thp: khugepaged: make khugepaged aware about madvise
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c 294 struct task_struct *moving_task; /* a task moving charges */
b1dd693e 295 struct mm_struct *mm;
8033b97c
DN
296 wait_queue_head_t waitq; /* a waitq for other context */
297} mc = {
2bd9bb20 298 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
299 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300};
4ffef5fe 301
90254a65
DN
302static bool move_anon(void)
303{
304 return test_bit(MOVE_CHARGE_TYPE_ANON,
305 &mc.to->move_charge_at_immigrate);
306}
307
87946a72
DN
308static bool move_file(void)
309{
310 return test_bit(MOVE_CHARGE_TYPE_FILE,
311 &mc.to->move_charge_at_immigrate);
312}
313
4e416953
BS
314/*
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
317 */
318#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320
217bc319
KH
321enum charge_type {
322 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 324 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 325 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 327 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
328 NR_CHARGE_TYPE,
329};
330
52d4b9ac
KH
331/* only for here (for easy reading.) */
332#define PCGF_CACHE (1UL << PCG_CACHE)
333#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 334#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
335/* Not used, but added here for completeness */
336#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 337
8c7c6e34
KH
338/* for encoding cft->private value on file */
339#define _MEM (0)
340#define _MEMSWAP (1)
9490ff27 341#define _OOM_TYPE (2)
8c7c6e34
KH
342#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
345/* Used for OOM nofiier */
346#define OOM_CONTROL (0)
8c7c6e34 347
75822b44
BS
348/*
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 */
351#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
355#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 357
8c7c6e34
KH
358static void mem_cgroup_get(struct mem_cgroup *mem);
359static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 360static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 361static void drain_all_stock_async(void);
8c7c6e34 362
f64c3f54
BS
363static struct mem_cgroup_per_zone *
364mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365{
366 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367}
368
d324236b
WF
369struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370{
371 return &mem->css;
372}
373
f64c3f54
BS
374static struct mem_cgroup_per_zone *
375page_cgroup_zoneinfo(struct page_cgroup *pc)
376{
377 struct mem_cgroup *mem = pc->mem_cgroup;
378 int nid = page_cgroup_nid(pc);
379 int zid = page_cgroup_zid(pc);
380
381 if (!mem)
382 return NULL;
383
384 return mem_cgroup_zoneinfo(mem, nid, zid);
385}
386
387static struct mem_cgroup_tree_per_zone *
388soft_limit_tree_node_zone(int nid, int zid)
389{
390 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391}
392
393static struct mem_cgroup_tree_per_zone *
394soft_limit_tree_from_page(struct page *page)
395{
396 int nid = page_to_nid(page);
397 int zid = page_zonenum(page);
398
399 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400}
401
402static void
4e416953 403__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 404 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
405 struct mem_cgroup_tree_per_zone *mctz,
406 unsigned long long new_usage_in_excess)
f64c3f54
BS
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_zone *mz_node;
411
412 if (mz->on_tree)
413 return;
414
ef8745c1
KH
415 mz->usage_in_excess = new_usage_in_excess;
416 if (!mz->usage_in_excess)
417 return;
f64c3f54
BS
418 while (*p) {
419 parent = *p;
420 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421 tree_node);
422 if (mz->usage_in_excess < mz_node->usage_in_excess)
423 p = &(*p)->rb_left;
424 /*
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
427 */
428 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429 p = &(*p)->rb_right;
430 }
431 rb_link_node(&mz->tree_node, parent, p);
432 rb_insert_color(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = true;
4e416953
BS
434}
435
436static void
437__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 struct mem_cgroup_per_zone *mz,
439 struct mem_cgroup_tree_per_zone *mctz)
440{
441 if (!mz->on_tree)
442 return;
443 rb_erase(&mz->tree_node, &mctz->rb_root);
444 mz->on_tree = false;
445}
446
f64c3f54
BS
447static void
448mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449 struct mem_cgroup_per_zone *mz,
450 struct mem_cgroup_tree_per_zone *mctz)
451{
452 spin_lock(&mctz->lock);
4e416953 453 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
454 spin_unlock(&mctz->lock);
455}
456
f64c3f54
BS
457
458static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459{
ef8745c1 460 unsigned long long excess;
f64c3f54
BS
461 struct mem_cgroup_per_zone *mz;
462 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
f64c3f54
BS
465 mctz = soft_limit_tree_from_page(page);
466
467 /*
4e649152
KH
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
f64c3f54 470 */
4e649152
KH
471 for (; mem; mem = parent_mem_cgroup(mem)) {
472 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 473 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
ef8745c1 478 if (excess || mz->on_tree) {
4e649152
KH
479 spin_lock(&mctz->lock);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483 /*
ef8745c1
KH
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
4e649152 486 */
ef8745c1 487 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
488 spin_unlock(&mctz->lock);
489 }
f64c3f54
BS
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494{
495 int node, zone;
496 struct mem_cgroup_per_zone *mz;
497 struct mem_cgroup_tree_per_zone *mctz;
498
499 for_each_node_state(node, N_POSSIBLE) {
500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501 mz = mem_cgroup_zoneinfo(mem, node, zone);
502 mctz = soft_limit_tree_node_zone(node, zone);
503 mem_cgroup_remove_exceeded(mem, mz, mctz);
504 }
505 }
506}
507
4e416953
BS
508static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509{
510 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511}
512
513static struct mem_cgroup_per_zone *
514__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515{
516 struct rb_node *rightmost = NULL;
26251eaf 517 struct mem_cgroup_per_zone *mz;
4e416953
BS
518
519retry:
26251eaf 520 mz = NULL;
4e416953
BS
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
524
525 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526 /*
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
530 */
531 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533 !css_tryget(&mz->mem->css))
534 goto retry;
535done:
536 return mz;
537}
538
539static struct mem_cgroup_per_zone *
540mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541{
542 struct mem_cgroup_per_zone *mz;
543
544 spin_lock(&mctz->lock);
545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 spin_unlock(&mctz->lock);
547 return mz;
548}
549
711d3d2c
KH
550/*
551 * Implementation Note: reading percpu statistics for memcg.
552 *
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
557 *
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
563 *
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
567 * implemented.
568 */
c62b1a3b
KH
569static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570 enum mem_cgroup_stat_index idx)
571{
572 int cpu;
573 s64 val = 0;
574
711d3d2c
KH
575 get_online_cpus();
576 for_each_online_cpu(cpu)
c62b1a3b 577 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
578#ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem->pcp_counter_lock);
580 val += mem->nocpu_base.count[idx];
581 spin_unlock(&mem->pcp_counter_lock);
582#endif
583 put_online_cpus();
c62b1a3b
KH
584 return val;
585}
586
587static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588{
589 s64 ret;
590
591 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593 return ret;
594}
595
0c3e73e8
BS
596static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597 bool charge)
598{
599 int val = (charge) ? 1 : -1;
c62b1a3b 600 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
601}
602
c05555b5
KH
603static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604 struct page_cgroup *pc,
605 bool charge)
d52aa412 606{
0c3e73e8 607 int val = (charge) ? 1 : -1;
d52aa412 608
c62b1a3b
KH
609 preempt_disable();
610
c05555b5 611 if (PageCgroupCache(pc))
c62b1a3b 612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 613 else
c62b1a3b 614 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
615
616 if (charge)
c62b1a3b 617 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 618 else
c62b1a3b 619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 620 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 621
c62b1a3b 622 preempt_enable();
6d12e2d8
KH
623}
624
14067bb3 625static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 626 enum lru_list idx)
6d12e2d8
KH
627{
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
631
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
636 }
637 return total;
d52aa412
KH
638}
639
d2265e6f
KH
640static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641{
642 s64 val;
643
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646 return !(val & ((1 << event_mask_shift) - 1));
647}
648
649/*
650 * Check events in order.
651 *
652 */
653static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654{
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
660 }
661}
662
d5b69e38 663static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
664{
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
668}
669
cf475ad2 670struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 671{
31a78f23
BS
672 /*
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
676 */
677 if (unlikely(!p))
678 return NULL;
679
78fb7466
PE
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
682}
683
54595fe2
KH
684static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685{
686 struct mem_cgroup *mem = NULL;
0b7f569e
KH
687
688 if (!mm)
689 return NULL;
54595fe2
KH
690 /*
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
694 */
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
703}
704
7d74b06f
KH
705/* The caller has to guarantee "mem" exists before calling this */
706static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 707{
711d3d2c
KH
708 struct cgroup_subsys_state *css;
709 int found;
710
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
717 }
718 rcu_read_lock();
719 /*
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
722 */
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
7d74b06f
KH
730}
731
732static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
735{
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
14067bb3 739 struct cgroup_subsys_state *css;
14067bb3 740
7d74b06f 741 hierarchy_used = iter->use_hierarchy;
14067bb3 742
7d74b06f 743 css_put(&iter->css);
711d3d2c
KH
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
7d74b06f 746 return NULL;
14067bb3 747
711d3d2c
KH
748 if (!root)
749 root = root_mem_cgroup;
750
7d74b06f
KH
751 do {
752 iter = NULL;
14067bb3 753 rcu_read_lock();
7d74b06f
KH
754
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
14067bb3 757 if (css && css_tryget(css))
7d74b06f 758 iter = container_of(css, struct mem_cgroup, css);
14067bb3 759 rcu_read_unlock();
7d74b06f 760 /* If css is NULL, no more cgroups will be found */
14067bb3 761 nextid = found + 1;
7d74b06f 762 } while (css && !iter);
14067bb3 763
7d74b06f 764 return iter;
14067bb3 765}
7d74b06f
KH
766/*
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
770 */
771#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
775
776#define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
778
711d3d2c
KH
779#define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
14067bb3 782
4b3bde4c
BS
783static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784{
785 return (mem == root_mem_cgroup);
786}
787
08e552c6
KH
788/*
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
792 *
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
800 */
4f98a2fe 801
08e552c6
KH
802void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803{
804 struct page_cgroup *pc;
08e552c6 805 struct mem_cgroup_per_zone *mz;
6d12e2d8 806
f8d66542 807 if (mem_cgroup_disabled())
08e552c6
KH
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
4b3bde4c 811 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 812 return;
4b3bde4c 813 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
814 /*
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
817 */
08e552c6 818 mz = page_cgroup_zoneinfo(pc);
b69408e8 819 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
820 if (mem_cgroup_is_root(pc->mem_cgroup))
821 return;
822 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
823 list_del_init(&pc->lru);
824 return;
6d12e2d8
KH
825}
826
08e552c6 827void mem_cgroup_del_lru(struct page *page)
6d12e2d8 828{
08e552c6
KH
829 mem_cgroup_del_lru_list(page, page_lru(page));
830}
b69408e8 831
08e552c6
KH
832void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833{
834 struct mem_cgroup_per_zone *mz;
835 struct page_cgroup *pc;
b69408e8 836
f8d66542 837 if (mem_cgroup_disabled())
08e552c6 838 return;
6d12e2d8 839
08e552c6 840 pc = lookup_page_cgroup(page);
bd112db8
DN
841 /*
842 * Used bit is set without atomic ops but after smp_wmb().
843 * For making pc->mem_cgroup visible, insert smp_rmb() here.
844 */
08e552c6 845 smp_rmb();
4b3bde4c
BS
846 /* unused or root page is not rotated. */
847 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
848 return;
849 mz = page_cgroup_zoneinfo(pc);
850 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
851}
852
08e552c6 853void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 854{
08e552c6
KH
855 struct page_cgroup *pc;
856 struct mem_cgroup_per_zone *mz;
6d12e2d8 857
f8d66542 858 if (mem_cgroup_disabled())
08e552c6
KH
859 return;
860 pc = lookup_page_cgroup(page);
4b3bde4c 861 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
862 /*
863 * Used bit is set without atomic ops but after smp_wmb().
864 * For making pc->mem_cgroup visible, insert smp_rmb() here.
865 */
08e552c6
KH
866 smp_rmb();
867 if (!PageCgroupUsed(pc))
894bc310 868 return;
b69408e8 869
08e552c6 870 mz = page_cgroup_zoneinfo(pc);
b69408e8 871 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
872 SetPageCgroupAcctLRU(pc);
873 if (mem_cgroup_is_root(pc->mem_cgroup))
874 return;
08e552c6
KH
875 list_add(&pc->lru, &mz->lists[lru]);
876}
544122e5 877
08e552c6 878/*
544122e5
KH
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
08e552c6 884 */
544122e5 885static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 886{
544122e5
KH
887 unsigned long flags;
888 struct zone *zone = page_zone(page);
889 struct page_cgroup *pc = lookup_page_cgroup(page);
890
891 spin_lock_irqsave(&zone->lru_lock, flags);
892 /*
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
895 */
896 if (!PageCgroupUsed(pc))
897 mem_cgroup_del_lru_list(page, page_lru(page));
898 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
899}
900
544122e5
KH
901static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902{
903 unsigned long flags;
904 struct zone *zone = page_zone(page);
905 struct page_cgroup *pc = lookup_page_cgroup(page);
906
907 spin_lock_irqsave(&zone->lru_lock, flags);
908 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 909 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
910 mem_cgroup_add_lru_list(page, page_lru(page));
911 spin_unlock_irqrestore(&zone->lru_lock, flags);
912}
913
914
08e552c6
KH
915void mem_cgroup_move_lists(struct page *page,
916 enum lru_list from, enum lru_list to)
917{
f8d66542 918 if (mem_cgroup_disabled())
08e552c6
KH
919 return;
920 mem_cgroup_del_lru_list(page, from);
921 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
922}
923
4c4a2214
DR
924int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925{
926 int ret;
0b7f569e 927 struct mem_cgroup *curr = NULL;
158e0a2d 928 struct task_struct *p;
4c4a2214 929
158e0a2d
KH
930 p = find_lock_task_mm(task);
931 if (!p)
932 return 0;
933 curr = try_get_mem_cgroup_from_mm(p->mm);
934 task_unlock(p);
0b7f569e
KH
935 if (!curr)
936 return 0;
d31f56db
DN
937 /*
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
942 */
943 if (mem->use_hierarchy)
0b7f569e
KH
944 ret = css_is_ancestor(&curr->css, &mem->css);
945 else
946 ret = (curr == mem);
947 css_put(&curr->css);
4c4a2214
DR
948 return ret;
949}
950
c772be93 951static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
952{
953 unsigned long active;
954 unsigned long inactive;
c772be93
KM
955 unsigned long gb;
956 unsigned long inactive_ratio;
14797e23 957
14067bb3
KH
958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 960
c772be93
KM
961 gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 if (gb)
963 inactive_ratio = int_sqrt(10 * gb);
964 else
965 inactive_ratio = 1;
966
967 if (present_pages) {
968 present_pages[0] = inactive;
969 present_pages[1] = active;
970 }
971
972 return inactive_ratio;
973}
974
975int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976{
977 unsigned long active;
978 unsigned long inactive;
979 unsigned long present_pages[2];
980 unsigned long inactive_ratio;
981
982 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984 inactive = present_pages[0];
985 active = present_pages[1];
986
987 if (inactive * inactive_ratio < active)
14797e23
KM
988 return 1;
989
990 return 0;
991}
992
56e49d21
RR
993int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994{
995 unsigned long active;
996 unsigned long inactive;
997
998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001 return (active > inactive);
1002}
1003
a3d8e054
KM
1004unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 struct zone *zone,
1006 enum lru_list lru)
1007{
13d7e3a2 1008 int nid = zone_to_nid(zone);
a3d8e054
KM
1009 int zid = zone_idx(zone);
1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012 return MEM_CGROUP_ZSTAT(mz, lru);
1013}
1014
3e2f41f1
KM
1015struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 struct zone *zone)
1017{
13d7e3a2 1018 int nid = zone_to_nid(zone);
3e2f41f1
KM
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return &mz->reclaim_stat;
1023}
1024
1025struct zone_reclaim_stat *
1026mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027{
1028 struct page_cgroup *pc;
1029 struct mem_cgroup_per_zone *mz;
1030
1031 if (mem_cgroup_disabled())
1032 return NULL;
1033
1034 pc = lookup_page_cgroup(page);
bd112db8
DN
1035 /*
1036 * Used bit is set without atomic ops but after smp_wmb().
1037 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038 */
1039 smp_rmb();
1040 if (!PageCgroupUsed(pc))
1041 return NULL;
1042
3e2f41f1
KM
1043 mz = page_cgroup_zoneinfo(pc);
1044 if (!mz)
1045 return NULL;
1046
1047 return &mz->reclaim_stat;
1048}
1049
66e1707b
BS
1050unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051 struct list_head *dst,
1052 unsigned long *scanned, int order,
1053 int mode, struct zone *z,
1054 struct mem_cgroup *mem_cont,
4f98a2fe 1055 int active, int file)
66e1707b
BS
1056{
1057 unsigned long nr_taken = 0;
1058 struct page *page;
1059 unsigned long scan;
1060 LIST_HEAD(pc_list);
1061 struct list_head *src;
ff7283fa 1062 struct page_cgroup *pc, *tmp;
13d7e3a2 1063 int nid = zone_to_nid(z);
1ecaab2b
KH
1064 int zid = zone_idx(z);
1065 struct mem_cgroup_per_zone *mz;
b7c46d15 1066 int lru = LRU_FILE * file + active;
2ffebca6 1067 int ret;
66e1707b 1068
cf475ad2 1069 BUG_ON(!mem_cont);
1ecaab2b 1070 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1071 src = &mz->lists[lru];
66e1707b 1072
ff7283fa
KH
1073 scan = 0;
1074 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1075 if (scan >= nr_to_scan)
ff7283fa 1076 break;
08e552c6
KH
1077
1078 page = pc->page;
52d4b9ac
KH
1079 if (unlikely(!PageCgroupUsed(pc)))
1080 continue;
436c6541 1081 if (unlikely(!PageLRU(page)))
ff7283fa 1082 continue;
ff7283fa 1083
436c6541 1084 scan++;
2ffebca6
KH
1085 ret = __isolate_lru_page(page, mode, file);
1086 switch (ret) {
1087 case 0:
66e1707b 1088 list_move(&page->lru, dst);
2ffebca6 1089 mem_cgroup_del_lru(page);
2c888cfb 1090 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1091 break;
1092 case -EBUSY:
1093 /* we don't affect global LRU but rotate in our LRU */
1094 mem_cgroup_rotate_lru_list(page, page_lru(page));
1095 break;
1096 default:
1097 break;
66e1707b
BS
1098 }
1099 }
1100
66e1707b 1101 *scanned = scan;
cc8e970c
KM
1102
1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104 0, 0, 0, mode);
1105
66e1707b
BS
1106 return nr_taken;
1107}
1108
6d61ef40
BS
1109#define mem_cgroup_from_res_counter(counter, member) \
1110 container_of(counter, struct mem_cgroup, member)
1111
b85a96c0
DN
1112static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113{
1114 if (do_swap_account) {
1115 if (res_counter_check_under_limit(&mem->res) &&
1116 res_counter_check_under_limit(&mem->memsw))
1117 return true;
1118 } else
1119 if (res_counter_check_under_limit(&mem->res))
1120 return true;
1121 return false;
1122}
1123
a7885eb8
KM
1124static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125{
1126 struct cgroup *cgrp = memcg->css.cgroup;
1127 unsigned int swappiness;
1128
1129 /* root ? */
1130 if (cgrp->parent == NULL)
1131 return vm_swappiness;
1132
1133 spin_lock(&memcg->reclaim_param_lock);
1134 swappiness = memcg->swappiness;
1135 spin_unlock(&memcg->reclaim_param_lock);
1136
1137 return swappiness;
1138}
1139
32047e2a
KH
1140static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141{
1142 int cpu;
1489ebad
KH
1143
1144 get_online_cpus();
1145 spin_lock(&mem->pcp_counter_lock);
1146 for_each_online_cpu(cpu)
32047e2a 1147 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1148 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149 spin_unlock(&mem->pcp_counter_lock);
1150 put_online_cpus();
32047e2a
KH
1151
1152 synchronize_rcu();
1153}
1154
1155static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156{
1157 int cpu;
1158
1159 if (!mem)
1160 return;
1489ebad
KH
1161 get_online_cpus();
1162 spin_lock(&mem->pcp_counter_lock);
1163 for_each_online_cpu(cpu)
32047e2a 1164 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1165 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166 spin_unlock(&mem->pcp_counter_lock);
1167 put_online_cpus();
32047e2a
KH
1168}
1169/*
1170 * 2 routines for checking "mem" is under move_account() or not.
1171 *
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 * for avoiding race in accounting. If true,
1174 * pc->mem_cgroup may be overwritten.
1175 *
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 * under hierarchy of moving cgroups. This is for
1178 * waiting at hith-memory prressure caused by "move".
1179 */
1180
1181static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182{
1183 VM_BUG_ON(!rcu_read_lock_held());
1184 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185}
4b534334
KH
1186
1187static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188{
2bd9bb20
KH
1189 struct mem_cgroup *from;
1190 struct mem_cgroup *to;
4b534334 1191 bool ret = false;
2bd9bb20
KH
1192 /*
1193 * Unlike task_move routines, we access mc.to, mc.from not under
1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195 */
1196 spin_lock(&mc.lock);
1197 from = mc.from;
1198 to = mc.to;
1199 if (!from)
1200 goto unlock;
1201 if (from == mem || to == mem
1202 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1204 ret = true;
1205unlock:
1206 spin_unlock(&mc.lock);
4b534334
KH
1207 return ret;
1208}
1209
1210static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211{
1212 if (mc.moving_task && current != mc.moving_task) {
1213 if (mem_cgroup_under_move(mem)) {
1214 DEFINE_WAIT(wait);
1215 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216 /* moving charge context might have finished. */
1217 if (mc.moving_task)
1218 schedule();
1219 finish_wait(&mc.waitq, &wait);
1220 return true;
1221 }
1222 }
1223 return false;
1224}
1225
e222432b 1226/**
6a6135b6 1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1230 *
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232 * enabled
1233 */
1234void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235{
1236 struct cgroup *task_cgrp;
1237 struct cgroup *mem_cgrp;
1238 /*
1239 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 * on the assumption that OOM is serialized for memory controller.
1241 * If this assumption is broken, revisit this code.
1242 */
1243 static char memcg_name[PATH_MAX];
1244 int ret;
1245
d31f56db 1246 if (!memcg || !p)
e222432b
BS
1247 return;
1248
1249
1250 rcu_read_lock();
1251
1252 mem_cgrp = memcg->css.cgroup;
1253 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254
1255 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256 if (ret < 0) {
1257 /*
1258 * Unfortunately, we are unable to convert to a useful name
1259 * But we'll still print out the usage information
1260 */
1261 rcu_read_unlock();
1262 goto done;
1263 }
1264 rcu_read_unlock();
1265
1266 printk(KERN_INFO "Task in %s killed", memcg_name);
1267
1268 rcu_read_lock();
1269 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270 if (ret < 0) {
1271 rcu_read_unlock();
1272 goto done;
1273 }
1274 rcu_read_unlock();
1275
1276 /*
1277 * Continues from above, so we don't need an KERN_ level
1278 */
1279 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280done:
1281
1282 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287 "failcnt %llu\n",
1288 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291}
1292
81d39c20
KH
1293/*
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1296 */
1297static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298{
1299 int num = 0;
7d74b06f
KH
1300 struct mem_cgroup *iter;
1301
1302 for_each_mem_cgroup_tree(iter, mem)
1303 num++;
81d39c20
KH
1304 return num;
1305}
1306
a63d83f4
DR
1307/*
1308 * Return the memory (and swap, if configured) limit for a memcg.
1309 */
1310u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311{
1312 u64 limit;
1313 u64 memsw;
1314
1315 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1316 total_swap_pages;
1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1318 /*
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1321 */
1322 return min(limit, memsw);
1323}
1324
6d61ef40 1325/*
04046e1a
KH
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1329 */
1330static struct mem_cgroup *
1331mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1332{
1333 struct mem_cgroup *ret = NULL;
1334 struct cgroup_subsys_state *css;
1335 int nextid, found;
1336
1337 if (!root_mem->use_hierarchy) {
1338 css_get(&root_mem->css);
1339 ret = root_mem;
1340 }
1341
1342 while (!ret) {
1343 rcu_read_lock();
1344 nextid = root_mem->last_scanned_child + 1;
1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 &found);
1347 if (css && css_tryget(css))
1348 ret = container_of(css, struct mem_cgroup, css);
1349
1350 rcu_read_unlock();
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem->reclaim_param_lock);
1353 if (!css) {
1354 /* this means start scan from ID:1 */
1355 root_mem->last_scanned_child = 0;
1356 } else
1357 root_mem->last_scanned_child = found;
1358 spin_unlock(&root_mem->reclaim_param_lock);
1359 }
1360
1361 return ret;
1362}
1363
1364/*
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
6d61ef40
BS
1368 *
1369 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1370 *
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
81d39c20
KH
1373 *
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1375 */
1376static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1377 struct zone *zone,
75822b44
BS
1378 gfp_t gfp_mask,
1379 unsigned long reclaim_options)
6d61ef40 1380{
04046e1a
KH
1381 struct mem_cgroup *victim;
1382 int ret, total = 0;
1383 int loop = 0;
75822b44
BS
1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1388
22a668d7
KH
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem->memsw_is_minimum)
1391 noswap = true;
1392
4e416953 1393 while (1) {
04046e1a 1394 victim = mem_cgroup_select_victim(root_mem);
4e416953 1395 if (victim == root_mem) {
04046e1a 1396 loop++;
cdec2e42
KH
1397 if (loop >= 1)
1398 drain_all_stock_async();
4e416953
BS
1399 if (loop >= 2) {
1400 /*
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1404 */
1405 if (!check_soft || !total) {
1406 css_put(&victim->css);
1407 break;
1408 }
1409 /*
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1414 */
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 css_put(&victim->css);
1418 break;
1419 }
1420 }
1421 }
c62b1a3b 1422 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim->css);
6d61ef40
BS
1425 continue;
1426 }
04046e1a 1427 /* we use swappiness of local cgroup */
4e416953
BS
1428 if (check_soft)
1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1430 noswap, get_swappiness(victim), zone);
4e416953
BS
1431 else
1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 noswap, get_swappiness(victim));
04046e1a 1434 css_put(&victim->css);
81d39c20
KH
1435 /*
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1439 */
1440 if (shrink)
1441 return ret;
04046e1a 1442 total += ret;
4e416953
BS
1443 if (check_soft) {
1444 if (res_counter_check_under_soft_limit(&root_mem->res))
1445 return total;
1446 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1447 return 1 + total;
6d61ef40 1448 }
04046e1a 1449 return total;
6d61ef40
BS
1450}
1451
867578cb
KH
1452/*
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1455 */
1456static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1457{
7d74b06f
KH
1458 int x, lock_count = 0;
1459 struct mem_cgroup *iter;
a636b327 1460
7d74b06f
KH
1461 for_each_mem_cgroup_tree(iter, mem) {
1462 x = atomic_inc_return(&iter->oom_lock);
1463 lock_count = max(x, lock_count);
1464 }
867578cb
KH
1465
1466 if (lock_count == 1)
1467 return true;
1468 return false;
a636b327 1469}
0b7f569e 1470
7d74b06f 1471static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1472{
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
867578cb
KH
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1479 */
7d74b06f
KH
1480 for_each_mem_cgroup_tree(iter, mem)
1481 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1482 return 0;
1483}
1484
867578cb
KH
1485
1486static DEFINE_MUTEX(memcg_oom_mutex);
1487static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488
dc98df5a
KH
1489struct oom_wait_info {
1490 struct mem_cgroup *mem;
1491 wait_queue_t wait;
1492};
1493
1494static int memcg_oom_wake_function(wait_queue_t *wait,
1495 unsigned mode, int sync, void *arg)
1496{
1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501
1502 if (oom_wait_info->mem == wake_mem)
1503 goto wakeup;
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 return 0;
1507 /*
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1510 */
1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 return 0;
1514
1515wakeup:
1516 return autoremove_wake_function(wait, mode, sync, arg);
1517}
1518
1519static void memcg_wakeup_oom(struct mem_cgroup *mem)
1520{
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523}
1524
3c11ecf4
KH
1525static void memcg_oom_recover(struct mem_cgroup *mem)
1526{
2bd9bb20 1527 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1528 memcg_wakeup_oom(mem);
1529}
1530
867578cb
KH
1531/*
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1533 */
1534bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1535{
dc98df5a 1536 struct oom_wait_info owait;
3c11ecf4 1537 bool locked, need_to_kill;
867578cb 1538
dc98df5a
KH
1539 owait.mem = mem;
1540 owait.wait.flags = 0;
1541 owait.wait.func = memcg_oom_wake_function;
1542 owait.wait.private = current;
1543 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1544 need_to_kill = true;
867578cb
KH
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex);
1547 locked = mem_cgroup_oom_lock(mem);
1548 /*
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1552 */
3c11ecf4
KH
1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 if (!locked || mem->oom_kill_disable)
1555 need_to_kill = false;
1556 if (locked)
9490ff27 1557 mem_cgroup_oom_notify(mem);
867578cb
KH
1558 mutex_unlock(&memcg_oom_mutex);
1559
3c11ecf4
KH
1560 if (need_to_kill) {
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1562 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1563 } else {
867578cb 1564 schedule();
dc98df5a 1565 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1566 }
1567 mutex_lock(&memcg_oom_mutex);
1568 mem_cgroup_oom_unlock(mem);
dc98df5a 1569 memcg_wakeup_oom(mem);
867578cb
KH
1570 mutex_unlock(&memcg_oom_mutex);
1571
1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 return false;
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1576 return true;
0b7f569e
KH
1577}
1578
d69b042f
BS
1579/*
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
32047e2a
KH
1582 *
1583 * Notes: Race condition
1584 *
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1588 *
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1592 *
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1596 * by flags.
1597 *
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
d69b042f 1601 */
26174efd
KH
1602
1603static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
d69b042f
BS
1604{
1605 struct mem_cgroup *mem;
32047e2a
KH
1606 struct page_cgroup *pc = lookup_page_cgroup(page);
1607 bool need_unlock = false;
d69b042f 1608
d69b042f
BS
1609 if (unlikely(!pc))
1610 return;
1611
32047e2a 1612 rcu_read_lock();
d69b042f 1613 mem = pc->mem_cgroup;
32047e2a
KH
1614 if (unlikely(!mem || !PageCgroupUsed(pc)))
1615 goto out;
1616 /* pc->mem_cgroup is unstable ? */
1617 if (unlikely(mem_cgroup_stealed(mem))) {
1618 /* take a lock against to access pc->mem_cgroup */
1619 lock_page_cgroup(pc);
1620 need_unlock = true;
1621 mem = pc->mem_cgroup;
1622 if (!mem || !PageCgroupUsed(pc))
1623 goto out;
1624 }
26174efd
KH
1625
1626 this_cpu_add(mem->stat->count[idx], val);
1627
1628 switch (idx) {
1629 case MEM_CGROUP_STAT_FILE_MAPPED:
1630 if (val > 0)
1631 SetPageCgroupFileMapped(pc);
1632 else if (!page_mapped(page))
0c270f8f 1633 ClearPageCgroupFileMapped(pc);
26174efd
KH
1634 break;
1635 default:
1636 BUG();
8725d541 1637 }
d69b042f 1638
32047e2a
KH
1639out:
1640 if (unlikely(need_unlock))
1641 unlock_page_cgroup(pc);
1642 rcu_read_unlock();
1643 return;
d69b042f 1644}
0b7f569e 1645
26174efd
KH
1646void mem_cgroup_update_file_mapped(struct page *page, int val)
1647{
1648 mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
1649}
1650
cdec2e42
KH
1651/*
1652 * size of first charge trial. "32" comes from vmscan.c's magic value.
1653 * TODO: maybe necessary to use big numbers in big irons.
1654 */
1655#define CHARGE_SIZE (32 * PAGE_SIZE)
1656struct memcg_stock_pcp {
1657 struct mem_cgroup *cached; /* this never be root cgroup */
1658 int charge;
1659 struct work_struct work;
1660};
1661static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1662static atomic_t memcg_drain_count;
1663
1664/*
1665 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1666 * from local stock and true is returned. If the stock is 0 or charges from a
1667 * cgroup which is not current target, returns false. This stock will be
1668 * refilled.
1669 */
1670static bool consume_stock(struct mem_cgroup *mem)
1671{
1672 struct memcg_stock_pcp *stock;
1673 bool ret = true;
1674
1675 stock = &get_cpu_var(memcg_stock);
1676 if (mem == stock->cached && stock->charge)
1677 stock->charge -= PAGE_SIZE;
1678 else /* need to call res_counter_charge */
1679 ret = false;
1680 put_cpu_var(memcg_stock);
1681 return ret;
1682}
1683
1684/*
1685 * Returns stocks cached in percpu to res_counter and reset cached information.
1686 */
1687static void drain_stock(struct memcg_stock_pcp *stock)
1688{
1689 struct mem_cgroup *old = stock->cached;
1690
1691 if (stock->charge) {
1692 res_counter_uncharge(&old->res, stock->charge);
1693 if (do_swap_account)
1694 res_counter_uncharge(&old->memsw, stock->charge);
1695 }
1696 stock->cached = NULL;
1697 stock->charge = 0;
1698}
1699
1700/*
1701 * This must be called under preempt disabled or must be called by
1702 * a thread which is pinned to local cpu.
1703 */
1704static void drain_local_stock(struct work_struct *dummy)
1705{
1706 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1707 drain_stock(stock);
1708}
1709
1710/*
1711 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1712 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1713 */
1714static void refill_stock(struct mem_cgroup *mem, int val)
1715{
1716 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1717
1718 if (stock->cached != mem) { /* reset if necessary */
1719 drain_stock(stock);
1720 stock->cached = mem;
1721 }
1722 stock->charge += val;
1723 put_cpu_var(memcg_stock);
1724}
1725
1726/*
1727 * Tries to drain stocked charges in other cpus. This function is asynchronous
1728 * and just put a work per cpu for draining localy on each cpu. Caller can
1729 * expects some charges will be back to res_counter later but cannot wait for
1730 * it.
1731 */
1732static void drain_all_stock_async(void)
1733{
1734 int cpu;
1735 /* This function is for scheduling "drain" in asynchronous way.
1736 * The result of "drain" is not directly handled by callers. Then,
1737 * if someone is calling drain, we don't have to call drain more.
1738 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1739 * there is a race. We just do loose check here.
1740 */
1741 if (atomic_read(&memcg_drain_count))
1742 return;
1743 /* Notify other cpus that system-wide "drain" is running */
1744 atomic_inc(&memcg_drain_count);
1745 get_online_cpus();
1746 for_each_online_cpu(cpu) {
1747 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1748 schedule_work_on(cpu, &stock->work);
1749 }
1750 put_online_cpus();
1751 atomic_dec(&memcg_drain_count);
1752 /* We don't wait for flush_work */
1753}
1754
1755/* This is a synchronous drain interface. */
1756static void drain_all_stock_sync(void)
1757{
1758 /* called when force_empty is called */
1759 atomic_inc(&memcg_drain_count);
1760 schedule_on_each_cpu(drain_local_stock);
1761 atomic_dec(&memcg_drain_count);
1762}
1763
711d3d2c
KH
1764/*
1765 * This function drains percpu counter value from DEAD cpu and
1766 * move it to local cpu. Note that this function can be preempted.
1767 */
1768static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1769{
1770 int i;
1771
1772 spin_lock(&mem->pcp_counter_lock);
1773 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1774 s64 x = per_cpu(mem->stat->count[i], cpu);
1775
1776 per_cpu(mem->stat->count[i], cpu) = 0;
1777 mem->nocpu_base.count[i] += x;
1778 }
1489ebad
KH
1779 /* need to clear ON_MOVE value, works as a kind of lock. */
1780 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1781 spin_unlock(&mem->pcp_counter_lock);
1782}
1783
1784static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1785{
1786 int idx = MEM_CGROUP_ON_MOVE;
1787
1788 spin_lock(&mem->pcp_counter_lock);
1789 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1790 spin_unlock(&mem->pcp_counter_lock);
1791}
1792
1793static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1794 unsigned long action,
1795 void *hcpu)
1796{
1797 int cpu = (unsigned long)hcpu;
1798 struct memcg_stock_pcp *stock;
711d3d2c 1799 struct mem_cgroup *iter;
cdec2e42 1800
1489ebad
KH
1801 if ((action == CPU_ONLINE)) {
1802 for_each_mem_cgroup_all(iter)
1803 synchronize_mem_cgroup_on_move(iter, cpu);
1804 return NOTIFY_OK;
1805 }
1806
711d3d2c 1807 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1808 return NOTIFY_OK;
711d3d2c
KH
1809
1810 for_each_mem_cgroup_all(iter)
1811 mem_cgroup_drain_pcp_counter(iter, cpu);
1812
cdec2e42
KH
1813 stock = &per_cpu(memcg_stock, cpu);
1814 drain_stock(stock);
1815 return NOTIFY_OK;
1816}
1817
4b534334
KH
1818
1819/* See __mem_cgroup_try_charge() for details */
1820enum {
1821 CHARGE_OK, /* success */
1822 CHARGE_RETRY, /* need to retry but retry is not bad */
1823 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1824 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1825 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1826};
1827
1828static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1829 int csize, bool oom_check)
1830{
1831 struct mem_cgroup *mem_over_limit;
1832 struct res_counter *fail_res;
1833 unsigned long flags = 0;
1834 int ret;
1835
1836 ret = res_counter_charge(&mem->res, csize, &fail_res);
1837
1838 if (likely(!ret)) {
1839 if (!do_swap_account)
1840 return CHARGE_OK;
1841 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1842 if (likely(!ret))
1843 return CHARGE_OK;
1844
1845 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1846 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1847 } else
1848 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1849
1850 if (csize > PAGE_SIZE) /* change csize and retry */
1851 return CHARGE_RETRY;
1852
1853 if (!(gfp_mask & __GFP_WAIT))
1854 return CHARGE_WOULDBLOCK;
1855
1856 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1857 gfp_mask, flags);
1858 /*
1859 * try_to_free_mem_cgroup_pages() might not give us a full
1860 * picture of reclaim. Some pages are reclaimed and might be
1861 * moved to swap cache or just unmapped from the cgroup.
1862 * Check the limit again to see if the reclaim reduced the
1863 * current usage of the cgroup before giving up
1864 */
1865 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1866 return CHARGE_RETRY;
1867
1868 /*
1869 * At task move, charge accounts can be doubly counted. So, it's
1870 * better to wait until the end of task_move if something is going on.
1871 */
1872 if (mem_cgroup_wait_acct_move(mem_over_limit))
1873 return CHARGE_RETRY;
1874
1875 /* If we don't need to call oom-killer at el, return immediately */
1876 if (!oom_check)
1877 return CHARGE_NOMEM;
1878 /* check OOM */
1879 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1880 return CHARGE_OOM_DIE;
1881
1882 return CHARGE_RETRY;
1883}
1884
f817ed48
KH
1885/*
1886 * Unlike exported interface, "oom" parameter is added. if oom==true,
1887 * oom-killer can be invoked.
8a9f3ccd 1888 */
f817ed48 1889static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1890 gfp_t gfp_mask,
1891 struct mem_cgroup **memcg, bool oom,
1892 int page_size)
8a9f3ccd 1893{
4b534334
KH
1894 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1895 struct mem_cgroup *mem = NULL;
1896 int ret;
ec168510 1897 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1898
867578cb
KH
1899 /*
1900 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1901 * in system level. So, allow to go ahead dying process in addition to
1902 * MEMDIE process.
1903 */
1904 if (unlikely(test_thread_flag(TIF_MEMDIE)
1905 || fatal_signal_pending(current)))
1906 goto bypass;
a636b327 1907
8a9f3ccd 1908 /*
3be91277
HD
1909 * We always charge the cgroup the mm_struct belongs to.
1910 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1911 * thread group leader migrates. It's possible that mm is not
1912 * set, if so charge the init_mm (happens for pagecache usage).
1913 */
f75ca962
KH
1914 if (!*memcg && !mm)
1915 goto bypass;
1916again:
1917 if (*memcg) { /* css should be a valid one */
4b534334 1918 mem = *memcg;
f75ca962
KH
1919 VM_BUG_ON(css_is_removed(&mem->css));
1920 if (mem_cgroup_is_root(mem))
1921 goto done;
ec168510 1922 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1923 goto done;
4b534334
KH
1924 css_get(&mem->css);
1925 } else {
f75ca962 1926 struct task_struct *p;
54595fe2 1927
f75ca962
KH
1928 rcu_read_lock();
1929 p = rcu_dereference(mm->owner);
f75ca962 1930 /*
ebb76ce1
KH
1931 * Because we don't have task_lock(), "p" can exit.
1932 * In that case, "mem" can point to root or p can be NULL with
1933 * race with swapoff. Then, we have small risk of mis-accouning.
1934 * But such kind of mis-account by race always happens because
1935 * we don't have cgroup_mutex(). It's overkill and we allo that
1936 * small race, here.
1937 * (*) swapoff at el will charge against mm-struct not against
1938 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1939 */
1940 mem = mem_cgroup_from_task(p);
ebb76ce1 1941 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1942 rcu_read_unlock();
1943 goto done;
1944 }
ec168510 1945 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1946 /*
1947 * It seems dagerous to access memcg without css_get().
1948 * But considering how consume_stok works, it's not
1949 * necessary. If consume_stock success, some charges
1950 * from this memcg are cached on this cpu. So, we
1951 * don't need to call css_get()/css_tryget() before
1952 * calling consume_stock().
1953 */
1954 rcu_read_unlock();
1955 goto done;
1956 }
1957 /* after here, we may be blocked. we need to get refcnt */
1958 if (!css_tryget(&mem->css)) {
1959 rcu_read_unlock();
1960 goto again;
1961 }
1962 rcu_read_unlock();
1963 }
8a9f3ccd 1964
4b534334
KH
1965 do {
1966 bool oom_check;
7a81b88c 1967
4b534334 1968 /* If killed, bypass charge */
f75ca962
KH
1969 if (fatal_signal_pending(current)) {
1970 css_put(&mem->css);
4b534334 1971 goto bypass;
f75ca962 1972 }
6d61ef40 1973
4b534334
KH
1974 oom_check = false;
1975 if (oom && !nr_oom_retries) {
1976 oom_check = true;
1977 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1978 }
66e1707b 1979
4b534334 1980 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1981
4b534334
KH
1982 switch (ret) {
1983 case CHARGE_OK:
1984 break;
1985 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 1986 csize = page_size;
f75ca962
KH
1987 css_put(&mem->css);
1988 mem = NULL;
1989 goto again;
4b534334 1990 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1991 css_put(&mem->css);
4b534334
KH
1992 goto nomem;
1993 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1994 if (!oom) {
1995 css_put(&mem->css);
867578cb 1996 goto nomem;
f75ca962 1997 }
4b534334
KH
1998 /* If oom, we never return -ENOMEM */
1999 nr_oom_retries--;
2000 break;
2001 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2002 css_put(&mem->css);
867578cb 2003 goto bypass;
66e1707b 2004 }
4b534334
KH
2005 } while (ret != CHARGE_OK);
2006
ec168510
AA
2007 if (csize > page_size)
2008 refill_stock(mem, csize - page_size);
f75ca962 2009 css_put(&mem->css);
0c3e73e8 2010done:
f75ca962 2011 *memcg = mem;
7a81b88c
KH
2012 return 0;
2013nomem:
f75ca962 2014 *memcg = NULL;
7a81b88c 2015 return -ENOMEM;
867578cb
KH
2016bypass:
2017 *memcg = NULL;
2018 return 0;
7a81b88c 2019}
8a9f3ccd 2020
a3032a2c
DN
2021/*
2022 * Somemtimes we have to undo a charge we got by try_charge().
2023 * This function is for that and do uncharge, put css's refcnt.
2024 * gotten by try_charge().
2025 */
854ffa8d
DN
2026static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2027 unsigned long count)
a3032a2c
DN
2028{
2029 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2030 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2031 if (do_swap_account)
854ffa8d 2032 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2033 }
854ffa8d
DN
2034}
2035
ec168510
AA
2036static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2037 int page_size)
854ffa8d 2038{
ec168510 2039 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2040}
2041
a3b2d692
KH
2042/*
2043 * A helper function to get mem_cgroup from ID. must be called under
2044 * rcu_read_lock(). The caller must check css_is_removed() or some if
2045 * it's concern. (dropping refcnt from swap can be called against removed
2046 * memcg.)
2047 */
2048static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2049{
2050 struct cgroup_subsys_state *css;
2051
2052 /* ID 0 is unused ID */
2053 if (!id)
2054 return NULL;
2055 css = css_lookup(&mem_cgroup_subsys, id);
2056 if (!css)
2057 return NULL;
2058 return container_of(css, struct mem_cgroup, css);
2059}
2060
e42d9d5d 2061struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2062{
e42d9d5d 2063 struct mem_cgroup *mem = NULL;
3c776e64 2064 struct page_cgroup *pc;
a3b2d692 2065 unsigned short id;
b5a84319
KH
2066 swp_entry_t ent;
2067
3c776e64
DN
2068 VM_BUG_ON(!PageLocked(page));
2069
3c776e64 2070 pc = lookup_page_cgroup(page);
c0bd3f63 2071 lock_page_cgroup(pc);
a3b2d692 2072 if (PageCgroupUsed(pc)) {
3c776e64 2073 mem = pc->mem_cgroup;
a3b2d692
KH
2074 if (mem && !css_tryget(&mem->css))
2075 mem = NULL;
e42d9d5d 2076 } else if (PageSwapCache(page)) {
3c776e64 2077 ent.val = page_private(page);
a3b2d692
KH
2078 id = lookup_swap_cgroup(ent);
2079 rcu_read_lock();
2080 mem = mem_cgroup_lookup(id);
2081 if (mem && !css_tryget(&mem->css))
2082 mem = NULL;
2083 rcu_read_unlock();
3c776e64 2084 }
c0bd3f63 2085 unlock_page_cgroup(pc);
b5a84319
KH
2086 return mem;
2087}
2088
7a81b88c 2089/*
a5e924f5 2090 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
2091 * USED state. If already USED, uncharge and return.
2092 */
152c9ccb
DN
2093static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2094 struct page_cgroup *pc,
2095 enum charge_type ctype)
7a81b88c 2096{
8a9f3ccd 2097 pc->mem_cgroup = mem;
261fb61a
KH
2098 /*
2099 * We access a page_cgroup asynchronously without lock_page_cgroup().
2100 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2101 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2102 * before USED bit, we need memory barrier here.
2103 * See mem_cgroup_add_lru_list(), etc.
2104 */
08e552c6 2105 smp_wmb();
4b3bde4c
BS
2106 switch (ctype) {
2107 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2108 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2109 SetPageCgroupCache(pc);
2110 SetPageCgroupUsed(pc);
2111 break;
2112 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2113 ClearPageCgroupCache(pc);
2114 SetPageCgroupUsed(pc);
2115 break;
2116 default:
2117 break;
2118 }
3be91277 2119
08e552c6 2120 mem_cgroup_charge_statistics(mem, pc, true);
152c9ccb
DN
2121}
2122
2123static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2124 struct page_cgroup *pc,
2125 enum charge_type ctype,
2126 int page_size)
2127{
2128 int i;
2129 int count = page_size >> PAGE_SHIFT;
2130
2131 /* try_charge() can return NULL to *memcg, taking care of it. */
2132 if (!mem)
2133 return;
2134
2135 lock_page_cgroup(pc);
2136 if (unlikely(PageCgroupUsed(pc))) {
2137 unlock_page_cgroup(pc);
2138 mem_cgroup_cancel_charge(mem, page_size);
2139 return;
2140 }
2141
2142 /*
2143 * we don't need page_cgroup_lock about tail pages, becase they are not
2144 * accessed by any other context at this point.
2145 */
2146 for (i = 0; i < count; i++)
2147 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
52d4b9ac 2148
52d4b9ac 2149 unlock_page_cgroup(pc);
430e4863
KH
2150 /*
2151 * "charge_statistics" updated event counter. Then, check it.
2152 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2153 * if they exceeds softlimit.
2154 */
d2265e6f 2155 memcg_check_events(mem, pc->page);
7a81b88c 2156}
66e1707b 2157
f817ed48 2158/**
57f9fd7d 2159 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2160 * @pc: page_cgroup of the page.
2161 * @from: mem_cgroup which the page is moved from.
2162 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2163 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2164 *
2165 * The caller must confirm following.
08e552c6 2166 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2167 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2168 *
854ffa8d
DN
2169 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2170 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2171 * true, this function does "uncharge" from old cgroup, but it doesn't if
2172 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2173 */
2174
57f9fd7d 2175static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2176 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 2177{
f817ed48 2178 VM_BUG_ON(from == to);
08e552c6 2179 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2180 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2181 VM_BUG_ON(!PageCgroupUsed(pc));
2182 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2183
8725d541 2184 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2185 /* Update mapped_file data for mem_cgroup */
2186 preempt_disable();
2187 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2189 preempt_enable();
d69b042f 2190 }
854ffa8d
DN
2191 mem_cgroup_charge_statistics(from, pc, false);
2192 if (uncharge)
2193 /* This is not "cancel", but cancel_charge does all we need. */
ec168510 2194 mem_cgroup_cancel_charge(from, PAGE_SIZE);
d69b042f 2195
854ffa8d 2196 /* caller should have done css_get */
08e552c6
KH
2197 pc->mem_cgroup = to;
2198 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
2199 /*
2200 * We charges against "to" which may not have any tasks. Then, "to"
2201 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2202 * this function is just force_empty() and move charge, so it's
2203 * garanteed that "to" is never removed. So, we don't check rmdir
2204 * status here.
88703267 2205 */
57f9fd7d
DN
2206}
2207
2208/*
2209 * check whether the @pc is valid for moving account and call
2210 * __mem_cgroup_move_account()
2211 */
2212static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2213 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
2214{
2215 int ret = -EINVAL;
2216 lock_page_cgroup(pc);
2217 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 2218 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
2219 ret = 0;
2220 }
2221 unlock_page_cgroup(pc);
d2265e6f
KH
2222 /*
2223 * check events
2224 */
2225 memcg_check_events(to, pc->page);
2226 memcg_check_events(from, pc->page);
f817ed48
KH
2227 return ret;
2228}
2229
2230/*
2231 * move charges to its parent.
2232 */
2233
2234static int mem_cgroup_move_parent(struct page_cgroup *pc,
2235 struct mem_cgroup *child,
2236 gfp_t gfp_mask)
2237{
08e552c6 2238 struct page *page = pc->page;
f817ed48
KH
2239 struct cgroup *cg = child->css.cgroup;
2240 struct cgroup *pcg = cg->parent;
2241 struct mem_cgroup *parent;
f817ed48
KH
2242 int ret;
2243
2244 /* Is ROOT ? */
2245 if (!pcg)
2246 return -EINVAL;
2247
57f9fd7d
DN
2248 ret = -EBUSY;
2249 if (!get_page_unless_zero(page))
2250 goto out;
2251 if (isolate_lru_page(page))
2252 goto put;
08e552c6 2253
f817ed48 2254 parent = mem_cgroup_from_cont(pcg);
ec168510
AA
2255 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2256 PAGE_SIZE);
a636b327 2257 if (ret || !parent)
57f9fd7d 2258 goto put_back;
f817ed48 2259
854ffa8d
DN
2260 ret = mem_cgroup_move_account(pc, child, parent, true);
2261 if (ret)
ec168510 2262 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
57f9fd7d 2263put_back:
08e552c6 2264 putback_lru_page(page);
57f9fd7d 2265put:
40d58138 2266 put_page(page);
57f9fd7d 2267out:
f817ed48
KH
2268 return ret;
2269}
2270
7a81b88c
KH
2271/*
2272 * Charge the memory controller for page usage.
2273 * Return
2274 * 0 if the charge was successful
2275 * < 0 if the cgroup is over its limit
2276 */
2277static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2278 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2279{
73045c47 2280 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2281 struct page_cgroup *pc;
2282 int ret;
ec168510
AA
2283 int page_size = PAGE_SIZE;
2284
37c2ac78 2285 if (PageTransHuge(page)) {
ec168510 2286 page_size <<= compound_order(page);
37c2ac78
AA
2287 VM_BUG_ON(!PageTransHuge(page));
2288 }
7a81b88c
KH
2289
2290 pc = lookup_page_cgroup(page);
2291 /* can happen at boot */
2292 if (unlikely(!pc))
2293 return 0;
2294 prefetchw(pc);
2295
ec168510 2296 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
a636b327 2297 if (ret || !mem)
7a81b88c
KH
2298 return ret;
2299
ec168510 2300 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2301 return 0;
8a9f3ccd
BS
2302}
2303
7a81b88c
KH
2304int mem_cgroup_newpage_charge(struct page *page,
2305 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2306{
f8d66542 2307 if (mem_cgroup_disabled())
cede86ac 2308 return 0;
69029cd5
KH
2309 /*
2310 * If already mapped, we don't have to account.
2311 * If page cache, page->mapping has address_space.
2312 * But page->mapping may have out-of-use anon_vma pointer,
2313 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2314 * is NULL.
2315 */
2316 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2317 return 0;
2318 if (unlikely(!mm))
2319 mm = &init_mm;
217bc319 2320 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2321 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2322}
2323
83aae4c7
DN
2324static void
2325__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2326 enum charge_type ctype);
2327
e1a1cd59
BS
2328int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2329 gfp_t gfp_mask)
8697d331 2330{
b5a84319
KH
2331 int ret;
2332
f8d66542 2333 if (mem_cgroup_disabled())
cede86ac 2334 return 0;
52d4b9ac
KH
2335 if (PageCompound(page))
2336 return 0;
accf163e
KH
2337 /*
2338 * Corner case handling. This is called from add_to_page_cache()
2339 * in usual. But some FS (shmem) precharges this page before calling it
2340 * and call add_to_page_cache() with GFP_NOWAIT.
2341 *
2342 * For GFP_NOWAIT case, the page may be pre-charged before calling
2343 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2344 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2345 * And when the page is SwapCache, it should take swap information
2346 * into account. This is under lock_page() now.
accf163e
KH
2347 */
2348 if (!(gfp_mask & __GFP_WAIT)) {
2349 struct page_cgroup *pc;
2350
52d4b9ac
KH
2351 pc = lookup_page_cgroup(page);
2352 if (!pc)
2353 return 0;
2354 lock_page_cgroup(pc);
2355 if (PageCgroupUsed(pc)) {
2356 unlock_page_cgroup(pc);
accf163e
KH
2357 return 0;
2358 }
52d4b9ac 2359 unlock_page_cgroup(pc);
accf163e
KH
2360 }
2361
73045c47 2362 if (unlikely(!mm))
8697d331 2363 mm = &init_mm;
accf163e 2364
c05555b5
KH
2365 if (page_is_file_cache(page))
2366 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2367 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2368
83aae4c7
DN
2369 /* shmem */
2370 if (PageSwapCache(page)) {
73045c47
DN
2371 struct mem_cgroup *mem = NULL;
2372
83aae4c7
DN
2373 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2374 if (!ret)
2375 __mem_cgroup_commit_charge_swapin(page, mem,
2376 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2377 } else
2378 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2379 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2380
b5a84319 2381 return ret;
e8589cc1
KH
2382}
2383
54595fe2
KH
2384/*
2385 * While swap-in, try_charge -> commit or cancel, the page is locked.
2386 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2387 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2388 * "commit()" or removed by "cancel()"
2389 */
8c7c6e34
KH
2390int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2391 struct page *page,
2392 gfp_t mask, struct mem_cgroup **ptr)
2393{
2394 struct mem_cgroup *mem;
54595fe2 2395 int ret;
8c7c6e34 2396
f8d66542 2397 if (mem_cgroup_disabled())
8c7c6e34
KH
2398 return 0;
2399
2400 if (!do_swap_account)
2401 goto charge_cur_mm;
8c7c6e34
KH
2402 /*
2403 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2404 * the pte, and even removed page from swap cache: in those cases
2405 * do_swap_page()'s pte_same() test will fail; but there's also a
2406 * KSM case which does need to charge the page.
8c7c6e34
KH
2407 */
2408 if (!PageSwapCache(page))
407f9c8b 2409 goto charge_cur_mm;
e42d9d5d 2410 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2411 if (!mem)
2412 goto charge_cur_mm;
8c7c6e34 2413 *ptr = mem;
ec168510 2414 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2415 css_put(&mem->css);
2416 return ret;
8c7c6e34
KH
2417charge_cur_mm:
2418 if (unlikely(!mm))
2419 mm = &init_mm;
ec168510 2420 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2421}
2422
83aae4c7
DN
2423static void
2424__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2425 enum charge_type ctype)
7a81b88c
KH
2426{
2427 struct page_cgroup *pc;
2428
f8d66542 2429 if (mem_cgroup_disabled())
7a81b88c
KH
2430 return;
2431 if (!ptr)
2432 return;
88703267 2433 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2434 pc = lookup_page_cgroup(page);
544122e5 2435 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2436 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2437 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2438 /*
2439 * Now swap is on-memory. This means this page may be
2440 * counted both as mem and swap....double count.
03f3c433
KH
2441 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2442 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2443 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2444 */
03f3c433 2445 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2446 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2447 unsigned short id;
8c7c6e34 2448 struct mem_cgroup *memcg;
a3b2d692
KH
2449
2450 id = swap_cgroup_record(ent, 0);
2451 rcu_read_lock();
2452 memcg = mem_cgroup_lookup(id);
8c7c6e34 2453 if (memcg) {
a3b2d692
KH
2454 /*
2455 * This recorded memcg can be obsolete one. So, avoid
2456 * calling css_tryget
2457 */
0c3e73e8 2458 if (!mem_cgroup_is_root(memcg))
4e649152 2459 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2460 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2461 mem_cgroup_put(memcg);
2462 }
a3b2d692 2463 rcu_read_unlock();
8c7c6e34 2464 }
88703267
KH
2465 /*
2466 * At swapin, we may charge account against cgroup which has no tasks.
2467 * So, rmdir()->pre_destroy() can be called while we do this charge.
2468 * In that case, we need to call pre_destroy() again. check it here.
2469 */
2470 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2471}
2472
83aae4c7
DN
2473void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2474{
2475 __mem_cgroup_commit_charge_swapin(page, ptr,
2476 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2477}
2478
7a81b88c
KH
2479void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2480{
f8d66542 2481 if (mem_cgroup_disabled())
7a81b88c
KH
2482 return;
2483 if (!mem)
2484 return;
ec168510 2485 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2486}
2487
569b846d 2488static void
ec168510
AA
2489__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2490 int page_size)
569b846d
KH
2491{
2492 struct memcg_batch_info *batch = NULL;
2493 bool uncharge_memsw = true;
2494 /* If swapout, usage of swap doesn't decrease */
2495 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2496 uncharge_memsw = false;
569b846d
KH
2497
2498 batch = &current->memcg_batch;
2499 /*
2500 * In usual, we do css_get() when we remember memcg pointer.
2501 * But in this case, we keep res->usage until end of a series of
2502 * uncharges. Then, it's ok to ignore memcg's refcnt.
2503 */
2504 if (!batch->memcg)
2505 batch->memcg = mem;
3c11ecf4
KH
2506 /*
2507 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2508 * In those cases, all pages freed continously can be expected to be in
2509 * the same cgroup and we have chance to coalesce uncharges.
2510 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2511 * because we want to do uncharge as soon as possible.
2512 */
2513
2514 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2515 goto direct_uncharge;
2516
ec168510
AA
2517 if (page_size != PAGE_SIZE)
2518 goto direct_uncharge;
2519
569b846d
KH
2520 /*
2521 * In typical case, batch->memcg == mem. This means we can
2522 * merge a series of uncharges to an uncharge of res_counter.
2523 * If not, we uncharge res_counter ony by one.
2524 */
2525 if (batch->memcg != mem)
2526 goto direct_uncharge;
2527 /* remember freed charge and uncharge it later */
2528 batch->bytes += PAGE_SIZE;
2529 if (uncharge_memsw)
2530 batch->memsw_bytes += PAGE_SIZE;
2531 return;
2532direct_uncharge:
ec168510 2533 res_counter_uncharge(&mem->res, page_size);
569b846d 2534 if (uncharge_memsw)
ec168510 2535 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2536 if (unlikely(batch->memcg != mem))
2537 memcg_oom_recover(mem);
569b846d
KH
2538 return;
2539}
7a81b88c 2540
8a9f3ccd 2541/*
69029cd5 2542 * uncharge if !page_mapped(page)
8a9f3ccd 2543 */
8c7c6e34 2544static struct mem_cgroup *
69029cd5 2545__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2546{
152c9ccb
DN
2547 int i;
2548 int count;
8289546e 2549 struct page_cgroup *pc;
8c7c6e34 2550 struct mem_cgroup *mem = NULL;
ec168510 2551 int page_size = PAGE_SIZE;
8a9f3ccd 2552
f8d66542 2553 if (mem_cgroup_disabled())
8c7c6e34 2554 return NULL;
4077960e 2555
d13d1443 2556 if (PageSwapCache(page))
8c7c6e34 2557 return NULL;
d13d1443 2558
37c2ac78 2559 if (PageTransHuge(page)) {
ec168510 2560 page_size <<= compound_order(page);
37c2ac78
AA
2561 VM_BUG_ON(!PageTransHuge(page));
2562 }
ec168510 2563
152c9ccb 2564 count = page_size >> PAGE_SHIFT;
8697d331 2565 /*
3c541e14 2566 * Check if our page_cgroup is valid
8697d331 2567 */
52d4b9ac
KH
2568 pc = lookup_page_cgroup(page);
2569 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2570 return NULL;
b9c565d5 2571
52d4b9ac 2572 lock_page_cgroup(pc);
d13d1443 2573
8c7c6e34
KH
2574 mem = pc->mem_cgroup;
2575
d13d1443
KH
2576 if (!PageCgroupUsed(pc))
2577 goto unlock_out;
2578
2579 switch (ctype) {
2580 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2581 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2582 /* See mem_cgroup_prepare_migration() */
2583 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2584 goto unlock_out;
2585 break;
2586 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2587 if (!PageAnon(page)) { /* Shared memory */
2588 if (page->mapping && !page_is_file_cache(page))
2589 goto unlock_out;
2590 } else if (page_mapped(page)) /* Anon */
2591 goto unlock_out;
2592 break;
2593 default:
2594 break;
52d4b9ac 2595 }
d13d1443 2596
152c9ccb
DN
2597 for (i = 0; i < count; i++)
2598 mem_cgroup_charge_statistics(mem, pc + i, false);
04046e1a 2599
52d4b9ac 2600 ClearPageCgroupUsed(pc);
544122e5
KH
2601 /*
2602 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2603 * freed from LRU. This is safe because uncharged page is expected not
2604 * to be reused (freed soon). Exception is SwapCache, it's handled by
2605 * special functions.
2606 */
b9c565d5 2607
52d4b9ac 2608 unlock_page_cgroup(pc);
f75ca962
KH
2609 /*
2610 * even after unlock, we have mem->res.usage here and this memcg
2611 * will never be freed.
2612 */
d2265e6f 2613 memcg_check_events(mem, page);
f75ca962
KH
2614 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2615 mem_cgroup_swap_statistics(mem, true);
2616 mem_cgroup_get(mem);
2617 }
2618 if (!mem_cgroup_is_root(mem))
ec168510 2619 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2620
8c7c6e34 2621 return mem;
d13d1443
KH
2622
2623unlock_out:
2624 unlock_page_cgroup(pc);
8c7c6e34 2625 return NULL;
3c541e14
BS
2626}
2627
69029cd5
KH
2628void mem_cgroup_uncharge_page(struct page *page)
2629{
52d4b9ac
KH
2630 /* early check. */
2631 if (page_mapped(page))
2632 return;
2633 if (page->mapping && !PageAnon(page))
2634 return;
69029cd5
KH
2635 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2636}
2637
2638void mem_cgroup_uncharge_cache_page(struct page *page)
2639{
2640 VM_BUG_ON(page_mapped(page));
b7abea96 2641 VM_BUG_ON(page->mapping);
69029cd5
KH
2642 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2643}
2644
569b846d
KH
2645/*
2646 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2647 * In that cases, pages are freed continuously and we can expect pages
2648 * are in the same memcg. All these calls itself limits the number of
2649 * pages freed at once, then uncharge_start/end() is called properly.
2650 * This may be called prural(2) times in a context,
2651 */
2652
2653void mem_cgroup_uncharge_start(void)
2654{
2655 current->memcg_batch.do_batch++;
2656 /* We can do nest. */
2657 if (current->memcg_batch.do_batch == 1) {
2658 current->memcg_batch.memcg = NULL;
2659 current->memcg_batch.bytes = 0;
2660 current->memcg_batch.memsw_bytes = 0;
2661 }
2662}
2663
2664void mem_cgroup_uncharge_end(void)
2665{
2666 struct memcg_batch_info *batch = &current->memcg_batch;
2667
2668 if (!batch->do_batch)
2669 return;
2670
2671 batch->do_batch--;
2672 if (batch->do_batch) /* If stacked, do nothing. */
2673 return;
2674
2675 if (!batch->memcg)
2676 return;
2677 /*
2678 * This "batch->memcg" is valid without any css_get/put etc...
2679 * bacause we hide charges behind us.
2680 */
2681 if (batch->bytes)
2682 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2683 if (batch->memsw_bytes)
2684 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2685 memcg_oom_recover(batch->memcg);
569b846d
KH
2686 /* forget this pointer (for sanity check) */
2687 batch->memcg = NULL;
2688}
2689
e767e056 2690#ifdef CONFIG_SWAP
8c7c6e34 2691/*
e767e056 2692 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2693 * memcg information is recorded to swap_cgroup of "ent"
2694 */
8a9478ca
KH
2695void
2696mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2697{
2698 struct mem_cgroup *memcg;
8a9478ca
KH
2699 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2700
2701 if (!swapout) /* this was a swap cache but the swap is unused ! */
2702 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2703
2704 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2705
f75ca962
KH
2706 /*
2707 * record memcg information, if swapout && memcg != NULL,
2708 * mem_cgroup_get() was called in uncharge().
2709 */
2710 if (do_swap_account && swapout && memcg)
a3b2d692 2711 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2712}
e767e056 2713#endif
8c7c6e34
KH
2714
2715#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2716/*
2717 * called from swap_entry_free(). remove record in swap_cgroup and
2718 * uncharge "memsw" account.
2719 */
2720void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2721{
8c7c6e34 2722 struct mem_cgroup *memcg;
a3b2d692 2723 unsigned short id;
8c7c6e34
KH
2724
2725 if (!do_swap_account)
2726 return;
2727
a3b2d692
KH
2728 id = swap_cgroup_record(ent, 0);
2729 rcu_read_lock();
2730 memcg = mem_cgroup_lookup(id);
8c7c6e34 2731 if (memcg) {
a3b2d692
KH
2732 /*
2733 * We uncharge this because swap is freed.
2734 * This memcg can be obsolete one. We avoid calling css_tryget
2735 */
0c3e73e8 2736 if (!mem_cgroup_is_root(memcg))
4e649152 2737 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2738 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2739 mem_cgroup_put(memcg);
2740 }
a3b2d692 2741 rcu_read_unlock();
d13d1443 2742}
02491447
DN
2743
2744/**
2745 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2746 * @entry: swap entry to be moved
2747 * @from: mem_cgroup which the entry is moved from
2748 * @to: mem_cgroup which the entry is moved to
483c30b5 2749 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2750 *
2751 * It succeeds only when the swap_cgroup's record for this entry is the same
2752 * as the mem_cgroup's id of @from.
2753 *
2754 * Returns 0 on success, -EINVAL on failure.
2755 *
2756 * The caller must have charged to @to, IOW, called res_counter_charge() about
2757 * both res and memsw, and called css_get().
2758 */
2759static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2760 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2761{
2762 unsigned short old_id, new_id;
2763
2764 old_id = css_id(&from->css);
2765 new_id = css_id(&to->css);
2766
2767 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2768 mem_cgroup_swap_statistics(from, false);
483c30b5 2769 mem_cgroup_swap_statistics(to, true);
02491447 2770 /*
483c30b5
DN
2771 * This function is only called from task migration context now.
2772 * It postpones res_counter and refcount handling till the end
2773 * of task migration(mem_cgroup_clear_mc()) for performance
2774 * improvement. But we cannot postpone mem_cgroup_get(to)
2775 * because if the process that has been moved to @to does
2776 * swap-in, the refcount of @to might be decreased to 0.
02491447 2777 */
02491447 2778 mem_cgroup_get(to);
483c30b5
DN
2779 if (need_fixup) {
2780 if (!mem_cgroup_is_root(from))
2781 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2782 mem_cgroup_put(from);
2783 /*
2784 * we charged both to->res and to->memsw, so we should
2785 * uncharge to->res.
2786 */
2787 if (!mem_cgroup_is_root(to))
2788 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2789 }
02491447
DN
2790 return 0;
2791 }
2792 return -EINVAL;
2793}
2794#else
2795static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2796 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2797{
2798 return -EINVAL;
2799}
8c7c6e34 2800#endif
d13d1443 2801
ae41be37 2802/*
01b1ae63
KH
2803 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2804 * page belongs to.
ae41be37 2805 */
ac39cf8c 2806int mem_cgroup_prepare_migration(struct page *page,
2807 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2808{
2809 struct page_cgroup *pc;
e8589cc1 2810 struct mem_cgroup *mem = NULL;
ac39cf8c 2811 enum charge_type ctype;
e8589cc1 2812 int ret = 0;
8869b8f6 2813
ec168510 2814 VM_BUG_ON(PageTransHuge(page));
f8d66542 2815 if (mem_cgroup_disabled())
4077960e
BS
2816 return 0;
2817
52d4b9ac
KH
2818 pc = lookup_page_cgroup(page);
2819 lock_page_cgroup(pc);
2820 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2821 mem = pc->mem_cgroup;
2822 css_get(&mem->css);
ac39cf8c 2823 /*
2824 * At migrating an anonymous page, its mapcount goes down
2825 * to 0 and uncharge() will be called. But, even if it's fully
2826 * unmapped, migration may fail and this page has to be
2827 * charged again. We set MIGRATION flag here and delay uncharge
2828 * until end_migration() is called
2829 *
2830 * Corner Case Thinking
2831 * A)
2832 * When the old page was mapped as Anon and it's unmap-and-freed
2833 * while migration was ongoing.
2834 * If unmap finds the old page, uncharge() of it will be delayed
2835 * until end_migration(). If unmap finds a new page, it's
2836 * uncharged when it make mapcount to be 1->0. If unmap code
2837 * finds swap_migration_entry, the new page will not be mapped
2838 * and end_migration() will find it(mapcount==0).
2839 *
2840 * B)
2841 * When the old page was mapped but migraion fails, the kernel
2842 * remaps it. A charge for it is kept by MIGRATION flag even
2843 * if mapcount goes down to 0. We can do remap successfully
2844 * without charging it again.
2845 *
2846 * C)
2847 * The "old" page is under lock_page() until the end of
2848 * migration, so, the old page itself will not be swapped-out.
2849 * If the new page is swapped out before end_migraton, our
2850 * hook to usual swap-out path will catch the event.
2851 */
2852 if (PageAnon(page))
2853 SetPageCgroupMigration(pc);
e8589cc1 2854 }
52d4b9ac 2855 unlock_page_cgroup(pc);
ac39cf8c 2856 /*
2857 * If the page is not charged at this point,
2858 * we return here.
2859 */
2860 if (!mem)
2861 return 0;
01b1ae63 2862
93d5c9be 2863 *ptr = mem;
ec168510 2864 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
ac39cf8c 2865 css_put(&mem->css);/* drop extra refcnt */
2866 if (ret || *ptr == NULL) {
2867 if (PageAnon(page)) {
2868 lock_page_cgroup(pc);
2869 ClearPageCgroupMigration(pc);
2870 unlock_page_cgroup(pc);
2871 /*
2872 * The old page may be fully unmapped while we kept it.
2873 */
2874 mem_cgroup_uncharge_page(page);
2875 }
2876 return -ENOMEM;
e8589cc1 2877 }
ac39cf8c 2878 /*
2879 * We charge new page before it's used/mapped. So, even if unlock_page()
2880 * is called before end_migration, we can catch all events on this new
2881 * page. In the case new page is migrated but not remapped, new page's
2882 * mapcount will be finally 0 and we call uncharge in end_migration().
2883 */
2884 pc = lookup_page_cgroup(newpage);
2885 if (PageAnon(page))
2886 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2887 else if (page_is_file_cache(page))
2888 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2889 else
2890 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2891 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2892 return ret;
ae41be37 2893}
8869b8f6 2894
69029cd5 2895/* remove redundant charge if migration failed*/
01b1ae63 2896void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2897 struct page *oldpage, struct page *newpage)
ae41be37 2898{
ac39cf8c 2899 struct page *used, *unused;
01b1ae63 2900 struct page_cgroup *pc;
01b1ae63
KH
2901
2902 if (!mem)
2903 return;
ac39cf8c 2904 /* blocks rmdir() */
88703267 2905 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2906 /* at migration success, oldpage->mapping is NULL. */
2907 if (oldpage->mapping) {
ac39cf8c 2908 used = oldpage;
2909 unused = newpage;
01b1ae63 2910 } else {
ac39cf8c 2911 used = newpage;
01b1ae63
KH
2912 unused = oldpage;
2913 }
69029cd5 2914 /*
ac39cf8c 2915 * We disallowed uncharge of pages under migration because mapcount
2916 * of the page goes down to zero, temporarly.
2917 * Clear the flag and check the page should be charged.
01b1ae63 2918 */
ac39cf8c 2919 pc = lookup_page_cgroup(oldpage);
2920 lock_page_cgroup(pc);
2921 ClearPageCgroupMigration(pc);
2922 unlock_page_cgroup(pc);
01b1ae63 2923
ac39cf8c 2924 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2925
01b1ae63 2926 /*
ac39cf8c 2927 * If a page is a file cache, radix-tree replacement is very atomic
2928 * and we can skip this check. When it was an Anon page, its mapcount
2929 * goes down to 0. But because we added MIGRATION flage, it's not
2930 * uncharged yet. There are several case but page->mapcount check
2931 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2932 * check. (see prepare_charge() also)
69029cd5 2933 */
ac39cf8c 2934 if (PageAnon(used))
2935 mem_cgroup_uncharge_page(used);
88703267 2936 /*
ac39cf8c 2937 * At migration, we may charge account against cgroup which has no
2938 * tasks.
88703267
KH
2939 * So, rmdir()->pre_destroy() can be called while we do this charge.
2940 * In that case, we need to call pre_destroy() again. check it here.
2941 */
2942 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2943}
78fb7466 2944
c9b0ed51 2945/*
ae3abae6
DN
2946 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2947 * Calling hierarchical_reclaim is not enough because we should update
2948 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2949 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2950 * not from the memcg which this page would be charged to.
2951 * try_charge_swapin does all of these works properly.
c9b0ed51 2952 */
ae3abae6 2953int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2954 struct mm_struct *mm,
2955 gfp_t gfp_mask)
c9b0ed51 2956{
b5a84319 2957 struct mem_cgroup *mem = NULL;
ae3abae6 2958 int ret;
c9b0ed51 2959
f8d66542 2960 if (mem_cgroup_disabled())
cede86ac 2961 return 0;
c9b0ed51 2962
ae3abae6
DN
2963 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2964 if (!ret)
2965 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2966
ae3abae6 2967 return ret;
c9b0ed51
KH
2968}
2969
8c7c6e34
KH
2970static DEFINE_MUTEX(set_limit_mutex);
2971
d38d2a75 2972static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2973 unsigned long long val)
628f4235 2974{
81d39c20 2975 int retry_count;
3c11ecf4 2976 u64 memswlimit, memlimit;
628f4235 2977 int ret = 0;
81d39c20
KH
2978 int children = mem_cgroup_count_children(memcg);
2979 u64 curusage, oldusage;
3c11ecf4 2980 int enlarge;
81d39c20
KH
2981
2982 /*
2983 * For keeping hierarchical_reclaim simple, how long we should retry
2984 * is depends on callers. We set our retry-count to be function
2985 * of # of children which we should visit in this loop.
2986 */
2987 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2988
2989 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2990
3c11ecf4 2991 enlarge = 0;
8c7c6e34 2992 while (retry_count) {
628f4235
KH
2993 if (signal_pending(current)) {
2994 ret = -EINTR;
2995 break;
2996 }
8c7c6e34
KH
2997 /*
2998 * Rather than hide all in some function, I do this in
2999 * open coded manner. You see what this really does.
3000 * We have to guarantee mem->res.limit < mem->memsw.limit.
3001 */
3002 mutex_lock(&set_limit_mutex);
3003 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3004 if (memswlimit < val) {
3005 ret = -EINVAL;
3006 mutex_unlock(&set_limit_mutex);
628f4235
KH
3007 break;
3008 }
3c11ecf4
KH
3009
3010 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3011 if (memlimit < val)
3012 enlarge = 1;
3013
8c7c6e34 3014 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3015 if (!ret) {
3016 if (memswlimit == val)
3017 memcg->memsw_is_minimum = true;
3018 else
3019 memcg->memsw_is_minimum = false;
3020 }
8c7c6e34
KH
3021 mutex_unlock(&set_limit_mutex);
3022
3023 if (!ret)
3024 break;
3025
aa20d489 3026 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3027 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3028 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3029 /* Usage is reduced ? */
3030 if (curusage >= oldusage)
3031 retry_count--;
3032 else
3033 oldusage = curusage;
8c7c6e34 3034 }
3c11ecf4
KH
3035 if (!ret && enlarge)
3036 memcg_oom_recover(memcg);
14797e23 3037
8c7c6e34
KH
3038 return ret;
3039}
3040
338c8431
LZ
3041static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3042 unsigned long long val)
8c7c6e34 3043{
81d39c20 3044 int retry_count;
3c11ecf4 3045 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3046 int children = mem_cgroup_count_children(memcg);
3047 int ret = -EBUSY;
3c11ecf4 3048 int enlarge = 0;
8c7c6e34 3049
81d39c20
KH
3050 /* see mem_cgroup_resize_res_limit */
3051 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3052 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3053 while (retry_count) {
3054 if (signal_pending(current)) {
3055 ret = -EINTR;
3056 break;
3057 }
3058 /*
3059 * Rather than hide all in some function, I do this in
3060 * open coded manner. You see what this really does.
3061 * We have to guarantee mem->res.limit < mem->memsw.limit.
3062 */
3063 mutex_lock(&set_limit_mutex);
3064 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3065 if (memlimit > val) {
3066 ret = -EINVAL;
3067 mutex_unlock(&set_limit_mutex);
3068 break;
3069 }
3c11ecf4
KH
3070 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3071 if (memswlimit < val)
3072 enlarge = 1;
8c7c6e34 3073 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3074 if (!ret) {
3075 if (memlimit == val)
3076 memcg->memsw_is_minimum = true;
3077 else
3078 memcg->memsw_is_minimum = false;
3079 }
8c7c6e34
KH
3080 mutex_unlock(&set_limit_mutex);
3081
3082 if (!ret)
3083 break;
3084
4e416953 3085 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3086 MEM_CGROUP_RECLAIM_NOSWAP |
3087 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3088 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3089 /* Usage is reduced ? */
8c7c6e34 3090 if (curusage >= oldusage)
628f4235 3091 retry_count--;
81d39c20
KH
3092 else
3093 oldusage = curusage;
628f4235 3094 }
3c11ecf4
KH
3095 if (!ret && enlarge)
3096 memcg_oom_recover(memcg);
628f4235
KH
3097 return ret;
3098}
3099
4e416953 3100unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3101 gfp_t gfp_mask)
4e416953
BS
3102{
3103 unsigned long nr_reclaimed = 0;
3104 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3105 unsigned long reclaimed;
3106 int loop = 0;
3107 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3108 unsigned long long excess;
4e416953
BS
3109
3110 if (order > 0)
3111 return 0;
3112
00918b6a 3113 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3114 /*
3115 * This loop can run a while, specially if mem_cgroup's continuously
3116 * keep exceeding their soft limit and putting the system under
3117 * pressure
3118 */
3119 do {
3120 if (next_mz)
3121 mz = next_mz;
3122 else
3123 mz = mem_cgroup_largest_soft_limit_node(mctz);
3124 if (!mz)
3125 break;
3126
3127 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3128 gfp_mask,
3129 MEM_CGROUP_RECLAIM_SOFT);
3130 nr_reclaimed += reclaimed;
3131 spin_lock(&mctz->lock);
3132
3133 /*
3134 * If we failed to reclaim anything from this memory cgroup
3135 * it is time to move on to the next cgroup
3136 */
3137 next_mz = NULL;
3138 if (!reclaimed) {
3139 do {
3140 /*
3141 * Loop until we find yet another one.
3142 *
3143 * By the time we get the soft_limit lock
3144 * again, someone might have aded the
3145 * group back on the RB tree. Iterate to
3146 * make sure we get a different mem.
3147 * mem_cgroup_largest_soft_limit_node returns
3148 * NULL if no other cgroup is present on
3149 * the tree
3150 */
3151 next_mz =
3152 __mem_cgroup_largest_soft_limit_node(mctz);
3153 if (next_mz == mz) {
3154 css_put(&next_mz->mem->css);
3155 next_mz = NULL;
3156 } else /* next_mz == NULL or other memcg */
3157 break;
3158 } while (1);
3159 }
4e416953 3160 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3161 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3162 /*
3163 * One school of thought says that we should not add
3164 * back the node to the tree if reclaim returns 0.
3165 * But our reclaim could return 0, simply because due
3166 * to priority we are exposing a smaller subset of
3167 * memory to reclaim from. Consider this as a longer
3168 * term TODO.
3169 */
ef8745c1
KH
3170 /* If excess == 0, no tree ops */
3171 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3172 spin_unlock(&mctz->lock);
3173 css_put(&mz->mem->css);
3174 loop++;
3175 /*
3176 * Could not reclaim anything and there are no more
3177 * mem cgroups to try or we seem to be looping without
3178 * reclaiming anything.
3179 */
3180 if (!nr_reclaimed &&
3181 (next_mz == NULL ||
3182 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3183 break;
3184 } while (!nr_reclaimed);
3185 if (next_mz)
3186 css_put(&next_mz->mem->css);
3187 return nr_reclaimed;
3188}
3189
cc847582
KH
3190/*
3191 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3192 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3193 */
f817ed48 3194static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3195 int node, int zid, enum lru_list lru)
cc847582 3196{
08e552c6
KH
3197 struct zone *zone;
3198 struct mem_cgroup_per_zone *mz;
f817ed48 3199 struct page_cgroup *pc, *busy;
08e552c6 3200 unsigned long flags, loop;
072c56c1 3201 struct list_head *list;
f817ed48 3202 int ret = 0;
072c56c1 3203
08e552c6
KH
3204 zone = &NODE_DATA(node)->node_zones[zid];
3205 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3206 list = &mz->lists[lru];
cc847582 3207
f817ed48
KH
3208 loop = MEM_CGROUP_ZSTAT(mz, lru);
3209 /* give some margin against EBUSY etc...*/
3210 loop += 256;
3211 busy = NULL;
3212 while (loop--) {
3213 ret = 0;
08e552c6 3214 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3215 if (list_empty(list)) {
08e552c6 3216 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3217 break;
f817ed48
KH
3218 }
3219 pc = list_entry(list->prev, struct page_cgroup, lru);
3220 if (busy == pc) {
3221 list_move(&pc->lru, list);
648bcc77 3222 busy = NULL;
08e552c6 3223 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3224 continue;
3225 }
08e552c6 3226 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3227
2c26fdd7 3228 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3229 if (ret == -ENOMEM)
52d4b9ac 3230 break;
f817ed48
KH
3231
3232 if (ret == -EBUSY || ret == -EINVAL) {
3233 /* found lock contention or "pc" is obsolete. */
3234 busy = pc;
3235 cond_resched();
3236 } else
3237 busy = NULL;
cc847582 3238 }
08e552c6 3239
f817ed48
KH
3240 if (!ret && !list_empty(list))
3241 return -EBUSY;
3242 return ret;
cc847582
KH
3243}
3244
3245/*
3246 * make mem_cgroup's charge to be 0 if there is no task.
3247 * This enables deleting this mem_cgroup.
3248 */
c1e862c1 3249static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3250{
f817ed48
KH
3251 int ret;
3252 int node, zid, shrink;
3253 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3254 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3255
cc847582 3256 css_get(&mem->css);
f817ed48
KH
3257
3258 shrink = 0;
c1e862c1
KH
3259 /* should free all ? */
3260 if (free_all)
3261 goto try_to_free;
f817ed48 3262move_account:
fce66477 3263 do {
f817ed48 3264 ret = -EBUSY;
c1e862c1
KH
3265 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3266 goto out;
3267 ret = -EINTR;
3268 if (signal_pending(current))
cc847582 3269 goto out;
52d4b9ac
KH
3270 /* This is for making all *used* pages to be on LRU. */
3271 lru_add_drain_all();
cdec2e42 3272 drain_all_stock_sync();
f817ed48 3273 ret = 0;
32047e2a 3274 mem_cgroup_start_move(mem);
299b4eaa 3275 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3276 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3277 enum lru_list l;
f817ed48
KH
3278 for_each_lru(l) {
3279 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3280 node, zid, l);
f817ed48
KH
3281 if (ret)
3282 break;
3283 }
1ecaab2b 3284 }
f817ed48
KH
3285 if (ret)
3286 break;
3287 }
32047e2a 3288 mem_cgroup_end_move(mem);
3c11ecf4 3289 memcg_oom_recover(mem);
f817ed48
KH
3290 /* it seems parent cgroup doesn't have enough mem */
3291 if (ret == -ENOMEM)
3292 goto try_to_free;
52d4b9ac 3293 cond_resched();
fce66477
DN
3294 /* "ret" should also be checked to ensure all lists are empty. */
3295 } while (mem->res.usage > 0 || ret);
cc847582
KH
3296out:
3297 css_put(&mem->css);
3298 return ret;
f817ed48
KH
3299
3300try_to_free:
c1e862c1
KH
3301 /* returns EBUSY if there is a task or if we come here twice. */
3302 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3303 ret = -EBUSY;
3304 goto out;
3305 }
c1e862c1
KH
3306 /* we call try-to-free pages for make this cgroup empty */
3307 lru_add_drain_all();
f817ed48
KH
3308 /* try to free all pages in this cgroup */
3309 shrink = 1;
3310 while (nr_retries && mem->res.usage > 0) {
3311 int progress;
c1e862c1
KH
3312
3313 if (signal_pending(current)) {
3314 ret = -EINTR;
3315 goto out;
3316 }
a7885eb8
KM
3317 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3318 false, get_swappiness(mem));
c1e862c1 3319 if (!progress) {
f817ed48 3320 nr_retries--;
c1e862c1 3321 /* maybe some writeback is necessary */
8aa7e847 3322 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3323 }
f817ed48
KH
3324
3325 }
08e552c6 3326 lru_add_drain();
f817ed48 3327 /* try move_account...there may be some *locked* pages. */
fce66477 3328 goto move_account;
cc847582
KH
3329}
3330
c1e862c1
KH
3331int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3332{
3333 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3334}
3335
3336
18f59ea7
BS
3337static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3338{
3339 return mem_cgroup_from_cont(cont)->use_hierarchy;
3340}
3341
3342static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3343 u64 val)
3344{
3345 int retval = 0;
3346 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3347 struct cgroup *parent = cont->parent;
3348 struct mem_cgroup *parent_mem = NULL;
3349
3350 if (parent)
3351 parent_mem = mem_cgroup_from_cont(parent);
3352
3353 cgroup_lock();
3354 /*
af901ca1 3355 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3356 * in the child subtrees. If it is unset, then the change can
3357 * occur, provided the current cgroup has no children.
3358 *
3359 * For the root cgroup, parent_mem is NULL, we allow value to be
3360 * set if there are no children.
3361 */
3362 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3363 (val == 1 || val == 0)) {
3364 if (list_empty(&cont->children))
3365 mem->use_hierarchy = val;
3366 else
3367 retval = -EBUSY;
3368 } else
3369 retval = -EINVAL;
3370 cgroup_unlock();
3371
3372 return retval;
3373}
3374
0c3e73e8 3375
7d74b06f
KH
3376static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3377 enum mem_cgroup_stat_index idx)
0c3e73e8 3378{
7d74b06f
KH
3379 struct mem_cgroup *iter;
3380 s64 val = 0;
0c3e73e8 3381
7d74b06f
KH
3382 /* each per cpu's value can be minus.Then, use s64 */
3383 for_each_mem_cgroup_tree(iter, mem)
3384 val += mem_cgroup_read_stat(iter, idx);
3385
3386 if (val < 0) /* race ? */
3387 val = 0;
3388 return val;
0c3e73e8
BS
3389}
3390
104f3928
KS
3391static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3392{
7d74b06f 3393 u64 val;
104f3928
KS
3394
3395 if (!mem_cgroup_is_root(mem)) {
3396 if (!swap)
3397 return res_counter_read_u64(&mem->res, RES_USAGE);
3398 else
3399 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3400 }
3401
7d74b06f
KH
3402 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3403 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3404
7d74b06f
KH
3405 if (swap)
3406 val += mem_cgroup_get_recursive_idx_stat(mem,
3407 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3408
3409 return val << PAGE_SHIFT;
3410}
3411
2c3daa72 3412static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3413{
8c7c6e34 3414 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3415 u64 val;
8c7c6e34
KH
3416 int type, name;
3417
3418 type = MEMFILE_TYPE(cft->private);
3419 name = MEMFILE_ATTR(cft->private);
3420 switch (type) {
3421 case _MEM:
104f3928
KS
3422 if (name == RES_USAGE)
3423 val = mem_cgroup_usage(mem, false);
3424 else
0c3e73e8 3425 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3426 break;
3427 case _MEMSWAP:
104f3928
KS
3428 if (name == RES_USAGE)
3429 val = mem_cgroup_usage(mem, true);
3430 else
0c3e73e8 3431 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3432 break;
3433 default:
3434 BUG();
3435 break;
3436 }
3437 return val;
8cdea7c0 3438}
628f4235
KH
3439/*
3440 * The user of this function is...
3441 * RES_LIMIT.
3442 */
856c13aa
PM
3443static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3444 const char *buffer)
8cdea7c0 3445{
628f4235 3446 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3447 int type, name;
628f4235
KH
3448 unsigned long long val;
3449 int ret;
3450
8c7c6e34
KH
3451 type = MEMFILE_TYPE(cft->private);
3452 name = MEMFILE_ATTR(cft->private);
3453 switch (name) {
628f4235 3454 case RES_LIMIT:
4b3bde4c
BS
3455 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3456 ret = -EINVAL;
3457 break;
3458 }
628f4235
KH
3459 /* This function does all necessary parse...reuse it */
3460 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3461 if (ret)
3462 break;
3463 if (type == _MEM)
628f4235 3464 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3465 else
3466 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3467 break;
296c81d8
BS
3468 case RES_SOFT_LIMIT:
3469 ret = res_counter_memparse_write_strategy(buffer, &val);
3470 if (ret)
3471 break;
3472 /*
3473 * For memsw, soft limits are hard to implement in terms
3474 * of semantics, for now, we support soft limits for
3475 * control without swap
3476 */
3477 if (type == _MEM)
3478 ret = res_counter_set_soft_limit(&memcg->res, val);
3479 else
3480 ret = -EINVAL;
3481 break;
628f4235
KH
3482 default:
3483 ret = -EINVAL; /* should be BUG() ? */
3484 break;
3485 }
3486 return ret;
8cdea7c0
BS
3487}
3488
fee7b548
KH
3489static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3490 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3491{
3492 struct cgroup *cgroup;
3493 unsigned long long min_limit, min_memsw_limit, tmp;
3494
3495 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3496 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3497 cgroup = memcg->css.cgroup;
3498 if (!memcg->use_hierarchy)
3499 goto out;
3500
3501 while (cgroup->parent) {
3502 cgroup = cgroup->parent;
3503 memcg = mem_cgroup_from_cont(cgroup);
3504 if (!memcg->use_hierarchy)
3505 break;
3506 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507 min_limit = min(min_limit, tmp);
3508 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3509 min_memsw_limit = min(min_memsw_limit, tmp);
3510 }
3511out:
3512 *mem_limit = min_limit;
3513 *memsw_limit = min_memsw_limit;
3514 return;
3515}
3516
29f2a4da 3517static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3518{
3519 struct mem_cgroup *mem;
8c7c6e34 3520 int type, name;
c84872e1
PE
3521
3522 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3523 type = MEMFILE_TYPE(event);
3524 name = MEMFILE_ATTR(event);
3525 switch (name) {
29f2a4da 3526 case RES_MAX_USAGE:
8c7c6e34
KH
3527 if (type == _MEM)
3528 res_counter_reset_max(&mem->res);
3529 else
3530 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3531 break;
3532 case RES_FAILCNT:
8c7c6e34
KH
3533 if (type == _MEM)
3534 res_counter_reset_failcnt(&mem->res);
3535 else
3536 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3537 break;
3538 }
f64c3f54 3539
85cc59db 3540 return 0;
c84872e1
PE
3541}
3542
7dc74be0
DN
3543static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3544 struct cftype *cft)
3545{
3546 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3547}
3548
02491447 3549#ifdef CONFIG_MMU
7dc74be0
DN
3550static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3551 struct cftype *cft, u64 val)
3552{
3553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3554
3555 if (val >= (1 << NR_MOVE_TYPE))
3556 return -EINVAL;
3557 /*
3558 * We check this value several times in both in can_attach() and
3559 * attach(), so we need cgroup lock to prevent this value from being
3560 * inconsistent.
3561 */
3562 cgroup_lock();
3563 mem->move_charge_at_immigrate = val;
3564 cgroup_unlock();
3565
3566 return 0;
3567}
02491447
DN
3568#else
3569static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3570 struct cftype *cft, u64 val)
3571{
3572 return -ENOSYS;
3573}
3574#endif
7dc74be0 3575
14067bb3
KH
3576
3577/* For read statistics */
3578enum {
3579 MCS_CACHE,
3580 MCS_RSS,
d8046582 3581 MCS_FILE_MAPPED,
14067bb3
KH
3582 MCS_PGPGIN,
3583 MCS_PGPGOUT,
1dd3a273 3584 MCS_SWAP,
14067bb3
KH
3585 MCS_INACTIVE_ANON,
3586 MCS_ACTIVE_ANON,
3587 MCS_INACTIVE_FILE,
3588 MCS_ACTIVE_FILE,
3589 MCS_UNEVICTABLE,
3590 NR_MCS_STAT,
3591};
3592
3593struct mcs_total_stat {
3594 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3595};
3596
14067bb3
KH
3597struct {
3598 char *local_name;
3599 char *total_name;
3600} memcg_stat_strings[NR_MCS_STAT] = {
3601 {"cache", "total_cache"},
3602 {"rss", "total_rss"},
d69b042f 3603 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3604 {"pgpgin", "total_pgpgin"},
3605 {"pgpgout", "total_pgpgout"},
1dd3a273 3606 {"swap", "total_swap"},
14067bb3
KH
3607 {"inactive_anon", "total_inactive_anon"},
3608 {"active_anon", "total_active_anon"},
3609 {"inactive_file", "total_inactive_file"},
3610 {"active_file", "total_active_file"},
3611 {"unevictable", "total_unevictable"}
3612};
3613
3614
7d74b06f
KH
3615static void
3616mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3617{
14067bb3
KH
3618 s64 val;
3619
3620 /* per cpu stat */
c62b1a3b 3621 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3622 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3623 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3624 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3625 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3626 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3627 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3628 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3629 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3630 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3631 if (do_swap_account) {
c62b1a3b 3632 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3633 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3634 }
14067bb3
KH
3635
3636 /* per zone stat */
3637 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3638 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3639 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3640 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3641 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3642 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3643 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3644 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3645 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3646 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3647}
3648
3649static void
3650mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3651{
7d74b06f
KH
3652 struct mem_cgroup *iter;
3653
3654 for_each_mem_cgroup_tree(iter, mem)
3655 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3656}
3657
c64745cf
PM
3658static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3659 struct cgroup_map_cb *cb)
d2ceb9b7 3660{
d2ceb9b7 3661 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3662 struct mcs_total_stat mystat;
d2ceb9b7
KH
3663 int i;
3664
14067bb3
KH
3665 memset(&mystat, 0, sizeof(mystat));
3666 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3667
1dd3a273
DN
3668 for (i = 0; i < NR_MCS_STAT; i++) {
3669 if (i == MCS_SWAP && !do_swap_account)
3670 continue;
14067bb3 3671 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3672 }
7b854121 3673
14067bb3 3674 /* Hierarchical information */
fee7b548
KH
3675 {
3676 unsigned long long limit, memsw_limit;
3677 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3678 cb->fill(cb, "hierarchical_memory_limit", limit);
3679 if (do_swap_account)
3680 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3681 }
7f016ee8 3682
14067bb3
KH
3683 memset(&mystat, 0, sizeof(mystat));
3684 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3685 for (i = 0; i < NR_MCS_STAT; i++) {
3686 if (i == MCS_SWAP && !do_swap_account)
3687 continue;
14067bb3 3688 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3689 }
14067bb3 3690
7f016ee8 3691#ifdef CONFIG_DEBUG_VM
c772be93 3692 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3693
3694 {
3695 int nid, zid;
3696 struct mem_cgroup_per_zone *mz;
3697 unsigned long recent_rotated[2] = {0, 0};
3698 unsigned long recent_scanned[2] = {0, 0};
3699
3700 for_each_online_node(nid)
3701 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3702 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3703
3704 recent_rotated[0] +=
3705 mz->reclaim_stat.recent_rotated[0];
3706 recent_rotated[1] +=
3707 mz->reclaim_stat.recent_rotated[1];
3708 recent_scanned[0] +=
3709 mz->reclaim_stat.recent_scanned[0];
3710 recent_scanned[1] +=
3711 mz->reclaim_stat.recent_scanned[1];
3712 }
3713 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3714 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3715 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3716 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3717 }
3718#endif
3719
d2ceb9b7
KH
3720 return 0;
3721}
3722
a7885eb8
KM
3723static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3724{
3725 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3726
3727 return get_swappiness(memcg);
3728}
3729
3730static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3731 u64 val)
3732{
3733 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3734 struct mem_cgroup *parent;
068b38c1 3735
a7885eb8
KM
3736 if (val > 100)
3737 return -EINVAL;
3738
3739 if (cgrp->parent == NULL)
3740 return -EINVAL;
3741
3742 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3743
3744 cgroup_lock();
3745
a7885eb8
KM
3746 /* If under hierarchy, only empty-root can set this value */
3747 if ((parent->use_hierarchy) ||
068b38c1
LZ
3748 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3749 cgroup_unlock();
a7885eb8 3750 return -EINVAL;
068b38c1 3751 }
a7885eb8
KM
3752
3753 spin_lock(&memcg->reclaim_param_lock);
3754 memcg->swappiness = val;
3755 spin_unlock(&memcg->reclaim_param_lock);
3756
068b38c1
LZ
3757 cgroup_unlock();
3758
a7885eb8
KM
3759 return 0;
3760}
3761
2e72b634
KS
3762static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3763{
3764 struct mem_cgroup_threshold_ary *t;
3765 u64 usage;
3766 int i;
3767
3768 rcu_read_lock();
3769 if (!swap)
2c488db2 3770 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3771 else
2c488db2 3772 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3773
3774 if (!t)
3775 goto unlock;
3776
3777 usage = mem_cgroup_usage(memcg, swap);
3778
3779 /*
3780 * current_threshold points to threshold just below usage.
3781 * If it's not true, a threshold was crossed after last
3782 * call of __mem_cgroup_threshold().
3783 */
5407a562 3784 i = t->current_threshold;
2e72b634
KS
3785
3786 /*
3787 * Iterate backward over array of thresholds starting from
3788 * current_threshold and check if a threshold is crossed.
3789 * If none of thresholds below usage is crossed, we read
3790 * only one element of the array here.
3791 */
3792 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3793 eventfd_signal(t->entries[i].eventfd, 1);
3794
3795 /* i = current_threshold + 1 */
3796 i++;
3797
3798 /*
3799 * Iterate forward over array of thresholds starting from
3800 * current_threshold+1 and check if a threshold is crossed.
3801 * If none of thresholds above usage is crossed, we read
3802 * only one element of the array here.
3803 */
3804 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3805 eventfd_signal(t->entries[i].eventfd, 1);
3806
3807 /* Update current_threshold */
5407a562 3808 t->current_threshold = i - 1;
2e72b634
KS
3809unlock:
3810 rcu_read_unlock();
3811}
3812
3813static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3814{
ad4ca5f4
KS
3815 while (memcg) {
3816 __mem_cgroup_threshold(memcg, false);
3817 if (do_swap_account)
3818 __mem_cgroup_threshold(memcg, true);
3819
3820 memcg = parent_mem_cgroup(memcg);
3821 }
2e72b634
KS
3822}
3823
3824static int compare_thresholds(const void *a, const void *b)
3825{
3826 const struct mem_cgroup_threshold *_a = a;
3827 const struct mem_cgroup_threshold *_b = b;
3828
3829 return _a->threshold - _b->threshold;
3830}
3831
7d74b06f 3832static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3833{
3834 struct mem_cgroup_eventfd_list *ev;
3835
3836 list_for_each_entry(ev, &mem->oom_notify, list)
3837 eventfd_signal(ev->eventfd, 1);
3838 return 0;
3839}
3840
3841static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3842{
7d74b06f
KH
3843 struct mem_cgroup *iter;
3844
3845 for_each_mem_cgroup_tree(iter, mem)
3846 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3847}
3848
3849static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3850 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3851{
3852 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3853 struct mem_cgroup_thresholds *thresholds;
3854 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3855 int type = MEMFILE_TYPE(cft->private);
3856 u64 threshold, usage;
2c488db2 3857 int i, size, ret;
2e72b634
KS
3858
3859 ret = res_counter_memparse_write_strategy(args, &threshold);
3860 if (ret)
3861 return ret;
3862
3863 mutex_lock(&memcg->thresholds_lock);
2c488db2 3864
2e72b634 3865 if (type == _MEM)
2c488db2 3866 thresholds = &memcg->thresholds;
2e72b634 3867 else if (type == _MEMSWAP)
2c488db2 3868 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3869 else
3870 BUG();
3871
3872 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3873
3874 /* Check if a threshold crossed before adding a new one */
2c488db2 3875 if (thresholds->primary)
2e72b634
KS
3876 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3877
2c488db2 3878 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3879
3880 /* Allocate memory for new array of thresholds */
2c488db2 3881 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3882 GFP_KERNEL);
2c488db2 3883 if (!new) {
2e72b634
KS
3884 ret = -ENOMEM;
3885 goto unlock;
3886 }
2c488db2 3887 new->size = size;
2e72b634
KS
3888
3889 /* Copy thresholds (if any) to new array */
2c488db2
KS
3890 if (thresholds->primary) {
3891 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3892 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3893 }
3894
2e72b634 3895 /* Add new threshold */
2c488db2
KS
3896 new->entries[size - 1].eventfd = eventfd;
3897 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3898
3899 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3900 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3901 compare_thresholds, NULL);
3902
3903 /* Find current threshold */
2c488db2 3904 new->current_threshold = -1;
2e72b634 3905 for (i = 0; i < size; i++) {
2c488db2 3906 if (new->entries[i].threshold < usage) {
2e72b634 3907 /*
2c488db2
KS
3908 * new->current_threshold will not be used until
3909 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3910 * it here.
3911 */
2c488db2 3912 ++new->current_threshold;
2e72b634
KS
3913 }
3914 }
3915
2c488db2
KS
3916 /* Free old spare buffer and save old primary buffer as spare */
3917 kfree(thresholds->spare);
3918 thresholds->spare = thresholds->primary;
3919
3920 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3921
907860ed 3922 /* To be sure that nobody uses thresholds */
2e72b634
KS
3923 synchronize_rcu();
3924
2e72b634
KS
3925unlock:
3926 mutex_unlock(&memcg->thresholds_lock);
3927
3928 return ret;
3929}
3930
907860ed 3931static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3932 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3933{
3934 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3935 struct mem_cgroup_thresholds *thresholds;
3936 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3937 int type = MEMFILE_TYPE(cft->private);
3938 u64 usage;
2c488db2 3939 int i, j, size;
2e72b634
KS
3940
3941 mutex_lock(&memcg->thresholds_lock);
3942 if (type == _MEM)
2c488db2 3943 thresholds = &memcg->thresholds;
2e72b634 3944 else if (type == _MEMSWAP)
2c488db2 3945 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3946 else
3947 BUG();
3948
3949 /*
3950 * Something went wrong if we trying to unregister a threshold
3951 * if we don't have thresholds
3952 */
3953 BUG_ON(!thresholds);
3954
3955 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3956
3957 /* Check if a threshold crossed before removing */
3958 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3959
3960 /* Calculate new number of threshold */
2c488db2
KS
3961 size = 0;
3962 for (i = 0; i < thresholds->primary->size; i++) {
3963 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3964 size++;
3965 }
3966
2c488db2 3967 new = thresholds->spare;
907860ed 3968
2e72b634
KS
3969 /* Set thresholds array to NULL if we don't have thresholds */
3970 if (!size) {
2c488db2
KS
3971 kfree(new);
3972 new = NULL;
907860ed 3973 goto swap_buffers;
2e72b634
KS
3974 }
3975
2c488db2 3976 new->size = size;
2e72b634
KS
3977
3978 /* Copy thresholds and find current threshold */
2c488db2
KS
3979 new->current_threshold = -1;
3980 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3981 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3982 continue;
3983
2c488db2
KS
3984 new->entries[j] = thresholds->primary->entries[i];
3985 if (new->entries[j].threshold < usage) {
2e72b634 3986 /*
2c488db2 3987 * new->current_threshold will not be used
2e72b634
KS
3988 * until rcu_assign_pointer(), so it's safe to increment
3989 * it here.
3990 */
2c488db2 3991 ++new->current_threshold;
2e72b634
KS
3992 }
3993 j++;
3994 }
3995
907860ed 3996swap_buffers:
2c488db2
KS
3997 /* Swap primary and spare array */
3998 thresholds->spare = thresholds->primary;
3999 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4000
907860ed 4001 /* To be sure that nobody uses thresholds */
2e72b634
KS
4002 synchronize_rcu();
4003
2e72b634 4004 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4005}
c1e862c1 4006
9490ff27
KH
4007static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4008 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4009{
4010 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4011 struct mem_cgroup_eventfd_list *event;
4012 int type = MEMFILE_TYPE(cft->private);
4013
4014 BUG_ON(type != _OOM_TYPE);
4015 event = kmalloc(sizeof(*event), GFP_KERNEL);
4016 if (!event)
4017 return -ENOMEM;
4018
4019 mutex_lock(&memcg_oom_mutex);
4020
4021 event->eventfd = eventfd;
4022 list_add(&event->list, &memcg->oom_notify);
4023
4024 /* already in OOM ? */
4025 if (atomic_read(&memcg->oom_lock))
4026 eventfd_signal(eventfd, 1);
4027 mutex_unlock(&memcg_oom_mutex);
4028
4029 return 0;
4030}
4031
907860ed 4032static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4033 struct cftype *cft, struct eventfd_ctx *eventfd)
4034{
4035 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4036 struct mem_cgroup_eventfd_list *ev, *tmp;
4037 int type = MEMFILE_TYPE(cft->private);
4038
4039 BUG_ON(type != _OOM_TYPE);
4040
4041 mutex_lock(&memcg_oom_mutex);
4042
4043 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4044 if (ev->eventfd == eventfd) {
4045 list_del(&ev->list);
4046 kfree(ev);
4047 }
4048 }
4049
4050 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4051}
4052
3c11ecf4
KH
4053static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4054 struct cftype *cft, struct cgroup_map_cb *cb)
4055{
4056 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4057
4058 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4059
4060 if (atomic_read(&mem->oom_lock))
4061 cb->fill(cb, "under_oom", 1);
4062 else
4063 cb->fill(cb, "under_oom", 0);
4064 return 0;
4065}
4066
3c11ecf4
KH
4067static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4068 struct cftype *cft, u64 val)
4069{
4070 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4071 struct mem_cgroup *parent;
4072
4073 /* cannot set to root cgroup and only 0 and 1 are allowed */
4074 if (!cgrp->parent || !((val == 0) || (val == 1)))
4075 return -EINVAL;
4076
4077 parent = mem_cgroup_from_cont(cgrp->parent);
4078
4079 cgroup_lock();
4080 /* oom-kill-disable is a flag for subhierarchy. */
4081 if ((parent->use_hierarchy) ||
4082 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4083 cgroup_unlock();
4084 return -EINVAL;
4085 }
4086 mem->oom_kill_disable = val;
4d845ebf
KH
4087 if (!val)
4088 memcg_oom_recover(mem);
3c11ecf4
KH
4089 cgroup_unlock();
4090 return 0;
4091}
4092
8cdea7c0
BS
4093static struct cftype mem_cgroup_files[] = {
4094 {
0eea1030 4095 .name = "usage_in_bytes",
8c7c6e34 4096 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4097 .read_u64 = mem_cgroup_read,
9490ff27
KH
4098 .register_event = mem_cgroup_usage_register_event,
4099 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4100 },
c84872e1
PE
4101 {
4102 .name = "max_usage_in_bytes",
8c7c6e34 4103 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4104 .trigger = mem_cgroup_reset,
c84872e1
PE
4105 .read_u64 = mem_cgroup_read,
4106 },
8cdea7c0 4107 {
0eea1030 4108 .name = "limit_in_bytes",
8c7c6e34 4109 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4110 .write_string = mem_cgroup_write,
2c3daa72 4111 .read_u64 = mem_cgroup_read,
8cdea7c0 4112 },
296c81d8
BS
4113 {
4114 .name = "soft_limit_in_bytes",
4115 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4116 .write_string = mem_cgroup_write,
4117 .read_u64 = mem_cgroup_read,
4118 },
8cdea7c0
BS
4119 {
4120 .name = "failcnt",
8c7c6e34 4121 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4122 .trigger = mem_cgroup_reset,
2c3daa72 4123 .read_u64 = mem_cgroup_read,
8cdea7c0 4124 },
d2ceb9b7
KH
4125 {
4126 .name = "stat",
c64745cf 4127 .read_map = mem_control_stat_show,
d2ceb9b7 4128 },
c1e862c1
KH
4129 {
4130 .name = "force_empty",
4131 .trigger = mem_cgroup_force_empty_write,
4132 },
18f59ea7
BS
4133 {
4134 .name = "use_hierarchy",
4135 .write_u64 = mem_cgroup_hierarchy_write,
4136 .read_u64 = mem_cgroup_hierarchy_read,
4137 },
a7885eb8
KM
4138 {
4139 .name = "swappiness",
4140 .read_u64 = mem_cgroup_swappiness_read,
4141 .write_u64 = mem_cgroup_swappiness_write,
4142 },
7dc74be0
DN
4143 {
4144 .name = "move_charge_at_immigrate",
4145 .read_u64 = mem_cgroup_move_charge_read,
4146 .write_u64 = mem_cgroup_move_charge_write,
4147 },
9490ff27
KH
4148 {
4149 .name = "oom_control",
3c11ecf4
KH
4150 .read_map = mem_cgroup_oom_control_read,
4151 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4152 .register_event = mem_cgroup_oom_register_event,
4153 .unregister_event = mem_cgroup_oom_unregister_event,
4154 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4155 },
8cdea7c0
BS
4156};
4157
8c7c6e34
KH
4158#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4159static struct cftype memsw_cgroup_files[] = {
4160 {
4161 .name = "memsw.usage_in_bytes",
4162 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4163 .read_u64 = mem_cgroup_read,
9490ff27
KH
4164 .register_event = mem_cgroup_usage_register_event,
4165 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4166 },
4167 {
4168 .name = "memsw.max_usage_in_bytes",
4169 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4170 .trigger = mem_cgroup_reset,
4171 .read_u64 = mem_cgroup_read,
4172 },
4173 {
4174 .name = "memsw.limit_in_bytes",
4175 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4176 .write_string = mem_cgroup_write,
4177 .read_u64 = mem_cgroup_read,
4178 },
4179 {
4180 .name = "memsw.failcnt",
4181 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4182 .trigger = mem_cgroup_reset,
4183 .read_u64 = mem_cgroup_read,
4184 },
4185};
4186
4187static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4188{
4189 if (!do_swap_account)
4190 return 0;
4191 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4192 ARRAY_SIZE(memsw_cgroup_files));
4193};
4194#else
4195static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4196{
4197 return 0;
4198}
4199#endif
4200
6d12e2d8
KH
4201static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4202{
4203 struct mem_cgroup_per_node *pn;
1ecaab2b 4204 struct mem_cgroup_per_zone *mz;
b69408e8 4205 enum lru_list l;
41e3355d 4206 int zone, tmp = node;
1ecaab2b
KH
4207 /*
4208 * This routine is called against possible nodes.
4209 * But it's BUG to call kmalloc() against offline node.
4210 *
4211 * TODO: this routine can waste much memory for nodes which will
4212 * never be onlined. It's better to use memory hotplug callback
4213 * function.
4214 */
41e3355d
KH
4215 if (!node_state(node, N_NORMAL_MEMORY))
4216 tmp = -1;
4217 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4218 if (!pn)
4219 return 1;
1ecaab2b 4220
6d12e2d8
KH
4221 mem->info.nodeinfo[node] = pn;
4222 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
4223
4224 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4225 mz = &pn->zoneinfo[zone];
b69408e8
CL
4226 for_each_lru(l)
4227 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4228 mz->usage_in_excess = 0;
4e416953
BS
4229 mz->on_tree = false;
4230 mz->mem = mem;
1ecaab2b 4231 }
6d12e2d8
KH
4232 return 0;
4233}
4234
1ecaab2b
KH
4235static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4236{
4237 kfree(mem->info.nodeinfo[node]);
4238}
4239
33327948
KH
4240static struct mem_cgroup *mem_cgroup_alloc(void)
4241{
4242 struct mem_cgroup *mem;
c62b1a3b 4243 int size = sizeof(struct mem_cgroup);
33327948 4244
c62b1a3b 4245 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
4246 if (size < PAGE_SIZE)
4247 mem = kmalloc(size, GFP_KERNEL);
33327948 4248 else
c8dad2bb 4249 mem = vmalloc(size);
33327948 4250
e7bbcdf3
DC
4251 if (!mem)
4252 return NULL;
4253
4254 memset(mem, 0, size);
c62b1a3b 4255 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4256 if (!mem->stat)
4257 goto out_free;
711d3d2c 4258 spin_lock_init(&mem->pcp_counter_lock);
33327948 4259 return mem;
d2e61b8d
DC
4260
4261out_free:
4262 if (size < PAGE_SIZE)
4263 kfree(mem);
4264 else
4265 vfree(mem);
4266 return NULL;
33327948
KH
4267}
4268
8c7c6e34
KH
4269/*
4270 * At destroying mem_cgroup, references from swap_cgroup can remain.
4271 * (scanning all at force_empty is too costly...)
4272 *
4273 * Instead of clearing all references at force_empty, we remember
4274 * the number of reference from swap_cgroup and free mem_cgroup when
4275 * it goes down to 0.
4276 *
8c7c6e34
KH
4277 * Removal of cgroup itself succeeds regardless of refs from swap.
4278 */
4279
a7ba0eef 4280static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4281{
08e552c6
KH
4282 int node;
4283
f64c3f54 4284 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4285 free_css_id(&mem_cgroup_subsys, &mem->css);
4286
08e552c6
KH
4287 for_each_node_state(node, N_POSSIBLE)
4288 free_mem_cgroup_per_zone_info(mem, node);
4289
c62b1a3b
KH
4290 free_percpu(mem->stat);
4291 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4292 kfree(mem);
4293 else
4294 vfree(mem);
4295}
4296
8c7c6e34
KH
4297static void mem_cgroup_get(struct mem_cgroup *mem)
4298{
4299 atomic_inc(&mem->refcnt);
4300}
4301
483c30b5 4302static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4303{
483c30b5 4304 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4305 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4306 __mem_cgroup_free(mem);
7bcc1bb1
DN
4307 if (parent)
4308 mem_cgroup_put(parent);
4309 }
8c7c6e34
KH
4310}
4311
483c30b5
DN
4312static void mem_cgroup_put(struct mem_cgroup *mem)
4313{
4314 __mem_cgroup_put(mem, 1);
4315}
4316
7bcc1bb1
DN
4317/*
4318 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4319 */
4320static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4321{
4322 if (!mem->res.parent)
4323 return NULL;
4324 return mem_cgroup_from_res_counter(mem->res.parent, res);
4325}
33327948 4326
c077719b
KH
4327#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4328static void __init enable_swap_cgroup(void)
4329{
f8d66542 4330 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4331 do_swap_account = 1;
4332}
4333#else
4334static void __init enable_swap_cgroup(void)
4335{
4336}
4337#endif
4338
f64c3f54
BS
4339static int mem_cgroup_soft_limit_tree_init(void)
4340{
4341 struct mem_cgroup_tree_per_node *rtpn;
4342 struct mem_cgroup_tree_per_zone *rtpz;
4343 int tmp, node, zone;
4344
4345 for_each_node_state(node, N_POSSIBLE) {
4346 tmp = node;
4347 if (!node_state(node, N_NORMAL_MEMORY))
4348 tmp = -1;
4349 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4350 if (!rtpn)
4351 return 1;
4352
4353 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4354
4355 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4356 rtpz = &rtpn->rb_tree_per_zone[zone];
4357 rtpz->rb_root = RB_ROOT;
4358 spin_lock_init(&rtpz->lock);
4359 }
4360 }
4361 return 0;
4362}
4363
0eb253e2 4364static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4365mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4366{
28dbc4b6 4367 struct mem_cgroup *mem, *parent;
04046e1a 4368 long error = -ENOMEM;
6d12e2d8 4369 int node;
8cdea7c0 4370
c8dad2bb
JB
4371 mem = mem_cgroup_alloc();
4372 if (!mem)
04046e1a 4373 return ERR_PTR(error);
78fb7466 4374
6d12e2d8
KH
4375 for_each_node_state(node, N_POSSIBLE)
4376 if (alloc_mem_cgroup_per_zone_info(mem, node))
4377 goto free_out;
f64c3f54 4378
c077719b 4379 /* root ? */
28dbc4b6 4380 if (cont->parent == NULL) {
cdec2e42 4381 int cpu;
c077719b 4382 enable_swap_cgroup();
28dbc4b6 4383 parent = NULL;
4b3bde4c 4384 root_mem_cgroup = mem;
f64c3f54
BS
4385 if (mem_cgroup_soft_limit_tree_init())
4386 goto free_out;
cdec2e42
KH
4387 for_each_possible_cpu(cpu) {
4388 struct memcg_stock_pcp *stock =
4389 &per_cpu(memcg_stock, cpu);
4390 INIT_WORK(&stock->work, drain_local_stock);
4391 }
711d3d2c 4392 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4393 } else {
28dbc4b6 4394 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4395 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4396 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4397 }
28dbc4b6 4398
18f59ea7
BS
4399 if (parent && parent->use_hierarchy) {
4400 res_counter_init(&mem->res, &parent->res);
4401 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4402 /*
4403 * We increment refcnt of the parent to ensure that we can
4404 * safely access it on res_counter_charge/uncharge.
4405 * This refcnt will be decremented when freeing this
4406 * mem_cgroup(see mem_cgroup_put).
4407 */
4408 mem_cgroup_get(parent);
18f59ea7
BS
4409 } else {
4410 res_counter_init(&mem->res, NULL);
4411 res_counter_init(&mem->memsw, NULL);
4412 }
04046e1a 4413 mem->last_scanned_child = 0;
2733c06a 4414 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4415 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4416
a7885eb8
KM
4417 if (parent)
4418 mem->swappiness = get_swappiness(parent);
a7ba0eef 4419 atomic_set(&mem->refcnt, 1);
7dc74be0 4420 mem->move_charge_at_immigrate = 0;
2e72b634 4421 mutex_init(&mem->thresholds_lock);
8cdea7c0 4422 return &mem->css;
6d12e2d8 4423free_out:
a7ba0eef 4424 __mem_cgroup_free(mem);
4b3bde4c 4425 root_mem_cgroup = NULL;
04046e1a 4426 return ERR_PTR(error);
8cdea7c0
BS
4427}
4428
ec64f515 4429static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4430 struct cgroup *cont)
4431{
4432 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4433
4434 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4435}
4436
8cdea7c0
BS
4437static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4438 struct cgroup *cont)
4439{
c268e994 4440 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4441
c268e994 4442 mem_cgroup_put(mem);
8cdea7c0
BS
4443}
4444
4445static int mem_cgroup_populate(struct cgroup_subsys *ss,
4446 struct cgroup *cont)
4447{
8c7c6e34
KH
4448 int ret;
4449
4450 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4451 ARRAY_SIZE(mem_cgroup_files));
4452
4453 if (!ret)
4454 ret = register_memsw_files(cont, ss);
4455 return ret;
8cdea7c0
BS
4456}
4457
02491447 4458#ifdef CONFIG_MMU
7dc74be0 4459/* Handlers for move charge at task migration. */
854ffa8d
DN
4460#define PRECHARGE_COUNT_AT_ONCE 256
4461static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4462{
854ffa8d
DN
4463 int ret = 0;
4464 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4465 struct mem_cgroup *mem = mc.to;
4466
854ffa8d
DN
4467 if (mem_cgroup_is_root(mem)) {
4468 mc.precharge += count;
4469 /* we don't need css_get for root */
4470 return ret;
4471 }
4472 /* try to charge at once */
4473 if (count > 1) {
4474 struct res_counter *dummy;
4475 /*
4476 * "mem" cannot be under rmdir() because we've already checked
4477 * by cgroup_lock_live_cgroup() that it is not removed and we
4478 * are still under the same cgroup_mutex. So we can postpone
4479 * css_get().
4480 */
4481 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4482 goto one_by_one;
4483 if (do_swap_account && res_counter_charge(&mem->memsw,
4484 PAGE_SIZE * count, &dummy)) {
4485 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4486 goto one_by_one;
4487 }
4488 mc.precharge += count;
854ffa8d
DN
4489 return ret;
4490 }
4491one_by_one:
4492 /* fall back to one by one charge */
4493 while (count--) {
4494 if (signal_pending(current)) {
4495 ret = -EINTR;
4496 break;
4497 }
4498 if (!batch_count--) {
4499 batch_count = PRECHARGE_COUNT_AT_ONCE;
4500 cond_resched();
4501 }
ec168510
AA
4502 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4503 PAGE_SIZE);
854ffa8d
DN
4504 if (ret || !mem)
4505 /* mem_cgroup_clear_mc() will do uncharge later */
4506 return -ENOMEM;
4507 mc.precharge++;
4508 }
4ffef5fe
DN
4509 return ret;
4510}
4511
4512/**
4513 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4514 * @vma: the vma the pte to be checked belongs
4515 * @addr: the address corresponding to the pte to be checked
4516 * @ptent: the pte to be checked
02491447 4517 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4518 *
4519 * Returns
4520 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4521 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4522 * move charge. if @target is not NULL, the page is stored in target->page
4523 * with extra refcnt got(Callers should handle it).
02491447
DN
4524 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4525 * target for charge migration. if @target is not NULL, the entry is stored
4526 * in target->ent.
4ffef5fe
DN
4527 *
4528 * Called with pte lock held.
4529 */
4ffef5fe
DN
4530union mc_target {
4531 struct page *page;
02491447 4532 swp_entry_t ent;
4ffef5fe
DN
4533};
4534
4ffef5fe
DN
4535enum mc_target_type {
4536 MC_TARGET_NONE, /* not used */
4537 MC_TARGET_PAGE,
02491447 4538 MC_TARGET_SWAP,
4ffef5fe
DN
4539};
4540
90254a65
DN
4541static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4542 unsigned long addr, pte_t ptent)
4ffef5fe 4543{
90254a65 4544 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4545
90254a65
DN
4546 if (!page || !page_mapped(page))
4547 return NULL;
4548 if (PageAnon(page)) {
4549 /* we don't move shared anon */
4550 if (!move_anon() || page_mapcount(page) > 2)
4551 return NULL;
87946a72
DN
4552 } else if (!move_file())
4553 /* we ignore mapcount for file pages */
90254a65
DN
4554 return NULL;
4555 if (!get_page_unless_zero(page))
4556 return NULL;
4557
4558 return page;
4559}
4560
4561static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4562 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4563{
4564 int usage_count;
4565 struct page *page = NULL;
4566 swp_entry_t ent = pte_to_swp_entry(ptent);
4567
4568 if (!move_anon() || non_swap_entry(ent))
4569 return NULL;
4570 usage_count = mem_cgroup_count_swap_user(ent, &page);
4571 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4572 if (page)
4573 put_page(page);
90254a65 4574 return NULL;
02491447 4575 }
90254a65
DN
4576 if (do_swap_account)
4577 entry->val = ent.val;
4578
4579 return page;
4580}
4581
87946a72
DN
4582static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4583 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4584{
4585 struct page *page = NULL;
4586 struct inode *inode;
4587 struct address_space *mapping;
4588 pgoff_t pgoff;
4589
4590 if (!vma->vm_file) /* anonymous vma */
4591 return NULL;
4592 if (!move_file())
4593 return NULL;
4594
4595 inode = vma->vm_file->f_path.dentry->d_inode;
4596 mapping = vma->vm_file->f_mapping;
4597 if (pte_none(ptent))
4598 pgoff = linear_page_index(vma, addr);
4599 else /* pte_file(ptent) is true */
4600 pgoff = pte_to_pgoff(ptent);
4601
4602 /* page is moved even if it's not RSS of this task(page-faulted). */
4603 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4604 page = find_get_page(mapping, pgoff);
4605 } else { /* shmem/tmpfs file. we should take account of swap too. */
4606 swp_entry_t ent;
4607 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4608 if (do_swap_account)
4609 entry->val = ent.val;
4610 }
4611
4612 return page;
4613}
4614
90254a65
DN
4615static int is_target_pte_for_mc(struct vm_area_struct *vma,
4616 unsigned long addr, pte_t ptent, union mc_target *target)
4617{
4618 struct page *page = NULL;
4619 struct page_cgroup *pc;
4620 int ret = 0;
4621 swp_entry_t ent = { .val = 0 };
4622
4623 if (pte_present(ptent))
4624 page = mc_handle_present_pte(vma, addr, ptent);
4625 else if (is_swap_pte(ptent))
4626 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4627 else if (pte_none(ptent) || pte_file(ptent))
4628 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4629
4630 if (!page && !ent.val)
4631 return 0;
02491447
DN
4632 if (page) {
4633 pc = lookup_page_cgroup(page);
4634 /*
4635 * Do only loose check w/o page_cgroup lock.
4636 * mem_cgroup_move_account() checks the pc is valid or not under
4637 * the lock.
4638 */
4639 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4640 ret = MC_TARGET_PAGE;
4641 if (target)
4642 target->page = page;
4643 }
4644 if (!ret || !target)
4645 put_page(page);
4646 }
90254a65
DN
4647 /* There is a swap entry and a page doesn't exist or isn't charged */
4648 if (ent.val && !ret &&
7f0f1546
KH
4649 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4650 ret = MC_TARGET_SWAP;
4651 if (target)
4652 target->ent = ent;
4ffef5fe 4653 }
4ffef5fe
DN
4654 return ret;
4655}
4656
4657static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4658 unsigned long addr, unsigned long end,
4659 struct mm_walk *walk)
4660{
4661 struct vm_area_struct *vma = walk->private;
4662 pte_t *pte;
4663 spinlock_t *ptl;
4664
ec168510 4665 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4666 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4667 for (; addr != end; pte++, addr += PAGE_SIZE)
4668 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4669 mc.precharge++; /* increment precharge temporarily */
4670 pte_unmap_unlock(pte - 1, ptl);
4671 cond_resched();
4672
7dc74be0
DN
4673 return 0;
4674}
4675
4ffef5fe
DN
4676static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4677{
4678 unsigned long precharge;
4679 struct vm_area_struct *vma;
4680
b1dd693e 4681 /* We've already held the mmap_sem */
4ffef5fe
DN
4682 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4683 struct mm_walk mem_cgroup_count_precharge_walk = {
4684 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4685 .mm = mm,
4686 .private = vma,
4687 };
4688 if (is_vm_hugetlb_page(vma))
4689 continue;
4ffef5fe
DN
4690 walk_page_range(vma->vm_start, vma->vm_end,
4691 &mem_cgroup_count_precharge_walk);
4692 }
4ffef5fe
DN
4693
4694 precharge = mc.precharge;
4695 mc.precharge = 0;
4696
4697 return precharge;
4698}
4699
4ffef5fe
DN
4700static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701{
854ffa8d 4702 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4703}
4704
4705static void mem_cgroup_clear_mc(void)
4706{
2bd9bb20
KH
4707 struct mem_cgroup *from = mc.from;
4708 struct mem_cgroup *to = mc.to;
4709
4ffef5fe 4710 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4711 if (mc.precharge) {
4712 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4713 mc.precharge = 0;
4714 }
4715 /*
4716 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4717 * we must uncharge here.
4718 */
4719 if (mc.moved_charge) {
4720 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4721 mc.moved_charge = 0;
4ffef5fe 4722 }
483c30b5
DN
4723 /* we must fixup refcnts and charges */
4724 if (mc.moved_swap) {
483c30b5
DN
4725 /* uncharge swap account from the old cgroup */
4726 if (!mem_cgroup_is_root(mc.from))
4727 res_counter_uncharge(&mc.from->memsw,
4728 PAGE_SIZE * mc.moved_swap);
4729 __mem_cgroup_put(mc.from, mc.moved_swap);
4730
4731 if (!mem_cgroup_is_root(mc.to)) {
4732 /*
4733 * we charged both to->res and to->memsw, so we should
4734 * uncharge to->res.
4735 */
4736 res_counter_uncharge(&mc.to->res,
4737 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4738 }
4739 /* we've already done mem_cgroup_get(mc.to) */
4740
4741 mc.moved_swap = 0;
4742 }
b1dd693e
DN
4743 if (mc.mm) {
4744 up_read(&mc.mm->mmap_sem);
4745 mmput(mc.mm);
4746 }
2bd9bb20 4747 spin_lock(&mc.lock);
4ffef5fe
DN
4748 mc.from = NULL;
4749 mc.to = NULL;
2bd9bb20 4750 spin_unlock(&mc.lock);
b1dd693e
DN
4751 mc.moving_task = NULL;
4752 mc.mm = NULL;
32047e2a 4753 mem_cgroup_end_move(from);
2bd9bb20
KH
4754 memcg_oom_recover(from);
4755 memcg_oom_recover(to);
8033b97c 4756 wake_up_all(&mc.waitq);
4ffef5fe
DN
4757}
4758
7dc74be0
DN
4759static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4760 struct cgroup *cgroup,
4761 struct task_struct *p,
4762 bool threadgroup)
4763{
4764 int ret = 0;
4765 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4766
4767 if (mem->move_charge_at_immigrate) {
4768 struct mm_struct *mm;
4769 struct mem_cgroup *from = mem_cgroup_from_task(p);
4770
4771 VM_BUG_ON(from == mem);
4772
4773 mm = get_task_mm(p);
4774 if (!mm)
4775 return 0;
7dc74be0 4776 /* We move charges only when we move a owner of the mm */
4ffef5fe 4777 if (mm->owner == p) {
b1dd693e
DN
4778 /*
4779 * We do all the move charge works under one mmap_sem to
4780 * avoid deadlock with down_write(&mmap_sem)
4781 * -> try_charge() -> if (mc.moving_task) -> sleep.
4782 */
4783 down_read(&mm->mmap_sem);
4784
4ffef5fe
DN
4785 VM_BUG_ON(mc.from);
4786 VM_BUG_ON(mc.to);
4787 VM_BUG_ON(mc.precharge);
854ffa8d 4788 VM_BUG_ON(mc.moved_charge);
483c30b5 4789 VM_BUG_ON(mc.moved_swap);
8033b97c 4790 VM_BUG_ON(mc.moving_task);
b1dd693e
DN
4791 VM_BUG_ON(mc.mm);
4792
32047e2a 4793 mem_cgroup_start_move(from);
2bd9bb20 4794 spin_lock(&mc.lock);
4ffef5fe
DN
4795 mc.from = from;
4796 mc.to = mem;
4797 mc.precharge = 0;
854ffa8d 4798 mc.moved_charge = 0;
483c30b5 4799 mc.moved_swap = 0;
2bd9bb20 4800 spin_unlock(&mc.lock);
b1dd693e
DN
4801 mc.moving_task = current;
4802 mc.mm = mm;
4ffef5fe
DN
4803
4804 ret = mem_cgroup_precharge_mc(mm);
4805 if (ret)
4806 mem_cgroup_clear_mc();
b1dd693e
DN
4807 /* We call up_read() and mmput() in clear_mc(). */
4808 } else
4809 mmput(mm);
7dc74be0
DN
4810 }
4811 return ret;
4812}
4813
4814static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4815 struct cgroup *cgroup,
4816 struct task_struct *p,
4817 bool threadgroup)
4818{
4ffef5fe 4819 mem_cgroup_clear_mc();
7dc74be0
DN
4820}
4821
4ffef5fe
DN
4822static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4823 unsigned long addr, unsigned long end,
4824 struct mm_walk *walk)
7dc74be0 4825{
4ffef5fe
DN
4826 int ret = 0;
4827 struct vm_area_struct *vma = walk->private;
4828 pte_t *pte;
4829 spinlock_t *ptl;
4830
4831retry:
ec168510 4832 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4833 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4834 for (; addr != end; addr += PAGE_SIZE) {
4835 pte_t ptent = *(pte++);
4836 union mc_target target;
4837 int type;
4838 struct page *page;
4839 struct page_cgroup *pc;
02491447 4840 swp_entry_t ent;
4ffef5fe
DN
4841
4842 if (!mc.precharge)
4843 break;
4844
4845 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4846 switch (type) {
4847 case MC_TARGET_PAGE:
4848 page = target.page;
4849 if (isolate_lru_page(page))
4850 goto put;
4851 pc = lookup_page_cgroup(page);
854ffa8d
DN
4852 if (!mem_cgroup_move_account(pc,
4853 mc.from, mc.to, false)) {
4ffef5fe 4854 mc.precharge--;
854ffa8d
DN
4855 /* we uncharge from mc.from later. */
4856 mc.moved_charge++;
4ffef5fe
DN
4857 }
4858 putback_lru_page(page);
4859put: /* is_target_pte_for_mc() gets the page */
4860 put_page(page);
4861 break;
02491447
DN
4862 case MC_TARGET_SWAP:
4863 ent = target.ent;
483c30b5
DN
4864 if (!mem_cgroup_move_swap_account(ent,
4865 mc.from, mc.to, false)) {
02491447 4866 mc.precharge--;
483c30b5
DN
4867 /* we fixup refcnts and charges later. */
4868 mc.moved_swap++;
4869 }
02491447 4870 break;
4ffef5fe
DN
4871 default:
4872 break;
4873 }
4874 }
4875 pte_unmap_unlock(pte - 1, ptl);
4876 cond_resched();
4877
4878 if (addr != end) {
4879 /*
4880 * We have consumed all precharges we got in can_attach().
4881 * We try charge one by one, but don't do any additional
4882 * charges to mc.to if we have failed in charge once in attach()
4883 * phase.
4884 */
854ffa8d 4885 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4886 if (!ret)
4887 goto retry;
4888 }
4889
4890 return ret;
4891}
4892
4893static void mem_cgroup_move_charge(struct mm_struct *mm)
4894{
4895 struct vm_area_struct *vma;
4896
4897 lru_add_drain_all();
b1dd693e 4898 /* We've already held the mmap_sem */
4ffef5fe
DN
4899 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4900 int ret;
4901 struct mm_walk mem_cgroup_move_charge_walk = {
4902 .pmd_entry = mem_cgroup_move_charge_pte_range,
4903 .mm = mm,
4904 .private = vma,
4905 };
4906 if (is_vm_hugetlb_page(vma))
4907 continue;
4ffef5fe
DN
4908 ret = walk_page_range(vma->vm_start, vma->vm_end,
4909 &mem_cgroup_move_charge_walk);
4910 if (ret)
4911 /*
4912 * means we have consumed all precharges and failed in
4913 * doing additional charge. Just abandon here.
4914 */
4915 break;
4916 }
7dc74be0
DN
4917}
4918
67e465a7
BS
4919static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4920 struct cgroup *cont,
4921 struct cgroup *old_cont,
be367d09
BB
4922 struct task_struct *p,
4923 bool threadgroup)
67e465a7 4924{
b1dd693e 4925 if (!mc.mm)
4ffef5fe
DN
4926 /* no need to move charge */
4927 return;
4928
b1dd693e 4929 mem_cgroup_move_charge(mc.mm);
4ffef5fe 4930 mem_cgroup_clear_mc();
67e465a7 4931}
5cfb80a7
DN
4932#else /* !CONFIG_MMU */
4933static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4934 struct cgroup *cgroup,
4935 struct task_struct *p,
4936 bool threadgroup)
4937{
4938 return 0;
4939}
4940static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4941 struct cgroup *cgroup,
4942 struct task_struct *p,
4943 bool threadgroup)
4944{
4945}
4946static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4947 struct cgroup *cont,
4948 struct cgroup *old_cont,
4949 struct task_struct *p,
4950 bool threadgroup)
4951{
4952}
4953#endif
67e465a7 4954
8cdea7c0
BS
4955struct cgroup_subsys mem_cgroup_subsys = {
4956 .name = "memory",
4957 .subsys_id = mem_cgroup_subsys_id,
4958 .create = mem_cgroup_create,
df878fb0 4959 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4960 .destroy = mem_cgroup_destroy,
4961 .populate = mem_cgroup_populate,
7dc74be0
DN
4962 .can_attach = mem_cgroup_can_attach,
4963 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4964 .attach = mem_cgroup_move_task,
6d12e2d8 4965 .early_init = 0,
04046e1a 4966 .use_id = 1,
8cdea7c0 4967};
c077719b
KH
4968
4969#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
4970static int __init enable_swap_account(char *s)
4971{
4972 /* consider enabled if no parameter or 1 is given */
4973 if (!s || !strcmp(s, "1"))
4974 really_do_swap_account = 1;
4975 else if (!strcmp(s, "0"))
4976 really_do_swap_account = 0;
4977 return 1;
4978}
4979__setup("swapaccount", enable_swap_account);
c077719b
KH
4980
4981static int __init disable_swap_account(char *s)
4982{
a42c390c 4983 enable_swap_account("0");
c077719b
KH
4984 return 1;
4985}
4986__setup("noswapaccount", disable_swap_account);
4987#endif
This page took 1.117573 seconds and 5 git commands to generate.