address)
3634{
3635 unsigned long key[2];
3636 u32 hash;
3637
3638 if (vma->vm_flags & VM_SHARED) {
3639 key[0] = (unsigned long) mapping;
3640 key[1] = idx;
3641 } else {
3642 key[0] = (unsigned long) mm;
3643 key[1] = address >> huge_page_shift(h);
3644 }
3645
3646 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3647
3648 return hash & (num_fault_mutexes - 1);
3649}
3650#else
3651/*
3652 * For uniprocesor systems we always use a single mutex, so just
3653 * return 0 and avoid the hashing overhead.
3654 */
c672c7f2 3655u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3656 struct vm_area_struct *vma,
3657 struct address_space *mapping,
3658 pgoff_t idx, unsigned long address)
3659{
3660 return 0;
3661}
3662#endif
3663
86e5216f 3664int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3665 unsigned long address, unsigned int flags)
86e5216f 3666{
8382d914 3667 pte_t *ptep, entry;
cb900f41 3668 spinlock_t *ptl;
1e8f889b 3669 int ret;
8382d914
DB
3670 u32 hash;
3671 pgoff_t idx;
0fe6e20b 3672 struct page *page = NULL;
57303d80 3673 struct page *pagecache_page = NULL;
a5516438 3674 struct hstate *h = hstate_vma(vma);
8382d914 3675 struct address_space *mapping;
0f792cf9 3676 int need_wait_lock = 0;
86e5216f 3677
1e16a539
KH
3678 address &= huge_page_mask(h);
3679
fd6a03ed
NH
3680 ptep = huge_pte_offset(mm, address);
3681 if (ptep) {
3682 entry = huge_ptep_get(ptep);
290408d4 3683 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3684 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3685 return 0;
3686 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3687 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3688 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3689 } else {
3690 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3691 if (!ptep)
3692 return VM_FAULT_OOM;
fd6a03ed
NH
3693 }
3694
8382d914
DB
3695 mapping = vma->vm_file->f_mapping;
3696 idx = vma_hugecache_offset(h, vma, address);
3697
3935baa9
DG
3698 /*
3699 * Serialize hugepage allocation and instantiation, so that we don't
3700 * get spurious allocation failures if two CPUs race to instantiate
3701 * the same page in the page cache.
3702 */
c672c7f2
MK
3703 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3704 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3705
7f2e9525
GS
3706 entry = huge_ptep_get(ptep);
3707 if (huge_pte_none(entry)) {
8382d914 3708 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3709 goto out_mutex;
3935baa9 3710 }
86e5216f 3711
83c54070 3712 ret = 0;
1e8f889b 3713
0f792cf9
NH
3714 /*
3715 * entry could be a migration/hwpoison entry at this point, so this
3716 * check prevents the kernel from going below assuming that we have
3717 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3718 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3719 * handle it.
3720 */
3721 if (!pte_present(entry))
3722 goto out_mutex;
3723
57303d80
AW
3724 /*
3725 * If we are going to COW the mapping later, we examine the pending
3726 * reservations for this page now. This will ensure that any
3727 * allocations necessary to record that reservation occur outside the
3728 * spinlock. For private mappings, we also lookup the pagecache
3729 * page now as it is used to determine if a reservation has been
3730 * consumed.
3731 */
106c992a 3732 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3733 if (vma_needs_reservation(h, vma, address) < 0) {
3734 ret = VM_FAULT_OOM;
b4d1d99f 3735 goto out_mutex;
2b26736c 3736 }
5e911373 3737 /* Just decrements count, does not deallocate */
feba16e2 3738 vma_end_reservation(h, vma, address);
57303d80 3739
f83a275d 3740 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3741 pagecache_page = hugetlbfs_pagecache_page(h,
3742 vma, address);
3743 }
3744
0f792cf9
NH
3745 ptl = huge_pte_lock(h, mm, ptep);
3746
3747 /* Check for a racing update before calling hugetlb_cow */
3748 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3749 goto out_ptl;
3750
56c9cfb1
NH
3751 /*
3752 * hugetlb_cow() requires page locks of pte_page(entry) and
3753 * pagecache_page, so here we need take the former one
3754 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3755 */
3756 page = pte_page(entry);
3757 if (page != pagecache_page)
0f792cf9
NH
3758 if (!trylock_page(page)) {
3759 need_wait_lock = 1;
3760 goto out_ptl;
3761 }
b4d1d99f 3762
0f792cf9 3763 get_page(page);
b4d1d99f 3764
788c7df4 3765 if (flags & FAULT_FLAG_WRITE) {
106c992a 3766 if (!huge_pte_write(entry)) {
57303d80 3767 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3768 pagecache_page, ptl);
0f792cf9 3769 goto out_put_page;
b4d1d99f 3770 }
106c992a 3771 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3772 }
3773 entry = pte_mkyoung(entry);
788c7df4
HD
3774 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3775 flags & FAULT_FLAG_WRITE))
4b3073e1 3776 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3777out_put_page:
3778 if (page != pagecache_page)
3779 unlock_page(page);
3780 put_page(page);
cb900f41
KS
3781out_ptl:
3782 spin_unlock(ptl);
57303d80
AW
3783
3784 if (pagecache_page) {
3785 unlock_page(pagecache_page);
3786 put_page(pagecache_page);
3787 }
b4d1d99f 3788out_mutex:
c672c7f2 3789 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3790 /*
3791 * Generally it's safe to hold refcount during waiting page lock. But
3792 * here we just wait to defer the next page fault to avoid busy loop and
3793 * the page is not used after unlocked before returning from the current
3794 * page fault. So we are safe from accessing freed page, even if we wait
3795 * here without taking refcount.
3796 */
3797 if (need_wait_lock)
3798 wait_on_page_locked(page);
1e8f889b 3799 return ret;
86e5216f
AL
3800}
3801
28a35716
ML
3802long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3803 struct page **pages, struct vm_area_struct **vmas,
3804 unsigned long *position, unsigned long *nr_pages,
3805 long i, unsigned int flags)
63551ae0 3806{
d5d4b0aa
CK
3807 unsigned long pfn_offset;
3808 unsigned long vaddr = *position;
28a35716 3809 unsigned long remainder = *nr_pages;
a5516438 3810 struct hstate *h = hstate_vma(vma);
63551ae0 3811
63551ae0 3812 while (vaddr < vma->vm_end && remainder) {
4c887265 3813 pte_t *pte;
cb900f41 3814 spinlock_t *ptl = NULL;
2a15efc9 3815 int absent;
4c887265 3816 struct page *page;
63551ae0 3817
02057967
DR
3818 /*
3819 * If we have a pending SIGKILL, don't keep faulting pages and
3820 * potentially allocating memory.
3821 */
3822 if (unlikely(fatal_signal_pending(current))) {
3823 remainder = 0;
3824 break;
3825 }
3826
4c887265
AL
3827 /*
3828 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3829 * each hugepage. We have to make sure we get the
4c887265 3830 * first, for the page indexing below to work.
cb900f41
KS
3831 *
3832 * Note that page table lock is not held when pte is null.
4c887265 3833 */
a5516438 3834 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3835 if (pte)
3836 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3837 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3838
3839 /*
3840 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3841 * an error where there's an empty slot with no huge pagecache
3842 * to back it. This way, we avoid allocating a hugepage, and
3843 * the sparse dumpfile avoids allocating disk blocks, but its
3844 * huge holes still show up with zeroes where they need to be.
2a15efc9 3845 */
3ae77f43
HD
3846 if (absent && (flags & FOLL_DUMP) &&
3847 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3848 if (pte)
3849 spin_unlock(ptl);
2a15efc9
HD
3850 remainder = 0;
3851 break;
3852 }
63551ae0 3853
9cc3a5bd
NH
3854 /*
3855 * We need call hugetlb_fault for both hugepages under migration
3856 * (in which case hugetlb_fault waits for the migration,) and
3857 * hwpoisoned hugepages (in which case we need to prevent the
3858 * caller from accessing to them.) In order to do this, we use
3859 * here is_swap_pte instead of is_hugetlb_entry_migration and
3860 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3861 * both cases, and because we can't follow correct pages
3862 * directly from any kind of swap entries.
3863 */
3864 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3865 ((flags & FOLL_WRITE) &&
3866 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3867 int ret;
63551ae0 3868
cb900f41
KS
3869 if (pte)
3870 spin_unlock(ptl);
2a15efc9
HD
3871 ret = hugetlb_fault(mm, vma, vaddr,
3872 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3873 if (!(ret & VM_FAULT_ERROR))
4c887265 3874 continue;
63551ae0 3875
4c887265 3876 remainder = 0;
4c887265
AL
3877 break;
3878 }
3879
a5516438 3880 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3881 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3882same_page:
d6692183 3883 if (pages) {
2a15efc9 3884 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 3885 get_page(pages[i]);
d6692183 3886 }
63551ae0
DG
3887
3888 if (vmas)
3889 vmas[i] = vma;
3890
3891 vaddr += PAGE_SIZE;
d5d4b0aa 3892 ++pfn_offset;
63551ae0
DG
3893 --remainder;
3894 ++i;
d5d4b0aa 3895 if (vaddr < vma->vm_end && remainder &&
a5516438 3896 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3897 /*
3898 * We use pfn_offset to avoid touching the pageframes
3899 * of this compound page.
3900 */
3901 goto same_page;
3902 }
cb900f41 3903 spin_unlock(ptl);
63551ae0 3904 }
28a35716 3905 *nr_pages = remainder;
63551ae0
DG
3906 *position = vaddr;
3907
2a15efc9 3908 return i ? i : -EFAULT;
63551ae0 3909}
8f860591 3910
7da4d641 3911unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3912 unsigned long address, unsigned long end, pgprot_t newprot)
3913{
3914 struct mm_struct *mm = vma->vm_mm;
3915 unsigned long start = address;
3916 pte_t *ptep;
3917 pte_t pte;
a5516438 3918 struct hstate *h = hstate_vma(vma);
7da4d641 3919 unsigned long pages = 0;
8f860591
ZY
3920
3921 BUG_ON(address >= end);
3922 flush_cache_range(vma, address, end);
3923
a5338093 3924 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3925 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3926 for (; address < end; address += huge_page_size(h)) {
cb900f41 3927 spinlock_t *ptl;
8f860591
ZY
3928 ptep = huge_pte_offset(mm, address);
3929 if (!ptep)
3930 continue;
cb900f41 3931 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3932 if (huge_pmd_unshare(mm, &address, ptep)) {
3933 pages++;
cb900f41 3934 spin_unlock(ptl);
39dde65c 3935 continue;
7da4d641 3936 }
a8bda28d
NH
3937 pte = huge_ptep_get(ptep);
3938 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3939 spin_unlock(ptl);
3940 continue;
3941 }
3942 if (unlikely(is_hugetlb_entry_migration(pte))) {
3943 swp_entry_t entry = pte_to_swp_entry(pte);
3944
3945 if (is_write_migration_entry(entry)) {
3946 pte_t newpte;
3947
3948 make_migration_entry_read(&entry);
3949 newpte = swp_entry_to_pte(entry);
3950 set_huge_pte_at(mm, address, ptep, newpte);
3951 pages++;
3952 }
3953 spin_unlock(ptl);
3954 continue;
3955 }
3956 if (!huge_pte_none(pte)) {
8f860591 3957 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3958 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3959 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3960 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3961 pages++;
8f860591 3962 }
cb900f41 3963 spin_unlock(ptl);
8f860591 3964 }
d833352a 3965 /*
c8c06efa 3966 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3967 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3968 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3969 * and that page table be reused and filled with junk.
3970 */
8f860591 3971 flush_tlb_range(vma, start, end);
34ee645e 3972 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3973 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3974 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3975
3976 return pages << h->order;
8f860591
ZY
3977}
3978
a1e78772
MG
3979int hugetlb_reserve_pages(struct inode *inode,
3980 long from, long to,
5a6fe125 3981 struct vm_area_struct *vma,
ca16d140 3982 vm_flags_t vm_flags)
e4e574b7 3983{
17c9d12e 3984 long ret, chg;
a5516438 3985 struct hstate *h = hstate_inode(inode);
90481622 3986 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3987 struct resv_map *resv_map;
1c5ecae3 3988 long gbl_reserve;
e4e574b7 3989
17c9d12e
MG
3990 /*
3991 * Only apply hugepage reservation if asked. At fault time, an
3992 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3993 * without using reserves
17c9d12e 3994 */
ca16d140 3995 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3996 return 0;
3997
a1e78772
MG
3998 /*
3999 * Shared mappings base their reservation on the number of pages that
4000 * are already allocated on behalf of the file. Private mappings need
4001 * to reserve the full area even if read-only as mprotect() may be
4002 * called to make the mapping read-write. Assume !vma is a shm mapping
4003 */
9119a41e 4004 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4005 resv_map = inode_resv_map(inode);
9119a41e 4006
1406ec9b 4007 chg = region_chg(resv_map, from, to);
9119a41e
JK
4008
4009 } else {
4010 resv_map = resv_map_alloc();
17c9d12e
MG
4011 if (!resv_map)
4012 return -ENOMEM;
4013
a1e78772 4014 chg = to - from;
84afd99b 4015
17c9d12e
MG
4016 set_vma_resv_map(vma, resv_map);
4017 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4018 }
4019
c50ac050
DH
4020 if (chg < 0) {
4021 ret = chg;
4022 goto out_err;
4023 }
8a630112 4024
1c5ecae3
MK
4025 /*
4026 * There must be enough pages in the subpool for the mapping. If
4027 * the subpool has a minimum size, there may be some global
4028 * reservations already in place (gbl_reserve).
4029 */
4030 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4031 if (gbl_reserve < 0) {
c50ac050
DH
4032 ret = -ENOSPC;
4033 goto out_err;
4034 }
5a6fe125
MG
4035
4036 /*
17c9d12e 4037 * Check enough hugepages are available for the reservation.
90481622 4038 * Hand the pages back to the subpool if there are not
5a6fe125 4039 */
1c5ecae3 4040 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4041 if (ret < 0) {
1c5ecae3
MK
4042 /* put back original number of pages, chg */
4043 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4044 goto out_err;
68842c9b 4045 }
17c9d12e
MG
4046
4047 /*
4048 * Account for the reservations made. Shared mappings record regions
4049 * that have reservations as they are shared by multiple VMAs.
4050 * When the last VMA disappears, the region map says how much
4051 * the reservation was and the page cache tells how much of
4052 * the reservation was consumed. Private mappings are per-VMA and
4053 * only the consumed reservations are tracked. When the VMA
4054 * disappears, the original reservation is the VMA size and the
4055 * consumed reservations are stored in the map. Hence, nothing
4056 * else has to be done for private mappings here
4057 */
33039678
MK
4058 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4059 long add = region_add(resv_map, from, to);
4060
4061 if (unlikely(chg > add)) {
4062 /*
4063 * pages in this range were added to the reserve
4064 * map between region_chg and region_add. This
4065 * indicates a race with alloc_huge_page. Adjust
4066 * the subpool and reserve counts modified above
4067 * based on the difference.
4068 */
4069 long rsv_adjust;
4070
4071 rsv_adjust = hugepage_subpool_put_pages(spool,
4072 chg - add);
4073 hugetlb_acct_memory(h, -rsv_adjust);
4074 }
4075 }
a43a8c39 4076 return 0;
c50ac050 4077out_err:
5e911373
MK
4078 if (!vma || vma->vm_flags & VM_MAYSHARE)
4079 region_abort(resv_map, from, to);
f031dd27
JK
4080 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4081 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4082 return ret;
a43a8c39
CK
4083}
4084
b5cec28d
MK
4085long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4086 long freed)
a43a8c39 4087{
a5516438 4088 struct hstate *h = hstate_inode(inode);
4e35f483 4089 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4090 long chg = 0;
90481622 4091 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4092 long gbl_reserve;
45c682a6 4093
b5cec28d
MK
4094 if (resv_map) {
4095 chg = region_del(resv_map, start, end);
4096 /*
4097 * region_del() can fail in the rare case where a region
4098 * must be split and another region descriptor can not be
4099 * allocated. If end == LONG_MAX, it will not fail.
4100 */
4101 if (chg < 0)
4102 return chg;
4103 }
4104
45c682a6 4105 spin_lock(&inode->i_lock);
e4c6f8be 4106 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4107 spin_unlock(&inode->i_lock);
4108
1c5ecae3
MK
4109 /*
4110 * If the subpool has a minimum size, the number of global
4111 * reservations to be released may be adjusted.
4112 */
4113 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4114 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4115
4116 return 0;
a43a8c39 4117}
93f70f90 4118
3212b535
SC
4119#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4120static unsigned long page_table_shareable(struct vm_area_struct *svma,
4121 struct vm_area_struct *vma,
4122 unsigned long addr, pgoff_t idx)
4123{
4124 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4125 svma->vm_start;
4126 unsigned long sbase = saddr & PUD_MASK;
4127 unsigned long s_end = sbase + PUD_SIZE;
4128
4129 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4130 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4131 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4132
4133 /*
4134 * match the virtual addresses, permission and the alignment of the
4135 * page table page.
4136 */
4137 if (pmd_index(addr) != pmd_index(saddr) ||
4138 vm_flags != svm_flags ||
4139 sbase < svma->vm_start || svma->vm_end < s_end)
4140 return 0;
4141
4142 return saddr;
4143}
4144
31aafb45 4145static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4146{
4147 unsigned long base = addr & PUD_MASK;
4148 unsigned long end = base + PUD_SIZE;
4149
4150 /*
4151 * check on proper vm_flags and page table alignment
4152 */
4153 if (vma->vm_flags & VM_MAYSHARE &&
4154 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4155 return true;
4156 return false;
3212b535
SC
4157}
4158
4159/*
4160 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4161 * and returns the corresponding pte. While this is not necessary for the
4162 * !shared pmd case because we can allocate the pmd later as well, it makes the
4163 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4164 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4165 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4166 * bad pmd for sharing.
4167 */
4168pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4169{
4170 struct vm_area_struct *vma = find_vma(mm, addr);
4171 struct address_space *mapping = vma->vm_file->f_mapping;
4172 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4173 vma->vm_pgoff;
4174 struct vm_area_struct *svma;
4175 unsigned long saddr;
4176 pte_t *spte = NULL;
4177 pte_t *pte;
cb900f41 4178 spinlock_t *ptl;
3212b535
SC
4179
4180 if (!vma_shareable(vma, addr))
4181 return (pte_t *)pmd_alloc(mm, pud, addr);
4182
83cde9e8 4183 i_mmap_lock_write(mapping);
3212b535
SC
4184 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4185 if (svma == vma)
4186 continue;
4187
4188 saddr = page_table_shareable(svma, vma, addr, idx);
4189 if (saddr) {
4190 spte = huge_pte_offset(svma->vm_mm, saddr);
4191 if (spte) {
dc6c9a35 4192 mm_inc_nr_pmds(mm);
3212b535
SC
4193 get_page(virt_to_page(spte));
4194 break;
4195 }
4196 }
4197 }
4198
4199 if (!spte)
4200 goto out;
4201
cb900f41
KS
4202 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4203 spin_lock(ptl);
dc6c9a35 4204 if (pud_none(*pud)) {
3212b535
SC
4205 pud_populate(mm, pud,
4206 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 4207 } else {
3212b535 4208 put_page(virt_to_page(spte));
dc6c9a35
KS
4209 mm_inc_nr_pmds(mm);
4210 }
cb900f41 4211 spin_unlock(ptl);
3212b535
SC
4212out:
4213 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4214 i_mmap_unlock_write(mapping);
3212b535
SC
4215 return pte;
4216}
4217
4218/*
4219 * unmap huge page backed by shared pte.
4220 *
4221 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4222 * indicated by page_count > 1, unmap is achieved by clearing pud and
4223 * decrementing the ref count. If count == 1, the pte page is not shared.
4224 *
cb900f41 4225 * called with page table lock held.
3212b535
SC
4226 *
4227 * returns: 1 successfully unmapped a shared pte page
4228 * 0 the underlying pte page is not shared, or it is the last user
4229 */
4230int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4231{
4232 pgd_t *pgd = pgd_offset(mm, *addr);
4233 pud_t *pud = pud_offset(pgd, *addr);
4234
4235 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4236 if (page_count(virt_to_page(ptep)) == 1)
4237 return 0;
4238
4239 pud_clear(pud);
4240 put_page(virt_to_page(ptep));
dc6c9a35 4241 mm_dec_nr_pmds(mm);
3212b535
SC
4242 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4243 return 1;
4244}
9e5fc74c
SC
4245#define want_pmd_share() (1)
4246#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4247pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4248{
4249 return NULL;
4250}
e81f2d22
ZZ
4251
4252int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4253{
4254 return 0;
4255}
9e5fc74c 4256#define want_pmd_share() (0)
3212b535
SC
4257#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4258
9e5fc74c
SC
4259#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4260pte_t *huge_pte_alloc(struct mm_struct *mm,
4261 unsigned long addr, unsigned long sz)
4262{
4263 pgd_t *pgd;
4264 pud_t *pud;
4265 pte_t *pte = NULL;
4266
4267 pgd = pgd_offset(mm, addr);
4268 pud = pud_alloc(mm, pgd, addr);
4269 if (pud) {
4270 if (sz == PUD_SIZE) {
4271 pte = (pte_t *)pud;
4272 } else {
4273 BUG_ON(sz != PMD_SIZE);
4274 if (want_pmd_share() && pud_none(*pud))
4275 pte = huge_pmd_share(mm, addr, pud);
4276 else
4277 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4278 }
4279 }
4280 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4281
4282 return pte;
4283}
4284
4285pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4286{
4287 pgd_t *pgd;
4288 pud_t *pud;
4289 pmd_t *pmd = NULL;
4290
4291 pgd = pgd_offset(mm, addr);
4292 if (pgd_present(*pgd)) {
4293 pud = pud_offset(pgd, addr);
4294 if (pud_present(*pud)) {
4295 if (pud_huge(*pud))
4296 return (pte_t *)pud;
4297 pmd = pmd_offset(pud, addr);
4298 }
4299 }
4300 return (pte_t *) pmd;
4301}
4302
61f77eda
NH
4303#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4304
4305/*
4306 * These functions are overwritable if your architecture needs its own
4307 * behavior.
4308 */
4309struct page * __weak
4310follow_huge_addr(struct mm_struct *mm, unsigned long address,
4311 int write)
4312{
4313 return ERR_PTR(-EINVAL);
4314}
4315
4316struct page * __weak
9e5fc74c 4317follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4318 pmd_t *pmd, int flags)
9e5fc74c 4319{
e66f17ff
NH
4320 struct page *page = NULL;
4321 spinlock_t *ptl;
4322retry:
4323 ptl = pmd_lockptr(mm, pmd);
4324 spin_lock(ptl);
4325 /*
4326 * make sure that the address range covered by this pmd is not
4327 * unmapped from other threads.
4328 */
4329 if (!pmd_huge(*pmd))
4330 goto out;
4331 if (pmd_present(*pmd)) {
97534127 4332 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4333 if (flags & FOLL_GET)
4334 get_page(page);
4335 } else {
4336 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4337 spin_unlock(ptl);
4338 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4339 goto retry;
4340 }
4341 /*
4342 * hwpoisoned entry is treated as no_page_table in
4343 * follow_page_mask().
4344 */
4345 }
4346out:
4347 spin_unlock(ptl);
9e5fc74c
SC
4348 return page;
4349}
4350
61f77eda 4351struct page * __weak
9e5fc74c 4352follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4353 pud_t *pud, int flags)
9e5fc74c 4354{
e66f17ff
NH
4355 if (flags & FOLL_GET)
4356 return NULL;
9e5fc74c 4357
e66f17ff 4358 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4359}
4360
d5bd9106
AK
4361#ifdef CONFIG_MEMORY_FAILURE
4362
93f70f90
NH
4363/*
4364 * This function is called from memory failure code.
4365 * Assume the caller holds page lock of the head page.
4366 */
6de2b1aa 4367int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4368{
4369 struct hstate *h = page_hstate(hpage);
4370 int nid = page_to_nid(hpage);
6de2b1aa 4371 int ret = -EBUSY;
93f70f90
NH
4372
4373 spin_lock(&hugetlb_lock);
7e1f049e
NH
4374 /*
4375 * Just checking !page_huge_active is not enough, because that could be
4376 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4377 */
4378 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4379 /*
4380 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4381 * but dangling hpage->lru can trigger list-debug warnings
4382 * (this happens when we call unpoison_memory() on it),
4383 * so let it point to itself with list_del_init().
4384 */
4385 list_del_init(&hpage->lru);
8c6c2ecb 4386 set_page_refcounted(hpage);
6de2b1aa
NH
4387 h->free_huge_pages--;
4388 h->free_huge_pages_node[nid]--;
4389 ret = 0;
4390 }
93f70f90 4391 spin_unlock(&hugetlb_lock);
6de2b1aa 4392 return ret;
93f70f90 4393}
6de2b1aa 4394#endif
31caf665
NH
4395
4396bool isolate_huge_page(struct page *page, struct list_head *list)
4397{
bcc54222
NH
4398 bool ret = true;
4399
309381fe 4400 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4401 spin_lock(&hugetlb_lock);
bcc54222
NH
4402 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4403 ret = false;
4404 goto unlock;
4405 }
4406 clear_page_huge_active(page);
31caf665 4407 list_move_tail(&page->lru, list);
bcc54222 4408unlock:
31caf665 4409 spin_unlock(&hugetlb_lock);
bcc54222 4410 return ret;
31caf665
NH
4411}
4412
4413void putback_active_hugepage(struct page *page)
4414{
309381fe 4415 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4416 spin_lock(&hugetlb_lock);
bcc54222 4417 set_page_huge_active(page);
31caf665
NH
4418 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4419 spin_unlock(&hugetlb_lock);
4420 put_page(page);
4421}
This page took 1.398566 seconds and 5 git commands to generate.