mips, arc: fix build failure
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 62#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 63static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 64
c255a458 65#ifdef CONFIG_MEMCG_SWAP
338c8431 66/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 67int do_swap_account __read_mostly;
a42c390c
MH
68
69/* for remember boot option*/
c255a458 70#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
71static int really_do_swap_account __initdata = 1;
72#else
73static int really_do_swap_account __initdata = 0;
74#endif
75
c077719b 76#else
a0db00fc 77#define do_swap_account 0
c077719b
KH
78#endif
79
80
d52aa412
KH
81/*
82 * Statistics for memory cgroup.
83 */
84enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
af7c4b0e
JW
95static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100};
101
e9f8974f
JW
102enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
107 MEM_CGROUP_EVENTS_NSTATS,
108};
af7c4b0e
JW
109
110static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115};
116
7a159cc9
JW
117/*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 126 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
127 MEM_CGROUP_NTARGETS,
128};
a0db00fc
KS
129#define THRESHOLDS_EVENTS_TARGET 128
130#define SOFTLIMIT_EVENTS_TARGET 1024
131#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 132
d52aa412 133struct mem_cgroup_stat_cpu {
7a159cc9 134 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 136 unsigned long nr_page_events;
7a159cc9 137 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
138};
139
527a5ec9
JW
140struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145};
146
6d12e2d8
KH
147/*
148 * per-zone information in memory controller.
149 */
6d12e2d8 150struct mem_cgroup_per_zone {
6290df54 151 struct lruvec lruvec;
1eb49272 152 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 153
527a5ec9
JW
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
f64c3f54
BS
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
d79154bb 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 161 /* use container_of */
6d12e2d8 162};
6d12e2d8
KH
163
164struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166};
167
168struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170};
171
f64c3f54
BS
172/*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180};
181
182struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184};
185
186struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188};
189
190static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
2e72b634
KS
192struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195};
196
9490ff27 197/* For threshold */
2e72b634 198struct mem_cgroup_threshold_ary {
748dad36 199 /* An array index points to threshold just below or equal to usage. */
5407a562 200 int current_threshold;
2e72b634
KS
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205};
2c488db2
KS
206
207struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216};
217
9490ff27
KH
218/* for OOM */
219struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222};
2e72b634 223
c0ff4b85
R
224static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 226
8cdea7c0
BS
227/*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
8cdea7c0
BS
237 */
238struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
59927fb9
HD
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
3afe36b1
GC
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
264 */
265 struct work_struct work_freeing;
266 };
267
78fb7466
PE
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
78fb7466 271 */
6d12e2d8 272 struct mem_cgroup_lru_info info;
889976db
YH
273 int last_scanned_node;
274#if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
453a9bf3
KH
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
889976db 278#endif
18f59ea7
BS
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
79dfdacc
MH
283
284 bool oom_lock;
285 atomic_t under_oom;
286
8c7c6e34 287 atomic_t refcnt;
14797e23 288
1f4c025b 289 int swappiness;
3c11ecf4
KH
290 /* OOM-Killer disable */
291 int oom_kill_disable;
a7885eb8 292
22a668d7
KH
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
2e72b634
KS
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
2c488db2 300 struct mem_cgroup_thresholds thresholds;
907860ed 301
2e72b634 302 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 303 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 304
9490ff27
KH
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
185efc0f 307
7dc74be0
DN
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
619d094b
KH
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
312734c0
KH
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
d52aa412 319 /*
c62b1a3b 320 * percpu counter.
d52aa412 321 */
3a7951b4 322 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
d1a4c0b3 329
4bd2c1ee 330#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
331 struct tcp_memcontrol tcp_mem;
332#endif
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
a0db00fc
KS
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 382 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 408
b2145145
WL
409static inline
410struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411{
412 return container_of(s, struct mem_cgroup, css);
413}
414
7ffc0edc
MH
415static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416{
417 return (memcg == root_mem_cgroup);
418}
419
e1aab161 420/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 421#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 422
e1aab161
GC
423void sock_update_memcg(struct sock *sk)
424{
376be5ff 425 if (mem_cgroup_sockets_enabled) {
e1aab161 426 struct mem_cgroup *memcg;
3f134619 427 struct cg_proto *cg_proto;
e1aab161
GC
428
429 BUG_ON(!sk->sk_prot->proto_cgroup);
430
f3f511e1
GC
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
435 *
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
438 */
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
443 }
444
e1aab161
GC
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
3f134619
GC
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 449 mem_cgroup_get(memcg);
3f134619 450 sk->sk_cgrp = cg_proto;
e1aab161
GC
451 }
452 rcu_read_unlock();
453 }
454}
455EXPORT_SYMBOL(sock_update_memcg);
456
457void sock_release_memcg(struct sock *sk)
458{
376be5ff 459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
464 }
465}
d1a4c0b3
GC
466
467struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468{
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
471
472 return &memcg->tcp_mem.cg_proto;
473}
474EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 475
3f134619
GC
476static void disarm_sock_keys(struct mem_cgroup *memcg)
477{
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
481}
482#else
483static void disarm_sock_keys(struct mem_cgroup *memcg)
484{
485}
486#endif
487
c0ff4b85 488static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 489
f64c3f54 490static struct mem_cgroup_per_zone *
c0ff4b85 491mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 492{
c0ff4b85 493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
494}
495
c0ff4b85 496struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 497{
c0ff4b85 498 return &memcg->css;
d324236b
WF
499}
500
f64c3f54 501static struct mem_cgroup_per_zone *
c0ff4b85 502page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b
JW
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
f64c3f54 506
c0ff4b85 507 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
508}
509
510static struct mem_cgroup_tree_per_zone *
511soft_limit_tree_node_zone(int nid, int zid)
512{
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514}
515
516static struct mem_cgroup_tree_per_zone *
517soft_limit_tree_from_page(struct page *page)
518{
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
521
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523}
524
525static void
c0ff4b85 526__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 527 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
f64c3f54
BS
530{
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
534
535 if (mz->on_tree)
536 return;
537
ef8745c1
KH
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
f64c3f54
BS
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
4e416953
BS
557}
558
559static void
c0ff4b85 560__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
563{
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
568}
569
f64c3f54 570static void
c0ff4b85 571mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
574{
575 spin_lock(&mctz->lock);
c0ff4b85 576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
577 spin_unlock(&mctz->lock);
578}
579
f64c3f54 580
c0ff4b85 581static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
ef8745c1 583 unsigned long long excess;
f64c3f54
BS
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
f64c3f54
BS
588 mctz = soft_limit_tree_from_page(page);
589
590 /*
4e649152
KH
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
f64c3f54 593 */
c0ff4b85
R
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
597 /*
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
600 */
ef8745c1 601 if (excess || mz->on_tree) {
4e649152
KH
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
c0ff4b85 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 606 /*
ef8745c1
KH
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
4e649152 609 */
c0ff4b85 610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
611 spin_unlock(&mctz->lock);
612 }
f64c3f54
BS
613 }
614}
615
c0ff4b85 616static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
617{
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
621
3ed28fa1 622 for_each_node(node) {
f64c3f54 623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 625 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
627 }
628 }
629}
630
4e416953
BS
631static struct mem_cgroup_per_zone *
632__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633{
634 struct rb_node *rightmost = NULL;
26251eaf 635 struct mem_cgroup_per_zone *mz;
4e416953
BS
636
637retry:
26251eaf 638 mz = NULL;
4e416953
BS
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
642
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 /*
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
648 */
d79154bb
HD
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
4e416953
BS
652 goto retry;
653done:
654 return mz;
655}
656
657static struct mem_cgroup_per_zone *
658mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659{
660 struct mem_cgroup_per_zone *mz;
661
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
666}
667
711d3d2c
KH
668/*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
c0ff4b85 687static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 688 enum mem_cgroup_stat_index idx)
c62b1a3b 689{
7a159cc9 690 long val = 0;
c62b1a3b 691 int cpu;
c62b1a3b 692
711d3d2c
KH
693 get_online_cpus();
694 for_each_online_cpu(cpu)
c0ff4b85 695 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 696#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
700#endif
701 put_online_cpus();
c62b1a3b
KH
702 return val;
703}
704
c0ff4b85 705static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
706 bool charge)
707{
708 int val = (charge) ? 1 : -1;
bff6bb83 709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
710}
711
c0ff4b85 712static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
713 enum mem_cgroup_events_index idx)
714{
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
c0ff4b85 719 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 720#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
724#endif
725 return val;
726}
727
c0ff4b85 728static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 729 bool anon, int nr_pages)
d52aa412 730{
c62b1a3b
KH
731 preempt_disable();
732
b2402857
KH
733 /*
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
736 */
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 739 nr_pages);
d52aa412 740 else
b2402857 741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 742 nr_pages);
55e462b0 743
e401f176
KH
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
c0ff4b85 746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 747 else {
c0ff4b85 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
749 nr_pages = -nr_pages; /* for event */
750 }
e401f176 751
13114716 752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 753
c62b1a3b 754 preempt_enable();
6d12e2d8
KH
755}
756
bb2a0de9 757unsigned long
4d7dcca2 758mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
759{
760 struct mem_cgroup_per_zone *mz;
761
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
764}
765
766static unsigned long
c0ff4b85 767mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 768 unsigned int lru_mask)
889976db
YH
769{
770 struct mem_cgroup_per_zone *mz;
f156ab93 771 enum lru_list lru;
bb2a0de9
KH
772 unsigned long ret = 0;
773
c0ff4b85 774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 775
f156ab93
HD
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
bb2a0de9
KH
779 }
780 return ret;
781}
782
783static unsigned long
c0ff4b85 784mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
785 int nid, unsigned int lru_mask)
786{
889976db
YH
787 u64 total = 0;
788 int zid;
789
bb2a0de9 790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
bb2a0de9 793
889976db
YH
794 return total;
795}
bb2a0de9 796
c0ff4b85 797static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 798 unsigned int lru_mask)
6d12e2d8 799{
889976db 800 int nid;
6d12e2d8
KH
801 u64 total = 0;
802
bb2a0de9 803 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 805 return total;
d52aa412
KH
806}
807
f53d7ce3
JW
808static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
7a159cc9
JW
810{
811 unsigned long val, next;
812
13114716 813 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 814 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 815 /* from time_after() in jiffies.h */
f53d7ce3
JW
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
829 }
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
7a159cc9 832 }
f53d7ce3 833 return false;
d2265e6f
KH
834}
835
836/*
837 * Check events in order.
838 *
839 */
c0ff4b85 840static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 841{
4799401f 842 preempt_disable();
d2265e6f 843 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
f53d7ce3
JW
848
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851#if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854#endif
855 preempt_enable();
856
c0ff4b85 857 mem_cgroup_threshold(memcg);
f53d7ce3 858 if (unlikely(do_softlimit))
c0ff4b85 859 mem_cgroup_update_tree(memcg, page);
453a9bf3 860#if MAX_NUMNODES > 1
f53d7ce3 861 if (unlikely(do_numainfo))
c0ff4b85 862 atomic_inc(&memcg->numainfo_events);
453a9bf3 863#endif
f53d7ce3
JW
864 } else
865 preempt_enable();
d2265e6f
KH
866}
867
d1a4c0b3 868struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 869{
b2145145
WL
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
872}
873
cf475ad2 874struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 875{
31a78f23
BS
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
b2145145 884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
885}
886
a433658c 887struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 888{
c0ff4b85 889 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
890
891 if (!mm)
892 return NULL;
54595fe2
KH
893 /*
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
897 */
898 rcu_read_lock();
899 do {
c0ff4b85
R
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
54595fe2 902 break;
c0ff4b85 903 } while (!css_tryget(&memcg->css));
54595fe2 904 rcu_read_unlock();
c0ff4b85 905 return memcg;
54595fe2
KH
906}
907
5660048c
JW
908/**
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 *
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
916 *
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
920 *
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
924 */
925struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 928{
9f3a0d09
JW
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
711d3d2c 931
5660048c
JW
932 if (mem_cgroup_disabled())
933 return NULL;
934
9f3a0d09
JW
935 if (!root)
936 root = root_mem_cgroup;
7d74b06f 937
9f3a0d09
JW
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
14067bb3 940
9f3a0d09
JW
941 if (prev && prev != root)
942 css_put(&prev->css);
14067bb3 943
9f3a0d09
JW
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
948 }
14067bb3 949
9f3a0d09 950 while (!memcg) {
527a5ec9 951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 952 struct cgroup_subsys_state *css;
711d3d2c 953
527a5ec9
JW
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
958
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
964 }
7d74b06f 965
9f3a0d09
JW
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
b2145145 970 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
971 } else
972 id = 0;
14067bb3 973 rcu_read_unlock();
14067bb3 974
527a5ec9
JW
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
9f3a0d09
JW
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
14067bb3 987}
7d74b06f 988
5660048c
JW
989/**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
9f3a0d09
JW
996{
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001}
7d74b06f 1002
9f3a0d09
JW
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1010 iter != NULL; \
527a5ec9 1011 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1012
9f3a0d09 1013#define for_each_mem_cgroup(iter) \
527a5ec9 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1015 iter != NULL; \
527a5ec9 1016 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1017
456f998e
YH
1018void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019{
c0ff4b85 1020 struct mem_cgroup *memcg;
456f998e
YH
1021
1022 if (!mm)
1023 return;
1024
1025 rcu_read_lock();
c0ff4b85
R
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
456f998e
YH
1028 goto out;
1029
1030 switch (idx) {
456f998e 1031 case PGFAULT:
0e574a93
JW
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1036 break;
1037 default:
1038 BUG();
1039 }
1040out:
1041 rcu_read_unlock();
1042}
1043EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044
925b7673
JW
1045/**
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
fa9add64 1048 * @memcg: memcg of the wanted lruvec
925b7673
JW
1049 *
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1053 */
1054struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1056{
1057 struct mem_cgroup_per_zone *mz;
1058
1059 if (mem_cgroup_disabled())
1060 return &zone->lruvec;
1061
1062 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1063 return &mz->lruvec;
1064}
1065
08e552c6
KH
1066/*
1067 * Following LRU functions are allowed to be used without PCG_LOCK.
1068 * Operations are called by routine of global LRU independently from memcg.
1069 * What we have to take care of here is validness of pc->mem_cgroup.
1070 *
1071 * Changes to pc->mem_cgroup happens when
1072 * 1. charge
1073 * 2. moving account
1074 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1075 * It is added to LRU before charge.
1076 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1077 * When moving account, the page is not on LRU. It's isolated.
1078 */
4f98a2fe 1079
925b7673 1080/**
fa9add64 1081 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1082 * @page: the page
fa9add64 1083 * @zone: zone of the page
925b7673 1084 */
fa9add64 1085struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1086{
08e552c6 1087 struct mem_cgroup_per_zone *mz;
925b7673
JW
1088 struct mem_cgroup *memcg;
1089 struct page_cgroup *pc;
6d12e2d8 1090
f8d66542 1091 if (mem_cgroup_disabled())
925b7673
JW
1092 return &zone->lruvec;
1093
08e552c6 1094 pc = lookup_page_cgroup(page);
38c5d72f 1095 memcg = pc->mem_cgroup;
7512102c
HD
1096
1097 /*
fa9add64 1098 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1099 * an uncharged page off lru does nothing to secure
1100 * its former mem_cgroup from sudden removal.
1101 *
1102 * Our caller holds lru_lock, and PageCgroupUsed is updated
1103 * under page_cgroup lock: between them, they make all uses
1104 * of pc->mem_cgroup safe.
1105 */
fa9add64 1106 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1107 pc->mem_cgroup = memcg = root_mem_cgroup;
1108
925b7673 1109 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1110 return &mz->lruvec;
08e552c6 1111}
b69408e8 1112
925b7673 1113/**
fa9add64
HD
1114 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1115 * @lruvec: mem_cgroup per zone lru vector
1116 * @lru: index of lru list the page is sitting on
1117 * @nr_pages: positive when adding or negative when removing
925b7673 1118 *
fa9add64
HD
1119 * This function must be called when a page is added to or removed from an
1120 * lru list.
3f58a829 1121 */
fa9add64
HD
1122void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1123 int nr_pages)
3f58a829
MK
1124{
1125 struct mem_cgroup_per_zone *mz;
fa9add64 1126 unsigned long *lru_size;
3f58a829
MK
1127
1128 if (mem_cgroup_disabled())
1129 return;
1130
fa9add64
HD
1131 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1132 lru_size = mz->lru_size + lru;
1133 *lru_size += nr_pages;
1134 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1135}
544122e5 1136
3e92041d 1137/*
c0ff4b85 1138 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1139 * hierarchy subtree
1140 */
c3ac9a8a
JW
1141bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
3e92041d 1143{
91c63734
JW
1144 if (root_memcg == memcg)
1145 return true;
3a981f48 1146 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1147 return false;
c3ac9a8a
JW
1148 return css_is_ancestor(&memcg->css, &root_memcg->css);
1149}
1150
1151static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1153{
1154 bool ret;
1155
91c63734 1156 rcu_read_lock();
c3ac9a8a 1157 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1158 rcu_read_unlock();
1159 return ret;
3e92041d
MH
1160}
1161
c0ff4b85 1162int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1163{
1164 int ret;
0b7f569e 1165 struct mem_cgroup *curr = NULL;
158e0a2d 1166 struct task_struct *p;
4c4a2214 1167
158e0a2d 1168 p = find_lock_task_mm(task);
de077d22
DR
1169 if (p) {
1170 curr = try_get_mem_cgroup_from_mm(p->mm);
1171 task_unlock(p);
1172 } else {
1173 /*
1174 * All threads may have already detached their mm's, but the oom
1175 * killer still needs to detect if they have already been oom
1176 * killed to prevent needlessly killing additional tasks.
1177 */
1178 task_lock(task);
1179 curr = mem_cgroup_from_task(task);
1180 if (curr)
1181 css_get(&curr->css);
1182 task_unlock(task);
1183 }
0b7f569e
KH
1184 if (!curr)
1185 return 0;
d31f56db 1186 /*
c0ff4b85 1187 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1188 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1189 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1190 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1191 */
c0ff4b85 1192 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1193 css_put(&curr->css);
4c4a2214
DR
1194 return ret;
1195}
1196
c56d5c7d 1197int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1198{
9b272977 1199 unsigned long inactive_ratio;
14797e23 1200 unsigned long inactive;
9b272977 1201 unsigned long active;
c772be93 1202 unsigned long gb;
14797e23 1203
4d7dcca2
HD
1204 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1205 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1206
c772be93
KM
1207 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 if (gb)
1209 inactive_ratio = int_sqrt(10 * gb);
1210 else
1211 inactive_ratio = 1;
1212
9b272977 1213 return inactive * inactive_ratio < active;
14797e23
KM
1214}
1215
c56d5c7d 1216int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1217{
1218 unsigned long active;
1219 unsigned long inactive;
1220
4d7dcca2
HD
1221 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1222 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1223
1224 return (active > inactive);
1225}
1226
6d61ef40
BS
1227#define mem_cgroup_from_res_counter(counter, member) \
1228 container_of(counter, struct mem_cgroup, member)
1229
19942822 1230/**
9d11ea9f 1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1232 * @memcg: the memory cgroup
19942822 1233 *
9d11ea9f 1234 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1235 * pages.
19942822 1236 */
c0ff4b85 1237static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1238{
9d11ea9f
JW
1239 unsigned long long margin;
1240
c0ff4b85 1241 margin = res_counter_margin(&memcg->res);
9d11ea9f 1242 if (do_swap_account)
c0ff4b85 1243 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1244 return margin >> PAGE_SHIFT;
19942822
JW
1245}
1246
1f4c025b 1247int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1248{
1249 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1250
1251 /* root ? */
1252 if (cgrp->parent == NULL)
1253 return vm_swappiness;
1254
bf1ff263 1255 return memcg->swappiness;
a7885eb8
KM
1256}
1257
619d094b
KH
1258/*
1259 * memcg->moving_account is used for checking possibility that some thread is
1260 * calling move_account(). When a thread on CPU-A starts moving pages under
1261 * a memcg, other threads should check memcg->moving_account under
1262 * rcu_read_lock(), like this:
1263 *
1264 * CPU-A CPU-B
1265 * rcu_read_lock()
1266 * memcg->moving_account+1 if (memcg->mocing_account)
1267 * take heavy locks.
1268 * synchronize_rcu() update something.
1269 * rcu_read_unlock()
1270 * start move here.
1271 */
4331f7d3
KH
1272
1273/* for quick checking without looking up memcg */
1274atomic_t memcg_moving __read_mostly;
1275
c0ff4b85 1276static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1277{
4331f7d3 1278 atomic_inc(&memcg_moving);
619d094b 1279 atomic_inc(&memcg->moving_account);
32047e2a
KH
1280 synchronize_rcu();
1281}
1282
c0ff4b85 1283static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1284{
619d094b
KH
1285 /*
1286 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1287 * We check NULL in callee rather than caller.
1288 */
4331f7d3
KH
1289 if (memcg) {
1290 atomic_dec(&memcg_moving);
619d094b 1291 atomic_dec(&memcg->moving_account);
4331f7d3 1292 }
32047e2a 1293}
619d094b 1294
32047e2a
KH
1295/*
1296 * 2 routines for checking "mem" is under move_account() or not.
1297 *
13fd1dd9
AM
1298 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1299 * is used for avoiding races in accounting. If true,
32047e2a
KH
1300 * pc->mem_cgroup may be overwritten.
1301 *
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 * under hierarchy of moving cgroups. This is for
1304 * waiting at hith-memory prressure caused by "move".
1305 */
1306
13fd1dd9 1307static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1308{
1309 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1310 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1311}
4b534334 1312
c0ff4b85 1313static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1314{
2bd9bb20
KH
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
4b534334 1317 bool ret = false;
2bd9bb20
KH
1318 /*
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 */
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
3e92041d 1327
c0ff4b85
R
1328 ret = mem_cgroup_same_or_subtree(memcg, from)
1329 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1330unlock:
1331 spin_unlock(&mc.lock);
4b534334
KH
1332 return ret;
1333}
1334
c0ff4b85 1335static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1336{
1337 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1338 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1339 DEFINE_WAIT(wait);
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1342 if (mc.moving_task)
1343 schedule();
1344 finish_wait(&mc.waitq, &wait);
1345 return true;
1346 }
1347 }
1348 return false;
1349}
1350
312734c0
KH
1351/*
1352 * Take this lock when
1353 * - a code tries to modify page's memcg while it's USED.
1354 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1355 * see mem_cgroup_stolen(), too.
312734c0
KH
1356 */
1357static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1358 unsigned long *flags)
1359{
1360 spin_lock_irqsave(&memcg->move_lock, *flags);
1361}
1362
1363static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1365{
1366 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1367}
1368
e222432b 1369/**
6a6135b6 1370 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1371 * @memcg: The memory cgroup that went over limit
1372 * @p: Task that is going to be killed
1373 *
1374 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1375 * enabled
1376 */
1377void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1378{
1379 struct cgroup *task_cgrp;
1380 struct cgroup *mem_cgrp;
1381 /*
1382 * Need a buffer in BSS, can't rely on allocations. The code relies
1383 * on the assumption that OOM is serialized for memory controller.
1384 * If this assumption is broken, revisit this code.
1385 */
1386 static char memcg_name[PATH_MAX];
1387 int ret;
1388
d31f56db 1389 if (!memcg || !p)
e222432b
BS
1390 return;
1391
e222432b
BS
1392 rcu_read_lock();
1393
1394 mem_cgrp = memcg->css.cgroup;
1395 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1396
1397 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1398 if (ret < 0) {
1399 /*
1400 * Unfortunately, we are unable to convert to a useful name
1401 * But we'll still print out the usage information
1402 */
1403 rcu_read_unlock();
1404 goto done;
1405 }
1406 rcu_read_unlock();
1407
1408 printk(KERN_INFO "Task in %s killed", memcg_name);
1409
1410 rcu_read_lock();
1411 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1412 if (ret < 0) {
1413 rcu_read_unlock();
1414 goto done;
1415 }
1416 rcu_read_unlock();
1417
1418 /*
1419 * Continues from above, so we don't need an KERN_ level
1420 */
1421 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1422done:
1423
1424 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1425 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1426 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1428 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1429 "failcnt %llu\n",
1430 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1433}
1434
81d39c20
KH
1435/*
1436 * This function returns the number of memcg under hierarchy tree. Returns
1437 * 1(self count) if no children.
1438 */
c0ff4b85 1439static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1440{
1441 int num = 0;
7d74b06f
KH
1442 struct mem_cgroup *iter;
1443
c0ff4b85 1444 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1445 num++;
81d39c20
KH
1446 return num;
1447}
1448
a63d83f4
DR
1449/*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
9cbb78bb 1452static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1453{
1454 u64 limit;
a63d83f4 1455
f3e8eb70 1456 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1457
a63d83f4 1458 /*
9a5a8f19 1459 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1460 */
9a5a8f19
MH
1461 if (mem_cgroup_swappiness(memcg)) {
1462 u64 memsw;
1463
1464 limit += total_swap_pages << PAGE_SHIFT;
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466
1467 /*
1468 * If memsw is finite and limits the amount of swap space
1469 * available to this memcg, return that limit.
1470 */
1471 limit = min(limit, memsw);
1472 }
1473
1474 return limit;
a63d83f4
DR
1475}
1476
876aafbf
DR
1477void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1478 int order)
9cbb78bb
DR
1479{
1480 struct mem_cgroup *iter;
1481 unsigned long chosen_points = 0;
1482 unsigned long totalpages;
1483 unsigned int points = 0;
1484 struct task_struct *chosen = NULL;
1485
876aafbf
DR
1486 /*
1487 * If current has a pending SIGKILL, then automatically select it. The
1488 * goal is to allow it to allocate so that it may quickly exit and free
1489 * its memory.
1490 */
1491 if (fatal_signal_pending(current)) {
1492 set_thread_flag(TIF_MEMDIE);
1493 return;
1494 }
1495
1496 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1497 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1498 for_each_mem_cgroup_tree(iter, memcg) {
1499 struct cgroup *cgroup = iter->css.cgroup;
1500 struct cgroup_iter it;
1501 struct task_struct *task;
1502
1503 cgroup_iter_start(cgroup, &it);
1504 while ((task = cgroup_iter_next(cgroup, &it))) {
1505 switch (oom_scan_process_thread(task, totalpages, NULL,
1506 false)) {
1507 case OOM_SCAN_SELECT:
1508 if (chosen)
1509 put_task_struct(chosen);
1510 chosen = task;
1511 chosen_points = ULONG_MAX;
1512 get_task_struct(chosen);
1513 /* fall through */
1514 case OOM_SCAN_CONTINUE:
1515 continue;
1516 case OOM_SCAN_ABORT:
1517 cgroup_iter_end(cgroup, &it);
1518 mem_cgroup_iter_break(memcg, iter);
1519 if (chosen)
1520 put_task_struct(chosen);
1521 return;
1522 case OOM_SCAN_OK:
1523 break;
1524 };
1525 points = oom_badness(task, memcg, NULL, totalpages);
1526 if (points > chosen_points) {
1527 if (chosen)
1528 put_task_struct(chosen);
1529 chosen = task;
1530 chosen_points = points;
1531 get_task_struct(chosen);
1532 }
1533 }
1534 cgroup_iter_end(cgroup, &it);
1535 }
1536
1537 if (!chosen)
1538 return;
1539 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1540 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1541 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1542}
1543
5660048c
JW
1544static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1545 gfp_t gfp_mask,
1546 unsigned long flags)
1547{
1548 unsigned long total = 0;
1549 bool noswap = false;
1550 int loop;
1551
1552 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1553 noswap = true;
1554 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1555 noswap = true;
1556
1557 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1558 if (loop)
1559 drain_all_stock_async(memcg);
1560 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1561 /*
1562 * Allow limit shrinkers, which are triggered directly
1563 * by userspace, to catch signals and stop reclaim
1564 * after minimal progress, regardless of the margin.
1565 */
1566 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1567 break;
1568 if (mem_cgroup_margin(memcg))
1569 break;
1570 /*
1571 * If nothing was reclaimed after two attempts, there
1572 * may be no reclaimable pages in this hierarchy.
1573 */
1574 if (loop && !total)
1575 break;
1576 }
1577 return total;
1578}
1579
4d0c066d
KH
1580/**
1581 * test_mem_cgroup_node_reclaimable
dad7557e 1582 * @memcg: the target memcg
4d0c066d
KH
1583 * @nid: the node ID to be checked.
1584 * @noswap : specify true here if the user wants flle only information.
1585 *
1586 * This function returns whether the specified memcg contains any
1587 * reclaimable pages on a node. Returns true if there are any reclaimable
1588 * pages in the node.
1589 */
c0ff4b85 1590static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1591 int nid, bool noswap)
1592{
c0ff4b85 1593 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1594 return true;
1595 if (noswap || !total_swap_pages)
1596 return false;
c0ff4b85 1597 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1598 return true;
1599 return false;
1600
1601}
889976db
YH
1602#if MAX_NUMNODES > 1
1603
1604/*
1605 * Always updating the nodemask is not very good - even if we have an empty
1606 * list or the wrong list here, we can start from some node and traverse all
1607 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1608 *
1609 */
c0ff4b85 1610static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1611{
1612 int nid;
453a9bf3
KH
1613 /*
1614 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1615 * pagein/pageout changes since the last update.
1616 */
c0ff4b85 1617 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1618 return;
c0ff4b85 1619 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1620 return;
1621
889976db 1622 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1623 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1624
1625 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1626
c0ff4b85
R
1627 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1628 node_clear(nid, memcg->scan_nodes);
889976db 1629 }
453a9bf3 1630
c0ff4b85
R
1631 atomic_set(&memcg->numainfo_events, 0);
1632 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1633}
1634
1635/*
1636 * Selecting a node where we start reclaim from. Because what we need is just
1637 * reducing usage counter, start from anywhere is O,K. Considering
1638 * memory reclaim from current node, there are pros. and cons.
1639 *
1640 * Freeing memory from current node means freeing memory from a node which
1641 * we'll use or we've used. So, it may make LRU bad. And if several threads
1642 * hit limits, it will see a contention on a node. But freeing from remote
1643 * node means more costs for memory reclaim because of memory latency.
1644 *
1645 * Now, we use round-robin. Better algorithm is welcomed.
1646 */
c0ff4b85 1647int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1648{
1649 int node;
1650
c0ff4b85
R
1651 mem_cgroup_may_update_nodemask(memcg);
1652 node = memcg->last_scanned_node;
889976db 1653
c0ff4b85 1654 node = next_node(node, memcg->scan_nodes);
889976db 1655 if (node == MAX_NUMNODES)
c0ff4b85 1656 node = first_node(memcg->scan_nodes);
889976db
YH
1657 /*
1658 * We call this when we hit limit, not when pages are added to LRU.
1659 * No LRU may hold pages because all pages are UNEVICTABLE or
1660 * memcg is too small and all pages are not on LRU. In that case,
1661 * we use curret node.
1662 */
1663 if (unlikely(node == MAX_NUMNODES))
1664 node = numa_node_id();
1665
c0ff4b85 1666 memcg->last_scanned_node = node;
889976db
YH
1667 return node;
1668}
1669
4d0c066d
KH
1670/*
1671 * Check all nodes whether it contains reclaimable pages or not.
1672 * For quick scan, we make use of scan_nodes. This will allow us to skip
1673 * unused nodes. But scan_nodes is lazily updated and may not cotain
1674 * enough new information. We need to do double check.
1675 */
6bbda35c 1676static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1677{
1678 int nid;
1679
1680 /*
1681 * quick check...making use of scan_node.
1682 * We can skip unused nodes.
1683 */
c0ff4b85
R
1684 if (!nodes_empty(memcg->scan_nodes)) {
1685 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1686 nid < MAX_NUMNODES;
c0ff4b85 1687 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1688
c0ff4b85 1689 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1690 return true;
1691 }
1692 }
1693 /*
1694 * Check rest of nodes.
1695 */
1696 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1697 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1698 continue;
c0ff4b85 1699 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1700 return true;
1701 }
1702 return false;
1703}
1704
889976db 1705#else
c0ff4b85 1706int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1707{
1708 return 0;
1709}
4d0c066d 1710
6bbda35c 1711static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1712{
c0ff4b85 1713 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1714}
889976db
YH
1715#endif
1716
5660048c
JW
1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 struct zone *zone,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
6d61ef40 1721{
9f3a0d09 1722 struct mem_cgroup *victim = NULL;
5660048c 1723 int total = 0;
04046e1a 1724 int loop = 0;
9d11ea9f 1725 unsigned long excess;
185efc0f 1726 unsigned long nr_scanned;
527a5ec9
JW
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .zone = zone,
1729 .priority = 0,
1730 };
9d11ea9f 1731
c0ff4b85 1732 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1733
4e416953 1734 while (1) {
527a5ec9 1735 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1736 if (!victim) {
04046e1a 1737 loop++;
4e416953
BS
1738 if (loop >= 2) {
1739 /*
1740 * If we have not been able to reclaim
1741 * anything, it might because there are
1742 * no reclaimable pages under this hierarchy
1743 */
5660048c 1744 if (!total)
4e416953 1745 break;
4e416953 1746 /*
25985edc 1747 * We want to do more targeted reclaim.
4e416953
BS
1748 * excess >> 2 is not to excessive so as to
1749 * reclaim too much, nor too less that we keep
1750 * coming back to reclaim from this cgroup
1751 */
1752 if (total >= (excess >> 2) ||
9f3a0d09 1753 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1754 break;
4e416953 1755 }
9f3a0d09 1756 continue;
4e416953 1757 }
5660048c 1758 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1759 continue;
5660048c
JW
1760 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1761 zone, &nr_scanned);
1762 *total_scanned += nr_scanned;
1763 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1764 break;
6d61ef40 1765 }
9f3a0d09 1766 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1767 return total;
6d61ef40
BS
1768}
1769
867578cb
KH
1770/*
1771 * Check OOM-Killer is already running under our hierarchy.
1772 * If someone is running, return false.
1af8efe9 1773 * Has to be called with memcg_oom_lock
867578cb 1774 */
c0ff4b85 1775static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1776{
79dfdacc 1777 struct mem_cgroup *iter, *failed = NULL;
a636b327 1778
9f3a0d09 1779 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1780 if (iter->oom_lock) {
79dfdacc
MH
1781 /*
1782 * this subtree of our hierarchy is already locked
1783 * so we cannot give a lock.
1784 */
79dfdacc 1785 failed = iter;
9f3a0d09
JW
1786 mem_cgroup_iter_break(memcg, iter);
1787 break;
23751be0
JW
1788 } else
1789 iter->oom_lock = true;
7d74b06f 1790 }
867578cb 1791
79dfdacc 1792 if (!failed)
23751be0 1793 return true;
79dfdacc
MH
1794
1795 /*
1796 * OK, we failed to lock the whole subtree so we have to clean up
1797 * what we set up to the failing subtree
1798 */
9f3a0d09 1799 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1800 if (iter == failed) {
9f3a0d09
JW
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
79dfdacc
MH
1803 }
1804 iter->oom_lock = false;
1805 }
23751be0 1806 return false;
a636b327 1807}
0b7f569e 1808
79dfdacc 1809/*
1af8efe9 1810 * Has to be called with memcg_oom_lock
79dfdacc 1811 */
c0ff4b85 1812static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1813{
7d74b06f
KH
1814 struct mem_cgroup *iter;
1815
c0ff4b85 1816 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1817 iter->oom_lock = false;
1818 return 0;
1819}
1820
c0ff4b85 1821static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1822{
1823 struct mem_cgroup *iter;
1824
c0ff4b85 1825 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1826 atomic_inc(&iter->under_oom);
1827}
1828
c0ff4b85 1829static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1830{
1831 struct mem_cgroup *iter;
1832
867578cb
KH
1833 /*
1834 * When a new child is created while the hierarchy is under oom,
1835 * mem_cgroup_oom_lock() may not be called. We have to use
1836 * atomic_add_unless() here.
1837 */
c0ff4b85 1838 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1839 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1840}
1841
1af8efe9 1842static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1843static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1844
dc98df5a 1845struct oom_wait_info {
d79154bb 1846 struct mem_cgroup *memcg;
dc98df5a
KH
1847 wait_queue_t wait;
1848};
1849
1850static int memcg_oom_wake_function(wait_queue_t *wait,
1851 unsigned mode, int sync, void *arg)
1852{
d79154bb
HD
1853 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1854 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1855 struct oom_wait_info *oom_wait_info;
1856
1857 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1858 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1859
dc98df5a 1860 /*
d79154bb 1861 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1862 * Then we can use css_is_ancestor without taking care of RCU.
1863 */
c0ff4b85
R
1864 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1865 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1866 return 0;
dc98df5a
KH
1867 return autoremove_wake_function(wait, mode, sync, arg);
1868}
1869
c0ff4b85 1870static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1871{
c0ff4b85
R
1872 /* for filtering, pass "memcg" as argument. */
1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1874}
1875
c0ff4b85 1876static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1877{
c0ff4b85
R
1878 if (memcg && atomic_read(&memcg->under_oom))
1879 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1880}
1881
867578cb
KH
1882/*
1883 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1884 */
6bbda35c
KS
1885static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1886 int order)
0b7f569e 1887{
dc98df5a 1888 struct oom_wait_info owait;
3c11ecf4 1889 bool locked, need_to_kill;
867578cb 1890
d79154bb 1891 owait.memcg = memcg;
dc98df5a
KH
1892 owait.wait.flags = 0;
1893 owait.wait.func = memcg_oom_wake_function;
1894 owait.wait.private = current;
1895 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1896 need_to_kill = true;
c0ff4b85 1897 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1898
c0ff4b85 1899 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1900 spin_lock(&memcg_oom_lock);
c0ff4b85 1901 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1902 /*
1903 * Even if signal_pending(), we can't quit charge() loop without
1904 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1905 * under OOM is always welcomed, use TASK_KILLABLE here.
1906 */
3c11ecf4 1907 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1908 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1909 need_to_kill = false;
1910 if (locked)
c0ff4b85 1911 mem_cgroup_oom_notify(memcg);
1af8efe9 1912 spin_unlock(&memcg_oom_lock);
867578cb 1913
3c11ecf4
KH
1914 if (need_to_kill) {
1915 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1916 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1917 } else {
867578cb 1918 schedule();
dc98df5a 1919 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1920 }
1af8efe9 1921 spin_lock(&memcg_oom_lock);
79dfdacc 1922 if (locked)
c0ff4b85
R
1923 mem_cgroup_oom_unlock(memcg);
1924 memcg_wakeup_oom(memcg);
1af8efe9 1925 spin_unlock(&memcg_oom_lock);
867578cb 1926
c0ff4b85 1927 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1928
867578cb
KH
1929 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1930 return false;
1931 /* Give chance to dying process */
715a5ee8 1932 schedule_timeout_uninterruptible(1);
867578cb 1933 return true;
0b7f569e
KH
1934}
1935
d69b042f
BS
1936/*
1937 * Currently used to update mapped file statistics, but the routine can be
1938 * generalized to update other statistics as well.
32047e2a
KH
1939 *
1940 * Notes: Race condition
1941 *
1942 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1943 * it tends to be costly. But considering some conditions, we doesn't need
1944 * to do so _always_.
1945 *
1946 * Considering "charge", lock_page_cgroup() is not required because all
1947 * file-stat operations happen after a page is attached to radix-tree. There
1948 * are no race with "charge".
1949 *
1950 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1951 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1952 * if there are race with "uncharge". Statistics itself is properly handled
1953 * by flags.
1954 *
1955 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1956 * small, we check mm->moving_account and detect there are possibility of race
1957 * If there is, we take a lock.
d69b042f 1958 */
26174efd 1959
89c06bd5
KH
1960void __mem_cgroup_begin_update_page_stat(struct page *page,
1961 bool *locked, unsigned long *flags)
1962{
1963 struct mem_cgroup *memcg;
1964 struct page_cgroup *pc;
1965
1966 pc = lookup_page_cgroup(page);
1967again:
1968 memcg = pc->mem_cgroup;
1969 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1970 return;
1971 /*
1972 * If this memory cgroup is not under account moving, we don't
da92c47d 1973 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1974 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1975 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1976 */
13fd1dd9 1977 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1978 return;
1979
1980 move_lock_mem_cgroup(memcg, flags);
1981 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1982 move_unlock_mem_cgroup(memcg, flags);
1983 goto again;
1984 }
1985 *locked = true;
1986}
1987
1988void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1989{
1990 struct page_cgroup *pc = lookup_page_cgroup(page);
1991
1992 /*
1993 * It's guaranteed that pc->mem_cgroup never changes while
1994 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 1995 * should take move_lock_mem_cgroup().
89c06bd5
KH
1996 */
1997 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1998}
1999
2a7106f2
GT
2000void mem_cgroup_update_page_stat(struct page *page,
2001 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2002{
c0ff4b85 2003 struct mem_cgroup *memcg;
32047e2a 2004 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2005 unsigned long uninitialized_var(flags);
d69b042f 2006
cfa44946 2007 if (mem_cgroup_disabled())
d69b042f 2008 return;
89c06bd5 2009
c0ff4b85
R
2010 memcg = pc->mem_cgroup;
2011 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2012 return;
26174efd 2013
26174efd 2014 switch (idx) {
2a7106f2 2015 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2016 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2017 break;
2018 default:
2019 BUG();
8725d541 2020 }
d69b042f 2021
c0ff4b85 2022 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2023}
26174efd 2024
cdec2e42
KH
2025/*
2026 * size of first charge trial. "32" comes from vmscan.c's magic value.
2027 * TODO: maybe necessary to use big numbers in big irons.
2028 */
7ec99d62 2029#define CHARGE_BATCH 32U
cdec2e42
KH
2030struct memcg_stock_pcp {
2031 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2032 unsigned int nr_pages;
cdec2e42 2033 struct work_struct work;
26fe6168 2034 unsigned long flags;
a0db00fc 2035#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2036};
2037static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2038static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2039
2040/*
11c9ea4e 2041 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2042 * from local stock and true is returned. If the stock is 0 or charges from a
2043 * cgroup which is not current target, returns false. This stock will be
2044 * refilled.
2045 */
c0ff4b85 2046static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2047{
2048 struct memcg_stock_pcp *stock;
2049 bool ret = true;
2050
2051 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2052 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2053 stock->nr_pages--;
cdec2e42
KH
2054 else /* need to call res_counter_charge */
2055 ret = false;
2056 put_cpu_var(memcg_stock);
2057 return ret;
2058}
2059
2060/*
2061 * Returns stocks cached in percpu to res_counter and reset cached information.
2062 */
2063static void drain_stock(struct memcg_stock_pcp *stock)
2064{
2065 struct mem_cgroup *old = stock->cached;
2066
11c9ea4e
JW
2067 if (stock->nr_pages) {
2068 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2069
2070 res_counter_uncharge(&old->res, bytes);
cdec2e42 2071 if (do_swap_account)
11c9ea4e
JW
2072 res_counter_uncharge(&old->memsw, bytes);
2073 stock->nr_pages = 0;
cdec2e42
KH
2074 }
2075 stock->cached = NULL;
cdec2e42
KH
2076}
2077
2078/*
2079 * This must be called under preempt disabled or must be called by
2080 * a thread which is pinned to local cpu.
2081 */
2082static void drain_local_stock(struct work_struct *dummy)
2083{
2084 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2085 drain_stock(stock);
26fe6168 2086 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2087}
2088
2089/*
2090 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2091 * This will be consumed by consume_stock() function, later.
cdec2e42 2092 */
c0ff4b85 2093static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2094{
2095 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2096
c0ff4b85 2097 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2098 drain_stock(stock);
c0ff4b85 2099 stock->cached = memcg;
cdec2e42 2100 }
11c9ea4e 2101 stock->nr_pages += nr_pages;
cdec2e42
KH
2102 put_cpu_var(memcg_stock);
2103}
2104
2105/*
c0ff4b85 2106 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2107 * of the hierarchy under it. sync flag says whether we should block
2108 * until the work is done.
cdec2e42 2109 */
c0ff4b85 2110static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2111{
26fe6168 2112 int cpu, curcpu;
d38144b7 2113
cdec2e42 2114 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2115 get_online_cpus();
5af12d0e 2116 curcpu = get_cpu();
cdec2e42
KH
2117 for_each_online_cpu(cpu) {
2118 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2119 struct mem_cgroup *memcg;
26fe6168 2120
c0ff4b85
R
2121 memcg = stock->cached;
2122 if (!memcg || !stock->nr_pages)
26fe6168 2123 continue;
c0ff4b85 2124 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2125 continue;
d1a05b69
MH
2126 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2127 if (cpu == curcpu)
2128 drain_local_stock(&stock->work);
2129 else
2130 schedule_work_on(cpu, &stock->work);
2131 }
cdec2e42 2132 }
5af12d0e 2133 put_cpu();
d38144b7
MH
2134
2135 if (!sync)
2136 goto out;
2137
2138 for_each_online_cpu(cpu) {
2139 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2140 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2141 flush_work(&stock->work);
2142 }
2143out:
cdec2e42 2144 put_online_cpus();
d38144b7
MH
2145}
2146
2147/*
2148 * Tries to drain stocked charges in other cpus. This function is asynchronous
2149 * and just put a work per cpu for draining localy on each cpu. Caller can
2150 * expects some charges will be back to res_counter later but cannot wait for
2151 * it.
2152 */
c0ff4b85 2153static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2154{
9f50fad6
MH
2155 /*
2156 * If someone calls draining, avoid adding more kworker runs.
2157 */
2158 if (!mutex_trylock(&percpu_charge_mutex))
2159 return;
c0ff4b85 2160 drain_all_stock(root_memcg, false);
9f50fad6 2161 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2162}
2163
2164/* This is a synchronous drain interface. */
c0ff4b85 2165static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2166{
2167 /* called when force_empty is called */
9f50fad6 2168 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2169 drain_all_stock(root_memcg, true);
9f50fad6 2170 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2171}
2172
711d3d2c
KH
2173/*
2174 * This function drains percpu counter value from DEAD cpu and
2175 * move it to local cpu. Note that this function can be preempted.
2176 */
c0ff4b85 2177static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2178{
2179 int i;
2180
c0ff4b85 2181 spin_lock(&memcg->pcp_counter_lock);
6104621d 2182 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2183 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2184
c0ff4b85
R
2185 per_cpu(memcg->stat->count[i], cpu) = 0;
2186 memcg->nocpu_base.count[i] += x;
711d3d2c 2187 }
e9f8974f 2188 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2189 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2190
c0ff4b85
R
2191 per_cpu(memcg->stat->events[i], cpu) = 0;
2192 memcg->nocpu_base.events[i] += x;
e9f8974f 2193 }
c0ff4b85 2194 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2195}
2196
2197static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2198 unsigned long action,
2199 void *hcpu)
2200{
2201 int cpu = (unsigned long)hcpu;
2202 struct memcg_stock_pcp *stock;
711d3d2c 2203 struct mem_cgroup *iter;
cdec2e42 2204
619d094b 2205 if (action == CPU_ONLINE)
1489ebad 2206 return NOTIFY_OK;
1489ebad 2207
d833049b 2208 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2209 return NOTIFY_OK;
711d3d2c 2210
9f3a0d09 2211 for_each_mem_cgroup(iter)
711d3d2c
KH
2212 mem_cgroup_drain_pcp_counter(iter, cpu);
2213
cdec2e42
KH
2214 stock = &per_cpu(memcg_stock, cpu);
2215 drain_stock(stock);
2216 return NOTIFY_OK;
2217}
2218
4b534334
KH
2219
2220/* See __mem_cgroup_try_charge() for details */
2221enum {
2222 CHARGE_OK, /* success */
2223 CHARGE_RETRY, /* need to retry but retry is not bad */
2224 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2225 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2226 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2227};
2228
c0ff4b85 2229static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2230 unsigned int nr_pages, bool oom_check)
4b534334 2231{
7ec99d62 2232 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2233 struct mem_cgroup *mem_over_limit;
2234 struct res_counter *fail_res;
2235 unsigned long flags = 0;
2236 int ret;
2237
c0ff4b85 2238 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2239
2240 if (likely(!ret)) {
2241 if (!do_swap_account)
2242 return CHARGE_OK;
c0ff4b85 2243 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2244 if (likely(!ret))
2245 return CHARGE_OK;
2246
c0ff4b85 2247 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2248 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2249 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2250 } else
2251 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2252 /*
7ec99d62
JW
2253 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2254 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2255 *
2256 * Never reclaim on behalf of optional batching, retry with a
2257 * single page instead.
2258 */
7ec99d62 2259 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2260 return CHARGE_RETRY;
2261
2262 if (!(gfp_mask & __GFP_WAIT))
2263 return CHARGE_WOULDBLOCK;
2264
5660048c 2265 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2266 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2267 return CHARGE_RETRY;
4b534334 2268 /*
19942822
JW
2269 * Even though the limit is exceeded at this point, reclaim
2270 * may have been able to free some pages. Retry the charge
2271 * before killing the task.
2272 *
2273 * Only for regular pages, though: huge pages are rather
2274 * unlikely to succeed so close to the limit, and we fall back
2275 * to regular pages anyway in case of failure.
4b534334 2276 */
7ec99d62 2277 if (nr_pages == 1 && ret)
4b534334
KH
2278 return CHARGE_RETRY;
2279
2280 /*
2281 * At task move, charge accounts can be doubly counted. So, it's
2282 * better to wait until the end of task_move if something is going on.
2283 */
2284 if (mem_cgroup_wait_acct_move(mem_over_limit))
2285 return CHARGE_RETRY;
2286
2287 /* If we don't need to call oom-killer at el, return immediately */
2288 if (!oom_check)
2289 return CHARGE_NOMEM;
2290 /* check OOM */
e845e199 2291 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2292 return CHARGE_OOM_DIE;
2293
2294 return CHARGE_RETRY;
2295}
2296
f817ed48 2297/*
38c5d72f
KH
2298 * __mem_cgroup_try_charge() does
2299 * 1. detect memcg to be charged against from passed *mm and *ptr,
2300 * 2. update res_counter
2301 * 3. call memory reclaim if necessary.
2302 *
2303 * In some special case, if the task is fatal, fatal_signal_pending() or
2304 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2305 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2306 * as possible without any hazards. 2: all pages should have a valid
2307 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2308 * pointer, that is treated as a charge to root_mem_cgroup.
2309 *
2310 * So __mem_cgroup_try_charge() will return
2311 * 0 ... on success, filling *ptr with a valid memcg pointer.
2312 * -ENOMEM ... charge failure because of resource limits.
2313 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2314 *
2315 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2316 * the oom-killer can be invoked.
8a9f3ccd 2317 */
f817ed48 2318static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2319 gfp_t gfp_mask,
7ec99d62 2320 unsigned int nr_pages,
c0ff4b85 2321 struct mem_cgroup **ptr,
7ec99d62 2322 bool oom)
8a9f3ccd 2323{
7ec99d62 2324 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2325 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2326 struct mem_cgroup *memcg = NULL;
4b534334 2327 int ret;
a636b327 2328
867578cb
KH
2329 /*
2330 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2331 * in system level. So, allow to go ahead dying process in addition to
2332 * MEMDIE process.
2333 */
2334 if (unlikely(test_thread_flag(TIF_MEMDIE)
2335 || fatal_signal_pending(current)))
2336 goto bypass;
a636b327 2337
8a9f3ccd 2338 /*
3be91277
HD
2339 * We always charge the cgroup the mm_struct belongs to.
2340 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2341 * thread group leader migrates. It's possible that mm is not
24467cac 2342 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2343 */
c0ff4b85 2344 if (!*ptr && !mm)
38c5d72f 2345 *ptr = root_mem_cgroup;
f75ca962 2346again:
c0ff4b85
R
2347 if (*ptr) { /* css should be a valid one */
2348 memcg = *ptr;
2349 VM_BUG_ON(css_is_removed(&memcg->css));
2350 if (mem_cgroup_is_root(memcg))
f75ca962 2351 goto done;
c0ff4b85 2352 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2353 goto done;
c0ff4b85 2354 css_get(&memcg->css);
4b534334 2355 } else {
f75ca962 2356 struct task_struct *p;
54595fe2 2357
f75ca962
KH
2358 rcu_read_lock();
2359 p = rcu_dereference(mm->owner);
f75ca962 2360 /*
ebb76ce1 2361 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2362 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2363 * race with swapoff. Then, we have small risk of mis-accouning.
2364 * But such kind of mis-account by race always happens because
2365 * we don't have cgroup_mutex(). It's overkill and we allo that
2366 * small race, here.
2367 * (*) swapoff at el will charge against mm-struct not against
2368 * task-struct. So, mm->owner can be NULL.
f75ca962 2369 */
c0ff4b85 2370 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2371 if (!memcg)
2372 memcg = root_mem_cgroup;
2373 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2374 rcu_read_unlock();
2375 goto done;
2376 }
c0ff4b85 2377 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2378 /*
2379 * It seems dagerous to access memcg without css_get().
2380 * But considering how consume_stok works, it's not
2381 * necessary. If consume_stock success, some charges
2382 * from this memcg are cached on this cpu. So, we
2383 * don't need to call css_get()/css_tryget() before
2384 * calling consume_stock().
2385 */
2386 rcu_read_unlock();
2387 goto done;
2388 }
2389 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2390 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2391 rcu_read_unlock();
2392 goto again;
2393 }
2394 rcu_read_unlock();
2395 }
8a9f3ccd 2396
4b534334
KH
2397 do {
2398 bool oom_check;
7a81b88c 2399
4b534334 2400 /* If killed, bypass charge */
f75ca962 2401 if (fatal_signal_pending(current)) {
c0ff4b85 2402 css_put(&memcg->css);
4b534334 2403 goto bypass;
f75ca962 2404 }
6d61ef40 2405
4b534334
KH
2406 oom_check = false;
2407 if (oom && !nr_oom_retries) {
2408 oom_check = true;
2409 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2410 }
66e1707b 2411
c0ff4b85 2412 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2413 switch (ret) {
2414 case CHARGE_OK:
2415 break;
2416 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2417 batch = nr_pages;
c0ff4b85
R
2418 css_put(&memcg->css);
2419 memcg = NULL;
f75ca962 2420 goto again;
4b534334 2421 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2422 css_put(&memcg->css);
4b534334
KH
2423 goto nomem;
2424 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2425 if (!oom) {
c0ff4b85 2426 css_put(&memcg->css);
867578cb 2427 goto nomem;
f75ca962 2428 }
4b534334
KH
2429 /* If oom, we never return -ENOMEM */
2430 nr_oom_retries--;
2431 break;
2432 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2433 css_put(&memcg->css);
867578cb 2434 goto bypass;
66e1707b 2435 }
4b534334
KH
2436 } while (ret != CHARGE_OK);
2437
7ec99d62 2438 if (batch > nr_pages)
c0ff4b85
R
2439 refill_stock(memcg, batch - nr_pages);
2440 css_put(&memcg->css);
0c3e73e8 2441done:
c0ff4b85 2442 *ptr = memcg;
7a81b88c
KH
2443 return 0;
2444nomem:
c0ff4b85 2445 *ptr = NULL;
7a81b88c 2446 return -ENOMEM;
867578cb 2447bypass:
38c5d72f
KH
2448 *ptr = root_mem_cgroup;
2449 return -EINTR;
7a81b88c 2450}
8a9f3ccd 2451
a3032a2c
DN
2452/*
2453 * Somemtimes we have to undo a charge we got by try_charge().
2454 * This function is for that and do uncharge, put css's refcnt.
2455 * gotten by try_charge().
2456 */
c0ff4b85 2457static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2458 unsigned int nr_pages)
a3032a2c 2459{
c0ff4b85 2460 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2461 unsigned long bytes = nr_pages * PAGE_SIZE;
2462
c0ff4b85 2463 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2464 if (do_swap_account)
c0ff4b85 2465 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2466 }
854ffa8d
DN
2467}
2468
d01dd17f
KH
2469/*
2470 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2471 * This is useful when moving usage to parent cgroup.
2472 */
2473static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2474 unsigned int nr_pages)
2475{
2476 unsigned long bytes = nr_pages * PAGE_SIZE;
2477
2478 if (mem_cgroup_is_root(memcg))
2479 return;
2480
2481 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2482 if (do_swap_account)
2483 res_counter_uncharge_until(&memcg->memsw,
2484 memcg->memsw.parent, bytes);
2485}
2486
a3b2d692
KH
2487/*
2488 * A helper function to get mem_cgroup from ID. must be called under
2489 * rcu_read_lock(). The caller must check css_is_removed() or some if
2490 * it's concern. (dropping refcnt from swap can be called against removed
2491 * memcg.)
2492 */
2493static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2494{
2495 struct cgroup_subsys_state *css;
2496
2497 /* ID 0 is unused ID */
2498 if (!id)
2499 return NULL;
2500 css = css_lookup(&mem_cgroup_subsys, id);
2501 if (!css)
2502 return NULL;
b2145145 2503 return mem_cgroup_from_css(css);
a3b2d692
KH
2504}
2505
e42d9d5d 2506struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2507{
c0ff4b85 2508 struct mem_cgroup *memcg = NULL;
3c776e64 2509 struct page_cgroup *pc;
a3b2d692 2510 unsigned short id;
b5a84319
KH
2511 swp_entry_t ent;
2512
3c776e64
DN
2513 VM_BUG_ON(!PageLocked(page));
2514
3c776e64 2515 pc = lookup_page_cgroup(page);
c0bd3f63 2516 lock_page_cgroup(pc);
a3b2d692 2517 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2518 memcg = pc->mem_cgroup;
2519 if (memcg && !css_tryget(&memcg->css))
2520 memcg = NULL;
e42d9d5d 2521 } else if (PageSwapCache(page)) {
3c776e64 2522 ent.val = page_private(page);
9fb4b7cc 2523 id = lookup_swap_cgroup_id(ent);
a3b2d692 2524 rcu_read_lock();
c0ff4b85
R
2525 memcg = mem_cgroup_lookup(id);
2526 if (memcg && !css_tryget(&memcg->css))
2527 memcg = NULL;
a3b2d692 2528 rcu_read_unlock();
3c776e64 2529 }
c0bd3f63 2530 unlock_page_cgroup(pc);
c0ff4b85 2531 return memcg;
b5a84319
KH
2532}
2533
c0ff4b85 2534static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2535 struct page *page,
7ec99d62 2536 unsigned int nr_pages,
9ce70c02
HD
2537 enum charge_type ctype,
2538 bool lrucare)
7a81b88c 2539{
ce587e65 2540 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2541 struct zone *uninitialized_var(zone);
fa9add64 2542 struct lruvec *lruvec;
9ce70c02 2543 bool was_on_lru = false;
b2402857 2544 bool anon;
9ce70c02 2545
ca3e0214 2546 lock_page_cgroup(pc);
90deb788 2547 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2548 /*
2549 * we don't need page_cgroup_lock about tail pages, becase they are not
2550 * accessed by any other context at this point.
2551 */
9ce70c02
HD
2552
2553 /*
2554 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2555 * may already be on some other mem_cgroup's LRU. Take care of it.
2556 */
2557 if (lrucare) {
2558 zone = page_zone(page);
2559 spin_lock_irq(&zone->lru_lock);
2560 if (PageLRU(page)) {
fa9add64 2561 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2562 ClearPageLRU(page);
fa9add64 2563 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2564 was_on_lru = true;
2565 }
2566 }
2567
c0ff4b85 2568 pc->mem_cgroup = memcg;
261fb61a
KH
2569 /*
2570 * We access a page_cgroup asynchronously without lock_page_cgroup().
2571 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2572 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2573 * before USED bit, we need memory barrier here.
2574 * See mem_cgroup_add_lru_list(), etc.
2575 */
08e552c6 2576 smp_wmb();
b2402857 2577 SetPageCgroupUsed(pc);
3be91277 2578
9ce70c02
HD
2579 if (lrucare) {
2580 if (was_on_lru) {
fa9add64 2581 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2582 VM_BUG_ON(PageLRU(page));
2583 SetPageLRU(page);
fa9add64 2584 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2585 }
2586 spin_unlock_irq(&zone->lru_lock);
2587 }
2588
41326c17 2589 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2590 anon = true;
2591 else
2592 anon = false;
2593
2594 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2595 unlock_page_cgroup(pc);
9ce70c02 2596
430e4863
KH
2597 /*
2598 * "charge_statistics" updated event counter. Then, check it.
2599 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2600 * if they exceeds softlimit.
2601 */
c0ff4b85 2602 memcg_check_events(memcg, page);
7a81b88c 2603}
66e1707b 2604
ca3e0214
KH
2605#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2606
a0db00fc 2607#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2608/*
2609 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2610 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2611 * charge/uncharge will be never happen and move_account() is done under
2612 * compound_lock(), so we don't have to take care of races.
ca3e0214 2613 */
e94c8a9c 2614void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2615{
2616 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2617 struct page_cgroup *pc;
2618 int i;
ca3e0214 2619
3d37c4a9
KH
2620 if (mem_cgroup_disabled())
2621 return;
e94c8a9c
KH
2622 for (i = 1; i < HPAGE_PMD_NR; i++) {
2623 pc = head_pc + i;
2624 pc->mem_cgroup = head_pc->mem_cgroup;
2625 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2626 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2627 }
ca3e0214 2628}
12d27107 2629#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2630
f817ed48 2631/**
de3638d9 2632 * mem_cgroup_move_account - move account of the page
5564e88b 2633 * @page: the page
7ec99d62 2634 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2635 * @pc: page_cgroup of the page.
2636 * @from: mem_cgroup which the page is moved from.
2637 * @to: mem_cgroup which the page is moved to. @from != @to.
2638 *
2639 * The caller must confirm following.
08e552c6 2640 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2641 * - compound_lock is held when nr_pages > 1
f817ed48 2642 *
2f3479b1
KH
2643 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2644 * from old cgroup.
f817ed48 2645 */
7ec99d62
JW
2646static int mem_cgroup_move_account(struct page *page,
2647 unsigned int nr_pages,
2648 struct page_cgroup *pc,
2649 struct mem_cgroup *from,
2f3479b1 2650 struct mem_cgroup *to)
f817ed48 2651{
de3638d9
JW
2652 unsigned long flags;
2653 int ret;
b2402857 2654 bool anon = PageAnon(page);
987eba66 2655
f817ed48 2656 VM_BUG_ON(from == to);
5564e88b 2657 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2658 /*
2659 * The page is isolated from LRU. So, collapse function
2660 * will not handle this page. But page splitting can happen.
2661 * Do this check under compound_page_lock(). The caller should
2662 * hold it.
2663 */
2664 ret = -EBUSY;
7ec99d62 2665 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2666 goto out;
2667
2668 lock_page_cgroup(pc);
2669
2670 ret = -EINVAL;
2671 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2672 goto unlock;
2673
312734c0 2674 move_lock_mem_cgroup(from, &flags);
f817ed48 2675
2ff76f11 2676 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2677 /* Update mapped_file data for mem_cgroup */
2678 preempt_disable();
2679 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2681 preempt_enable();
d69b042f 2682 }
b2402857 2683 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2684
854ffa8d 2685 /* caller should have done css_get */
08e552c6 2686 pc->mem_cgroup = to;
b2402857 2687 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2688 /*
2689 * We charges against "to" which may not have any tasks. Then, "to"
2690 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2691 * this function is just force_empty() and move charge, so it's
25985edc 2692 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2693 * status here.
88703267 2694 */
312734c0 2695 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2696 ret = 0;
2697unlock:
57f9fd7d 2698 unlock_page_cgroup(pc);
d2265e6f
KH
2699 /*
2700 * check events
2701 */
5564e88b
JW
2702 memcg_check_events(to, page);
2703 memcg_check_events(from, page);
de3638d9 2704out:
f817ed48
KH
2705 return ret;
2706}
2707
2708/*
2709 * move charges to its parent.
2710 */
2711
5564e88b
JW
2712static int mem_cgroup_move_parent(struct page *page,
2713 struct page_cgroup *pc,
6068bf01 2714 struct mem_cgroup *child)
f817ed48 2715{
f817ed48 2716 struct mem_cgroup *parent;
7ec99d62 2717 unsigned int nr_pages;
4be4489f 2718 unsigned long uninitialized_var(flags);
f817ed48
KH
2719 int ret;
2720
2721 /* Is ROOT ? */
cc926f78 2722 if (mem_cgroup_is_root(child))
f817ed48
KH
2723 return -EINVAL;
2724
57f9fd7d
DN
2725 ret = -EBUSY;
2726 if (!get_page_unless_zero(page))
2727 goto out;
2728 if (isolate_lru_page(page))
2729 goto put;
52dbb905 2730
7ec99d62 2731 nr_pages = hpage_nr_pages(page);
08e552c6 2732
cc926f78
KH
2733 parent = parent_mem_cgroup(child);
2734 /*
2735 * If no parent, move charges to root cgroup.
2736 */
2737 if (!parent)
2738 parent = root_mem_cgroup;
f817ed48 2739
7ec99d62 2740 if (nr_pages > 1)
987eba66
KH
2741 flags = compound_lock_irqsave(page);
2742
cc926f78 2743 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2744 pc, child, parent);
cc926f78
KH
2745 if (!ret)
2746 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2747
7ec99d62 2748 if (nr_pages > 1)
987eba66 2749 compound_unlock_irqrestore(page, flags);
08e552c6 2750 putback_lru_page(page);
57f9fd7d 2751put:
40d58138 2752 put_page(page);
57f9fd7d 2753out:
f817ed48
KH
2754 return ret;
2755}
2756
7a81b88c
KH
2757/*
2758 * Charge the memory controller for page usage.
2759 * Return
2760 * 0 if the charge was successful
2761 * < 0 if the cgroup is over its limit
2762 */
2763static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2764 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2765{
c0ff4b85 2766 struct mem_cgroup *memcg = NULL;
7ec99d62 2767 unsigned int nr_pages = 1;
8493ae43 2768 bool oom = true;
7a81b88c 2769 int ret;
ec168510 2770
37c2ac78 2771 if (PageTransHuge(page)) {
7ec99d62 2772 nr_pages <<= compound_order(page);
37c2ac78 2773 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2774 /*
2775 * Never OOM-kill a process for a huge page. The
2776 * fault handler will fall back to regular pages.
2777 */
2778 oom = false;
37c2ac78 2779 }
7a81b88c 2780
c0ff4b85 2781 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2782 if (ret == -ENOMEM)
7a81b88c 2783 return ret;
ce587e65 2784 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2785 return 0;
8a9f3ccd
BS
2786}
2787
7a81b88c
KH
2788int mem_cgroup_newpage_charge(struct page *page,
2789 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2790{
f8d66542 2791 if (mem_cgroup_disabled())
cede86ac 2792 return 0;
7a0524cf
JW
2793 VM_BUG_ON(page_mapped(page));
2794 VM_BUG_ON(page->mapping && !PageAnon(page));
2795 VM_BUG_ON(!mm);
217bc319 2796 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2797 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2798}
2799
54595fe2
KH
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2803 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2804 * "commit()" or removed by "cancel()"
2805 */
0435a2fd
JW
2806static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask,
2809 struct mem_cgroup **memcgp)
8c7c6e34 2810{
c0ff4b85 2811 struct mem_cgroup *memcg;
90deb788 2812 struct page_cgroup *pc;
54595fe2 2813 int ret;
8c7c6e34 2814
90deb788
JW
2815 pc = lookup_page_cgroup(page);
2816 /*
2817 * Every swap fault against a single page tries to charge the
2818 * page, bail as early as possible. shmem_unuse() encounters
2819 * already charged pages, too. The USED bit is protected by
2820 * the page lock, which serializes swap cache removal, which
2821 * in turn serializes uncharging.
2822 */
2823 if (PageCgroupUsed(pc))
2824 return 0;
8c7c6e34
KH
2825 if (!do_swap_account)
2826 goto charge_cur_mm;
c0ff4b85
R
2827 memcg = try_get_mem_cgroup_from_page(page);
2828 if (!memcg)
54595fe2 2829 goto charge_cur_mm;
72835c86
JW
2830 *memcgp = memcg;
2831 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2832 css_put(&memcg->css);
38c5d72f
KH
2833 if (ret == -EINTR)
2834 ret = 0;
54595fe2 2835 return ret;
8c7c6e34 2836charge_cur_mm:
38c5d72f
KH
2837 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2838 if (ret == -EINTR)
2839 ret = 0;
2840 return ret;
8c7c6e34
KH
2841}
2842
0435a2fd
JW
2843int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2844 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2845{
2846 *memcgp = NULL;
2847 if (mem_cgroup_disabled())
2848 return 0;
bdf4f4d2
JW
2849 /*
2850 * A racing thread's fault, or swapoff, may have already
2851 * updated the pte, and even removed page from swap cache: in
2852 * those cases unuse_pte()'s pte_same() test will fail; but
2853 * there's also a KSM case which does need to charge the page.
2854 */
2855 if (!PageSwapCache(page)) {
2856 int ret;
2857
2858 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2859 if (ret == -EINTR)
2860 ret = 0;
2861 return ret;
2862 }
0435a2fd
JW
2863 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2864}
2865
827a03d2
JW
2866void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2867{
2868 if (mem_cgroup_disabled())
2869 return;
2870 if (!memcg)
2871 return;
2872 __mem_cgroup_cancel_charge(memcg, 1);
2873}
2874
83aae4c7 2875static void
72835c86 2876__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2877 enum charge_type ctype)
7a81b88c 2878{
f8d66542 2879 if (mem_cgroup_disabled())
7a81b88c 2880 return;
72835c86 2881 if (!memcg)
7a81b88c 2882 return;
72835c86 2883 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2884
ce587e65 2885 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2886 /*
2887 * Now swap is on-memory. This means this page may be
2888 * counted both as mem and swap....double count.
03f3c433
KH
2889 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2890 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2891 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2892 */
03f3c433 2893 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2894 swp_entry_t ent = {.val = page_private(page)};
86493009 2895 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2896 }
88703267
KH
2897 /*
2898 * At swapin, we may charge account against cgroup which has no tasks.
2899 * So, rmdir()->pre_destroy() can be called while we do this charge.
2900 * In that case, we need to call pre_destroy() again. check it here.
2901 */
72835c86 2902 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2903}
2904
72835c86
JW
2905void mem_cgroup_commit_charge_swapin(struct page *page,
2906 struct mem_cgroup *memcg)
83aae4c7 2907{
72835c86 2908 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2909 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2910}
2911
827a03d2
JW
2912int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2913 gfp_t gfp_mask)
7a81b88c 2914{
827a03d2
JW
2915 struct mem_cgroup *memcg = NULL;
2916 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2917 int ret;
2918
f8d66542 2919 if (mem_cgroup_disabled())
827a03d2
JW
2920 return 0;
2921 if (PageCompound(page))
2922 return 0;
2923
827a03d2
JW
2924 if (!PageSwapCache(page))
2925 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2926 else { /* page is swapcache/shmem */
0435a2fd
JW
2927 ret = __mem_cgroup_try_charge_swapin(mm, page,
2928 gfp_mask, &memcg);
827a03d2
JW
2929 if (!ret)
2930 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2931 }
2932 return ret;
7a81b88c
KH
2933}
2934
c0ff4b85 2935static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2936 unsigned int nr_pages,
2937 const enum charge_type ctype)
569b846d
KH
2938{
2939 struct memcg_batch_info *batch = NULL;
2940 bool uncharge_memsw = true;
7ec99d62 2941
569b846d
KH
2942 /* If swapout, usage of swap doesn't decrease */
2943 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2944 uncharge_memsw = false;
569b846d
KH
2945
2946 batch = &current->memcg_batch;
2947 /*
2948 * In usual, we do css_get() when we remember memcg pointer.
2949 * But in this case, we keep res->usage until end of a series of
2950 * uncharges. Then, it's ok to ignore memcg's refcnt.
2951 */
2952 if (!batch->memcg)
c0ff4b85 2953 batch->memcg = memcg;
3c11ecf4
KH
2954 /*
2955 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2956 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2957 * the same cgroup and we have chance to coalesce uncharges.
2958 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2959 * because we want to do uncharge as soon as possible.
2960 */
2961
2962 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2963 goto direct_uncharge;
2964
7ec99d62 2965 if (nr_pages > 1)
ec168510
AA
2966 goto direct_uncharge;
2967
569b846d
KH
2968 /*
2969 * In typical case, batch->memcg == mem. This means we can
2970 * merge a series of uncharges to an uncharge of res_counter.
2971 * If not, we uncharge res_counter ony by one.
2972 */
c0ff4b85 2973 if (batch->memcg != memcg)
569b846d
KH
2974 goto direct_uncharge;
2975 /* remember freed charge and uncharge it later */
7ffd4ca7 2976 batch->nr_pages++;
569b846d 2977 if (uncharge_memsw)
7ffd4ca7 2978 batch->memsw_nr_pages++;
569b846d
KH
2979 return;
2980direct_uncharge:
c0ff4b85 2981 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2982 if (uncharge_memsw)
c0ff4b85
R
2983 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2984 if (unlikely(batch->memcg != memcg))
2985 memcg_oom_recover(memcg);
569b846d 2986}
7a81b88c 2987
8a9f3ccd 2988/*
69029cd5 2989 * uncharge if !page_mapped(page)
8a9f3ccd 2990 */
8c7c6e34 2991static struct mem_cgroup *
0030f535
JW
2992__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2993 bool end_migration)
8a9f3ccd 2994{
c0ff4b85 2995 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2996 unsigned int nr_pages = 1;
2997 struct page_cgroup *pc;
b2402857 2998 bool anon;
8a9f3ccd 2999
f8d66542 3000 if (mem_cgroup_disabled())
8c7c6e34 3001 return NULL;
4077960e 3002
0c59b89c 3003 VM_BUG_ON(PageSwapCache(page));
d13d1443 3004
37c2ac78 3005 if (PageTransHuge(page)) {
7ec99d62 3006 nr_pages <<= compound_order(page);
37c2ac78
AA
3007 VM_BUG_ON(!PageTransHuge(page));
3008 }
8697d331 3009 /*
3c541e14 3010 * Check if our page_cgroup is valid
8697d331 3011 */
52d4b9ac 3012 pc = lookup_page_cgroup(page);
cfa44946 3013 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3014 return NULL;
b9c565d5 3015
52d4b9ac 3016 lock_page_cgroup(pc);
d13d1443 3017
c0ff4b85 3018 memcg = pc->mem_cgroup;
8c7c6e34 3019
d13d1443
KH
3020 if (!PageCgroupUsed(pc))
3021 goto unlock_out;
3022
b2402857
KH
3023 anon = PageAnon(page);
3024
d13d1443 3025 switch (ctype) {
41326c17 3026 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3027 /*
3028 * Generally PageAnon tells if it's the anon statistics to be
3029 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3030 * used before page reached the stage of being marked PageAnon.
3031 */
b2402857
KH
3032 anon = true;
3033 /* fallthrough */
8a9478ca 3034 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3035 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3036 if (page_mapped(page))
3037 goto unlock_out;
3038 /*
3039 * Pages under migration may not be uncharged. But
3040 * end_migration() /must/ be the one uncharging the
3041 * unused post-migration page and so it has to call
3042 * here with the migration bit still set. See the
3043 * res_counter handling below.
3044 */
3045 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3046 goto unlock_out;
3047 break;
3048 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3049 if (!PageAnon(page)) { /* Shared memory */
3050 if (page->mapping && !page_is_file_cache(page))
3051 goto unlock_out;
3052 } else if (page_mapped(page)) /* Anon */
3053 goto unlock_out;
3054 break;
3055 default:
3056 break;
52d4b9ac 3057 }
d13d1443 3058
b2402857 3059 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3060
52d4b9ac 3061 ClearPageCgroupUsed(pc);
544122e5
KH
3062 /*
3063 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3064 * freed from LRU. This is safe because uncharged page is expected not
3065 * to be reused (freed soon). Exception is SwapCache, it's handled by
3066 * special functions.
3067 */
b9c565d5 3068
52d4b9ac 3069 unlock_page_cgroup(pc);
f75ca962 3070 /*
c0ff4b85 3071 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3072 * will never be freed.
3073 */
c0ff4b85 3074 memcg_check_events(memcg, page);
f75ca962 3075 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3076 mem_cgroup_swap_statistics(memcg, true);
3077 mem_cgroup_get(memcg);
f75ca962 3078 }
0030f535
JW
3079 /*
3080 * Migration does not charge the res_counter for the
3081 * replacement page, so leave it alone when phasing out the
3082 * page that is unused after the migration.
3083 */
3084 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3085 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3086
c0ff4b85 3087 return memcg;
d13d1443
KH
3088
3089unlock_out:
3090 unlock_page_cgroup(pc);
8c7c6e34 3091 return NULL;
3c541e14
BS
3092}
3093
69029cd5
KH
3094void mem_cgroup_uncharge_page(struct page *page)
3095{
52d4b9ac
KH
3096 /* early check. */
3097 if (page_mapped(page))
3098 return;
40f23a21 3099 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3100 if (PageSwapCache(page))
3101 return;
0030f535 3102 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3103}
3104
3105void mem_cgroup_uncharge_cache_page(struct page *page)
3106{
3107 VM_BUG_ON(page_mapped(page));
b7abea96 3108 VM_BUG_ON(page->mapping);
0030f535 3109 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3110}
3111
569b846d
KH
3112/*
3113 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3114 * In that cases, pages are freed continuously and we can expect pages
3115 * are in the same memcg. All these calls itself limits the number of
3116 * pages freed at once, then uncharge_start/end() is called properly.
3117 * This may be called prural(2) times in a context,
3118 */
3119
3120void mem_cgroup_uncharge_start(void)
3121{
3122 current->memcg_batch.do_batch++;
3123 /* We can do nest. */
3124 if (current->memcg_batch.do_batch == 1) {
3125 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3126 current->memcg_batch.nr_pages = 0;
3127 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3128 }
3129}
3130
3131void mem_cgroup_uncharge_end(void)
3132{
3133 struct memcg_batch_info *batch = &current->memcg_batch;
3134
3135 if (!batch->do_batch)
3136 return;
3137
3138 batch->do_batch--;
3139 if (batch->do_batch) /* If stacked, do nothing. */
3140 return;
3141
3142 if (!batch->memcg)
3143 return;
3144 /*
3145 * This "batch->memcg" is valid without any css_get/put etc...
3146 * bacause we hide charges behind us.
3147 */
7ffd4ca7
JW
3148 if (batch->nr_pages)
3149 res_counter_uncharge(&batch->memcg->res,
3150 batch->nr_pages * PAGE_SIZE);
3151 if (batch->memsw_nr_pages)
3152 res_counter_uncharge(&batch->memcg->memsw,
3153 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3154 memcg_oom_recover(batch->memcg);
569b846d
KH
3155 /* forget this pointer (for sanity check) */
3156 batch->memcg = NULL;
3157}
3158
e767e056 3159#ifdef CONFIG_SWAP
8c7c6e34 3160/*
e767e056 3161 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3162 * memcg information is recorded to swap_cgroup of "ent"
3163 */
8a9478ca
KH
3164void
3165mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3166{
3167 struct mem_cgroup *memcg;
8a9478ca
KH
3168 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3169
3170 if (!swapout) /* this was a swap cache but the swap is unused ! */
3171 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3172
0030f535 3173 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3174
f75ca962
KH
3175 /*
3176 * record memcg information, if swapout && memcg != NULL,
3177 * mem_cgroup_get() was called in uncharge().
3178 */
3179 if (do_swap_account && swapout && memcg)
a3b2d692 3180 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3181}
e767e056 3182#endif
8c7c6e34 3183
c255a458 3184#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3185/*
3186 * called from swap_entry_free(). remove record in swap_cgroup and
3187 * uncharge "memsw" account.
3188 */
3189void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3190{
8c7c6e34 3191 struct mem_cgroup *memcg;
a3b2d692 3192 unsigned short id;
8c7c6e34
KH
3193
3194 if (!do_swap_account)
3195 return;
3196
a3b2d692
KH
3197 id = swap_cgroup_record(ent, 0);
3198 rcu_read_lock();
3199 memcg = mem_cgroup_lookup(id);
8c7c6e34 3200 if (memcg) {
a3b2d692
KH
3201 /*
3202 * We uncharge this because swap is freed.
3203 * This memcg can be obsolete one. We avoid calling css_tryget
3204 */
0c3e73e8 3205 if (!mem_cgroup_is_root(memcg))
4e649152 3206 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3207 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3208 mem_cgroup_put(memcg);
3209 }
a3b2d692 3210 rcu_read_unlock();
d13d1443 3211}
02491447
DN
3212
3213/**
3214 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3215 * @entry: swap entry to be moved
3216 * @from: mem_cgroup which the entry is moved from
3217 * @to: mem_cgroup which the entry is moved to
3218 *
3219 * It succeeds only when the swap_cgroup's record for this entry is the same
3220 * as the mem_cgroup's id of @from.
3221 *
3222 * Returns 0 on success, -EINVAL on failure.
3223 *
3224 * The caller must have charged to @to, IOW, called res_counter_charge() about
3225 * both res and memsw, and called css_get().
3226 */
3227static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3228 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3229{
3230 unsigned short old_id, new_id;
3231
3232 old_id = css_id(&from->css);
3233 new_id = css_id(&to->css);
3234
3235 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3236 mem_cgroup_swap_statistics(from, false);
483c30b5 3237 mem_cgroup_swap_statistics(to, true);
02491447 3238 /*
483c30b5
DN
3239 * This function is only called from task migration context now.
3240 * It postpones res_counter and refcount handling till the end
3241 * of task migration(mem_cgroup_clear_mc()) for performance
3242 * improvement. But we cannot postpone mem_cgroup_get(to)
3243 * because if the process that has been moved to @to does
3244 * swap-in, the refcount of @to might be decreased to 0.
02491447 3245 */
02491447 3246 mem_cgroup_get(to);
02491447
DN
3247 return 0;
3248 }
3249 return -EINVAL;
3250}
3251#else
3252static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3253 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3254{
3255 return -EINVAL;
3256}
8c7c6e34 3257#endif
d13d1443 3258
ae41be37 3259/*
01b1ae63
KH
3260 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3261 * page belongs to.
ae41be37 3262 */
0030f535
JW
3263void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3264 struct mem_cgroup **memcgp)
ae41be37 3265{
c0ff4b85 3266 struct mem_cgroup *memcg = NULL;
7ec99d62 3267 struct page_cgroup *pc;
ac39cf8c 3268 enum charge_type ctype;
8869b8f6 3269
72835c86 3270 *memcgp = NULL;
56039efa 3271
ec168510 3272 VM_BUG_ON(PageTransHuge(page));
f8d66542 3273 if (mem_cgroup_disabled())
0030f535 3274 return;
4077960e 3275
52d4b9ac
KH
3276 pc = lookup_page_cgroup(page);
3277 lock_page_cgroup(pc);
3278 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3279 memcg = pc->mem_cgroup;
3280 css_get(&memcg->css);
ac39cf8c 3281 /*
3282 * At migrating an anonymous page, its mapcount goes down
3283 * to 0 and uncharge() will be called. But, even if it's fully
3284 * unmapped, migration may fail and this page has to be
3285 * charged again. We set MIGRATION flag here and delay uncharge
3286 * until end_migration() is called
3287 *
3288 * Corner Case Thinking
3289 * A)
3290 * When the old page was mapped as Anon and it's unmap-and-freed
3291 * while migration was ongoing.
3292 * If unmap finds the old page, uncharge() of it will be delayed
3293 * until end_migration(). If unmap finds a new page, it's
3294 * uncharged when it make mapcount to be 1->0. If unmap code
3295 * finds swap_migration_entry, the new page will not be mapped
3296 * and end_migration() will find it(mapcount==0).
3297 *
3298 * B)
3299 * When the old page was mapped but migraion fails, the kernel
3300 * remaps it. A charge for it is kept by MIGRATION flag even
3301 * if mapcount goes down to 0. We can do remap successfully
3302 * without charging it again.
3303 *
3304 * C)
3305 * The "old" page is under lock_page() until the end of
3306 * migration, so, the old page itself will not be swapped-out.
3307 * If the new page is swapped out before end_migraton, our
3308 * hook to usual swap-out path will catch the event.
3309 */
3310 if (PageAnon(page))
3311 SetPageCgroupMigration(pc);
e8589cc1 3312 }
52d4b9ac 3313 unlock_page_cgroup(pc);
ac39cf8c 3314 /*
3315 * If the page is not charged at this point,
3316 * we return here.
3317 */
c0ff4b85 3318 if (!memcg)
0030f535 3319 return;
01b1ae63 3320
72835c86 3321 *memcgp = memcg;
ac39cf8c 3322 /*
3323 * We charge new page before it's used/mapped. So, even if unlock_page()
3324 * is called before end_migration, we can catch all events on this new
3325 * page. In the case new page is migrated but not remapped, new page's
3326 * mapcount will be finally 0 and we call uncharge in end_migration().
3327 */
ac39cf8c 3328 if (PageAnon(page))
41326c17 3329 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3330 else
62ba7442 3331 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3332 /*
3333 * The page is committed to the memcg, but it's not actually
3334 * charged to the res_counter since we plan on replacing the
3335 * old one and only one page is going to be left afterwards.
3336 */
ce587e65 3337 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3338}
8869b8f6 3339
69029cd5 3340/* remove redundant charge if migration failed*/
c0ff4b85 3341void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3342 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3343{
ac39cf8c 3344 struct page *used, *unused;
01b1ae63 3345 struct page_cgroup *pc;
b2402857 3346 bool anon;
01b1ae63 3347
c0ff4b85 3348 if (!memcg)
01b1ae63 3349 return;
ac39cf8c 3350 /* blocks rmdir() */
c0ff4b85 3351 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3352 if (!migration_ok) {
ac39cf8c 3353 used = oldpage;
3354 unused = newpage;
01b1ae63 3355 } else {
ac39cf8c 3356 used = newpage;
01b1ae63
KH
3357 unused = oldpage;
3358 }
0030f535 3359 anon = PageAnon(used);
7d188958
JW
3360 __mem_cgroup_uncharge_common(unused,
3361 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3362 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3363 true);
0030f535 3364 css_put(&memcg->css);
69029cd5 3365 /*
ac39cf8c 3366 * We disallowed uncharge of pages under migration because mapcount
3367 * of the page goes down to zero, temporarly.
3368 * Clear the flag and check the page should be charged.
01b1ae63 3369 */
ac39cf8c 3370 pc = lookup_page_cgroup(oldpage);
3371 lock_page_cgroup(pc);
3372 ClearPageCgroupMigration(pc);
3373 unlock_page_cgroup(pc);
ac39cf8c 3374
01b1ae63 3375 /*
ac39cf8c 3376 * If a page is a file cache, radix-tree replacement is very atomic
3377 * and we can skip this check. When it was an Anon page, its mapcount
3378 * goes down to 0. But because we added MIGRATION flage, it's not
3379 * uncharged yet. There are several case but page->mapcount check
3380 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3381 * check. (see prepare_charge() also)
69029cd5 3382 */
b2402857 3383 if (anon)
ac39cf8c 3384 mem_cgroup_uncharge_page(used);
88703267 3385 /*
ac39cf8c 3386 * At migration, we may charge account against cgroup which has no
3387 * tasks.
88703267
KH
3388 * So, rmdir()->pre_destroy() can be called while we do this charge.
3389 * In that case, we need to call pre_destroy() again. check it here.
3390 */
c0ff4b85 3391 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3392}
78fb7466 3393
ab936cbc
KH
3394/*
3395 * At replace page cache, newpage is not under any memcg but it's on
3396 * LRU. So, this function doesn't touch res_counter but handles LRU
3397 * in correct way. Both pages are locked so we cannot race with uncharge.
3398 */
3399void mem_cgroup_replace_page_cache(struct page *oldpage,
3400 struct page *newpage)
3401{
bde05d1c 3402 struct mem_cgroup *memcg = NULL;
ab936cbc 3403 struct page_cgroup *pc;
ab936cbc 3404 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3405
3406 if (mem_cgroup_disabled())
3407 return;
3408
3409 pc = lookup_page_cgroup(oldpage);
3410 /* fix accounting on old pages */
3411 lock_page_cgroup(pc);
bde05d1c
HD
3412 if (PageCgroupUsed(pc)) {
3413 memcg = pc->mem_cgroup;
3414 mem_cgroup_charge_statistics(memcg, false, -1);
3415 ClearPageCgroupUsed(pc);
3416 }
ab936cbc
KH
3417 unlock_page_cgroup(pc);
3418
bde05d1c
HD
3419 /*
3420 * When called from shmem_replace_page(), in some cases the
3421 * oldpage has already been charged, and in some cases not.
3422 */
3423 if (!memcg)
3424 return;
ab936cbc
KH
3425 /*
3426 * Even if newpage->mapping was NULL before starting replacement,
3427 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3428 * LRU while we overwrite pc->mem_cgroup.
3429 */
ce587e65 3430 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3431}
3432
f212ad7c
DN
3433#ifdef CONFIG_DEBUG_VM
3434static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3435{
3436 struct page_cgroup *pc;
3437
3438 pc = lookup_page_cgroup(page);
cfa44946
JW
3439 /*
3440 * Can be NULL while feeding pages into the page allocator for
3441 * the first time, i.e. during boot or memory hotplug;
3442 * or when mem_cgroup_disabled().
3443 */
f212ad7c
DN
3444 if (likely(pc) && PageCgroupUsed(pc))
3445 return pc;
3446 return NULL;
3447}
3448
3449bool mem_cgroup_bad_page_check(struct page *page)
3450{
3451 if (mem_cgroup_disabled())
3452 return false;
3453
3454 return lookup_page_cgroup_used(page) != NULL;
3455}
3456
3457void mem_cgroup_print_bad_page(struct page *page)
3458{
3459 struct page_cgroup *pc;
3460
3461 pc = lookup_page_cgroup_used(page);
3462 if (pc) {
90b3feae 3463 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3464 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3465 }
3466}
3467#endif
3468
8c7c6e34
KH
3469static DEFINE_MUTEX(set_limit_mutex);
3470
d38d2a75 3471static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3472 unsigned long long val)
628f4235 3473{
81d39c20 3474 int retry_count;
3c11ecf4 3475 u64 memswlimit, memlimit;
628f4235 3476 int ret = 0;
81d39c20
KH
3477 int children = mem_cgroup_count_children(memcg);
3478 u64 curusage, oldusage;
3c11ecf4 3479 int enlarge;
81d39c20
KH
3480
3481 /*
3482 * For keeping hierarchical_reclaim simple, how long we should retry
3483 * is depends on callers. We set our retry-count to be function
3484 * of # of children which we should visit in this loop.
3485 */
3486 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3487
3488 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3489
3c11ecf4 3490 enlarge = 0;
8c7c6e34 3491 while (retry_count) {
628f4235
KH
3492 if (signal_pending(current)) {
3493 ret = -EINTR;
3494 break;
3495 }
8c7c6e34
KH
3496 /*
3497 * Rather than hide all in some function, I do this in
3498 * open coded manner. You see what this really does.
aaad153e 3499 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3500 */
3501 mutex_lock(&set_limit_mutex);
3502 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3503 if (memswlimit < val) {
3504 ret = -EINVAL;
3505 mutex_unlock(&set_limit_mutex);
628f4235
KH
3506 break;
3507 }
3c11ecf4
KH
3508
3509 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510 if (memlimit < val)
3511 enlarge = 1;
3512
8c7c6e34 3513 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3514 if (!ret) {
3515 if (memswlimit == val)
3516 memcg->memsw_is_minimum = true;
3517 else
3518 memcg->memsw_is_minimum = false;
3519 }
8c7c6e34
KH
3520 mutex_unlock(&set_limit_mutex);
3521
3522 if (!ret)
3523 break;
3524
5660048c
JW
3525 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3526 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3527 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3528 /* Usage is reduced ? */
3529 if (curusage >= oldusage)
3530 retry_count--;
3531 else
3532 oldusage = curusage;
8c7c6e34 3533 }
3c11ecf4
KH
3534 if (!ret && enlarge)
3535 memcg_oom_recover(memcg);
14797e23 3536
8c7c6e34
KH
3537 return ret;
3538}
3539
338c8431
LZ
3540static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3541 unsigned long long val)
8c7c6e34 3542{
81d39c20 3543 int retry_count;
3c11ecf4 3544 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3545 int children = mem_cgroup_count_children(memcg);
3546 int ret = -EBUSY;
3c11ecf4 3547 int enlarge = 0;
8c7c6e34 3548
81d39c20
KH
3549 /* see mem_cgroup_resize_res_limit */
3550 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3551 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3552 while (retry_count) {
3553 if (signal_pending(current)) {
3554 ret = -EINTR;
3555 break;
3556 }
3557 /*
3558 * Rather than hide all in some function, I do this in
3559 * open coded manner. You see what this really does.
aaad153e 3560 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3561 */
3562 mutex_lock(&set_limit_mutex);
3563 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3564 if (memlimit > val) {
3565 ret = -EINVAL;
3566 mutex_unlock(&set_limit_mutex);
3567 break;
3568 }
3c11ecf4
KH
3569 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3570 if (memswlimit < val)
3571 enlarge = 1;
8c7c6e34 3572 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3573 if (!ret) {
3574 if (memlimit == val)
3575 memcg->memsw_is_minimum = true;
3576 else
3577 memcg->memsw_is_minimum = false;
3578 }
8c7c6e34
KH
3579 mutex_unlock(&set_limit_mutex);
3580
3581 if (!ret)
3582 break;
3583
5660048c
JW
3584 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3585 MEM_CGROUP_RECLAIM_NOSWAP |
3586 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3587 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3588 /* Usage is reduced ? */
8c7c6e34 3589 if (curusage >= oldusage)
628f4235 3590 retry_count--;
81d39c20
KH
3591 else
3592 oldusage = curusage;
628f4235 3593 }
3c11ecf4
KH
3594 if (!ret && enlarge)
3595 memcg_oom_recover(memcg);
628f4235
KH
3596 return ret;
3597}
3598
4e416953 3599unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3600 gfp_t gfp_mask,
3601 unsigned long *total_scanned)
4e416953
BS
3602{
3603 unsigned long nr_reclaimed = 0;
3604 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3605 unsigned long reclaimed;
3606 int loop = 0;
3607 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3608 unsigned long long excess;
0ae5e89c 3609 unsigned long nr_scanned;
4e416953
BS
3610
3611 if (order > 0)
3612 return 0;
3613
00918b6a 3614 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3615 /*
3616 * This loop can run a while, specially if mem_cgroup's continuously
3617 * keep exceeding their soft limit and putting the system under
3618 * pressure
3619 */
3620 do {
3621 if (next_mz)
3622 mz = next_mz;
3623 else
3624 mz = mem_cgroup_largest_soft_limit_node(mctz);
3625 if (!mz)
3626 break;
3627
0ae5e89c 3628 nr_scanned = 0;
d79154bb 3629 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3630 gfp_mask, &nr_scanned);
4e416953 3631 nr_reclaimed += reclaimed;
0ae5e89c 3632 *total_scanned += nr_scanned;
4e416953
BS
3633 spin_lock(&mctz->lock);
3634
3635 /*
3636 * If we failed to reclaim anything from this memory cgroup
3637 * it is time to move on to the next cgroup
3638 */
3639 next_mz = NULL;
3640 if (!reclaimed) {
3641 do {
3642 /*
3643 * Loop until we find yet another one.
3644 *
3645 * By the time we get the soft_limit lock
3646 * again, someone might have aded the
3647 * group back on the RB tree. Iterate to
3648 * make sure we get a different mem.
3649 * mem_cgroup_largest_soft_limit_node returns
3650 * NULL if no other cgroup is present on
3651 * the tree
3652 */
3653 next_mz =
3654 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3655 if (next_mz == mz)
d79154bb 3656 css_put(&next_mz->memcg->css);
39cc98f1 3657 else /* next_mz == NULL or other memcg */
4e416953
BS
3658 break;
3659 } while (1);
3660 }
d79154bb
HD
3661 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3662 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3663 /*
3664 * One school of thought says that we should not add
3665 * back the node to the tree if reclaim returns 0.
3666 * But our reclaim could return 0, simply because due
3667 * to priority we are exposing a smaller subset of
3668 * memory to reclaim from. Consider this as a longer
3669 * term TODO.
3670 */
ef8745c1 3671 /* If excess == 0, no tree ops */
d79154bb 3672 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3673 spin_unlock(&mctz->lock);
d79154bb 3674 css_put(&mz->memcg->css);
4e416953
BS
3675 loop++;
3676 /*
3677 * Could not reclaim anything and there are no more
3678 * mem cgroups to try or we seem to be looping without
3679 * reclaiming anything.
3680 */
3681 if (!nr_reclaimed &&
3682 (next_mz == NULL ||
3683 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3684 break;
3685 } while (!nr_reclaimed);
3686 if (next_mz)
d79154bb 3687 css_put(&next_mz->memcg->css);
4e416953
BS
3688 return nr_reclaimed;
3689}
3690
cc847582 3691/*
3c935d18
KH
3692 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3693 * reclaim the pages page themselves - it just removes the page_cgroups.
3694 * Returns true if some page_cgroups were not freed, indicating that the caller
3695 * must retry this operation.
cc847582 3696 */
3c935d18 3697static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3698 int node, int zid, enum lru_list lru)
cc847582 3699{
08e552c6 3700 struct mem_cgroup_per_zone *mz;
08e552c6 3701 unsigned long flags, loop;
072c56c1 3702 struct list_head *list;
925b7673
JW
3703 struct page *busy;
3704 struct zone *zone;
072c56c1 3705
08e552c6 3706 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3707 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3708 list = &mz->lruvec.lists[lru];
cc847582 3709
1eb49272 3710 loop = mz->lru_size[lru];
f817ed48
KH
3711 /* give some margin against EBUSY etc...*/
3712 loop += 256;
3713 busy = NULL;
3714 while (loop--) {
925b7673 3715 struct page_cgroup *pc;
5564e88b
JW
3716 struct page *page;
3717
08e552c6 3718 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3719 if (list_empty(list)) {
08e552c6 3720 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3721 break;
f817ed48 3722 }
925b7673
JW
3723 page = list_entry(list->prev, struct page, lru);
3724 if (busy == page) {
3725 list_move(&page->lru, list);
648bcc77 3726 busy = NULL;
08e552c6 3727 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3728 continue;
3729 }
08e552c6 3730 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3731
925b7673 3732 pc = lookup_page_cgroup(page);
5564e88b 3733
3c935d18 3734 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3735 /* found lock contention or "pc" is obsolete. */
925b7673 3736 busy = page;
f817ed48
KH
3737 cond_resched();
3738 } else
3739 busy = NULL;
cc847582 3740 }
3c935d18 3741 return !list_empty(list);
cc847582
KH
3742}
3743
3744/*
3745 * make mem_cgroup's charge to be 0 if there is no task.
3746 * This enables deleting this mem_cgroup.
3747 */
c0ff4b85 3748static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3749{
f817ed48
KH
3750 int ret;
3751 int node, zid, shrink;
3752 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3753 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3754
c0ff4b85 3755 css_get(&memcg->css);
f817ed48
KH
3756
3757 shrink = 0;
c1e862c1
KH
3758 /* should free all ? */
3759 if (free_all)
3760 goto try_to_free;
f817ed48 3761move_account:
fce66477 3762 do {
f817ed48 3763 ret = -EBUSY;
c1e862c1
KH
3764 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3765 goto out;
52d4b9ac
KH
3766 /* This is for making all *used* pages to be on LRU. */
3767 lru_add_drain_all();
c0ff4b85 3768 drain_all_stock_sync(memcg);
f817ed48 3769 ret = 0;
c0ff4b85 3770 mem_cgroup_start_move(memcg);
299b4eaa 3771 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3772 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3773 enum lru_list lru;
3774 for_each_lru(lru) {
c0ff4b85 3775 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3776 node, zid, lru);
f817ed48
KH
3777 if (ret)
3778 break;
3779 }
1ecaab2b 3780 }
f817ed48
KH
3781 if (ret)
3782 break;
3783 }
c0ff4b85
R
3784 mem_cgroup_end_move(memcg);
3785 memcg_oom_recover(memcg);
52d4b9ac 3786 cond_resched();
fce66477 3787 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3788 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3789out:
c0ff4b85 3790 css_put(&memcg->css);
cc847582 3791 return ret;
f817ed48
KH
3792
3793try_to_free:
c1e862c1
KH
3794 /* returns EBUSY if there is a task or if we come here twice. */
3795 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3796 ret = -EBUSY;
3797 goto out;
3798 }
c1e862c1
KH
3799 /* we call try-to-free pages for make this cgroup empty */
3800 lru_add_drain_all();
f817ed48
KH
3801 /* try to free all pages in this cgroup */
3802 shrink = 1;
569530fb 3803 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3804 int progress;
c1e862c1
KH
3805
3806 if (signal_pending(current)) {
3807 ret = -EINTR;
3808 goto out;
3809 }
c0ff4b85 3810 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3811 false);
c1e862c1 3812 if (!progress) {
f817ed48 3813 nr_retries--;
c1e862c1 3814 /* maybe some writeback is necessary */
8aa7e847 3815 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3816 }
f817ed48
KH
3817
3818 }
08e552c6 3819 lru_add_drain();
f817ed48 3820 /* try move_account...there may be some *locked* pages. */
fce66477 3821 goto move_account;
cc847582
KH
3822}
3823
6bbda35c 3824static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3825{
3826 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3827}
3828
3829
18f59ea7
BS
3830static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3831{
3832 return mem_cgroup_from_cont(cont)->use_hierarchy;
3833}
3834
3835static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3836 u64 val)
3837{
3838 int retval = 0;
c0ff4b85 3839 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3840 struct cgroup *parent = cont->parent;
c0ff4b85 3841 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3842
3843 if (parent)
c0ff4b85 3844 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3845
3846 cgroup_lock();
567fb435
GC
3847
3848 if (memcg->use_hierarchy == val)
3849 goto out;
3850
18f59ea7 3851 /*
af901ca1 3852 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3853 * in the child subtrees. If it is unset, then the change can
3854 * occur, provided the current cgroup has no children.
3855 *
3856 * For the root cgroup, parent_mem is NULL, we allow value to be
3857 * set if there are no children.
3858 */
c0ff4b85 3859 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3860 (val == 1 || val == 0)) {
3861 if (list_empty(&cont->children))
c0ff4b85 3862 memcg->use_hierarchy = val;
18f59ea7
BS
3863 else
3864 retval = -EBUSY;
3865 } else
3866 retval = -EINVAL;
567fb435
GC
3867
3868out:
18f59ea7
BS
3869 cgroup_unlock();
3870
3871 return retval;
3872}
3873
0c3e73e8 3874
c0ff4b85 3875static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3876 enum mem_cgroup_stat_index idx)
0c3e73e8 3877{
7d74b06f 3878 struct mem_cgroup *iter;
7a159cc9 3879 long val = 0;
0c3e73e8 3880
7a159cc9 3881 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3882 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3883 val += mem_cgroup_read_stat(iter, idx);
3884
3885 if (val < 0) /* race ? */
3886 val = 0;
3887 return val;
0c3e73e8
BS
3888}
3889
c0ff4b85 3890static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3891{
7d74b06f 3892 u64 val;
104f3928 3893
c0ff4b85 3894 if (!mem_cgroup_is_root(memcg)) {
104f3928 3895 if (!swap)
65c64ce8 3896 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3897 else
65c64ce8 3898 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3899 }
3900
c0ff4b85
R
3901 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3902 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3903
7d74b06f 3904 if (swap)
bff6bb83 3905 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3906
3907 return val << PAGE_SHIFT;
3908}
3909
af36f906
TH
3910static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3911 struct file *file, char __user *buf,
3912 size_t nbytes, loff_t *ppos)
8cdea7c0 3913{
c0ff4b85 3914 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3915 char str[64];
104f3928 3916 u64 val;
af36f906 3917 int type, name, len;
8c7c6e34
KH
3918
3919 type = MEMFILE_TYPE(cft->private);
3920 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3921
3922 if (!do_swap_account && type == _MEMSWAP)
3923 return -EOPNOTSUPP;
3924
8c7c6e34
KH
3925 switch (type) {
3926 case _MEM:
104f3928 3927 if (name == RES_USAGE)
c0ff4b85 3928 val = mem_cgroup_usage(memcg, false);
104f3928 3929 else
c0ff4b85 3930 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3931 break;
3932 case _MEMSWAP:
104f3928 3933 if (name == RES_USAGE)
c0ff4b85 3934 val = mem_cgroup_usage(memcg, true);
104f3928 3935 else
c0ff4b85 3936 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3937 break;
3938 default:
3939 BUG();
8c7c6e34 3940 }
af36f906
TH
3941
3942 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3943 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3944}
628f4235
KH
3945/*
3946 * The user of this function is...
3947 * RES_LIMIT.
3948 */
856c13aa
PM
3949static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3950 const char *buffer)
8cdea7c0 3951{
628f4235 3952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3953 int type, name;
628f4235
KH
3954 unsigned long long val;
3955 int ret;
3956
8c7c6e34
KH
3957 type = MEMFILE_TYPE(cft->private);
3958 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3959
3960 if (!do_swap_account && type == _MEMSWAP)
3961 return -EOPNOTSUPP;
3962
8c7c6e34 3963 switch (name) {
628f4235 3964 case RES_LIMIT:
4b3bde4c
BS
3965 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3966 ret = -EINVAL;
3967 break;
3968 }
628f4235
KH
3969 /* This function does all necessary parse...reuse it */
3970 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3971 if (ret)
3972 break;
3973 if (type == _MEM)
628f4235 3974 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3975 else
3976 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3977 break;
296c81d8
BS
3978 case RES_SOFT_LIMIT:
3979 ret = res_counter_memparse_write_strategy(buffer, &val);
3980 if (ret)
3981 break;
3982 /*
3983 * For memsw, soft limits are hard to implement in terms
3984 * of semantics, for now, we support soft limits for
3985 * control without swap
3986 */
3987 if (type == _MEM)
3988 ret = res_counter_set_soft_limit(&memcg->res, val);
3989 else
3990 ret = -EINVAL;
3991 break;
628f4235
KH
3992 default:
3993 ret = -EINVAL; /* should be BUG() ? */
3994 break;
3995 }
3996 return ret;
8cdea7c0
BS
3997}
3998
fee7b548
KH
3999static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4000 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4001{
4002 struct cgroup *cgroup;
4003 unsigned long long min_limit, min_memsw_limit, tmp;
4004
4005 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 cgroup = memcg->css.cgroup;
4008 if (!memcg->use_hierarchy)
4009 goto out;
4010
4011 while (cgroup->parent) {
4012 cgroup = cgroup->parent;
4013 memcg = mem_cgroup_from_cont(cgroup);
4014 if (!memcg->use_hierarchy)
4015 break;
4016 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 min_limit = min(min_limit, tmp);
4018 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4019 min_memsw_limit = min(min_memsw_limit, tmp);
4020 }
4021out:
4022 *mem_limit = min_limit;
4023 *memsw_limit = min_memsw_limit;
fee7b548
KH
4024}
4025
29f2a4da 4026static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4027{
af36f906 4028 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4029 int type, name;
c84872e1 4030
8c7c6e34
KH
4031 type = MEMFILE_TYPE(event);
4032 name = MEMFILE_ATTR(event);
af36f906
TH
4033
4034 if (!do_swap_account && type == _MEMSWAP)
4035 return -EOPNOTSUPP;
4036
8c7c6e34 4037 switch (name) {
29f2a4da 4038 case RES_MAX_USAGE:
8c7c6e34 4039 if (type == _MEM)
c0ff4b85 4040 res_counter_reset_max(&memcg->res);
8c7c6e34 4041 else
c0ff4b85 4042 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4043 break;
4044 case RES_FAILCNT:
8c7c6e34 4045 if (type == _MEM)
c0ff4b85 4046 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4047 else
c0ff4b85 4048 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4049 break;
4050 }
f64c3f54 4051
85cc59db 4052 return 0;
c84872e1
PE
4053}
4054
7dc74be0
DN
4055static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4056 struct cftype *cft)
4057{
4058 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4059}
4060
02491447 4061#ifdef CONFIG_MMU
7dc74be0
DN
4062static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4063 struct cftype *cft, u64 val)
4064{
c0ff4b85 4065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4066
4067 if (val >= (1 << NR_MOVE_TYPE))
4068 return -EINVAL;
4069 /*
4070 * We check this value several times in both in can_attach() and
4071 * attach(), so we need cgroup lock to prevent this value from being
4072 * inconsistent.
4073 */
4074 cgroup_lock();
c0ff4b85 4075 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4076 cgroup_unlock();
4077
4078 return 0;
4079}
02491447
DN
4080#else
4081static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4082 struct cftype *cft, u64 val)
4083{
4084 return -ENOSYS;
4085}
4086#endif
7dc74be0 4087
406eb0c9 4088#ifdef CONFIG_NUMA
ab215884 4089static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4090 struct seq_file *m)
406eb0c9
YH
4091{
4092 int nid;
4093 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4094 unsigned long node_nr;
d79154bb 4095 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4096
d79154bb 4097 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4098 seq_printf(m, "total=%lu", total_nr);
4099 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4100 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4101 seq_printf(m, " N%d=%lu", nid, node_nr);
4102 }
4103 seq_putc(m, '\n');
4104
d79154bb 4105 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4106 seq_printf(m, "file=%lu", file_nr);
4107 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4108 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4109 LRU_ALL_FILE);
406eb0c9
YH
4110 seq_printf(m, " N%d=%lu", nid, node_nr);
4111 }
4112 seq_putc(m, '\n');
4113
d79154bb 4114 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4115 seq_printf(m, "anon=%lu", anon_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4118 LRU_ALL_ANON);
406eb0c9
YH
4119 seq_printf(m, " N%d=%lu", nid, node_nr);
4120 }
4121 seq_putc(m, '\n');
4122
d79154bb 4123 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4124 seq_printf(m, "unevictable=%lu", unevictable_nr);
4125 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4126 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4127 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4128 seq_printf(m, " N%d=%lu", nid, node_nr);
4129 }
4130 seq_putc(m, '\n');
4131 return 0;
4132}
4133#endif /* CONFIG_NUMA */
4134
af7c4b0e
JW
4135static const char * const mem_cgroup_lru_names[] = {
4136 "inactive_anon",
4137 "active_anon",
4138 "inactive_file",
4139 "active_file",
4140 "unevictable",
4141};
4142
4143static inline void mem_cgroup_lru_names_not_uptodate(void)
4144{
4145 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4146}
4147
ab215884 4148static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4149 struct seq_file *m)
d2ceb9b7 4150{
d79154bb 4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4152 struct mem_cgroup *mi;
4153 unsigned int i;
406eb0c9 4154
af7c4b0e 4155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4156 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4157 continue;
af7c4b0e
JW
4158 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4159 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4160 }
7b854121 4161
af7c4b0e
JW
4162 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4163 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4164 mem_cgroup_read_events(memcg, i));
4165
4166 for (i = 0; i < NR_LRU_LISTS; i++)
4167 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4168 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4169
14067bb3 4170 /* Hierarchical information */
fee7b548
KH
4171 {
4172 unsigned long long limit, memsw_limit;
d79154bb 4173 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4174 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4175 if (do_swap_account)
78ccf5b5
JW
4176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4177 memsw_limit);
fee7b548 4178 }
7f016ee8 4179
af7c4b0e
JW
4180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4181 long long val = 0;
4182
bff6bb83 4183 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4184 continue;
af7c4b0e
JW
4185 for_each_mem_cgroup_tree(mi, memcg)
4186 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4187 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4188 }
4189
4190 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4191 unsigned long long val = 0;
4192
4193 for_each_mem_cgroup_tree(mi, memcg)
4194 val += mem_cgroup_read_events(mi, i);
4195 seq_printf(m, "total_%s %llu\n",
4196 mem_cgroup_events_names[i], val);
4197 }
4198
4199 for (i = 0; i < NR_LRU_LISTS; i++) {
4200 unsigned long long val = 0;
4201
4202 for_each_mem_cgroup_tree(mi, memcg)
4203 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4204 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4205 }
14067bb3 4206
7f016ee8 4207#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4208 {
4209 int nid, zid;
4210 struct mem_cgroup_per_zone *mz;
89abfab1 4211 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4212 unsigned long recent_rotated[2] = {0, 0};
4213 unsigned long recent_scanned[2] = {0, 0};
4214
4215 for_each_online_node(nid)
4216 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4217 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4218 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4219
89abfab1
HD
4220 recent_rotated[0] += rstat->recent_rotated[0];
4221 recent_rotated[1] += rstat->recent_rotated[1];
4222 recent_scanned[0] += rstat->recent_scanned[0];
4223 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4224 }
78ccf5b5
JW
4225 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4226 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4227 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4228 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4229 }
4230#endif
4231
d2ceb9b7
KH
4232 return 0;
4233}
4234
a7885eb8
KM
4235static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4236{
4237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4238
1f4c025b 4239 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4240}
4241
4242static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4243 u64 val)
4244{
4245 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4246 struct mem_cgroup *parent;
068b38c1 4247
a7885eb8
KM
4248 if (val > 100)
4249 return -EINVAL;
4250
4251 if (cgrp->parent == NULL)
4252 return -EINVAL;
4253
4254 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4255
4256 cgroup_lock();
4257
a7885eb8
KM
4258 /* If under hierarchy, only empty-root can set this value */
4259 if ((parent->use_hierarchy) ||
068b38c1
LZ
4260 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4261 cgroup_unlock();
a7885eb8 4262 return -EINVAL;
068b38c1 4263 }
a7885eb8 4264
a7885eb8 4265 memcg->swappiness = val;
a7885eb8 4266
068b38c1
LZ
4267 cgroup_unlock();
4268
a7885eb8
KM
4269 return 0;
4270}
4271
2e72b634
KS
4272static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4273{
4274 struct mem_cgroup_threshold_ary *t;
4275 u64 usage;
4276 int i;
4277
4278 rcu_read_lock();
4279 if (!swap)
2c488db2 4280 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4281 else
2c488db2 4282 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4283
4284 if (!t)
4285 goto unlock;
4286
4287 usage = mem_cgroup_usage(memcg, swap);
4288
4289 /*
748dad36 4290 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4291 * If it's not true, a threshold was crossed after last
4292 * call of __mem_cgroup_threshold().
4293 */
5407a562 4294 i = t->current_threshold;
2e72b634
KS
4295
4296 /*
4297 * Iterate backward over array of thresholds starting from
4298 * current_threshold and check if a threshold is crossed.
4299 * If none of thresholds below usage is crossed, we read
4300 * only one element of the array here.
4301 */
4302 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4303 eventfd_signal(t->entries[i].eventfd, 1);
4304
4305 /* i = current_threshold + 1 */
4306 i++;
4307
4308 /*
4309 * Iterate forward over array of thresholds starting from
4310 * current_threshold+1 and check if a threshold is crossed.
4311 * If none of thresholds above usage is crossed, we read
4312 * only one element of the array here.
4313 */
4314 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4315 eventfd_signal(t->entries[i].eventfd, 1);
4316
4317 /* Update current_threshold */
5407a562 4318 t->current_threshold = i - 1;
2e72b634
KS
4319unlock:
4320 rcu_read_unlock();
4321}
4322
4323static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4324{
ad4ca5f4
KS
4325 while (memcg) {
4326 __mem_cgroup_threshold(memcg, false);
4327 if (do_swap_account)
4328 __mem_cgroup_threshold(memcg, true);
4329
4330 memcg = parent_mem_cgroup(memcg);
4331 }
2e72b634
KS
4332}
4333
4334static int compare_thresholds(const void *a, const void *b)
4335{
4336 const struct mem_cgroup_threshold *_a = a;
4337 const struct mem_cgroup_threshold *_b = b;
4338
4339 return _a->threshold - _b->threshold;
4340}
4341
c0ff4b85 4342static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4343{
4344 struct mem_cgroup_eventfd_list *ev;
4345
c0ff4b85 4346 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4347 eventfd_signal(ev->eventfd, 1);
4348 return 0;
4349}
4350
c0ff4b85 4351static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4352{
7d74b06f
KH
4353 struct mem_cgroup *iter;
4354
c0ff4b85 4355 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4356 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4357}
4358
4359static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4360 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4361{
4362 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4363 struct mem_cgroup_thresholds *thresholds;
4364 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4365 int type = MEMFILE_TYPE(cft->private);
4366 u64 threshold, usage;
2c488db2 4367 int i, size, ret;
2e72b634
KS
4368
4369 ret = res_counter_memparse_write_strategy(args, &threshold);
4370 if (ret)
4371 return ret;
4372
4373 mutex_lock(&memcg->thresholds_lock);
2c488db2 4374
2e72b634 4375 if (type == _MEM)
2c488db2 4376 thresholds = &memcg->thresholds;
2e72b634 4377 else if (type == _MEMSWAP)
2c488db2 4378 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4379 else
4380 BUG();
4381
4382 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4383
4384 /* Check if a threshold crossed before adding a new one */
2c488db2 4385 if (thresholds->primary)
2e72b634
KS
4386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4387
2c488db2 4388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4389
4390 /* Allocate memory for new array of thresholds */
2c488db2 4391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4392 GFP_KERNEL);
2c488db2 4393 if (!new) {
2e72b634
KS
4394 ret = -ENOMEM;
4395 goto unlock;
4396 }
2c488db2 4397 new->size = size;
2e72b634
KS
4398
4399 /* Copy thresholds (if any) to new array */
2c488db2
KS
4400 if (thresholds->primary) {
4401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4402 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4403 }
4404
2e72b634 4405 /* Add new threshold */
2c488db2
KS
4406 new->entries[size - 1].eventfd = eventfd;
4407 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4408
4409 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4411 compare_thresholds, NULL);
4412
4413 /* Find current threshold */
2c488db2 4414 new->current_threshold = -1;
2e72b634 4415 for (i = 0; i < size; i++) {
748dad36 4416 if (new->entries[i].threshold <= usage) {
2e72b634 4417 /*
2c488db2
KS
4418 * new->current_threshold will not be used until
4419 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4420 * it here.
4421 */
2c488db2 4422 ++new->current_threshold;
748dad36
SZ
4423 } else
4424 break;
2e72b634
KS
4425 }
4426
2c488db2
KS
4427 /* Free old spare buffer and save old primary buffer as spare */
4428 kfree(thresholds->spare);
4429 thresholds->spare = thresholds->primary;
4430
4431 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4432
907860ed 4433 /* To be sure that nobody uses thresholds */
2e72b634
KS
4434 synchronize_rcu();
4435
2e72b634
KS
4436unlock:
4437 mutex_unlock(&memcg->thresholds_lock);
4438
4439 return ret;
4440}
4441
907860ed 4442static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4443 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4444{
4445 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4446 struct mem_cgroup_thresholds *thresholds;
4447 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4448 int type = MEMFILE_TYPE(cft->private);
4449 u64 usage;
2c488db2 4450 int i, j, size;
2e72b634
KS
4451
4452 mutex_lock(&memcg->thresholds_lock);
4453 if (type == _MEM)
2c488db2 4454 thresholds = &memcg->thresholds;
2e72b634 4455 else if (type == _MEMSWAP)
2c488db2 4456 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4457 else
4458 BUG();
4459
371528ca
AV
4460 if (!thresholds->primary)
4461 goto unlock;
4462
2e72b634
KS
4463 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4464
4465 /* Check if a threshold crossed before removing */
4466 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4467
4468 /* Calculate new number of threshold */
2c488db2
KS
4469 size = 0;
4470 for (i = 0; i < thresholds->primary->size; i++) {
4471 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4472 size++;
4473 }
4474
2c488db2 4475 new = thresholds->spare;
907860ed 4476
2e72b634
KS
4477 /* Set thresholds array to NULL if we don't have thresholds */
4478 if (!size) {
2c488db2
KS
4479 kfree(new);
4480 new = NULL;
907860ed 4481 goto swap_buffers;
2e72b634
KS
4482 }
4483
2c488db2 4484 new->size = size;
2e72b634
KS
4485
4486 /* Copy thresholds and find current threshold */
2c488db2
KS
4487 new->current_threshold = -1;
4488 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4489 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4490 continue;
4491
2c488db2 4492 new->entries[j] = thresholds->primary->entries[i];
748dad36 4493 if (new->entries[j].threshold <= usage) {
2e72b634 4494 /*
2c488db2 4495 * new->current_threshold will not be used
2e72b634
KS
4496 * until rcu_assign_pointer(), so it's safe to increment
4497 * it here.
4498 */
2c488db2 4499 ++new->current_threshold;
2e72b634
KS
4500 }
4501 j++;
4502 }
4503
907860ed 4504swap_buffers:
2c488db2
KS
4505 /* Swap primary and spare array */
4506 thresholds->spare = thresholds->primary;
8c757763
SZ
4507 /* If all events are unregistered, free the spare array */
4508 if (!new) {
4509 kfree(thresholds->spare);
4510 thresholds->spare = NULL;
4511 }
4512
2c488db2 4513 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4514
907860ed 4515 /* To be sure that nobody uses thresholds */
2e72b634 4516 synchronize_rcu();
371528ca 4517unlock:
2e72b634 4518 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4519}
c1e862c1 4520
9490ff27
KH
4521static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4522 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4523{
4524 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4525 struct mem_cgroup_eventfd_list *event;
4526 int type = MEMFILE_TYPE(cft->private);
4527
4528 BUG_ON(type != _OOM_TYPE);
4529 event = kmalloc(sizeof(*event), GFP_KERNEL);
4530 if (!event)
4531 return -ENOMEM;
4532
1af8efe9 4533 spin_lock(&memcg_oom_lock);
9490ff27
KH
4534
4535 event->eventfd = eventfd;
4536 list_add(&event->list, &memcg->oom_notify);
4537
4538 /* already in OOM ? */
79dfdacc 4539 if (atomic_read(&memcg->under_oom))
9490ff27 4540 eventfd_signal(eventfd, 1);
1af8efe9 4541 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4542
4543 return 0;
4544}
4545
907860ed 4546static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4547 struct cftype *cft, struct eventfd_ctx *eventfd)
4548{
c0ff4b85 4549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4550 struct mem_cgroup_eventfd_list *ev, *tmp;
4551 int type = MEMFILE_TYPE(cft->private);
4552
4553 BUG_ON(type != _OOM_TYPE);
4554
1af8efe9 4555 spin_lock(&memcg_oom_lock);
9490ff27 4556
c0ff4b85 4557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4558 if (ev->eventfd == eventfd) {
4559 list_del(&ev->list);
4560 kfree(ev);
4561 }
4562 }
4563
1af8efe9 4564 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4565}
4566
3c11ecf4
KH
4567static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4568 struct cftype *cft, struct cgroup_map_cb *cb)
4569{
c0ff4b85 4570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4571
c0ff4b85 4572 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4573
c0ff4b85 4574 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4575 cb->fill(cb, "under_oom", 1);
4576 else
4577 cb->fill(cb, "under_oom", 0);
4578 return 0;
4579}
4580
3c11ecf4
KH
4581static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4582 struct cftype *cft, u64 val)
4583{
c0ff4b85 4584 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4585 struct mem_cgroup *parent;
4586
4587 /* cannot set to root cgroup and only 0 and 1 are allowed */
4588 if (!cgrp->parent || !((val == 0) || (val == 1)))
4589 return -EINVAL;
4590
4591 parent = mem_cgroup_from_cont(cgrp->parent);
4592
4593 cgroup_lock();
4594 /* oom-kill-disable is a flag for subhierarchy. */
4595 if ((parent->use_hierarchy) ||
c0ff4b85 4596 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4597 cgroup_unlock();
4598 return -EINVAL;
4599 }
c0ff4b85 4600 memcg->oom_kill_disable = val;
4d845ebf 4601 if (!val)
c0ff4b85 4602 memcg_oom_recover(memcg);
3c11ecf4
KH
4603 cgroup_unlock();
4604 return 0;
4605}
4606
c255a458 4607#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4608static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4609{
1d62e436 4610 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4611};
4612
1d62e436 4613static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4614{
1d62e436 4615 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4616}
e5671dfa 4617#else
cbe128e3 4618static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4619{
4620 return 0;
4621}
d1a4c0b3 4622
1d62e436 4623static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4624{
4625}
e5671dfa
GC
4626#endif
4627
8cdea7c0
BS
4628static struct cftype mem_cgroup_files[] = {
4629 {
0eea1030 4630 .name = "usage_in_bytes",
8c7c6e34 4631 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4632 .read = mem_cgroup_read,
9490ff27
KH
4633 .register_event = mem_cgroup_usage_register_event,
4634 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4635 },
c84872e1
PE
4636 {
4637 .name = "max_usage_in_bytes",
8c7c6e34 4638 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4639 .trigger = mem_cgroup_reset,
af36f906 4640 .read = mem_cgroup_read,
c84872e1 4641 },
8cdea7c0 4642 {
0eea1030 4643 .name = "limit_in_bytes",
8c7c6e34 4644 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4645 .write_string = mem_cgroup_write,
af36f906 4646 .read = mem_cgroup_read,
8cdea7c0 4647 },
296c81d8
BS
4648 {
4649 .name = "soft_limit_in_bytes",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4651 .write_string = mem_cgroup_write,
af36f906 4652 .read = mem_cgroup_read,
296c81d8 4653 },
8cdea7c0
BS
4654 {
4655 .name = "failcnt",
8c7c6e34 4656 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4657 .trigger = mem_cgroup_reset,
af36f906 4658 .read = mem_cgroup_read,
8cdea7c0 4659 },
d2ceb9b7
KH
4660 {
4661 .name = "stat",
ab215884 4662 .read_seq_string = memcg_stat_show,
d2ceb9b7 4663 },
c1e862c1
KH
4664 {
4665 .name = "force_empty",
4666 .trigger = mem_cgroup_force_empty_write,
4667 },
18f59ea7
BS
4668 {
4669 .name = "use_hierarchy",
4670 .write_u64 = mem_cgroup_hierarchy_write,
4671 .read_u64 = mem_cgroup_hierarchy_read,
4672 },
a7885eb8
KM
4673 {
4674 .name = "swappiness",
4675 .read_u64 = mem_cgroup_swappiness_read,
4676 .write_u64 = mem_cgroup_swappiness_write,
4677 },
7dc74be0
DN
4678 {
4679 .name = "move_charge_at_immigrate",
4680 .read_u64 = mem_cgroup_move_charge_read,
4681 .write_u64 = mem_cgroup_move_charge_write,
4682 },
9490ff27
KH
4683 {
4684 .name = "oom_control",
3c11ecf4
KH
4685 .read_map = mem_cgroup_oom_control_read,
4686 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4687 .register_event = mem_cgroup_oom_register_event,
4688 .unregister_event = mem_cgroup_oom_unregister_event,
4689 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4690 },
406eb0c9
YH
4691#ifdef CONFIG_NUMA
4692 {
4693 .name = "numa_stat",
ab215884 4694 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4695 },
4696#endif
c255a458 4697#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4698 {
4699 .name = "memsw.usage_in_bytes",
4700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4701 .read = mem_cgroup_read,
9490ff27
KH
4702 .register_event = mem_cgroup_usage_register_event,
4703 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4704 },
4705 {
4706 .name = "memsw.max_usage_in_bytes",
4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4708 .trigger = mem_cgroup_reset,
af36f906 4709 .read = mem_cgroup_read,
8c7c6e34
KH
4710 },
4711 {
4712 .name = "memsw.limit_in_bytes",
4713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4714 .write_string = mem_cgroup_write,
af36f906 4715 .read = mem_cgroup_read,
8c7c6e34
KH
4716 },
4717 {
4718 .name = "memsw.failcnt",
4719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4720 .trigger = mem_cgroup_reset,
af36f906 4721 .read = mem_cgroup_read,
8c7c6e34 4722 },
8c7c6e34 4723#endif
6bc10349 4724 { }, /* terminate */
af36f906 4725};
8c7c6e34 4726
c0ff4b85 4727static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4728{
4729 struct mem_cgroup_per_node *pn;
1ecaab2b 4730 struct mem_cgroup_per_zone *mz;
41e3355d 4731 int zone, tmp = node;
1ecaab2b
KH
4732 /*
4733 * This routine is called against possible nodes.
4734 * But it's BUG to call kmalloc() against offline node.
4735 *
4736 * TODO: this routine can waste much memory for nodes which will
4737 * never be onlined. It's better to use memory hotplug callback
4738 * function.
4739 */
41e3355d
KH
4740 if (!node_state(node, N_NORMAL_MEMORY))
4741 tmp = -1;
17295c88 4742 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4743 if (!pn)
4744 return 1;
1ecaab2b 4745
1ecaab2b
KH
4746 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4747 mz = &pn->zoneinfo[zone];
7f5e86c2 4748 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4749 mz->usage_in_excess = 0;
4e416953 4750 mz->on_tree = false;
d79154bb 4751 mz->memcg = memcg;
1ecaab2b 4752 }
0a619e58 4753 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4754 return 0;
4755}
4756
c0ff4b85 4757static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4758{
c0ff4b85 4759 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4760}
4761
33327948
KH
4762static struct mem_cgroup *mem_cgroup_alloc(void)
4763{
d79154bb 4764 struct mem_cgroup *memcg;
c62b1a3b 4765 int size = sizeof(struct mem_cgroup);
33327948 4766
c62b1a3b 4767 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4768 if (size < PAGE_SIZE)
d79154bb 4769 memcg = kzalloc(size, GFP_KERNEL);
33327948 4770 else
d79154bb 4771 memcg = vzalloc(size);
33327948 4772
d79154bb 4773 if (!memcg)
e7bbcdf3
DC
4774 return NULL;
4775
d79154bb
HD
4776 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777 if (!memcg->stat)
d2e61b8d 4778 goto out_free;
d79154bb
HD
4779 spin_lock_init(&memcg->pcp_counter_lock);
4780 return memcg;
d2e61b8d
DC
4781
4782out_free:
4783 if (size < PAGE_SIZE)
d79154bb 4784 kfree(memcg);
d2e61b8d 4785 else
d79154bb 4786 vfree(memcg);
d2e61b8d 4787 return NULL;
33327948
KH
4788}
4789
59927fb9 4790/*
3afe36b1 4791 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4792 * but in process context. The work_freeing structure is overlaid
4793 * on the rcu_freeing structure, which itself is overlaid on memsw.
4794 */
3afe36b1 4795static void free_work(struct work_struct *work)
59927fb9
HD
4796{
4797 struct mem_cgroup *memcg;
3afe36b1 4798 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4799
4800 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4801 /*
4802 * We need to make sure that (at least for now), the jump label
4803 * destruction code runs outside of the cgroup lock. This is because
4804 * get_online_cpus(), which is called from the static_branch update,
4805 * can't be called inside the cgroup_lock. cpusets are the ones
4806 * enforcing this dependency, so if they ever change, we might as well.
4807 *
4808 * schedule_work() will guarantee this happens. Be careful if you need
4809 * to move this code around, and make sure it is outside
4810 * the cgroup_lock.
4811 */
4812 disarm_sock_keys(memcg);
3afe36b1
GC
4813 if (size < PAGE_SIZE)
4814 kfree(memcg);
4815 else
4816 vfree(memcg);
59927fb9 4817}
3afe36b1
GC
4818
4819static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4820{
4821 struct mem_cgroup *memcg;
4822
4823 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4824 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4825 schedule_work(&memcg->work_freeing);
4826}
4827
8c7c6e34
KH
4828/*
4829 * At destroying mem_cgroup, references from swap_cgroup can remain.
4830 * (scanning all at force_empty is too costly...)
4831 *
4832 * Instead of clearing all references at force_empty, we remember
4833 * the number of reference from swap_cgroup and free mem_cgroup when
4834 * it goes down to 0.
4835 *
8c7c6e34
KH
4836 * Removal of cgroup itself succeeds regardless of refs from swap.
4837 */
4838
c0ff4b85 4839static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4840{
08e552c6
KH
4841 int node;
4842
c0ff4b85
R
4843 mem_cgroup_remove_from_trees(memcg);
4844 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4845
3ed28fa1 4846 for_each_node(node)
c0ff4b85 4847 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4848
c0ff4b85 4849 free_percpu(memcg->stat);
3afe36b1 4850 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4851}
4852
c0ff4b85 4853static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4854{
c0ff4b85 4855 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4856}
4857
c0ff4b85 4858static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4859{
c0ff4b85
R
4860 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4861 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4862 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4863 if (parent)
4864 mem_cgroup_put(parent);
4865 }
8c7c6e34
KH
4866}
4867
c0ff4b85 4868static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4869{
c0ff4b85 4870 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4871}
4872
7bcc1bb1
DN
4873/*
4874 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4875 */
e1aab161 4876struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4877{
c0ff4b85 4878 if (!memcg->res.parent)
7bcc1bb1 4879 return NULL;
c0ff4b85 4880 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4881}
e1aab161 4882EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4883
c255a458 4884#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4885static void __init enable_swap_cgroup(void)
4886{
f8d66542 4887 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4888 do_swap_account = 1;
4889}
4890#else
4891static void __init enable_swap_cgroup(void)
4892{
4893}
4894#endif
4895
f64c3f54
BS
4896static int mem_cgroup_soft_limit_tree_init(void)
4897{
4898 struct mem_cgroup_tree_per_node *rtpn;
4899 struct mem_cgroup_tree_per_zone *rtpz;
4900 int tmp, node, zone;
4901
3ed28fa1 4902 for_each_node(node) {
f64c3f54
BS
4903 tmp = node;
4904 if (!node_state(node, N_NORMAL_MEMORY))
4905 tmp = -1;
4906 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4907 if (!rtpn)
c3cecc68 4908 goto err_cleanup;
f64c3f54
BS
4909
4910 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4911
4912 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4913 rtpz = &rtpn->rb_tree_per_zone[zone];
4914 rtpz->rb_root = RB_ROOT;
4915 spin_lock_init(&rtpz->lock);
4916 }
4917 }
4918 return 0;
c3cecc68
MH
4919
4920err_cleanup:
3ed28fa1 4921 for_each_node(node) {
c3cecc68
MH
4922 if (!soft_limit_tree.rb_tree_per_node[node])
4923 break;
4924 kfree(soft_limit_tree.rb_tree_per_node[node]);
4925 soft_limit_tree.rb_tree_per_node[node] = NULL;
4926 }
4927 return 1;
4928
f64c3f54
BS
4929}
4930
0eb253e2 4931static struct cgroup_subsys_state * __ref
761b3ef5 4932mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4933{
c0ff4b85 4934 struct mem_cgroup *memcg, *parent;
04046e1a 4935 long error = -ENOMEM;
6d12e2d8 4936 int node;
8cdea7c0 4937
c0ff4b85
R
4938 memcg = mem_cgroup_alloc();
4939 if (!memcg)
04046e1a 4940 return ERR_PTR(error);
78fb7466 4941
3ed28fa1 4942 for_each_node(node)
c0ff4b85 4943 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4944 goto free_out;
f64c3f54 4945
c077719b 4946 /* root ? */
28dbc4b6 4947 if (cont->parent == NULL) {
cdec2e42 4948 int cpu;
c077719b 4949 enable_swap_cgroup();
28dbc4b6 4950 parent = NULL;
f64c3f54
BS
4951 if (mem_cgroup_soft_limit_tree_init())
4952 goto free_out;
a41c58a6 4953 root_mem_cgroup = memcg;
cdec2e42
KH
4954 for_each_possible_cpu(cpu) {
4955 struct memcg_stock_pcp *stock =
4956 &per_cpu(memcg_stock, cpu);
4957 INIT_WORK(&stock->work, drain_local_stock);
4958 }
711d3d2c 4959 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4960 } else {
28dbc4b6 4961 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4962 memcg->use_hierarchy = parent->use_hierarchy;
4963 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4964 }
28dbc4b6 4965
18f59ea7 4966 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4967 res_counter_init(&memcg->res, &parent->res);
4968 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4969 /*
4970 * We increment refcnt of the parent to ensure that we can
4971 * safely access it on res_counter_charge/uncharge.
4972 * This refcnt will be decremented when freeing this
4973 * mem_cgroup(see mem_cgroup_put).
4974 */
4975 mem_cgroup_get(parent);
18f59ea7 4976 } else {
c0ff4b85
R
4977 res_counter_init(&memcg->res, NULL);
4978 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
4979 /*
4980 * Deeper hierachy with use_hierarchy == false doesn't make
4981 * much sense so let cgroup subsystem know about this
4982 * unfortunate state in our controller.
4983 */
4984 if (parent && parent != root_mem_cgroup)
4985 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 4986 }
c0ff4b85
R
4987 memcg->last_scanned_node = MAX_NUMNODES;
4988 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4989
a7885eb8 4990 if (parent)
c0ff4b85
R
4991 memcg->swappiness = mem_cgroup_swappiness(parent);
4992 atomic_set(&memcg->refcnt, 1);
4993 memcg->move_charge_at_immigrate = 0;
4994 mutex_init(&memcg->thresholds_lock);
312734c0 4995 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4996
4997 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4998 if (error) {
4999 /*
5000 * We call put now because our (and parent's) refcnts
5001 * are already in place. mem_cgroup_put() will internally
5002 * call __mem_cgroup_free, so return directly
5003 */
5004 mem_cgroup_put(memcg);
5005 return ERR_PTR(error);
5006 }
c0ff4b85 5007 return &memcg->css;
6d12e2d8 5008free_out:
c0ff4b85 5009 __mem_cgroup_free(memcg);
04046e1a 5010 return ERR_PTR(error);
8cdea7c0
BS
5011}
5012
761b3ef5 5013static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5014{
c0ff4b85 5015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5016
c0ff4b85 5017 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5018}
5019
761b3ef5 5020static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5021{
c0ff4b85 5022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5023
1d62e436 5024 kmem_cgroup_destroy(memcg);
d1a4c0b3 5025
c0ff4b85 5026 mem_cgroup_put(memcg);
8cdea7c0
BS
5027}
5028
02491447 5029#ifdef CONFIG_MMU
7dc74be0 5030/* Handlers for move charge at task migration. */
854ffa8d
DN
5031#define PRECHARGE_COUNT_AT_ONCE 256
5032static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5033{
854ffa8d
DN
5034 int ret = 0;
5035 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5036 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5037
c0ff4b85 5038 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5039 mc.precharge += count;
5040 /* we don't need css_get for root */
5041 return ret;
5042 }
5043 /* try to charge at once */
5044 if (count > 1) {
5045 struct res_counter *dummy;
5046 /*
c0ff4b85 5047 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5048 * by cgroup_lock_live_cgroup() that it is not removed and we
5049 * are still under the same cgroup_mutex. So we can postpone
5050 * css_get().
5051 */
c0ff4b85 5052 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5053 goto one_by_one;
c0ff4b85 5054 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5055 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5056 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5057 goto one_by_one;
5058 }
5059 mc.precharge += count;
854ffa8d
DN
5060 return ret;
5061 }
5062one_by_one:
5063 /* fall back to one by one charge */
5064 while (count--) {
5065 if (signal_pending(current)) {
5066 ret = -EINTR;
5067 break;
5068 }
5069 if (!batch_count--) {
5070 batch_count = PRECHARGE_COUNT_AT_ONCE;
5071 cond_resched();
5072 }
c0ff4b85
R
5073 ret = __mem_cgroup_try_charge(NULL,
5074 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5075 if (ret)
854ffa8d 5076 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5077 return ret;
854ffa8d
DN
5078 mc.precharge++;
5079 }
4ffef5fe
DN
5080 return ret;
5081}
5082
5083/**
8d32ff84 5084 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5085 * @vma: the vma the pte to be checked belongs
5086 * @addr: the address corresponding to the pte to be checked
5087 * @ptent: the pte to be checked
02491447 5088 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5089 *
5090 * Returns
5091 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5092 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5093 * move charge. if @target is not NULL, the page is stored in target->page
5094 * with extra refcnt got(Callers should handle it).
02491447
DN
5095 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5096 * target for charge migration. if @target is not NULL, the entry is stored
5097 * in target->ent.
4ffef5fe
DN
5098 *
5099 * Called with pte lock held.
5100 */
4ffef5fe
DN
5101union mc_target {
5102 struct page *page;
02491447 5103 swp_entry_t ent;
4ffef5fe
DN
5104};
5105
4ffef5fe 5106enum mc_target_type {
8d32ff84 5107 MC_TARGET_NONE = 0,
4ffef5fe 5108 MC_TARGET_PAGE,
02491447 5109 MC_TARGET_SWAP,
4ffef5fe
DN
5110};
5111
90254a65
DN
5112static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5113 unsigned long addr, pte_t ptent)
4ffef5fe 5114{
90254a65 5115 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5116
90254a65
DN
5117 if (!page || !page_mapped(page))
5118 return NULL;
5119 if (PageAnon(page)) {
5120 /* we don't move shared anon */
4b91355e 5121 if (!move_anon())
90254a65 5122 return NULL;
87946a72
DN
5123 } else if (!move_file())
5124 /* we ignore mapcount for file pages */
90254a65
DN
5125 return NULL;
5126 if (!get_page_unless_zero(page))
5127 return NULL;
5128
5129 return page;
5130}
5131
4b91355e 5132#ifdef CONFIG_SWAP
90254a65
DN
5133static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5135{
90254a65
DN
5136 struct page *page = NULL;
5137 swp_entry_t ent = pte_to_swp_entry(ptent);
5138
5139 if (!move_anon() || non_swap_entry(ent))
5140 return NULL;
4b91355e
KH
5141 /*
5142 * Because lookup_swap_cache() updates some statistics counter,
5143 * we call find_get_page() with swapper_space directly.
5144 */
5145 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5146 if (do_swap_account)
5147 entry->val = ent.val;
5148
5149 return page;
5150}
4b91355e
KH
5151#else
5152static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5153 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5154{
5155 return NULL;
5156}
5157#endif
90254a65 5158
87946a72
DN
5159static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5160 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5161{
5162 struct page *page = NULL;
87946a72
DN
5163 struct address_space *mapping;
5164 pgoff_t pgoff;
5165
5166 if (!vma->vm_file) /* anonymous vma */
5167 return NULL;
5168 if (!move_file())
5169 return NULL;
5170
87946a72
DN
5171 mapping = vma->vm_file->f_mapping;
5172 if (pte_none(ptent))
5173 pgoff = linear_page_index(vma, addr);
5174 else /* pte_file(ptent) is true */
5175 pgoff = pte_to_pgoff(ptent);
5176
5177 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5178 page = find_get_page(mapping, pgoff);
5179
5180#ifdef CONFIG_SWAP
5181 /* shmem/tmpfs may report page out on swap: account for that too. */
5182 if (radix_tree_exceptional_entry(page)) {
5183 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5184 if (do_swap_account)
aa3b1895
HD
5185 *entry = swap;
5186 page = find_get_page(&swapper_space, swap.val);
87946a72 5187 }
aa3b1895 5188#endif
87946a72
DN
5189 return page;
5190}
5191
8d32ff84 5192static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5193 unsigned long addr, pte_t ptent, union mc_target *target)
5194{
5195 struct page *page = NULL;
5196 struct page_cgroup *pc;
8d32ff84 5197 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5198 swp_entry_t ent = { .val = 0 };
5199
5200 if (pte_present(ptent))
5201 page = mc_handle_present_pte(vma, addr, ptent);
5202 else if (is_swap_pte(ptent))
5203 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5204 else if (pte_none(ptent) || pte_file(ptent))
5205 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5206
5207 if (!page && !ent.val)
8d32ff84 5208 return ret;
02491447
DN
5209 if (page) {
5210 pc = lookup_page_cgroup(page);
5211 /*
5212 * Do only loose check w/o page_cgroup lock.
5213 * mem_cgroup_move_account() checks the pc is valid or not under
5214 * the lock.
5215 */
5216 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5217 ret = MC_TARGET_PAGE;
5218 if (target)
5219 target->page = page;
5220 }
5221 if (!ret || !target)
5222 put_page(page);
5223 }
90254a65
DN
5224 /* There is a swap entry and a page doesn't exist or isn't charged */
5225 if (ent.val && !ret &&
9fb4b7cc 5226 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5227 ret = MC_TARGET_SWAP;
5228 if (target)
5229 target->ent = ent;
4ffef5fe 5230 }
4ffef5fe
DN
5231 return ret;
5232}
5233
12724850
NH
5234#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5235/*
5236 * We don't consider swapping or file mapped pages because THP does not
5237 * support them for now.
5238 * Caller should make sure that pmd_trans_huge(pmd) is true.
5239 */
5240static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5241 unsigned long addr, pmd_t pmd, union mc_target *target)
5242{
5243 struct page *page = NULL;
5244 struct page_cgroup *pc;
5245 enum mc_target_type ret = MC_TARGET_NONE;
5246
5247 page = pmd_page(pmd);
5248 VM_BUG_ON(!page || !PageHead(page));
5249 if (!move_anon())
5250 return ret;
5251 pc = lookup_page_cgroup(page);
5252 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5253 ret = MC_TARGET_PAGE;
5254 if (target) {
5255 get_page(page);
5256 target->page = page;
5257 }
5258 }
5259 return ret;
5260}
5261#else
5262static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5263 unsigned long addr, pmd_t pmd, union mc_target *target)
5264{
5265 return MC_TARGET_NONE;
5266}
5267#endif
5268
4ffef5fe
DN
5269static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5270 unsigned long addr, unsigned long end,
5271 struct mm_walk *walk)
5272{
5273 struct vm_area_struct *vma = walk->private;
5274 pte_t *pte;
5275 spinlock_t *ptl;
5276
12724850
NH
5277 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5278 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5279 mc.precharge += HPAGE_PMD_NR;
5280 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5281 return 0;
12724850 5282 }
03319327 5283
45f83cef
AA
5284 if (pmd_trans_unstable(pmd))
5285 return 0;
4ffef5fe
DN
5286 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5287 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5288 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5289 mc.precharge++; /* increment precharge temporarily */
5290 pte_unmap_unlock(pte - 1, ptl);
5291 cond_resched();
5292
7dc74be0
DN
5293 return 0;
5294}
5295
4ffef5fe
DN
5296static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5297{
5298 unsigned long precharge;
5299 struct vm_area_struct *vma;
5300
dfe076b0 5301 down_read(&mm->mmap_sem);
4ffef5fe
DN
5302 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5303 struct mm_walk mem_cgroup_count_precharge_walk = {
5304 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5305 .mm = mm,
5306 .private = vma,
5307 };
5308 if (is_vm_hugetlb_page(vma))
5309 continue;
4ffef5fe
DN
5310 walk_page_range(vma->vm_start, vma->vm_end,
5311 &mem_cgroup_count_precharge_walk);
5312 }
dfe076b0 5313 up_read(&mm->mmap_sem);
4ffef5fe
DN
5314
5315 precharge = mc.precharge;
5316 mc.precharge = 0;
5317
5318 return precharge;
5319}
5320
4ffef5fe
DN
5321static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5322{
dfe076b0
DN
5323 unsigned long precharge = mem_cgroup_count_precharge(mm);
5324
5325 VM_BUG_ON(mc.moving_task);
5326 mc.moving_task = current;
5327 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5328}
5329
dfe076b0
DN
5330/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5331static void __mem_cgroup_clear_mc(void)
4ffef5fe 5332{
2bd9bb20
KH
5333 struct mem_cgroup *from = mc.from;
5334 struct mem_cgroup *to = mc.to;
5335
4ffef5fe 5336 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5337 if (mc.precharge) {
5338 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5339 mc.precharge = 0;
5340 }
5341 /*
5342 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5343 * we must uncharge here.
5344 */
5345 if (mc.moved_charge) {
5346 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5347 mc.moved_charge = 0;
4ffef5fe 5348 }
483c30b5
DN
5349 /* we must fixup refcnts and charges */
5350 if (mc.moved_swap) {
483c30b5
DN
5351 /* uncharge swap account from the old cgroup */
5352 if (!mem_cgroup_is_root(mc.from))
5353 res_counter_uncharge(&mc.from->memsw,
5354 PAGE_SIZE * mc.moved_swap);
5355 __mem_cgroup_put(mc.from, mc.moved_swap);
5356
5357 if (!mem_cgroup_is_root(mc.to)) {
5358 /*
5359 * we charged both to->res and to->memsw, so we should
5360 * uncharge to->res.
5361 */
5362 res_counter_uncharge(&mc.to->res,
5363 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5364 }
5365 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5366 mc.moved_swap = 0;
5367 }
dfe076b0
DN
5368 memcg_oom_recover(from);
5369 memcg_oom_recover(to);
5370 wake_up_all(&mc.waitq);
5371}
5372
5373static void mem_cgroup_clear_mc(void)
5374{
5375 struct mem_cgroup *from = mc.from;
5376
5377 /*
5378 * we must clear moving_task before waking up waiters at the end of
5379 * task migration.
5380 */
5381 mc.moving_task = NULL;
5382 __mem_cgroup_clear_mc();
2bd9bb20 5383 spin_lock(&mc.lock);
4ffef5fe
DN
5384 mc.from = NULL;
5385 mc.to = NULL;
2bd9bb20 5386 spin_unlock(&mc.lock);
32047e2a 5387 mem_cgroup_end_move(from);
4ffef5fe
DN
5388}
5389
761b3ef5
LZ
5390static int mem_cgroup_can_attach(struct cgroup *cgroup,
5391 struct cgroup_taskset *tset)
7dc74be0 5392{
2f7ee569 5393 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5394 int ret = 0;
c0ff4b85 5395 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5396
c0ff4b85 5397 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5398 struct mm_struct *mm;
5399 struct mem_cgroup *from = mem_cgroup_from_task(p);
5400
c0ff4b85 5401 VM_BUG_ON(from == memcg);
7dc74be0
DN
5402
5403 mm = get_task_mm(p);
5404 if (!mm)
5405 return 0;
7dc74be0 5406 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5407 if (mm->owner == p) {
5408 VM_BUG_ON(mc.from);
5409 VM_BUG_ON(mc.to);
5410 VM_BUG_ON(mc.precharge);
854ffa8d 5411 VM_BUG_ON(mc.moved_charge);
483c30b5 5412 VM_BUG_ON(mc.moved_swap);
32047e2a 5413 mem_cgroup_start_move(from);
2bd9bb20 5414 spin_lock(&mc.lock);
4ffef5fe 5415 mc.from = from;
c0ff4b85 5416 mc.to = memcg;
2bd9bb20 5417 spin_unlock(&mc.lock);
dfe076b0 5418 /* We set mc.moving_task later */
4ffef5fe
DN
5419
5420 ret = mem_cgroup_precharge_mc(mm);
5421 if (ret)
5422 mem_cgroup_clear_mc();
dfe076b0
DN
5423 }
5424 mmput(mm);
7dc74be0
DN
5425 }
5426 return ret;
5427}
5428
761b3ef5
LZ
5429static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5430 struct cgroup_taskset *tset)
7dc74be0 5431{
4ffef5fe 5432 mem_cgroup_clear_mc();
7dc74be0
DN
5433}
5434
4ffef5fe
DN
5435static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5436 unsigned long addr, unsigned long end,
5437 struct mm_walk *walk)
7dc74be0 5438{
4ffef5fe
DN
5439 int ret = 0;
5440 struct vm_area_struct *vma = walk->private;
5441 pte_t *pte;
5442 spinlock_t *ptl;
12724850
NH
5443 enum mc_target_type target_type;
5444 union mc_target target;
5445 struct page *page;
5446 struct page_cgroup *pc;
4ffef5fe 5447
12724850
NH
5448 /*
5449 * We don't take compound_lock() here but no race with splitting thp
5450 * happens because:
5451 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5452 * under splitting, which means there's no concurrent thp split,
5453 * - if another thread runs into split_huge_page() just after we
5454 * entered this if-block, the thread must wait for page table lock
5455 * to be unlocked in __split_huge_page_splitting(), where the main
5456 * part of thp split is not executed yet.
5457 */
5458 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5459 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5460 spin_unlock(&vma->vm_mm->page_table_lock);
5461 return 0;
5462 }
5463 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5464 if (target_type == MC_TARGET_PAGE) {
5465 page = target.page;
5466 if (!isolate_lru_page(page)) {
5467 pc = lookup_page_cgroup(page);
5468 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5469 pc, mc.from, mc.to)) {
12724850
NH
5470 mc.precharge -= HPAGE_PMD_NR;
5471 mc.moved_charge += HPAGE_PMD_NR;
5472 }
5473 putback_lru_page(page);
5474 }
5475 put_page(page);
5476 }
5477 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5478 return 0;
12724850
NH
5479 }
5480
45f83cef
AA
5481 if (pmd_trans_unstable(pmd))
5482 return 0;
4ffef5fe
DN
5483retry:
5484 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5485 for (; addr != end; addr += PAGE_SIZE) {
5486 pte_t ptent = *(pte++);
02491447 5487 swp_entry_t ent;
4ffef5fe
DN
5488
5489 if (!mc.precharge)
5490 break;
5491
8d32ff84 5492 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5493 case MC_TARGET_PAGE:
5494 page = target.page;
5495 if (isolate_lru_page(page))
5496 goto put;
5497 pc = lookup_page_cgroup(page);
7ec99d62 5498 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5499 mc.from, mc.to)) {
4ffef5fe 5500 mc.precharge--;
854ffa8d
DN
5501 /* we uncharge from mc.from later. */
5502 mc.moved_charge++;
4ffef5fe
DN
5503 }
5504 putback_lru_page(page);
8d32ff84 5505put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5506 put_page(page);
5507 break;
02491447
DN
5508 case MC_TARGET_SWAP:
5509 ent = target.ent;
e91cbb42 5510 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5511 mc.precharge--;
483c30b5
DN
5512 /* we fixup refcnts and charges later. */
5513 mc.moved_swap++;
5514 }
02491447 5515 break;
4ffef5fe
DN
5516 default:
5517 break;
5518 }
5519 }
5520 pte_unmap_unlock(pte - 1, ptl);
5521 cond_resched();
5522
5523 if (addr != end) {
5524 /*
5525 * We have consumed all precharges we got in can_attach().
5526 * We try charge one by one, but don't do any additional
5527 * charges to mc.to if we have failed in charge once in attach()
5528 * phase.
5529 */
854ffa8d 5530 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5531 if (!ret)
5532 goto retry;
5533 }
5534
5535 return ret;
5536}
5537
5538static void mem_cgroup_move_charge(struct mm_struct *mm)
5539{
5540 struct vm_area_struct *vma;
5541
5542 lru_add_drain_all();
dfe076b0
DN
5543retry:
5544 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5545 /*
5546 * Someone who are holding the mmap_sem might be waiting in
5547 * waitq. So we cancel all extra charges, wake up all waiters,
5548 * and retry. Because we cancel precharges, we might not be able
5549 * to move enough charges, but moving charge is a best-effort
5550 * feature anyway, so it wouldn't be a big problem.
5551 */
5552 __mem_cgroup_clear_mc();
5553 cond_resched();
5554 goto retry;
5555 }
4ffef5fe
DN
5556 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5557 int ret;
5558 struct mm_walk mem_cgroup_move_charge_walk = {
5559 .pmd_entry = mem_cgroup_move_charge_pte_range,
5560 .mm = mm,
5561 .private = vma,
5562 };
5563 if (is_vm_hugetlb_page(vma))
5564 continue;
4ffef5fe
DN
5565 ret = walk_page_range(vma->vm_start, vma->vm_end,
5566 &mem_cgroup_move_charge_walk);
5567 if (ret)
5568 /*
5569 * means we have consumed all precharges and failed in
5570 * doing additional charge. Just abandon here.
5571 */
5572 break;
5573 }
dfe076b0 5574 up_read(&mm->mmap_sem);
7dc74be0
DN
5575}
5576
761b3ef5
LZ
5577static void mem_cgroup_move_task(struct cgroup *cont,
5578 struct cgroup_taskset *tset)
67e465a7 5579{
2f7ee569 5580 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5581 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5582
dfe076b0 5583 if (mm) {
a433658c
KM
5584 if (mc.to)
5585 mem_cgroup_move_charge(mm);
dfe076b0
DN
5586 mmput(mm);
5587 }
a433658c
KM
5588 if (mc.to)
5589 mem_cgroup_clear_mc();
67e465a7 5590}
5cfb80a7 5591#else /* !CONFIG_MMU */
761b3ef5
LZ
5592static int mem_cgroup_can_attach(struct cgroup *cgroup,
5593 struct cgroup_taskset *tset)
5cfb80a7
DN
5594{
5595 return 0;
5596}
761b3ef5
LZ
5597static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5598 struct cgroup_taskset *tset)
5cfb80a7
DN
5599{
5600}
761b3ef5
LZ
5601static void mem_cgroup_move_task(struct cgroup *cont,
5602 struct cgroup_taskset *tset)
5cfb80a7
DN
5603{
5604}
5605#endif
67e465a7 5606
8cdea7c0
BS
5607struct cgroup_subsys mem_cgroup_subsys = {
5608 .name = "memory",
5609 .subsys_id = mem_cgroup_subsys_id,
5610 .create = mem_cgroup_create,
df878fb0 5611 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5612 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5613 .can_attach = mem_cgroup_can_attach,
5614 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5615 .attach = mem_cgroup_move_task,
6bc10349 5616 .base_cftypes = mem_cgroup_files,
6d12e2d8 5617 .early_init = 0,
04046e1a 5618 .use_id = 1,
48ddbe19 5619 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5620};
c077719b 5621
c255a458 5622#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5623static int __init enable_swap_account(char *s)
5624{
5625 /* consider enabled if no parameter or 1 is given */
a2c8990a 5626 if (!strcmp(s, "1"))
a42c390c 5627 really_do_swap_account = 1;
a2c8990a 5628 else if (!strcmp(s, "0"))
a42c390c
MH
5629 really_do_swap_account = 0;
5630 return 1;
5631}
a2c8990a 5632__setup("swapaccount=", enable_swap_account);
c077719b 5633
c077719b 5634#endif
This page took 0.831554 seconds and 5 git commands to generate.