mm/mmap: kill hook arch_rebalance_pgtables()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
fa9add64
HD
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
3f58a829 1028 */
fa9add64
HD
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
3f58a829
MK
1031{
1032 struct mem_cgroup_per_zone *mz;
fa9add64 1033 unsigned long *lru_size;
3f58a829
MK
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
fa9add64
HD
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1042}
544122e5 1043
2314b42d 1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1045{
2314b42d 1046 struct mem_cgroup *task_memcg;
158e0a2d 1047 struct task_struct *p;
ffbdccf5 1048 bool ret;
4c4a2214 1049
158e0a2d 1050 p = find_lock_task_mm(task);
de077d22 1051 if (p) {
2314b42d 1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
ffbdccf5 1060 rcu_read_lock();
2314b42d
JW
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
ffbdccf5 1063 rcu_read_unlock();
de077d22 1064 }
2314b42d
JW
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
4c4a2214
DR
1067 return ret;
1068}
1069
19942822 1070/**
9d11ea9f 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1072 * @memcg: the memory cgroup
19942822 1073 *
9d11ea9f 1074 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1075 * pages.
19942822 1076 */
c0ff4b85 1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1078{
3e32cb2e
JW
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
9d11ea9f 1082
3e32cb2e 1083 count = page_counter_read(&memcg->memory);
4db0c3c2 1084 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1085 if (count < limit)
1086 margin = limit - count;
1087
7941d214 1088 if (do_memsw_account()) {
3e32cb2e 1089 count = page_counter_read(&memcg->memsw);
4db0c3c2 1090 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
58cf188e
SZ
1154 struct mem_cgroup *iter;
1155 unsigned int i;
e222432b 1156
e222432b
BS
1157 rcu_read_lock();
1158
2415b9f5
BV
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
e61734c5 1167 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1168 pr_cont("\n");
e222432b 1169
e222432b
BS
1170 rcu_read_unlock();
1171
3e32cb2e
JW
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1189 continue;
484ebb3b 1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
e222432b
BS
1200}
1201
81d39c20
KH
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
c0ff4b85 1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1207{
1208 int num = 0;
7d74b06f
KH
1209 struct mem_cgroup *iter;
1210
c0ff4b85 1211 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1212 num++;
81d39c20
KH
1213 return num;
1214}
1215
a63d83f4
DR
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
3e32cb2e 1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1220{
3e32cb2e 1221 unsigned long limit;
f3e8eb70 1222
3e32cb2e 1223 limit = memcg->memory.limit;
9a5a8f19 1224 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1225 unsigned long memsw_limit;
37e84351 1226 unsigned long swap_limit;
9a5a8f19 1227
3e32cb2e 1228 memsw_limit = memcg->memsw.limit;
37e84351
VD
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1232 }
9a5a8f19 1233 return limit;
a63d83f4
DR
1234}
1235
b6e6edcf 1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1237 int order)
9cbb78bb 1238{
6e0fc46d
DR
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
6e0fc46d 1244 };
9cbb78bb
DR
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
dc56401f
JW
1251 mutex_lock(&oom_lock);
1252
876aafbf 1253 /*
465adcf1
DR
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
876aafbf 1257 */
d003f371 1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1259 mark_oom_victim(current);
dc56401f 1260 goto unlock;
876aafbf
DR
1261 }
1262
6e0fc46d 1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1265 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1266 struct css_task_iter it;
9cbb78bb
DR
1267 struct task_struct *task;
1268
72ec7029
TH
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
72ec7029 1282 css_task_iter_end(&it);
9cbb78bb
DR
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
dc56401f 1286 goto unlock;
9cbb78bb
DR
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
9cbb78bb 1303 }
72ec7029 1304 css_task_iter_end(&it);
9cbb78bb
DR
1305 }
1306
dc56401f
JW
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
dc56401f
JW
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
b6e6edcf 1314 return chosen;
9cbb78bb
DR
1315}
1316
ae6e71d3
MC
1317#if MAX_NUMNODES > 1
1318
4d0c066d
KH
1319/**
1320 * test_mem_cgroup_node_reclaimable
dad7557e 1321 * @memcg: the target memcg
4d0c066d
KH
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
c0ff4b85 1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1330 int nid, bool noswap)
1331{
c0ff4b85 1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
c0ff4b85 1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1337 return true;
1338 return false;
1339
1340}
889976db
YH
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
c0ff4b85 1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1349{
1350 int nid;
453a9bf3
KH
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
c0ff4b85 1355 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1356 return;
c0ff4b85 1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1358 return;
1359
889976db 1360 /* make a nodemask where this memcg uses memory from */
31aaea4a 1361 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1362
31aaea4a 1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1364
c0ff4b85
R
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
889976db 1367 }
453a9bf3 1368
c0ff4b85
R
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
c0ff4b85 1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1386{
1387 int node;
1388
c0ff4b85
R
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
889976db 1391
0edaf86c 1392 node = next_node_in(node, memcg->scan_nodes);
889976db 1393 /*
fda3d69b
MH
1394 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1395 * last time it really checked all the LRUs due to rate limiting.
1396 * Fallback to the current node in that case for simplicity.
889976db
YH
1397 */
1398 if (unlikely(node == MAX_NUMNODES))
1399 node = numa_node_id();
1400
c0ff4b85 1401 memcg->last_scanned_node = node;
889976db
YH
1402 return node;
1403}
889976db 1404#else
c0ff4b85 1405int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1406{
1407 return 0;
1408}
1409#endif
1410
0608f43d
AM
1411static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1412 struct zone *zone,
1413 gfp_t gfp_mask,
1414 unsigned long *total_scanned)
1415{
1416 struct mem_cgroup *victim = NULL;
1417 int total = 0;
1418 int loop = 0;
1419 unsigned long excess;
1420 unsigned long nr_scanned;
1421 struct mem_cgroup_reclaim_cookie reclaim = {
1422 .zone = zone,
1423 .priority = 0,
1424 };
1425
3e32cb2e 1426 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1427
1428 while (1) {
1429 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1430 if (!victim) {
1431 loop++;
1432 if (loop >= 2) {
1433 /*
1434 * If we have not been able to reclaim
1435 * anything, it might because there are
1436 * no reclaimable pages under this hierarchy
1437 */
1438 if (!total)
1439 break;
1440 /*
1441 * We want to do more targeted reclaim.
1442 * excess >> 2 is not to excessive so as to
1443 * reclaim too much, nor too less that we keep
1444 * coming back to reclaim from this cgroup
1445 */
1446 if (total >= (excess >> 2) ||
1447 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1448 break;
1449 }
1450 continue;
1451 }
0608f43d
AM
1452 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1453 zone, &nr_scanned);
1454 *total_scanned += nr_scanned;
3e32cb2e 1455 if (!soft_limit_excess(root_memcg))
0608f43d 1456 break;
6d61ef40 1457 }
0608f43d
AM
1458 mem_cgroup_iter_break(root_memcg, victim);
1459 return total;
6d61ef40
BS
1460}
1461
0056f4e6
JW
1462#ifdef CONFIG_LOCKDEP
1463static struct lockdep_map memcg_oom_lock_dep_map = {
1464 .name = "memcg_oom_lock",
1465};
1466#endif
1467
fb2a6fc5
JW
1468static DEFINE_SPINLOCK(memcg_oom_lock);
1469
867578cb
KH
1470/*
1471 * Check OOM-Killer is already running under our hierarchy.
1472 * If someone is running, return false.
1473 */
fb2a6fc5 1474static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1475{
79dfdacc 1476 struct mem_cgroup *iter, *failed = NULL;
a636b327 1477
fb2a6fc5
JW
1478 spin_lock(&memcg_oom_lock);
1479
9f3a0d09 1480 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1481 if (iter->oom_lock) {
79dfdacc
MH
1482 /*
1483 * this subtree of our hierarchy is already locked
1484 * so we cannot give a lock.
1485 */
79dfdacc 1486 failed = iter;
9f3a0d09
JW
1487 mem_cgroup_iter_break(memcg, iter);
1488 break;
23751be0
JW
1489 } else
1490 iter->oom_lock = true;
7d74b06f 1491 }
867578cb 1492
fb2a6fc5
JW
1493 if (failed) {
1494 /*
1495 * OK, we failed to lock the whole subtree so we have
1496 * to clean up what we set up to the failing subtree
1497 */
1498 for_each_mem_cgroup_tree(iter, memcg) {
1499 if (iter == failed) {
1500 mem_cgroup_iter_break(memcg, iter);
1501 break;
1502 }
1503 iter->oom_lock = false;
79dfdacc 1504 }
0056f4e6
JW
1505 } else
1506 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1507
1508 spin_unlock(&memcg_oom_lock);
1509
1510 return !failed;
a636b327 1511}
0b7f569e 1512
fb2a6fc5 1513static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1514{
7d74b06f
KH
1515 struct mem_cgroup *iter;
1516
fb2a6fc5 1517 spin_lock(&memcg_oom_lock);
0056f4e6 1518 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1519 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1520 iter->oom_lock = false;
fb2a6fc5 1521 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1522}
1523
c0ff4b85 1524static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1525{
1526 struct mem_cgroup *iter;
1527
c2b42d3c 1528 spin_lock(&memcg_oom_lock);
c0ff4b85 1529 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1530 iter->under_oom++;
1531 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1532}
1533
c0ff4b85 1534static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1535{
1536 struct mem_cgroup *iter;
1537
867578cb
KH
1538 /*
1539 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1540 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1541 */
c2b42d3c 1542 spin_lock(&memcg_oom_lock);
c0ff4b85 1543 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1544 if (iter->under_oom > 0)
1545 iter->under_oom--;
1546 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1547}
1548
867578cb
KH
1549static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1550
dc98df5a 1551struct oom_wait_info {
d79154bb 1552 struct mem_cgroup *memcg;
dc98df5a
KH
1553 wait_queue_t wait;
1554};
1555
1556static int memcg_oom_wake_function(wait_queue_t *wait,
1557 unsigned mode, int sync, void *arg)
1558{
d79154bb
HD
1559 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1560 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1561 struct oom_wait_info *oom_wait_info;
1562
1563 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1564 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1565
2314b42d
JW
1566 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1567 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1568 return 0;
dc98df5a
KH
1569 return autoremove_wake_function(wait, mode, sync, arg);
1570}
1571
c0ff4b85 1572static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1573{
c2b42d3c
TH
1574 /*
1575 * For the following lockless ->under_oom test, the only required
1576 * guarantee is that it must see the state asserted by an OOM when
1577 * this function is called as a result of userland actions
1578 * triggered by the notification of the OOM. This is trivially
1579 * achieved by invoking mem_cgroup_mark_under_oom() before
1580 * triggering notification.
1581 */
1582 if (memcg && memcg->under_oom)
f4b90b70 1583 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1584}
1585
3812c8c8 1586static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1587{
626ebc41 1588 if (!current->memcg_may_oom)
3812c8c8 1589 return;
867578cb 1590 /*
49426420
JW
1591 * We are in the middle of the charge context here, so we
1592 * don't want to block when potentially sitting on a callstack
1593 * that holds all kinds of filesystem and mm locks.
1594 *
1595 * Also, the caller may handle a failed allocation gracefully
1596 * (like optional page cache readahead) and so an OOM killer
1597 * invocation might not even be necessary.
1598 *
1599 * That's why we don't do anything here except remember the
1600 * OOM context and then deal with it at the end of the page
1601 * fault when the stack is unwound, the locks are released,
1602 * and when we know whether the fault was overall successful.
867578cb 1603 */
49426420 1604 css_get(&memcg->css);
626ebc41
TH
1605 current->memcg_in_oom = memcg;
1606 current->memcg_oom_gfp_mask = mask;
1607 current->memcg_oom_order = order;
3812c8c8
JW
1608}
1609
1610/**
1611 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1612 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1613 *
49426420
JW
1614 * This has to be called at the end of a page fault if the memcg OOM
1615 * handler was enabled.
3812c8c8 1616 *
49426420 1617 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1618 * sleep on a waitqueue until the userspace task resolves the
1619 * situation. Sleeping directly in the charge context with all kinds
1620 * of locks held is not a good idea, instead we remember an OOM state
1621 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1622 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1623 *
1624 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1625 * completed, %false otherwise.
3812c8c8 1626 */
49426420 1627bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1628{
626ebc41 1629 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1630 struct oom_wait_info owait;
49426420 1631 bool locked;
3812c8c8
JW
1632
1633 /* OOM is global, do not handle */
3812c8c8 1634 if (!memcg)
49426420 1635 return false;
3812c8c8 1636
c32b3cbe 1637 if (!handle || oom_killer_disabled)
49426420 1638 goto cleanup;
3812c8c8
JW
1639
1640 owait.memcg = memcg;
1641 owait.wait.flags = 0;
1642 owait.wait.func = memcg_oom_wake_function;
1643 owait.wait.private = current;
1644 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1645
3812c8c8 1646 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1647 mem_cgroup_mark_under_oom(memcg);
1648
1649 locked = mem_cgroup_oom_trylock(memcg);
1650
1651 if (locked)
1652 mem_cgroup_oom_notify(memcg);
1653
1654 if (locked && !memcg->oom_kill_disable) {
1655 mem_cgroup_unmark_under_oom(memcg);
1656 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1657 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1658 current->memcg_oom_order);
49426420 1659 } else {
3812c8c8 1660 schedule();
49426420
JW
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 }
1664
1665 if (locked) {
fb2a6fc5
JW
1666 mem_cgroup_oom_unlock(memcg);
1667 /*
1668 * There is no guarantee that an OOM-lock contender
1669 * sees the wakeups triggered by the OOM kill
1670 * uncharges. Wake any sleepers explicitely.
1671 */
1672 memcg_oom_recover(memcg);
1673 }
49426420 1674cleanup:
626ebc41 1675 current->memcg_in_oom = NULL;
3812c8c8 1676 css_put(&memcg->css);
867578cb 1677 return true;
0b7f569e
KH
1678}
1679
d7365e78 1680/**
81f8c3a4
JW
1681 * lock_page_memcg - lock a page->mem_cgroup binding
1682 * @page: the page
32047e2a 1683 *
81f8c3a4
JW
1684 * This function protects unlocked LRU pages from being moved to
1685 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1686 */
62cccb8c 1687void lock_page_memcg(struct page *page)
89c06bd5
KH
1688{
1689 struct mem_cgroup *memcg;
6de22619 1690 unsigned long flags;
89c06bd5 1691
6de22619
JW
1692 /*
1693 * The RCU lock is held throughout the transaction. The fast
1694 * path can get away without acquiring the memcg->move_lock
1695 * because page moving starts with an RCU grace period.
6de22619 1696 */
d7365e78
JW
1697 rcu_read_lock();
1698
1699 if (mem_cgroup_disabled())
62cccb8c 1700 return;
89c06bd5 1701again:
1306a85a 1702 memcg = page->mem_cgroup;
29833315 1703 if (unlikely(!memcg))
62cccb8c 1704 return;
d7365e78 1705
bdcbb659 1706 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1707 return;
89c06bd5 1708
6de22619 1709 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1710 if (memcg != page->mem_cgroup) {
6de22619 1711 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1712 goto again;
1713 }
6de22619
JW
1714
1715 /*
1716 * When charge migration first begins, we can have locked and
1717 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1718 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1719 */
1720 memcg->move_lock_task = current;
1721 memcg->move_lock_flags = flags;
d7365e78 1722
62cccb8c 1723 return;
89c06bd5 1724}
81f8c3a4 1725EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1726
d7365e78 1727/**
81f8c3a4 1728 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1729 * @page: the page
d7365e78 1730 */
62cccb8c 1731void unlock_page_memcg(struct page *page)
89c06bd5 1732{
62cccb8c
JW
1733 struct mem_cgroup *memcg = page->mem_cgroup;
1734
6de22619
JW
1735 if (memcg && memcg->move_lock_task == current) {
1736 unsigned long flags = memcg->move_lock_flags;
1737
1738 memcg->move_lock_task = NULL;
1739 memcg->move_lock_flags = 0;
1740
1741 spin_unlock_irqrestore(&memcg->move_lock, flags);
1742 }
89c06bd5 1743
d7365e78 1744 rcu_read_unlock();
89c06bd5 1745}
81f8c3a4 1746EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1747
cdec2e42
KH
1748/*
1749 * size of first charge trial. "32" comes from vmscan.c's magic value.
1750 * TODO: maybe necessary to use big numbers in big irons.
1751 */
7ec99d62 1752#define CHARGE_BATCH 32U
cdec2e42
KH
1753struct memcg_stock_pcp {
1754 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1755 unsigned int nr_pages;
cdec2e42 1756 struct work_struct work;
26fe6168 1757 unsigned long flags;
a0db00fc 1758#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1759};
1760static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1761static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1762
a0956d54
SS
1763/**
1764 * consume_stock: Try to consume stocked charge on this cpu.
1765 * @memcg: memcg to consume from.
1766 * @nr_pages: how many pages to charge.
1767 *
1768 * The charges will only happen if @memcg matches the current cpu's memcg
1769 * stock, and at least @nr_pages are available in that stock. Failure to
1770 * service an allocation will refill the stock.
1771 *
1772 * returns true if successful, false otherwise.
cdec2e42 1773 */
a0956d54 1774static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1775{
1776 struct memcg_stock_pcp *stock;
3e32cb2e 1777 bool ret = false;
cdec2e42 1778
a0956d54 1779 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1780 return ret;
a0956d54 1781
cdec2e42 1782 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1783 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1784 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1785 ret = true;
1786 }
cdec2e42
KH
1787 put_cpu_var(memcg_stock);
1788 return ret;
1789}
1790
1791/*
3e32cb2e 1792 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1793 */
1794static void drain_stock(struct memcg_stock_pcp *stock)
1795{
1796 struct mem_cgroup *old = stock->cached;
1797
11c9ea4e 1798 if (stock->nr_pages) {
3e32cb2e 1799 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1800 if (do_memsw_account())
3e32cb2e 1801 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1802 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1803 stock->nr_pages = 0;
cdec2e42
KH
1804 }
1805 stock->cached = NULL;
cdec2e42
KH
1806}
1807
1808/*
1809 * This must be called under preempt disabled or must be called by
1810 * a thread which is pinned to local cpu.
1811 */
1812static void drain_local_stock(struct work_struct *dummy)
1813{
7c8e0181 1814 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1815 drain_stock(stock);
26fe6168 1816 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1817}
1818
1819/*
3e32cb2e 1820 * Cache charges(val) to local per_cpu area.
320cc51d 1821 * This will be consumed by consume_stock() function, later.
cdec2e42 1822 */
c0ff4b85 1823static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1824{
1825 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1826
c0ff4b85 1827 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1828 drain_stock(stock);
c0ff4b85 1829 stock->cached = memcg;
cdec2e42 1830 }
11c9ea4e 1831 stock->nr_pages += nr_pages;
cdec2e42
KH
1832 put_cpu_var(memcg_stock);
1833}
1834
1835/*
c0ff4b85 1836 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1837 * of the hierarchy under it.
cdec2e42 1838 */
6d3d6aa2 1839static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1840{
26fe6168 1841 int cpu, curcpu;
d38144b7 1842
6d3d6aa2
JW
1843 /* If someone's already draining, avoid adding running more workers. */
1844 if (!mutex_trylock(&percpu_charge_mutex))
1845 return;
cdec2e42 1846 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1847 get_online_cpus();
5af12d0e 1848 curcpu = get_cpu();
cdec2e42
KH
1849 for_each_online_cpu(cpu) {
1850 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1851 struct mem_cgroup *memcg;
26fe6168 1852
c0ff4b85
R
1853 memcg = stock->cached;
1854 if (!memcg || !stock->nr_pages)
26fe6168 1855 continue;
2314b42d 1856 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1857 continue;
d1a05b69
MH
1858 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1859 if (cpu == curcpu)
1860 drain_local_stock(&stock->work);
1861 else
1862 schedule_work_on(cpu, &stock->work);
1863 }
cdec2e42 1864 }
5af12d0e 1865 put_cpu();
f894ffa8 1866 put_online_cpus();
9f50fad6 1867 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1868}
1869
0db0628d 1870static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1871 unsigned long action,
1872 void *hcpu)
1873{
1874 int cpu = (unsigned long)hcpu;
1875 struct memcg_stock_pcp *stock;
1876
619d094b 1877 if (action == CPU_ONLINE)
1489ebad 1878 return NOTIFY_OK;
1489ebad 1879
d833049b 1880 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1881 return NOTIFY_OK;
711d3d2c 1882
cdec2e42
KH
1883 stock = &per_cpu(memcg_stock, cpu);
1884 drain_stock(stock);
1885 return NOTIFY_OK;
1886}
1887
f7e1cb6e
JW
1888static void reclaim_high(struct mem_cgroup *memcg,
1889 unsigned int nr_pages,
1890 gfp_t gfp_mask)
1891{
1892 do {
1893 if (page_counter_read(&memcg->memory) <= memcg->high)
1894 continue;
1895 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1896 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1897 } while ((memcg = parent_mem_cgroup(memcg)));
1898}
1899
1900static void high_work_func(struct work_struct *work)
1901{
1902 struct mem_cgroup *memcg;
1903
1904 memcg = container_of(work, struct mem_cgroup, high_work);
1905 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1906}
1907
b23afb93
TH
1908/*
1909 * Scheduled by try_charge() to be executed from the userland return path
1910 * and reclaims memory over the high limit.
1911 */
1912void mem_cgroup_handle_over_high(void)
1913{
1914 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1915 struct mem_cgroup *memcg;
b23afb93
TH
1916
1917 if (likely(!nr_pages))
1918 return;
1919
f7e1cb6e
JW
1920 memcg = get_mem_cgroup_from_mm(current->mm);
1921 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1922 css_put(&memcg->css);
1923 current->memcg_nr_pages_over_high = 0;
1924}
1925
00501b53
JW
1926static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1927 unsigned int nr_pages)
8a9f3ccd 1928{
7ec99d62 1929 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1930 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1931 struct mem_cgroup *mem_over_limit;
3e32cb2e 1932 struct page_counter *counter;
6539cc05 1933 unsigned long nr_reclaimed;
b70a2a21
JW
1934 bool may_swap = true;
1935 bool drained = false;
a636b327 1936
ce00a967 1937 if (mem_cgroup_is_root(memcg))
10d53c74 1938 return 0;
6539cc05 1939retry:
b6b6cc72 1940 if (consume_stock(memcg, nr_pages))
10d53c74 1941 return 0;
8a9f3ccd 1942
7941d214 1943 if (!do_memsw_account() ||
6071ca52
JW
1944 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1945 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1946 goto done_restock;
7941d214 1947 if (do_memsw_account())
3e32cb2e
JW
1948 page_counter_uncharge(&memcg->memsw, batch);
1949 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1950 } else {
3e32cb2e 1951 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1952 may_swap = false;
3fbe7244 1953 }
7a81b88c 1954
6539cc05
JW
1955 if (batch > nr_pages) {
1956 batch = nr_pages;
1957 goto retry;
1958 }
6d61ef40 1959
06b078fc
JW
1960 /*
1961 * Unlike in global OOM situations, memcg is not in a physical
1962 * memory shortage. Allow dying and OOM-killed tasks to
1963 * bypass the last charges so that they can exit quickly and
1964 * free their memory.
1965 */
1966 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1967 fatal_signal_pending(current) ||
1968 current->flags & PF_EXITING))
10d53c74 1969 goto force;
06b078fc
JW
1970
1971 if (unlikely(task_in_memcg_oom(current)))
1972 goto nomem;
1973
d0164adc 1974 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1975 goto nomem;
4b534334 1976
241994ed
JW
1977 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1978
b70a2a21
JW
1979 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1980 gfp_mask, may_swap);
6539cc05 1981
61e02c74 1982 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1983 goto retry;
28c34c29 1984
b70a2a21 1985 if (!drained) {
6d3d6aa2 1986 drain_all_stock(mem_over_limit);
b70a2a21
JW
1987 drained = true;
1988 goto retry;
1989 }
1990
28c34c29
JW
1991 if (gfp_mask & __GFP_NORETRY)
1992 goto nomem;
6539cc05
JW
1993 /*
1994 * Even though the limit is exceeded at this point, reclaim
1995 * may have been able to free some pages. Retry the charge
1996 * before killing the task.
1997 *
1998 * Only for regular pages, though: huge pages are rather
1999 * unlikely to succeed so close to the limit, and we fall back
2000 * to regular pages anyway in case of failure.
2001 */
61e02c74 2002 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2003 goto retry;
2004 /*
2005 * At task move, charge accounts can be doubly counted. So, it's
2006 * better to wait until the end of task_move if something is going on.
2007 */
2008 if (mem_cgroup_wait_acct_move(mem_over_limit))
2009 goto retry;
2010
9b130619
JW
2011 if (nr_retries--)
2012 goto retry;
2013
06b078fc 2014 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2015 goto force;
06b078fc 2016
6539cc05 2017 if (fatal_signal_pending(current))
10d53c74 2018 goto force;
6539cc05 2019
241994ed
JW
2020 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2021
3608de07
JM
2022 mem_cgroup_oom(mem_over_limit, gfp_mask,
2023 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2024nomem:
6d1fdc48 2025 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2026 return -ENOMEM;
10d53c74
TH
2027force:
2028 /*
2029 * The allocation either can't fail or will lead to more memory
2030 * being freed very soon. Allow memory usage go over the limit
2031 * temporarily by force charging it.
2032 */
2033 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2034 if (do_memsw_account())
10d53c74
TH
2035 page_counter_charge(&memcg->memsw, nr_pages);
2036 css_get_many(&memcg->css, nr_pages);
2037
2038 return 0;
6539cc05
JW
2039
2040done_restock:
e8ea14cc 2041 css_get_many(&memcg->css, batch);
6539cc05
JW
2042 if (batch > nr_pages)
2043 refill_stock(memcg, batch - nr_pages);
b23afb93 2044
241994ed 2045 /*
b23afb93
TH
2046 * If the hierarchy is above the normal consumption range, schedule
2047 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2048 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2049 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2050 * not recorded as it most likely matches current's and won't
2051 * change in the meantime. As high limit is checked again before
2052 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2053 */
2054 do {
b23afb93 2055 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2056 /* Don't bother a random interrupted task */
2057 if (in_interrupt()) {
2058 schedule_work(&memcg->high_work);
2059 break;
2060 }
9516a18a 2061 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2062 set_notify_resume(current);
2063 break;
2064 }
241994ed 2065 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2066
2067 return 0;
7a81b88c 2068}
8a9f3ccd 2069
00501b53 2070static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2071{
ce00a967
JW
2072 if (mem_cgroup_is_root(memcg))
2073 return;
2074
3e32cb2e 2075 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2076 if (do_memsw_account())
3e32cb2e 2077 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2078
e8ea14cc 2079 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2080}
2081
0a31bc97
JW
2082static void lock_page_lru(struct page *page, int *isolated)
2083{
2084 struct zone *zone = page_zone(page);
2085
2086 spin_lock_irq(&zone->lru_lock);
2087 if (PageLRU(page)) {
2088 struct lruvec *lruvec;
2089
2090 lruvec = mem_cgroup_page_lruvec(page, zone);
2091 ClearPageLRU(page);
2092 del_page_from_lru_list(page, lruvec, page_lru(page));
2093 *isolated = 1;
2094 } else
2095 *isolated = 0;
2096}
2097
2098static void unlock_page_lru(struct page *page, int isolated)
2099{
2100 struct zone *zone = page_zone(page);
2101
2102 if (isolated) {
2103 struct lruvec *lruvec;
2104
2105 lruvec = mem_cgroup_page_lruvec(page, zone);
2106 VM_BUG_ON_PAGE(PageLRU(page), page);
2107 SetPageLRU(page);
2108 add_page_to_lru_list(page, lruvec, page_lru(page));
2109 }
2110 spin_unlock_irq(&zone->lru_lock);
2111}
2112
00501b53 2113static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2114 bool lrucare)
7a81b88c 2115{
0a31bc97 2116 int isolated;
9ce70c02 2117
1306a85a 2118 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2119
2120 /*
2121 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2122 * may already be on some other mem_cgroup's LRU. Take care of it.
2123 */
0a31bc97
JW
2124 if (lrucare)
2125 lock_page_lru(page, &isolated);
9ce70c02 2126
0a31bc97
JW
2127 /*
2128 * Nobody should be changing or seriously looking at
1306a85a 2129 * page->mem_cgroup at this point:
0a31bc97
JW
2130 *
2131 * - the page is uncharged
2132 *
2133 * - the page is off-LRU
2134 *
2135 * - an anonymous fault has exclusive page access, except for
2136 * a locked page table
2137 *
2138 * - a page cache insertion, a swapin fault, or a migration
2139 * have the page locked
2140 */
1306a85a 2141 page->mem_cgroup = memcg;
9ce70c02 2142
0a31bc97
JW
2143 if (lrucare)
2144 unlock_page_lru(page, isolated);
7a81b88c 2145}
66e1707b 2146
127424c8 2147#ifndef CONFIG_SLOB
f3bb3043 2148static int memcg_alloc_cache_id(void)
55007d84 2149{
f3bb3043
VD
2150 int id, size;
2151 int err;
2152
dbcf73e2 2153 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2154 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2155 if (id < 0)
2156 return id;
55007d84 2157
dbcf73e2 2158 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2159 return id;
2160
2161 /*
2162 * There's no space for the new id in memcg_caches arrays,
2163 * so we have to grow them.
2164 */
05257a1a 2165 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2166
2167 size = 2 * (id + 1);
55007d84
GC
2168 if (size < MEMCG_CACHES_MIN_SIZE)
2169 size = MEMCG_CACHES_MIN_SIZE;
2170 else if (size > MEMCG_CACHES_MAX_SIZE)
2171 size = MEMCG_CACHES_MAX_SIZE;
2172
f3bb3043 2173 err = memcg_update_all_caches(size);
60d3fd32
VD
2174 if (!err)
2175 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2176 if (!err)
2177 memcg_nr_cache_ids = size;
2178
2179 up_write(&memcg_cache_ids_sem);
2180
f3bb3043 2181 if (err) {
dbcf73e2 2182 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2183 return err;
2184 }
2185 return id;
2186}
2187
2188static void memcg_free_cache_id(int id)
2189{
dbcf73e2 2190 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2191}
2192
d5b3cf71 2193struct memcg_kmem_cache_create_work {
5722d094
VD
2194 struct mem_cgroup *memcg;
2195 struct kmem_cache *cachep;
2196 struct work_struct work;
2197};
2198
d5b3cf71 2199static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2200{
d5b3cf71
VD
2201 struct memcg_kmem_cache_create_work *cw =
2202 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2203 struct mem_cgroup *memcg = cw->memcg;
2204 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2205
d5b3cf71 2206 memcg_create_kmem_cache(memcg, cachep);
bd673145 2207
5722d094 2208 css_put(&memcg->css);
d7f25f8a
GC
2209 kfree(cw);
2210}
2211
2212/*
2213 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2214 */
d5b3cf71
VD
2215static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2216 struct kmem_cache *cachep)
d7f25f8a 2217{
d5b3cf71 2218 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2219
776ed0f0 2220 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2221 if (!cw)
d7f25f8a 2222 return;
8135be5a
VD
2223
2224 css_get(&memcg->css);
d7f25f8a
GC
2225
2226 cw->memcg = memcg;
2227 cw->cachep = cachep;
d5b3cf71 2228 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2229
d7f25f8a
GC
2230 schedule_work(&cw->work);
2231}
2232
d5b3cf71
VD
2233static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2234 struct kmem_cache *cachep)
0e9d92f2
GC
2235{
2236 /*
2237 * We need to stop accounting when we kmalloc, because if the
2238 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2239 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2240 *
2241 * However, it is better to enclose the whole function. Depending on
2242 * the debugging options enabled, INIT_WORK(), for instance, can
2243 * trigger an allocation. This too, will make us recurse. Because at
2244 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2245 * the safest choice is to do it like this, wrapping the whole function.
2246 */
6f185c29 2247 current->memcg_kmem_skip_account = 1;
d5b3cf71 2248 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2249 current->memcg_kmem_skip_account = 0;
0e9d92f2 2250}
c67a8a68 2251
d7f25f8a
GC
2252/*
2253 * Return the kmem_cache we're supposed to use for a slab allocation.
2254 * We try to use the current memcg's version of the cache.
2255 *
2256 * If the cache does not exist yet, if we are the first user of it,
2257 * we either create it immediately, if possible, or create it asynchronously
2258 * in a workqueue.
2259 * In the latter case, we will let the current allocation go through with
2260 * the original cache.
2261 *
2262 * Can't be called in interrupt context or from kernel threads.
2263 * This function needs to be called with rcu_read_lock() held.
2264 */
230e9fc2 2265struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2266{
2267 struct mem_cgroup *memcg;
959c8963 2268 struct kmem_cache *memcg_cachep;
2a4db7eb 2269 int kmemcg_id;
d7f25f8a 2270
f7ce3190 2271 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2272
230e9fc2
VD
2273 if (cachep->flags & SLAB_ACCOUNT)
2274 gfp |= __GFP_ACCOUNT;
2275
2276 if (!(gfp & __GFP_ACCOUNT))
2277 return cachep;
2278
9d100c5e 2279 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2280 return cachep;
2281
8135be5a 2282 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2283 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2284 if (kmemcg_id < 0)
ca0dde97 2285 goto out;
d7f25f8a 2286
2a4db7eb 2287 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2288 if (likely(memcg_cachep))
2289 return memcg_cachep;
ca0dde97
LZ
2290
2291 /*
2292 * If we are in a safe context (can wait, and not in interrupt
2293 * context), we could be be predictable and return right away.
2294 * This would guarantee that the allocation being performed
2295 * already belongs in the new cache.
2296 *
2297 * However, there are some clashes that can arrive from locking.
2298 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2299 * memcg_create_kmem_cache, this means no further allocation
2300 * could happen with the slab_mutex held. So it's better to
2301 * defer everything.
ca0dde97 2302 */
d5b3cf71 2303 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2304out:
8135be5a 2305 css_put(&memcg->css);
ca0dde97 2306 return cachep;
d7f25f8a 2307}
d7f25f8a 2308
8135be5a
VD
2309void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2310{
2311 if (!is_root_cache(cachep))
f7ce3190 2312 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2313}
2314
f3ccb2c4
VD
2315int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2316 struct mem_cgroup *memcg)
7ae1e1d0 2317{
f3ccb2c4
VD
2318 unsigned int nr_pages = 1 << order;
2319 struct page_counter *counter;
7ae1e1d0
GC
2320 int ret;
2321
f3ccb2c4 2322 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2323 if (ret)
f3ccb2c4 2324 return ret;
52c29b04
JW
2325
2326 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2327 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2328 cancel_charge(memcg, nr_pages);
2329 return -ENOMEM;
7ae1e1d0
GC
2330 }
2331
f3ccb2c4 2332 page->mem_cgroup = memcg;
7ae1e1d0 2333
f3ccb2c4 2334 return 0;
7ae1e1d0
GC
2335}
2336
f3ccb2c4 2337int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2338{
f3ccb2c4 2339 struct mem_cgroup *memcg;
fcff7d7e 2340 int ret = 0;
7ae1e1d0 2341
f3ccb2c4 2342 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2343 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2344 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2345 css_put(&memcg->css);
d05e83a6 2346 return ret;
7ae1e1d0
GC
2347}
2348
d05e83a6 2349void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2350{
1306a85a 2351 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2352 unsigned int nr_pages = 1 << order;
7ae1e1d0 2353
7ae1e1d0
GC
2354 if (!memcg)
2355 return;
2356
309381fe 2357 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2358
52c29b04
JW
2359 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2360 page_counter_uncharge(&memcg->kmem, nr_pages);
2361
f3ccb2c4 2362 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2363 if (do_memsw_account())
f3ccb2c4 2364 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2365
1306a85a 2366 page->mem_cgroup = NULL;
f3ccb2c4 2367 css_put_many(&memcg->css, nr_pages);
60d3fd32 2368}
127424c8 2369#endif /* !CONFIG_SLOB */
7ae1e1d0 2370
ca3e0214
KH
2371#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2372
ca3e0214
KH
2373/*
2374 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2375 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2376 */
e94c8a9c 2377void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2378{
e94c8a9c 2379 int i;
ca3e0214 2380
3d37c4a9
KH
2381 if (mem_cgroup_disabled())
2382 return;
b070e65c 2383
29833315 2384 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2385 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2386
1306a85a 2387 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2388 HPAGE_PMD_NR);
ca3e0214 2389}
12d27107 2390#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2391
c255a458 2392#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2393static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2394 bool charge)
d13d1443 2395{
0a31bc97
JW
2396 int val = (charge) ? 1 : -1;
2397 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2398}
02491447
DN
2399
2400/**
2401 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2402 * @entry: swap entry to be moved
2403 * @from: mem_cgroup which the entry is moved from
2404 * @to: mem_cgroup which the entry is moved to
2405 *
2406 * It succeeds only when the swap_cgroup's record for this entry is the same
2407 * as the mem_cgroup's id of @from.
2408 *
2409 * Returns 0 on success, -EINVAL on failure.
2410 *
3e32cb2e 2411 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2412 * both res and memsw, and called css_get().
2413 */
2414static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2415 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2416{
2417 unsigned short old_id, new_id;
2418
34c00c31
LZ
2419 old_id = mem_cgroup_id(from);
2420 new_id = mem_cgroup_id(to);
02491447
DN
2421
2422 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2423 mem_cgroup_swap_statistics(from, false);
483c30b5 2424 mem_cgroup_swap_statistics(to, true);
02491447
DN
2425 return 0;
2426 }
2427 return -EINVAL;
2428}
2429#else
2430static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2431 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2432{
2433 return -EINVAL;
2434}
8c7c6e34 2435#endif
d13d1443 2436
3e32cb2e 2437static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2438
d38d2a75 2439static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2440 unsigned long limit)
628f4235 2441{
3e32cb2e
JW
2442 unsigned long curusage;
2443 unsigned long oldusage;
2444 bool enlarge = false;
81d39c20 2445 int retry_count;
3e32cb2e 2446 int ret;
81d39c20
KH
2447
2448 /*
2449 * For keeping hierarchical_reclaim simple, how long we should retry
2450 * is depends on callers. We set our retry-count to be function
2451 * of # of children which we should visit in this loop.
2452 */
3e32cb2e
JW
2453 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2454 mem_cgroup_count_children(memcg);
81d39c20 2455
3e32cb2e 2456 oldusage = page_counter_read(&memcg->memory);
628f4235 2457
3e32cb2e 2458 do {
628f4235
KH
2459 if (signal_pending(current)) {
2460 ret = -EINTR;
2461 break;
2462 }
3e32cb2e
JW
2463
2464 mutex_lock(&memcg_limit_mutex);
2465 if (limit > memcg->memsw.limit) {
2466 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2467 ret = -EINVAL;
628f4235
KH
2468 break;
2469 }
3e32cb2e
JW
2470 if (limit > memcg->memory.limit)
2471 enlarge = true;
2472 ret = page_counter_limit(&memcg->memory, limit);
2473 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2474
2475 if (!ret)
2476 break;
2477
b70a2a21
JW
2478 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2479
3e32cb2e 2480 curusage = page_counter_read(&memcg->memory);
81d39c20 2481 /* Usage is reduced ? */
f894ffa8 2482 if (curusage >= oldusage)
81d39c20
KH
2483 retry_count--;
2484 else
2485 oldusage = curusage;
3e32cb2e
JW
2486 } while (retry_count);
2487
3c11ecf4
KH
2488 if (!ret && enlarge)
2489 memcg_oom_recover(memcg);
14797e23 2490
8c7c6e34
KH
2491 return ret;
2492}
2493
338c8431 2494static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2495 unsigned long limit)
8c7c6e34 2496{
3e32cb2e
JW
2497 unsigned long curusage;
2498 unsigned long oldusage;
2499 bool enlarge = false;
81d39c20 2500 int retry_count;
3e32cb2e 2501 int ret;
8c7c6e34 2502
81d39c20 2503 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2504 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2505 mem_cgroup_count_children(memcg);
2506
2507 oldusage = page_counter_read(&memcg->memsw);
2508
2509 do {
8c7c6e34
KH
2510 if (signal_pending(current)) {
2511 ret = -EINTR;
2512 break;
2513 }
3e32cb2e
JW
2514
2515 mutex_lock(&memcg_limit_mutex);
2516 if (limit < memcg->memory.limit) {
2517 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2518 ret = -EINVAL;
8c7c6e34
KH
2519 break;
2520 }
3e32cb2e
JW
2521 if (limit > memcg->memsw.limit)
2522 enlarge = true;
2523 ret = page_counter_limit(&memcg->memsw, limit);
2524 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2525
2526 if (!ret)
2527 break;
2528
b70a2a21
JW
2529 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2530
3e32cb2e 2531 curusage = page_counter_read(&memcg->memsw);
81d39c20 2532 /* Usage is reduced ? */
8c7c6e34 2533 if (curusage >= oldusage)
628f4235 2534 retry_count--;
81d39c20
KH
2535 else
2536 oldusage = curusage;
3e32cb2e
JW
2537 } while (retry_count);
2538
3c11ecf4
KH
2539 if (!ret && enlarge)
2540 memcg_oom_recover(memcg);
3e32cb2e 2541
628f4235
KH
2542 return ret;
2543}
2544
0608f43d
AM
2545unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2546 gfp_t gfp_mask,
2547 unsigned long *total_scanned)
2548{
2549 unsigned long nr_reclaimed = 0;
2550 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2551 unsigned long reclaimed;
2552 int loop = 0;
2553 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2554 unsigned long excess;
0608f43d
AM
2555 unsigned long nr_scanned;
2556
2557 if (order > 0)
2558 return 0;
2559
2560 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2561 /*
2562 * This loop can run a while, specially if mem_cgroup's continuously
2563 * keep exceeding their soft limit and putting the system under
2564 * pressure
2565 */
2566 do {
2567 if (next_mz)
2568 mz = next_mz;
2569 else
2570 mz = mem_cgroup_largest_soft_limit_node(mctz);
2571 if (!mz)
2572 break;
2573
2574 nr_scanned = 0;
2575 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2576 gfp_mask, &nr_scanned);
2577 nr_reclaimed += reclaimed;
2578 *total_scanned += nr_scanned;
0a31bc97 2579 spin_lock_irq(&mctz->lock);
bc2f2e7f 2580 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2581
2582 /*
2583 * If we failed to reclaim anything from this memory cgroup
2584 * it is time to move on to the next cgroup
2585 */
2586 next_mz = NULL;
bc2f2e7f
VD
2587 if (!reclaimed)
2588 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2589
3e32cb2e 2590 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2591 /*
2592 * One school of thought says that we should not add
2593 * back the node to the tree if reclaim returns 0.
2594 * But our reclaim could return 0, simply because due
2595 * to priority we are exposing a smaller subset of
2596 * memory to reclaim from. Consider this as a longer
2597 * term TODO.
2598 */
2599 /* If excess == 0, no tree ops */
cf2c8127 2600 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2601 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2602 css_put(&mz->memcg->css);
2603 loop++;
2604 /*
2605 * Could not reclaim anything and there are no more
2606 * mem cgroups to try or we seem to be looping without
2607 * reclaiming anything.
2608 */
2609 if (!nr_reclaimed &&
2610 (next_mz == NULL ||
2611 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2612 break;
2613 } while (!nr_reclaimed);
2614 if (next_mz)
2615 css_put(&next_mz->memcg->css);
2616 return nr_reclaimed;
2617}
2618
ea280e7b
TH
2619/*
2620 * Test whether @memcg has children, dead or alive. Note that this
2621 * function doesn't care whether @memcg has use_hierarchy enabled and
2622 * returns %true if there are child csses according to the cgroup
2623 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2624 */
b5f99b53
GC
2625static inline bool memcg_has_children(struct mem_cgroup *memcg)
2626{
ea280e7b
TH
2627 bool ret;
2628
ea280e7b
TH
2629 rcu_read_lock();
2630 ret = css_next_child(NULL, &memcg->css);
2631 rcu_read_unlock();
2632 return ret;
b5f99b53
GC
2633}
2634
c26251f9
MH
2635/*
2636 * Reclaims as many pages from the given memcg as possible and moves
2637 * the rest to the parent.
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642{
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2644
c1e862c1
KH
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
f817ed48 2647 /* try to free all pages in this cgroup */
3e32cb2e 2648 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2649 int progress;
c1e862c1 2650
c26251f9
MH
2651 if (signal_pending(current))
2652 return -EINTR;
2653
b70a2a21
JW
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
c1e862c1 2656 if (!progress) {
f817ed48 2657 nr_retries--;
c1e862c1 2658 /* maybe some writeback is necessary */
8aa7e847 2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2660 }
f817ed48
KH
2661
2662 }
ab5196c2
MH
2663
2664 return 0;
cc847582
KH
2665}
2666
6770c64e
TH
2667static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
c1e862c1 2670{
6770c64e 2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2672
d8423011
MH
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
6770c64e 2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2676}
2677
182446d0
TH
2678static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
18f59ea7 2680{
182446d0 2681 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2682}
2683
182446d0
TH
2684static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
18f59ea7
BS
2686{
2687 int retval = 0;
182446d0 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2690
567fb435 2691 if (memcg->use_hierarchy == val)
0b8f73e1 2692 return 0;
567fb435 2693
18f59ea7 2694 /*
af901ca1 2695 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
c0ff4b85 2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2703 (val == 1 || val == 0)) {
ea280e7b 2704 if (!memcg_has_children(memcg))
c0ff4b85 2705 memcg->use_hierarchy = val;
18f59ea7
BS
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
567fb435 2710
18f59ea7
BS
2711 return retval;
2712}
2713
72b54e73 2714static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2715{
2716 struct mem_cgroup *iter;
72b54e73 2717 int i;
ce00a967 2718
72b54e73 2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2720
72b54e73
VD
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
ce00a967
JW
2725}
2726
72b54e73 2727static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2728{
2729 struct mem_cgroup *iter;
72b54e73 2730 int i;
587d9f72 2731
72b54e73 2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2733
72b54e73
VD
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
587d9f72
JW
2738}
2739
6f646156 2740static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2741{
72b54e73 2742 unsigned long val = 0;
ce00a967 2743
3e32cb2e 2744 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
3e32cb2e 2756 } else {
ce00a967 2757 if (!swap)
3e32cb2e 2758 val = page_counter_read(&memcg->memory);
ce00a967 2759 else
3e32cb2e 2760 val = page_counter_read(&memcg->memsw);
ce00a967 2761 }
c12176d3 2762 return val;
ce00a967
JW
2763}
2764
3e32cb2e
JW
2765enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771};
ce00a967 2772
791badbd 2773static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2774 struct cftype *cft)
8cdea7c0 2775{
182446d0 2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2777 struct page_counter *counter;
af36f906 2778
3e32cb2e 2779 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2780 case _MEM:
3e32cb2e
JW
2781 counter = &memcg->memory;
2782 break;
8c7c6e34 2783 case _MEMSWAP:
3e32cb2e
JW
2784 counter = &memcg->memsw;
2785 break;
510fc4e1 2786 case _KMEM:
3e32cb2e 2787 counter = &memcg->kmem;
510fc4e1 2788 break;
d55f90bf 2789 case _TCP:
0db15298 2790 counter = &memcg->tcpmem;
d55f90bf 2791 break;
8c7c6e34
KH
2792 default:
2793 BUG();
8c7c6e34 2794 }
3e32cb2e
JW
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
c12176d3 2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2800 if (counter == &memcg->memsw)
c12176d3 2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
8cdea7c0 2814}
510fc4e1 2815
127424c8 2816#ifndef CONFIG_SLOB
567e9ab2 2817static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2818{
d6441637
VD
2819 int memcg_id;
2820
b313aeee
VD
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2a4db7eb 2824 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2825 BUG_ON(memcg->kmem_state);
d6441637 2826
f3bb3043 2827 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2828 if (memcg_id < 0)
2829 return memcg_id;
d6441637 2830
ef12947c 2831 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2832 /*
567e9ab2 2833 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2834 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
900a38f0 2838 memcg->kmemcg_id = memcg_id;
567e9ab2 2839 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2840
2841 return 0;
d6441637
VD
2842}
2843
8e0a8912
JW
2844static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845{
2846 struct cgroup_subsys_state *css;
2847 struct mem_cgroup *parent, *child;
2848 int kmemcg_id;
2849
2850 if (memcg->kmem_state != KMEM_ONLINE)
2851 return;
2852 /*
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2857 */
2858 memcg->kmem_state = KMEM_ALLOCATED;
2859
2860 memcg_deactivate_kmem_caches(memcg);
2861
2862 kmemcg_id = memcg->kmemcg_id;
2863 BUG_ON(kmemcg_id < 0);
2864
2865 parent = parent_mem_cgroup(memcg);
2866 if (!parent)
2867 parent = root_mem_cgroup;
2868
2869 /*
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2876 */
2877 css_for_each_descendant_pre(css, &memcg->css) {
2878 child = mem_cgroup_from_css(css);
2879 BUG_ON(child->kmemcg_id != kmemcg_id);
2880 child->kmemcg_id = parent->kmemcg_id;
2881 if (!memcg->use_hierarchy)
2882 break;
2883 }
2884 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2885
2886 memcg_free_cache_id(kmemcg_id);
2887}
2888
2889static void memcg_free_kmem(struct mem_cgroup *memcg)
2890{
0b8f73e1
JW
2891 /* css_alloc() failed, offlining didn't happen */
2892 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2893 memcg_offline_kmem(memcg);
2894
8e0a8912
JW
2895 if (memcg->kmem_state == KMEM_ALLOCATED) {
2896 memcg_destroy_kmem_caches(memcg);
2897 static_branch_dec(&memcg_kmem_enabled_key);
2898 WARN_ON(page_counter_read(&memcg->kmem));
2899 }
8e0a8912 2900}
d6441637 2901#else
0b8f73e1 2902static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2903{
2904 return 0;
2905}
2906static void memcg_offline_kmem(struct mem_cgroup *memcg)
2907{
2908}
2909static void memcg_free_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912#endif /* !CONFIG_SLOB */
2913
d6441637 2914static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2915 unsigned long limit)
d6441637 2916{
b313aeee 2917 int ret;
127424c8
JW
2918
2919 mutex_lock(&memcg_limit_mutex);
127424c8 2920 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2921 mutex_unlock(&memcg_limit_mutex);
2922 return ret;
d6441637 2923}
510fc4e1 2924
d55f90bf
VD
2925static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2926{
2927 int ret;
2928
2929 mutex_lock(&memcg_limit_mutex);
2930
0db15298 2931 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2932 if (ret)
2933 goto out;
2934
0db15298 2935 if (!memcg->tcpmem_active) {
d55f90bf
VD
2936 /*
2937 * The active flag needs to be written after the static_key
2938 * update. This is what guarantees that the socket activation
2939 * function is the last one to run. See sock_update_memcg() for
2940 * details, and note that we don't mark any socket as belonging
2941 * to this memcg until that flag is up.
2942 *
2943 * We need to do this, because static_keys will span multiple
2944 * sites, but we can't control their order. If we mark a socket
2945 * as accounted, but the accounting functions are not patched in
2946 * yet, we'll lose accounting.
2947 *
2948 * We never race with the readers in sock_update_memcg(),
2949 * because when this value change, the code to process it is not
2950 * patched in yet.
2951 */
2952 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2953 memcg->tcpmem_active = true;
d55f90bf
VD
2954 }
2955out:
2956 mutex_unlock(&memcg_limit_mutex);
2957 return ret;
2958}
d55f90bf 2959
628f4235
KH
2960/*
2961 * The user of this function is...
2962 * RES_LIMIT.
2963 */
451af504
TH
2964static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2965 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2966{
451af504 2967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2968 unsigned long nr_pages;
628f4235
KH
2969 int ret;
2970
451af504 2971 buf = strstrip(buf);
650c5e56 2972 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2973 if (ret)
2974 return ret;
af36f906 2975
3e32cb2e 2976 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2977 case RES_LIMIT:
4b3bde4c
BS
2978 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2979 ret = -EINVAL;
2980 break;
2981 }
3e32cb2e
JW
2982 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2983 case _MEM:
2984 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2985 break;
3e32cb2e
JW
2986 case _MEMSWAP:
2987 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2988 break;
3e32cb2e
JW
2989 case _KMEM:
2990 ret = memcg_update_kmem_limit(memcg, nr_pages);
2991 break;
d55f90bf
VD
2992 case _TCP:
2993 ret = memcg_update_tcp_limit(memcg, nr_pages);
2994 break;
3e32cb2e 2995 }
296c81d8 2996 break;
3e32cb2e
JW
2997 case RES_SOFT_LIMIT:
2998 memcg->soft_limit = nr_pages;
2999 ret = 0;
628f4235
KH
3000 break;
3001 }
451af504 3002 return ret ?: nbytes;
8cdea7c0
BS
3003}
3004
6770c64e
TH
3005static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3006 size_t nbytes, loff_t off)
c84872e1 3007{
6770c64e 3008 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3009 struct page_counter *counter;
c84872e1 3010
3e32cb2e
JW
3011 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3012 case _MEM:
3013 counter = &memcg->memory;
3014 break;
3015 case _MEMSWAP:
3016 counter = &memcg->memsw;
3017 break;
3018 case _KMEM:
3019 counter = &memcg->kmem;
3020 break;
d55f90bf 3021 case _TCP:
0db15298 3022 counter = &memcg->tcpmem;
d55f90bf 3023 break;
3e32cb2e
JW
3024 default:
3025 BUG();
3026 }
af36f906 3027
3e32cb2e 3028 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3029 case RES_MAX_USAGE:
3e32cb2e 3030 page_counter_reset_watermark(counter);
29f2a4da
PE
3031 break;
3032 case RES_FAILCNT:
3e32cb2e 3033 counter->failcnt = 0;
29f2a4da 3034 break;
3e32cb2e
JW
3035 default:
3036 BUG();
29f2a4da 3037 }
f64c3f54 3038
6770c64e 3039 return nbytes;
c84872e1
PE
3040}
3041
182446d0 3042static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3043 struct cftype *cft)
3044{
182446d0 3045 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3046}
3047
02491447 3048#ifdef CONFIG_MMU
182446d0 3049static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3050 struct cftype *cft, u64 val)
3051{
182446d0 3052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3053
1dfab5ab 3054 if (val & ~MOVE_MASK)
7dc74be0 3055 return -EINVAL;
ee5e8472 3056
7dc74be0 3057 /*
ee5e8472
GC
3058 * No kind of locking is needed in here, because ->can_attach() will
3059 * check this value once in the beginning of the process, and then carry
3060 * on with stale data. This means that changes to this value will only
3061 * affect task migrations starting after the change.
7dc74be0 3062 */
c0ff4b85 3063 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3064 return 0;
3065}
02491447 3066#else
182446d0 3067static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3068 struct cftype *cft, u64 val)
3069{
3070 return -ENOSYS;
3071}
3072#endif
7dc74be0 3073
406eb0c9 3074#ifdef CONFIG_NUMA
2da8ca82 3075static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3076{
25485de6
GT
3077 struct numa_stat {
3078 const char *name;
3079 unsigned int lru_mask;
3080 };
3081
3082 static const struct numa_stat stats[] = {
3083 { "total", LRU_ALL },
3084 { "file", LRU_ALL_FILE },
3085 { "anon", LRU_ALL_ANON },
3086 { "unevictable", BIT(LRU_UNEVICTABLE) },
3087 };
3088 const struct numa_stat *stat;
406eb0c9 3089 int nid;
25485de6 3090 unsigned long nr;
2da8ca82 3091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3092
25485de6
GT
3093 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3094 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3095 seq_printf(m, "%s=%lu", stat->name, nr);
3096 for_each_node_state(nid, N_MEMORY) {
3097 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3098 stat->lru_mask);
3099 seq_printf(m, " N%d=%lu", nid, nr);
3100 }
3101 seq_putc(m, '\n');
406eb0c9 3102 }
406eb0c9 3103
071aee13
YH
3104 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3105 struct mem_cgroup *iter;
3106
3107 nr = 0;
3108 for_each_mem_cgroup_tree(iter, memcg)
3109 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3110 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3111 for_each_node_state(nid, N_MEMORY) {
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_node_nr_lru_pages(
3115 iter, nid, stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3117 }
3118 seq_putc(m, '\n');
406eb0c9 3119 }
406eb0c9 3120
406eb0c9
YH
3121 return 0;
3122}
3123#endif /* CONFIG_NUMA */
3124
2da8ca82 3125static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3126{
2da8ca82 3127 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3128 unsigned long memory, memsw;
af7c4b0e
JW
3129 struct mem_cgroup *mi;
3130 unsigned int i;
406eb0c9 3131
0ca44b14
GT
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3133 MEM_CGROUP_STAT_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3135 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3137
af7c4b0e 3138 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3139 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3140 continue;
484ebb3b 3141 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3142 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3143 }
7b854121 3144
af7c4b0e
JW
3145 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3146 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3147 mem_cgroup_read_events(memcg, i));
3148
3149 for (i = 0; i < NR_LRU_LISTS; i++)
3150 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3151 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3152
14067bb3 3153 /* Hierarchical information */
3e32cb2e
JW
3154 memory = memsw = PAGE_COUNTER_MAX;
3155 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3156 memory = min(memory, mi->memory.limit);
3157 memsw = min(memsw, mi->memsw.limit);
fee7b548 3158 }
3e32cb2e
JW
3159 seq_printf(m, "hierarchical_memory_limit %llu\n",
3160 (u64)memory * PAGE_SIZE);
7941d214 3161 if (do_memsw_account())
3e32cb2e
JW
3162 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3163 (u64)memsw * PAGE_SIZE);
7f016ee8 3164
af7c4b0e 3165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3166 unsigned long long val = 0;
af7c4b0e 3167
7941d214 3168 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3169 continue;
af7c4b0e
JW
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3173 }
3174
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3176 unsigned long long val = 0;
3177
3178 for_each_mem_cgroup_tree(mi, memcg)
3179 val += mem_cgroup_read_events(mi, i);
3180 seq_printf(m, "total_%s %llu\n",
3181 mem_cgroup_events_names[i], val);
3182 }
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3189 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3190 }
14067bb3 3191
7f016ee8 3192#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3193 {
3194 int nid, zid;
3195 struct mem_cgroup_per_zone *mz;
89abfab1 3196 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3197 unsigned long recent_rotated[2] = {0, 0};
3198 unsigned long recent_scanned[2] = {0, 0};
3199
3200 for_each_online_node(nid)
3201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3202 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3203 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3204
89abfab1
HD
3205 recent_rotated[0] += rstat->recent_rotated[0];
3206 recent_rotated[1] += rstat->recent_rotated[1];
3207 recent_scanned[0] += rstat->recent_scanned[0];
3208 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3209 }
78ccf5b5
JW
3210 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3211 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3212 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3213 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3214 }
3215#endif
3216
d2ceb9b7
KH
3217 return 0;
3218}
3219
182446d0
TH
3220static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3221 struct cftype *cft)
a7885eb8 3222{
182446d0 3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3224
1f4c025b 3225 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3226}
3227
182446d0
TH
3228static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3229 struct cftype *cft, u64 val)
a7885eb8 3230{
182446d0 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3232
3dae7fec 3233 if (val > 100)
a7885eb8
KM
3234 return -EINVAL;
3235
14208b0e 3236 if (css->parent)
3dae7fec
JW
3237 memcg->swappiness = val;
3238 else
3239 vm_swappiness = val;
068b38c1 3240
a7885eb8
KM
3241 return 0;
3242}
3243
2e72b634
KS
3244static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3245{
3246 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3247 unsigned long usage;
2e72b634
KS
3248 int i;
3249
3250 rcu_read_lock();
3251 if (!swap)
2c488db2 3252 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3253 else
2c488db2 3254 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3255
3256 if (!t)
3257 goto unlock;
3258
ce00a967 3259 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3260
3261 /*
748dad36 3262 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3263 * If it's not true, a threshold was crossed after last
3264 * call of __mem_cgroup_threshold().
3265 */
5407a562 3266 i = t->current_threshold;
2e72b634
KS
3267
3268 /*
3269 * Iterate backward over array of thresholds starting from
3270 * current_threshold and check if a threshold is crossed.
3271 * If none of thresholds below usage is crossed, we read
3272 * only one element of the array here.
3273 */
3274 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3275 eventfd_signal(t->entries[i].eventfd, 1);
3276
3277 /* i = current_threshold + 1 */
3278 i++;
3279
3280 /*
3281 * Iterate forward over array of thresholds starting from
3282 * current_threshold+1 and check if a threshold is crossed.
3283 * If none of thresholds above usage is crossed, we read
3284 * only one element of the array here.
3285 */
3286 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3287 eventfd_signal(t->entries[i].eventfd, 1);
3288
3289 /* Update current_threshold */
5407a562 3290 t->current_threshold = i - 1;
2e72b634
KS
3291unlock:
3292 rcu_read_unlock();
3293}
3294
3295static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3296{
ad4ca5f4
KS
3297 while (memcg) {
3298 __mem_cgroup_threshold(memcg, false);
7941d214 3299 if (do_memsw_account())
ad4ca5f4
KS
3300 __mem_cgroup_threshold(memcg, true);
3301
3302 memcg = parent_mem_cgroup(memcg);
3303 }
2e72b634
KS
3304}
3305
3306static int compare_thresholds(const void *a, const void *b)
3307{
3308 const struct mem_cgroup_threshold *_a = a;
3309 const struct mem_cgroup_threshold *_b = b;
3310
2bff24a3
GT
3311 if (_a->threshold > _b->threshold)
3312 return 1;
3313
3314 if (_a->threshold < _b->threshold)
3315 return -1;
3316
3317 return 0;
2e72b634
KS
3318}
3319
c0ff4b85 3320static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3321{
3322 struct mem_cgroup_eventfd_list *ev;
3323
2bcf2e92
MH
3324 spin_lock(&memcg_oom_lock);
3325
c0ff4b85 3326 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3327 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3328
3329 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3330 return 0;
3331}
3332
c0ff4b85 3333static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3334{
7d74b06f
KH
3335 struct mem_cgroup *iter;
3336
c0ff4b85 3337 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3338 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3339}
3340
59b6f873 3341static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3342 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3343{
2c488db2
KS
3344 struct mem_cgroup_thresholds *thresholds;
3345 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3346 unsigned long threshold;
3347 unsigned long usage;
2c488db2 3348 int i, size, ret;
2e72b634 3349
650c5e56 3350 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3351 if (ret)
3352 return ret;
3353
3354 mutex_lock(&memcg->thresholds_lock);
2c488db2 3355
05b84301 3356 if (type == _MEM) {
2c488db2 3357 thresholds = &memcg->thresholds;
ce00a967 3358 usage = mem_cgroup_usage(memcg, false);
05b84301 3359 } else if (type == _MEMSWAP) {
2c488db2 3360 thresholds = &memcg->memsw_thresholds;
ce00a967 3361 usage = mem_cgroup_usage(memcg, true);
05b84301 3362 } else
2e72b634
KS
3363 BUG();
3364
2e72b634 3365 /* Check if a threshold crossed before adding a new one */
2c488db2 3366 if (thresholds->primary)
2e72b634
KS
3367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3368
2c488db2 3369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3370
3371 /* Allocate memory for new array of thresholds */
2c488db2 3372 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3373 GFP_KERNEL);
2c488db2 3374 if (!new) {
2e72b634
KS
3375 ret = -ENOMEM;
3376 goto unlock;
3377 }
2c488db2 3378 new->size = size;
2e72b634
KS
3379
3380 /* Copy thresholds (if any) to new array */
2c488db2
KS
3381 if (thresholds->primary) {
3382 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3383 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3384 }
3385
2e72b634 3386 /* Add new threshold */
2c488db2
KS
3387 new->entries[size - 1].eventfd = eventfd;
3388 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3389
3390 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3391 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3392 compare_thresholds, NULL);
3393
3394 /* Find current threshold */
2c488db2 3395 new->current_threshold = -1;
2e72b634 3396 for (i = 0; i < size; i++) {
748dad36 3397 if (new->entries[i].threshold <= usage) {
2e72b634 3398 /*
2c488db2
KS
3399 * new->current_threshold will not be used until
3400 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3401 * it here.
3402 */
2c488db2 3403 ++new->current_threshold;
748dad36
SZ
3404 } else
3405 break;
2e72b634
KS
3406 }
3407
2c488db2
KS
3408 /* Free old spare buffer and save old primary buffer as spare */
3409 kfree(thresholds->spare);
3410 thresholds->spare = thresholds->primary;
3411
3412 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3413
907860ed 3414 /* To be sure that nobody uses thresholds */
2e72b634
KS
3415 synchronize_rcu();
3416
2e72b634
KS
3417unlock:
3418 mutex_unlock(&memcg->thresholds_lock);
3419
3420 return ret;
3421}
3422
59b6f873 3423static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3424 struct eventfd_ctx *eventfd, const char *args)
3425{
59b6f873 3426 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3427}
3428
59b6f873 3429static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3430 struct eventfd_ctx *eventfd, const char *args)
3431{
59b6f873 3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3433}
3434
59b6f873 3435static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3436 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3437{
2c488db2
KS
3438 struct mem_cgroup_thresholds *thresholds;
3439 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3440 unsigned long usage;
2c488db2 3441 int i, j, size;
2e72b634
KS
3442
3443 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3444
3445 if (type == _MEM) {
2c488db2 3446 thresholds = &memcg->thresholds;
ce00a967 3447 usage = mem_cgroup_usage(memcg, false);
05b84301 3448 } else if (type == _MEMSWAP) {
2c488db2 3449 thresholds = &memcg->memsw_thresholds;
ce00a967 3450 usage = mem_cgroup_usage(memcg, true);
05b84301 3451 } else
2e72b634
KS
3452 BUG();
3453
371528ca
AV
3454 if (!thresholds->primary)
3455 goto unlock;
3456
2e72b634
KS
3457 /* Check if a threshold crossed before removing */
3458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3459
3460 /* Calculate new number of threshold */
2c488db2
KS
3461 size = 0;
3462 for (i = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3464 size++;
3465 }
3466
2c488db2 3467 new = thresholds->spare;
907860ed 3468
2e72b634
KS
3469 /* Set thresholds array to NULL if we don't have thresholds */
3470 if (!size) {
2c488db2
KS
3471 kfree(new);
3472 new = NULL;
907860ed 3473 goto swap_buffers;
2e72b634
KS
3474 }
3475
2c488db2 3476 new->size = size;
2e72b634
KS
3477
3478 /* Copy thresholds and find current threshold */
2c488db2
KS
3479 new->current_threshold = -1;
3480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3482 continue;
3483
2c488db2 3484 new->entries[j] = thresholds->primary->entries[i];
748dad36 3485 if (new->entries[j].threshold <= usage) {
2e72b634 3486 /*
2c488db2 3487 * new->current_threshold will not be used
2e72b634
KS
3488 * until rcu_assign_pointer(), so it's safe to increment
3489 * it here.
3490 */
2c488db2 3491 ++new->current_threshold;
2e72b634
KS
3492 }
3493 j++;
3494 }
3495
907860ed 3496swap_buffers:
2c488db2
KS
3497 /* Swap primary and spare array */
3498 thresholds->spare = thresholds->primary;
8c757763 3499
2c488db2 3500 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3501
907860ed 3502 /* To be sure that nobody uses thresholds */
2e72b634 3503 synchronize_rcu();
6611d8d7
MC
3504
3505 /* If all events are unregistered, free the spare array */
3506 if (!new) {
3507 kfree(thresholds->spare);
3508 thresholds->spare = NULL;
3509 }
371528ca 3510unlock:
2e72b634 3511 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3512}
c1e862c1 3513
59b6f873 3514static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3515 struct eventfd_ctx *eventfd)
3516{
59b6f873 3517 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3518}
3519
59b6f873 3520static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3521 struct eventfd_ctx *eventfd)
3522{
59b6f873 3523 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3524}
3525
59b6f873 3526static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3527 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3528{
9490ff27 3529 struct mem_cgroup_eventfd_list *event;
9490ff27 3530
9490ff27
KH
3531 event = kmalloc(sizeof(*event), GFP_KERNEL);
3532 if (!event)
3533 return -ENOMEM;
3534
1af8efe9 3535 spin_lock(&memcg_oom_lock);
9490ff27
KH
3536
3537 event->eventfd = eventfd;
3538 list_add(&event->list, &memcg->oom_notify);
3539
3540 /* already in OOM ? */
c2b42d3c 3541 if (memcg->under_oom)
9490ff27 3542 eventfd_signal(eventfd, 1);
1af8efe9 3543 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3544
3545 return 0;
3546}
3547
59b6f873 3548static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3549 struct eventfd_ctx *eventfd)
9490ff27 3550{
9490ff27 3551 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3552
1af8efe9 3553 spin_lock(&memcg_oom_lock);
9490ff27 3554
c0ff4b85 3555 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3556 if (ev->eventfd == eventfd) {
3557 list_del(&ev->list);
3558 kfree(ev);
3559 }
3560 }
3561
1af8efe9 3562 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3563}
3564
2da8ca82 3565static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3566{
2da8ca82 3567 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3568
791badbd 3569 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3570 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3571 return 0;
3572}
3573
182446d0 3574static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3575 struct cftype *cft, u64 val)
3576{
182446d0 3577 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3578
3579 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3580 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3581 return -EINVAL;
3582
c0ff4b85 3583 memcg->oom_kill_disable = val;
4d845ebf 3584 if (!val)
c0ff4b85 3585 memcg_oom_recover(memcg);
3dae7fec 3586
3c11ecf4
KH
3587 return 0;
3588}
3589
52ebea74
TH
3590#ifdef CONFIG_CGROUP_WRITEBACK
3591
3592struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3593{
3594 return &memcg->cgwb_list;
3595}
3596
841710aa
TH
3597static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3598{
3599 return wb_domain_init(&memcg->cgwb_domain, gfp);
3600}
3601
3602static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3603{
3604 wb_domain_exit(&memcg->cgwb_domain);
3605}
3606
2529bb3a
TH
3607static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3608{
3609 wb_domain_size_changed(&memcg->cgwb_domain);
3610}
3611
841710aa
TH
3612struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3613{
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3615
3616 if (!memcg->css.parent)
3617 return NULL;
3618
3619 return &memcg->cgwb_domain;
3620}
3621
c2aa723a
TH
3622/**
3623 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3624 * @wb: bdi_writeback in question
c5edf9cd
TH
3625 * @pfilepages: out parameter for number of file pages
3626 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3627 * @pdirty: out parameter for number of dirty pages
3628 * @pwriteback: out parameter for number of pages under writeback
3629 *
c5edf9cd
TH
3630 * Determine the numbers of file, headroom, dirty, and writeback pages in
3631 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3632 * is a bit more involved.
c2aa723a 3633 *
c5edf9cd
TH
3634 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3635 * headroom is calculated as the lowest headroom of itself and the
3636 * ancestors. Note that this doesn't consider the actual amount of
3637 * available memory in the system. The caller should further cap
3638 * *@pheadroom accordingly.
c2aa723a 3639 */
c5edf9cd
TH
3640void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3641 unsigned long *pheadroom, unsigned long *pdirty,
3642 unsigned long *pwriteback)
c2aa723a
TH
3643{
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645 struct mem_cgroup *parent;
c2aa723a
TH
3646
3647 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3648
3649 /* this should eventually include NR_UNSTABLE_NFS */
3650 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3651 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3652 (1 << LRU_ACTIVE_FILE));
3653 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3654
c2aa723a
TH
3655 while ((parent = parent_mem_cgroup(memcg))) {
3656 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3657 unsigned long used = page_counter_read(&memcg->memory);
3658
c5edf9cd 3659 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3660 memcg = parent;
3661 }
c2aa723a
TH
3662}
3663
841710aa
TH
3664#else /* CONFIG_CGROUP_WRITEBACK */
3665
3666static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3667{
3668 return 0;
3669}
3670
3671static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3672{
3673}
3674
2529bb3a
TH
3675static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3676{
3677}
3678
52ebea74
TH
3679#endif /* CONFIG_CGROUP_WRITEBACK */
3680
3bc942f3
TH
3681/*
3682 * DO NOT USE IN NEW FILES.
3683 *
3684 * "cgroup.event_control" implementation.
3685 *
3686 * This is way over-engineered. It tries to support fully configurable
3687 * events for each user. Such level of flexibility is completely
3688 * unnecessary especially in the light of the planned unified hierarchy.
3689 *
3690 * Please deprecate this and replace with something simpler if at all
3691 * possible.
3692 */
3693
79bd9814
TH
3694/*
3695 * Unregister event and free resources.
3696 *
3697 * Gets called from workqueue.
3698 */
3bc942f3 3699static void memcg_event_remove(struct work_struct *work)
79bd9814 3700{
3bc942f3
TH
3701 struct mem_cgroup_event *event =
3702 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3703 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3704
3705 remove_wait_queue(event->wqh, &event->wait);
3706
59b6f873 3707 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3708
3709 /* Notify userspace the event is going away. */
3710 eventfd_signal(event->eventfd, 1);
3711
3712 eventfd_ctx_put(event->eventfd);
3713 kfree(event);
59b6f873 3714 css_put(&memcg->css);
79bd9814
TH
3715}
3716
3717/*
3718 * Gets called on POLLHUP on eventfd when user closes it.
3719 *
3720 * Called with wqh->lock held and interrupts disabled.
3721 */
3bc942f3
TH
3722static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3723 int sync, void *key)
79bd9814 3724{
3bc942f3
TH
3725 struct mem_cgroup_event *event =
3726 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3727 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3728 unsigned long flags = (unsigned long)key;
3729
3730 if (flags & POLLHUP) {
3731 /*
3732 * If the event has been detached at cgroup removal, we
3733 * can simply return knowing the other side will cleanup
3734 * for us.
3735 *
3736 * We can't race against event freeing since the other
3737 * side will require wqh->lock via remove_wait_queue(),
3738 * which we hold.
3739 */
fba94807 3740 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3741 if (!list_empty(&event->list)) {
3742 list_del_init(&event->list);
3743 /*
3744 * We are in atomic context, but cgroup_event_remove()
3745 * may sleep, so we have to call it in workqueue.
3746 */
3747 schedule_work(&event->remove);
3748 }
fba94807 3749 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3750 }
3751
3752 return 0;
3753}
3754
3bc942f3 3755static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3756 wait_queue_head_t *wqh, poll_table *pt)
3757{
3bc942f3
TH
3758 struct mem_cgroup_event *event =
3759 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3760
3761 event->wqh = wqh;
3762 add_wait_queue(wqh, &event->wait);
3763}
3764
3765/*
3bc942f3
TH
3766 * DO NOT USE IN NEW FILES.
3767 *
79bd9814
TH
3768 * Parse input and register new cgroup event handler.
3769 *
3770 * Input must be in format '<event_fd> <control_fd> <args>'.
3771 * Interpretation of args is defined by control file implementation.
3772 */
451af504
TH
3773static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3774 char *buf, size_t nbytes, loff_t off)
79bd9814 3775{
451af504 3776 struct cgroup_subsys_state *css = of_css(of);
fba94807 3777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3778 struct mem_cgroup_event *event;
79bd9814
TH
3779 struct cgroup_subsys_state *cfile_css;
3780 unsigned int efd, cfd;
3781 struct fd efile;
3782 struct fd cfile;
fba94807 3783 const char *name;
79bd9814
TH
3784 char *endp;
3785 int ret;
3786
451af504
TH
3787 buf = strstrip(buf);
3788
3789 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3790 if (*endp != ' ')
3791 return -EINVAL;
451af504 3792 buf = endp + 1;
79bd9814 3793
451af504 3794 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3795 if ((*endp != ' ') && (*endp != '\0'))
3796 return -EINVAL;
451af504 3797 buf = endp + 1;
79bd9814
TH
3798
3799 event = kzalloc(sizeof(*event), GFP_KERNEL);
3800 if (!event)
3801 return -ENOMEM;
3802
59b6f873 3803 event->memcg = memcg;
79bd9814 3804 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3805 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3806 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3807 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3808
3809 efile = fdget(efd);
3810 if (!efile.file) {
3811 ret = -EBADF;
3812 goto out_kfree;
3813 }
3814
3815 event->eventfd = eventfd_ctx_fileget(efile.file);
3816 if (IS_ERR(event->eventfd)) {
3817 ret = PTR_ERR(event->eventfd);
3818 goto out_put_efile;
3819 }
3820
3821 cfile = fdget(cfd);
3822 if (!cfile.file) {
3823 ret = -EBADF;
3824 goto out_put_eventfd;
3825 }
3826
3827 /* the process need read permission on control file */
3828 /* AV: shouldn't we check that it's been opened for read instead? */
3829 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3830 if (ret < 0)
3831 goto out_put_cfile;
3832
fba94807
TH
3833 /*
3834 * Determine the event callbacks and set them in @event. This used
3835 * to be done via struct cftype but cgroup core no longer knows
3836 * about these events. The following is crude but the whole thing
3837 * is for compatibility anyway.
3bc942f3
TH
3838 *
3839 * DO NOT ADD NEW FILES.
fba94807 3840 */
b583043e 3841 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3842
3843 if (!strcmp(name, "memory.usage_in_bytes")) {
3844 event->register_event = mem_cgroup_usage_register_event;
3845 event->unregister_event = mem_cgroup_usage_unregister_event;
3846 } else if (!strcmp(name, "memory.oom_control")) {
3847 event->register_event = mem_cgroup_oom_register_event;
3848 event->unregister_event = mem_cgroup_oom_unregister_event;
3849 } else if (!strcmp(name, "memory.pressure_level")) {
3850 event->register_event = vmpressure_register_event;
3851 event->unregister_event = vmpressure_unregister_event;
3852 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3853 event->register_event = memsw_cgroup_usage_register_event;
3854 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3855 } else {
3856 ret = -EINVAL;
3857 goto out_put_cfile;
3858 }
3859
79bd9814 3860 /*
b5557c4c
TH
3861 * Verify @cfile should belong to @css. Also, remaining events are
3862 * automatically removed on cgroup destruction but the removal is
3863 * asynchronous, so take an extra ref on @css.
79bd9814 3864 */
b583043e 3865 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3866 &memory_cgrp_subsys);
79bd9814 3867 ret = -EINVAL;
5a17f543 3868 if (IS_ERR(cfile_css))
79bd9814 3869 goto out_put_cfile;
5a17f543
TH
3870 if (cfile_css != css) {
3871 css_put(cfile_css);
79bd9814 3872 goto out_put_cfile;
5a17f543 3873 }
79bd9814 3874
451af504 3875 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3876 if (ret)
3877 goto out_put_css;
3878
3879 efile.file->f_op->poll(efile.file, &event->pt);
3880
fba94807
TH
3881 spin_lock(&memcg->event_list_lock);
3882 list_add(&event->list, &memcg->event_list);
3883 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3884
3885 fdput(cfile);
3886 fdput(efile);
3887
451af504 3888 return nbytes;
79bd9814
TH
3889
3890out_put_css:
b5557c4c 3891 css_put(css);
79bd9814
TH
3892out_put_cfile:
3893 fdput(cfile);
3894out_put_eventfd:
3895 eventfd_ctx_put(event->eventfd);
3896out_put_efile:
3897 fdput(efile);
3898out_kfree:
3899 kfree(event);
3900
3901 return ret;
3902}
3903
241994ed 3904static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3905 {
0eea1030 3906 .name = "usage_in_bytes",
8c7c6e34 3907 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3908 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3909 },
c84872e1
PE
3910 {
3911 .name = "max_usage_in_bytes",
8c7c6e34 3912 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3913 .write = mem_cgroup_reset,
791badbd 3914 .read_u64 = mem_cgroup_read_u64,
c84872e1 3915 },
8cdea7c0 3916 {
0eea1030 3917 .name = "limit_in_bytes",
8c7c6e34 3918 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3919 .write = mem_cgroup_write,
791badbd 3920 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3921 },
296c81d8
BS
3922 {
3923 .name = "soft_limit_in_bytes",
3924 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3925 .write = mem_cgroup_write,
791badbd 3926 .read_u64 = mem_cgroup_read_u64,
296c81d8 3927 },
8cdea7c0
BS
3928 {
3929 .name = "failcnt",
8c7c6e34 3930 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3931 .write = mem_cgroup_reset,
791badbd 3932 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3933 },
d2ceb9b7
KH
3934 {
3935 .name = "stat",
2da8ca82 3936 .seq_show = memcg_stat_show,
d2ceb9b7 3937 },
c1e862c1
KH
3938 {
3939 .name = "force_empty",
6770c64e 3940 .write = mem_cgroup_force_empty_write,
c1e862c1 3941 },
18f59ea7
BS
3942 {
3943 .name = "use_hierarchy",
3944 .write_u64 = mem_cgroup_hierarchy_write,
3945 .read_u64 = mem_cgroup_hierarchy_read,
3946 },
79bd9814 3947 {
3bc942f3 3948 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3949 .write = memcg_write_event_control,
7dbdb199 3950 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3951 },
a7885eb8
KM
3952 {
3953 .name = "swappiness",
3954 .read_u64 = mem_cgroup_swappiness_read,
3955 .write_u64 = mem_cgroup_swappiness_write,
3956 },
7dc74be0
DN
3957 {
3958 .name = "move_charge_at_immigrate",
3959 .read_u64 = mem_cgroup_move_charge_read,
3960 .write_u64 = mem_cgroup_move_charge_write,
3961 },
9490ff27
KH
3962 {
3963 .name = "oom_control",
2da8ca82 3964 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3965 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3966 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3967 },
70ddf637
AV
3968 {
3969 .name = "pressure_level",
70ddf637 3970 },
406eb0c9
YH
3971#ifdef CONFIG_NUMA
3972 {
3973 .name = "numa_stat",
2da8ca82 3974 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3975 },
3976#endif
510fc4e1
GC
3977 {
3978 .name = "kmem.limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3980 .write = mem_cgroup_write,
791badbd 3981 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3982 },
3983 {
3984 .name = "kmem.usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3986 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3987 },
3988 {
3989 .name = "kmem.failcnt",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3991 .write = mem_cgroup_reset,
791badbd 3992 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3993 },
3994 {
3995 .name = "kmem.max_usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3997 .write = mem_cgroup_reset,
791badbd 3998 .read_u64 = mem_cgroup_read_u64,
510fc4e1 3999 },
749c5415
GC
4000#ifdef CONFIG_SLABINFO
4001 {
4002 .name = "kmem.slabinfo",
b047501c
VD
4003 .seq_start = slab_start,
4004 .seq_next = slab_next,
4005 .seq_stop = slab_stop,
4006 .seq_show = memcg_slab_show,
749c5415
GC
4007 },
4008#endif
d55f90bf
VD
4009 {
4010 .name = "kmem.tcp.limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4012 .write = mem_cgroup_write,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.tcp.usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.failcnt",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4023 .write = mem_cgroup_reset,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.max_usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
6bc10349 4032 { }, /* terminate */
af36f906 4033};
8c7c6e34 4034
c0ff4b85 4035static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4036{
4037 struct mem_cgroup_per_node *pn;
1ecaab2b 4038 struct mem_cgroup_per_zone *mz;
41e3355d 4039 int zone, tmp = node;
1ecaab2b
KH
4040 /*
4041 * This routine is called against possible nodes.
4042 * But it's BUG to call kmalloc() against offline node.
4043 *
4044 * TODO: this routine can waste much memory for nodes which will
4045 * never be onlined. It's better to use memory hotplug callback
4046 * function.
4047 */
41e3355d
KH
4048 if (!node_state(node, N_NORMAL_MEMORY))
4049 tmp = -1;
17295c88 4050 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4051 if (!pn)
4052 return 1;
1ecaab2b 4053
1ecaab2b
KH
4054 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4055 mz = &pn->zoneinfo[zone];
bea8c150 4056 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4057 mz->usage_in_excess = 0;
4058 mz->on_tree = false;
d79154bb 4059 mz->memcg = memcg;
1ecaab2b 4060 }
54f72fe0 4061 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4062 return 0;
4063}
4064
c0ff4b85 4065static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4066{
54f72fe0 4067 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4068}
4069
0b8f73e1 4070static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4071{
c8b2a36f 4072 int node;
59927fb9 4073
0b8f73e1 4074 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4075 for_each_node(node)
4076 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4077 free_percpu(memcg->stat);
8ff69e2c 4078 kfree(memcg);
59927fb9 4079}
3afe36b1 4080
0b8f73e1 4081static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4082{
d142e3e6 4083 struct mem_cgroup *memcg;
0b8f73e1 4084 size_t size;
6d12e2d8 4085 int node;
8cdea7c0 4086
0b8f73e1
JW
4087 size = sizeof(struct mem_cgroup);
4088 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4089
4090 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4091 if (!memcg)
0b8f73e1
JW
4092 return NULL;
4093
4094 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4095 if (!memcg->stat)
4096 goto fail;
78fb7466 4097
3ed28fa1 4098 for_each_node(node)
c0ff4b85 4099 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4100 goto fail;
f64c3f54 4101
0b8f73e1
JW
4102 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4103 goto fail;
28dbc4b6 4104
f7e1cb6e 4105 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4106 memcg->last_scanned_node = MAX_NUMNODES;
4107 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4108 mutex_init(&memcg->thresholds_lock);
4109 spin_lock_init(&memcg->move_lock);
70ddf637 4110 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4111 INIT_LIST_HEAD(&memcg->event_list);
4112 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4113 memcg->socket_pressure = jiffies;
127424c8 4114#ifndef CONFIG_SLOB
900a38f0 4115 memcg->kmemcg_id = -1;
900a38f0 4116#endif
52ebea74
TH
4117#ifdef CONFIG_CGROUP_WRITEBACK
4118 INIT_LIST_HEAD(&memcg->cgwb_list);
4119#endif
0b8f73e1
JW
4120 return memcg;
4121fail:
4122 mem_cgroup_free(memcg);
4123 return NULL;
d142e3e6
GC
4124}
4125
0b8f73e1
JW
4126static struct cgroup_subsys_state * __ref
4127mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4128{
0b8f73e1
JW
4129 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4130 struct mem_cgroup *memcg;
4131 long error = -ENOMEM;
d142e3e6 4132
0b8f73e1
JW
4133 memcg = mem_cgroup_alloc();
4134 if (!memcg)
4135 return ERR_PTR(error);
d142e3e6 4136
0b8f73e1
JW
4137 memcg->high = PAGE_COUNTER_MAX;
4138 memcg->soft_limit = PAGE_COUNTER_MAX;
4139 if (parent) {
4140 memcg->swappiness = mem_cgroup_swappiness(parent);
4141 memcg->oom_kill_disable = parent->oom_kill_disable;
4142 }
4143 if (parent && parent->use_hierarchy) {
4144 memcg->use_hierarchy = true;
3e32cb2e 4145 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4146 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4147 page_counter_init(&memcg->memsw, &parent->memsw);
4148 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4149 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4150 } else {
3e32cb2e 4151 page_counter_init(&memcg->memory, NULL);
37e84351 4152 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4153 page_counter_init(&memcg->memsw, NULL);
4154 page_counter_init(&memcg->kmem, NULL);
0db15298 4155 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4156 /*
4157 * Deeper hierachy with use_hierarchy == false doesn't make
4158 * much sense so let cgroup subsystem know about this
4159 * unfortunate state in our controller.
4160 */
d142e3e6 4161 if (parent != root_mem_cgroup)
073219e9 4162 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4163 }
d6441637 4164
0b8f73e1
JW
4165 /* The following stuff does not apply to the root */
4166 if (!parent) {
4167 root_mem_cgroup = memcg;
4168 return &memcg->css;
4169 }
4170
b313aeee 4171 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4172 if (error)
4173 goto fail;
127424c8 4174
f7e1cb6e 4175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4176 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4177
0b8f73e1
JW
4178 return &memcg->css;
4179fail:
4180 mem_cgroup_free(memcg);
4181 return NULL;
4182}
4183
4184static int
4185mem_cgroup_css_online(struct cgroup_subsys_state *css)
4186{
4187 if (css->id > MEM_CGROUP_ID_MAX)
4188 return -ENOSPC;
2f7dd7a4
JW
4189
4190 return 0;
8cdea7c0
BS
4191}
4192
eb95419b 4193static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4194{
eb95419b 4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4196 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4197
4198 /*
4199 * Unregister events and notify userspace.
4200 * Notify userspace about cgroup removing only after rmdir of cgroup
4201 * directory to avoid race between userspace and kernelspace.
4202 */
fba94807
TH
4203 spin_lock(&memcg->event_list_lock);
4204 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4205 list_del_init(&event->list);
4206 schedule_work(&event->remove);
4207 }
fba94807 4208 spin_unlock(&memcg->event_list_lock);
ec64f515 4209
567e9ab2 4210 memcg_offline_kmem(memcg);
52ebea74 4211 wb_memcg_offline(memcg);
df878fb0
KH
4212}
4213
6df38689
VD
4214static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4215{
4216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4217
4218 invalidate_reclaim_iterators(memcg);
4219}
4220
eb95419b 4221static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4222{
eb95419b 4223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4224
f7e1cb6e 4225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4226 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4227
0db15298 4228 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4229 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4230
0b8f73e1
JW
4231 vmpressure_cleanup(&memcg->vmpressure);
4232 cancel_work_sync(&memcg->high_work);
4233 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4234 memcg_free_kmem(memcg);
0b8f73e1 4235 mem_cgroup_free(memcg);
8cdea7c0
BS
4236}
4237
1ced953b
TH
4238/**
4239 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4240 * @css: the target css
4241 *
4242 * Reset the states of the mem_cgroup associated with @css. This is
4243 * invoked when the userland requests disabling on the default hierarchy
4244 * but the memcg is pinned through dependency. The memcg should stop
4245 * applying policies and should revert to the vanilla state as it may be
4246 * made visible again.
4247 *
4248 * The current implementation only resets the essential configurations.
4249 * This needs to be expanded to cover all the visible parts.
4250 */
4251static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4252{
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
d334c9bc
VD
4255 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4256 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4257 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4258 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4260 memcg->low = 0;
4261 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4262 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4263 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4264}
4265
02491447 4266#ifdef CONFIG_MMU
7dc74be0 4267/* Handlers for move charge at task migration. */
854ffa8d 4268static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4269{
05b84301 4270 int ret;
9476db97 4271
d0164adc
MG
4272 /* Try a single bulk charge without reclaim first, kswapd may wake */
4273 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4274 if (!ret) {
854ffa8d 4275 mc.precharge += count;
854ffa8d
DN
4276 return ret;
4277 }
9476db97
JW
4278
4279 /* Try charges one by one with reclaim */
854ffa8d 4280 while (count--) {
00501b53 4281 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4282 if (ret)
38c5d72f 4283 return ret;
854ffa8d 4284 mc.precharge++;
9476db97 4285 cond_resched();
854ffa8d 4286 }
9476db97 4287 return 0;
4ffef5fe
DN
4288}
4289
4290/**
8d32ff84 4291 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4292 * @vma: the vma the pte to be checked belongs
4293 * @addr: the address corresponding to the pte to be checked
4294 * @ptent: the pte to be checked
02491447 4295 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4296 *
4297 * Returns
4298 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4299 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4300 * move charge. if @target is not NULL, the page is stored in target->page
4301 * with extra refcnt got(Callers should handle it).
02491447
DN
4302 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4303 * target for charge migration. if @target is not NULL, the entry is stored
4304 * in target->ent.
4ffef5fe
DN
4305 *
4306 * Called with pte lock held.
4307 */
4ffef5fe
DN
4308union mc_target {
4309 struct page *page;
02491447 4310 swp_entry_t ent;
4ffef5fe
DN
4311};
4312
4ffef5fe 4313enum mc_target_type {
8d32ff84 4314 MC_TARGET_NONE = 0,
4ffef5fe 4315 MC_TARGET_PAGE,
02491447 4316 MC_TARGET_SWAP,
4ffef5fe
DN
4317};
4318
90254a65
DN
4319static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4320 unsigned long addr, pte_t ptent)
4ffef5fe 4321{
90254a65 4322 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4323
90254a65
DN
4324 if (!page || !page_mapped(page))
4325 return NULL;
4326 if (PageAnon(page)) {
1dfab5ab 4327 if (!(mc.flags & MOVE_ANON))
90254a65 4328 return NULL;
1dfab5ab
JW
4329 } else {
4330 if (!(mc.flags & MOVE_FILE))
4331 return NULL;
4332 }
90254a65
DN
4333 if (!get_page_unless_zero(page))
4334 return NULL;
4335
4336 return page;
4337}
4338
4b91355e 4339#ifdef CONFIG_SWAP
90254a65
DN
4340static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4341 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4342{
90254a65
DN
4343 struct page *page = NULL;
4344 swp_entry_t ent = pte_to_swp_entry(ptent);
4345
1dfab5ab 4346 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4347 return NULL;
4b91355e
KH
4348 /*
4349 * Because lookup_swap_cache() updates some statistics counter,
4350 * we call find_get_page() with swapper_space directly.
4351 */
33806f06 4352 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4353 if (do_memsw_account())
90254a65
DN
4354 entry->val = ent.val;
4355
4356 return page;
4357}
4b91355e
KH
4358#else
4359static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4360 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4361{
4362 return NULL;
4363}
4364#endif
90254a65 4365
87946a72
DN
4366static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4367 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4368{
4369 struct page *page = NULL;
87946a72
DN
4370 struct address_space *mapping;
4371 pgoff_t pgoff;
4372
4373 if (!vma->vm_file) /* anonymous vma */
4374 return NULL;
1dfab5ab 4375 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4376 return NULL;
4377
87946a72 4378 mapping = vma->vm_file->f_mapping;
0661a336 4379 pgoff = linear_page_index(vma, addr);
87946a72
DN
4380
4381 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4382#ifdef CONFIG_SWAP
4383 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4384 if (shmem_mapping(mapping)) {
4385 page = find_get_entry(mapping, pgoff);
4386 if (radix_tree_exceptional_entry(page)) {
4387 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4388 if (do_memsw_account())
139b6a6f
JW
4389 *entry = swp;
4390 page = find_get_page(swap_address_space(swp), swp.val);
4391 }
4392 } else
4393 page = find_get_page(mapping, pgoff);
4394#else
4395 page = find_get_page(mapping, pgoff);
aa3b1895 4396#endif
87946a72
DN
4397 return page;
4398}
4399
b1b0deab
CG
4400/**
4401 * mem_cgroup_move_account - move account of the page
4402 * @page: the page
4403 * @nr_pages: number of regular pages (>1 for huge pages)
4404 * @from: mem_cgroup which the page is moved from.
4405 * @to: mem_cgroup which the page is moved to. @from != @to.
4406 *
3ac808fd 4407 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4408 *
4409 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4410 * from old cgroup.
4411 */
4412static int mem_cgroup_move_account(struct page *page,
f627c2f5 4413 bool compound,
b1b0deab
CG
4414 struct mem_cgroup *from,
4415 struct mem_cgroup *to)
4416{
4417 unsigned long flags;
f627c2f5 4418 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4419 int ret;
c4843a75 4420 bool anon;
b1b0deab
CG
4421
4422 VM_BUG_ON(from == to);
4423 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4424 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4425
4426 /*
6a93ca8f 4427 * Prevent mem_cgroup_migrate() from looking at
45637bab 4428 * page->mem_cgroup of its source page while we change it.
b1b0deab 4429 */
f627c2f5 4430 ret = -EBUSY;
b1b0deab
CG
4431 if (!trylock_page(page))
4432 goto out;
4433
4434 ret = -EINVAL;
4435 if (page->mem_cgroup != from)
4436 goto out_unlock;
4437
c4843a75
GT
4438 anon = PageAnon(page);
4439
b1b0deab
CG
4440 spin_lock_irqsave(&from->move_lock, flags);
4441
c4843a75 4442 if (!anon && page_mapped(page)) {
b1b0deab
CG
4443 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4444 nr_pages);
4445 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4446 nr_pages);
4447 }
4448
c4843a75
GT
4449 /*
4450 * move_lock grabbed above and caller set from->moving_account, so
4451 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4452 * So mapping should be stable for dirty pages.
4453 */
4454 if (!anon && PageDirty(page)) {
4455 struct address_space *mapping = page_mapping(page);
4456
4457 if (mapping_cap_account_dirty(mapping)) {
4458 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4459 nr_pages);
4460 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4461 nr_pages);
4462 }
4463 }
4464
b1b0deab
CG
4465 if (PageWriteback(page)) {
4466 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4467 nr_pages);
4468 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4469 nr_pages);
4470 }
4471
4472 /*
4473 * It is safe to change page->mem_cgroup here because the page
4474 * is referenced, charged, and isolated - we can't race with
4475 * uncharging, charging, migration, or LRU putback.
4476 */
4477
4478 /* caller should have done css_get */
4479 page->mem_cgroup = to;
4480 spin_unlock_irqrestore(&from->move_lock, flags);
4481
4482 ret = 0;
4483
4484 local_irq_disable();
f627c2f5 4485 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4486 memcg_check_events(to, page);
f627c2f5 4487 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4488 memcg_check_events(from, page);
4489 local_irq_enable();
4490out_unlock:
4491 unlock_page(page);
4492out:
4493 return ret;
4494}
4495
8d32ff84 4496static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4497 unsigned long addr, pte_t ptent, union mc_target *target)
4498{
4499 struct page *page = NULL;
8d32ff84 4500 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4501 swp_entry_t ent = { .val = 0 };
4502
4503 if (pte_present(ptent))
4504 page = mc_handle_present_pte(vma, addr, ptent);
4505 else if (is_swap_pte(ptent))
4506 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4507 else if (pte_none(ptent))
87946a72 4508 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4509
4510 if (!page && !ent.val)
8d32ff84 4511 return ret;
02491447 4512 if (page) {
02491447 4513 /*
0a31bc97 4514 * Do only loose check w/o serialization.
1306a85a 4515 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4516 * not under LRU exclusion.
02491447 4517 */
1306a85a 4518 if (page->mem_cgroup == mc.from) {
02491447
DN
4519 ret = MC_TARGET_PAGE;
4520 if (target)
4521 target->page = page;
4522 }
4523 if (!ret || !target)
4524 put_page(page);
4525 }
90254a65
DN
4526 /* There is a swap entry and a page doesn't exist or isn't charged */
4527 if (ent.val && !ret &&
34c00c31 4528 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4529 ret = MC_TARGET_SWAP;
4530 if (target)
4531 target->ent = ent;
4ffef5fe 4532 }
4ffef5fe
DN
4533 return ret;
4534}
4535
12724850
NH
4536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4537/*
4538 * We don't consider swapping or file mapped pages because THP does not
4539 * support them for now.
4540 * Caller should make sure that pmd_trans_huge(pmd) is true.
4541 */
4542static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4543 unsigned long addr, pmd_t pmd, union mc_target *target)
4544{
4545 struct page *page = NULL;
12724850
NH
4546 enum mc_target_type ret = MC_TARGET_NONE;
4547
4548 page = pmd_page(pmd);
309381fe 4549 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4550 if (!(mc.flags & MOVE_ANON))
12724850 4551 return ret;
1306a85a 4552 if (page->mem_cgroup == mc.from) {
12724850
NH
4553 ret = MC_TARGET_PAGE;
4554 if (target) {
4555 get_page(page);
4556 target->page = page;
4557 }
4558 }
4559 return ret;
4560}
4561#else
4562static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4563 unsigned long addr, pmd_t pmd, union mc_target *target)
4564{
4565 return MC_TARGET_NONE;
4566}
4567#endif
4568
4ffef5fe
DN
4569static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4570 unsigned long addr, unsigned long end,
4571 struct mm_walk *walk)
4572{
26bcd64a 4573 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4574 pte_t *pte;
4575 spinlock_t *ptl;
4576
b6ec57f4
KS
4577 ptl = pmd_trans_huge_lock(pmd, vma);
4578 if (ptl) {
12724850
NH
4579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4580 mc.precharge += HPAGE_PMD_NR;
bf929152 4581 spin_unlock(ptl);
1a5a9906 4582 return 0;
12724850 4583 }
03319327 4584
45f83cef
AA
4585 if (pmd_trans_unstable(pmd))
4586 return 0;
4ffef5fe
DN
4587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4588 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4589 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4590 mc.precharge++; /* increment precharge temporarily */
4591 pte_unmap_unlock(pte - 1, ptl);
4592 cond_resched();
4593
7dc74be0
DN
4594 return 0;
4595}
4596
4ffef5fe
DN
4597static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4598{
4599 unsigned long precharge;
4ffef5fe 4600
26bcd64a
NH
4601 struct mm_walk mem_cgroup_count_precharge_walk = {
4602 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4603 .mm = mm,
4604 };
dfe076b0 4605 down_read(&mm->mmap_sem);
26bcd64a 4606 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4607 up_read(&mm->mmap_sem);
4ffef5fe
DN
4608
4609 precharge = mc.precharge;
4610 mc.precharge = 0;
4611
4612 return precharge;
4613}
4614
4ffef5fe
DN
4615static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4616{
dfe076b0
DN
4617 unsigned long precharge = mem_cgroup_count_precharge(mm);
4618
4619 VM_BUG_ON(mc.moving_task);
4620 mc.moving_task = current;
4621 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4622}
4623
dfe076b0
DN
4624/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4625static void __mem_cgroup_clear_mc(void)
4ffef5fe 4626{
2bd9bb20
KH
4627 struct mem_cgroup *from = mc.from;
4628 struct mem_cgroup *to = mc.to;
4629
4ffef5fe 4630 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4631 if (mc.precharge) {
00501b53 4632 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4633 mc.precharge = 0;
4634 }
4635 /*
4636 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4637 * we must uncharge here.
4638 */
4639 if (mc.moved_charge) {
00501b53 4640 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4641 mc.moved_charge = 0;
4ffef5fe 4642 }
483c30b5
DN
4643 /* we must fixup refcnts and charges */
4644 if (mc.moved_swap) {
483c30b5 4645 /* uncharge swap account from the old cgroup */
ce00a967 4646 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4647 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4648
05b84301 4649 /*
3e32cb2e
JW
4650 * we charged both to->memory and to->memsw, so we
4651 * should uncharge to->memory.
05b84301 4652 */
ce00a967 4653 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4654 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4655
e8ea14cc 4656 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4657
4050377b 4658 /* we've already done css_get(mc.to) */
483c30b5
DN
4659 mc.moved_swap = 0;
4660 }
dfe076b0
DN
4661 memcg_oom_recover(from);
4662 memcg_oom_recover(to);
4663 wake_up_all(&mc.waitq);
4664}
4665
4666static void mem_cgroup_clear_mc(void)
4667{
264a0ae1
TH
4668 struct mm_struct *mm = mc.mm;
4669
dfe076b0
DN
4670 /*
4671 * we must clear moving_task before waking up waiters at the end of
4672 * task migration.
4673 */
4674 mc.moving_task = NULL;
4675 __mem_cgroup_clear_mc();
2bd9bb20 4676 spin_lock(&mc.lock);
4ffef5fe
DN
4677 mc.from = NULL;
4678 mc.to = NULL;
264a0ae1 4679 mc.mm = NULL;
2bd9bb20 4680 spin_unlock(&mc.lock);
264a0ae1
TH
4681
4682 mmput(mm);
4ffef5fe
DN
4683}
4684
1f7dd3e5 4685static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4686{
1f7dd3e5 4687 struct cgroup_subsys_state *css;
eed67d75 4688 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4689 struct mem_cgroup *from;
4530eddb 4690 struct task_struct *leader, *p;
9f2115f9 4691 struct mm_struct *mm;
1dfab5ab 4692 unsigned long move_flags;
9f2115f9 4693 int ret = 0;
7dc74be0 4694
1f7dd3e5
TH
4695 /* charge immigration isn't supported on the default hierarchy */
4696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4697 return 0;
4698
4530eddb
TH
4699 /*
4700 * Multi-process migrations only happen on the default hierarchy
4701 * where charge immigration is not used. Perform charge
4702 * immigration if @tset contains a leader and whine if there are
4703 * multiple.
4704 */
4705 p = NULL;
1f7dd3e5 4706 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4707 WARN_ON_ONCE(p);
4708 p = leader;
1f7dd3e5 4709 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4710 }
4711 if (!p)
4712 return 0;
4713
1f7dd3e5
TH
4714 /*
4715 * We are now commited to this value whatever it is. Changes in this
4716 * tunable will only affect upcoming migrations, not the current one.
4717 * So we need to save it, and keep it going.
4718 */
4719 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4720 if (!move_flags)
4721 return 0;
4722
9f2115f9
TH
4723 from = mem_cgroup_from_task(p);
4724
4725 VM_BUG_ON(from == memcg);
4726
4727 mm = get_task_mm(p);
4728 if (!mm)
4729 return 0;
4730 /* We move charges only when we move a owner of the mm */
4731 if (mm->owner == p) {
4732 VM_BUG_ON(mc.from);
4733 VM_BUG_ON(mc.to);
4734 VM_BUG_ON(mc.precharge);
4735 VM_BUG_ON(mc.moved_charge);
4736 VM_BUG_ON(mc.moved_swap);
4737
4738 spin_lock(&mc.lock);
264a0ae1 4739 mc.mm = mm;
9f2115f9
TH
4740 mc.from = from;
4741 mc.to = memcg;
4742 mc.flags = move_flags;
4743 spin_unlock(&mc.lock);
4744 /* We set mc.moving_task later */
4745
4746 ret = mem_cgroup_precharge_mc(mm);
4747 if (ret)
4748 mem_cgroup_clear_mc();
264a0ae1
TH
4749 } else {
4750 mmput(mm);
7dc74be0
DN
4751 }
4752 return ret;
4753}
4754
1f7dd3e5 4755static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4756{
4e2f245d
JW
4757 if (mc.to)
4758 mem_cgroup_clear_mc();
7dc74be0
DN
4759}
4760
4ffef5fe
DN
4761static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4762 unsigned long addr, unsigned long end,
4763 struct mm_walk *walk)
7dc74be0 4764{
4ffef5fe 4765 int ret = 0;
26bcd64a 4766 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4767 pte_t *pte;
4768 spinlock_t *ptl;
12724850
NH
4769 enum mc_target_type target_type;
4770 union mc_target target;
4771 struct page *page;
4ffef5fe 4772
b6ec57f4
KS
4773 ptl = pmd_trans_huge_lock(pmd, vma);
4774 if (ptl) {
62ade86a 4775 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4776 spin_unlock(ptl);
12724850
NH
4777 return 0;
4778 }
4779 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4780 if (target_type == MC_TARGET_PAGE) {
4781 page = target.page;
4782 if (!isolate_lru_page(page)) {
f627c2f5 4783 if (!mem_cgroup_move_account(page, true,
1306a85a 4784 mc.from, mc.to)) {
12724850
NH
4785 mc.precharge -= HPAGE_PMD_NR;
4786 mc.moved_charge += HPAGE_PMD_NR;
4787 }
4788 putback_lru_page(page);
4789 }
4790 put_page(page);
4791 }
bf929152 4792 spin_unlock(ptl);
1a5a9906 4793 return 0;
12724850
NH
4794 }
4795
45f83cef
AA
4796 if (pmd_trans_unstable(pmd))
4797 return 0;
4ffef5fe
DN
4798retry:
4799 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4800 for (; addr != end; addr += PAGE_SIZE) {
4801 pte_t ptent = *(pte++);
02491447 4802 swp_entry_t ent;
4ffef5fe
DN
4803
4804 if (!mc.precharge)
4805 break;
4806
8d32ff84 4807 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4808 case MC_TARGET_PAGE:
4809 page = target.page;
53f9263b
KS
4810 /*
4811 * We can have a part of the split pmd here. Moving it
4812 * can be done but it would be too convoluted so simply
4813 * ignore such a partial THP and keep it in original
4814 * memcg. There should be somebody mapping the head.
4815 */
4816 if (PageTransCompound(page))
4817 goto put;
4ffef5fe
DN
4818 if (isolate_lru_page(page))
4819 goto put;
f627c2f5
KS
4820 if (!mem_cgroup_move_account(page, false,
4821 mc.from, mc.to)) {
4ffef5fe 4822 mc.precharge--;
854ffa8d
DN
4823 /* we uncharge from mc.from later. */
4824 mc.moved_charge++;
4ffef5fe
DN
4825 }
4826 putback_lru_page(page);
8d32ff84 4827put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4828 put_page(page);
4829 break;
02491447
DN
4830 case MC_TARGET_SWAP:
4831 ent = target.ent;
e91cbb42 4832 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4833 mc.precharge--;
483c30b5
DN
4834 /* we fixup refcnts and charges later. */
4835 mc.moved_swap++;
4836 }
02491447 4837 break;
4ffef5fe
DN
4838 default:
4839 break;
4840 }
4841 }
4842 pte_unmap_unlock(pte - 1, ptl);
4843 cond_resched();
4844
4845 if (addr != end) {
4846 /*
4847 * We have consumed all precharges we got in can_attach().
4848 * We try charge one by one, but don't do any additional
4849 * charges to mc.to if we have failed in charge once in attach()
4850 * phase.
4851 */
854ffa8d 4852 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4853 if (!ret)
4854 goto retry;
4855 }
4856
4857 return ret;
4858}
4859
264a0ae1 4860static void mem_cgroup_move_charge(void)
4ffef5fe 4861{
26bcd64a
NH
4862 struct mm_walk mem_cgroup_move_charge_walk = {
4863 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4864 .mm = mc.mm,
26bcd64a 4865 };
4ffef5fe
DN
4866
4867 lru_add_drain_all();
312722cb 4868 /*
81f8c3a4
JW
4869 * Signal lock_page_memcg() to take the memcg's move_lock
4870 * while we're moving its pages to another memcg. Then wait
4871 * for already started RCU-only updates to finish.
312722cb
JW
4872 */
4873 atomic_inc(&mc.from->moving_account);
4874 synchronize_rcu();
dfe076b0 4875retry:
264a0ae1 4876 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4877 /*
4878 * Someone who are holding the mmap_sem might be waiting in
4879 * waitq. So we cancel all extra charges, wake up all waiters,
4880 * and retry. Because we cancel precharges, we might not be able
4881 * to move enough charges, but moving charge is a best-effort
4882 * feature anyway, so it wouldn't be a big problem.
4883 */
4884 __mem_cgroup_clear_mc();
4885 cond_resched();
4886 goto retry;
4887 }
26bcd64a
NH
4888 /*
4889 * When we have consumed all precharges and failed in doing
4890 * additional charge, the page walk just aborts.
4891 */
4892 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4893 up_read(&mc.mm->mmap_sem);
312722cb 4894 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4895}
4896
264a0ae1 4897static void mem_cgroup_move_task(void)
67e465a7 4898{
264a0ae1
TH
4899 if (mc.to) {
4900 mem_cgroup_move_charge();
a433658c 4901 mem_cgroup_clear_mc();
264a0ae1 4902 }
67e465a7 4903}
5cfb80a7 4904#else /* !CONFIG_MMU */
1f7dd3e5 4905static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4906{
4907 return 0;
4908}
1f7dd3e5 4909static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4910{
4911}
264a0ae1 4912static void mem_cgroup_move_task(void)
5cfb80a7
DN
4913{
4914}
4915#endif
67e465a7 4916
f00baae7
TH
4917/*
4918 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4919 * to verify whether we're attached to the default hierarchy on each mount
4920 * attempt.
f00baae7 4921 */
eb95419b 4922static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4923{
4924 /*
aa6ec29b 4925 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4926 * guarantees that @root doesn't have any children, so turning it
4927 * on for the root memcg is enough.
4928 */
9e10a130 4929 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4930 root_mem_cgroup->use_hierarchy = true;
4931 else
4932 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4933}
4934
241994ed
JW
4935static u64 memory_current_read(struct cgroup_subsys_state *css,
4936 struct cftype *cft)
4937{
f5fc3c5d
JW
4938 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4939
4940 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4941}
4942
4943static int memory_low_show(struct seq_file *m, void *v)
4944{
4945 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4946 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4947
4948 if (low == PAGE_COUNTER_MAX)
d2973697 4949 seq_puts(m, "max\n");
241994ed
JW
4950 else
4951 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4952
4953 return 0;
4954}
4955
4956static ssize_t memory_low_write(struct kernfs_open_file *of,
4957 char *buf, size_t nbytes, loff_t off)
4958{
4959 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4960 unsigned long low;
4961 int err;
4962
4963 buf = strstrip(buf);
d2973697 4964 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4965 if (err)
4966 return err;
4967
4968 memcg->low = low;
4969
4970 return nbytes;
4971}
4972
4973static int memory_high_show(struct seq_file *m, void *v)
4974{
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4976 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4977
4978 if (high == PAGE_COUNTER_MAX)
d2973697 4979 seq_puts(m, "max\n");
241994ed
JW
4980 else
4981 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4982
4983 return 0;
4984}
4985
4986static ssize_t memory_high_write(struct kernfs_open_file *of,
4987 char *buf, size_t nbytes, loff_t off)
4988{
4989 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 4990 unsigned long nr_pages;
241994ed
JW
4991 unsigned long high;
4992 int err;
4993
4994 buf = strstrip(buf);
d2973697 4995 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
4996 if (err)
4997 return err;
4998
4999 memcg->high = high;
5000
588083bb
JW
5001 nr_pages = page_counter_read(&memcg->memory);
5002 if (nr_pages > high)
5003 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5004 GFP_KERNEL, true);
5005
2529bb3a 5006 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5007 return nbytes;
5008}
5009
5010static int memory_max_show(struct seq_file *m, void *v)
5011{
5012 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5013 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5014
5015 if (max == PAGE_COUNTER_MAX)
d2973697 5016 seq_puts(m, "max\n");
241994ed
JW
5017 else
5018 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5019
5020 return 0;
5021}
5022
5023static ssize_t memory_max_write(struct kernfs_open_file *of,
5024 char *buf, size_t nbytes, loff_t off)
5025{
5026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5027 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5028 bool drained = false;
241994ed
JW
5029 unsigned long max;
5030 int err;
5031
5032 buf = strstrip(buf);
d2973697 5033 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5034 if (err)
5035 return err;
5036
b6e6edcf
JW
5037 xchg(&memcg->memory.limit, max);
5038
5039 for (;;) {
5040 unsigned long nr_pages = page_counter_read(&memcg->memory);
5041
5042 if (nr_pages <= max)
5043 break;
5044
5045 if (signal_pending(current)) {
5046 err = -EINTR;
5047 break;
5048 }
5049
5050 if (!drained) {
5051 drain_all_stock(memcg);
5052 drained = true;
5053 continue;
5054 }
5055
5056 if (nr_reclaims) {
5057 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5058 GFP_KERNEL, true))
5059 nr_reclaims--;
5060 continue;
5061 }
5062
5063 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5064 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5065 break;
5066 }
241994ed 5067
2529bb3a 5068 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5069 return nbytes;
5070}
5071
5072static int memory_events_show(struct seq_file *m, void *v)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075
5076 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5077 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5078 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5079 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5080
5081 return 0;
5082}
5083
587d9f72
JW
5084static int memory_stat_show(struct seq_file *m, void *v)
5085{
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5087 unsigned long stat[MEMCG_NR_STAT];
5088 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5089 int i;
5090
5091 /*
5092 * Provide statistics on the state of the memory subsystem as
5093 * well as cumulative event counters that show past behavior.
5094 *
5095 * This list is ordered following a combination of these gradients:
5096 * 1) generic big picture -> specifics and details
5097 * 2) reflecting userspace activity -> reflecting kernel heuristics
5098 *
5099 * Current memory state:
5100 */
5101
72b54e73
VD
5102 tree_stat(memcg, stat);
5103 tree_events(memcg, events);
5104
587d9f72 5105 seq_printf(m, "anon %llu\n",
72b54e73 5106 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5107 seq_printf(m, "file %llu\n",
72b54e73 5108 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5109 seq_printf(m, "kernel_stack %llu\n",
5110 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5111 seq_printf(m, "slab %llu\n",
5112 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5113 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5114 seq_printf(m, "sock %llu\n",
72b54e73 5115 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5116
5117 seq_printf(m, "file_mapped %llu\n",
72b54e73 5118 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5119 seq_printf(m, "file_dirty %llu\n",
72b54e73 5120 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5121 seq_printf(m, "file_writeback %llu\n",
72b54e73 5122 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5123
5124 for (i = 0; i < NR_LRU_LISTS; i++) {
5125 struct mem_cgroup *mi;
5126 unsigned long val = 0;
5127
5128 for_each_mem_cgroup_tree(mi, memcg)
5129 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5130 seq_printf(m, "%s %llu\n",
5131 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5132 }
5133
27ee57c9
VD
5134 seq_printf(m, "slab_reclaimable %llu\n",
5135 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5136 seq_printf(m, "slab_unreclaimable %llu\n",
5137 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5138
587d9f72
JW
5139 /* Accumulated memory events */
5140
5141 seq_printf(m, "pgfault %lu\n",
72b54e73 5142 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5143 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5144 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5145
5146 return 0;
5147}
5148
241994ed
JW
5149static struct cftype memory_files[] = {
5150 {
5151 .name = "current",
f5fc3c5d 5152 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5153 .read_u64 = memory_current_read,
5154 },
5155 {
5156 .name = "low",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .seq_show = memory_low_show,
5159 .write = memory_low_write,
5160 },
5161 {
5162 .name = "high",
5163 .flags = CFTYPE_NOT_ON_ROOT,
5164 .seq_show = memory_high_show,
5165 .write = memory_high_write,
5166 },
5167 {
5168 .name = "max",
5169 .flags = CFTYPE_NOT_ON_ROOT,
5170 .seq_show = memory_max_show,
5171 .write = memory_max_write,
5172 },
5173 {
5174 .name = "events",
5175 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5176 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5177 .seq_show = memory_events_show,
5178 },
587d9f72
JW
5179 {
5180 .name = "stat",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_stat_show,
5183 },
241994ed
JW
5184 { } /* terminate */
5185};
5186
073219e9 5187struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5188 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5189 .css_online = mem_cgroup_css_online,
92fb9748 5190 .css_offline = mem_cgroup_css_offline,
6df38689 5191 .css_released = mem_cgroup_css_released,
92fb9748 5192 .css_free = mem_cgroup_css_free,
1ced953b 5193 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5196 .post_attach = mem_cgroup_move_task,
f00baae7 5197 .bind = mem_cgroup_bind,
241994ed
JW
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5200 .early_init = 0,
8cdea7c0 5201};
c077719b 5202
241994ed
JW
5203/**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212{
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
4e54dede 5225 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
4e54dede 5234 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5235 return false;
5236 }
5237 return true;
5238}
5239
00501b53
JW
5240/**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
00501b53
JW
5260{
5261 struct mem_cgroup *memcg = NULL;
f627c2f5 5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
00501b53
JW
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
e993d905 5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5277 if (page->mem_cgroup)
00501b53 5278 goto out;
e993d905 5279
37e84351 5280 if (do_swap_account) {
e993d905
VD
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
00501b53
JW
5290 }
5291
00501b53
JW
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
00501b53
JW
5298out:
5299 *memcgp = memcg;
5300 return ret;
5301}
5302
5303/**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5320 bool lrucare, bool compound)
00501b53 5321{
f627c2f5 5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
6abb5a86
JW
5337 commit_charge(page, memcg, lrucare);
5338
6abb5a86 5339 local_irq_disable();
f627c2f5 5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
00501b53 5343
7941d214 5344 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353}
5354
5355/**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
f627c2f5
KS
5362void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
00501b53 5364{
f627c2f5 5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
00501b53
JW
5377 cancel_charge(memcg, nr_pages);
5378}
5379
747db954 5380static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383{
18eca2e6 5384 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5385 unsigned long flags;
5386
ce00a967 5387 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5388 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5389 if (do_memsw_account())
18eca2e6 5390 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5391 memcg_oom_recover(memcg);
5392 }
747db954
JW
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
e8ea14cc
JW
5402
5403 if (!mem_cgroup_is_root(memcg))
18eca2e6 5404 css_put_many(&memcg->css, nr_pages);
747db954
JW
5405}
5406
5407static void uncharge_list(struct list_head *page_list)
5408{
5409 struct mem_cgroup *memcg = NULL;
747db954
JW
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
747db954
JW
5414 struct list_head *next;
5415 struct page *page;
5416
8b592656
JW
5417 /*
5418 * Note that the list can be a single page->lru; hence the
5419 * do-while loop instead of a simple list_for_each_entry().
5420 */
747db954
JW
5421 next = page_list->next;
5422 do {
5423 unsigned int nr_pages = 1;
747db954
JW
5424
5425 page = list_entry(next, struct page, lru);
5426 next = page->lru.next;
5427
5428 VM_BUG_ON_PAGE(PageLRU(page), page);
5429 VM_BUG_ON_PAGE(page_count(page), page);
5430
1306a85a 5431 if (!page->mem_cgroup)
747db954
JW
5432 continue;
5433
5434 /*
5435 * Nobody should be changing or seriously looking at
1306a85a 5436 * page->mem_cgroup at this point, we have fully
29833315 5437 * exclusive access to the page.
747db954
JW
5438 */
5439
1306a85a 5440 if (memcg != page->mem_cgroup) {
747db954 5441 if (memcg) {
18eca2e6
JW
5442 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5443 nr_huge, page);
5444 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5445 }
1306a85a 5446 memcg = page->mem_cgroup;
747db954
JW
5447 }
5448
5449 if (PageTransHuge(page)) {
5450 nr_pages <<= compound_order(page);
5451 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5452 nr_huge += nr_pages;
5453 }
5454
5455 if (PageAnon(page))
5456 nr_anon += nr_pages;
5457 else
5458 nr_file += nr_pages;
5459
1306a85a 5460 page->mem_cgroup = NULL;
747db954
JW
5461
5462 pgpgout++;
5463 } while (next != page_list);
5464
5465 if (memcg)
18eca2e6
JW
5466 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5467 nr_huge, page);
747db954
JW
5468}
5469
0a31bc97
JW
5470/**
5471 * mem_cgroup_uncharge - uncharge a page
5472 * @page: page to uncharge
5473 *
5474 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5475 * mem_cgroup_commit_charge().
5476 */
5477void mem_cgroup_uncharge(struct page *page)
5478{
0a31bc97
JW
5479 if (mem_cgroup_disabled())
5480 return;
5481
747db954 5482 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5483 if (!page->mem_cgroup)
0a31bc97
JW
5484 return;
5485
747db954
JW
5486 INIT_LIST_HEAD(&page->lru);
5487 uncharge_list(&page->lru);
5488}
0a31bc97 5489
747db954
JW
5490/**
5491 * mem_cgroup_uncharge_list - uncharge a list of page
5492 * @page_list: list of pages to uncharge
5493 *
5494 * Uncharge a list of pages previously charged with
5495 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5496 */
5497void mem_cgroup_uncharge_list(struct list_head *page_list)
5498{
5499 if (mem_cgroup_disabled())
5500 return;
0a31bc97 5501
747db954
JW
5502 if (!list_empty(page_list))
5503 uncharge_list(page_list);
0a31bc97
JW
5504}
5505
5506/**
6a93ca8f
JW
5507 * mem_cgroup_migrate - charge a page's replacement
5508 * @oldpage: currently circulating page
5509 * @newpage: replacement page
0a31bc97 5510 *
6a93ca8f
JW
5511 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5512 * be uncharged upon free.
0a31bc97
JW
5513 *
5514 * Both pages must be locked, @newpage->mapping must be set up.
5515 */
6a93ca8f 5516void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5517{
29833315 5518 struct mem_cgroup *memcg;
44b7a8d3
JW
5519 unsigned int nr_pages;
5520 bool compound;
0a31bc97
JW
5521
5522 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5523 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5524 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5525 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5526 newpage);
0a31bc97
JW
5527
5528 if (mem_cgroup_disabled())
5529 return;
5530
5531 /* Page cache replacement: new page already charged? */
1306a85a 5532 if (newpage->mem_cgroup)
0a31bc97
JW
5533 return;
5534
45637bab 5535 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5536 memcg = oldpage->mem_cgroup;
29833315 5537 if (!memcg)
0a31bc97
JW
5538 return;
5539
44b7a8d3
JW
5540 /* Force-charge the new page. The old one will be freed soon */
5541 compound = PageTransHuge(newpage);
5542 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5543
5544 page_counter_charge(&memcg->memory, nr_pages);
5545 if (do_memsw_account())
5546 page_counter_charge(&memcg->memsw, nr_pages);
5547 css_get_many(&memcg->css, nr_pages);
0a31bc97 5548
9cf7666a 5549 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5550
5551 local_irq_disable();
5552 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5553 memcg_check_events(memcg, newpage);
5554 local_irq_enable();
0a31bc97
JW
5555}
5556
ef12947c 5557DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5558EXPORT_SYMBOL(memcg_sockets_enabled_key);
5559
5560void sock_update_memcg(struct sock *sk)
5561{
5562 struct mem_cgroup *memcg;
5563
5564 /* Socket cloning can throw us here with sk_cgrp already
5565 * filled. It won't however, necessarily happen from
5566 * process context. So the test for root memcg given
5567 * the current task's memcg won't help us in this case.
5568 *
5569 * Respecting the original socket's memcg is a better
5570 * decision in this case.
5571 */
5572 if (sk->sk_memcg) {
5573 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5574 css_get(&sk->sk_memcg->css);
5575 return;
5576 }
5577
5578 rcu_read_lock();
5579 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5580 if (memcg == root_mem_cgroup)
5581 goto out;
0db15298 5582 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5583 goto out;
f7e1cb6e 5584 if (css_tryget_online(&memcg->css))
11092087 5585 sk->sk_memcg = memcg;
f7e1cb6e 5586out:
11092087
JW
5587 rcu_read_unlock();
5588}
5589EXPORT_SYMBOL(sock_update_memcg);
5590
5591void sock_release_memcg(struct sock *sk)
5592{
5593 WARN_ON(!sk->sk_memcg);
5594 css_put(&sk->sk_memcg->css);
5595}
5596
5597/**
5598 * mem_cgroup_charge_skmem - charge socket memory
5599 * @memcg: memcg to charge
5600 * @nr_pages: number of pages to charge
5601 *
5602 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5603 * @memcg's configured limit, %false if the charge had to be forced.
5604 */
5605bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5606{
f7e1cb6e 5607 gfp_t gfp_mask = GFP_KERNEL;
11092087 5608
f7e1cb6e 5609 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5610 struct page_counter *fail;
f7e1cb6e 5611
0db15298
JW
5612 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5613 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5614 return true;
5615 }
0db15298
JW
5616 page_counter_charge(&memcg->tcpmem, nr_pages);
5617 memcg->tcpmem_pressure = 1;
f7e1cb6e 5618 return false;
11092087 5619 }
d886f4e4 5620
f7e1cb6e
JW
5621 /* Don't block in the packet receive path */
5622 if (in_softirq())
5623 gfp_mask = GFP_NOWAIT;
5624
b2807f07
JW
5625 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5626
f7e1cb6e
JW
5627 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5628 return true;
5629
5630 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5631 return false;
5632}
5633
5634/**
5635 * mem_cgroup_uncharge_skmem - uncharge socket memory
5636 * @memcg - memcg to uncharge
5637 * @nr_pages - number of pages to uncharge
5638 */
5639void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5640{
f7e1cb6e 5641 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5642 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5643 return;
5644 }
d886f4e4 5645
b2807f07
JW
5646 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5647
f7e1cb6e
JW
5648 page_counter_uncharge(&memcg->memory, nr_pages);
5649 css_put_many(&memcg->css, nr_pages);
11092087
JW
5650}
5651
f7e1cb6e
JW
5652static int __init cgroup_memory(char *s)
5653{
5654 char *token;
5655
5656 while ((token = strsep(&s, ",")) != NULL) {
5657 if (!*token)
5658 continue;
5659 if (!strcmp(token, "nosocket"))
5660 cgroup_memory_nosocket = true;
04823c83
VD
5661 if (!strcmp(token, "nokmem"))
5662 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5663 }
5664 return 0;
5665}
5666__setup("cgroup.memory=", cgroup_memory);
11092087 5667
2d11085e 5668/*
1081312f
MH
5669 * subsys_initcall() for memory controller.
5670 *
5671 * Some parts like hotcpu_notifier() have to be initialized from this context
5672 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5673 * everything that doesn't depend on a specific mem_cgroup structure should
5674 * be initialized from here.
2d11085e
MH
5675 */
5676static int __init mem_cgroup_init(void)
5677{
95a045f6
JW
5678 int cpu, node;
5679
2d11085e 5680 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5681
5682 for_each_possible_cpu(cpu)
5683 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5684 drain_local_stock);
5685
5686 for_each_node(node) {
5687 struct mem_cgroup_tree_per_node *rtpn;
5688 int zone;
5689
5690 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5691 node_online(node) ? node : NUMA_NO_NODE);
5692
5693 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5694 struct mem_cgroup_tree_per_zone *rtpz;
5695
5696 rtpz = &rtpn->rb_tree_per_zone[zone];
5697 rtpz->rb_root = RB_ROOT;
5698 spin_lock_init(&rtpz->lock);
5699 }
5700 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5701 }
5702
2d11085e
MH
5703 return 0;
5704}
5705subsys_initcall(mem_cgroup_init);
21afa38e
JW
5706
5707#ifdef CONFIG_MEMCG_SWAP
5708/**
5709 * mem_cgroup_swapout - transfer a memsw charge to swap
5710 * @page: page whose memsw charge to transfer
5711 * @entry: swap entry to move the charge to
5712 *
5713 * Transfer the memsw charge of @page to @entry.
5714 */
5715void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5716{
5717 struct mem_cgroup *memcg;
5718 unsigned short oldid;
5719
5720 VM_BUG_ON_PAGE(PageLRU(page), page);
5721 VM_BUG_ON_PAGE(page_count(page), page);
5722
7941d214 5723 if (!do_memsw_account())
21afa38e
JW
5724 return;
5725
5726 memcg = page->mem_cgroup;
5727
5728 /* Readahead page, never charged */
5729 if (!memcg)
5730 return;
5731
5732 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5733 VM_BUG_ON_PAGE(oldid, page);
5734 mem_cgroup_swap_statistics(memcg, true);
5735
5736 page->mem_cgroup = NULL;
5737
5738 if (!mem_cgroup_is_root(memcg))
5739 page_counter_uncharge(&memcg->memory, 1);
5740
ce9ce665
SAS
5741 /*
5742 * Interrupts should be disabled here because the caller holds the
5743 * mapping->tree_lock lock which is taken with interrupts-off. It is
5744 * important here to have the interrupts disabled because it is the
5745 * only synchronisation we have for udpating the per-CPU variables.
5746 */
5747 VM_BUG_ON(!irqs_disabled());
f627c2f5 5748 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5749 memcg_check_events(memcg, page);
5750}
5751
37e84351
VD
5752/*
5753 * mem_cgroup_try_charge_swap - try charging a swap entry
5754 * @page: page being added to swap
5755 * @entry: swap entry to charge
5756 *
5757 * Try to charge @entry to the memcg that @page belongs to.
5758 *
5759 * Returns 0 on success, -ENOMEM on failure.
5760 */
5761int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5762{
5763 struct mem_cgroup *memcg;
5764 struct page_counter *counter;
5765 unsigned short oldid;
5766
5767 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5768 return 0;
5769
5770 memcg = page->mem_cgroup;
5771
5772 /* Readahead page, never charged */
5773 if (!memcg)
5774 return 0;
5775
5776 if (!mem_cgroup_is_root(memcg) &&
5777 !page_counter_try_charge(&memcg->swap, 1, &counter))
5778 return -ENOMEM;
5779
5780 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5781 VM_BUG_ON_PAGE(oldid, page);
5782 mem_cgroup_swap_statistics(memcg, true);
5783
5784 css_get(&memcg->css);
5785 return 0;
5786}
5787
21afa38e
JW
5788/**
5789 * mem_cgroup_uncharge_swap - uncharge a swap entry
5790 * @entry: swap entry to uncharge
5791 *
37e84351 5792 * Drop the swap charge associated with @entry.
21afa38e
JW
5793 */
5794void mem_cgroup_uncharge_swap(swp_entry_t entry)
5795{
5796 struct mem_cgroup *memcg;
5797 unsigned short id;
5798
37e84351 5799 if (!do_swap_account)
21afa38e
JW
5800 return;
5801
5802 id = swap_cgroup_record(entry, 0);
5803 rcu_read_lock();
adbe427b 5804 memcg = mem_cgroup_from_id(id);
21afa38e 5805 if (memcg) {
37e84351
VD
5806 if (!mem_cgroup_is_root(memcg)) {
5807 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5808 page_counter_uncharge(&memcg->swap, 1);
5809 else
5810 page_counter_uncharge(&memcg->memsw, 1);
5811 }
21afa38e
JW
5812 mem_cgroup_swap_statistics(memcg, false);
5813 css_put(&memcg->css);
5814 }
5815 rcu_read_unlock();
5816}
5817
d8b38438
VD
5818long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5819{
5820 long nr_swap_pages = get_nr_swap_pages();
5821
5822 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5823 return nr_swap_pages;
5824 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5825 nr_swap_pages = min_t(long, nr_swap_pages,
5826 READ_ONCE(memcg->swap.limit) -
5827 page_counter_read(&memcg->swap));
5828 return nr_swap_pages;
5829}
5830
5ccc5aba
VD
5831bool mem_cgroup_swap_full(struct page *page)
5832{
5833 struct mem_cgroup *memcg;
5834
5835 VM_BUG_ON_PAGE(!PageLocked(page), page);
5836
5837 if (vm_swap_full())
5838 return true;
5839 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5840 return false;
5841
5842 memcg = page->mem_cgroup;
5843 if (!memcg)
5844 return false;
5845
5846 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5847 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5848 return true;
5849
5850 return false;
5851}
5852
21afa38e
JW
5853/* for remember boot option*/
5854#ifdef CONFIG_MEMCG_SWAP_ENABLED
5855static int really_do_swap_account __initdata = 1;
5856#else
5857static int really_do_swap_account __initdata;
5858#endif
5859
5860static int __init enable_swap_account(char *s)
5861{
5862 if (!strcmp(s, "1"))
5863 really_do_swap_account = 1;
5864 else if (!strcmp(s, "0"))
5865 really_do_swap_account = 0;
5866 return 1;
5867}
5868__setup("swapaccount=", enable_swap_account);
5869
37e84351
VD
5870static u64 swap_current_read(struct cgroup_subsys_state *css,
5871 struct cftype *cft)
5872{
5873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5874
5875 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5876}
5877
5878static int swap_max_show(struct seq_file *m, void *v)
5879{
5880 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5881 unsigned long max = READ_ONCE(memcg->swap.limit);
5882
5883 if (max == PAGE_COUNTER_MAX)
5884 seq_puts(m, "max\n");
5885 else
5886 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5887
5888 return 0;
5889}
5890
5891static ssize_t swap_max_write(struct kernfs_open_file *of,
5892 char *buf, size_t nbytes, loff_t off)
5893{
5894 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5895 unsigned long max;
5896 int err;
5897
5898 buf = strstrip(buf);
5899 err = page_counter_memparse(buf, "max", &max);
5900 if (err)
5901 return err;
5902
5903 mutex_lock(&memcg_limit_mutex);
5904 err = page_counter_limit(&memcg->swap, max);
5905 mutex_unlock(&memcg_limit_mutex);
5906 if (err)
5907 return err;
5908
5909 return nbytes;
5910}
5911
5912static struct cftype swap_files[] = {
5913 {
5914 .name = "swap.current",
5915 .flags = CFTYPE_NOT_ON_ROOT,
5916 .read_u64 = swap_current_read,
5917 },
5918 {
5919 .name = "swap.max",
5920 .flags = CFTYPE_NOT_ON_ROOT,
5921 .seq_show = swap_max_show,
5922 .write = swap_max_write,
5923 },
5924 { } /* terminate */
5925};
5926
21afa38e
JW
5927static struct cftype memsw_cgroup_files[] = {
5928 {
5929 .name = "memsw.usage_in_bytes",
5930 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5931 .read_u64 = mem_cgroup_read_u64,
5932 },
5933 {
5934 .name = "memsw.max_usage_in_bytes",
5935 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5936 .write = mem_cgroup_reset,
5937 .read_u64 = mem_cgroup_read_u64,
5938 },
5939 {
5940 .name = "memsw.limit_in_bytes",
5941 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5942 .write = mem_cgroup_write,
5943 .read_u64 = mem_cgroup_read_u64,
5944 },
5945 {
5946 .name = "memsw.failcnt",
5947 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5948 .write = mem_cgroup_reset,
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 { }, /* terminate */
5952};
5953
5954static int __init mem_cgroup_swap_init(void)
5955{
5956 if (!mem_cgroup_disabled() && really_do_swap_account) {
5957 do_swap_account = 1;
37e84351
VD
5958 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5959 swap_files));
21afa38e
JW
5960 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5961 memsw_cgroup_files));
5962 }
5963 return 0;
5964}
5965subsys_initcall(mem_cgroup_swap_init);
5966
5967#endif /* CONFIG_MEMCG_SWAP */
This page took 1.333835 seconds and 5 git commands to generate.