Merge tag '3.8-pci-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9
JW
146struct mem_cgroup_reclaim_iter {
147 /* css_id of the last scanned hierarchy member */
148 int position;
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
151};
152
6d12e2d8
KH
153/*
154 * per-zone information in memory controller.
155 */
6d12e2d8 156struct mem_cgroup_per_zone {
6290df54 157 struct lruvec lruvec;
1eb49272 158 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 159
527a5ec9
JW
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
161
f64c3f54
BS
162 struct rb_node tree_node; /* RB tree node */
163 unsigned long long usage_in_excess;/* Set to the value by which */
164 /* the soft limit is exceeded*/
165 bool on_tree;
d79154bb 166 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 167 /* use container_of */
6d12e2d8 168};
6d12e2d8
KH
169
170struct mem_cgroup_per_node {
171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
172};
173
174struct mem_cgroup_lru_info {
175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
176};
177
f64c3f54
BS
178/*
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
181 */
182
183struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
186};
187
188struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190};
191
192struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194};
195
196static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197
2e72b634
KS
198struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
201};
202
9490ff27 203/* For threshold */
2e72b634 204struct mem_cgroup_threshold_ary {
748dad36 205 /* An array index points to threshold just below or equal to usage. */
5407a562 206 int current_threshold;
2e72b634
KS
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
211};
2c488db2
KS
212
213struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
216 /*
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
220 */
221 struct mem_cgroup_threshold_ary *spare;
222};
223
9490ff27
KH
224/* for OOM */
225struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
228};
2e72b634 229
c0ff4b85
R
230static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 232
8cdea7c0
BS
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 *
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
8cdea7c0
BS
243 */
244struct mem_cgroup {
245 struct cgroup_subsys_state css;
246 /*
247 * the counter to account for memory usage
248 */
249 struct res_counter res;
59927fb9
HD
250
251 union {
252 /*
253 * the counter to account for mem+swap usage.
254 */
255 struct res_counter memsw;
256
257 /*
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
265 */
266 struct rcu_head rcu_freeing;
267 /*
3afe36b1
GC
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
270 */
271 struct work_struct work_freeing;
272 };
273
510fc4e1
GC
274 /*
275 * the counter to account for kernel memory usage.
276 */
277 struct res_counter kmem;
78fb7466
PE
278 /*
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
78fb7466 281 */
6d12e2d8 282 struct mem_cgroup_lru_info info;
889976db
YH
283 int last_scanned_node;
284#if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
453a9bf3
KH
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
889976db 288#endif
18f59ea7
BS
289 /*
290 * Should the accounting and control be hierarchical, per subtree?
291 */
292 bool use_hierarchy;
510fc4e1 293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
294
295 bool oom_lock;
296 atomic_t under_oom;
297
8c7c6e34 298 atomic_t refcnt;
14797e23 299
1f4c025b 300 int swappiness;
3c11ecf4
KH
301 /* OOM-Killer disable */
302 int oom_kill_disable;
a7885eb8 303
22a668d7
KH
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum;
306
2e72b634
KS
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock;
309
310 /* thresholds for memory usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds thresholds;
907860ed 312
2e72b634 313 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 314 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 315
9490ff27
KH
316 /* For oom notifier event fd */
317 struct list_head oom_notify;
185efc0f 318
7dc74be0
DN
319 /*
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
322 */
323 unsigned long move_charge_at_immigrate;
619d094b
KH
324 /*
325 * set > 0 if pages under this cgroup are moving to other cgroup.
326 */
327 atomic_t moving_account;
312734c0
KH
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock;
d52aa412 330 /*
c62b1a3b 331 * percpu counter.
d52aa412 332 */
3a7951b4 333 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
334 /*
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
337 */
338 struct mem_cgroup_stat_cpu nocpu_base;
339 spinlock_t pcp_counter_lock;
d1a4c0b3 340
4bd2c1ee 341#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
342 struct tcp_memcontrol tcp_mem;
343#endif
2633d7a0
GC
344#if defined(CONFIG_MEMCG_KMEM)
345 /* analogous to slab_common's slab_caches list. per-memcg */
346 struct list_head memcg_slab_caches;
347 /* Not a spinlock, we can take a lot of time walking the list */
348 struct mutex slab_caches_mutex;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351#endif
8cdea7c0
BS
352};
353
510fc4e1
GC
354/* internal only representation about the status of kmem accounting. */
355enum {
356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
359};
360
a8964b9b
GC
361/* We account when limit is on, but only after call sites are patched */
362#define KMEM_ACCOUNTED_MASK \
363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
364
365#ifdef CONFIG_MEMCG_KMEM
366static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
367{
368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
369}
7de37682
GC
370
371static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
372{
373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
374}
375
a8964b9b
GC
376static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
377{
378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
379}
380
55007d84
GC
381static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
382{
383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
384}
385
7de37682
GC
386static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
387{
388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
390}
391
392static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
393{
394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
395 &memcg->kmem_account_flags);
396}
510fc4e1
GC
397#endif
398
7dc74be0
DN
399/* Stuffs for move charges at task migration. */
400/*
401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402 * left-shifted bitmap of these types.
403 */
404enum move_type {
4ffef5fe 405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
407 NR_MOVE_TYPE,
408};
409
4ffef5fe
DN
410/* "mc" and its members are protected by cgroup_mutex */
411static struct move_charge_struct {
b1dd693e 412 spinlock_t lock; /* for from, to */
4ffef5fe
DN
413 struct mem_cgroup *from;
414 struct mem_cgroup *to;
415 unsigned long precharge;
854ffa8d 416 unsigned long moved_charge;
483c30b5 417 unsigned long moved_swap;
8033b97c
DN
418 struct task_struct *moving_task; /* a task moving charges */
419 wait_queue_head_t waitq; /* a waitq for other context */
420} mc = {
2bd9bb20 421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
423};
4ffef5fe 424
90254a65
DN
425static bool move_anon(void)
426{
427 return test_bit(MOVE_CHARGE_TYPE_ANON,
428 &mc.to->move_charge_at_immigrate);
429}
430
87946a72
DN
431static bool move_file(void)
432{
433 return test_bit(MOVE_CHARGE_TYPE_FILE,
434 &mc.to->move_charge_at_immigrate);
435}
436
4e416953
BS
437/*
438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439 * limit reclaim to prevent infinite loops, if they ever occur.
440 */
a0db00fc
KS
441#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
442#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 443
217bc319
KH
444enum charge_type {
445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 446 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
449 NR_CHARGE_TYPE,
450};
451
8c7c6e34 452/* for encoding cft->private value on file */
86ae53e1
GC
453enum res_type {
454 _MEM,
455 _MEMSWAP,
456 _OOM_TYPE,
510fc4e1 457 _KMEM,
86ae53e1
GC
458};
459
a0db00fc
KS
460#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
461#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 462#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
463/* Used for OOM nofiier */
464#define OOM_CONTROL (0)
8c7c6e34 465
75822b44
BS
466/*
467 * Reclaim flags for mem_cgroup_hierarchical_reclaim
468 */
469#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
470#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
472#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
473
c0ff4b85
R
474static void mem_cgroup_get(struct mem_cgroup *memcg);
475static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 476
b2145145
WL
477static inline
478struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
479{
480 return container_of(s, struct mem_cgroup, css);
481}
482
7ffc0edc
MH
483static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
484{
485 return (memcg == root_mem_cgroup);
486}
487
e1aab161 488/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 489#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 490
e1aab161
GC
491void sock_update_memcg(struct sock *sk)
492{
376be5ff 493 if (mem_cgroup_sockets_enabled) {
e1aab161 494 struct mem_cgroup *memcg;
3f134619 495 struct cg_proto *cg_proto;
e1aab161
GC
496
497 BUG_ON(!sk->sk_prot->proto_cgroup);
498
f3f511e1
GC
499 /* Socket cloning can throw us here with sk_cgrp already
500 * filled. It won't however, necessarily happen from
501 * process context. So the test for root memcg given
502 * the current task's memcg won't help us in this case.
503 *
504 * Respecting the original socket's memcg is a better
505 * decision in this case.
506 */
507 if (sk->sk_cgrp) {
508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
509 mem_cgroup_get(sk->sk_cgrp->memcg);
510 return;
511 }
512
e1aab161
GC
513 rcu_read_lock();
514 memcg = mem_cgroup_from_task(current);
3f134619
GC
515 cg_proto = sk->sk_prot->proto_cgroup(memcg);
516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 517 mem_cgroup_get(memcg);
3f134619 518 sk->sk_cgrp = cg_proto;
e1aab161
GC
519 }
520 rcu_read_unlock();
521 }
522}
523EXPORT_SYMBOL(sock_update_memcg);
524
525void sock_release_memcg(struct sock *sk)
526{
376be5ff 527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
528 struct mem_cgroup *memcg;
529 WARN_ON(!sk->sk_cgrp->memcg);
530 memcg = sk->sk_cgrp->memcg;
531 mem_cgroup_put(memcg);
532 }
533}
d1a4c0b3
GC
534
535struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
536{
537 if (!memcg || mem_cgroup_is_root(memcg))
538 return NULL;
539
540 return &memcg->tcp_mem.cg_proto;
541}
542EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 543
3f134619
GC
544static void disarm_sock_keys(struct mem_cgroup *memcg)
545{
546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
547 return;
548 static_key_slow_dec(&memcg_socket_limit_enabled);
549}
550#else
551static void disarm_sock_keys(struct mem_cgroup *memcg)
552{
553}
554#endif
555
a8964b9b 556#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
557/*
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559 * There are two main reasons for not using the css_id for this:
560 * 1) this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
564 *
565 * 2) In order not to violate the cgroup API, we would like to do all memory
566 * allocation in ->create(). At that point, we haven't yet allocated the
567 * css_id. Having a separate index prevents us from messing with the cgroup
568 * core for this
569 *
570 * The current size of the caches array is stored in
571 * memcg_limited_groups_array_size. It will double each time we have to
572 * increase it.
573 */
574static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
575int memcg_limited_groups_array_size;
576
55007d84
GC
577/*
578 * MIN_SIZE is different than 1, because we would like to avoid going through
579 * the alloc/free process all the time. In a small machine, 4 kmem-limited
580 * cgroups is a reasonable guess. In the future, it could be a parameter or
581 * tunable, but that is strictly not necessary.
582 *
583 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
584 * this constant directly from cgroup, but it is understandable that this is
585 * better kept as an internal representation in cgroup.c. In any case, the
586 * css_id space is not getting any smaller, and we don't have to necessarily
587 * increase ours as well if it increases.
588 */
589#define MEMCG_CACHES_MIN_SIZE 4
590#define MEMCG_CACHES_MAX_SIZE 65535
591
d7f25f8a
GC
592/*
593 * A lot of the calls to the cache allocation functions are expected to be
594 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
595 * conditional to this static branch, we'll have to allow modules that does
596 * kmem_cache_alloc and the such to see this symbol as well
597 */
a8964b9b 598struct static_key memcg_kmem_enabled_key;
d7f25f8a 599EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
600
601static void disarm_kmem_keys(struct mem_cgroup *memcg)
602{
55007d84 603 if (memcg_kmem_is_active(memcg)) {
a8964b9b 604 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
605 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
606 }
bea207c8
GC
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
611 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
612}
613#else
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
616}
617#endif /* CONFIG_MEMCG_KMEM */
618
619static void disarm_static_keys(struct mem_cgroup *memcg)
620{
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623}
624
c0ff4b85 625static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 626
f64c3f54 627static struct mem_cgroup_per_zone *
c0ff4b85 628mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 629{
c0ff4b85 630 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
631}
632
c0ff4b85 633struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 634{
c0ff4b85 635 return &memcg->css;
d324236b
WF
636}
637
f64c3f54 638static struct mem_cgroup_per_zone *
c0ff4b85 639page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 640{
97a6c37b
JW
641 int nid = page_to_nid(page);
642 int zid = page_zonenum(page);
f64c3f54 643
c0ff4b85 644 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
645}
646
647static struct mem_cgroup_tree_per_zone *
648soft_limit_tree_node_zone(int nid, int zid)
649{
650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
651}
652
653static struct mem_cgroup_tree_per_zone *
654soft_limit_tree_from_page(struct page *page)
655{
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
658
659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
660}
661
662static void
c0ff4b85 663__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 664 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
665 struct mem_cgroup_tree_per_zone *mctz,
666 unsigned long long new_usage_in_excess)
f64c3f54
BS
667{
668 struct rb_node **p = &mctz->rb_root.rb_node;
669 struct rb_node *parent = NULL;
670 struct mem_cgroup_per_zone *mz_node;
671
672 if (mz->on_tree)
673 return;
674
ef8745c1
KH
675 mz->usage_in_excess = new_usage_in_excess;
676 if (!mz->usage_in_excess)
677 return;
f64c3f54
BS
678 while (*p) {
679 parent = *p;
680 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
681 tree_node);
682 if (mz->usage_in_excess < mz_node->usage_in_excess)
683 p = &(*p)->rb_left;
684 /*
685 * We can't avoid mem cgroups that are over their soft
686 * limit by the same amount
687 */
688 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
689 p = &(*p)->rb_right;
690 }
691 rb_link_node(&mz->tree_node, parent, p);
692 rb_insert_color(&mz->tree_node, &mctz->rb_root);
693 mz->on_tree = true;
4e416953
BS
694}
695
696static void
c0ff4b85 697__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
698 struct mem_cgroup_per_zone *mz,
699 struct mem_cgroup_tree_per_zone *mctz)
700{
701 if (!mz->on_tree)
702 return;
703 rb_erase(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = false;
705}
706
f64c3f54 707static void
c0ff4b85 708mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
709 struct mem_cgroup_per_zone *mz,
710 struct mem_cgroup_tree_per_zone *mctz)
711{
712 spin_lock(&mctz->lock);
c0ff4b85 713 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
714 spin_unlock(&mctz->lock);
715}
716
f64c3f54 717
c0ff4b85 718static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 719{
ef8745c1 720 unsigned long long excess;
f64c3f54
BS
721 struct mem_cgroup_per_zone *mz;
722 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
723 int nid = page_to_nid(page);
724 int zid = page_zonenum(page);
f64c3f54
BS
725 mctz = soft_limit_tree_from_page(page);
726
727 /*
4e649152
KH
728 * Necessary to update all ancestors when hierarchy is used.
729 * because their event counter is not touched.
f64c3f54 730 */
c0ff4b85
R
731 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
732 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
733 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
734 /*
735 * We have to update the tree if mz is on RB-tree or
736 * mem is over its softlimit.
737 */
ef8745c1 738 if (excess || mz->on_tree) {
4e649152
KH
739 spin_lock(&mctz->lock);
740 /* if on-tree, remove it */
741 if (mz->on_tree)
c0ff4b85 742 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 743 /*
ef8745c1
KH
744 * Insert again. mz->usage_in_excess will be updated.
745 * If excess is 0, no tree ops.
4e649152 746 */
c0ff4b85 747 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
748 spin_unlock(&mctz->lock);
749 }
f64c3f54
BS
750 }
751}
752
c0ff4b85 753static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
754{
755 int node, zone;
756 struct mem_cgroup_per_zone *mz;
757 struct mem_cgroup_tree_per_zone *mctz;
758
3ed28fa1 759 for_each_node(node) {
f64c3f54 760 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 761 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 762 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 763 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
764 }
765 }
766}
767
4e416953
BS
768static struct mem_cgroup_per_zone *
769__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
770{
771 struct rb_node *rightmost = NULL;
26251eaf 772 struct mem_cgroup_per_zone *mz;
4e416953
BS
773
774retry:
26251eaf 775 mz = NULL;
4e416953
BS
776 rightmost = rb_last(&mctz->rb_root);
777 if (!rightmost)
778 goto done; /* Nothing to reclaim from */
779
780 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
781 /*
782 * Remove the node now but someone else can add it back,
783 * we will to add it back at the end of reclaim to its correct
784 * position in the tree.
785 */
d79154bb
HD
786 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
787 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
788 !css_tryget(&mz->memcg->css))
4e416953
BS
789 goto retry;
790done:
791 return mz;
792}
793
794static struct mem_cgroup_per_zone *
795mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
796{
797 struct mem_cgroup_per_zone *mz;
798
799 spin_lock(&mctz->lock);
800 mz = __mem_cgroup_largest_soft_limit_node(mctz);
801 spin_unlock(&mctz->lock);
802 return mz;
803}
804
711d3d2c
KH
805/*
806 * Implementation Note: reading percpu statistics for memcg.
807 *
808 * Both of vmstat[] and percpu_counter has threshold and do periodic
809 * synchronization to implement "quick" read. There are trade-off between
810 * reading cost and precision of value. Then, we may have a chance to implement
811 * a periodic synchronizion of counter in memcg's counter.
812 *
813 * But this _read() function is used for user interface now. The user accounts
814 * memory usage by memory cgroup and he _always_ requires exact value because
815 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
816 * have to visit all online cpus and make sum. So, for now, unnecessary
817 * synchronization is not implemented. (just implemented for cpu hotplug)
818 *
819 * If there are kernel internal actions which can make use of some not-exact
820 * value, and reading all cpu value can be performance bottleneck in some
821 * common workload, threashold and synchonization as vmstat[] should be
822 * implemented.
823 */
c0ff4b85 824static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 825 enum mem_cgroup_stat_index idx)
c62b1a3b 826{
7a159cc9 827 long val = 0;
c62b1a3b 828 int cpu;
c62b1a3b 829
711d3d2c
KH
830 get_online_cpus();
831 for_each_online_cpu(cpu)
c0ff4b85 832 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 833#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
834 spin_lock(&memcg->pcp_counter_lock);
835 val += memcg->nocpu_base.count[idx];
836 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
837#endif
838 put_online_cpus();
c62b1a3b
KH
839 return val;
840}
841
c0ff4b85 842static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
843 bool charge)
844{
845 int val = (charge) ? 1 : -1;
bff6bb83 846 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
847}
848
c0ff4b85 849static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
850 enum mem_cgroup_events_index idx)
851{
852 unsigned long val = 0;
853 int cpu;
854
855 for_each_online_cpu(cpu)
c0ff4b85 856 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 857#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
858 spin_lock(&memcg->pcp_counter_lock);
859 val += memcg->nocpu_base.events[idx];
860 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
861#endif
862 return val;
863}
864
c0ff4b85 865static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 866 bool anon, int nr_pages)
d52aa412 867{
c62b1a3b
KH
868 preempt_disable();
869
b2402857
KH
870 /*
871 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
872 * counted as CACHE even if it's on ANON LRU.
873 */
874 if (anon)
875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 876 nr_pages);
d52aa412 877 else
b2402857 878 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 879 nr_pages);
55e462b0 880
e401f176
KH
881 /* pagein of a big page is an event. So, ignore page size */
882 if (nr_pages > 0)
c0ff4b85 883 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 884 else {
c0ff4b85 885 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
886 nr_pages = -nr_pages; /* for event */
887 }
e401f176 888
13114716 889 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 890
c62b1a3b 891 preempt_enable();
6d12e2d8
KH
892}
893
bb2a0de9 894unsigned long
4d7dcca2 895mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
896{
897 struct mem_cgroup_per_zone *mz;
898
899 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
900 return mz->lru_size[lru];
901}
902
903static unsigned long
c0ff4b85 904mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 905 unsigned int lru_mask)
889976db
YH
906{
907 struct mem_cgroup_per_zone *mz;
f156ab93 908 enum lru_list lru;
bb2a0de9
KH
909 unsigned long ret = 0;
910
c0ff4b85 911 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 912
f156ab93
HD
913 for_each_lru(lru) {
914 if (BIT(lru) & lru_mask)
915 ret += mz->lru_size[lru];
bb2a0de9
KH
916 }
917 return ret;
918}
919
920static unsigned long
c0ff4b85 921mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
922 int nid, unsigned int lru_mask)
923{
889976db
YH
924 u64 total = 0;
925 int zid;
926
bb2a0de9 927 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
928 total += mem_cgroup_zone_nr_lru_pages(memcg,
929 nid, zid, lru_mask);
bb2a0de9 930
889976db
YH
931 return total;
932}
bb2a0de9 933
c0ff4b85 934static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 935 unsigned int lru_mask)
6d12e2d8 936{
889976db 937 int nid;
6d12e2d8
KH
938 u64 total = 0;
939
31aaea4a 940 for_each_node_state(nid, N_MEMORY)
c0ff4b85 941 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 942 return total;
d52aa412
KH
943}
944
f53d7ce3
JW
945static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
946 enum mem_cgroup_events_target target)
7a159cc9
JW
947{
948 unsigned long val, next;
949
13114716 950 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 951 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 952 /* from time_after() in jiffies.h */
f53d7ce3
JW
953 if ((long)next - (long)val < 0) {
954 switch (target) {
955 case MEM_CGROUP_TARGET_THRESH:
956 next = val + THRESHOLDS_EVENTS_TARGET;
957 break;
958 case MEM_CGROUP_TARGET_SOFTLIMIT:
959 next = val + SOFTLIMIT_EVENTS_TARGET;
960 break;
961 case MEM_CGROUP_TARGET_NUMAINFO:
962 next = val + NUMAINFO_EVENTS_TARGET;
963 break;
964 default:
965 break;
966 }
967 __this_cpu_write(memcg->stat->targets[target], next);
968 return true;
7a159cc9 969 }
f53d7ce3 970 return false;
d2265e6f
KH
971}
972
973/*
974 * Check events in order.
975 *
976 */
c0ff4b85 977static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 978{
4799401f 979 preempt_disable();
d2265e6f 980 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
981 if (unlikely(mem_cgroup_event_ratelimit(memcg,
982 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
983 bool do_softlimit;
984 bool do_numainfo __maybe_unused;
f53d7ce3
JW
985
986 do_softlimit = mem_cgroup_event_ratelimit(memcg,
987 MEM_CGROUP_TARGET_SOFTLIMIT);
988#if MAX_NUMNODES > 1
989 do_numainfo = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_NUMAINFO);
991#endif
992 preempt_enable();
993
c0ff4b85 994 mem_cgroup_threshold(memcg);
f53d7ce3 995 if (unlikely(do_softlimit))
c0ff4b85 996 mem_cgroup_update_tree(memcg, page);
453a9bf3 997#if MAX_NUMNODES > 1
f53d7ce3 998 if (unlikely(do_numainfo))
c0ff4b85 999 atomic_inc(&memcg->numainfo_events);
453a9bf3 1000#endif
f53d7ce3
JW
1001 } else
1002 preempt_enable();
d2265e6f
KH
1003}
1004
d1a4c0b3 1005struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1006{
b2145145
WL
1007 return mem_cgroup_from_css(
1008 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1009}
1010
cf475ad2 1011struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1012{
31a78f23
BS
1013 /*
1014 * mm_update_next_owner() may clear mm->owner to NULL
1015 * if it races with swapoff, page migration, etc.
1016 * So this can be called with p == NULL.
1017 */
1018 if (unlikely(!p))
1019 return NULL;
1020
b2145145 1021 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1022}
1023
a433658c 1024struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1025{
c0ff4b85 1026 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1027
1028 if (!mm)
1029 return NULL;
54595fe2
KH
1030 /*
1031 * Because we have no locks, mm->owner's may be being moved to other
1032 * cgroup. We use css_tryget() here even if this looks
1033 * pessimistic (rather than adding locks here).
1034 */
1035 rcu_read_lock();
1036 do {
c0ff4b85
R
1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 if (unlikely(!memcg))
54595fe2 1039 break;
c0ff4b85 1040 } while (!css_tryget(&memcg->css));
54595fe2 1041 rcu_read_unlock();
c0ff4b85 1042 return memcg;
54595fe2
KH
1043}
1044
5660048c
JW
1045/**
1046 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1047 * @root: hierarchy root
1048 * @prev: previously returned memcg, NULL on first invocation
1049 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1050 *
1051 * Returns references to children of the hierarchy below @root, or
1052 * @root itself, or %NULL after a full round-trip.
1053 *
1054 * Caller must pass the return value in @prev on subsequent
1055 * invocations for reference counting, or use mem_cgroup_iter_break()
1056 * to cancel a hierarchy walk before the round-trip is complete.
1057 *
1058 * Reclaimers can specify a zone and a priority level in @reclaim to
1059 * divide up the memcgs in the hierarchy among all concurrent
1060 * reclaimers operating on the same zone and priority.
1061 */
1062struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1063 struct mem_cgroup *prev,
1064 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1065{
9f3a0d09
JW
1066 struct mem_cgroup *memcg = NULL;
1067 int id = 0;
711d3d2c 1068
5660048c
JW
1069 if (mem_cgroup_disabled())
1070 return NULL;
1071
9f3a0d09
JW
1072 if (!root)
1073 root = root_mem_cgroup;
7d74b06f 1074
9f3a0d09
JW
1075 if (prev && !reclaim)
1076 id = css_id(&prev->css);
14067bb3 1077
9f3a0d09
JW
1078 if (prev && prev != root)
1079 css_put(&prev->css);
14067bb3 1080
9f3a0d09
JW
1081 if (!root->use_hierarchy && root != root_mem_cgroup) {
1082 if (prev)
1083 return NULL;
1084 return root;
1085 }
14067bb3 1086
9f3a0d09 1087 while (!memcg) {
527a5ec9 1088 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 1089 struct cgroup_subsys_state *css;
711d3d2c 1090
527a5ec9
JW
1091 if (reclaim) {
1092 int nid = zone_to_nid(reclaim->zone);
1093 int zid = zone_idx(reclaim->zone);
1094 struct mem_cgroup_per_zone *mz;
1095
1096 mz = mem_cgroup_zoneinfo(root, nid, zid);
1097 iter = &mz->reclaim_iter[reclaim->priority];
1098 if (prev && reclaim->generation != iter->generation)
1099 return NULL;
1100 id = iter->position;
1101 }
7d74b06f 1102
9f3a0d09
JW
1103 rcu_read_lock();
1104 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1105 if (css) {
1106 if (css == &root->css || css_tryget(css))
b2145145 1107 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
1108 } else
1109 id = 0;
14067bb3 1110 rcu_read_unlock();
14067bb3 1111
527a5ec9
JW
1112 if (reclaim) {
1113 iter->position = id;
1114 if (!css)
1115 iter->generation++;
1116 else if (!prev && memcg)
1117 reclaim->generation = iter->generation;
1118 }
9f3a0d09
JW
1119
1120 if (prev && !css)
1121 return NULL;
1122 }
1123 return memcg;
14067bb3 1124}
7d74b06f 1125
5660048c
JW
1126/**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
9f3a0d09
JW
1133{
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138}
7d74b06f 1139
9f3a0d09
JW
1140/*
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1147 iter != NULL; \
527a5ec9 1148 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1149
9f3a0d09 1150#define for_each_mem_cgroup(iter) \
527a5ec9 1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1152 iter != NULL; \
527a5ec9 1153 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1154
68ae564b 1155void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1156{
c0ff4b85 1157 struct mem_cgroup *memcg;
456f998e 1158
456f998e 1159 rcu_read_lock();
c0ff4b85
R
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
456f998e
YH
1162 goto out;
1163
1164 switch (idx) {
456f998e 1165 case PGFAULT:
0e574a93
JW
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 break;
1168 case PGMAJFAULT:
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1170 break;
1171 default:
1172 BUG();
1173 }
1174out:
1175 rcu_read_unlock();
1176}
68ae564b 1177EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1178
925b7673
JW
1179/**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
fa9add64 1182 * @memcg: memcg of the wanted lruvec
925b7673
JW
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1190{
1191 struct mem_cgroup_per_zone *mz;
bea8c150 1192 struct lruvec *lruvec;
925b7673 1193
bea8c150
HD
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1196 goto out;
1197 }
925b7673
JW
1198
1199 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1200 lruvec = &mz->lruvec;
1201out:
1202 /*
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1206 */
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1209 return lruvec;
925b7673
JW
1210}
1211
08e552c6
KH
1212/*
1213 * Following LRU functions are allowed to be used without PCG_LOCK.
1214 * Operations are called by routine of global LRU independently from memcg.
1215 * What we have to take care of here is validness of pc->mem_cgroup.
1216 *
1217 * Changes to pc->mem_cgroup happens when
1218 * 1. charge
1219 * 2. moving account
1220 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1221 * It is added to LRU before charge.
1222 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1223 * When moving account, the page is not on LRU. It's isolated.
1224 */
4f98a2fe 1225
925b7673 1226/**
fa9add64 1227 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1228 * @page: the page
fa9add64 1229 * @zone: zone of the page
925b7673 1230 */
fa9add64 1231struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1232{
08e552c6 1233 struct mem_cgroup_per_zone *mz;
925b7673
JW
1234 struct mem_cgroup *memcg;
1235 struct page_cgroup *pc;
bea8c150 1236 struct lruvec *lruvec;
6d12e2d8 1237
bea8c150
HD
1238 if (mem_cgroup_disabled()) {
1239 lruvec = &zone->lruvec;
1240 goto out;
1241 }
925b7673 1242
08e552c6 1243 pc = lookup_page_cgroup(page);
38c5d72f 1244 memcg = pc->mem_cgroup;
7512102c
HD
1245
1246 /*
fa9add64 1247 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1248 * an uncharged page off lru does nothing to secure
1249 * its former mem_cgroup from sudden removal.
1250 *
1251 * Our caller holds lru_lock, and PageCgroupUsed is updated
1252 * under page_cgroup lock: between them, they make all uses
1253 * of pc->mem_cgroup safe.
1254 */
fa9add64 1255 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1256 pc->mem_cgroup = memcg = root_mem_cgroup;
1257
925b7673 1258 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1259 lruvec = &mz->lruvec;
1260out:
1261 /*
1262 * Since a node can be onlined after the mem_cgroup was created,
1263 * we have to be prepared to initialize lruvec->zone here;
1264 * and if offlined then reonlined, we need to reinitialize it.
1265 */
1266 if (unlikely(lruvec->zone != zone))
1267 lruvec->zone = zone;
1268 return lruvec;
08e552c6 1269}
b69408e8 1270
925b7673 1271/**
fa9add64
HD
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @nr_pages: positive when adding or negative when removing
925b7673 1276 *
fa9add64
HD
1277 * This function must be called when a page is added to or removed from an
1278 * lru list.
3f58a829 1279 */
fa9add64
HD
1280void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1281 int nr_pages)
3f58a829
MK
1282{
1283 struct mem_cgroup_per_zone *mz;
fa9add64 1284 unsigned long *lru_size;
3f58a829
MK
1285
1286 if (mem_cgroup_disabled())
1287 return;
1288
fa9add64
HD
1289 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1290 lru_size = mz->lru_size + lru;
1291 *lru_size += nr_pages;
1292 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1293}
544122e5 1294
3e92041d 1295/*
c0ff4b85 1296 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1297 * hierarchy subtree
1298 */
c3ac9a8a
JW
1299bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1300 struct mem_cgroup *memcg)
3e92041d 1301{
91c63734
JW
1302 if (root_memcg == memcg)
1303 return true;
3a981f48 1304 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1305 return false;
c3ac9a8a
JW
1306 return css_is_ancestor(&memcg->css, &root_memcg->css);
1307}
1308
1309static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1310 struct mem_cgroup *memcg)
1311{
1312 bool ret;
1313
91c63734 1314 rcu_read_lock();
c3ac9a8a 1315 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1316 rcu_read_unlock();
1317 return ret;
3e92041d
MH
1318}
1319
c0ff4b85 1320int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1321{
1322 int ret;
0b7f569e 1323 struct mem_cgroup *curr = NULL;
158e0a2d 1324 struct task_struct *p;
4c4a2214 1325
158e0a2d 1326 p = find_lock_task_mm(task);
de077d22
DR
1327 if (p) {
1328 curr = try_get_mem_cgroup_from_mm(p->mm);
1329 task_unlock(p);
1330 } else {
1331 /*
1332 * All threads may have already detached their mm's, but the oom
1333 * killer still needs to detect if they have already been oom
1334 * killed to prevent needlessly killing additional tasks.
1335 */
1336 task_lock(task);
1337 curr = mem_cgroup_from_task(task);
1338 if (curr)
1339 css_get(&curr->css);
1340 task_unlock(task);
1341 }
0b7f569e
KH
1342 if (!curr)
1343 return 0;
d31f56db 1344 /*
c0ff4b85 1345 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1346 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1347 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1348 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1349 */
c0ff4b85 1350 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1351 css_put(&curr->css);
4c4a2214
DR
1352 return ret;
1353}
1354
c56d5c7d 1355int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1356{
9b272977 1357 unsigned long inactive_ratio;
14797e23 1358 unsigned long inactive;
9b272977 1359 unsigned long active;
c772be93 1360 unsigned long gb;
14797e23 1361
4d7dcca2
HD
1362 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1363 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1364
c772be93
KM
1365 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1366 if (gb)
1367 inactive_ratio = int_sqrt(10 * gb);
1368 else
1369 inactive_ratio = 1;
1370
9b272977 1371 return inactive * inactive_ratio < active;
14797e23
KM
1372}
1373
c56d5c7d 1374int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1375{
1376 unsigned long active;
1377 unsigned long inactive;
1378
4d7dcca2
HD
1379 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1380 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1381
1382 return (active > inactive);
1383}
1384
6d61ef40
BS
1385#define mem_cgroup_from_res_counter(counter, member) \
1386 container_of(counter, struct mem_cgroup, member)
1387
19942822 1388/**
9d11ea9f 1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1390 * @memcg: the memory cgroup
19942822 1391 *
9d11ea9f 1392 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1393 * pages.
19942822 1394 */
c0ff4b85 1395static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1396{
9d11ea9f
JW
1397 unsigned long long margin;
1398
c0ff4b85 1399 margin = res_counter_margin(&memcg->res);
9d11ea9f 1400 if (do_swap_account)
c0ff4b85 1401 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1402 return margin >> PAGE_SHIFT;
19942822
JW
1403}
1404
1f4c025b 1405int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1406{
1407 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1408
1409 /* root ? */
1410 if (cgrp->parent == NULL)
1411 return vm_swappiness;
1412
bf1ff263 1413 return memcg->swappiness;
a7885eb8
KM
1414}
1415
619d094b
KH
1416/*
1417 * memcg->moving_account is used for checking possibility that some thread is
1418 * calling move_account(). When a thread on CPU-A starts moving pages under
1419 * a memcg, other threads should check memcg->moving_account under
1420 * rcu_read_lock(), like this:
1421 *
1422 * CPU-A CPU-B
1423 * rcu_read_lock()
1424 * memcg->moving_account+1 if (memcg->mocing_account)
1425 * take heavy locks.
1426 * synchronize_rcu() update something.
1427 * rcu_read_unlock()
1428 * start move here.
1429 */
4331f7d3
KH
1430
1431/* for quick checking without looking up memcg */
1432atomic_t memcg_moving __read_mostly;
1433
c0ff4b85 1434static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1435{
4331f7d3 1436 atomic_inc(&memcg_moving);
619d094b 1437 atomic_inc(&memcg->moving_account);
32047e2a
KH
1438 synchronize_rcu();
1439}
1440
c0ff4b85 1441static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1442{
619d094b
KH
1443 /*
1444 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1445 * We check NULL in callee rather than caller.
1446 */
4331f7d3
KH
1447 if (memcg) {
1448 atomic_dec(&memcg_moving);
619d094b 1449 atomic_dec(&memcg->moving_account);
4331f7d3 1450 }
32047e2a 1451}
619d094b 1452
32047e2a
KH
1453/*
1454 * 2 routines for checking "mem" is under move_account() or not.
1455 *
13fd1dd9
AM
1456 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1457 * is used for avoiding races in accounting. If true,
32047e2a
KH
1458 * pc->mem_cgroup may be overwritten.
1459 *
1460 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1461 * under hierarchy of moving cgroups. This is for
1462 * waiting at hith-memory prressure caused by "move".
1463 */
1464
13fd1dd9 1465static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1466{
1467 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1468 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1469}
4b534334 1470
c0ff4b85 1471static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1472{
2bd9bb20
KH
1473 struct mem_cgroup *from;
1474 struct mem_cgroup *to;
4b534334 1475 bool ret = false;
2bd9bb20
KH
1476 /*
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 */
1480 spin_lock(&mc.lock);
1481 from = mc.from;
1482 to = mc.to;
1483 if (!from)
1484 goto unlock;
3e92041d 1485
c0ff4b85
R
1486 ret = mem_cgroup_same_or_subtree(memcg, from)
1487 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1488unlock:
1489 spin_unlock(&mc.lock);
4b534334
KH
1490 return ret;
1491}
1492
c0ff4b85 1493static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1494{
1495 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1496 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1497 DEFINE_WAIT(wait);
1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 /* moving charge context might have finished. */
1500 if (mc.moving_task)
1501 schedule();
1502 finish_wait(&mc.waitq, &wait);
1503 return true;
1504 }
1505 }
1506 return false;
1507}
1508
312734c0
KH
1509/*
1510 * Take this lock when
1511 * - a code tries to modify page's memcg while it's USED.
1512 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1513 * see mem_cgroup_stolen(), too.
312734c0
KH
1514 */
1515static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1516 unsigned long *flags)
1517{
1518 spin_lock_irqsave(&memcg->move_lock, *flags);
1519}
1520
1521static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1522 unsigned long *flags)
1523{
1524 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1525}
1526
e222432b 1527/**
6a6135b6 1528 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1529 * @memcg: The memory cgroup that went over limit
1530 * @p: Task that is going to be killed
1531 *
1532 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1533 * enabled
1534 */
1535void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1536{
1537 struct cgroup *task_cgrp;
1538 struct cgroup *mem_cgrp;
1539 /*
1540 * Need a buffer in BSS, can't rely on allocations. The code relies
1541 * on the assumption that OOM is serialized for memory controller.
1542 * If this assumption is broken, revisit this code.
1543 */
1544 static char memcg_name[PATH_MAX];
1545 int ret;
1546
d31f56db 1547 if (!memcg || !p)
e222432b
BS
1548 return;
1549
e222432b
BS
1550 rcu_read_lock();
1551
1552 mem_cgrp = memcg->css.cgroup;
1553 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1554
1555 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1556 if (ret < 0) {
1557 /*
1558 * Unfortunately, we are unable to convert to a useful name
1559 * But we'll still print out the usage information
1560 */
1561 rcu_read_unlock();
1562 goto done;
1563 }
1564 rcu_read_unlock();
1565
1566 printk(KERN_INFO "Task in %s killed", memcg_name);
1567
1568 rcu_read_lock();
1569 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1570 if (ret < 0) {
1571 rcu_read_unlock();
1572 goto done;
1573 }
1574 rcu_read_unlock();
1575
1576 /*
1577 * Continues from above, so we don't need an KERN_ level
1578 */
1579 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1580done:
1581
1582 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1583 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1584 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1585 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1586 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1587 "failcnt %llu\n",
1588 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1589 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1590 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
510fc4e1
GC
1591 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1592 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1593 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1594 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
e222432b
BS
1595}
1596
81d39c20
KH
1597/*
1598 * This function returns the number of memcg under hierarchy tree. Returns
1599 * 1(self count) if no children.
1600 */
c0ff4b85 1601static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1602{
1603 int num = 0;
7d74b06f
KH
1604 struct mem_cgroup *iter;
1605
c0ff4b85 1606 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1607 num++;
81d39c20
KH
1608 return num;
1609}
1610
a63d83f4
DR
1611/*
1612 * Return the memory (and swap, if configured) limit for a memcg.
1613 */
9cbb78bb 1614static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1615{
1616 u64 limit;
a63d83f4 1617
f3e8eb70 1618 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1619
a63d83f4 1620 /*
9a5a8f19 1621 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1622 */
9a5a8f19
MH
1623 if (mem_cgroup_swappiness(memcg)) {
1624 u64 memsw;
1625
1626 limit += total_swap_pages << PAGE_SHIFT;
1627 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1628
1629 /*
1630 * If memsw is finite and limits the amount of swap space
1631 * available to this memcg, return that limit.
1632 */
1633 limit = min(limit, memsw);
1634 }
1635
1636 return limit;
a63d83f4
DR
1637}
1638
19965460
DR
1639static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1640 int order)
9cbb78bb
DR
1641{
1642 struct mem_cgroup *iter;
1643 unsigned long chosen_points = 0;
1644 unsigned long totalpages;
1645 unsigned int points = 0;
1646 struct task_struct *chosen = NULL;
1647
876aafbf
DR
1648 /*
1649 * If current has a pending SIGKILL, then automatically select it. The
1650 * goal is to allow it to allocate so that it may quickly exit and free
1651 * its memory.
1652 */
1653 if (fatal_signal_pending(current)) {
1654 set_thread_flag(TIF_MEMDIE);
1655 return;
1656 }
1657
1658 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1659 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1660 for_each_mem_cgroup_tree(iter, memcg) {
1661 struct cgroup *cgroup = iter->css.cgroup;
1662 struct cgroup_iter it;
1663 struct task_struct *task;
1664
1665 cgroup_iter_start(cgroup, &it);
1666 while ((task = cgroup_iter_next(cgroup, &it))) {
1667 switch (oom_scan_process_thread(task, totalpages, NULL,
1668 false)) {
1669 case OOM_SCAN_SELECT:
1670 if (chosen)
1671 put_task_struct(chosen);
1672 chosen = task;
1673 chosen_points = ULONG_MAX;
1674 get_task_struct(chosen);
1675 /* fall through */
1676 case OOM_SCAN_CONTINUE:
1677 continue;
1678 case OOM_SCAN_ABORT:
1679 cgroup_iter_end(cgroup, &it);
1680 mem_cgroup_iter_break(memcg, iter);
1681 if (chosen)
1682 put_task_struct(chosen);
1683 return;
1684 case OOM_SCAN_OK:
1685 break;
1686 };
1687 points = oom_badness(task, memcg, NULL, totalpages);
1688 if (points > chosen_points) {
1689 if (chosen)
1690 put_task_struct(chosen);
1691 chosen = task;
1692 chosen_points = points;
1693 get_task_struct(chosen);
1694 }
1695 }
1696 cgroup_iter_end(cgroup, &it);
1697 }
1698
1699 if (!chosen)
1700 return;
1701 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1702 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1703 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1704}
1705
5660048c
JW
1706static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1707 gfp_t gfp_mask,
1708 unsigned long flags)
1709{
1710 unsigned long total = 0;
1711 bool noswap = false;
1712 int loop;
1713
1714 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1715 noswap = true;
1716 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1717 noswap = true;
1718
1719 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1720 if (loop)
1721 drain_all_stock_async(memcg);
1722 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1723 /*
1724 * Allow limit shrinkers, which are triggered directly
1725 * by userspace, to catch signals and stop reclaim
1726 * after minimal progress, regardless of the margin.
1727 */
1728 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1729 break;
1730 if (mem_cgroup_margin(memcg))
1731 break;
1732 /*
1733 * If nothing was reclaimed after two attempts, there
1734 * may be no reclaimable pages in this hierarchy.
1735 */
1736 if (loop && !total)
1737 break;
1738 }
1739 return total;
1740}
1741
4d0c066d
KH
1742/**
1743 * test_mem_cgroup_node_reclaimable
dad7557e 1744 * @memcg: the target memcg
4d0c066d
KH
1745 * @nid: the node ID to be checked.
1746 * @noswap : specify true here if the user wants flle only information.
1747 *
1748 * This function returns whether the specified memcg contains any
1749 * reclaimable pages on a node. Returns true if there are any reclaimable
1750 * pages in the node.
1751 */
c0ff4b85 1752static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1753 int nid, bool noswap)
1754{
c0ff4b85 1755 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1756 return true;
1757 if (noswap || !total_swap_pages)
1758 return false;
c0ff4b85 1759 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1760 return true;
1761 return false;
1762
1763}
889976db
YH
1764#if MAX_NUMNODES > 1
1765
1766/*
1767 * Always updating the nodemask is not very good - even if we have an empty
1768 * list or the wrong list here, we can start from some node and traverse all
1769 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1770 *
1771 */
c0ff4b85 1772static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1773{
1774 int nid;
453a9bf3
KH
1775 /*
1776 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1777 * pagein/pageout changes since the last update.
1778 */
c0ff4b85 1779 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1780 return;
c0ff4b85 1781 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1782 return;
1783
889976db 1784 /* make a nodemask where this memcg uses memory from */
31aaea4a 1785 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1786
31aaea4a 1787 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1788
c0ff4b85
R
1789 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1790 node_clear(nid, memcg->scan_nodes);
889976db 1791 }
453a9bf3 1792
c0ff4b85
R
1793 atomic_set(&memcg->numainfo_events, 0);
1794 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1795}
1796
1797/*
1798 * Selecting a node where we start reclaim from. Because what we need is just
1799 * reducing usage counter, start from anywhere is O,K. Considering
1800 * memory reclaim from current node, there are pros. and cons.
1801 *
1802 * Freeing memory from current node means freeing memory from a node which
1803 * we'll use or we've used. So, it may make LRU bad. And if several threads
1804 * hit limits, it will see a contention on a node. But freeing from remote
1805 * node means more costs for memory reclaim because of memory latency.
1806 *
1807 * Now, we use round-robin. Better algorithm is welcomed.
1808 */
c0ff4b85 1809int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1810{
1811 int node;
1812
c0ff4b85
R
1813 mem_cgroup_may_update_nodemask(memcg);
1814 node = memcg->last_scanned_node;
889976db 1815
c0ff4b85 1816 node = next_node(node, memcg->scan_nodes);
889976db 1817 if (node == MAX_NUMNODES)
c0ff4b85 1818 node = first_node(memcg->scan_nodes);
889976db
YH
1819 /*
1820 * We call this when we hit limit, not when pages are added to LRU.
1821 * No LRU may hold pages because all pages are UNEVICTABLE or
1822 * memcg is too small and all pages are not on LRU. In that case,
1823 * we use curret node.
1824 */
1825 if (unlikely(node == MAX_NUMNODES))
1826 node = numa_node_id();
1827
c0ff4b85 1828 memcg->last_scanned_node = node;
889976db
YH
1829 return node;
1830}
1831
4d0c066d
KH
1832/*
1833 * Check all nodes whether it contains reclaimable pages or not.
1834 * For quick scan, we make use of scan_nodes. This will allow us to skip
1835 * unused nodes. But scan_nodes is lazily updated and may not cotain
1836 * enough new information. We need to do double check.
1837 */
6bbda35c 1838static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1839{
1840 int nid;
1841
1842 /*
1843 * quick check...making use of scan_node.
1844 * We can skip unused nodes.
1845 */
c0ff4b85
R
1846 if (!nodes_empty(memcg->scan_nodes)) {
1847 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1848 nid < MAX_NUMNODES;
c0ff4b85 1849 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1850
c0ff4b85 1851 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1852 return true;
1853 }
1854 }
1855 /*
1856 * Check rest of nodes.
1857 */
31aaea4a 1858 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1859 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1860 continue;
c0ff4b85 1861 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1862 return true;
1863 }
1864 return false;
1865}
1866
889976db 1867#else
c0ff4b85 1868int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1869{
1870 return 0;
1871}
4d0c066d 1872
6bbda35c 1873static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1874{
c0ff4b85 1875 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1876}
889976db
YH
1877#endif
1878
5660048c
JW
1879static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1880 struct zone *zone,
1881 gfp_t gfp_mask,
1882 unsigned long *total_scanned)
6d61ef40 1883{
9f3a0d09 1884 struct mem_cgroup *victim = NULL;
5660048c 1885 int total = 0;
04046e1a 1886 int loop = 0;
9d11ea9f 1887 unsigned long excess;
185efc0f 1888 unsigned long nr_scanned;
527a5ec9
JW
1889 struct mem_cgroup_reclaim_cookie reclaim = {
1890 .zone = zone,
1891 .priority = 0,
1892 };
9d11ea9f 1893
c0ff4b85 1894 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1895
4e416953 1896 while (1) {
527a5ec9 1897 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1898 if (!victim) {
04046e1a 1899 loop++;
4e416953
BS
1900 if (loop >= 2) {
1901 /*
1902 * If we have not been able to reclaim
1903 * anything, it might because there are
1904 * no reclaimable pages under this hierarchy
1905 */
5660048c 1906 if (!total)
4e416953 1907 break;
4e416953 1908 /*
25985edc 1909 * We want to do more targeted reclaim.
4e416953
BS
1910 * excess >> 2 is not to excessive so as to
1911 * reclaim too much, nor too less that we keep
1912 * coming back to reclaim from this cgroup
1913 */
1914 if (total >= (excess >> 2) ||
9f3a0d09 1915 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1916 break;
4e416953 1917 }
9f3a0d09 1918 continue;
4e416953 1919 }
5660048c 1920 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1921 continue;
5660048c
JW
1922 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1923 zone, &nr_scanned);
1924 *total_scanned += nr_scanned;
1925 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1926 break;
6d61ef40 1927 }
9f3a0d09 1928 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1929 return total;
6d61ef40
BS
1930}
1931
867578cb
KH
1932/*
1933 * Check OOM-Killer is already running under our hierarchy.
1934 * If someone is running, return false.
1af8efe9 1935 * Has to be called with memcg_oom_lock
867578cb 1936 */
c0ff4b85 1937static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1938{
79dfdacc 1939 struct mem_cgroup *iter, *failed = NULL;
a636b327 1940
9f3a0d09 1941 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1942 if (iter->oom_lock) {
79dfdacc
MH
1943 /*
1944 * this subtree of our hierarchy is already locked
1945 * so we cannot give a lock.
1946 */
79dfdacc 1947 failed = iter;
9f3a0d09
JW
1948 mem_cgroup_iter_break(memcg, iter);
1949 break;
23751be0
JW
1950 } else
1951 iter->oom_lock = true;
7d74b06f 1952 }
867578cb 1953
79dfdacc 1954 if (!failed)
23751be0 1955 return true;
79dfdacc
MH
1956
1957 /*
1958 * OK, we failed to lock the whole subtree so we have to clean up
1959 * what we set up to the failing subtree
1960 */
9f3a0d09 1961 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1962 if (iter == failed) {
9f3a0d09
JW
1963 mem_cgroup_iter_break(memcg, iter);
1964 break;
79dfdacc
MH
1965 }
1966 iter->oom_lock = false;
1967 }
23751be0 1968 return false;
a636b327 1969}
0b7f569e 1970
79dfdacc 1971/*
1af8efe9 1972 * Has to be called with memcg_oom_lock
79dfdacc 1973 */
c0ff4b85 1974static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1975{
7d74b06f
KH
1976 struct mem_cgroup *iter;
1977
c0ff4b85 1978 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1979 iter->oom_lock = false;
1980 return 0;
1981}
1982
c0ff4b85 1983static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1984{
1985 struct mem_cgroup *iter;
1986
c0ff4b85 1987 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1988 atomic_inc(&iter->under_oom);
1989}
1990
c0ff4b85 1991static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1992{
1993 struct mem_cgroup *iter;
1994
867578cb
KH
1995 /*
1996 * When a new child is created while the hierarchy is under oom,
1997 * mem_cgroup_oom_lock() may not be called. We have to use
1998 * atomic_add_unless() here.
1999 */
c0ff4b85 2000 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2001 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2002}
2003
1af8efe9 2004static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2005static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2006
dc98df5a 2007struct oom_wait_info {
d79154bb 2008 struct mem_cgroup *memcg;
dc98df5a
KH
2009 wait_queue_t wait;
2010};
2011
2012static int memcg_oom_wake_function(wait_queue_t *wait,
2013 unsigned mode, int sync, void *arg)
2014{
d79154bb
HD
2015 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2016 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2017 struct oom_wait_info *oom_wait_info;
2018
2019 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2020 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2021
dc98df5a 2022 /*
d79154bb 2023 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2024 * Then we can use css_is_ancestor without taking care of RCU.
2025 */
c0ff4b85
R
2026 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2027 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2028 return 0;
dc98df5a
KH
2029 return autoremove_wake_function(wait, mode, sync, arg);
2030}
2031
c0ff4b85 2032static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2033{
c0ff4b85
R
2034 /* for filtering, pass "memcg" as argument. */
2035 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2036}
2037
c0ff4b85 2038static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2039{
c0ff4b85
R
2040 if (memcg && atomic_read(&memcg->under_oom))
2041 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2042}
2043
867578cb
KH
2044/*
2045 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2046 */
6bbda35c
KS
2047static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2048 int order)
0b7f569e 2049{
dc98df5a 2050 struct oom_wait_info owait;
3c11ecf4 2051 bool locked, need_to_kill;
867578cb 2052
d79154bb 2053 owait.memcg = memcg;
dc98df5a
KH
2054 owait.wait.flags = 0;
2055 owait.wait.func = memcg_oom_wake_function;
2056 owait.wait.private = current;
2057 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2058 need_to_kill = true;
c0ff4b85 2059 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2060
c0ff4b85 2061 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2062 spin_lock(&memcg_oom_lock);
c0ff4b85 2063 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2064 /*
2065 * Even if signal_pending(), we can't quit charge() loop without
2066 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2067 * under OOM is always welcomed, use TASK_KILLABLE here.
2068 */
3c11ecf4 2069 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2070 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2071 need_to_kill = false;
2072 if (locked)
c0ff4b85 2073 mem_cgroup_oom_notify(memcg);
1af8efe9 2074 spin_unlock(&memcg_oom_lock);
867578cb 2075
3c11ecf4
KH
2076 if (need_to_kill) {
2077 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2078 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2079 } else {
867578cb 2080 schedule();
dc98df5a 2081 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2082 }
1af8efe9 2083 spin_lock(&memcg_oom_lock);
79dfdacc 2084 if (locked)
c0ff4b85
R
2085 mem_cgroup_oom_unlock(memcg);
2086 memcg_wakeup_oom(memcg);
1af8efe9 2087 spin_unlock(&memcg_oom_lock);
867578cb 2088
c0ff4b85 2089 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2090
867578cb
KH
2091 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2092 return false;
2093 /* Give chance to dying process */
715a5ee8 2094 schedule_timeout_uninterruptible(1);
867578cb 2095 return true;
0b7f569e
KH
2096}
2097
d69b042f
BS
2098/*
2099 * Currently used to update mapped file statistics, but the routine can be
2100 * generalized to update other statistics as well.
32047e2a
KH
2101 *
2102 * Notes: Race condition
2103 *
2104 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2105 * it tends to be costly. But considering some conditions, we doesn't need
2106 * to do so _always_.
2107 *
2108 * Considering "charge", lock_page_cgroup() is not required because all
2109 * file-stat operations happen after a page is attached to radix-tree. There
2110 * are no race with "charge".
2111 *
2112 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2113 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2114 * if there are race with "uncharge". Statistics itself is properly handled
2115 * by flags.
2116 *
2117 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2118 * small, we check mm->moving_account and detect there are possibility of race
2119 * If there is, we take a lock.
d69b042f 2120 */
26174efd 2121
89c06bd5
KH
2122void __mem_cgroup_begin_update_page_stat(struct page *page,
2123 bool *locked, unsigned long *flags)
2124{
2125 struct mem_cgroup *memcg;
2126 struct page_cgroup *pc;
2127
2128 pc = lookup_page_cgroup(page);
2129again:
2130 memcg = pc->mem_cgroup;
2131 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2132 return;
2133 /*
2134 * If this memory cgroup is not under account moving, we don't
da92c47d 2135 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2136 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2137 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2138 */
13fd1dd9 2139 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2140 return;
2141
2142 move_lock_mem_cgroup(memcg, flags);
2143 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2144 move_unlock_mem_cgroup(memcg, flags);
2145 goto again;
2146 }
2147 *locked = true;
2148}
2149
2150void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2151{
2152 struct page_cgroup *pc = lookup_page_cgroup(page);
2153
2154 /*
2155 * It's guaranteed that pc->mem_cgroup never changes while
2156 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2157 * should take move_lock_mem_cgroup().
89c06bd5
KH
2158 */
2159 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2160}
2161
2a7106f2
GT
2162void mem_cgroup_update_page_stat(struct page *page,
2163 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2164{
c0ff4b85 2165 struct mem_cgroup *memcg;
32047e2a 2166 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2167 unsigned long uninitialized_var(flags);
d69b042f 2168
cfa44946 2169 if (mem_cgroup_disabled())
d69b042f 2170 return;
89c06bd5 2171
c0ff4b85
R
2172 memcg = pc->mem_cgroup;
2173 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2174 return;
26174efd 2175
26174efd 2176 switch (idx) {
2a7106f2 2177 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2178 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2179 break;
2180 default:
2181 BUG();
8725d541 2182 }
d69b042f 2183
c0ff4b85 2184 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2185}
26174efd 2186
cdec2e42
KH
2187/*
2188 * size of first charge trial. "32" comes from vmscan.c's magic value.
2189 * TODO: maybe necessary to use big numbers in big irons.
2190 */
7ec99d62 2191#define CHARGE_BATCH 32U
cdec2e42
KH
2192struct memcg_stock_pcp {
2193 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2194 unsigned int nr_pages;
cdec2e42 2195 struct work_struct work;
26fe6168 2196 unsigned long flags;
a0db00fc 2197#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2198};
2199static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2200static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2201
a0956d54
SS
2202/**
2203 * consume_stock: Try to consume stocked charge on this cpu.
2204 * @memcg: memcg to consume from.
2205 * @nr_pages: how many pages to charge.
2206 *
2207 * The charges will only happen if @memcg matches the current cpu's memcg
2208 * stock, and at least @nr_pages are available in that stock. Failure to
2209 * service an allocation will refill the stock.
2210 *
2211 * returns true if successful, false otherwise.
cdec2e42 2212 */
a0956d54 2213static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2214{
2215 struct memcg_stock_pcp *stock;
2216 bool ret = true;
2217
a0956d54
SS
2218 if (nr_pages > CHARGE_BATCH)
2219 return false;
2220
cdec2e42 2221 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2222 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2223 stock->nr_pages -= nr_pages;
cdec2e42
KH
2224 else /* need to call res_counter_charge */
2225 ret = false;
2226 put_cpu_var(memcg_stock);
2227 return ret;
2228}
2229
2230/*
2231 * Returns stocks cached in percpu to res_counter and reset cached information.
2232 */
2233static void drain_stock(struct memcg_stock_pcp *stock)
2234{
2235 struct mem_cgroup *old = stock->cached;
2236
11c9ea4e
JW
2237 if (stock->nr_pages) {
2238 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2239
2240 res_counter_uncharge(&old->res, bytes);
cdec2e42 2241 if (do_swap_account)
11c9ea4e
JW
2242 res_counter_uncharge(&old->memsw, bytes);
2243 stock->nr_pages = 0;
cdec2e42
KH
2244 }
2245 stock->cached = NULL;
cdec2e42
KH
2246}
2247
2248/*
2249 * This must be called under preempt disabled or must be called by
2250 * a thread which is pinned to local cpu.
2251 */
2252static void drain_local_stock(struct work_struct *dummy)
2253{
2254 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2255 drain_stock(stock);
26fe6168 2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2257}
2258
2259/*
2260 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2261 * This will be consumed by consume_stock() function, later.
cdec2e42 2262 */
c0ff4b85 2263static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2264{
2265 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2266
c0ff4b85 2267 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2268 drain_stock(stock);
c0ff4b85 2269 stock->cached = memcg;
cdec2e42 2270 }
11c9ea4e 2271 stock->nr_pages += nr_pages;
cdec2e42
KH
2272 put_cpu_var(memcg_stock);
2273}
2274
2275/*
c0ff4b85 2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2277 * of the hierarchy under it. sync flag says whether we should block
2278 * until the work is done.
cdec2e42 2279 */
c0ff4b85 2280static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2281{
26fe6168 2282 int cpu, curcpu;
d38144b7 2283
cdec2e42 2284 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2285 get_online_cpus();
5af12d0e 2286 curcpu = get_cpu();
cdec2e42
KH
2287 for_each_online_cpu(cpu) {
2288 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2289 struct mem_cgroup *memcg;
26fe6168 2290
c0ff4b85
R
2291 memcg = stock->cached;
2292 if (!memcg || !stock->nr_pages)
26fe6168 2293 continue;
c0ff4b85 2294 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2295 continue;
d1a05b69
MH
2296 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2297 if (cpu == curcpu)
2298 drain_local_stock(&stock->work);
2299 else
2300 schedule_work_on(cpu, &stock->work);
2301 }
cdec2e42 2302 }
5af12d0e 2303 put_cpu();
d38144b7
MH
2304
2305 if (!sync)
2306 goto out;
2307
2308 for_each_online_cpu(cpu) {
2309 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2310 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2311 flush_work(&stock->work);
2312 }
2313out:
cdec2e42 2314 put_online_cpus();
d38144b7
MH
2315}
2316
2317/*
2318 * Tries to drain stocked charges in other cpus. This function is asynchronous
2319 * and just put a work per cpu for draining localy on each cpu. Caller can
2320 * expects some charges will be back to res_counter later but cannot wait for
2321 * it.
2322 */
c0ff4b85 2323static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2324{
9f50fad6
MH
2325 /*
2326 * If someone calls draining, avoid adding more kworker runs.
2327 */
2328 if (!mutex_trylock(&percpu_charge_mutex))
2329 return;
c0ff4b85 2330 drain_all_stock(root_memcg, false);
9f50fad6 2331 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2332}
2333
2334/* This is a synchronous drain interface. */
c0ff4b85 2335static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2336{
2337 /* called when force_empty is called */
9f50fad6 2338 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2339 drain_all_stock(root_memcg, true);
9f50fad6 2340 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2341}
2342
711d3d2c
KH
2343/*
2344 * This function drains percpu counter value from DEAD cpu and
2345 * move it to local cpu. Note that this function can be preempted.
2346 */
c0ff4b85 2347static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2348{
2349 int i;
2350
c0ff4b85 2351 spin_lock(&memcg->pcp_counter_lock);
6104621d 2352 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2353 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2354
c0ff4b85
R
2355 per_cpu(memcg->stat->count[i], cpu) = 0;
2356 memcg->nocpu_base.count[i] += x;
711d3d2c 2357 }
e9f8974f 2358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2359 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2360
c0ff4b85
R
2361 per_cpu(memcg->stat->events[i], cpu) = 0;
2362 memcg->nocpu_base.events[i] += x;
e9f8974f 2363 }
c0ff4b85 2364 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2365}
2366
2367static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2368 unsigned long action,
2369 void *hcpu)
2370{
2371 int cpu = (unsigned long)hcpu;
2372 struct memcg_stock_pcp *stock;
711d3d2c 2373 struct mem_cgroup *iter;
cdec2e42 2374
619d094b 2375 if (action == CPU_ONLINE)
1489ebad 2376 return NOTIFY_OK;
1489ebad 2377
d833049b 2378 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2379 return NOTIFY_OK;
711d3d2c 2380
9f3a0d09 2381 for_each_mem_cgroup(iter)
711d3d2c
KH
2382 mem_cgroup_drain_pcp_counter(iter, cpu);
2383
cdec2e42
KH
2384 stock = &per_cpu(memcg_stock, cpu);
2385 drain_stock(stock);
2386 return NOTIFY_OK;
2387}
2388
4b534334
KH
2389
2390/* See __mem_cgroup_try_charge() for details */
2391enum {
2392 CHARGE_OK, /* success */
2393 CHARGE_RETRY, /* need to retry but retry is not bad */
2394 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2395 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2396 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2397};
2398
c0ff4b85 2399static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2400 unsigned int nr_pages, unsigned int min_pages,
2401 bool oom_check)
4b534334 2402{
7ec99d62 2403 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2404 struct mem_cgroup *mem_over_limit;
2405 struct res_counter *fail_res;
2406 unsigned long flags = 0;
2407 int ret;
2408
c0ff4b85 2409 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2410
2411 if (likely(!ret)) {
2412 if (!do_swap_account)
2413 return CHARGE_OK;
c0ff4b85 2414 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2415 if (likely(!ret))
2416 return CHARGE_OK;
2417
c0ff4b85 2418 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2419 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2420 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2421 } else
2422 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2423 /*
9221edb7
JW
2424 * Never reclaim on behalf of optional batching, retry with a
2425 * single page instead.
2426 */
4c9c5359 2427 if (nr_pages > min_pages)
4b534334
KH
2428 return CHARGE_RETRY;
2429
2430 if (!(gfp_mask & __GFP_WAIT))
2431 return CHARGE_WOULDBLOCK;
2432
4c9c5359
SS
2433 if (gfp_mask & __GFP_NORETRY)
2434 return CHARGE_NOMEM;
2435
5660048c 2436 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2438 return CHARGE_RETRY;
4b534334 2439 /*
19942822
JW
2440 * Even though the limit is exceeded at this point, reclaim
2441 * may have been able to free some pages. Retry the charge
2442 * before killing the task.
2443 *
2444 * Only for regular pages, though: huge pages are rather
2445 * unlikely to succeed so close to the limit, and we fall back
2446 * to regular pages anyway in case of failure.
4b534334 2447 */
4c9c5359 2448 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2449 return CHARGE_RETRY;
2450
2451 /*
2452 * At task move, charge accounts can be doubly counted. So, it's
2453 * better to wait until the end of task_move if something is going on.
2454 */
2455 if (mem_cgroup_wait_acct_move(mem_over_limit))
2456 return CHARGE_RETRY;
2457
2458 /* If we don't need to call oom-killer at el, return immediately */
2459 if (!oom_check)
2460 return CHARGE_NOMEM;
2461 /* check OOM */
e845e199 2462 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2463 return CHARGE_OOM_DIE;
2464
2465 return CHARGE_RETRY;
2466}
2467
f817ed48 2468/*
38c5d72f
KH
2469 * __mem_cgroup_try_charge() does
2470 * 1. detect memcg to be charged against from passed *mm and *ptr,
2471 * 2. update res_counter
2472 * 3. call memory reclaim if necessary.
2473 *
2474 * In some special case, if the task is fatal, fatal_signal_pending() or
2475 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2476 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2477 * as possible without any hazards. 2: all pages should have a valid
2478 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2479 * pointer, that is treated as a charge to root_mem_cgroup.
2480 *
2481 * So __mem_cgroup_try_charge() will return
2482 * 0 ... on success, filling *ptr with a valid memcg pointer.
2483 * -ENOMEM ... charge failure because of resource limits.
2484 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2485 *
2486 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2487 * the oom-killer can be invoked.
8a9f3ccd 2488 */
f817ed48 2489static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2490 gfp_t gfp_mask,
7ec99d62 2491 unsigned int nr_pages,
c0ff4b85 2492 struct mem_cgroup **ptr,
7ec99d62 2493 bool oom)
8a9f3ccd 2494{
7ec99d62 2495 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2496 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2497 struct mem_cgroup *memcg = NULL;
4b534334 2498 int ret;
a636b327 2499
867578cb
KH
2500 /*
2501 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2502 * in system level. So, allow to go ahead dying process in addition to
2503 * MEMDIE process.
2504 */
2505 if (unlikely(test_thread_flag(TIF_MEMDIE)
2506 || fatal_signal_pending(current)))
2507 goto bypass;
a636b327 2508
8a9f3ccd 2509 /*
3be91277
HD
2510 * We always charge the cgroup the mm_struct belongs to.
2511 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2512 * thread group leader migrates. It's possible that mm is not
24467cac 2513 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2514 */
c0ff4b85 2515 if (!*ptr && !mm)
38c5d72f 2516 *ptr = root_mem_cgroup;
f75ca962 2517again:
c0ff4b85
R
2518 if (*ptr) { /* css should be a valid one */
2519 memcg = *ptr;
c0ff4b85 2520 if (mem_cgroup_is_root(memcg))
f75ca962 2521 goto done;
a0956d54 2522 if (consume_stock(memcg, nr_pages))
f75ca962 2523 goto done;
c0ff4b85 2524 css_get(&memcg->css);
4b534334 2525 } else {
f75ca962 2526 struct task_struct *p;
54595fe2 2527
f75ca962
KH
2528 rcu_read_lock();
2529 p = rcu_dereference(mm->owner);
f75ca962 2530 /*
ebb76ce1 2531 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2532 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2533 * race with swapoff. Then, we have small risk of mis-accouning.
2534 * But such kind of mis-account by race always happens because
2535 * we don't have cgroup_mutex(). It's overkill and we allo that
2536 * small race, here.
2537 * (*) swapoff at el will charge against mm-struct not against
2538 * task-struct. So, mm->owner can be NULL.
f75ca962 2539 */
c0ff4b85 2540 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2541 if (!memcg)
2542 memcg = root_mem_cgroup;
2543 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2544 rcu_read_unlock();
2545 goto done;
2546 }
a0956d54 2547 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2548 /*
2549 * It seems dagerous to access memcg without css_get().
2550 * But considering how consume_stok works, it's not
2551 * necessary. If consume_stock success, some charges
2552 * from this memcg are cached on this cpu. So, we
2553 * don't need to call css_get()/css_tryget() before
2554 * calling consume_stock().
2555 */
2556 rcu_read_unlock();
2557 goto done;
2558 }
2559 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2560 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2561 rcu_read_unlock();
2562 goto again;
2563 }
2564 rcu_read_unlock();
2565 }
8a9f3ccd 2566
4b534334
KH
2567 do {
2568 bool oom_check;
7a81b88c 2569
4b534334 2570 /* If killed, bypass charge */
f75ca962 2571 if (fatal_signal_pending(current)) {
c0ff4b85 2572 css_put(&memcg->css);
4b534334 2573 goto bypass;
f75ca962 2574 }
6d61ef40 2575
4b534334
KH
2576 oom_check = false;
2577 if (oom && !nr_oom_retries) {
2578 oom_check = true;
2579 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2580 }
66e1707b 2581
4c9c5359
SS
2582 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2583 oom_check);
4b534334
KH
2584 switch (ret) {
2585 case CHARGE_OK:
2586 break;
2587 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2588 batch = nr_pages;
c0ff4b85
R
2589 css_put(&memcg->css);
2590 memcg = NULL;
f75ca962 2591 goto again;
4b534334 2592 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2593 css_put(&memcg->css);
4b534334
KH
2594 goto nomem;
2595 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2596 if (!oom) {
c0ff4b85 2597 css_put(&memcg->css);
867578cb 2598 goto nomem;
f75ca962 2599 }
4b534334
KH
2600 /* If oom, we never return -ENOMEM */
2601 nr_oom_retries--;
2602 break;
2603 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2604 css_put(&memcg->css);
867578cb 2605 goto bypass;
66e1707b 2606 }
4b534334
KH
2607 } while (ret != CHARGE_OK);
2608
7ec99d62 2609 if (batch > nr_pages)
c0ff4b85
R
2610 refill_stock(memcg, batch - nr_pages);
2611 css_put(&memcg->css);
0c3e73e8 2612done:
c0ff4b85 2613 *ptr = memcg;
7a81b88c
KH
2614 return 0;
2615nomem:
c0ff4b85 2616 *ptr = NULL;
7a81b88c 2617 return -ENOMEM;
867578cb 2618bypass:
38c5d72f
KH
2619 *ptr = root_mem_cgroup;
2620 return -EINTR;
7a81b88c 2621}
8a9f3ccd 2622
a3032a2c
DN
2623/*
2624 * Somemtimes we have to undo a charge we got by try_charge().
2625 * This function is for that and do uncharge, put css's refcnt.
2626 * gotten by try_charge().
2627 */
c0ff4b85 2628static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2629 unsigned int nr_pages)
a3032a2c 2630{
c0ff4b85 2631 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2632 unsigned long bytes = nr_pages * PAGE_SIZE;
2633
c0ff4b85 2634 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2635 if (do_swap_account)
c0ff4b85 2636 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2637 }
854ffa8d
DN
2638}
2639
d01dd17f
KH
2640/*
2641 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2642 * This is useful when moving usage to parent cgroup.
2643 */
2644static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2645 unsigned int nr_pages)
2646{
2647 unsigned long bytes = nr_pages * PAGE_SIZE;
2648
2649 if (mem_cgroup_is_root(memcg))
2650 return;
2651
2652 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2653 if (do_swap_account)
2654 res_counter_uncharge_until(&memcg->memsw,
2655 memcg->memsw.parent, bytes);
2656}
2657
a3b2d692
KH
2658/*
2659 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2660 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2661 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2662 * called against removed memcg.)
a3b2d692
KH
2663 */
2664static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2665{
2666 struct cgroup_subsys_state *css;
2667
2668 /* ID 0 is unused ID */
2669 if (!id)
2670 return NULL;
2671 css = css_lookup(&mem_cgroup_subsys, id);
2672 if (!css)
2673 return NULL;
b2145145 2674 return mem_cgroup_from_css(css);
a3b2d692
KH
2675}
2676
e42d9d5d 2677struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2678{
c0ff4b85 2679 struct mem_cgroup *memcg = NULL;
3c776e64 2680 struct page_cgroup *pc;
a3b2d692 2681 unsigned short id;
b5a84319
KH
2682 swp_entry_t ent;
2683
3c776e64
DN
2684 VM_BUG_ON(!PageLocked(page));
2685
3c776e64 2686 pc = lookup_page_cgroup(page);
c0bd3f63 2687 lock_page_cgroup(pc);
a3b2d692 2688 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2689 memcg = pc->mem_cgroup;
2690 if (memcg && !css_tryget(&memcg->css))
2691 memcg = NULL;
e42d9d5d 2692 } else if (PageSwapCache(page)) {
3c776e64 2693 ent.val = page_private(page);
9fb4b7cc 2694 id = lookup_swap_cgroup_id(ent);
a3b2d692 2695 rcu_read_lock();
c0ff4b85
R
2696 memcg = mem_cgroup_lookup(id);
2697 if (memcg && !css_tryget(&memcg->css))
2698 memcg = NULL;
a3b2d692 2699 rcu_read_unlock();
3c776e64 2700 }
c0bd3f63 2701 unlock_page_cgroup(pc);
c0ff4b85 2702 return memcg;
b5a84319
KH
2703}
2704
c0ff4b85 2705static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2706 struct page *page,
7ec99d62 2707 unsigned int nr_pages,
9ce70c02
HD
2708 enum charge_type ctype,
2709 bool lrucare)
7a81b88c 2710{
ce587e65 2711 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2712 struct zone *uninitialized_var(zone);
fa9add64 2713 struct lruvec *lruvec;
9ce70c02 2714 bool was_on_lru = false;
b2402857 2715 bool anon;
9ce70c02 2716
ca3e0214 2717 lock_page_cgroup(pc);
90deb788 2718 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2719 /*
2720 * we don't need page_cgroup_lock about tail pages, becase they are not
2721 * accessed by any other context at this point.
2722 */
9ce70c02
HD
2723
2724 /*
2725 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2726 * may already be on some other mem_cgroup's LRU. Take care of it.
2727 */
2728 if (lrucare) {
2729 zone = page_zone(page);
2730 spin_lock_irq(&zone->lru_lock);
2731 if (PageLRU(page)) {
fa9add64 2732 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2733 ClearPageLRU(page);
fa9add64 2734 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2735 was_on_lru = true;
2736 }
2737 }
2738
c0ff4b85 2739 pc->mem_cgroup = memcg;
261fb61a
KH
2740 /*
2741 * We access a page_cgroup asynchronously without lock_page_cgroup().
2742 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2743 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2744 * before USED bit, we need memory barrier here.
2745 * See mem_cgroup_add_lru_list(), etc.
2746 */
08e552c6 2747 smp_wmb();
b2402857 2748 SetPageCgroupUsed(pc);
3be91277 2749
9ce70c02
HD
2750 if (lrucare) {
2751 if (was_on_lru) {
fa9add64 2752 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2753 VM_BUG_ON(PageLRU(page));
2754 SetPageLRU(page);
fa9add64 2755 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2756 }
2757 spin_unlock_irq(&zone->lru_lock);
2758 }
2759
41326c17 2760 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2761 anon = true;
2762 else
2763 anon = false;
2764
2765 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2766 unlock_page_cgroup(pc);
9ce70c02 2767
430e4863
KH
2768 /*
2769 * "charge_statistics" updated event counter. Then, check it.
2770 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2771 * if they exceeds softlimit.
2772 */
c0ff4b85 2773 memcg_check_events(memcg, page);
7a81b88c 2774}
66e1707b 2775
7cf27982
GC
2776static DEFINE_MUTEX(set_limit_mutex);
2777
7ae1e1d0
GC
2778#ifdef CONFIG_MEMCG_KMEM
2779static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2780{
2781 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2782 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2783}
2784
1f458cbf
GC
2785/*
2786 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2787 * in the memcg_cache_params struct.
2788 */
2789static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2790{
2791 struct kmem_cache *cachep;
2792
2793 VM_BUG_ON(p->is_root_cache);
2794 cachep = p->root_cache;
2795 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2796}
2797
749c5415
GC
2798#ifdef CONFIG_SLABINFO
2799static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2800 struct seq_file *m)
2801{
2802 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2803 struct memcg_cache_params *params;
2804
2805 if (!memcg_can_account_kmem(memcg))
2806 return -EIO;
2807
2808 print_slabinfo_header(m);
2809
2810 mutex_lock(&memcg->slab_caches_mutex);
2811 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2812 cache_show(memcg_params_to_cache(params), m);
2813 mutex_unlock(&memcg->slab_caches_mutex);
2814
2815 return 0;
2816}
2817#endif
2818
7ae1e1d0
GC
2819static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2820{
2821 struct res_counter *fail_res;
2822 struct mem_cgroup *_memcg;
2823 int ret = 0;
2824 bool may_oom;
2825
2826 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2827 if (ret)
2828 return ret;
2829
2830 /*
2831 * Conditions under which we can wait for the oom_killer. Those are
2832 * the same conditions tested by the core page allocator
2833 */
2834 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2835
2836 _memcg = memcg;
2837 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2838 &_memcg, may_oom);
2839
2840 if (ret == -EINTR) {
2841 /*
2842 * __mem_cgroup_try_charge() chosed to bypass to root due to
2843 * OOM kill or fatal signal. Since our only options are to
2844 * either fail the allocation or charge it to this cgroup, do
2845 * it as a temporary condition. But we can't fail. From a
2846 * kmem/slab perspective, the cache has already been selected,
2847 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2848 * our minds.
2849 *
2850 * This condition will only trigger if the task entered
2851 * memcg_charge_kmem in a sane state, but was OOM-killed during
2852 * __mem_cgroup_try_charge() above. Tasks that were already
2853 * dying when the allocation triggers should have been already
2854 * directed to the root cgroup in memcontrol.h
2855 */
2856 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2857 if (do_swap_account)
2858 res_counter_charge_nofail(&memcg->memsw, size,
2859 &fail_res);
2860 ret = 0;
2861 } else if (ret)
2862 res_counter_uncharge(&memcg->kmem, size);
2863
2864 return ret;
2865}
2866
2867static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2868{
7ae1e1d0
GC
2869 res_counter_uncharge(&memcg->res, size);
2870 if (do_swap_account)
2871 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2872
2873 /* Not down to 0 */
2874 if (res_counter_uncharge(&memcg->kmem, size))
2875 return;
2876
2877 if (memcg_kmem_test_and_clear_dead(memcg))
2878 mem_cgroup_put(memcg);
7ae1e1d0
GC
2879}
2880
2633d7a0
GC
2881void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2882{
2883 if (!memcg)
2884 return;
2885
2886 mutex_lock(&memcg->slab_caches_mutex);
2887 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2888 mutex_unlock(&memcg->slab_caches_mutex);
2889}
2890
2891/*
2892 * helper for acessing a memcg's index. It will be used as an index in the
2893 * child cache array in kmem_cache, and also to derive its name. This function
2894 * will return -1 when this is not a kmem-limited memcg.
2895 */
2896int memcg_cache_id(struct mem_cgroup *memcg)
2897{
2898 return memcg ? memcg->kmemcg_id : -1;
2899}
2900
55007d84
GC
2901/*
2902 * This ends up being protected by the set_limit mutex, during normal
2903 * operation, because that is its main call site.
2904 *
2905 * But when we create a new cache, we can call this as well if its parent
2906 * is kmem-limited. That will have to hold set_limit_mutex as well.
2907 */
2908int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2909{
2910 int num, ret;
2911
2912 num = ida_simple_get(&kmem_limited_groups,
2913 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2914 if (num < 0)
2915 return num;
2916 /*
2917 * After this point, kmem_accounted (that we test atomically in
2918 * the beginning of this conditional), is no longer 0. This
2919 * guarantees only one process will set the following boolean
2920 * to true. We don't need test_and_set because we're protected
2921 * by the set_limit_mutex anyway.
2922 */
2923 memcg_kmem_set_activated(memcg);
2924
2925 ret = memcg_update_all_caches(num+1);
2926 if (ret) {
2927 ida_simple_remove(&kmem_limited_groups, num);
2928 memcg_kmem_clear_activated(memcg);
2929 return ret;
2930 }
2931
2932 memcg->kmemcg_id = num;
2933 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2934 mutex_init(&memcg->slab_caches_mutex);
2935 return 0;
2936}
2937
2938static size_t memcg_caches_array_size(int num_groups)
2939{
2940 ssize_t size;
2941 if (num_groups <= 0)
2942 return 0;
2943
2944 size = 2 * num_groups;
2945 if (size < MEMCG_CACHES_MIN_SIZE)
2946 size = MEMCG_CACHES_MIN_SIZE;
2947 else if (size > MEMCG_CACHES_MAX_SIZE)
2948 size = MEMCG_CACHES_MAX_SIZE;
2949
2950 return size;
2951}
2952
2953/*
2954 * We should update the current array size iff all caches updates succeed. This
2955 * can only be done from the slab side. The slab mutex needs to be held when
2956 * calling this.
2957 */
2958void memcg_update_array_size(int num)
2959{
2960 if (num > memcg_limited_groups_array_size)
2961 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2962}
2963
2964int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2965{
2966 struct memcg_cache_params *cur_params = s->memcg_params;
2967
2968 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2969
2970 if (num_groups > memcg_limited_groups_array_size) {
2971 int i;
2972 ssize_t size = memcg_caches_array_size(num_groups);
2973
2974 size *= sizeof(void *);
2975 size += sizeof(struct memcg_cache_params);
2976
2977 s->memcg_params = kzalloc(size, GFP_KERNEL);
2978 if (!s->memcg_params) {
2979 s->memcg_params = cur_params;
2980 return -ENOMEM;
2981 }
2982
2983 s->memcg_params->is_root_cache = true;
2984
2985 /*
2986 * There is the chance it will be bigger than
2987 * memcg_limited_groups_array_size, if we failed an allocation
2988 * in a cache, in which case all caches updated before it, will
2989 * have a bigger array.
2990 *
2991 * But if that is the case, the data after
2992 * memcg_limited_groups_array_size is certainly unused
2993 */
2994 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2995 if (!cur_params->memcg_caches[i])
2996 continue;
2997 s->memcg_params->memcg_caches[i] =
2998 cur_params->memcg_caches[i];
2999 }
3000
3001 /*
3002 * Ideally, we would wait until all caches succeed, and only
3003 * then free the old one. But this is not worth the extra
3004 * pointer per-cache we'd have to have for this.
3005 *
3006 * It is not a big deal if some caches are left with a size
3007 * bigger than the others. And all updates will reset this
3008 * anyway.
3009 */
3010 kfree(cur_params);
3011 }
3012 return 0;
3013}
3014
943a451a
GC
3015int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3016 struct kmem_cache *root_cache)
2633d7a0
GC
3017{
3018 size_t size = sizeof(struct memcg_cache_params);
3019
3020 if (!memcg_kmem_enabled())
3021 return 0;
3022
55007d84
GC
3023 if (!memcg)
3024 size += memcg_limited_groups_array_size * sizeof(void *);
3025
2633d7a0
GC
3026 s->memcg_params = kzalloc(size, GFP_KERNEL);
3027 if (!s->memcg_params)
3028 return -ENOMEM;
3029
943a451a 3030 if (memcg) {
2633d7a0 3031 s->memcg_params->memcg = memcg;
943a451a 3032 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3033 } else
3034 s->memcg_params->is_root_cache = true;
3035
2633d7a0
GC
3036 return 0;
3037}
3038
3039void memcg_release_cache(struct kmem_cache *s)
3040{
d7f25f8a
GC
3041 struct kmem_cache *root;
3042 struct mem_cgroup *memcg;
3043 int id;
3044
3045 /*
3046 * This happens, for instance, when a root cache goes away before we
3047 * add any memcg.
3048 */
3049 if (!s->memcg_params)
3050 return;
3051
3052 if (s->memcg_params->is_root_cache)
3053 goto out;
3054
3055 memcg = s->memcg_params->memcg;
3056 id = memcg_cache_id(memcg);
3057
3058 root = s->memcg_params->root_cache;
3059 root->memcg_params->memcg_caches[id] = NULL;
3060 mem_cgroup_put(memcg);
3061
3062 mutex_lock(&memcg->slab_caches_mutex);
3063 list_del(&s->memcg_params->list);
3064 mutex_unlock(&memcg->slab_caches_mutex);
3065
3066out:
2633d7a0
GC
3067 kfree(s->memcg_params);
3068}
3069
0e9d92f2
GC
3070/*
3071 * During the creation a new cache, we need to disable our accounting mechanism
3072 * altogether. This is true even if we are not creating, but rather just
3073 * enqueing new caches to be created.
3074 *
3075 * This is because that process will trigger allocations; some visible, like
3076 * explicit kmallocs to auxiliary data structures, name strings and internal
3077 * cache structures; some well concealed, like INIT_WORK() that can allocate
3078 * objects during debug.
3079 *
3080 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3081 * to it. This may not be a bounded recursion: since the first cache creation
3082 * failed to complete (waiting on the allocation), we'll just try to create the
3083 * cache again, failing at the same point.
3084 *
3085 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3086 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3087 * inside the following two functions.
3088 */
3089static inline void memcg_stop_kmem_account(void)
3090{
3091 VM_BUG_ON(!current->mm);
3092 current->memcg_kmem_skip_account++;
3093}
3094
3095static inline void memcg_resume_kmem_account(void)
3096{
3097 VM_BUG_ON(!current->mm);
3098 current->memcg_kmem_skip_account--;
3099}
3100
1f458cbf
GC
3101static void kmem_cache_destroy_work_func(struct work_struct *w)
3102{
3103 struct kmem_cache *cachep;
3104 struct memcg_cache_params *p;
3105
3106 p = container_of(w, struct memcg_cache_params, destroy);
3107
3108 cachep = memcg_params_to_cache(p);
3109
22933152
GC
3110 /*
3111 * If we get down to 0 after shrink, we could delete right away.
3112 * However, memcg_release_pages() already puts us back in the workqueue
3113 * in that case. If we proceed deleting, we'll get a dangling
3114 * reference, and removing the object from the workqueue in that case
3115 * is unnecessary complication. We are not a fast path.
3116 *
3117 * Note that this case is fundamentally different from racing with
3118 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3119 * kmem_cache_shrink, not only we would be reinserting a dead cache
3120 * into the queue, but doing so from inside the worker racing to
3121 * destroy it.
3122 *
3123 * So if we aren't down to zero, we'll just schedule a worker and try
3124 * again
3125 */
3126 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3127 kmem_cache_shrink(cachep);
3128 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3129 return;
3130 } else
1f458cbf
GC
3131 kmem_cache_destroy(cachep);
3132}
3133
3134void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3135{
3136 if (!cachep->memcg_params->dead)
3137 return;
3138
22933152
GC
3139 /*
3140 * There are many ways in which we can get here.
3141 *
3142 * We can get to a memory-pressure situation while the delayed work is
3143 * still pending to run. The vmscan shrinkers can then release all
3144 * cache memory and get us to destruction. If this is the case, we'll
3145 * be executed twice, which is a bug (the second time will execute over
3146 * bogus data). In this case, cancelling the work should be fine.
3147 *
3148 * But we can also get here from the worker itself, if
3149 * kmem_cache_shrink is enough to shake all the remaining objects and
3150 * get the page count to 0. In this case, we'll deadlock if we try to
3151 * cancel the work (the worker runs with an internal lock held, which
3152 * is the same lock we would hold for cancel_work_sync().)
3153 *
3154 * Since we can't possibly know who got us here, just refrain from
3155 * running if there is already work pending
3156 */
3157 if (work_pending(&cachep->memcg_params->destroy))
3158 return;
1f458cbf
GC
3159 /*
3160 * We have to defer the actual destroying to a workqueue, because
3161 * we might currently be in a context that cannot sleep.
3162 */
3163 schedule_work(&cachep->memcg_params->destroy);
3164}
3165
d7f25f8a
GC
3166static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3167{
3168 char *name;
3169 struct dentry *dentry;
3170
3171 rcu_read_lock();
3172 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3173 rcu_read_unlock();
3174
3175 BUG_ON(dentry == NULL);
3176
3177 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3178 memcg_cache_id(memcg), dentry->d_name.name);
3179
3180 return name;
3181}
3182
3183static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3184 struct kmem_cache *s)
3185{
3186 char *name;
3187 struct kmem_cache *new;
3188
3189 name = memcg_cache_name(memcg, s);
3190 if (!name)
3191 return NULL;
3192
3193 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
943a451a 3194 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3195
d79923fa
GC
3196 if (new)
3197 new->allocflags |= __GFP_KMEMCG;
3198
d7f25f8a
GC
3199 kfree(name);
3200 return new;
3201}
3202
3203/*
3204 * This lock protects updaters, not readers. We want readers to be as fast as
3205 * they can, and they will either see NULL or a valid cache value. Our model
3206 * allow them to see NULL, in which case the root memcg will be selected.
3207 *
3208 * We need this lock because multiple allocations to the same cache from a non
3209 * will span more than one worker. Only one of them can create the cache.
3210 */
3211static DEFINE_MUTEX(memcg_cache_mutex);
3212static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3213 struct kmem_cache *cachep)
3214{
3215 struct kmem_cache *new_cachep;
3216 int idx;
3217
3218 BUG_ON(!memcg_can_account_kmem(memcg));
3219
3220 idx = memcg_cache_id(memcg);
3221
3222 mutex_lock(&memcg_cache_mutex);
3223 new_cachep = cachep->memcg_params->memcg_caches[idx];
3224 if (new_cachep)
3225 goto out;
3226
3227 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3228 if (new_cachep == NULL) {
3229 new_cachep = cachep;
3230 goto out;
3231 }
3232
3233 mem_cgroup_get(memcg);
1f458cbf 3234 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3235
3236 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3237 /*
3238 * the readers won't lock, make sure everybody sees the updated value,
3239 * so they won't put stuff in the queue again for no reason
3240 */
3241 wmb();
3242out:
3243 mutex_unlock(&memcg_cache_mutex);
3244 return new_cachep;
3245}
3246
7cf27982
GC
3247void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3248{
3249 struct kmem_cache *c;
3250 int i;
3251
3252 if (!s->memcg_params)
3253 return;
3254 if (!s->memcg_params->is_root_cache)
3255 return;
3256
3257 /*
3258 * If the cache is being destroyed, we trust that there is no one else
3259 * requesting objects from it. Even if there are, the sanity checks in
3260 * kmem_cache_destroy should caught this ill-case.
3261 *
3262 * Still, we don't want anyone else freeing memcg_caches under our
3263 * noses, which can happen if a new memcg comes to life. As usual,
3264 * we'll take the set_limit_mutex to protect ourselves against this.
3265 */
3266 mutex_lock(&set_limit_mutex);
3267 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3268 c = s->memcg_params->memcg_caches[i];
3269 if (!c)
3270 continue;
3271
3272 /*
3273 * We will now manually delete the caches, so to avoid races
3274 * we need to cancel all pending destruction workers and
3275 * proceed with destruction ourselves.
3276 *
3277 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3278 * and that could spawn the workers again: it is likely that
3279 * the cache still have active pages until this very moment.
3280 * This would lead us back to mem_cgroup_destroy_cache.
3281 *
3282 * But that will not execute at all if the "dead" flag is not
3283 * set, so flip it down to guarantee we are in control.
3284 */
3285 c->memcg_params->dead = false;
22933152 3286 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3287 kmem_cache_destroy(c);
3288 }
3289 mutex_unlock(&set_limit_mutex);
3290}
3291
d7f25f8a
GC
3292struct create_work {
3293 struct mem_cgroup *memcg;
3294 struct kmem_cache *cachep;
3295 struct work_struct work;
3296};
3297
1f458cbf
GC
3298static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3299{
3300 struct kmem_cache *cachep;
3301 struct memcg_cache_params *params;
3302
3303 if (!memcg_kmem_is_active(memcg))
3304 return;
3305
3306 mutex_lock(&memcg->slab_caches_mutex);
3307 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3308 cachep = memcg_params_to_cache(params);
3309 cachep->memcg_params->dead = true;
3310 INIT_WORK(&cachep->memcg_params->destroy,
22933152 3311 kmem_cache_destroy_work_func);
1f458cbf
GC
3312 schedule_work(&cachep->memcg_params->destroy);
3313 }
3314 mutex_unlock(&memcg->slab_caches_mutex);
3315}
3316
d7f25f8a
GC
3317static void memcg_create_cache_work_func(struct work_struct *w)
3318{
3319 struct create_work *cw;
3320
3321 cw = container_of(w, struct create_work, work);
3322 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3323 /* Drop the reference gotten when we enqueued. */
3324 css_put(&cw->memcg->css);
3325 kfree(cw);
3326}
3327
3328/*
3329 * Enqueue the creation of a per-memcg kmem_cache.
3330 * Called with rcu_read_lock.
3331 */
0e9d92f2
GC
3332static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3333 struct kmem_cache *cachep)
d7f25f8a
GC
3334{
3335 struct create_work *cw;
3336
3337 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3338 if (cw == NULL)
3339 return;
3340
3341 /* The corresponding put will be done in the workqueue. */
3342 if (!css_tryget(&memcg->css)) {
3343 kfree(cw);
3344 return;
3345 }
3346
3347 cw->memcg = memcg;
3348 cw->cachep = cachep;
3349
3350 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3351 schedule_work(&cw->work);
3352}
3353
0e9d92f2
GC
3354static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3355 struct kmem_cache *cachep)
3356{
3357 /*
3358 * We need to stop accounting when we kmalloc, because if the
3359 * corresponding kmalloc cache is not yet created, the first allocation
3360 * in __memcg_create_cache_enqueue will recurse.
3361 *
3362 * However, it is better to enclose the whole function. Depending on
3363 * the debugging options enabled, INIT_WORK(), for instance, can
3364 * trigger an allocation. This too, will make us recurse. Because at
3365 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3366 * the safest choice is to do it like this, wrapping the whole function.
3367 */
3368 memcg_stop_kmem_account();
3369 __memcg_create_cache_enqueue(memcg, cachep);
3370 memcg_resume_kmem_account();
3371}
d7f25f8a
GC
3372/*
3373 * Return the kmem_cache we're supposed to use for a slab allocation.
3374 * We try to use the current memcg's version of the cache.
3375 *
3376 * If the cache does not exist yet, if we are the first user of it,
3377 * we either create it immediately, if possible, or create it asynchronously
3378 * in a workqueue.
3379 * In the latter case, we will let the current allocation go through with
3380 * the original cache.
3381 *
3382 * Can't be called in interrupt context or from kernel threads.
3383 * This function needs to be called with rcu_read_lock() held.
3384 */
3385struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3386 gfp_t gfp)
3387{
3388 struct mem_cgroup *memcg;
3389 int idx;
3390
3391 VM_BUG_ON(!cachep->memcg_params);
3392 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3393
0e9d92f2
GC
3394 if (!current->mm || current->memcg_kmem_skip_account)
3395 return cachep;
3396
d7f25f8a
GC
3397 rcu_read_lock();
3398 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3399 rcu_read_unlock();
3400
3401 if (!memcg_can_account_kmem(memcg))
3402 return cachep;
3403
3404 idx = memcg_cache_id(memcg);
3405
3406 /*
3407 * barrier to mare sure we're always seeing the up to date value. The
3408 * code updating memcg_caches will issue a write barrier to match this.
3409 */
3410 read_barrier_depends();
3411 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3412 /*
3413 * If we are in a safe context (can wait, and not in interrupt
3414 * context), we could be be predictable and return right away.
3415 * This would guarantee that the allocation being performed
3416 * already belongs in the new cache.
3417 *
3418 * However, there are some clashes that can arrive from locking.
3419 * For instance, because we acquire the slab_mutex while doing
3420 * kmem_cache_dup, this means no further allocation could happen
3421 * with the slab_mutex held.
3422 *
3423 * Also, because cache creation issue get_online_cpus(), this
3424 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3425 * that ends up reversed during cpu hotplug. (cpuset allocates
3426 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3427 * better to defer everything.
3428 */
3429 memcg_create_cache_enqueue(memcg, cachep);
3430 return cachep;
3431 }
3432
3433 return cachep->memcg_params->memcg_caches[idx];
3434}
3435EXPORT_SYMBOL(__memcg_kmem_get_cache);
3436
7ae1e1d0
GC
3437/*
3438 * We need to verify if the allocation against current->mm->owner's memcg is
3439 * possible for the given order. But the page is not allocated yet, so we'll
3440 * need a further commit step to do the final arrangements.
3441 *
3442 * It is possible for the task to switch cgroups in this mean time, so at
3443 * commit time, we can't rely on task conversion any longer. We'll then use
3444 * the handle argument to return to the caller which cgroup we should commit
3445 * against. We could also return the memcg directly and avoid the pointer
3446 * passing, but a boolean return value gives better semantics considering
3447 * the compiled-out case as well.
3448 *
3449 * Returning true means the allocation is possible.
3450 */
3451bool
3452__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3453{
3454 struct mem_cgroup *memcg;
3455 int ret;
3456
3457 *_memcg = NULL;
3458 memcg = try_get_mem_cgroup_from_mm(current->mm);
3459
3460 /*
3461 * very rare case described in mem_cgroup_from_task. Unfortunately there
3462 * isn't much we can do without complicating this too much, and it would
3463 * be gfp-dependent anyway. Just let it go
3464 */
3465 if (unlikely(!memcg))
3466 return true;
3467
3468 if (!memcg_can_account_kmem(memcg)) {
3469 css_put(&memcg->css);
3470 return true;
3471 }
3472
7ae1e1d0
GC
3473 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3474 if (!ret)
3475 *_memcg = memcg;
7ae1e1d0
GC
3476
3477 css_put(&memcg->css);
3478 return (ret == 0);
3479}
3480
3481void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3482 int order)
3483{
3484 struct page_cgroup *pc;
3485
3486 VM_BUG_ON(mem_cgroup_is_root(memcg));
3487
3488 /* The page allocation failed. Revert */
3489 if (!page) {
3490 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3491 return;
3492 }
3493
3494 pc = lookup_page_cgroup(page);
3495 lock_page_cgroup(pc);
3496 pc->mem_cgroup = memcg;
3497 SetPageCgroupUsed(pc);
3498 unlock_page_cgroup(pc);
3499}
3500
3501void __memcg_kmem_uncharge_pages(struct page *page, int order)
3502{
3503 struct mem_cgroup *memcg = NULL;
3504 struct page_cgroup *pc;
3505
3506
3507 pc = lookup_page_cgroup(page);
3508 /*
3509 * Fast unlocked return. Theoretically might have changed, have to
3510 * check again after locking.
3511 */
3512 if (!PageCgroupUsed(pc))
3513 return;
3514
3515 lock_page_cgroup(pc);
3516 if (PageCgroupUsed(pc)) {
3517 memcg = pc->mem_cgroup;
3518 ClearPageCgroupUsed(pc);
3519 }
3520 unlock_page_cgroup(pc);
3521
3522 /*
3523 * We trust that only if there is a memcg associated with the page, it
3524 * is a valid allocation
3525 */
3526 if (!memcg)
3527 return;
3528
3529 VM_BUG_ON(mem_cgroup_is_root(memcg));
3530 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3531}
1f458cbf
GC
3532#else
3533static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3534{
3535}
7ae1e1d0
GC
3536#endif /* CONFIG_MEMCG_KMEM */
3537
ca3e0214
KH
3538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3539
a0db00fc 3540#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3541/*
3542 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3544 * charge/uncharge will be never happen and move_account() is done under
3545 * compound_lock(), so we don't have to take care of races.
ca3e0214 3546 */
e94c8a9c 3547void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3548{
3549 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3550 struct page_cgroup *pc;
3551 int i;
ca3e0214 3552
3d37c4a9
KH
3553 if (mem_cgroup_disabled())
3554 return;
e94c8a9c
KH
3555 for (i = 1; i < HPAGE_PMD_NR; i++) {
3556 pc = head_pc + i;
3557 pc->mem_cgroup = head_pc->mem_cgroup;
3558 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3559 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3560 }
ca3e0214 3561}
12d27107 3562#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3563
f817ed48 3564/**
de3638d9 3565 * mem_cgroup_move_account - move account of the page
5564e88b 3566 * @page: the page
7ec99d62 3567 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3568 * @pc: page_cgroup of the page.
3569 * @from: mem_cgroup which the page is moved from.
3570 * @to: mem_cgroup which the page is moved to. @from != @to.
3571 *
3572 * The caller must confirm following.
08e552c6 3573 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3574 * - compound_lock is held when nr_pages > 1
f817ed48 3575 *
2f3479b1
KH
3576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3577 * from old cgroup.
f817ed48 3578 */
7ec99d62
JW
3579static int mem_cgroup_move_account(struct page *page,
3580 unsigned int nr_pages,
3581 struct page_cgroup *pc,
3582 struct mem_cgroup *from,
2f3479b1 3583 struct mem_cgroup *to)
f817ed48 3584{
de3638d9
JW
3585 unsigned long flags;
3586 int ret;
b2402857 3587 bool anon = PageAnon(page);
987eba66 3588
f817ed48 3589 VM_BUG_ON(from == to);
5564e88b 3590 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3591 /*
3592 * The page is isolated from LRU. So, collapse function
3593 * will not handle this page. But page splitting can happen.
3594 * Do this check under compound_page_lock(). The caller should
3595 * hold it.
3596 */
3597 ret = -EBUSY;
7ec99d62 3598 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3599 goto out;
3600
3601 lock_page_cgroup(pc);
3602
3603 ret = -EINVAL;
3604 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3605 goto unlock;
3606
312734c0 3607 move_lock_mem_cgroup(from, &flags);
f817ed48 3608
2ff76f11 3609 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3610 /* Update mapped_file data for mem_cgroup */
3611 preempt_disable();
3612 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3613 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3614 preempt_enable();
d69b042f 3615 }
b2402857 3616 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3617
854ffa8d 3618 /* caller should have done css_get */
08e552c6 3619 pc->mem_cgroup = to;
b2402857 3620 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3621 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3622 ret = 0;
3623unlock:
57f9fd7d 3624 unlock_page_cgroup(pc);
d2265e6f
KH
3625 /*
3626 * check events
3627 */
5564e88b
JW
3628 memcg_check_events(to, page);
3629 memcg_check_events(from, page);
de3638d9 3630out:
f817ed48
KH
3631 return ret;
3632}
3633
2ef37d3f
MH
3634/**
3635 * mem_cgroup_move_parent - moves page to the parent group
3636 * @page: the page to move
3637 * @pc: page_cgroup of the page
3638 * @child: page's cgroup
3639 *
3640 * move charges to its parent or the root cgroup if the group has no
3641 * parent (aka use_hierarchy==0).
3642 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3643 * mem_cgroup_move_account fails) the failure is always temporary and
3644 * it signals a race with a page removal/uncharge or migration. In the
3645 * first case the page is on the way out and it will vanish from the LRU
3646 * on the next attempt and the call should be retried later.
3647 * Isolation from the LRU fails only if page has been isolated from
3648 * the LRU since we looked at it and that usually means either global
3649 * reclaim or migration going on. The page will either get back to the
3650 * LRU or vanish.
3651 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3652 * (!PageCgroupUsed) or moved to a different group. The page will
3653 * disappear in the next attempt.
f817ed48 3654 */
5564e88b
JW
3655static int mem_cgroup_move_parent(struct page *page,
3656 struct page_cgroup *pc,
6068bf01 3657 struct mem_cgroup *child)
f817ed48 3658{
f817ed48 3659 struct mem_cgroup *parent;
7ec99d62 3660 unsigned int nr_pages;
4be4489f 3661 unsigned long uninitialized_var(flags);
f817ed48
KH
3662 int ret;
3663
d8423011 3664 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3665
57f9fd7d
DN
3666 ret = -EBUSY;
3667 if (!get_page_unless_zero(page))
3668 goto out;
3669 if (isolate_lru_page(page))
3670 goto put;
52dbb905 3671
7ec99d62 3672 nr_pages = hpage_nr_pages(page);
08e552c6 3673
cc926f78
KH
3674 parent = parent_mem_cgroup(child);
3675 /*
3676 * If no parent, move charges to root cgroup.
3677 */
3678 if (!parent)
3679 parent = root_mem_cgroup;
f817ed48 3680
2ef37d3f
MH
3681 if (nr_pages > 1) {
3682 VM_BUG_ON(!PageTransHuge(page));
987eba66 3683 flags = compound_lock_irqsave(page);
2ef37d3f 3684 }
987eba66 3685
cc926f78 3686 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3687 pc, child, parent);
cc926f78
KH
3688 if (!ret)
3689 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3690
7ec99d62 3691 if (nr_pages > 1)
987eba66 3692 compound_unlock_irqrestore(page, flags);
08e552c6 3693 putback_lru_page(page);
57f9fd7d 3694put:
40d58138 3695 put_page(page);
57f9fd7d 3696out:
f817ed48
KH
3697 return ret;
3698}
3699
7a81b88c
KH
3700/*
3701 * Charge the memory controller for page usage.
3702 * Return
3703 * 0 if the charge was successful
3704 * < 0 if the cgroup is over its limit
3705 */
3706static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3707 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3708{
c0ff4b85 3709 struct mem_cgroup *memcg = NULL;
7ec99d62 3710 unsigned int nr_pages = 1;
8493ae43 3711 bool oom = true;
7a81b88c 3712 int ret;
ec168510 3713
37c2ac78 3714 if (PageTransHuge(page)) {
7ec99d62 3715 nr_pages <<= compound_order(page);
37c2ac78 3716 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3717 /*
3718 * Never OOM-kill a process for a huge page. The
3719 * fault handler will fall back to regular pages.
3720 */
3721 oom = false;
37c2ac78 3722 }
7a81b88c 3723
c0ff4b85 3724 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3725 if (ret == -ENOMEM)
7a81b88c 3726 return ret;
ce587e65 3727 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3728 return 0;
8a9f3ccd
BS
3729}
3730
7a81b88c
KH
3731int mem_cgroup_newpage_charge(struct page *page,
3732 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3733{
f8d66542 3734 if (mem_cgroup_disabled())
cede86ac 3735 return 0;
7a0524cf
JW
3736 VM_BUG_ON(page_mapped(page));
3737 VM_BUG_ON(page->mapping && !PageAnon(page));
3738 VM_BUG_ON(!mm);
217bc319 3739 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3740 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3741}
3742
54595fe2
KH
3743/*
3744 * While swap-in, try_charge -> commit or cancel, the page is locked.
3745 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3746 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3747 * "commit()" or removed by "cancel()"
3748 */
0435a2fd
JW
3749static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3750 struct page *page,
3751 gfp_t mask,
3752 struct mem_cgroup **memcgp)
8c7c6e34 3753{
c0ff4b85 3754 struct mem_cgroup *memcg;
90deb788 3755 struct page_cgroup *pc;
54595fe2 3756 int ret;
8c7c6e34 3757
90deb788
JW
3758 pc = lookup_page_cgroup(page);
3759 /*
3760 * Every swap fault against a single page tries to charge the
3761 * page, bail as early as possible. shmem_unuse() encounters
3762 * already charged pages, too. The USED bit is protected by
3763 * the page lock, which serializes swap cache removal, which
3764 * in turn serializes uncharging.
3765 */
3766 if (PageCgroupUsed(pc))
3767 return 0;
8c7c6e34
KH
3768 if (!do_swap_account)
3769 goto charge_cur_mm;
c0ff4b85
R
3770 memcg = try_get_mem_cgroup_from_page(page);
3771 if (!memcg)
54595fe2 3772 goto charge_cur_mm;
72835c86
JW
3773 *memcgp = memcg;
3774 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3775 css_put(&memcg->css);
38c5d72f
KH
3776 if (ret == -EINTR)
3777 ret = 0;
54595fe2 3778 return ret;
8c7c6e34 3779charge_cur_mm:
38c5d72f
KH
3780 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3781 if (ret == -EINTR)
3782 ret = 0;
3783 return ret;
8c7c6e34
KH
3784}
3785
0435a2fd
JW
3786int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3787 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3788{
3789 *memcgp = NULL;
3790 if (mem_cgroup_disabled())
3791 return 0;
bdf4f4d2
JW
3792 /*
3793 * A racing thread's fault, or swapoff, may have already
3794 * updated the pte, and even removed page from swap cache: in
3795 * those cases unuse_pte()'s pte_same() test will fail; but
3796 * there's also a KSM case which does need to charge the page.
3797 */
3798 if (!PageSwapCache(page)) {
3799 int ret;
3800
3801 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3802 if (ret == -EINTR)
3803 ret = 0;
3804 return ret;
3805 }
0435a2fd
JW
3806 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3807}
3808
827a03d2
JW
3809void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3810{
3811 if (mem_cgroup_disabled())
3812 return;
3813 if (!memcg)
3814 return;
3815 __mem_cgroup_cancel_charge(memcg, 1);
3816}
3817
83aae4c7 3818static void
72835c86 3819__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3820 enum charge_type ctype)
7a81b88c 3821{
f8d66542 3822 if (mem_cgroup_disabled())
7a81b88c 3823 return;
72835c86 3824 if (!memcg)
7a81b88c 3825 return;
5a6475a4 3826
ce587e65 3827 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3828 /*
3829 * Now swap is on-memory. This means this page may be
3830 * counted both as mem and swap....double count.
03f3c433
KH
3831 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3832 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3833 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3834 */
03f3c433 3835 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3836 swp_entry_t ent = {.val = page_private(page)};
86493009 3837 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3838 }
7a81b88c
KH
3839}
3840
72835c86
JW
3841void mem_cgroup_commit_charge_swapin(struct page *page,
3842 struct mem_cgroup *memcg)
83aae4c7 3843{
72835c86 3844 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3845 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3846}
3847
827a03d2
JW
3848int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3849 gfp_t gfp_mask)
7a81b88c 3850{
827a03d2
JW
3851 struct mem_cgroup *memcg = NULL;
3852 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3853 int ret;
3854
f8d66542 3855 if (mem_cgroup_disabled())
827a03d2
JW
3856 return 0;
3857 if (PageCompound(page))
3858 return 0;
3859
827a03d2
JW
3860 if (!PageSwapCache(page))
3861 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3862 else { /* page is swapcache/shmem */
0435a2fd
JW
3863 ret = __mem_cgroup_try_charge_swapin(mm, page,
3864 gfp_mask, &memcg);
827a03d2
JW
3865 if (!ret)
3866 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3867 }
3868 return ret;
7a81b88c
KH
3869}
3870
c0ff4b85 3871static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3872 unsigned int nr_pages,
3873 const enum charge_type ctype)
569b846d
KH
3874{
3875 struct memcg_batch_info *batch = NULL;
3876 bool uncharge_memsw = true;
7ec99d62 3877
569b846d
KH
3878 /* If swapout, usage of swap doesn't decrease */
3879 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3880 uncharge_memsw = false;
569b846d
KH
3881
3882 batch = &current->memcg_batch;
3883 /*
3884 * In usual, we do css_get() when we remember memcg pointer.
3885 * But in this case, we keep res->usage until end of a series of
3886 * uncharges. Then, it's ok to ignore memcg's refcnt.
3887 */
3888 if (!batch->memcg)
c0ff4b85 3889 batch->memcg = memcg;
3c11ecf4
KH
3890 /*
3891 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3892 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3893 * the same cgroup and we have chance to coalesce uncharges.
3894 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3895 * because we want to do uncharge as soon as possible.
3896 */
3897
3898 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3899 goto direct_uncharge;
3900
7ec99d62 3901 if (nr_pages > 1)
ec168510
AA
3902 goto direct_uncharge;
3903
569b846d
KH
3904 /*
3905 * In typical case, batch->memcg == mem. This means we can
3906 * merge a series of uncharges to an uncharge of res_counter.
3907 * If not, we uncharge res_counter ony by one.
3908 */
c0ff4b85 3909 if (batch->memcg != memcg)
569b846d
KH
3910 goto direct_uncharge;
3911 /* remember freed charge and uncharge it later */
7ffd4ca7 3912 batch->nr_pages++;
569b846d 3913 if (uncharge_memsw)
7ffd4ca7 3914 batch->memsw_nr_pages++;
569b846d
KH
3915 return;
3916direct_uncharge:
c0ff4b85 3917 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3918 if (uncharge_memsw)
c0ff4b85
R
3919 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3920 if (unlikely(batch->memcg != memcg))
3921 memcg_oom_recover(memcg);
569b846d 3922}
7a81b88c 3923
8a9f3ccd 3924/*
69029cd5 3925 * uncharge if !page_mapped(page)
8a9f3ccd 3926 */
8c7c6e34 3927static struct mem_cgroup *
0030f535
JW
3928__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3929 bool end_migration)
8a9f3ccd 3930{
c0ff4b85 3931 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3932 unsigned int nr_pages = 1;
3933 struct page_cgroup *pc;
b2402857 3934 bool anon;
8a9f3ccd 3935
f8d66542 3936 if (mem_cgroup_disabled())
8c7c6e34 3937 return NULL;
4077960e 3938
0c59b89c 3939 VM_BUG_ON(PageSwapCache(page));
d13d1443 3940
37c2ac78 3941 if (PageTransHuge(page)) {
7ec99d62 3942 nr_pages <<= compound_order(page);
37c2ac78
AA
3943 VM_BUG_ON(!PageTransHuge(page));
3944 }
8697d331 3945 /*
3c541e14 3946 * Check if our page_cgroup is valid
8697d331 3947 */
52d4b9ac 3948 pc = lookup_page_cgroup(page);
cfa44946 3949 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3950 return NULL;
b9c565d5 3951
52d4b9ac 3952 lock_page_cgroup(pc);
d13d1443 3953
c0ff4b85 3954 memcg = pc->mem_cgroup;
8c7c6e34 3955
d13d1443
KH
3956 if (!PageCgroupUsed(pc))
3957 goto unlock_out;
3958
b2402857
KH
3959 anon = PageAnon(page);
3960
d13d1443 3961 switch (ctype) {
41326c17 3962 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3963 /*
3964 * Generally PageAnon tells if it's the anon statistics to be
3965 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3966 * used before page reached the stage of being marked PageAnon.
3967 */
b2402857
KH
3968 anon = true;
3969 /* fallthrough */
8a9478ca 3970 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3971 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3972 if (page_mapped(page))
3973 goto unlock_out;
3974 /*
3975 * Pages under migration may not be uncharged. But
3976 * end_migration() /must/ be the one uncharging the
3977 * unused post-migration page and so it has to call
3978 * here with the migration bit still set. See the
3979 * res_counter handling below.
3980 */
3981 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3982 goto unlock_out;
3983 break;
3984 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3985 if (!PageAnon(page)) { /* Shared memory */
3986 if (page->mapping && !page_is_file_cache(page))
3987 goto unlock_out;
3988 } else if (page_mapped(page)) /* Anon */
3989 goto unlock_out;
3990 break;
3991 default:
3992 break;
52d4b9ac 3993 }
d13d1443 3994
b2402857 3995 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3996
52d4b9ac 3997 ClearPageCgroupUsed(pc);
544122e5
KH
3998 /*
3999 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4000 * freed from LRU. This is safe because uncharged page is expected not
4001 * to be reused (freed soon). Exception is SwapCache, it's handled by
4002 * special functions.
4003 */
b9c565d5 4004
52d4b9ac 4005 unlock_page_cgroup(pc);
f75ca962 4006 /*
c0ff4b85 4007 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4008 * will never be freed.
4009 */
c0ff4b85 4010 memcg_check_events(memcg, page);
f75ca962 4011 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4012 mem_cgroup_swap_statistics(memcg, true);
4013 mem_cgroup_get(memcg);
f75ca962 4014 }
0030f535
JW
4015 /*
4016 * Migration does not charge the res_counter for the
4017 * replacement page, so leave it alone when phasing out the
4018 * page that is unused after the migration.
4019 */
4020 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4021 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4022
c0ff4b85 4023 return memcg;
d13d1443
KH
4024
4025unlock_out:
4026 unlock_page_cgroup(pc);
8c7c6e34 4027 return NULL;
3c541e14
BS
4028}
4029
69029cd5
KH
4030void mem_cgroup_uncharge_page(struct page *page)
4031{
52d4b9ac
KH
4032 /* early check. */
4033 if (page_mapped(page))
4034 return;
40f23a21 4035 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4036 if (PageSwapCache(page))
4037 return;
0030f535 4038 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4039}
4040
4041void mem_cgroup_uncharge_cache_page(struct page *page)
4042{
4043 VM_BUG_ON(page_mapped(page));
b7abea96 4044 VM_BUG_ON(page->mapping);
0030f535 4045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4046}
4047
569b846d
KH
4048/*
4049 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4050 * In that cases, pages are freed continuously and we can expect pages
4051 * are in the same memcg. All these calls itself limits the number of
4052 * pages freed at once, then uncharge_start/end() is called properly.
4053 * This may be called prural(2) times in a context,
4054 */
4055
4056void mem_cgroup_uncharge_start(void)
4057{
4058 current->memcg_batch.do_batch++;
4059 /* We can do nest. */
4060 if (current->memcg_batch.do_batch == 1) {
4061 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4062 current->memcg_batch.nr_pages = 0;
4063 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4064 }
4065}
4066
4067void mem_cgroup_uncharge_end(void)
4068{
4069 struct memcg_batch_info *batch = &current->memcg_batch;
4070
4071 if (!batch->do_batch)
4072 return;
4073
4074 batch->do_batch--;
4075 if (batch->do_batch) /* If stacked, do nothing. */
4076 return;
4077
4078 if (!batch->memcg)
4079 return;
4080 /*
4081 * This "batch->memcg" is valid without any css_get/put etc...
4082 * bacause we hide charges behind us.
4083 */
7ffd4ca7
JW
4084 if (batch->nr_pages)
4085 res_counter_uncharge(&batch->memcg->res,
4086 batch->nr_pages * PAGE_SIZE);
4087 if (batch->memsw_nr_pages)
4088 res_counter_uncharge(&batch->memcg->memsw,
4089 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4090 memcg_oom_recover(batch->memcg);
569b846d
KH
4091 /* forget this pointer (for sanity check) */
4092 batch->memcg = NULL;
4093}
4094
e767e056 4095#ifdef CONFIG_SWAP
8c7c6e34 4096/*
e767e056 4097 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4098 * memcg information is recorded to swap_cgroup of "ent"
4099 */
8a9478ca
KH
4100void
4101mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4102{
4103 struct mem_cgroup *memcg;
8a9478ca
KH
4104 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4105
4106 if (!swapout) /* this was a swap cache but the swap is unused ! */
4107 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4108
0030f535 4109 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4110
f75ca962
KH
4111 /*
4112 * record memcg information, if swapout && memcg != NULL,
4113 * mem_cgroup_get() was called in uncharge().
4114 */
4115 if (do_swap_account && swapout && memcg)
a3b2d692 4116 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4117}
e767e056 4118#endif
8c7c6e34 4119
c255a458 4120#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4121/*
4122 * called from swap_entry_free(). remove record in swap_cgroup and
4123 * uncharge "memsw" account.
4124 */
4125void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4126{
8c7c6e34 4127 struct mem_cgroup *memcg;
a3b2d692 4128 unsigned short id;
8c7c6e34
KH
4129
4130 if (!do_swap_account)
4131 return;
4132
a3b2d692
KH
4133 id = swap_cgroup_record(ent, 0);
4134 rcu_read_lock();
4135 memcg = mem_cgroup_lookup(id);
8c7c6e34 4136 if (memcg) {
a3b2d692
KH
4137 /*
4138 * We uncharge this because swap is freed.
4139 * This memcg can be obsolete one. We avoid calling css_tryget
4140 */
0c3e73e8 4141 if (!mem_cgroup_is_root(memcg))
4e649152 4142 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4143 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4144 mem_cgroup_put(memcg);
4145 }
a3b2d692 4146 rcu_read_unlock();
d13d1443 4147}
02491447
DN
4148
4149/**
4150 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4151 * @entry: swap entry to be moved
4152 * @from: mem_cgroup which the entry is moved from
4153 * @to: mem_cgroup which the entry is moved to
4154 *
4155 * It succeeds only when the swap_cgroup's record for this entry is the same
4156 * as the mem_cgroup's id of @from.
4157 *
4158 * Returns 0 on success, -EINVAL on failure.
4159 *
4160 * The caller must have charged to @to, IOW, called res_counter_charge() about
4161 * both res and memsw, and called css_get().
4162 */
4163static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4164 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4165{
4166 unsigned short old_id, new_id;
4167
4168 old_id = css_id(&from->css);
4169 new_id = css_id(&to->css);
4170
4171 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4172 mem_cgroup_swap_statistics(from, false);
483c30b5 4173 mem_cgroup_swap_statistics(to, true);
02491447 4174 /*
483c30b5
DN
4175 * This function is only called from task migration context now.
4176 * It postpones res_counter and refcount handling till the end
4177 * of task migration(mem_cgroup_clear_mc()) for performance
4178 * improvement. But we cannot postpone mem_cgroup_get(to)
4179 * because if the process that has been moved to @to does
4180 * swap-in, the refcount of @to might be decreased to 0.
02491447 4181 */
02491447 4182 mem_cgroup_get(to);
02491447
DN
4183 return 0;
4184 }
4185 return -EINVAL;
4186}
4187#else
4188static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4189 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4190{
4191 return -EINVAL;
4192}
8c7c6e34 4193#endif
d13d1443 4194
ae41be37 4195/*
01b1ae63
KH
4196 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4197 * page belongs to.
ae41be37 4198 */
0030f535
JW
4199void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4200 struct mem_cgroup **memcgp)
ae41be37 4201{
c0ff4b85 4202 struct mem_cgroup *memcg = NULL;
b32967ff 4203 unsigned int nr_pages = 1;
7ec99d62 4204 struct page_cgroup *pc;
ac39cf8c 4205 enum charge_type ctype;
8869b8f6 4206
72835c86 4207 *memcgp = NULL;
56039efa 4208
f8d66542 4209 if (mem_cgroup_disabled())
0030f535 4210 return;
4077960e 4211
b32967ff
MG
4212 if (PageTransHuge(page))
4213 nr_pages <<= compound_order(page);
4214
52d4b9ac
KH
4215 pc = lookup_page_cgroup(page);
4216 lock_page_cgroup(pc);
4217 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4218 memcg = pc->mem_cgroup;
4219 css_get(&memcg->css);
ac39cf8c 4220 /*
4221 * At migrating an anonymous page, its mapcount goes down
4222 * to 0 and uncharge() will be called. But, even if it's fully
4223 * unmapped, migration may fail and this page has to be
4224 * charged again. We set MIGRATION flag here and delay uncharge
4225 * until end_migration() is called
4226 *
4227 * Corner Case Thinking
4228 * A)
4229 * When the old page was mapped as Anon and it's unmap-and-freed
4230 * while migration was ongoing.
4231 * If unmap finds the old page, uncharge() of it will be delayed
4232 * until end_migration(). If unmap finds a new page, it's
4233 * uncharged when it make mapcount to be 1->0. If unmap code
4234 * finds swap_migration_entry, the new page will not be mapped
4235 * and end_migration() will find it(mapcount==0).
4236 *
4237 * B)
4238 * When the old page was mapped but migraion fails, the kernel
4239 * remaps it. A charge for it is kept by MIGRATION flag even
4240 * if mapcount goes down to 0. We can do remap successfully
4241 * without charging it again.
4242 *
4243 * C)
4244 * The "old" page is under lock_page() until the end of
4245 * migration, so, the old page itself will not be swapped-out.
4246 * If the new page is swapped out before end_migraton, our
4247 * hook to usual swap-out path will catch the event.
4248 */
4249 if (PageAnon(page))
4250 SetPageCgroupMigration(pc);
e8589cc1 4251 }
52d4b9ac 4252 unlock_page_cgroup(pc);
ac39cf8c 4253 /*
4254 * If the page is not charged at this point,
4255 * we return here.
4256 */
c0ff4b85 4257 if (!memcg)
0030f535 4258 return;
01b1ae63 4259
72835c86 4260 *memcgp = memcg;
ac39cf8c 4261 /*
4262 * We charge new page before it's used/mapped. So, even if unlock_page()
4263 * is called before end_migration, we can catch all events on this new
4264 * page. In the case new page is migrated but not remapped, new page's
4265 * mapcount will be finally 0 and we call uncharge in end_migration().
4266 */
ac39cf8c 4267 if (PageAnon(page))
41326c17 4268 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4269 else
62ba7442 4270 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4271 /*
4272 * The page is committed to the memcg, but it's not actually
4273 * charged to the res_counter since we plan on replacing the
4274 * old one and only one page is going to be left afterwards.
4275 */
b32967ff 4276 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4277}
8869b8f6 4278
69029cd5 4279/* remove redundant charge if migration failed*/
c0ff4b85 4280void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4281 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4282{
ac39cf8c 4283 struct page *used, *unused;
01b1ae63 4284 struct page_cgroup *pc;
b2402857 4285 bool anon;
01b1ae63 4286
c0ff4b85 4287 if (!memcg)
01b1ae63 4288 return;
b25ed609 4289
50de1dd9 4290 if (!migration_ok) {
ac39cf8c 4291 used = oldpage;
4292 unused = newpage;
01b1ae63 4293 } else {
ac39cf8c 4294 used = newpage;
01b1ae63
KH
4295 unused = oldpage;
4296 }
0030f535 4297 anon = PageAnon(used);
7d188958
JW
4298 __mem_cgroup_uncharge_common(unused,
4299 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4300 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4301 true);
0030f535 4302 css_put(&memcg->css);
69029cd5 4303 /*
ac39cf8c 4304 * We disallowed uncharge of pages under migration because mapcount
4305 * of the page goes down to zero, temporarly.
4306 * Clear the flag and check the page should be charged.
01b1ae63 4307 */
ac39cf8c 4308 pc = lookup_page_cgroup(oldpage);
4309 lock_page_cgroup(pc);
4310 ClearPageCgroupMigration(pc);
4311 unlock_page_cgroup(pc);
ac39cf8c 4312
01b1ae63 4313 /*
ac39cf8c 4314 * If a page is a file cache, radix-tree replacement is very atomic
4315 * and we can skip this check. When it was an Anon page, its mapcount
4316 * goes down to 0. But because we added MIGRATION flage, it's not
4317 * uncharged yet. There are several case but page->mapcount check
4318 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4319 * check. (see prepare_charge() also)
69029cd5 4320 */
b2402857 4321 if (anon)
ac39cf8c 4322 mem_cgroup_uncharge_page(used);
ae41be37 4323}
78fb7466 4324
ab936cbc
KH
4325/*
4326 * At replace page cache, newpage is not under any memcg but it's on
4327 * LRU. So, this function doesn't touch res_counter but handles LRU
4328 * in correct way. Both pages are locked so we cannot race with uncharge.
4329 */
4330void mem_cgroup_replace_page_cache(struct page *oldpage,
4331 struct page *newpage)
4332{
bde05d1c 4333 struct mem_cgroup *memcg = NULL;
ab936cbc 4334 struct page_cgroup *pc;
ab936cbc 4335 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4336
4337 if (mem_cgroup_disabled())
4338 return;
4339
4340 pc = lookup_page_cgroup(oldpage);
4341 /* fix accounting on old pages */
4342 lock_page_cgroup(pc);
bde05d1c
HD
4343 if (PageCgroupUsed(pc)) {
4344 memcg = pc->mem_cgroup;
4345 mem_cgroup_charge_statistics(memcg, false, -1);
4346 ClearPageCgroupUsed(pc);
4347 }
ab936cbc
KH
4348 unlock_page_cgroup(pc);
4349
bde05d1c
HD
4350 /*
4351 * When called from shmem_replace_page(), in some cases the
4352 * oldpage has already been charged, and in some cases not.
4353 */
4354 if (!memcg)
4355 return;
ab936cbc
KH
4356 /*
4357 * Even if newpage->mapping was NULL before starting replacement,
4358 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4359 * LRU while we overwrite pc->mem_cgroup.
4360 */
ce587e65 4361 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4362}
4363
f212ad7c
DN
4364#ifdef CONFIG_DEBUG_VM
4365static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4366{
4367 struct page_cgroup *pc;
4368
4369 pc = lookup_page_cgroup(page);
cfa44946
JW
4370 /*
4371 * Can be NULL while feeding pages into the page allocator for
4372 * the first time, i.e. during boot or memory hotplug;
4373 * or when mem_cgroup_disabled().
4374 */
f212ad7c
DN
4375 if (likely(pc) && PageCgroupUsed(pc))
4376 return pc;
4377 return NULL;
4378}
4379
4380bool mem_cgroup_bad_page_check(struct page *page)
4381{
4382 if (mem_cgroup_disabled())
4383 return false;
4384
4385 return lookup_page_cgroup_used(page) != NULL;
4386}
4387
4388void mem_cgroup_print_bad_page(struct page *page)
4389{
4390 struct page_cgroup *pc;
4391
4392 pc = lookup_page_cgroup_used(page);
4393 if (pc) {
90b3feae 4394 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 4395 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4396 }
4397}
4398#endif
4399
d38d2a75 4400static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4401 unsigned long long val)
628f4235 4402{
81d39c20 4403 int retry_count;
3c11ecf4 4404 u64 memswlimit, memlimit;
628f4235 4405 int ret = 0;
81d39c20
KH
4406 int children = mem_cgroup_count_children(memcg);
4407 u64 curusage, oldusage;
3c11ecf4 4408 int enlarge;
81d39c20
KH
4409
4410 /*
4411 * For keeping hierarchical_reclaim simple, how long we should retry
4412 * is depends on callers. We set our retry-count to be function
4413 * of # of children which we should visit in this loop.
4414 */
4415 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4416
4417 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4418
3c11ecf4 4419 enlarge = 0;
8c7c6e34 4420 while (retry_count) {
628f4235
KH
4421 if (signal_pending(current)) {
4422 ret = -EINTR;
4423 break;
4424 }
8c7c6e34
KH
4425 /*
4426 * Rather than hide all in some function, I do this in
4427 * open coded manner. You see what this really does.
aaad153e 4428 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4429 */
4430 mutex_lock(&set_limit_mutex);
4431 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4432 if (memswlimit < val) {
4433 ret = -EINVAL;
4434 mutex_unlock(&set_limit_mutex);
628f4235
KH
4435 break;
4436 }
3c11ecf4
KH
4437
4438 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4439 if (memlimit < val)
4440 enlarge = 1;
4441
8c7c6e34 4442 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4443 if (!ret) {
4444 if (memswlimit == val)
4445 memcg->memsw_is_minimum = true;
4446 else
4447 memcg->memsw_is_minimum = false;
4448 }
8c7c6e34
KH
4449 mutex_unlock(&set_limit_mutex);
4450
4451 if (!ret)
4452 break;
4453
5660048c
JW
4454 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4455 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4456 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4457 /* Usage is reduced ? */
4458 if (curusage >= oldusage)
4459 retry_count--;
4460 else
4461 oldusage = curusage;
8c7c6e34 4462 }
3c11ecf4
KH
4463 if (!ret && enlarge)
4464 memcg_oom_recover(memcg);
14797e23 4465
8c7c6e34
KH
4466 return ret;
4467}
4468
338c8431
LZ
4469static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4470 unsigned long long val)
8c7c6e34 4471{
81d39c20 4472 int retry_count;
3c11ecf4 4473 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4474 int children = mem_cgroup_count_children(memcg);
4475 int ret = -EBUSY;
3c11ecf4 4476 int enlarge = 0;
8c7c6e34 4477
81d39c20
KH
4478 /* see mem_cgroup_resize_res_limit */
4479 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4480 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4481 while (retry_count) {
4482 if (signal_pending(current)) {
4483 ret = -EINTR;
4484 break;
4485 }
4486 /*
4487 * Rather than hide all in some function, I do this in
4488 * open coded manner. You see what this really does.
aaad153e 4489 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4490 */
4491 mutex_lock(&set_limit_mutex);
4492 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4493 if (memlimit > val) {
4494 ret = -EINVAL;
4495 mutex_unlock(&set_limit_mutex);
4496 break;
4497 }
3c11ecf4
KH
4498 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4499 if (memswlimit < val)
4500 enlarge = 1;
8c7c6e34 4501 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4502 if (!ret) {
4503 if (memlimit == val)
4504 memcg->memsw_is_minimum = true;
4505 else
4506 memcg->memsw_is_minimum = false;
4507 }
8c7c6e34
KH
4508 mutex_unlock(&set_limit_mutex);
4509
4510 if (!ret)
4511 break;
4512
5660048c
JW
4513 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4514 MEM_CGROUP_RECLAIM_NOSWAP |
4515 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4516 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4517 /* Usage is reduced ? */
8c7c6e34 4518 if (curusage >= oldusage)
628f4235 4519 retry_count--;
81d39c20
KH
4520 else
4521 oldusage = curusage;
628f4235 4522 }
3c11ecf4
KH
4523 if (!ret && enlarge)
4524 memcg_oom_recover(memcg);
628f4235
KH
4525 return ret;
4526}
4527
4e416953 4528unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4529 gfp_t gfp_mask,
4530 unsigned long *total_scanned)
4e416953
BS
4531{
4532 unsigned long nr_reclaimed = 0;
4533 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4534 unsigned long reclaimed;
4535 int loop = 0;
4536 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4537 unsigned long long excess;
0ae5e89c 4538 unsigned long nr_scanned;
4e416953
BS
4539
4540 if (order > 0)
4541 return 0;
4542
00918b6a 4543 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4544 /*
4545 * This loop can run a while, specially if mem_cgroup's continuously
4546 * keep exceeding their soft limit and putting the system under
4547 * pressure
4548 */
4549 do {
4550 if (next_mz)
4551 mz = next_mz;
4552 else
4553 mz = mem_cgroup_largest_soft_limit_node(mctz);
4554 if (!mz)
4555 break;
4556
0ae5e89c 4557 nr_scanned = 0;
d79154bb 4558 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4559 gfp_mask, &nr_scanned);
4e416953 4560 nr_reclaimed += reclaimed;
0ae5e89c 4561 *total_scanned += nr_scanned;
4e416953
BS
4562 spin_lock(&mctz->lock);
4563
4564 /*
4565 * If we failed to reclaim anything from this memory cgroup
4566 * it is time to move on to the next cgroup
4567 */
4568 next_mz = NULL;
4569 if (!reclaimed) {
4570 do {
4571 /*
4572 * Loop until we find yet another one.
4573 *
4574 * By the time we get the soft_limit lock
4575 * again, someone might have aded the
4576 * group back on the RB tree. Iterate to
4577 * make sure we get a different mem.
4578 * mem_cgroup_largest_soft_limit_node returns
4579 * NULL if no other cgroup is present on
4580 * the tree
4581 */
4582 next_mz =
4583 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4584 if (next_mz == mz)
d79154bb 4585 css_put(&next_mz->memcg->css);
39cc98f1 4586 else /* next_mz == NULL or other memcg */
4e416953
BS
4587 break;
4588 } while (1);
4589 }
d79154bb
HD
4590 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4591 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4592 /*
4593 * One school of thought says that we should not add
4594 * back the node to the tree if reclaim returns 0.
4595 * But our reclaim could return 0, simply because due
4596 * to priority we are exposing a smaller subset of
4597 * memory to reclaim from. Consider this as a longer
4598 * term TODO.
4599 */
ef8745c1 4600 /* If excess == 0, no tree ops */
d79154bb 4601 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4602 spin_unlock(&mctz->lock);
d79154bb 4603 css_put(&mz->memcg->css);
4e416953
BS
4604 loop++;
4605 /*
4606 * Could not reclaim anything and there are no more
4607 * mem cgroups to try or we seem to be looping without
4608 * reclaiming anything.
4609 */
4610 if (!nr_reclaimed &&
4611 (next_mz == NULL ||
4612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4613 break;
4614 } while (!nr_reclaimed);
4615 if (next_mz)
d79154bb 4616 css_put(&next_mz->memcg->css);
4e416953
BS
4617 return nr_reclaimed;
4618}
4619
2ef37d3f
MH
4620/**
4621 * mem_cgroup_force_empty_list - clears LRU of a group
4622 * @memcg: group to clear
4623 * @node: NUMA node
4624 * @zid: zone id
4625 * @lru: lru to to clear
4626 *
3c935d18 4627 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4628 * reclaim the pages page themselves - pages are moved to the parent (or root)
4629 * group.
cc847582 4630 */
2ef37d3f 4631static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4632 int node, int zid, enum lru_list lru)
cc847582 4633{
bea8c150 4634 struct lruvec *lruvec;
2ef37d3f 4635 unsigned long flags;
072c56c1 4636 struct list_head *list;
925b7673
JW
4637 struct page *busy;
4638 struct zone *zone;
072c56c1 4639
08e552c6 4640 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4641 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4642 list = &lruvec->lists[lru];
cc847582 4643
f817ed48 4644 busy = NULL;
2ef37d3f 4645 do {
925b7673 4646 struct page_cgroup *pc;
5564e88b
JW
4647 struct page *page;
4648
08e552c6 4649 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4650 if (list_empty(list)) {
08e552c6 4651 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4652 break;
f817ed48 4653 }
925b7673
JW
4654 page = list_entry(list->prev, struct page, lru);
4655 if (busy == page) {
4656 list_move(&page->lru, list);
648bcc77 4657 busy = NULL;
08e552c6 4658 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4659 continue;
4660 }
08e552c6 4661 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4662
925b7673 4663 pc = lookup_page_cgroup(page);
5564e88b 4664
3c935d18 4665 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4666 /* found lock contention or "pc" is obsolete. */
925b7673 4667 busy = page;
f817ed48
KH
4668 cond_resched();
4669 } else
4670 busy = NULL;
2ef37d3f 4671 } while (!list_empty(list));
cc847582
KH
4672}
4673
4674/*
c26251f9
MH
4675 * make mem_cgroup's charge to be 0 if there is no task by moving
4676 * all the charges and pages to the parent.
cc847582 4677 * This enables deleting this mem_cgroup.
c26251f9
MH
4678 *
4679 * Caller is responsible for holding css reference on the memcg.
cc847582 4680 */
ab5196c2 4681static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4682{
c26251f9 4683 int node, zid;
bea207c8 4684 u64 usage;
f817ed48 4685
fce66477 4686 do {
52d4b9ac
KH
4687 /* This is for making all *used* pages to be on LRU. */
4688 lru_add_drain_all();
c0ff4b85 4689 drain_all_stock_sync(memcg);
c0ff4b85 4690 mem_cgroup_start_move(memcg);
31aaea4a 4691 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4692 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4693 enum lru_list lru;
4694 for_each_lru(lru) {
2ef37d3f 4695 mem_cgroup_force_empty_list(memcg,
f156ab93 4696 node, zid, lru);
f817ed48 4697 }
1ecaab2b 4698 }
f817ed48 4699 }
c0ff4b85
R
4700 mem_cgroup_end_move(memcg);
4701 memcg_oom_recover(memcg);
52d4b9ac 4702 cond_resched();
f817ed48 4703
2ef37d3f 4704 /*
bea207c8
GC
4705 * Kernel memory may not necessarily be trackable to a specific
4706 * process. So they are not migrated, and therefore we can't
4707 * expect their value to drop to 0 here.
4708 * Having res filled up with kmem only is enough.
4709 *
2ef37d3f
MH
4710 * This is a safety check because mem_cgroup_force_empty_list
4711 * could have raced with mem_cgroup_replace_page_cache callers
4712 * so the lru seemed empty but the page could have been added
4713 * right after the check. RES_USAGE should be safe as we always
4714 * charge before adding to the LRU.
4715 */
bea207c8
GC
4716 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4717 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4718 } while (usage > 0);
c26251f9
MH
4719}
4720
4721/*
4722 * Reclaims as many pages from the given memcg as possible and moves
4723 * the rest to the parent.
4724 *
4725 * Caller is responsible for holding css reference for memcg.
4726 */
4727static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4728{
4729 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4730 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4731
c1e862c1 4732 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4733 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4734 return -EBUSY;
4735
c1e862c1
KH
4736 /* we call try-to-free pages for make this cgroup empty */
4737 lru_add_drain_all();
f817ed48 4738 /* try to free all pages in this cgroup */
569530fb 4739 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4740 int progress;
c1e862c1 4741
c26251f9
MH
4742 if (signal_pending(current))
4743 return -EINTR;
4744
c0ff4b85 4745 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4746 false);
c1e862c1 4747 if (!progress) {
f817ed48 4748 nr_retries--;
c1e862c1 4749 /* maybe some writeback is necessary */
8aa7e847 4750 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4751 }
f817ed48
KH
4752
4753 }
08e552c6 4754 lru_add_drain();
ab5196c2
MH
4755 mem_cgroup_reparent_charges(memcg);
4756
4757 return 0;
cc847582
KH
4758}
4759
6bbda35c 4760static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4761{
c26251f9
MH
4762 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4763 int ret;
4764
d8423011
MH
4765 if (mem_cgroup_is_root(memcg))
4766 return -EINVAL;
c26251f9
MH
4767 css_get(&memcg->css);
4768 ret = mem_cgroup_force_empty(memcg);
4769 css_put(&memcg->css);
4770
4771 return ret;
c1e862c1
KH
4772}
4773
4774
18f59ea7
BS
4775static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4776{
4777 return mem_cgroup_from_cont(cont)->use_hierarchy;
4778}
4779
4780static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4781 u64 val)
4782{
4783 int retval = 0;
c0ff4b85 4784 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4785 struct cgroup *parent = cont->parent;
c0ff4b85 4786 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4787
4788 if (parent)
c0ff4b85 4789 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
4790
4791 cgroup_lock();
567fb435
GC
4792
4793 if (memcg->use_hierarchy == val)
4794 goto out;
4795
18f59ea7 4796 /*
af901ca1 4797 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4798 * in the child subtrees. If it is unset, then the change can
4799 * occur, provided the current cgroup has no children.
4800 *
4801 * For the root cgroup, parent_mem is NULL, we allow value to be
4802 * set if there are no children.
4803 */
c0ff4b85 4804 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
4805 (val == 1 || val == 0)) {
4806 if (list_empty(&cont->children))
c0ff4b85 4807 memcg->use_hierarchy = val;
18f59ea7
BS
4808 else
4809 retval = -EBUSY;
4810 } else
4811 retval = -EINVAL;
567fb435
GC
4812
4813out:
18f59ea7
BS
4814 cgroup_unlock();
4815
4816 return retval;
4817}
4818
0c3e73e8 4819
c0ff4b85 4820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4821 enum mem_cgroup_stat_index idx)
0c3e73e8 4822{
7d74b06f 4823 struct mem_cgroup *iter;
7a159cc9 4824 long val = 0;
0c3e73e8 4825
7a159cc9 4826 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4827 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4828 val += mem_cgroup_read_stat(iter, idx);
4829
4830 if (val < 0) /* race ? */
4831 val = 0;
4832 return val;
0c3e73e8
BS
4833}
4834
c0ff4b85 4835static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4836{
7d74b06f 4837 u64 val;
104f3928 4838
c0ff4b85 4839 if (!mem_cgroup_is_root(memcg)) {
104f3928 4840 if (!swap)
65c64ce8 4841 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4842 else
65c64ce8 4843 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4844 }
4845
c0ff4b85
R
4846 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4847 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4848
7d74b06f 4849 if (swap)
bff6bb83 4850 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4851
4852 return val << PAGE_SHIFT;
4853}
4854
af36f906
TH
4855static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4856 struct file *file, char __user *buf,
4857 size_t nbytes, loff_t *ppos)
8cdea7c0 4858{
c0ff4b85 4859 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 4860 char str[64];
104f3928 4861 u64 val;
86ae53e1
GC
4862 int name, len;
4863 enum res_type type;
8c7c6e34
KH
4864
4865 type = MEMFILE_TYPE(cft->private);
4866 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4867
4868 if (!do_swap_account && type == _MEMSWAP)
4869 return -EOPNOTSUPP;
4870
8c7c6e34
KH
4871 switch (type) {
4872 case _MEM:
104f3928 4873 if (name == RES_USAGE)
c0ff4b85 4874 val = mem_cgroup_usage(memcg, false);
104f3928 4875 else
c0ff4b85 4876 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4877 break;
4878 case _MEMSWAP:
104f3928 4879 if (name == RES_USAGE)
c0ff4b85 4880 val = mem_cgroup_usage(memcg, true);
104f3928 4881 else
c0ff4b85 4882 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4883 break;
510fc4e1
GC
4884 case _KMEM:
4885 val = res_counter_read_u64(&memcg->kmem, name);
4886 break;
8c7c6e34
KH
4887 default:
4888 BUG();
8c7c6e34 4889 }
af36f906
TH
4890
4891 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4892 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4893}
510fc4e1
GC
4894
4895static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4896{
4897 int ret = -EINVAL;
4898#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
4899 bool must_inc_static_branch = false;
4900
510fc4e1
GC
4901 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4902 /*
4903 * For simplicity, we won't allow this to be disabled. It also can't
4904 * be changed if the cgroup has children already, or if tasks had
4905 * already joined.
4906 *
4907 * If tasks join before we set the limit, a person looking at
4908 * kmem.usage_in_bytes will have no way to determine when it took
4909 * place, which makes the value quite meaningless.
4910 *
4911 * After it first became limited, changes in the value of the limit are
4912 * of course permitted.
4913 *
4914 * Taking the cgroup_lock is really offensive, but it is so far the only
4915 * way to guarantee that no children will appear. There are plenty of
4916 * other offenders, and they should all go away. Fine grained locking
4917 * is probably the way to go here. When we are fully hierarchical, we
4918 * can also get rid of the use_hierarchy check.
4919 */
4920 cgroup_lock();
4921 mutex_lock(&set_limit_mutex);
4922 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4923 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4924 !list_empty(&cont->children))) {
4925 ret = -EBUSY;
4926 goto out;
4927 }
4928 ret = res_counter_set_limit(&memcg->kmem, val);
4929 VM_BUG_ON(ret);
4930
55007d84
GC
4931 ret = memcg_update_cache_sizes(memcg);
4932 if (ret) {
4933 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4934 goto out;
4935 }
a8964b9b 4936 must_inc_static_branch = true;
7de37682
GC
4937 /*
4938 * kmem charges can outlive the cgroup. In the case of slab
4939 * pages, for instance, a page contain objects from various
4940 * processes, so it is unfeasible to migrate them away. We
4941 * need to reference count the memcg because of that.
4942 */
4943 mem_cgroup_get(memcg);
510fc4e1
GC
4944 } else
4945 ret = res_counter_set_limit(&memcg->kmem, val);
4946out:
4947 mutex_unlock(&set_limit_mutex);
4948 cgroup_unlock();
a8964b9b
GC
4949
4950 /*
4951 * We are by now familiar with the fact that we can't inc the static
4952 * branch inside cgroup_lock. See disarm functions for details. A
4953 * worker here is overkill, but also wrong: After the limit is set, we
4954 * must start accounting right away. Since this operation can't fail,
4955 * we can safely defer it to here - no rollback will be needed.
4956 *
4957 * The boolean used to control this is also safe, because
4958 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4959 * able to set it to true;
4960 */
4961 if (must_inc_static_branch) {
4962 static_key_slow_inc(&memcg_kmem_enabled_key);
4963 /*
4964 * setting the active bit after the inc will guarantee no one
4965 * starts accounting before all call sites are patched
4966 */
4967 memcg_kmem_set_active(memcg);
4968 }
4969
510fc4e1
GC
4970#endif
4971 return ret;
4972}
4973
55007d84 4974static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4975{
55007d84 4976 int ret = 0;
510fc4e1
GC
4977 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4978 if (!parent)
55007d84
GC
4979 goto out;
4980
510fc4e1 4981 memcg->kmem_account_flags = parent->kmem_account_flags;
7de37682 4982#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
4983 /*
4984 * When that happen, we need to disable the static branch only on those
4985 * memcgs that enabled it. To achieve this, we would be forced to
4986 * complicate the code by keeping track of which memcgs were the ones
4987 * that actually enabled limits, and which ones got it from its
4988 * parents.
4989 *
4990 * It is a lot simpler just to do static_key_slow_inc() on every child
4991 * that is accounted.
4992 */
55007d84
GC
4993 if (!memcg_kmem_is_active(memcg))
4994 goto out;
4995
4996 /*
4997 * destroy(), called if we fail, will issue static_key_slow_inc() and
4998 * mem_cgroup_put() if kmem is enabled. We have to either call them
4999 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5000 * this more consistent, since it always leads to the same destroy path
5001 */
5002 mem_cgroup_get(memcg);
5003 static_key_slow_inc(&memcg_kmem_enabled_key);
5004
5005 mutex_lock(&set_limit_mutex);
5006 ret = memcg_update_cache_sizes(memcg);
5007 mutex_unlock(&set_limit_mutex);
7de37682 5008#endif
55007d84
GC
5009out:
5010 return ret;
510fc4e1
GC
5011}
5012
628f4235
KH
5013/*
5014 * The user of this function is...
5015 * RES_LIMIT.
5016 */
856c13aa
PM
5017static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5018 const char *buffer)
8cdea7c0 5019{
628f4235 5020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5021 enum res_type type;
5022 int name;
628f4235
KH
5023 unsigned long long val;
5024 int ret;
5025
8c7c6e34
KH
5026 type = MEMFILE_TYPE(cft->private);
5027 name = MEMFILE_ATTR(cft->private);
af36f906
TH
5028
5029 if (!do_swap_account && type == _MEMSWAP)
5030 return -EOPNOTSUPP;
5031
8c7c6e34 5032 switch (name) {
628f4235 5033 case RES_LIMIT:
4b3bde4c
BS
5034 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5035 ret = -EINVAL;
5036 break;
5037 }
628f4235
KH
5038 /* This function does all necessary parse...reuse it */
5039 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5040 if (ret)
5041 break;
5042 if (type == _MEM)
628f4235 5043 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5044 else if (type == _MEMSWAP)
8c7c6e34 5045 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5046 else if (type == _KMEM)
5047 ret = memcg_update_kmem_limit(cont, val);
5048 else
5049 return -EINVAL;
628f4235 5050 break;
296c81d8
BS
5051 case RES_SOFT_LIMIT:
5052 ret = res_counter_memparse_write_strategy(buffer, &val);
5053 if (ret)
5054 break;
5055 /*
5056 * For memsw, soft limits are hard to implement in terms
5057 * of semantics, for now, we support soft limits for
5058 * control without swap
5059 */
5060 if (type == _MEM)
5061 ret = res_counter_set_soft_limit(&memcg->res, val);
5062 else
5063 ret = -EINVAL;
5064 break;
628f4235
KH
5065 default:
5066 ret = -EINVAL; /* should be BUG() ? */
5067 break;
5068 }
5069 return ret;
8cdea7c0
BS
5070}
5071
fee7b548
KH
5072static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5073 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5074{
5075 struct cgroup *cgroup;
5076 unsigned long long min_limit, min_memsw_limit, tmp;
5077
5078 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5079 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5080 cgroup = memcg->css.cgroup;
5081 if (!memcg->use_hierarchy)
5082 goto out;
5083
5084 while (cgroup->parent) {
5085 cgroup = cgroup->parent;
5086 memcg = mem_cgroup_from_cont(cgroup);
5087 if (!memcg->use_hierarchy)
5088 break;
5089 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5090 min_limit = min(min_limit, tmp);
5091 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5092 min_memsw_limit = min(min_memsw_limit, tmp);
5093 }
5094out:
5095 *mem_limit = min_limit;
5096 *memsw_limit = min_memsw_limit;
fee7b548
KH
5097}
5098
29f2a4da 5099static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5100{
af36f906 5101 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5102 int name;
5103 enum res_type type;
c84872e1 5104
8c7c6e34
KH
5105 type = MEMFILE_TYPE(event);
5106 name = MEMFILE_ATTR(event);
af36f906
TH
5107
5108 if (!do_swap_account && type == _MEMSWAP)
5109 return -EOPNOTSUPP;
5110
8c7c6e34 5111 switch (name) {
29f2a4da 5112 case RES_MAX_USAGE:
8c7c6e34 5113 if (type == _MEM)
c0ff4b85 5114 res_counter_reset_max(&memcg->res);
510fc4e1 5115 else if (type == _MEMSWAP)
c0ff4b85 5116 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5117 else if (type == _KMEM)
5118 res_counter_reset_max(&memcg->kmem);
5119 else
5120 return -EINVAL;
29f2a4da
PE
5121 break;
5122 case RES_FAILCNT:
8c7c6e34 5123 if (type == _MEM)
c0ff4b85 5124 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5125 else if (type == _MEMSWAP)
c0ff4b85 5126 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5127 else if (type == _KMEM)
5128 res_counter_reset_failcnt(&memcg->kmem);
5129 else
5130 return -EINVAL;
29f2a4da
PE
5131 break;
5132 }
f64c3f54 5133
85cc59db 5134 return 0;
c84872e1
PE
5135}
5136
7dc74be0
DN
5137static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5138 struct cftype *cft)
5139{
5140 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5141}
5142
02491447 5143#ifdef CONFIG_MMU
7dc74be0
DN
5144static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5145 struct cftype *cft, u64 val)
5146{
c0ff4b85 5147 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5148
5149 if (val >= (1 << NR_MOVE_TYPE))
5150 return -EINVAL;
5151 /*
5152 * We check this value several times in both in can_attach() and
5153 * attach(), so we need cgroup lock to prevent this value from being
5154 * inconsistent.
5155 */
5156 cgroup_lock();
c0ff4b85 5157 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5158 cgroup_unlock();
5159
5160 return 0;
5161}
02491447
DN
5162#else
5163static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5164 struct cftype *cft, u64 val)
5165{
5166 return -ENOSYS;
5167}
5168#endif
7dc74be0 5169
406eb0c9 5170#ifdef CONFIG_NUMA
ab215884 5171static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5172 struct seq_file *m)
406eb0c9
YH
5173{
5174 int nid;
5175 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5176 unsigned long node_nr;
d79154bb 5177 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5178
d79154bb 5179 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5180 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5181 for_each_node_state(nid, N_MEMORY) {
d79154bb 5182 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5183 seq_printf(m, " N%d=%lu", nid, node_nr);
5184 }
5185 seq_putc(m, '\n');
5186
d79154bb 5187 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5188 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5189 for_each_node_state(nid, N_MEMORY) {
d79154bb 5190 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5191 LRU_ALL_FILE);
406eb0c9
YH
5192 seq_printf(m, " N%d=%lu", nid, node_nr);
5193 }
5194 seq_putc(m, '\n');
5195
d79154bb 5196 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5197 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5198 for_each_node_state(nid, N_MEMORY) {
d79154bb 5199 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5200 LRU_ALL_ANON);
406eb0c9
YH
5201 seq_printf(m, " N%d=%lu", nid, node_nr);
5202 }
5203 seq_putc(m, '\n');
5204
d79154bb 5205 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5206 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5207 for_each_node_state(nid, N_MEMORY) {
d79154bb 5208 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5209 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5210 seq_printf(m, " N%d=%lu", nid, node_nr);
5211 }
5212 seq_putc(m, '\n');
5213 return 0;
5214}
5215#endif /* CONFIG_NUMA */
5216
af7c4b0e
JW
5217static const char * const mem_cgroup_lru_names[] = {
5218 "inactive_anon",
5219 "active_anon",
5220 "inactive_file",
5221 "active_file",
5222 "unevictable",
5223};
5224
5225static inline void mem_cgroup_lru_names_not_uptodate(void)
5226{
5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5228}
5229
ab215884 5230static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5231 struct seq_file *m)
d2ceb9b7 5232{
d79154bb 5233 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5234 struct mem_cgroup *mi;
5235 unsigned int i;
406eb0c9 5236
af7c4b0e 5237 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5238 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5239 continue;
af7c4b0e
JW
5240 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5241 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5242 }
7b854121 5243
af7c4b0e
JW
5244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5245 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5246 mem_cgroup_read_events(memcg, i));
5247
5248 for (i = 0; i < NR_LRU_LISTS; i++)
5249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5251
14067bb3 5252 /* Hierarchical information */
fee7b548
KH
5253 {
5254 unsigned long long limit, memsw_limit;
d79154bb 5255 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5256 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5257 if (do_swap_account)
78ccf5b5
JW
5258 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5259 memsw_limit);
fee7b548 5260 }
7f016ee8 5261
af7c4b0e
JW
5262 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5263 long long val = 0;
5264
bff6bb83 5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5266 continue;
af7c4b0e
JW
5267 for_each_mem_cgroup_tree(mi, memcg)
5268 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5269 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5270 }
5271
5272 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5273 unsigned long long val = 0;
5274
5275 for_each_mem_cgroup_tree(mi, memcg)
5276 val += mem_cgroup_read_events(mi, i);
5277 seq_printf(m, "total_%s %llu\n",
5278 mem_cgroup_events_names[i], val);
5279 }
5280
5281 for (i = 0; i < NR_LRU_LISTS; i++) {
5282 unsigned long long val = 0;
5283
5284 for_each_mem_cgroup_tree(mi, memcg)
5285 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5286 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5287 }
14067bb3 5288
7f016ee8 5289#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5290 {
5291 int nid, zid;
5292 struct mem_cgroup_per_zone *mz;
89abfab1 5293 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5294 unsigned long recent_rotated[2] = {0, 0};
5295 unsigned long recent_scanned[2] = {0, 0};
5296
5297 for_each_online_node(nid)
5298 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5299 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5300 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5301
89abfab1
HD
5302 recent_rotated[0] += rstat->recent_rotated[0];
5303 recent_rotated[1] += rstat->recent_rotated[1];
5304 recent_scanned[0] += rstat->recent_scanned[0];
5305 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5306 }
78ccf5b5
JW
5307 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5308 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5309 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5310 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5311 }
5312#endif
5313
d2ceb9b7
KH
5314 return 0;
5315}
5316
a7885eb8
KM
5317static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5318{
5319 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5320
1f4c025b 5321 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5322}
5323
5324static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5325 u64 val)
5326{
5327 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5328 struct mem_cgroup *parent;
068b38c1 5329
a7885eb8
KM
5330 if (val > 100)
5331 return -EINVAL;
5332
5333 if (cgrp->parent == NULL)
5334 return -EINVAL;
5335
5336 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
5337
5338 cgroup_lock();
5339
a7885eb8
KM
5340 /* If under hierarchy, only empty-root can set this value */
5341 if ((parent->use_hierarchy) ||
068b38c1
LZ
5342 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5343 cgroup_unlock();
a7885eb8 5344 return -EINVAL;
068b38c1 5345 }
a7885eb8 5346
a7885eb8 5347 memcg->swappiness = val;
a7885eb8 5348
068b38c1
LZ
5349 cgroup_unlock();
5350
a7885eb8
KM
5351 return 0;
5352}
5353
2e72b634
KS
5354static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5355{
5356 struct mem_cgroup_threshold_ary *t;
5357 u64 usage;
5358 int i;
5359
5360 rcu_read_lock();
5361 if (!swap)
2c488db2 5362 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5363 else
2c488db2 5364 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5365
5366 if (!t)
5367 goto unlock;
5368
5369 usage = mem_cgroup_usage(memcg, swap);
5370
5371 /*
748dad36 5372 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5373 * If it's not true, a threshold was crossed after last
5374 * call of __mem_cgroup_threshold().
5375 */
5407a562 5376 i = t->current_threshold;
2e72b634
KS
5377
5378 /*
5379 * Iterate backward over array of thresholds starting from
5380 * current_threshold and check if a threshold is crossed.
5381 * If none of thresholds below usage is crossed, we read
5382 * only one element of the array here.
5383 */
5384 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5385 eventfd_signal(t->entries[i].eventfd, 1);
5386
5387 /* i = current_threshold + 1 */
5388 i++;
5389
5390 /*
5391 * Iterate forward over array of thresholds starting from
5392 * current_threshold+1 and check if a threshold is crossed.
5393 * If none of thresholds above usage is crossed, we read
5394 * only one element of the array here.
5395 */
5396 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5397 eventfd_signal(t->entries[i].eventfd, 1);
5398
5399 /* Update current_threshold */
5407a562 5400 t->current_threshold = i - 1;
2e72b634
KS
5401unlock:
5402 rcu_read_unlock();
5403}
5404
5405static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5406{
ad4ca5f4
KS
5407 while (memcg) {
5408 __mem_cgroup_threshold(memcg, false);
5409 if (do_swap_account)
5410 __mem_cgroup_threshold(memcg, true);
5411
5412 memcg = parent_mem_cgroup(memcg);
5413 }
2e72b634
KS
5414}
5415
5416static int compare_thresholds(const void *a, const void *b)
5417{
5418 const struct mem_cgroup_threshold *_a = a;
5419 const struct mem_cgroup_threshold *_b = b;
5420
5421 return _a->threshold - _b->threshold;
5422}
5423
c0ff4b85 5424static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5425{
5426 struct mem_cgroup_eventfd_list *ev;
5427
c0ff4b85 5428 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5429 eventfd_signal(ev->eventfd, 1);
5430 return 0;
5431}
5432
c0ff4b85 5433static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5434{
7d74b06f
KH
5435 struct mem_cgroup *iter;
5436
c0ff4b85 5437 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5438 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5439}
5440
5441static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5442 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5443{
5444 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5445 struct mem_cgroup_thresholds *thresholds;
5446 struct mem_cgroup_threshold_ary *new;
86ae53e1 5447 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5448 u64 threshold, usage;
2c488db2 5449 int i, size, ret;
2e72b634
KS
5450
5451 ret = res_counter_memparse_write_strategy(args, &threshold);
5452 if (ret)
5453 return ret;
5454
5455 mutex_lock(&memcg->thresholds_lock);
2c488db2 5456
2e72b634 5457 if (type == _MEM)
2c488db2 5458 thresholds = &memcg->thresholds;
2e72b634 5459 else if (type == _MEMSWAP)
2c488db2 5460 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5461 else
5462 BUG();
5463
5464 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5465
5466 /* Check if a threshold crossed before adding a new one */
2c488db2 5467 if (thresholds->primary)
2e72b634
KS
5468 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5469
2c488db2 5470 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5471
5472 /* Allocate memory for new array of thresholds */
2c488db2 5473 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5474 GFP_KERNEL);
2c488db2 5475 if (!new) {
2e72b634
KS
5476 ret = -ENOMEM;
5477 goto unlock;
5478 }
2c488db2 5479 new->size = size;
2e72b634
KS
5480
5481 /* Copy thresholds (if any) to new array */
2c488db2
KS
5482 if (thresholds->primary) {
5483 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5484 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5485 }
5486
2e72b634 5487 /* Add new threshold */
2c488db2
KS
5488 new->entries[size - 1].eventfd = eventfd;
5489 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5490
5491 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5492 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5493 compare_thresholds, NULL);
5494
5495 /* Find current threshold */
2c488db2 5496 new->current_threshold = -1;
2e72b634 5497 for (i = 0; i < size; i++) {
748dad36 5498 if (new->entries[i].threshold <= usage) {
2e72b634 5499 /*
2c488db2
KS
5500 * new->current_threshold will not be used until
5501 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5502 * it here.
5503 */
2c488db2 5504 ++new->current_threshold;
748dad36
SZ
5505 } else
5506 break;
2e72b634
KS
5507 }
5508
2c488db2
KS
5509 /* Free old spare buffer and save old primary buffer as spare */
5510 kfree(thresholds->spare);
5511 thresholds->spare = thresholds->primary;
5512
5513 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5514
907860ed 5515 /* To be sure that nobody uses thresholds */
2e72b634
KS
5516 synchronize_rcu();
5517
2e72b634
KS
5518unlock:
5519 mutex_unlock(&memcg->thresholds_lock);
5520
5521 return ret;
5522}
5523
907860ed 5524static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5525 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5526{
5527 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5528 struct mem_cgroup_thresholds *thresholds;
5529 struct mem_cgroup_threshold_ary *new;
86ae53e1 5530 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5531 u64 usage;
2c488db2 5532 int i, j, size;
2e72b634
KS
5533
5534 mutex_lock(&memcg->thresholds_lock);
5535 if (type == _MEM)
2c488db2 5536 thresholds = &memcg->thresholds;
2e72b634 5537 else if (type == _MEMSWAP)
2c488db2 5538 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5539 else
5540 BUG();
5541
371528ca
AV
5542 if (!thresholds->primary)
5543 goto unlock;
5544
2e72b634
KS
5545 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5546
5547 /* Check if a threshold crossed before removing */
5548 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5549
5550 /* Calculate new number of threshold */
2c488db2
KS
5551 size = 0;
5552 for (i = 0; i < thresholds->primary->size; i++) {
5553 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5554 size++;
5555 }
5556
2c488db2 5557 new = thresholds->spare;
907860ed 5558
2e72b634
KS
5559 /* Set thresholds array to NULL if we don't have thresholds */
5560 if (!size) {
2c488db2
KS
5561 kfree(new);
5562 new = NULL;
907860ed 5563 goto swap_buffers;
2e72b634
KS
5564 }
5565
2c488db2 5566 new->size = size;
2e72b634
KS
5567
5568 /* Copy thresholds and find current threshold */
2c488db2
KS
5569 new->current_threshold = -1;
5570 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5571 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5572 continue;
5573
2c488db2 5574 new->entries[j] = thresholds->primary->entries[i];
748dad36 5575 if (new->entries[j].threshold <= usage) {
2e72b634 5576 /*
2c488db2 5577 * new->current_threshold will not be used
2e72b634
KS
5578 * until rcu_assign_pointer(), so it's safe to increment
5579 * it here.
5580 */
2c488db2 5581 ++new->current_threshold;
2e72b634
KS
5582 }
5583 j++;
5584 }
5585
907860ed 5586swap_buffers:
2c488db2
KS
5587 /* Swap primary and spare array */
5588 thresholds->spare = thresholds->primary;
8c757763
SZ
5589 /* If all events are unregistered, free the spare array */
5590 if (!new) {
5591 kfree(thresholds->spare);
5592 thresholds->spare = NULL;
5593 }
5594
2c488db2 5595 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5596
907860ed 5597 /* To be sure that nobody uses thresholds */
2e72b634 5598 synchronize_rcu();
371528ca 5599unlock:
2e72b634 5600 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5601}
c1e862c1 5602
9490ff27
KH
5603static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5604 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5605{
5606 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5607 struct mem_cgroup_eventfd_list *event;
86ae53e1 5608 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5609
5610 BUG_ON(type != _OOM_TYPE);
5611 event = kmalloc(sizeof(*event), GFP_KERNEL);
5612 if (!event)
5613 return -ENOMEM;
5614
1af8efe9 5615 spin_lock(&memcg_oom_lock);
9490ff27
KH
5616
5617 event->eventfd = eventfd;
5618 list_add(&event->list, &memcg->oom_notify);
5619
5620 /* already in OOM ? */
79dfdacc 5621 if (atomic_read(&memcg->under_oom))
9490ff27 5622 eventfd_signal(eventfd, 1);
1af8efe9 5623 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5624
5625 return 0;
5626}
5627
907860ed 5628static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5629 struct cftype *cft, struct eventfd_ctx *eventfd)
5630{
c0ff4b85 5631 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5632 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5633 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5634
5635 BUG_ON(type != _OOM_TYPE);
5636
1af8efe9 5637 spin_lock(&memcg_oom_lock);
9490ff27 5638
c0ff4b85 5639 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5640 if (ev->eventfd == eventfd) {
5641 list_del(&ev->list);
5642 kfree(ev);
5643 }
5644 }
5645
1af8efe9 5646 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5647}
5648
3c11ecf4
KH
5649static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5650 struct cftype *cft, struct cgroup_map_cb *cb)
5651{
c0ff4b85 5652 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5653
c0ff4b85 5654 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5655
c0ff4b85 5656 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5657 cb->fill(cb, "under_oom", 1);
5658 else
5659 cb->fill(cb, "under_oom", 0);
5660 return 0;
5661}
5662
3c11ecf4
KH
5663static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5664 struct cftype *cft, u64 val)
5665{
c0ff4b85 5666 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5667 struct mem_cgroup *parent;
5668
5669 /* cannot set to root cgroup and only 0 and 1 are allowed */
5670 if (!cgrp->parent || !((val == 0) || (val == 1)))
5671 return -EINVAL;
5672
5673 parent = mem_cgroup_from_cont(cgrp->parent);
5674
5675 cgroup_lock();
5676 /* oom-kill-disable is a flag for subhierarchy. */
5677 if ((parent->use_hierarchy) ||
c0ff4b85 5678 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
5679 cgroup_unlock();
5680 return -EINVAL;
5681 }
c0ff4b85 5682 memcg->oom_kill_disable = val;
4d845ebf 5683 if (!val)
c0ff4b85 5684 memcg_oom_recover(memcg);
3c11ecf4
KH
5685 cgroup_unlock();
5686 return 0;
5687}
5688
c255a458 5689#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5690static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5691{
55007d84
GC
5692 int ret;
5693
2633d7a0 5694 memcg->kmemcg_id = -1;
55007d84
GC
5695 ret = memcg_propagate_kmem(memcg);
5696 if (ret)
5697 return ret;
2633d7a0 5698
1d62e436 5699 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
5700};
5701
1d62e436 5702static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5703{
1d62e436 5704 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5705
5706 memcg_kmem_mark_dead(memcg);
5707
5708 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5709 return;
5710
5711 /*
5712 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5713 * path here, being careful not to race with memcg_uncharge_kmem: it is
5714 * possible that the charges went down to 0 between mark_dead and the
5715 * res_counter read, so in that case, we don't need the put
5716 */
5717 if (memcg_kmem_test_and_clear_dead(memcg))
5718 mem_cgroup_put(memcg);
d1a4c0b3 5719}
e5671dfa 5720#else
cbe128e3 5721static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5722{
5723 return 0;
5724}
d1a4c0b3 5725
1d62e436 5726static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5727{
5728}
e5671dfa
GC
5729#endif
5730
8cdea7c0
BS
5731static struct cftype mem_cgroup_files[] = {
5732 {
0eea1030 5733 .name = "usage_in_bytes",
8c7c6e34 5734 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5735 .read = mem_cgroup_read,
9490ff27
KH
5736 .register_event = mem_cgroup_usage_register_event,
5737 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5738 },
c84872e1
PE
5739 {
5740 .name = "max_usage_in_bytes",
8c7c6e34 5741 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5742 .trigger = mem_cgroup_reset,
af36f906 5743 .read = mem_cgroup_read,
c84872e1 5744 },
8cdea7c0 5745 {
0eea1030 5746 .name = "limit_in_bytes",
8c7c6e34 5747 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5748 .write_string = mem_cgroup_write,
af36f906 5749 .read = mem_cgroup_read,
8cdea7c0 5750 },
296c81d8
BS
5751 {
5752 .name = "soft_limit_in_bytes",
5753 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5754 .write_string = mem_cgroup_write,
af36f906 5755 .read = mem_cgroup_read,
296c81d8 5756 },
8cdea7c0
BS
5757 {
5758 .name = "failcnt",
8c7c6e34 5759 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5760 .trigger = mem_cgroup_reset,
af36f906 5761 .read = mem_cgroup_read,
8cdea7c0 5762 },
d2ceb9b7
KH
5763 {
5764 .name = "stat",
ab215884 5765 .read_seq_string = memcg_stat_show,
d2ceb9b7 5766 },
c1e862c1
KH
5767 {
5768 .name = "force_empty",
5769 .trigger = mem_cgroup_force_empty_write,
5770 },
18f59ea7
BS
5771 {
5772 .name = "use_hierarchy",
5773 .write_u64 = mem_cgroup_hierarchy_write,
5774 .read_u64 = mem_cgroup_hierarchy_read,
5775 },
a7885eb8
KM
5776 {
5777 .name = "swappiness",
5778 .read_u64 = mem_cgroup_swappiness_read,
5779 .write_u64 = mem_cgroup_swappiness_write,
5780 },
7dc74be0
DN
5781 {
5782 .name = "move_charge_at_immigrate",
5783 .read_u64 = mem_cgroup_move_charge_read,
5784 .write_u64 = mem_cgroup_move_charge_write,
5785 },
9490ff27
KH
5786 {
5787 .name = "oom_control",
3c11ecf4
KH
5788 .read_map = mem_cgroup_oom_control_read,
5789 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5790 .register_event = mem_cgroup_oom_register_event,
5791 .unregister_event = mem_cgroup_oom_unregister_event,
5792 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5793 },
406eb0c9
YH
5794#ifdef CONFIG_NUMA
5795 {
5796 .name = "numa_stat",
ab215884 5797 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5798 },
5799#endif
c255a458 5800#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
5801 {
5802 .name = "memsw.usage_in_bytes",
5803 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 5804 .read = mem_cgroup_read,
9490ff27
KH
5805 .register_event = mem_cgroup_usage_register_event,
5806 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
5807 },
5808 {
5809 .name = "memsw.max_usage_in_bytes",
5810 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5811 .trigger = mem_cgroup_reset,
af36f906 5812 .read = mem_cgroup_read,
8c7c6e34
KH
5813 },
5814 {
5815 .name = "memsw.limit_in_bytes",
5816 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5817 .write_string = mem_cgroup_write,
af36f906 5818 .read = mem_cgroup_read,
8c7c6e34
KH
5819 },
5820 {
5821 .name = "memsw.failcnt",
5822 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5823 .trigger = mem_cgroup_reset,
af36f906 5824 .read = mem_cgroup_read,
8c7c6e34 5825 },
510fc4e1
GC
5826#endif
5827#ifdef CONFIG_MEMCG_KMEM
5828 {
5829 .name = "kmem.limit_in_bytes",
5830 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5831 .write_string = mem_cgroup_write,
5832 .read = mem_cgroup_read,
5833 },
5834 {
5835 .name = "kmem.usage_in_bytes",
5836 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5837 .read = mem_cgroup_read,
5838 },
5839 {
5840 .name = "kmem.failcnt",
5841 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5842 .trigger = mem_cgroup_reset,
5843 .read = mem_cgroup_read,
5844 },
5845 {
5846 .name = "kmem.max_usage_in_bytes",
5847 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5848 .trigger = mem_cgroup_reset,
5849 .read = mem_cgroup_read,
5850 },
749c5415
GC
5851#ifdef CONFIG_SLABINFO
5852 {
5853 .name = "kmem.slabinfo",
5854 .read_seq_string = mem_cgroup_slabinfo_read,
5855 },
5856#endif
8c7c6e34 5857#endif
6bc10349 5858 { }, /* terminate */
af36f906 5859};
8c7c6e34 5860
c0ff4b85 5861static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5862{
5863 struct mem_cgroup_per_node *pn;
1ecaab2b 5864 struct mem_cgroup_per_zone *mz;
41e3355d 5865 int zone, tmp = node;
1ecaab2b
KH
5866 /*
5867 * This routine is called against possible nodes.
5868 * But it's BUG to call kmalloc() against offline node.
5869 *
5870 * TODO: this routine can waste much memory for nodes which will
5871 * never be onlined. It's better to use memory hotplug callback
5872 * function.
5873 */
41e3355d
KH
5874 if (!node_state(node, N_NORMAL_MEMORY))
5875 tmp = -1;
17295c88 5876 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5877 if (!pn)
5878 return 1;
1ecaab2b 5879
1ecaab2b
KH
5880 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5881 mz = &pn->zoneinfo[zone];
bea8c150 5882 lruvec_init(&mz->lruvec);
f64c3f54 5883 mz->usage_in_excess = 0;
4e416953 5884 mz->on_tree = false;
d79154bb 5885 mz->memcg = memcg;
1ecaab2b 5886 }
0a619e58 5887 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
5888 return 0;
5889}
5890
c0ff4b85 5891static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5892{
c0ff4b85 5893 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
5894}
5895
33327948
KH
5896static struct mem_cgroup *mem_cgroup_alloc(void)
5897{
d79154bb 5898 struct mem_cgroup *memcg;
c62b1a3b 5899 int size = sizeof(struct mem_cgroup);
33327948 5900
c62b1a3b 5901 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 5902 if (size < PAGE_SIZE)
d79154bb 5903 memcg = kzalloc(size, GFP_KERNEL);
33327948 5904 else
d79154bb 5905 memcg = vzalloc(size);
33327948 5906
d79154bb 5907 if (!memcg)
e7bbcdf3
DC
5908 return NULL;
5909
d79154bb
HD
5910 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5911 if (!memcg->stat)
d2e61b8d 5912 goto out_free;
d79154bb
HD
5913 spin_lock_init(&memcg->pcp_counter_lock);
5914 return memcg;
d2e61b8d
DC
5915
5916out_free:
5917 if (size < PAGE_SIZE)
d79154bb 5918 kfree(memcg);
d2e61b8d 5919 else
d79154bb 5920 vfree(memcg);
d2e61b8d 5921 return NULL;
33327948
KH
5922}
5923
59927fb9 5924/*
c8b2a36f
GC
5925 * At destroying mem_cgroup, references from swap_cgroup can remain.
5926 * (scanning all at force_empty is too costly...)
5927 *
5928 * Instead of clearing all references at force_empty, we remember
5929 * the number of reference from swap_cgroup and free mem_cgroup when
5930 * it goes down to 0.
5931 *
5932 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5933 */
c8b2a36f
GC
5934
5935static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5936{
c8b2a36f 5937 int node;
3afe36b1 5938 int size = sizeof(struct mem_cgroup);
59927fb9 5939
c8b2a36f
GC
5940 mem_cgroup_remove_from_trees(memcg);
5941 free_css_id(&mem_cgroup_subsys, &memcg->css);
5942
5943 for_each_node(node)
5944 free_mem_cgroup_per_zone_info(memcg, node);
5945
5946 free_percpu(memcg->stat);
5947
3f134619
GC
5948 /*
5949 * We need to make sure that (at least for now), the jump label
5950 * destruction code runs outside of the cgroup lock. This is because
5951 * get_online_cpus(), which is called from the static_branch update,
5952 * can't be called inside the cgroup_lock. cpusets are the ones
5953 * enforcing this dependency, so if they ever change, we might as well.
5954 *
5955 * schedule_work() will guarantee this happens. Be careful if you need
5956 * to move this code around, and make sure it is outside
5957 * the cgroup_lock.
5958 */
a8964b9b 5959 disarm_static_keys(memcg);
3afe36b1
GC
5960 if (size < PAGE_SIZE)
5961 kfree(memcg);
5962 else
5963 vfree(memcg);
59927fb9 5964}
3afe36b1 5965
59927fb9 5966
8c7c6e34 5967/*
c8b2a36f
GC
5968 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5969 * but in process context. The work_freeing structure is overlaid
5970 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 5971 */
c8b2a36f 5972static void free_work(struct work_struct *work)
33327948 5973{
c8b2a36f 5974 struct mem_cgroup *memcg;
08e552c6 5975
c8b2a36f
GC
5976 memcg = container_of(work, struct mem_cgroup, work_freeing);
5977 __mem_cgroup_free(memcg);
5978}
04046e1a 5979
c8b2a36f
GC
5980static void free_rcu(struct rcu_head *rcu_head)
5981{
5982 struct mem_cgroup *memcg;
08e552c6 5983
c8b2a36f
GC
5984 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5985 INIT_WORK(&memcg->work_freeing, free_work);
5986 schedule_work(&memcg->work_freeing);
33327948
KH
5987}
5988
c0ff4b85 5989static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 5990{
c0ff4b85 5991 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
5992}
5993
c0ff4b85 5994static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 5995{
c0ff4b85
R
5996 if (atomic_sub_and_test(count, &memcg->refcnt)) {
5997 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 5998 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
5999 if (parent)
6000 mem_cgroup_put(parent);
6001 }
8c7c6e34
KH
6002}
6003
c0ff4b85 6004static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6005{
c0ff4b85 6006 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6007}
6008
7bcc1bb1
DN
6009/*
6010 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6011 */
e1aab161 6012struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6013{
c0ff4b85 6014 if (!memcg->res.parent)
7bcc1bb1 6015 return NULL;
c0ff4b85 6016 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6017}
e1aab161 6018EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6019
c255a458 6020#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
6021static void __init enable_swap_cgroup(void)
6022{
f8d66542 6023 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
6024 do_swap_account = 1;
6025}
6026#else
6027static void __init enable_swap_cgroup(void)
6028{
6029}
6030#endif
6031
f64c3f54
BS
6032static int mem_cgroup_soft_limit_tree_init(void)
6033{
6034 struct mem_cgroup_tree_per_node *rtpn;
6035 struct mem_cgroup_tree_per_zone *rtpz;
6036 int tmp, node, zone;
6037
3ed28fa1 6038 for_each_node(node) {
f64c3f54
BS
6039 tmp = node;
6040 if (!node_state(node, N_NORMAL_MEMORY))
6041 tmp = -1;
6042 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6043 if (!rtpn)
c3cecc68 6044 goto err_cleanup;
f64c3f54
BS
6045
6046 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6047
6048 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6049 rtpz = &rtpn->rb_tree_per_zone[zone];
6050 rtpz->rb_root = RB_ROOT;
6051 spin_lock_init(&rtpz->lock);
6052 }
6053 }
6054 return 0;
c3cecc68
MH
6055
6056err_cleanup:
3ed28fa1 6057 for_each_node(node) {
c3cecc68
MH
6058 if (!soft_limit_tree.rb_tree_per_node[node])
6059 break;
6060 kfree(soft_limit_tree.rb_tree_per_node[node]);
6061 soft_limit_tree.rb_tree_per_node[node] = NULL;
6062 }
6063 return 1;
6064
f64c3f54
BS
6065}
6066
0eb253e2 6067static struct cgroup_subsys_state * __ref
92fb9748 6068mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6069{
c0ff4b85 6070 struct mem_cgroup *memcg, *parent;
04046e1a 6071 long error = -ENOMEM;
6d12e2d8 6072 int node;
8cdea7c0 6073
c0ff4b85
R
6074 memcg = mem_cgroup_alloc();
6075 if (!memcg)
04046e1a 6076 return ERR_PTR(error);
78fb7466 6077
3ed28fa1 6078 for_each_node(node)
c0ff4b85 6079 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6080 goto free_out;
f64c3f54 6081
c077719b 6082 /* root ? */
28dbc4b6 6083 if (cont->parent == NULL) {
cdec2e42 6084 int cpu;
c077719b 6085 enable_swap_cgroup();
28dbc4b6 6086 parent = NULL;
f64c3f54
BS
6087 if (mem_cgroup_soft_limit_tree_init())
6088 goto free_out;
a41c58a6 6089 root_mem_cgroup = memcg;
cdec2e42
KH
6090 for_each_possible_cpu(cpu) {
6091 struct memcg_stock_pcp *stock =
6092 &per_cpu(memcg_stock, cpu);
6093 INIT_WORK(&stock->work, drain_local_stock);
6094 }
18f59ea7 6095 } else {
28dbc4b6 6096 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
6097 memcg->use_hierarchy = parent->use_hierarchy;
6098 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 6099 }
28dbc4b6 6100
18f59ea7 6101 if (parent && parent->use_hierarchy) {
c0ff4b85
R
6102 res_counter_init(&memcg->res, &parent->res);
6103 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6104 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6105
7bcc1bb1
DN
6106 /*
6107 * We increment refcnt of the parent to ensure that we can
6108 * safely access it on res_counter_charge/uncharge.
6109 * This refcnt will be decremented when freeing this
6110 * mem_cgroup(see mem_cgroup_put).
6111 */
6112 mem_cgroup_get(parent);
18f59ea7 6113 } else {
c0ff4b85
R
6114 res_counter_init(&memcg->res, NULL);
6115 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6116 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6117 /*
6118 * Deeper hierachy with use_hierarchy == false doesn't make
6119 * much sense so let cgroup subsystem know about this
6120 * unfortunate state in our controller.
6121 */
6122 if (parent && parent != root_mem_cgroup)
6123 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6124 }
c0ff4b85
R
6125 memcg->last_scanned_node = MAX_NUMNODES;
6126 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 6127
a7885eb8 6128 if (parent)
c0ff4b85
R
6129 memcg->swappiness = mem_cgroup_swappiness(parent);
6130 atomic_set(&memcg->refcnt, 1);
6131 memcg->move_charge_at_immigrate = 0;
6132 mutex_init(&memcg->thresholds_lock);
312734c0 6133 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
6134
6135 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6136 if (error) {
6137 /*
6138 * We call put now because our (and parent's) refcnts
6139 * are already in place. mem_cgroup_put() will internally
6140 * call __mem_cgroup_free, so return directly
6141 */
6142 mem_cgroup_put(memcg);
6143 return ERR_PTR(error);
6144 }
c0ff4b85 6145 return &memcg->css;
6d12e2d8 6146free_out:
c0ff4b85 6147 __mem_cgroup_free(memcg);
04046e1a 6148 return ERR_PTR(error);
8cdea7c0
BS
6149}
6150
92fb9748 6151static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6152{
c0ff4b85 6153 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6154
ab5196c2 6155 mem_cgroup_reparent_charges(memcg);
1f458cbf 6156 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6157}
6158
92fb9748 6159static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6160{
c0ff4b85 6161 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6162
1d62e436 6163 kmem_cgroup_destroy(memcg);
d1a4c0b3 6164
c0ff4b85 6165 mem_cgroup_put(memcg);
8cdea7c0
BS
6166}
6167
02491447 6168#ifdef CONFIG_MMU
7dc74be0 6169/* Handlers for move charge at task migration. */
854ffa8d
DN
6170#define PRECHARGE_COUNT_AT_ONCE 256
6171static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6172{
854ffa8d
DN
6173 int ret = 0;
6174 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6175 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6176
c0ff4b85 6177 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6178 mc.precharge += count;
6179 /* we don't need css_get for root */
6180 return ret;
6181 }
6182 /* try to charge at once */
6183 if (count > 1) {
6184 struct res_counter *dummy;
6185 /*
c0ff4b85 6186 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6187 * by cgroup_lock_live_cgroup() that it is not removed and we
6188 * are still under the same cgroup_mutex. So we can postpone
6189 * css_get().
6190 */
c0ff4b85 6191 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6192 goto one_by_one;
c0ff4b85 6193 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6194 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6195 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6196 goto one_by_one;
6197 }
6198 mc.precharge += count;
854ffa8d
DN
6199 return ret;
6200 }
6201one_by_one:
6202 /* fall back to one by one charge */
6203 while (count--) {
6204 if (signal_pending(current)) {
6205 ret = -EINTR;
6206 break;
6207 }
6208 if (!batch_count--) {
6209 batch_count = PRECHARGE_COUNT_AT_ONCE;
6210 cond_resched();
6211 }
c0ff4b85
R
6212 ret = __mem_cgroup_try_charge(NULL,
6213 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6214 if (ret)
854ffa8d 6215 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6216 return ret;
854ffa8d
DN
6217 mc.precharge++;
6218 }
4ffef5fe
DN
6219 return ret;
6220}
6221
6222/**
8d32ff84 6223 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6224 * @vma: the vma the pte to be checked belongs
6225 * @addr: the address corresponding to the pte to be checked
6226 * @ptent: the pte to be checked
02491447 6227 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6228 *
6229 * Returns
6230 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6231 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6232 * move charge. if @target is not NULL, the page is stored in target->page
6233 * with extra refcnt got(Callers should handle it).
02491447
DN
6234 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6235 * target for charge migration. if @target is not NULL, the entry is stored
6236 * in target->ent.
4ffef5fe
DN
6237 *
6238 * Called with pte lock held.
6239 */
4ffef5fe
DN
6240union mc_target {
6241 struct page *page;
02491447 6242 swp_entry_t ent;
4ffef5fe
DN
6243};
6244
4ffef5fe 6245enum mc_target_type {
8d32ff84 6246 MC_TARGET_NONE = 0,
4ffef5fe 6247 MC_TARGET_PAGE,
02491447 6248 MC_TARGET_SWAP,
4ffef5fe
DN
6249};
6250
90254a65
DN
6251static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6252 unsigned long addr, pte_t ptent)
4ffef5fe 6253{
90254a65 6254 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6255
90254a65
DN
6256 if (!page || !page_mapped(page))
6257 return NULL;
6258 if (PageAnon(page)) {
6259 /* we don't move shared anon */
4b91355e 6260 if (!move_anon())
90254a65 6261 return NULL;
87946a72
DN
6262 } else if (!move_file())
6263 /* we ignore mapcount for file pages */
90254a65
DN
6264 return NULL;
6265 if (!get_page_unless_zero(page))
6266 return NULL;
6267
6268 return page;
6269}
6270
4b91355e 6271#ifdef CONFIG_SWAP
90254a65
DN
6272static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6273 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6274{
90254a65
DN
6275 struct page *page = NULL;
6276 swp_entry_t ent = pte_to_swp_entry(ptent);
6277
6278 if (!move_anon() || non_swap_entry(ent))
6279 return NULL;
4b91355e
KH
6280 /*
6281 * Because lookup_swap_cache() updates some statistics counter,
6282 * we call find_get_page() with swapper_space directly.
6283 */
6284 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
6285 if (do_swap_account)
6286 entry->val = ent.val;
6287
6288 return page;
6289}
4b91355e
KH
6290#else
6291static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6292 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6293{
6294 return NULL;
6295}
6296#endif
90254a65 6297
87946a72
DN
6298static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6299 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6300{
6301 struct page *page = NULL;
87946a72
DN
6302 struct address_space *mapping;
6303 pgoff_t pgoff;
6304
6305 if (!vma->vm_file) /* anonymous vma */
6306 return NULL;
6307 if (!move_file())
6308 return NULL;
6309
87946a72
DN
6310 mapping = vma->vm_file->f_mapping;
6311 if (pte_none(ptent))
6312 pgoff = linear_page_index(vma, addr);
6313 else /* pte_file(ptent) is true */
6314 pgoff = pte_to_pgoff(ptent);
6315
6316 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6317 page = find_get_page(mapping, pgoff);
6318
6319#ifdef CONFIG_SWAP
6320 /* shmem/tmpfs may report page out on swap: account for that too. */
6321 if (radix_tree_exceptional_entry(page)) {
6322 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6323 if (do_swap_account)
aa3b1895
HD
6324 *entry = swap;
6325 page = find_get_page(&swapper_space, swap.val);
87946a72 6326 }
aa3b1895 6327#endif
87946a72
DN
6328 return page;
6329}
6330
8d32ff84 6331static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6332 unsigned long addr, pte_t ptent, union mc_target *target)
6333{
6334 struct page *page = NULL;
6335 struct page_cgroup *pc;
8d32ff84 6336 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6337 swp_entry_t ent = { .val = 0 };
6338
6339 if (pte_present(ptent))
6340 page = mc_handle_present_pte(vma, addr, ptent);
6341 else if (is_swap_pte(ptent))
6342 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6343 else if (pte_none(ptent) || pte_file(ptent))
6344 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6345
6346 if (!page && !ent.val)
8d32ff84 6347 return ret;
02491447
DN
6348 if (page) {
6349 pc = lookup_page_cgroup(page);
6350 /*
6351 * Do only loose check w/o page_cgroup lock.
6352 * mem_cgroup_move_account() checks the pc is valid or not under
6353 * the lock.
6354 */
6355 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6356 ret = MC_TARGET_PAGE;
6357 if (target)
6358 target->page = page;
6359 }
6360 if (!ret || !target)
6361 put_page(page);
6362 }
90254a65
DN
6363 /* There is a swap entry and a page doesn't exist or isn't charged */
6364 if (ent.val && !ret &&
9fb4b7cc 6365 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6366 ret = MC_TARGET_SWAP;
6367 if (target)
6368 target->ent = ent;
4ffef5fe 6369 }
4ffef5fe
DN
6370 return ret;
6371}
6372
12724850
NH
6373#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6374/*
6375 * We don't consider swapping or file mapped pages because THP does not
6376 * support them for now.
6377 * Caller should make sure that pmd_trans_huge(pmd) is true.
6378 */
6379static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6380 unsigned long addr, pmd_t pmd, union mc_target *target)
6381{
6382 struct page *page = NULL;
6383 struct page_cgroup *pc;
6384 enum mc_target_type ret = MC_TARGET_NONE;
6385
6386 page = pmd_page(pmd);
6387 VM_BUG_ON(!page || !PageHead(page));
6388 if (!move_anon())
6389 return ret;
6390 pc = lookup_page_cgroup(page);
6391 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6392 ret = MC_TARGET_PAGE;
6393 if (target) {
6394 get_page(page);
6395 target->page = page;
6396 }
6397 }
6398 return ret;
6399}
6400#else
6401static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6402 unsigned long addr, pmd_t pmd, union mc_target *target)
6403{
6404 return MC_TARGET_NONE;
6405}
6406#endif
6407
4ffef5fe
DN
6408static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6409 unsigned long addr, unsigned long end,
6410 struct mm_walk *walk)
6411{
6412 struct vm_area_struct *vma = walk->private;
6413 pte_t *pte;
6414 spinlock_t *ptl;
6415
12724850
NH
6416 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6417 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6418 mc.precharge += HPAGE_PMD_NR;
6419 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6420 return 0;
12724850 6421 }
03319327 6422
45f83cef
AA
6423 if (pmd_trans_unstable(pmd))
6424 return 0;
4ffef5fe
DN
6425 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6426 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6427 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6428 mc.precharge++; /* increment precharge temporarily */
6429 pte_unmap_unlock(pte - 1, ptl);
6430 cond_resched();
6431
7dc74be0
DN
6432 return 0;
6433}
6434
4ffef5fe
DN
6435static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6436{
6437 unsigned long precharge;
6438 struct vm_area_struct *vma;
6439
dfe076b0 6440 down_read(&mm->mmap_sem);
4ffef5fe
DN
6441 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6442 struct mm_walk mem_cgroup_count_precharge_walk = {
6443 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6444 .mm = mm,
6445 .private = vma,
6446 };
6447 if (is_vm_hugetlb_page(vma))
6448 continue;
4ffef5fe
DN
6449 walk_page_range(vma->vm_start, vma->vm_end,
6450 &mem_cgroup_count_precharge_walk);
6451 }
dfe076b0 6452 up_read(&mm->mmap_sem);
4ffef5fe
DN
6453
6454 precharge = mc.precharge;
6455 mc.precharge = 0;
6456
6457 return precharge;
6458}
6459
4ffef5fe
DN
6460static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6461{
dfe076b0
DN
6462 unsigned long precharge = mem_cgroup_count_precharge(mm);
6463
6464 VM_BUG_ON(mc.moving_task);
6465 mc.moving_task = current;
6466 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6467}
6468
dfe076b0
DN
6469/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6470static void __mem_cgroup_clear_mc(void)
4ffef5fe 6471{
2bd9bb20
KH
6472 struct mem_cgroup *from = mc.from;
6473 struct mem_cgroup *to = mc.to;
6474
4ffef5fe 6475 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6476 if (mc.precharge) {
6477 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6478 mc.precharge = 0;
6479 }
6480 /*
6481 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6482 * we must uncharge here.
6483 */
6484 if (mc.moved_charge) {
6485 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6486 mc.moved_charge = 0;
4ffef5fe 6487 }
483c30b5
DN
6488 /* we must fixup refcnts and charges */
6489 if (mc.moved_swap) {
483c30b5
DN
6490 /* uncharge swap account from the old cgroup */
6491 if (!mem_cgroup_is_root(mc.from))
6492 res_counter_uncharge(&mc.from->memsw,
6493 PAGE_SIZE * mc.moved_swap);
6494 __mem_cgroup_put(mc.from, mc.moved_swap);
6495
6496 if (!mem_cgroup_is_root(mc.to)) {
6497 /*
6498 * we charged both to->res and to->memsw, so we should
6499 * uncharge to->res.
6500 */
6501 res_counter_uncharge(&mc.to->res,
6502 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6503 }
6504 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6505 mc.moved_swap = 0;
6506 }
dfe076b0
DN
6507 memcg_oom_recover(from);
6508 memcg_oom_recover(to);
6509 wake_up_all(&mc.waitq);
6510}
6511
6512static void mem_cgroup_clear_mc(void)
6513{
6514 struct mem_cgroup *from = mc.from;
6515
6516 /*
6517 * we must clear moving_task before waking up waiters at the end of
6518 * task migration.
6519 */
6520 mc.moving_task = NULL;
6521 __mem_cgroup_clear_mc();
2bd9bb20 6522 spin_lock(&mc.lock);
4ffef5fe
DN
6523 mc.from = NULL;
6524 mc.to = NULL;
2bd9bb20 6525 spin_unlock(&mc.lock);
32047e2a 6526 mem_cgroup_end_move(from);
4ffef5fe
DN
6527}
6528
761b3ef5
LZ
6529static int mem_cgroup_can_attach(struct cgroup *cgroup,
6530 struct cgroup_taskset *tset)
7dc74be0 6531{
2f7ee569 6532 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6533 int ret = 0;
c0ff4b85 6534 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 6535
c0ff4b85 6536 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
6537 struct mm_struct *mm;
6538 struct mem_cgroup *from = mem_cgroup_from_task(p);
6539
c0ff4b85 6540 VM_BUG_ON(from == memcg);
7dc74be0
DN
6541
6542 mm = get_task_mm(p);
6543 if (!mm)
6544 return 0;
7dc74be0 6545 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6546 if (mm->owner == p) {
6547 VM_BUG_ON(mc.from);
6548 VM_BUG_ON(mc.to);
6549 VM_BUG_ON(mc.precharge);
854ffa8d 6550 VM_BUG_ON(mc.moved_charge);
483c30b5 6551 VM_BUG_ON(mc.moved_swap);
32047e2a 6552 mem_cgroup_start_move(from);
2bd9bb20 6553 spin_lock(&mc.lock);
4ffef5fe 6554 mc.from = from;
c0ff4b85 6555 mc.to = memcg;
2bd9bb20 6556 spin_unlock(&mc.lock);
dfe076b0 6557 /* We set mc.moving_task later */
4ffef5fe
DN
6558
6559 ret = mem_cgroup_precharge_mc(mm);
6560 if (ret)
6561 mem_cgroup_clear_mc();
dfe076b0
DN
6562 }
6563 mmput(mm);
7dc74be0
DN
6564 }
6565 return ret;
6566}
6567
761b3ef5
LZ
6568static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6569 struct cgroup_taskset *tset)
7dc74be0 6570{
4ffef5fe 6571 mem_cgroup_clear_mc();
7dc74be0
DN
6572}
6573
4ffef5fe
DN
6574static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6575 unsigned long addr, unsigned long end,
6576 struct mm_walk *walk)
7dc74be0 6577{
4ffef5fe
DN
6578 int ret = 0;
6579 struct vm_area_struct *vma = walk->private;
6580 pte_t *pte;
6581 spinlock_t *ptl;
12724850
NH
6582 enum mc_target_type target_type;
6583 union mc_target target;
6584 struct page *page;
6585 struct page_cgroup *pc;
4ffef5fe 6586
12724850
NH
6587 /*
6588 * We don't take compound_lock() here but no race with splitting thp
6589 * happens because:
6590 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6591 * under splitting, which means there's no concurrent thp split,
6592 * - if another thread runs into split_huge_page() just after we
6593 * entered this if-block, the thread must wait for page table lock
6594 * to be unlocked in __split_huge_page_splitting(), where the main
6595 * part of thp split is not executed yet.
6596 */
6597 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6598 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6599 spin_unlock(&vma->vm_mm->page_table_lock);
6600 return 0;
6601 }
6602 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6603 if (target_type == MC_TARGET_PAGE) {
6604 page = target.page;
6605 if (!isolate_lru_page(page)) {
6606 pc = lookup_page_cgroup(page);
6607 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6608 pc, mc.from, mc.to)) {
12724850
NH
6609 mc.precharge -= HPAGE_PMD_NR;
6610 mc.moved_charge += HPAGE_PMD_NR;
6611 }
6612 putback_lru_page(page);
6613 }
6614 put_page(page);
6615 }
6616 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6617 return 0;
12724850
NH
6618 }
6619
45f83cef
AA
6620 if (pmd_trans_unstable(pmd))
6621 return 0;
4ffef5fe
DN
6622retry:
6623 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6624 for (; addr != end; addr += PAGE_SIZE) {
6625 pte_t ptent = *(pte++);
02491447 6626 swp_entry_t ent;
4ffef5fe
DN
6627
6628 if (!mc.precharge)
6629 break;
6630
8d32ff84 6631 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6632 case MC_TARGET_PAGE:
6633 page = target.page;
6634 if (isolate_lru_page(page))
6635 goto put;
6636 pc = lookup_page_cgroup(page);
7ec99d62 6637 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6638 mc.from, mc.to)) {
4ffef5fe 6639 mc.precharge--;
854ffa8d
DN
6640 /* we uncharge from mc.from later. */
6641 mc.moved_charge++;
4ffef5fe
DN
6642 }
6643 putback_lru_page(page);
8d32ff84 6644put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6645 put_page(page);
6646 break;
02491447
DN
6647 case MC_TARGET_SWAP:
6648 ent = target.ent;
e91cbb42 6649 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6650 mc.precharge--;
483c30b5
DN
6651 /* we fixup refcnts and charges later. */
6652 mc.moved_swap++;
6653 }
02491447 6654 break;
4ffef5fe
DN
6655 default:
6656 break;
6657 }
6658 }
6659 pte_unmap_unlock(pte - 1, ptl);
6660 cond_resched();
6661
6662 if (addr != end) {
6663 /*
6664 * We have consumed all precharges we got in can_attach().
6665 * We try charge one by one, but don't do any additional
6666 * charges to mc.to if we have failed in charge once in attach()
6667 * phase.
6668 */
854ffa8d 6669 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6670 if (!ret)
6671 goto retry;
6672 }
6673
6674 return ret;
6675}
6676
6677static void mem_cgroup_move_charge(struct mm_struct *mm)
6678{
6679 struct vm_area_struct *vma;
6680
6681 lru_add_drain_all();
dfe076b0
DN
6682retry:
6683 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6684 /*
6685 * Someone who are holding the mmap_sem might be waiting in
6686 * waitq. So we cancel all extra charges, wake up all waiters,
6687 * and retry. Because we cancel precharges, we might not be able
6688 * to move enough charges, but moving charge is a best-effort
6689 * feature anyway, so it wouldn't be a big problem.
6690 */
6691 __mem_cgroup_clear_mc();
6692 cond_resched();
6693 goto retry;
6694 }
4ffef5fe
DN
6695 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6696 int ret;
6697 struct mm_walk mem_cgroup_move_charge_walk = {
6698 .pmd_entry = mem_cgroup_move_charge_pte_range,
6699 .mm = mm,
6700 .private = vma,
6701 };
6702 if (is_vm_hugetlb_page(vma))
6703 continue;
4ffef5fe
DN
6704 ret = walk_page_range(vma->vm_start, vma->vm_end,
6705 &mem_cgroup_move_charge_walk);
6706 if (ret)
6707 /*
6708 * means we have consumed all precharges and failed in
6709 * doing additional charge. Just abandon here.
6710 */
6711 break;
6712 }
dfe076b0 6713 up_read(&mm->mmap_sem);
7dc74be0
DN
6714}
6715
761b3ef5
LZ
6716static void mem_cgroup_move_task(struct cgroup *cont,
6717 struct cgroup_taskset *tset)
67e465a7 6718{
2f7ee569 6719 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6720 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6721
dfe076b0 6722 if (mm) {
a433658c
KM
6723 if (mc.to)
6724 mem_cgroup_move_charge(mm);
dfe076b0
DN
6725 mmput(mm);
6726 }
a433658c
KM
6727 if (mc.to)
6728 mem_cgroup_clear_mc();
67e465a7 6729}
5cfb80a7 6730#else /* !CONFIG_MMU */
761b3ef5
LZ
6731static int mem_cgroup_can_attach(struct cgroup *cgroup,
6732 struct cgroup_taskset *tset)
5cfb80a7
DN
6733{
6734 return 0;
6735}
761b3ef5
LZ
6736static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6737 struct cgroup_taskset *tset)
5cfb80a7
DN
6738{
6739}
761b3ef5
LZ
6740static void mem_cgroup_move_task(struct cgroup *cont,
6741 struct cgroup_taskset *tset)
5cfb80a7
DN
6742{
6743}
6744#endif
67e465a7 6745
8cdea7c0
BS
6746struct cgroup_subsys mem_cgroup_subsys = {
6747 .name = "memory",
6748 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
6749 .css_alloc = mem_cgroup_css_alloc,
6750 .css_offline = mem_cgroup_css_offline,
6751 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6752 .can_attach = mem_cgroup_can_attach,
6753 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6754 .attach = mem_cgroup_move_task,
6bc10349 6755 .base_cftypes = mem_cgroup_files,
6d12e2d8 6756 .early_init = 0,
04046e1a 6757 .use_id = 1,
8cdea7c0 6758};
c077719b 6759
154b454e
TH
6760/*
6761 * The rest of init is performed during ->css_alloc() for root css which
6762 * happens before initcalls. hotcpu_notifier() can't be done together as
6763 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6764 * dependency. Do it from a subsys_initcall().
6765 */
6766static int __init mem_cgroup_init(void)
6767{
6768 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6769 return 0;
6770}
6771subsys_initcall(mem_cgroup_init);
6772
c255a458 6773#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6774static int __init enable_swap_account(char *s)
6775{
6776 /* consider enabled if no parameter or 1 is given */
a2c8990a 6777 if (!strcmp(s, "1"))
a42c390c 6778 really_do_swap_account = 1;
a2c8990a 6779 else if (!strcmp(s, "0"))
a42c390c
MH
6780 really_do_swap_account = 0;
6781 return 1;
6782}
a2c8990a 6783__setup("swapaccount=", enable_swap_account);
c077719b 6784
c077719b 6785#endif
This page took 0.937024 seconds and 5 git commands to generate.