cgroup: replace cftype->read_seq_string() with cftype->seq_show()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
33327948 52#include <linux/vmalloc.h>
70ddf637 53#include <linux/vmpressure.h>
b69408e8 54#include <linux/mm_inline.h>
52d4b9ac 55#include <linux/page_cgroup.h>
cdec2e42 56#include <linux/cpu.h>
158e0a2d 57#include <linux/oom.h>
0056f4e6 58#include <linux/lockdep.h>
79bd9814 59#include <linux/file.h>
08e552c6 60#include "internal.h"
d1a4c0b3 61#include <net/sock.h>
4bd2c1ee 62#include <net/ip.h>
d1a4c0b3 63#include <net/tcp_memcontrol.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
8697d331
BS
66#include <asm/uaccess.h>
67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
a181b0e8 70struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
71EXPORT_SYMBOL(mem_cgroup_subsys);
72
a181b0e8 73#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 74static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 75
c255a458 76#ifdef CONFIG_MEMCG_SWAP
338c8431 77/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 78int do_swap_account __read_mostly;
a42c390c
MH
79
80/* for remember boot option*/
c255a458 81#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
82static int really_do_swap_account __initdata = 1;
83#else
84static int really_do_swap_account __initdata = 0;
85#endif
86
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
91
af7c4b0e
JW
92static const char * const mem_cgroup_stat_names[] = {
93 "cache",
94 "rss",
b070e65c 95 "rss_huge",
af7c4b0e 96 "mapped_file",
3ea67d06 97 "writeback",
af7c4b0e
JW
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
58cf188e
SZ
116static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122};
123
7a159cc9
JW
124/*
125 * Per memcg event counter is incremented at every pagein/pageout. With THP,
126 * it will be incremated by the number of pages. This counter is used for
127 * for trigger some periodic events. This is straightforward and better
128 * than using jiffies etc. to handle periodic memcg event.
129 */
130enum mem_cgroup_events_target {
131 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 132 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 133 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
134 MEM_CGROUP_NTARGETS,
135};
a0db00fc
KS
136#define THRESHOLDS_EVENTS_TARGET 128
137#define SOFTLIMIT_EVENTS_TARGET 1024
138#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 139
d52aa412 140struct mem_cgroup_stat_cpu {
7a159cc9 141 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 142 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 143 unsigned long nr_page_events;
7a159cc9 144 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
145};
146
527a5ec9 147struct mem_cgroup_reclaim_iter {
5f578161
MH
148 /*
149 * last scanned hierarchy member. Valid only if last_dead_count
150 * matches memcg->dead_count of the hierarchy root group.
151 */
542f85f9 152 struct mem_cgroup *last_visited;
5f578161
MH
153 unsigned long last_dead_count;
154
527a5ec9
JW
155 /* scan generation, increased every round-trip */
156 unsigned int generation;
157};
158
6d12e2d8
KH
159/*
160 * per-zone information in memory controller.
161 */
6d12e2d8 162struct mem_cgroup_per_zone {
6290df54 163 struct lruvec lruvec;
1eb49272 164 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 165
527a5ec9
JW
166 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167
bb4cc1a8
AM
168 struct rb_node tree_node; /* RB tree node */
169 unsigned long long usage_in_excess;/* Set to the value by which */
170 /* the soft limit is exceeded*/
171 bool on_tree;
d79154bb 172 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 173 /* use container_of */
6d12e2d8 174};
6d12e2d8
KH
175
176struct mem_cgroup_per_node {
177 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178};
179
bb4cc1a8
AM
180/*
181 * Cgroups above their limits are maintained in a RB-Tree, independent of
182 * their hierarchy representation
183 */
184
185struct mem_cgroup_tree_per_zone {
186 struct rb_root rb_root;
187 spinlock_t lock;
188};
189
190struct mem_cgroup_tree_per_node {
191 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192};
193
194struct mem_cgroup_tree {
195 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196};
197
198static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199
2e72b634
KS
200struct mem_cgroup_threshold {
201 struct eventfd_ctx *eventfd;
202 u64 threshold;
203};
204
9490ff27 205/* For threshold */
2e72b634 206struct mem_cgroup_threshold_ary {
748dad36 207 /* An array index points to threshold just below or equal to usage. */
5407a562 208 int current_threshold;
2e72b634
KS
209 /* Size of entries[] */
210 unsigned int size;
211 /* Array of thresholds */
212 struct mem_cgroup_threshold entries[0];
213};
2c488db2
KS
214
215struct mem_cgroup_thresholds {
216 /* Primary thresholds array */
217 struct mem_cgroup_threshold_ary *primary;
218 /*
219 * Spare threshold array.
220 * This is needed to make mem_cgroup_unregister_event() "never fail".
221 * It must be able to store at least primary->size - 1 entries.
222 */
223 struct mem_cgroup_threshold_ary *spare;
224};
225
9490ff27
KH
226/* for OOM */
227struct mem_cgroup_eventfd_list {
228 struct list_head list;
229 struct eventfd_ctx *eventfd;
230};
2e72b634 231
79bd9814
TH
232/*
233 * cgroup_event represents events which userspace want to receive.
234 */
3bc942f3 235struct mem_cgroup_event {
79bd9814 236 /*
59b6f873 237 * memcg which the event belongs to.
79bd9814 238 */
59b6f873 239 struct mem_cgroup *memcg;
79bd9814
TH
240 /*
241 * eventfd to signal userspace about the event.
242 */
243 struct eventfd_ctx *eventfd;
244 /*
245 * Each of these stored in a list by the cgroup.
246 */
247 struct list_head list;
fba94807
TH
248 /*
249 * register_event() callback will be used to add new userspace
250 * waiter for changes related to this event. Use eventfd_signal()
251 * on eventfd to send notification to userspace.
252 */
59b6f873 253 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 254 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
255 /*
256 * unregister_event() callback will be called when userspace closes
257 * the eventfd or on cgroup removing. This callback must be set,
258 * if you want provide notification functionality.
259 */
59b6f873 260 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 261 struct eventfd_ctx *eventfd);
79bd9814
TH
262 /*
263 * All fields below needed to unregister event when
264 * userspace closes eventfd.
265 */
266 poll_table pt;
267 wait_queue_head_t *wqh;
268 wait_queue_t wait;
269 struct work_struct remove;
270};
271
c0ff4b85
R
272static void mem_cgroup_threshold(struct mem_cgroup *memcg);
273static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 274
8cdea7c0
BS
275/*
276 * The memory controller data structure. The memory controller controls both
277 * page cache and RSS per cgroup. We would eventually like to provide
278 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
279 * to help the administrator determine what knobs to tune.
280 *
281 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
282 * we hit the water mark. May be even add a low water mark, such that
283 * no reclaim occurs from a cgroup at it's low water mark, this is
284 * a feature that will be implemented much later in the future.
8cdea7c0
BS
285 */
286struct mem_cgroup {
287 struct cgroup_subsys_state css;
288 /*
289 * the counter to account for memory usage
290 */
291 struct res_counter res;
59927fb9 292
70ddf637
AV
293 /* vmpressure notifications */
294 struct vmpressure vmpressure;
295
465939a1
LZ
296 /*
297 * the counter to account for mem+swap usage.
298 */
299 struct res_counter memsw;
59927fb9 300
510fc4e1
GC
301 /*
302 * the counter to account for kernel memory usage.
303 */
304 struct res_counter kmem;
18f59ea7
BS
305 /*
306 * Should the accounting and control be hierarchical, per subtree?
307 */
308 bool use_hierarchy;
510fc4e1 309 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
310
311 bool oom_lock;
312 atomic_t under_oom;
3812c8c8 313 atomic_t oom_wakeups;
79dfdacc 314
1f4c025b 315 int swappiness;
3c11ecf4
KH
316 /* OOM-Killer disable */
317 int oom_kill_disable;
a7885eb8 318
22a668d7
KH
319 /* set when res.limit == memsw.limit */
320 bool memsw_is_minimum;
321
2e72b634
KS
322 /* protect arrays of thresholds */
323 struct mutex thresholds_lock;
324
325 /* thresholds for memory usage. RCU-protected */
2c488db2 326 struct mem_cgroup_thresholds thresholds;
907860ed 327
2e72b634 328 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 329 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 330
9490ff27
KH
331 /* For oom notifier event fd */
332 struct list_head oom_notify;
185efc0f 333
7dc74be0
DN
334 /*
335 * Should we move charges of a task when a task is moved into this
336 * mem_cgroup ? And what type of charges should we move ?
337 */
f894ffa8 338 unsigned long move_charge_at_immigrate;
619d094b
KH
339 /*
340 * set > 0 if pages under this cgroup are moving to other cgroup.
341 */
342 atomic_t moving_account;
312734c0
KH
343 /* taken only while moving_account > 0 */
344 spinlock_t move_lock;
d52aa412 345 /*
c62b1a3b 346 * percpu counter.
d52aa412 347 */
3a7951b4 348 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
349 /*
350 * used when a cpu is offlined or other synchronizations
351 * See mem_cgroup_read_stat().
352 */
353 struct mem_cgroup_stat_cpu nocpu_base;
354 spinlock_t pcp_counter_lock;
d1a4c0b3 355
5f578161 356 atomic_t dead_count;
4bd2c1ee 357#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 358 struct cg_proto tcp_mem;
d1a4c0b3 359#endif
2633d7a0
GC
360#if defined(CONFIG_MEMCG_KMEM)
361 /* analogous to slab_common's slab_caches list. per-memcg */
362 struct list_head memcg_slab_caches;
363 /* Not a spinlock, we can take a lot of time walking the list */
364 struct mutex slab_caches_mutex;
365 /* Index in the kmem_cache->memcg_params->memcg_caches array */
366 int kmemcg_id;
367#endif
45cf7ebd
GC
368
369 int last_scanned_node;
370#if MAX_NUMNODES > 1
371 nodemask_t scan_nodes;
372 atomic_t numainfo_events;
373 atomic_t numainfo_updating;
374#endif
70ddf637 375
fba94807
TH
376 /* List of events which userspace want to receive */
377 struct list_head event_list;
378 spinlock_t event_list_lock;
379
54f72fe0
JW
380 struct mem_cgroup_per_node *nodeinfo[0];
381 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
382};
383
45cf7ebd
GC
384static size_t memcg_size(void)
385{
386 return sizeof(struct mem_cgroup) +
387 nr_node_ids * sizeof(struct mem_cgroup_per_node);
388}
389
510fc4e1
GC
390/* internal only representation about the status of kmem accounting. */
391enum {
392 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 393 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 394 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
395};
396
a8964b9b
GC
397/* We account when limit is on, but only after call sites are patched */
398#define KMEM_ACCOUNTED_MASK \
399 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
400
401#ifdef CONFIG_MEMCG_KMEM
402static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
403{
404 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405}
7de37682
GC
406
407static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
408{
409 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
410}
411
a8964b9b
GC
412static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
413{
414 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415}
416
55007d84
GC
417static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
418{
419 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
420}
421
7de37682
GC
422static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
423{
10d5ebf4
LZ
424 /*
425 * Our caller must use css_get() first, because memcg_uncharge_kmem()
426 * will call css_put() if it sees the memcg is dead.
427 */
428 smp_wmb();
7de37682
GC
429 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
430 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
431}
432
433static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
434{
435 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
436 &memcg->kmem_account_flags);
437}
510fc4e1
GC
438#endif
439
7dc74be0
DN
440/* Stuffs for move charges at task migration. */
441/*
ee5e8472
GC
442 * Types of charges to be moved. "move_charge_at_immitgrate" and
443 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
444 */
445enum move_type {
4ffef5fe 446 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 447 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
448 NR_MOVE_TYPE,
449};
450
4ffef5fe
DN
451/* "mc" and its members are protected by cgroup_mutex */
452static struct move_charge_struct {
b1dd693e 453 spinlock_t lock; /* for from, to */
4ffef5fe
DN
454 struct mem_cgroup *from;
455 struct mem_cgroup *to;
ee5e8472 456 unsigned long immigrate_flags;
4ffef5fe 457 unsigned long precharge;
854ffa8d 458 unsigned long moved_charge;
483c30b5 459 unsigned long moved_swap;
8033b97c
DN
460 struct task_struct *moving_task; /* a task moving charges */
461 wait_queue_head_t waitq; /* a waitq for other context */
462} mc = {
2bd9bb20 463 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
464 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
465};
4ffef5fe 466
90254a65
DN
467static bool move_anon(void)
468{
ee5e8472 469 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
470}
471
87946a72
DN
472static bool move_file(void)
473{
ee5e8472 474 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
475}
476
4e416953
BS
477/*
478 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
479 * limit reclaim to prevent infinite loops, if they ever occur.
480 */
a0db00fc 481#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 482#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 483
217bc319
KH
484enum charge_type {
485 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 486 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 487 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 488 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
489 NR_CHARGE_TYPE,
490};
491
8c7c6e34 492/* for encoding cft->private value on file */
86ae53e1
GC
493enum res_type {
494 _MEM,
495 _MEMSWAP,
496 _OOM_TYPE,
510fc4e1 497 _KMEM,
86ae53e1
GC
498};
499
a0db00fc
KS
500#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
501#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 502#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
503/* Used for OOM nofiier */
504#define OOM_CONTROL (0)
8c7c6e34 505
75822b44
BS
506/*
507 * Reclaim flags for mem_cgroup_hierarchical_reclaim
508 */
509#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
510#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
511#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
512#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
513
0999821b
GC
514/*
515 * The memcg_create_mutex will be held whenever a new cgroup is created.
516 * As a consequence, any change that needs to protect against new child cgroups
517 * appearing has to hold it as well.
518 */
519static DEFINE_MUTEX(memcg_create_mutex);
520
b2145145
WL
521struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
522{
a7c6d554 523 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
524}
525
70ddf637
AV
526/* Some nice accessors for the vmpressure. */
527struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
528{
529 if (!memcg)
530 memcg = root_mem_cgroup;
531 return &memcg->vmpressure;
532}
533
534struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
535{
536 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
537}
538
7ffc0edc
MH
539static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540{
541 return (memcg == root_mem_cgroup);
542}
543
4219b2da
LZ
544/*
545 * We restrict the id in the range of [1, 65535], so it can fit into
546 * an unsigned short.
547 */
548#define MEM_CGROUP_ID_MAX USHRT_MAX
549
34c00c31
LZ
550static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
551{
552 /*
553 * The ID of the root cgroup is 0, but memcg treat 0 as an
554 * invalid ID, so we return (cgroup_id + 1).
555 */
556 return memcg->css.cgroup->id + 1;
557}
558
559static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
560{
561 struct cgroup_subsys_state *css;
562
563 css = css_from_id(id - 1, &mem_cgroup_subsys);
564 return mem_cgroup_from_css(css);
565}
566
e1aab161 567/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 568#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 569
e1aab161
GC
570void sock_update_memcg(struct sock *sk)
571{
376be5ff 572 if (mem_cgroup_sockets_enabled) {
e1aab161 573 struct mem_cgroup *memcg;
3f134619 574 struct cg_proto *cg_proto;
e1aab161
GC
575
576 BUG_ON(!sk->sk_prot->proto_cgroup);
577
f3f511e1
GC
578 /* Socket cloning can throw us here with sk_cgrp already
579 * filled. It won't however, necessarily happen from
580 * process context. So the test for root memcg given
581 * the current task's memcg won't help us in this case.
582 *
583 * Respecting the original socket's memcg is a better
584 * decision in this case.
585 */
586 if (sk->sk_cgrp) {
587 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 588 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
589 return;
590 }
591
e1aab161
GC
592 rcu_read_lock();
593 memcg = mem_cgroup_from_task(current);
3f134619 594 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
595 if (!mem_cgroup_is_root(memcg) &&
596 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 597 sk->sk_cgrp = cg_proto;
e1aab161
GC
598 }
599 rcu_read_unlock();
600 }
601}
602EXPORT_SYMBOL(sock_update_memcg);
603
604void sock_release_memcg(struct sock *sk)
605{
376be5ff 606 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
607 struct mem_cgroup *memcg;
608 WARN_ON(!sk->sk_cgrp->memcg);
609 memcg = sk->sk_cgrp->memcg;
5347e5ae 610 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
611 }
612}
d1a4c0b3
GC
613
614struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
615{
616 if (!memcg || mem_cgroup_is_root(memcg))
617 return NULL;
618
2e685cad 619 return &memcg->tcp_mem;
d1a4c0b3
GC
620}
621EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 622
3f134619
GC
623static void disarm_sock_keys(struct mem_cgroup *memcg)
624{
2e685cad 625 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
626 return;
627 static_key_slow_dec(&memcg_socket_limit_enabled);
628}
629#else
630static void disarm_sock_keys(struct mem_cgroup *memcg)
631{
632}
633#endif
634
a8964b9b 635#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
636/*
637 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
638 * The main reason for not using cgroup id for this:
639 * this works better in sparse environments, where we have a lot of memcgs,
640 * but only a few kmem-limited. Or also, if we have, for instance, 200
641 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
642 * 200 entry array for that.
55007d84
GC
643 *
644 * The current size of the caches array is stored in
645 * memcg_limited_groups_array_size. It will double each time we have to
646 * increase it.
647 */
648static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
649int memcg_limited_groups_array_size;
650
55007d84
GC
651/*
652 * MIN_SIZE is different than 1, because we would like to avoid going through
653 * the alloc/free process all the time. In a small machine, 4 kmem-limited
654 * cgroups is a reasonable guess. In the future, it could be a parameter or
655 * tunable, but that is strictly not necessary.
656 *
b8627835 657 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
658 * this constant directly from cgroup, but it is understandable that this is
659 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 660 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
661 * increase ours as well if it increases.
662 */
663#define MEMCG_CACHES_MIN_SIZE 4
b8627835 664#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 665
d7f25f8a
GC
666/*
667 * A lot of the calls to the cache allocation functions are expected to be
668 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
669 * conditional to this static branch, we'll have to allow modules that does
670 * kmem_cache_alloc and the such to see this symbol as well
671 */
a8964b9b 672struct static_key memcg_kmem_enabled_key;
d7f25f8a 673EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
674
675static void disarm_kmem_keys(struct mem_cgroup *memcg)
676{
55007d84 677 if (memcg_kmem_is_active(memcg)) {
a8964b9b 678 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
679 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
680 }
bea207c8
GC
681 /*
682 * This check can't live in kmem destruction function,
683 * since the charges will outlive the cgroup
684 */
685 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
686}
687#else
688static void disarm_kmem_keys(struct mem_cgroup *memcg)
689{
690}
691#endif /* CONFIG_MEMCG_KMEM */
692
693static void disarm_static_keys(struct mem_cgroup *memcg)
694{
695 disarm_sock_keys(memcg);
696 disarm_kmem_keys(memcg);
697}
698
c0ff4b85 699static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 700
f64c3f54 701static struct mem_cgroup_per_zone *
c0ff4b85 702mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 703{
45cf7ebd 704 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 705 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
706}
707
c0ff4b85 708struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 709{
c0ff4b85 710 return &memcg->css;
d324236b
WF
711}
712
f64c3f54 713static struct mem_cgroup_per_zone *
c0ff4b85 714page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 715{
97a6c37b
JW
716 int nid = page_to_nid(page);
717 int zid = page_zonenum(page);
f64c3f54 718
c0ff4b85 719 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
720}
721
bb4cc1a8
AM
722static struct mem_cgroup_tree_per_zone *
723soft_limit_tree_node_zone(int nid, int zid)
724{
725 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
726}
727
728static struct mem_cgroup_tree_per_zone *
729soft_limit_tree_from_page(struct page *page)
730{
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
733
734 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
735}
736
737static void
738__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
739 struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz,
741 unsigned long long new_usage_in_excess)
742{
743 struct rb_node **p = &mctz->rb_root.rb_node;
744 struct rb_node *parent = NULL;
745 struct mem_cgroup_per_zone *mz_node;
746
747 if (mz->on_tree)
748 return;
749
750 mz->usage_in_excess = new_usage_in_excess;
751 if (!mz->usage_in_excess)
752 return;
753 while (*p) {
754 parent = *p;
755 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
756 tree_node);
757 if (mz->usage_in_excess < mz_node->usage_in_excess)
758 p = &(*p)->rb_left;
759 /*
760 * We can't avoid mem cgroups that are over their soft
761 * limit by the same amount
762 */
763 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
764 p = &(*p)->rb_right;
765 }
766 rb_link_node(&mz->tree_node, parent, p);
767 rb_insert_color(&mz->tree_node, &mctz->rb_root);
768 mz->on_tree = true;
769}
770
771static void
772__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
773 struct mem_cgroup_per_zone *mz,
774 struct mem_cgroup_tree_per_zone *mctz)
775{
776 if (!mz->on_tree)
777 return;
778 rb_erase(&mz->tree_node, &mctz->rb_root);
779 mz->on_tree = false;
780}
781
782static void
783mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
784 struct mem_cgroup_per_zone *mz,
785 struct mem_cgroup_tree_per_zone *mctz)
786{
787 spin_lock(&mctz->lock);
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 spin_unlock(&mctz->lock);
790}
791
792
793static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
794{
795 unsigned long long excess;
796 struct mem_cgroup_per_zone *mz;
797 struct mem_cgroup_tree_per_zone *mctz;
798 int nid = page_to_nid(page);
799 int zid = page_zonenum(page);
800 mctz = soft_limit_tree_from_page(page);
801
802 /*
803 * Necessary to update all ancestors when hierarchy is used.
804 * because their event counter is not touched.
805 */
806 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
807 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
808 excess = res_counter_soft_limit_excess(&memcg->res);
809 /*
810 * We have to update the tree if mz is on RB-tree or
811 * mem is over its softlimit.
812 */
813 if (excess || mz->on_tree) {
814 spin_lock(&mctz->lock);
815 /* if on-tree, remove it */
816 if (mz->on_tree)
817 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 /*
819 * Insert again. mz->usage_in_excess will be updated.
820 * If excess is 0, no tree ops.
821 */
822 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
823 spin_unlock(&mctz->lock);
824 }
825 }
826}
827
828static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
829{
830 int node, zone;
831 struct mem_cgroup_per_zone *mz;
832 struct mem_cgroup_tree_per_zone *mctz;
833
834 for_each_node(node) {
835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
836 mz = mem_cgroup_zoneinfo(memcg, node, zone);
837 mctz = soft_limit_tree_node_zone(node, zone);
838 mem_cgroup_remove_exceeded(memcg, mz, mctz);
839 }
840 }
841}
842
843static struct mem_cgroup_per_zone *
844__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845{
846 struct rb_node *rightmost = NULL;
847 struct mem_cgroup_per_zone *mz;
848
849retry:
850 mz = NULL;
851 rightmost = rb_last(&mctz->rb_root);
852 if (!rightmost)
853 goto done; /* Nothing to reclaim from */
854
855 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
856 /*
857 * Remove the node now but someone else can add it back,
858 * we will to add it back at the end of reclaim to its correct
859 * position in the tree.
860 */
861 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
862 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
863 !css_tryget(&mz->memcg->css))
864 goto retry;
865done:
866 return mz;
867}
868
869static struct mem_cgroup_per_zone *
870mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
871{
872 struct mem_cgroup_per_zone *mz;
873
874 spin_lock(&mctz->lock);
875 mz = __mem_cgroup_largest_soft_limit_node(mctz);
876 spin_unlock(&mctz->lock);
877 return mz;
878}
879
711d3d2c
KH
880/*
881 * Implementation Note: reading percpu statistics for memcg.
882 *
883 * Both of vmstat[] and percpu_counter has threshold and do periodic
884 * synchronization to implement "quick" read. There are trade-off between
885 * reading cost and precision of value. Then, we may have a chance to implement
886 * a periodic synchronizion of counter in memcg's counter.
887 *
888 * But this _read() function is used for user interface now. The user accounts
889 * memory usage by memory cgroup and he _always_ requires exact value because
890 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
891 * have to visit all online cpus and make sum. So, for now, unnecessary
892 * synchronization is not implemented. (just implemented for cpu hotplug)
893 *
894 * If there are kernel internal actions which can make use of some not-exact
895 * value, and reading all cpu value can be performance bottleneck in some
896 * common workload, threashold and synchonization as vmstat[] should be
897 * implemented.
898 */
c0ff4b85 899static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 900 enum mem_cgroup_stat_index idx)
c62b1a3b 901{
7a159cc9 902 long val = 0;
c62b1a3b 903 int cpu;
c62b1a3b 904
711d3d2c
KH
905 get_online_cpus();
906 for_each_online_cpu(cpu)
c0ff4b85 907 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 908#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.count[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
912#endif
913 put_online_cpus();
c62b1a3b
KH
914 return val;
915}
916
c0ff4b85 917static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
918 bool charge)
919{
920 int val = (charge) ? 1 : -1;
bff6bb83 921 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
922}
923
c0ff4b85 924static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
925 enum mem_cgroup_events_index idx)
926{
927 unsigned long val = 0;
928 int cpu;
929
9c567512 930 get_online_cpus();
e9f8974f 931 for_each_online_cpu(cpu)
c0ff4b85 932 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 933#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
934 spin_lock(&memcg->pcp_counter_lock);
935 val += memcg->nocpu_base.events[idx];
936 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 937#endif
9c567512 938 put_online_cpus();
e9f8974f
JW
939 return val;
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
b2402857 944 bool anon, int nr_pages)
d52aa412 945{
c62b1a3b
KH
946 preempt_disable();
947
b2402857
KH
948 /*
949 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
950 * counted as CACHE even if it's on ANON LRU.
951 */
952 if (anon)
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 954 nr_pages);
d52aa412 955 else
b2402857 956 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 957 nr_pages);
55e462b0 958
b070e65c
DR
959 if (PageTransHuge(page))
960 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
961 nr_pages);
962
e401f176
KH
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
c0ff4b85 965 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 966 else {
c0ff4b85 967 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
968 nr_pages = -nr_pages; /* for event */
969 }
e401f176 970
13114716 971 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 972
c62b1a3b 973 preempt_enable();
6d12e2d8
KH
974}
975
bb2a0de9 976unsigned long
4d7dcca2 977mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
978{
979 struct mem_cgroup_per_zone *mz;
980
981 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
982 return mz->lru_size[lru];
983}
984
985static unsigned long
c0ff4b85 986mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 987 unsigned int lru_mask)
889976db
YH
988{
989 struct mem_cgroup_per_zone *mz;
f156ab93 990 enum lru_list lru;
bb2a0de9
KH
991 unsigned long ret = 0;
992
c0ff4b85 993 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 994
f156ab93
HD
995 for_each_lru(lru) {
996 if (BIT(lru) & lru_mask)
997 ret += mz->lru_size[lru];
bb2a0de9
KH
998 }
999 return ret;
1000}
1001
1002static unsigned long
c0ff4b85 1003mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
1004 int nid, unsigned int lru_mask)
1005{
889976db
YH
1006 u64 total = 0;
1007 int zid;
1008
bb2a0de9 1009 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
1010 total += mem_cgroup_zone_nr_lru_pages(memcg,
1011 nid, zid, lru_mask);
bb2a0de9 1012
889976db
YH
1013 return total;
1014}
bb2a0de9 1015
c0ff4b85 1016static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 1017 unsigned int lru_mask)
6d12e2d8 1018{
889976db 1019 int nid;
6d12e2d8
KH
1020 u64 total = 0;
1021
31aaea4a 1022 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1023 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1024 return total;
d52aa412
KH
1025}
1026
f53d7ce3
JW
1027static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1028 enum mem_cgroup_events_target target)
7a159cc9
JW
1029{
1030 unsigned long val, next;
1031
13114716 1032 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1033 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1034 /* from time_after() in jiffies.h */
f53d7ce3
JW
1035 if ((long)next - (long)val < 0) {
1036 switch (target) {
1037 case MEM_CGROUP_TARGET_THRESH:
1038 next = val + THRESHOLDS_EVENTS_TARGET;
1039 break;
bb4cc1a8
AM
1040 case MEM_CGROUP_TARGET_SOFTLIMIT:
1041 next = val + SOFTLIMIT_EVENTS_TARGET;
1042 break;
f53d7ce3
JW
1043 case MEM_CGROUP_TARGET_NUMAINFO:
1044 next = val + NUMAINFO_EVENTS_TARGET;
1045 break;
1046 default:
1047 break;
1048 }
1049 __this_cpu_write(memcg->stat->targets[target], next);
1050 return true;
7a159cc9 1051 }
f53d7ce3 1052 return false;
d2265e6f
KH
1053}
1054
1055/*
1056 * Check events in order.
1057 *
1058 */
c0ff4b85 1059static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1060{
4799401f 1061 preempt_disable();
d2265e6f 1062 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1063 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1065 bool do_softlimit;
82b3f2a7 1066 bool do_numainfo __maybe_unused;
f53d7ce3 1067
bb4cc1a8
AM
1068 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1069 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1070#if MAX_NUMNODES > 1
1071 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1072 MEM_CGROUP_TARGET_NUMAINFO);
1073#endif
1074 preempt_enable();
1075
c0ff4b85 1076 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1077 if (unlikely(do_softlimit))
1078 mem_cgroup_update_tree(memcg, page);
453a9bf3 1079#if MAX_NUMNODES > 1
f53d7ce3 1080 if (unlikely(do_numainfo))
c0ff4b85 1081 atomic_inc(&memcg->numainfo_events);
453a9bf3 1082#endif
f53d7ce3
JW
1083 } else
1084 preempt_enable();
d2265e6f
KH
1085}
1086
cf475ad2 1087struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1088{
31a78f23
BS
1089 /*
1090 * mm_update_next_owner() may clear mm->owner to NULL
1091 * if it races with swapoff, page migration, etc.
1092 * So this can be called with p == NULL.
1093 */
1094 if (unlikely(!p))
1095 return NULL;
1096
8af01f56 1097 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1098}
1099
a433658c 1100struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1101{
c0ff4b85 1102 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1103
1104 if (!mm)
1105 return NULL;
54595fe2
KH
1106 /*
1107 * Because we have no locks, mm->owner's may be being moved to other
1108 * cgroup. We use css_tryget() here even if this looks
1109 * pessimistic (rather than adding locks here).
1110 */
1111 rcu_read_lock();
1112 do {
c0ff4b85
R
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (unlikely(!memcg))
54595fe2 1115 break;
c0ff4b85 1116 } while (!css_tryget(&memcg->css));
54595fe2 1117 rcu_read_unlock();
c0ff4b85 1118 return memcg;
54595fe2
KH
1119}
1120
16248d8f
MH
1121/*
1122 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1123 * ref. count) or NULL if the whole root's subtree has been visited.
1124 *
1125 * helper function to be used by mem_cgroup_iter
1126 */
1127static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1128 struct mem_cgroup *last_visited)
16248d8f 1129{
492eb21b 1130 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1131
bd8815a6 1132 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1133skip_node:
492eb21b 1134 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1135
1136 /*
1137 * Even if we found a group we have to make sure it is
1138 * alive. css && !memcg means that the groups should be
1139 * skipped and we should continue the tree walk.
1140 * last_visited css is safe to use because it is
1141 * protected by css_get and the tree walk is rcu safe.
1142 */
492eb21b
TH
1143 if (next_css) {
1144 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1145
694fbc0f
AM
1146 if (css_tryget(&mem->css))
1147 return mem;
1148 else {
492eb21b 1149 prev_css = next_css;
16248d8f
MH
1150 goto skip_node;
1151 }
1152 }
1153
1154 return NULL;
1155}
1156
519ebea3
JW
1157static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1158{
1159 /*
1160 * When a group in the hierarchy below root is destroyed, the
1161 * hierarchy iterator can no longer be trusted since it might
1162 * have pointed to the destroyed group. Invalidate it.
1163 */
1164 atomic_inc(&root->dead_count);
1165}
1166
1167static struct mem_cgroup *
1168mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *root,
1170 int *sequence)
1171{
1172 struct mem_cgroup *position = NULL;
1173 /*
1174 * A cgroup destruction happens in two stages: offlining and
1175 * release. They are separated by a RCU grace period.
1176 *
1177 * If the iterator is valid, we may still race with an
1178 * offlining. The RCU lock ensures the object won't be
1179 * released, tryget will fail if we lost the race.
1180 */
1181 *sequence = atomic_read(&root->dead_count);
1182 if (iter->last_dead_count == *sequence) {
1183 smp_rmb();
1184 position = iter->last_visited;
1185 if (position && !css_tryget(&position->css))
1186 position = NULL;
1187 }
1188 return position;
1189}
1190
1191static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1192 struct mem_cgroup *last_visited,
1193 struct mem_cgroup *new_position,
1194 int sequence)
1195{
1196 if (last_visited)
1197 css_put(&last_visited->css);
1198 /*
1199 * We store the sequence count from the time @last_visited was
1200 * loaded successfully instead of rereading it here so that we
1201 * don't lose destruction events in between. We could have
1202 * raced with the destruction of @new_position after all.
1203 */
1204 iter->last_visited = new_position;
1205 smp_wmb();
1206 iter->last_dead_count = sequence;
1207}
1208
5660048c
JW
1209/**
1210 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1211 * @root: hierarchy root
1212 * @prev: previously returned memcg, NULL on first invocation
1213 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1214 *
1215 * Returns references to children of the hierarchy below @root, or
1216 * @root itself, or %NULL after a full round-trip.
1217 *
1218 * Caller must pass the return value in @prev on subsequent
1219 * invocations for reference counting, or use mem_cgroup_iter_break()
1220 * to cancel a hierarchy walk before the round-trip is complete.
1221 *
1222 * Reclaimers can specify a zone and a priority level in @reclaim to
1223 * divide up the memcgs in the hierarchy among all concurrent
1224 * reclaimers operating on the same zone and priority.
1225 */
694fbc0f 1226struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1227 struct mem_cgroup *prev,
694fbc0f 1228 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1229{
9f3a0d09 1230 struct mem_cgroup *memcg = NULL;
542f85f9 1231 struct mem_cgroup *last_visited = NULL;
711d3d2c 1232
694fbc0f
AM
1233 if (mem_cgroup_disabled())
1234 return NULL;
5660048c 1235
9f3a0d09
JW
1236 if (!root)
1237 root = root_mem_cgroup;
7d74b06f 1238
9f3a0d09 1239 if (prev && !reclaim)
542f85f9 1240 last_visited = prev;
14067bb3 1241
9f3a0d09
JW
1242 if (!root->use_hierarchy && root != root_mem_cgroup) {
1243 if (prev)
c40046f3 1244 goto out_css_put;
694fbc0f 1245 return root;
9f3a0d09 1246 }
14067bb3 1247
542f85f9 1248 rcu_read_lock();
9f3a0d09 1249 while (!memcg) {
527a5ec9 1250 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1251 int uninitialized_var(seq);
711d3d2c 1252
527a5ec9
JW
1253 if (reclaim) {
1254 int nid = zone_to_nid(reclaim->zone);
1255 int zid = zone_idx(reclaim->zone);
1256 struct mem_cgroup_per_zone *mz;
1257
1258 mz = mem_cgroup_zoneinfo(root, nid, zid);
1259 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1260 if (prev && reclaim->generation != iter->generation) {
5f578161 1261 iter->last_visited = NULL;
542f85f9
MH
1262 goto out_unlock;
1263 }
5f578161 1264
519ebea3 1265 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1266 }
7d74b06f 1267
694fbc0f 1268 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1269
527a5ec9 1270 if (reclaim) {
519ebea3 1271 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1272
19f39402 1273 if (!memcg)
527a5ec9
JW
1274 iter->generation++;
1275 else if (!prev && memcg)
1276 reclaim->generation = iter->generation;
1277 }
9f3a0d09 1278
694fbc0f 1279 if (prev && !memcg)
542f85f9 1280 goto out_unlock;
9f3a0d09 1281 }
542f85f9
MH
1282out_unlock:
1283 rcu_read_unlock();
c40046f3
MH
1284out_css_put:
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287
9f3a0d09 1288 return memcg;
14067bb3 1289}
7d74b06f 1290
5660048c
JW
1291/**
1292 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1293 * @root: hierarchy root
1294 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1295 */
1296void mem_cgroup_iter_break(struct mem_cgroup *root,
1297 struct mem_cgroup *prev)
9f3a0d09
JW
1298{
1299 if (!root)
1300 root = root_mem_cgroup;
1301 if (prev && prev != root)
1302 css_put(&prev->css);
1303}
7d74b06f 1304
9f3a0d09
JW
1305/*
1306 * Iteration constructs for visiting all cgroups (under a tree). If
1307 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1308 * be used for reference counting.
1309 */
1310#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1311 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1312 iter != NULL; \
527a5ec9 1313 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1314
9f3a0d09 1315#define for_each_mem_cgroup(iter) \
527a5ec9 1316 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1317 iter != NULL; \
527a5ec9 1318 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1319
68ae564b 1320void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1321{
c0ff4b85 1322 struct mem_cgroup *memcg;
456f998e 1323
456f998e 1324 rcu_read_lock();
c0ff4b85
R
1325 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1326 if (unlikely(!memcg))
456f998e
YH
1327 goto out;
1328
1329 switch (idx) {
456f998e 1330 case PGFAULT:
0e574a93
JW
1331 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1332 break;
1333 case PGMAJFAULT:
1334 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1335 break;
1336 default:
1337 BUG();
1338 }
1339out:
1340 rcu_read_unlock();
1341}
68ae564b 1342EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1343
925b7673
JW
1344/**
1345 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1346 * @zone: zone of the wanted lruvec
fa9add64 1347 * @memcg: memcg of the wanted lruvec
925b7673
JW
1348 *
1349 * Returns the lru list vector holding pages for the given @zone and
1350 * @mem. This can be the global zone lruvec, if the memory controller
1351 * is disabled.
1352 */
1353struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1354 struct mem_cgroup *memcg)
1355{
1356 struct mem_cgroup_per_zone *mz;
bea8c150 1357 struct lruvec *lruvec;
925b7673 1358
bea8c150
HD
1359 if (mem_cgroup_disabled()) {
1360 lruvec = &zone->lruvec;
1361 goto out;
1362 }
925b7673
JW
1363
1364 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1365 lruvec = &mz->lruvec;
1366out:
1367 /*
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1371 */
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1374 return lruvec;
925b7673
JW
1375}
1376
08e552c6
KH
1377/*
1378 * Following LRU functions are allowed to be used without PCG_LOCK.
1379 * Operations are called by routine of global LRU independently from memcg.
1380 * What we have to take care of here is validness of pc->mem_cgroup.
1381 *
1382 * Changes to pc->mem_cgroup happens when
1383 * 1. charge
1384 * 2. moving account
1385 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1386 * It is added to LRU before charge.
1387 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1388 * When moving account, the page is not on LRU. It's isolated.
1389 */
4f98a2fe 1390
925b7673 1391/**
fa9add64 1392 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1393 * @page: the page
fa9add64 1394 * @zone: zone of the page
925b7673 1395 */
fa9add64 1396struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1397{
08e552c6 1398 struct mem_cgroup_per_zone *mz;
925b7673
JW
1399 struct mem_cgroup *memcg;
1400 struct page_cgroup *pc;
bea8c150 1401 struct lruvec *lruvec;
6d12e2d8 1402
bea8c150
HD
1403 if (mem_cgroup_disabled()) {
1404 lruvec = &zone->lruvec;
1405 goto out;
1406 }
925b7673 1407
08e552c6 1408 pc = lookup_page_cgroup(page);
38c5d72f 1409 memcg = pc->mem_cgroup;
7512102c
HD
1410
1411 /*
fa9add64 1412 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1413 * an uncharged page off lru does nothing to secure
1414 * its former mem_cgroup from sudden removal.
1415 *
1416 * Our caller holds lru_lock, and PageCgroupUsed is updated
1417 * under page_cgroup lock: between them, they make all uses
1418 * of pc->mem_cgroup safe.
1419 */
fa9add64 1420 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1421 pc->mem_cgroup = memcg = root_mem_cgroup;
1422
925b7673 1423 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1424 lruvec = &mz->lruvec;
1425out:
1426 /*
1427 * Since a node can be onlined after the mem_cgroup was created,
1428 * we have to be prepared to initialize lruvec->zone here;
1429 * and if offlined then reonlined, we need to reinitialize it.
1430 */
1431 if (unlikely(lruvec->zone != zone))
1432 lruvec->zone = zone;
1433 return lruvec;
08e552c6 1434}
b69408e8 1435
925b7673 1436/**
fa9add64
HD
1437 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1438 * @lruvec: mem_cgroup per zone lru vector
1439 * @lru: index of lru list the page is sitting on
1440 * @nr_pages: positive when adding or negative when removing
925b7673 1441 *
fa9add64
HD
1442 * This function must be called when a page is added to or removed from an
1443 * lru list.
3f58a829 1444 */
fa9add64
HD
1445void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1446 int nr_pages)
3f58a829
MK
1447{
1448 struct mem_cgroup_per_zone *mz;
fa9add64 1449 unsigned long *lru_size;
3f58a829
MK
1450
1451 if (mem_cgroup_disabled())
1452 return;
1453
fa9add64
HD
1454 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1455 lru_size = mz->lru_size + lru;
1456 *lru_size += nr_pages;
1457 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1458}
544122e5 1459
3e92041d 1460/*
c0ff4b85 1461 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1462 * hierarchy subtree
1463 */
c3ac9a8a
JW
1464bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1465 struct mem_cgroup *memcg)
3e92041d 1466{
91c63734
JW
1467 if (root_memcg == memcg)
1468 return true;
3a981f48 1469 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1470 return false;
b47f77b5 1471 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1472}
1473
1474static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1475 struct mem_cgroup *memcg)
1476{
1477 bool ret;
1478
91c63734 1479 rcu_read_lock();
c3ac9a8a 1480 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1481 rcu_read_unlock();
1482 return ret;
3e92041d
MH
1483}
1484
ffbdccf5
DR
1485bool task_in_mem_cgroup(struct task_struct *task,
1486 const struct mem_cgroup *memcg)
4c4a2214 1487{
0b7f569e 1488 struct mem_cgroup *curr = NULL;
158e0a2d 1489 struct task_struct *p;
ffbdccf5 1490 bool ret;
4c4a2214 1491
158e0a2d 1492 p = find_lock_task_mm(task);
de077d22
DR
1493 if (p) {
1494 curr = try_get_mem_cgroup_from_mm(p->mm);
1495 task_unlock(p);
1496 } else {
1497 /*
1498 * All threads may have already detached their mm's, but the oom
1499 * killer still needs to detect if they have already been oom
1500 * killed to prevent needlessly killing additional tasks.
1501 */
ffbdccf5 1502 rcu_read_lock();
de077d22
DR
1503 curr = mem_cgroup_from_task(task);
1504 if (curr)
1505 css_get(&curr->css);
ffbdccf5 1506 rcu_read_unlock();
de077d22 1507 }
0b7f569e 1508 if (!curr)
ffbdccf5 1509 return false;
d31f56db 1510 /*
c0ff4b85 1511 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1512 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1513 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1514 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1515 */
c0ff4b85 1516 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1517 css_put(&curr->css);
4c4a2214
DR
1518 return ret;
1519}
1520
c56d5c7d 1521int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1522{
9b272977 1523 unsigned long inactive_ratio;
14797e23 1524 unsigned long inactive;
9b272977 1525 unsigned long active;
c772be93 1526 unsigned long gb;
14797e23 1527
4d7dcca2
HD
1528 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1529 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1530
c772be93
KM
1531 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1532 if (gb)
1533 inactive_ratio = int_sqrt(10 * gb);
1534 else
1535 inactive_ratio = 1;
1536
9b272977 1537 return inactive * inactive_ratio < active;
14797e23
KM
1538}
1539
6d61ef40
BS
1540#define mem_cgroup_from_res_counter(counter, member) \
1541 container_of(counter, struct mem_cgroup, member)
1542
19942822 1543/**
9d11ea9f 1544 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1545 * @memcg: the memory cgroup
19942822 1546 *
9d11ea9f 1547 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1548 * pages.
19942822 1549 */
c0ff4b85 1550static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1551{
9d11ea9f
JW
1552 unsigned long long margin;
1553
c0ff4b85 1554 margin = res_counter_margin(&memcg->res);
9d11ea9f 1555 if (do_swap_account)
c0ff4b85 1556 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1557 return margin >> PAGE_SHIFT;
19942822
JW
1558}
1559
1f4c025b 1560int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1561{
a7885eb8 1562 /* root ? */
63876986 1563 if (!css_parent(&memcg->css))
a7885eb8
KM
1564 return vm_swappiness;
1565
bf1ff263 1566 return memcg->swappiness;
a7885eb8
KM
1567}
1568
619d094b
KH
1569/*
1570 * memcg->moving_account is used for checking possibility that some thread is
1571 * calling move_account(). When a thread on CPU-A starts moving pages under
1572 * a memcg, other threads should check memcg->moving_account under
1573 * rcu_read_lock(), like this:
1574 *
1575 * CPU-A CPU-B
1576 * rcu_read_lock()
1577 * memcg->moving_account+1 if (memcg->mocing_account)
1578 * take heavy locks.
1579 * synchronize_rcu() update something.
1580 * rcu_read_unlock()
1581 * start move here.
1582 */
4331f7d3
KH
1583
1584/* for quick checking without looking up memcg */
1585atomic_t memcg_moving __read_mostly;
1586
c0ff4b85 1587static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1588{
4331f7d3 1589 atomic_inc(&memcg_moving);
619d094b 1590 atomic_inc(&memcg->moving_account);
32047e2a
KH
1591 synchronize_rcu();
1592}
1593
c0ff4b85 1594static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1595{
619d094b
KH
1596 /*
1597 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1598 * We check NULL in callee rather than caller.
1599 */
4331f7d3
KH
1600 if (memcg) {
1601 atomic_dec(&memcg_moving);
619d094b 1602 atomic_dec(&memcg->moving_account);
4331f7d3 1603 }
32047e2a 1604}
619d094b 1605
32047e2a
KH
1606/*
1607 * 2 routines for checking "mem" is under move_account() or not.
1608 *
13fd1dd9
AM
1609 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1610 * is used for avoiding races in accounting. If true,
32047e2a
KH
1611 * pc->mem_cgroup may be overwritten.
1612 *
1613 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1614 * under hierarchy of moving cgroups. This is for
1615 * waiting at hith-memory prressure caused by "move".
1616 */
1617
13fd1dd9 1618static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1619{
1620 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1621 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1622}
4b534334 1623
c0ff4b85 1624static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1625{
2bd9bb20
KH
1626 struct mem_cgroup *from;
1627 struct mem_cgroup *to;
4b534334 1628 bool ret = false;
2bd9bb20
KH
1629 /*
1630 * Unlike task_move routines, we access mc.to, mc.from not under
1631 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1632 */
1633 spin_lock(&mc.lock);
1634 from = mc.from;
1635 to = mc.to;
1636 if (!from)
1637 goto unlock;
3e92041d 1638
c0ff4b85
R
1639 ret = mem_cgroup_same_or_subtree(memcg, from)
1640 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1641unlock:
1642 spin_unlock(&mc.lock);
4b534334
KH
1643 return ret;
1644}
1645
c0ff4b85 1646static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1647{
1648 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1649 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1650 DEFINE_WAIT(wait);
1651 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1652 /* moving charge context might have finished. */
1653 if (mc.moving_task)
1654 schedule();
1655 finish_wait(&mc.waitq, &wait);
1656 return true;
1657 }
1658 }
1659 return false;
1660}
1661
312734c0
KH
1662/*
1663 * Take this lock when
1664 * - a code tries to modify page's memcg while it's USED.
1665 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1666 * see mem_cgroup_stolen(), too.
312734c0
KH
1667 */
1668static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1669 unsigned long *flags)
1670{
1671 spin_lock_irqsave(&memcg->move_lock, *flags);
1672}
1673
1674static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1675 unsigned long *flags)
1676{
1677 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1678}
1679
58cf188e 1680#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1681/**
58cf188e 1682 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
1689void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1690{
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
1693 /*
1694 * Need a buffer in BSS, can't rely on allocations. The code relies
1695 * on the assumption that OOM is serialized for memory controller.
1696 * If this assumption is broken, revisit this code.
1697 */
1698 static char memcg_name[PATH_MAX];
1699 int ret;
58cf188e
SZ
1700 struct mem_cgroup *iter;
1701 unsigned int i;
e222432b 1702
58cf188e 1703 if (!p)
e222432b
BS
1704 return;
1705
e222432b
BS
1706 rcu_read_lock();
1707
1708 mem_cgrp = memcg->css.cgroup;
1709 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1710
1711 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 /*
1714 * Unfortunately, we are unable to convert to a useful name
1715 * But we'll still print out the usage information
1716 */
1717 rcu_read_unlock();
1718 goto done;
1719 }
1720 rcu_read_unlock();
1721
d045197f 1722 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1723
1724 rcu_read_lock();
1725 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1726 if (ret < 0) {
1727 rcu_read_unlock();
1728 goto done;
1729 }
1730 rcu_read_unlock();
1731
1732 /*
1733 * Continues from above, so we don't need an KERN_ level
1734 */
d045197f 1735 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1736done:
1737
d045197f 1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1739 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1742 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1743 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1746 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1747 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1748 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1749 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1750
1751 for_each_mem_cgroup_tree(iter, memcg) {
1752 pr_info("Memory cgroup stats");
1753
1754 rcu_read_lock();
1755 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1756 if (!ret)
1757 pr_cont(" for %s", memcg_name);
1758 rcu_read_unlock();
1759 pr_cont(":");
1760
1761 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1762 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1763 continue;
1764 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1765 K(mem_cgroup_read_stat(iter, i)));
1766 }
1767
1768 for (i = 0; i < NR_LRU_LISTS; i++)
1769 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1770 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1771
1772 pr_cont("\n");
1773 }
e222432b
BS
1774}
1775
81d39c20
KH
1776/*
1777 * This function returns the number of memcg under hierarchy tree. Returns
1778 * 1(self count) if no children.
1779 */
c0ff4b85 1780static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1781{
1782 int num = 0;
7d74b06f
KH
1783 struct mem_cgroup *iter;
1784
c0ff4b85 1785 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1786 num++;
81d39c20
KH
1787 return num;
1788}
1789
a63d83f4
DR
1790/*
1791 * Return the memory (and swap, if configured) limit for a memcg.
1792 */
9cbb78bb 1793static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1794{
1795 u64 limit;
a63d83f4 1796
f3e8eb70 1797 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1798
a63d83f4 1799 /*
9a5a8f19 1800 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1801 */
9a5a8f19
MH
1802 if (mem_cgroup_swappiness(memcg)) {
1803 u64 memsw;
1804
1805 limit += total_swap_pages << PAGE_SHIFT;
1806 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1807
1808 /*
1809 * If memsw is finite and limits the amount of swap space
1810 * available to this memcg, return that limit.
1811 */
1812 limit = min(limit, memsw);
1813 }
1814
1815 return limit;
a63d83f4
DR
1816}
1817
19965460
DR
1818static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1819 int order)
9cbb78bb
DR
1820{
1821 struct mem_cgroup *iter;
1822 unsigned long chosen_points = 0;
1823 unsigned long totalpages;
1824 unsigned int points = 0;
1825 struct task_struct *chosen = NULL;
1826
876aafbf 1827 /*
465adcf1
DR
1828 * If current has a pending SIGKILL or is exiting, then automatically
1829 * select it. The goal is to allow it to allocate so that it may
1830 * quickly exit and free its memory.
876aafbf 1831 */
465adcf1 1832 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1833 set_thread_flag(TIF_MEMDIE);
1834 return;
1835 }
1836
1837 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1838 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1839 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1840 struct css_task_iter it;
9cbb78bb
DR
1841 struct task_struct *task;
1842
72ec7029
TH
1843 css_task_iter_start(&iter->css, &it);
1844 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1845 switch (oom_scan_process_thread(task, totalpages, NULL,
1846 false)) {
1847 case OOM_SCAN_SELECT:
1848 if (chosen)
1849 put_task_struct(chosen);
1850 chosen = task;
1851 chosen_points = ULONG_MAX;
1852 get_task_struct(chosen);
1853 /* fall through */
1854 case OOM_SCAN_CONTINUE:
1855 continue;
1856 case OOM_SCAN_ABORT:
72ec7029 1857 css_task_iter_end(&it);
9cbb78bb
DR
1858 mem_cgroup_iter_break(memcg, iter);
1859 if (chosen)
1860 put_task_struct(chosen);
1861 return;
1862 case OOM_SCAN_OK:
1863 break;
1864 };
1865 points = oom_badness(task, memcg, NULL, totalpages);
1866 if (points > chosen_points) {
1867 if (chosen)
1868 put_task_struct(chosen);
1869 chosen = task;
1870 chosen_points = points;
1871 get_task_struct(chosen);
1872 }
1873 }
72ec7029 1874 css_task_iter_end(&it);
9cbb78bb
DR
1875 }
1876
1877 if (!chosen)
1878 return;
1879 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1880 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1881 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1882}
1883
5660048c
JW
1884static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1885 gfp_t gfp_mask,
1886 unsigned long flags)
1887{
1888 unsigned long total = 0;
1889 bool noswap = false;
1890 int loop;
1891
1892 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1893 noswap = true;
1894 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1895 noswap = true;
1896
1897 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1898 if (loop)
1899 drain_all_stock_async(memcg);
1900 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1901 /*
1902 * Allow limit shrinkers, which are triggered directly
1903 * by userspace, to catch signals and stop reclaim
1904 * after minimal progress, regardless of the margin.
1905 */
1906 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1907 break;
1908 if (mem_cgroup_margin(memcg))
1909 break;
1910 /*
1911 * If nothing was reclaimed after two attempts, there
1912 * may be no reclaimable pages in this hierarchy.
1913 */
1914 if (loop && !total)
1915 break;
1916 }
1917 return total;
1918}
1919
4d0c066d
KH
1920/**
1921 * test_mem_cgroup_node_reclaimable
dad7557e 1922 * @memcg: the target memcg
4d0c066d
KH
1923 * @nid: the node ID to be checked.
1924 * @noswap : specify true here if the user wants flle only information.
1925 *
1926 * This function returns whether the specified memcg contains any
1927 * reclaimable pages on a node. Returns true if there are any reclaimable
1928 * pages in the node.
1929 */
c0ff4b85 1930static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1931 int nid, bool noswap)
1932{
c0ff4b85 1933 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1934 return true;
1935 if (noswap || !total_swap_pages)
1936 return false;
c0ff4b85 1937 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1938 return true;
1939 return false;
1940
1941}
bb4cc1a8 1942#if MAX_NUMNODES > 1
889976db
YH
1943
1944/*
1945 * Always updating the nodemask is not very good - even if we have an empty
1946 * list or the wrong list here, we can start from some node and traverse all
1947 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1948 *
1949 */
c0ff4b85 1950static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int nid;
453a9bf3
KH
1953 /*
1954 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1955 * pagein/pageout changes since the last update.
1956 */
c0ff4b85 1957 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1958 return;
c0ff4b85 1959 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1960 return;
1961
889976db 1962 /* make a nodemask where this memcg uses memory from */
31aaea4a 1963 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1964
31aaea4a 1965 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1966
c0ff4b85
R
1967 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1968 node_clear(nid, memcg->scan_nodes);
889976db 1969 }
453a9bf3 1970
c0ff4b85
R
1971 atomic_set(&memcg->numainfo_events, 0);
1972 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1973}
1974
1975/*
1976 * Selecting a node where we start reclaim from. Because what we need is just
1977 * reducing usage counter, start from anywhere is O,K. Considering
1978 * memory reclaim from current node, there are pros. and cons.
1979 *
1980 * Freeing memory from current node means freeing memory from a node which
1981 * we'll use or we've used. So, it may make LRU bad. And if several threads
1982 * hit limits, it will see a contention on a node. But freeing from remote
1983 * node means more costs for memory reclaim because of memory latency.
1984 *
1985 * Now, we use round-robin. Better algorithm is welcomed.
1986 */
c0ff4b85 1987int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1988{
1989 int node;
1990
c0ff4b85
R
1991 mem_cgroup_may_update_nodemask(memcg);
1992 node = memcg->last_scanned_node;
889976db 1993
c0ff4b85 1994 node = next_node(node, memcg->scan_nodes);
889976db 1995 if (node == MAX_NUMNODES)
c0ff4b85 1996 node = first_node(memcg->scan_nodes);
889976db
YH
1997 /*
1998 * We call this when we hit limit, not when pages are added to LRU.
1999 * No LRU may hold pages because all pages are UNEVICTABLE or
2000 * memcg is too small and all pages are not on LRU. In that case,
2001 * we use curret node.
2002 */
2003 if (unlikely(node == MAX_NUMNODES))
2004 node = numa_node_id();
2005
c0ff4b85 2006 memcg->last_scanned_node = node;
889976db
YH
2007 return node;
2008}
2009
bb4cc1a8
AM
2010/*
2011 * Check all nodes whether it contains reclaimable pages or not.
2012 * For quick scan, we make use of scan_nodes. This will allow us to skip
2013 * unused nodes. But scan_nodes is lazily updated and may not cotain
2014 * enough new information. We need to do double check.
2015 */
2016static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2017{
2018 int nid;
2019
2020 /*
2021 * quick check...making use of scan_node.
2022 * We can skip unused nodes.
2023 */
2024 if (!nodes_empty(memcg->scan_nodes)) {
2025 for (nid = first_node(memcg->scan_nodes);
2026 nid < MAX_NUMNODES;
2027 nid = next_node(nid, memcg->scan_nodes)) {
2028
2029 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2030 return true;
2031 }
2032 }
2033 /*
2034 * Check rest of nodes.
2035 */
2036 for_each_node_state(nid, N_MEMORY) {
2037 if (node_isset(nid, memcg->scan_nodes))
2038 continue;
2039 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2040 return true;
2041 }
2042 return false;
2043}
2044
889976db 2045#else
c0ff4b85 2046int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2047{
2048 return 0;
2049}
4d0c066d 2050
bb4cc1a8
AM
2051static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2052{
2053 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2054}
889976db
YH
2055#endif
2056
0608f43d
AM
2057static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2058 struct zone *zone,
2059 gfp_t gfp_mask,
2060 unsigned long *total_scanned)
2061{
2062 struct mem_cgroup *victim = NULL;
2063 int total = 0;
2064 int loop = 0;
2065 unsigned long excess;
2066 unsigned long nr_scanned;
2067 struct mem_cgroup_reclaim_cookie reclaim = {
2068 .zone = zone,
2069 .priority = 0,
2070 };
2071
2072 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2073
2074 while (1) {
2075 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2076 if (!victim) {
2077 loop++;
2078 if (loop >= 2) {
2079 /*
2080 * If we have not been able to reclaim
2081 * anything, it might because there are
2082 * no reclaimable pages under this hierarchy
2083 */
2084 if (!total)
2085 break;
2086 /*
2087 * We want to do more targeted reclaim.
2088 * excess >> 2 is not to excessive so as to
2089 * reclaim too much, nor too less that we keep
2090 * coming back to reclaim from this cgroup
2091 */
2092 if (total >= (excess >> 2) ||
2093 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2094 break;
2095 }
2096 continue;
2097 }
2098 if (!mem_cgroup_reclaimable(victim, false))
2099 continue;
2100 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2101 zone, &nr_scanned);
2102 *total_scanned += nr_scanned;
2103 if (!res_counter_soft_limit_excess(&root_memcg->res))
2104 break;
6d61ef40 2105 }
0608f43d
AM
2106 mem_cgroup_iter_break(root_memcg, victim);
2107 return total;
6d61ef40
BS
2108}
2109
0056f4e6
JW
2110#ifdef CONFIG_LOCKDEP
2111static struct lockdep_map memcg_oom_lock_dep_map = {
2112 .name = "memcg_oom_lock",
2113};
2114#endif
2115
fb2a6fc5
JW
2116static DEFINE_SPINLOCK(memcg_oom_lock);
2117
867578cb
KH
2118/*
2119 * Check OOM-Killer is already running under our hierarchy.
2120 * If someone is running, return false.
2121 */
fb2a6fc5 2122static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2123{
79dfdacc 2124 struct mem_cgroup *iter, *failed = NULL;
a636b327 2125
fb2a6fc5
JW
2126 spin_lock(&memcg_oom_lock);
2127
9f3a0d09 2128 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2129 if (iter->oom_lock) {
79dfdacc
MH
2130 /*
2131 * this subtree of our hierarchy is already locked
2132 * so we cannot give a lock.
2133 */
79dfdacc 2134 failed = iter;
9f3a0d09
JW
2135 mem_cgroup_iter_break(memcg, iter);
2136 break;
23751be0
JW
2137 } else
2138 iter->oom_lock = true;
7d74b06f 2139 }
867578cb 2140
fb2a6fc5
JW
2141 if (failed) {
2142 /*
2143 * OK, we failed to lock the whole subtree so we have
2144 * to clean up what we set up to the failing subtree
2145 */
2146 for_each_mem_cgroup_tree(iter, memcg) {
2147 if (iter == failed) {
2148 mem_cgroup_iter_break(memcg, iter);
2149 break;
2150 }
2151 iter->oom_lock = false;
79dfdacc 2152 }
0056f4e6
JW
2153 } else
2154 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2155
2156 spin_unlock(&memcg_oom_lock);
2157
2158 return !failed;
a636b327 2159}
0b7f569e 2160
fb2a6fc5 2161static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2162{
7d74b06f
KH
2163 struct mem_cgroup *iter;
2164
fb2a6fc5 2165 spin_lock(&memcg_oom_lock);
0056f4e6 2166 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2167 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2168 iter->oom_lock = false;
fb2a6fc5 2169 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2170}
2171
c0ff4b85 2172static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2173{
2174 struct mem_cgroup *iter;
2175
c0ff4b85 2176 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2177 atomic_inc(&iter->under_oom);
2178}
2179
c0ff4b85 2180static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2181{
2182 struct mem_cgroup *iter;
2183
867578cb
KH
2184 /*
2185 * When a new child is created while the hierarchy is under oom,
2186 * mem_cgroup_oom_lock() may not be called. We have to use
2187 * atomic_add_unless() here.
2188 */
c0ff4b85 2189 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2190 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2191}
2192
867578cb
KH
2193static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2194
dc98df5a 2195struct oom_wait_info {
d79154bb 2196 struct mem_cgroup *memcg;
dc98df5a
KH
2197 wait_queue_t wait;
2198};
2199
2200static int memcg_oom_wake_function(wait_queue_t *wait,
2201 unsigned mode, int sync, void *arg)
2202{
d79154bb
HD
2203 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2204 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2205 struct oom_wait_info *oom_wait_info;
2206
2207 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2208 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2209
dc98df5a 2210 /*
d79154bb 2211 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2212 * Then we can use css_is_ancestor without taking care of RCU.
2213 */
c0ff4b85
R
2214 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2215 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2216 return 0;
dc98df5a
KH
2217 return autoremove_wake_function(wait, mode, sync, arg);
2218}
2219
c0ff4b85 2220static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2221{
3812c8c8 2222 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2223 /* for filtering, pass "memcg" as argument. */
2224 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2225}
2226
c0ff4b85 2227static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2228{
c0ff4b85
R
2229 if (memcg && atomic_read(&memcg->under_oom))
2230 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2231}
2232
3812c8c8 2233static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2234{
3812c8c8
JW
2235 if (!current->memcg_oom.may_oom)
2236 return;
867578cb 2237 /*
49426420
JW
2238 * We are in the middle of the charge context here, so we
2239 * don't want to block when potentially sitting on a callstack
2240 * that holds all kinds of filesystem and mm locks.
2241 *
2242 * Also, the caller may handle a failed allocation gracefully
2243 * (like optional page cache readahead) and so an OOM killer
2244 * invocation might not even be necessary.
2245 *
2246 * That's why we don't do anything here except remember the
2247 * OOM context and then deal with it at the end of the page
2248 * fault when the stack is unwound, the locks are released,
2249 * and when we know whether the fault was overall successful.
867578cb 2250 */
49426420
JW
2251 css_get(&memcg->css);
2252 current->memcg_oom.memcg = memcg;
2253 current->memcg_oom.gfp_mask = mask;
2254 current->memcg_oom.order = order;
3812c8c8
JW
2255}
2256
2257/**
2258 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2259 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2260 *
49426420
JW
2261 * This has to be called at the end of a page fault if the memcg OOM
2262 * handler was enabled.
3812c8c8 2263 *
49426420 2264 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2265 * sleep on a waitqueue until the userspace task resolves the
2266 * situation. Sleeping directly in the charge context with all kinds
2267 * of locks held is not a good idea, instead we remember an OOM state
2268 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2269 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2270 *
2271 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2272 * completed, %false otherwise.
3812c8c8 2273 */
49426420 2274bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2275{
49426420 2276 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2277 struct oom_wait_info owait;
49426420 2278 bool locked;
3812c8c8
JW
2279
2280 /* OOM is global, do not handle */
3812c8c8 2281 if (!memcg)
49426420 2282 return false;
3812c8c8 2283
49426420
JW
2284 if (!handle)
2285 goto cleanup;
3812c8c8
JW
2286
2287 owait.memcg = memcg;
2288 owait.wait.flags = 0;
2289 owait.wait.func = memcg_oom_wake_function;
2290 owait.wait.private = current;
2291 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2292
3812c8c8 2293 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2294 mem_cgroup_mark_under_oom(memcg);
2295
2296 locked = mem_cgroup_oom_trylock(memcg);
2297
2298 if (locked)
2299 mem_cgroup_oom_notify(memcg);
2300
2301 if (locked && !memcg->oom_kill_disable) {
2302 mem_cgroup_unmark_under_oom(memcg);
2303 finish_wait(&memcg_oom_waitq, &owait.wait);
2304 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2305 current->memcg_oom.order);
2306 } else {
3812c8c8 2307 schedule();
49426420
JW
2308 mem_cgroup_unmark_under_oom(memcg);
2309 finish_wait(&memcg_oom_waitq, &owait.wait);
2310 }
2311
2312 if (locked) {
fb2a6fc5
JW
2313 mem_cgroup_oom_unlock(memcg);
2314 /*
2315 * There is no guarantee that an OOM-lock contender
2316 * sees the wakeups triggered by the OOM kill
2317 * uncharges. Wake any sleepers explicitely.
2318 */
2319 memcg_oom_recover(memcg);
2320 }
49426420
JW
2321cleanup:
2322 current->memcg_oom.memcg = NULL;
3812c8c8 2323 css_put(&memcg->css);
867578cb 2324 return true;
0b7f569e
KH
2325}
2326
d69b042f
BS
2327/*
2328 * Currently used to update mapped file statistics, but the routine can be
2329 * generalized to update other statistics as well.
32047e2a
KH
2330 *
2331 * Notes: Race condition
2332 *
2333 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2334 * it tends to be costly. But considering some conditions, we doesn't need
2335 * to do so _always_.
2336 *
2337 * Considering "charge", lock_page_cgroup() is not required because all
2338 * file-stat operations happen after a page is attached to radix-tree. There
2339 * are no race with "charge".
2340 *
2341 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2342 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2343 * if there are race with "uncharge". Statistics itself is properly handled
2344 * by flags.
2345 *
2346 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2347 * small, we check mm->moving_account and detect there are possibility of race
2348 * If there is, we take a lock.
d69b042f 2349 */
26174efd 2350
89c06bd5
KH
2351void __mem_cgroup_begin_update_page_stat(struct page *page,
2352 bool *locked, unsigned long *flags)
2353{
2354 struct mem_cgroup *memcg;
2355 struct page_cgroup *pc;
2356
2357 pc = lookup_page_cgroup(page);
2358again:
2359 memcg = pc->mem_cgroup;
2360 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2361 return;
2362 /*
2363 * If this memory cgroup is not under account moving, we don't
da92c47d 2364 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2365 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2366 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2367 */
13fd1dd9 2368 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2369 return;
2370
2371 move_lock_mem_cgroup(memcg, flags);
2372 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2373 move_unlock_mem_cgroup(memcg, flags);
2374 goto again;
2375 }
2376 *locked = true;
2377}
2378
2379void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2380{
2381 struct page_cgroup *pc = lookup_page_cgroup(page);
2382
2383 /*
2384 * It's guaranteed that pc->mem_cgroup never changes while
2385 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2386 * should take move_lock_mem_cgroup().
89c06bd5
KH
2387 */
2388 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2389}
2390
2a7106f2 2391void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2392 enum mem_cgroup_stat_index idx, int val)
d69b042f 2393{
c0ff4b85 2394 struct mem_cgroup *memcg;
32047e2a 2395 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2396 unsigned long uninitialized_var(flags);
d69b042f 2397
cfa44946 2398 if (mem_cgroup_disabled())
d69b042f 2399 return;
89c06bd5 2400
658b72c5 2401 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2402 memcg = pc->mem_cgroup;
2403 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2404 return;
26174efd 2405
c0ff4b85 2406 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2407}
26174efd 2408
cdec2e42
KH
2409/*
2410 * size of first charge trial. "32" comes from vmscan.c's magic value.
2411 * TODO: maybe necessary to use big numbers in big irons.
2412 */
7ec99d62 2413#define CHARGE_BATCH 32U
cdec2e42
KH
2414struct memcg_stock_pcp {
2415 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2416 unsigned int nr_pages;
cdec2e42 2417 struct work_struct work;
26fe6168 2418 unsigned long flags;
a0db00fc 2419#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2420};
2421static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2422static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2423
a0956d54
SS
2424/**
2425 * consume_stock: Try to consume stocked charge on this cpu.
2426 * @memcg: memcg to consume from.
2427 * @nr_pages: how many pages to charge.
2428 *
2429 * The charges will only happen if @memcg matches the current cpu's memcg
2430 * stock, and at least @nr_pages are available in that stock. Failure to
2431 * service an allocation will refill the stock.
2432 *
2433 * returns true if successful, false otherwise.
cdec2e42 2434 */
a0956d54 2435static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2436{
2437 struct memcg_stock_pcp *stock;
2438 bool ret = true;
2439
a0956d54
SS
2440 if (nr_pages > CHARGE_BATCH)
2441 return false;
2442
cdec2e42 2443 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2444 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2445 stock->nr_pages -= nr_pages;
cdec2e42
KH
2446 else /* need to call res_counter_charge */
2447 ret = false;
2448 put_cpu_var(memcg_stock);
2449 return ret;
2450}
2451
2452/*
2453 * Returns stocks cached in percpu to res_counter and reset cached information.
2454 */
2455static void drain_stock(struct memcg_stock_pcp *stock)
2456{
2457 struct mem_cgroup *old = stock->cached;
2458
11c9ea4e
JW
2459 if (stock->nr_pages) {
2460 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2461
2462 res_counter_uncharge(&old->res, bytes);
cdec2e42 2463 if (do_swap_account)
11c9ea4e
JW
2464 res_counter_uncharge(&old->memsw, bytes);
2465 stock->nr_pages = 0;
cdec2e42
KH
2466 }
2467 stock->cached = NULL;
cdec2e42
KH
2468}
2469
2470/*
2471 * This must be called under preempt disabled or must be called by
2472 * a thread which is pinned to local cpu.
2473 */
2474static void drain_local_stock(struct work_struct *dummy)
2475{
2476 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2477 drain_stock(stock);
26fe6168 2478 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2479}
2480
e4777496
MH
2481static void __init memcg_stock_init(void)
2482{
2483 int cpu;
2484
2485 for_each_possible_cpu(cpu) {
2486 struct memcg_stock_pcp *stock =
2487 &per_cpu(memcg_stock, cpu);
2488 INIT_WORK(&stock->work, drain_local_stock);
2489 }
2490}
2491
cdec2e42
KH
2492/*
2493 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2494 * This will be consumed by consume_stock() function, later.
cdec2e42 2495 */
c0ff4b85 2496static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2497{
2498 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2499
c0ff4b85 2500 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2501 drain_stock(stock);
c0ff4b85 2502 stock->cached = memcg;
cdec2e42 2503 }
11c9ea4e 2504 stock->nr_pages += nr_pages;
cdec2e42
KH
2505 put_cpu_var(memcg_stock);
2506}
2507
2508/*
c0ff4b85 2509 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2510 * of the hierarchy under it. sync flag says whether we should block
2511 * until the work is done.
cdec2e42 2512 */
c0ff4b85 2513static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2514{
26fe6168 2515 int cpu, curcpu;
d38144b7 2516
cdec2e42 2517 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2518 get_online_cpus();
5af12d0e 2519 curcpu = get_cpu();
cdec2e42
KH
2520 for_each_online_cpu(cpu) {
2521 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2522 struct mem_cgroup *memcg;
26fe6168 2523
c0ff4b85
R
2524 memcg = stock->cached;
2525 if (!memcg || !stock->nr_pages)
26fe6168 2526 continue;
c0ff4b85 2527 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2528 continue;
d1a05b69
MH
2529 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2530 if (cpu == curcpu)
2531 drain_local_stock(&stock->work);
2532 else
2533 schedule_work_on(cpu, &stock->work);
2534 }
cdec2e42 2535 }
5af12d0e 2536 put_cpu();
d38144b7
MH
2537
2538 if (!sync)
2539 goto out;
2540
2541 for_each_online_cpu(cpu) {
2542 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2543 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2544 flush_work(&stock->work);
2545 }
2546out:
f894ffa8 2547 put_online_cpus();
d38144b7
MH
2548}
2549
2550/*
2551 * Tries to drain stocked charges in other cpus. This function is asynchronous
2552 * and just put a work per cpu for draining localy on each cpu. Caller can
2553 * expects some charges will be back to res_counter later but cannot wait for
2554 * it.
2555 */
c0ff4b85 2556static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2557{
9f50fad6
MH
2558 /*
2559 * If someone calls draining, avoid adding more kworker runs.
2560 */
2561 if (!mutex_trylock(&percpu_charge_mutex))
2562 return;
c0ff4b85 2563 drain_all_stock(root_memcg, false);
9f50fad6 2564 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2565}
2566
2567/* This is a synchronous drain interface. */
c0ff4b85 2568static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2569{
2570 /* called when force_empty is called */
9f50fad6 2571 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2572 drain_all_stock(root_memcg, true);
9f50fad6 2573 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2574}
2575
711d3d2c
KH
2576/*
2577 * This function drains percpu counter value from DEAD cpu and
2578 * move it to local cpu. Note that this function can be preempted.
2579 */
c0ff4b85 2580static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2581{
2582 int i;
2583
c0ff4b85 2584 spin_lock(&memcg->pcp_counter_lock);
6104621d 2585 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2586 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2587
c0ff4b85
R
2588 per_cpu(memcg->stat->count[i], cpu) = 0;
2589 memcg->nocpu_base.count[i] += x;
711d3d2c 2590 }
e9f8974f 2591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2592 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2593
c0ff4b85
R
2594 per_cpu(memcg->stat->events[i], cpu) = 0;
2595 memcg->nocpu_base.events[i] += x;
e9f8974f 2596 }
c0ff4b85 2597 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2598}
2599
0db0628d 2600static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2601 unsigned long action,
2602 void *hcpu)
2603{
2604 int cpu = (unsigned long)hcpu;
2605 struct memcg_stock_pcp *stock;
711d3d2c 2606 struct mem_cgroup *iter;
cdec2e42 2607
619d094b 2608 if (action == CPU_ONLINE)
1489ebad 2609 return NOTIFY_OK;
1489ebad 2610
d833049b 2611 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2612 return NOTIFY_OK;
711d3d2c 2613
9f3a0d09 2614 for_each_mem_cgroup(iter)
711d3d2c
KH
2615 mem_cgroup_drain_pcp_counter(iter, cpu);
2616
cdec2e42
KH
2617 stock = &per_cpu(memcg_stock, cpu);
2618 drain_stock(stock);
2619 return NOTIFY_OK;
2620}
2621
4b534334
KH
2622
2623/* See __mem_cgroup_try_charge() for details */
2624enum {
2625 CHARGE_OK, /* success */
2626 CHARGE_RETRY, /* need to retry but retry is not bad */
2627 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2628 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2629};
2630
c0ff4b85 2631static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2632 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2633 bool invoke_oom)
4b534334 2634{
7ec99d62 2635 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2636 struct mem_cgroup *mem_over_limit;
2637 struct res_counter *fail_res;
2638 unsigned long flags = 0;
2639 int ret;
2640
c0ff4b85 2641 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2642
2643 if (likely(!ret)) {
2644 if (!do_swap_account)
2645 return CHARGE_OK;
c0ff4b85 2646 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2647 if (likely(!ret))
2648 return CHARGE_OK;
2649
c0ff4b85 2650 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2651 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2652 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2653 } else
2654 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2655 /*
9221edb7
JW
2656 * Never reclaim on behalf of optional batching, retry with a
2657 * single page instead.
2658 */
4c9c5359 2659 if (nr_pages > min_pages)
4b534334
KH
2660 return CHARGE_RETRY;
2661
2662 if (!(gfp_mask & __GFP_WAIT))
2663 return CHARGE_WOULDBLOCK;
2664
4c9c5359
SS
2665 if (gfp_mask & __GFP_NORETRY)
2666 return CHARGE_NOMEM;
2667
5660048c 2668 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2669 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2670 return CHARGE_RETRY;
4b534334 2671 /*
19942822
JW
2672 * Even though the limit is exceeded at this point, reclaim
2673 * may have been able to free some pages. Retry the charge
2674 * before killing the task.
2675 *
2676 * Only for regular pages, though: huge pages are rather
2677 * unlikely to succeed so close to the limit, and we fall back
2678 * to regular pages anyway in case of failure.
4b534334 2679 */
4c9c5359 2680 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2681 return CHARGE_RETRY;
2682
2683 /*
2684 * At task move, charge accounts can be doubly counted. So, it's
2685 * better to wait until the end of task_move if something is going on.
2686 */
2687 if (mem_cgroup_wait_acct_move(mem_over_limit))
2688 return CHARGE_RETRY;
2689
3812c8c8
JW
2690 if (invoke_oom)
2691 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2692
3812c8c8 2693 return CHARGE_NOMEM;
4b534334
KH
2694}
2695
f817ed48 2696/*
38c5d72f
KH
2697 * __mem_cgroup_try_charge() does
2698 * 1. detect memcg to be charged against from passed *mm and *ptr,
2699 * 2. update res_counter
2700 * 3. call memory reclaim if necessary.
2701 *
2702 * In some special case, if the task is fatal, fatal_signal_pending() or
2703 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2704 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2705 * as possible without any hazards. 2: all pages should have a valid
2706 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2707 * pointer, that is treated as a charge to root_mem_cgroup.
2708 *
2709 * So __mem_cgroup_try_charge() will return
2710 * 0 ... on success, filling *ptr with a valid memcg pointer.
2711 * -ENOMEM ... charge failure because of resource limits.
2712 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2713 *
2714 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2715 * the oom-killer can be invoked.
8a9f3ccd 2716 */
f817ed48 2717static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2718 gfp_t gfp_mask,
7ec99d62 2719 unsigned int nr_pages,
c0ff4b85 2720 struct mem_cgroup **ptr,
7ec99d62 2721 bool oom)
8a9f3ccd 2722{
7ec99d62 2723 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2724 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2725 struct mem_cgroup *memcg = NULL;
4b534334 2726 int ret;
a636b327 2727
867578cb
KH
2728 /*
2729 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2730 * in system level. So, allow to go ahead dying process in addition to
2731 * MEMDIE process.
2732 */
2733 if (unlikely(test_thread_flag(TIF_MEMDIE)
2734 || fatal_signal_pending(current)))
2735 goto bypass;
a636b327 2736
49426420
JW
2737 if (unlikely(task_in_memcg_oom(current)))
2738 goto bypass;
2739
8a9f3ccd 2740 /*
3be91277
HD
2741 * We always charge the cgroup the mm_struct belongs to.
2742 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2743 * thread group leader migrates. It's possible that mm is not
24467cac 2744 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2745 */
c0ff4b85 2746 if (!*ptr && !mm)
38c5d72f 2747 *ptr = root_mem_cgroup;
f75ca962 2748again:
c0ff4b85
R
2749 if (*ptr) { /* css should be a valid one */
2750 memcg = *ptr;
c0ff4b85 2751 if (mem_cgroup_is_root(memcg))
f75ca962 2752 goto done;
a0956d54 2753 if (consume_stock(memcg, nr_pages))
f75ca962 2754 goto done;
c0ff4b85 2755 css_get(&memcg->css);
4b534334 2756 } else {
f75ca962 2757 struct task_struct *p;
54595fe2 2758
f75ca962
KH
2759 rcu_read_lock();
2760 p = rcu_dereference(mm->owner);
f75ca962 2761 /*
ebb76ce1 2762 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2763 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2764 * race with swapoff. Then, we have small risk of mis-accouning.
2765 * But such kind of mis-account by race always happens because
2766 * we don't have cgroup_mutex(). It's overkill and we allo that
2767 * small race, here.
2768 * (*) swapoff at el will charge against mm-struct not against
2769 * task-struct. So, mm->owner can be NULL.
f75ca962 2770 */
c0ff4b85 2771 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2772 if (!memcg)
2773 memcg = root_mem_cgroup;
2774 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2775 rcu_read_unlock();
2776 goto done;
2777 }
a0956d54 2778 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2779 /*
2780 * It seems dagerous to access memcg without css_get().
2781 * But considering how consume_stok works, it's not
2782 * necessary. If consume_stock success, some charges
2783 * from this memcg are cached on this cpu. So, we
2784 * don't need to call css_get()/css_tryget() before
2785 * calling consume_stock().
2786 */
2787 rcu_read_unlock();
2788 goto done;
2789 }
2790 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2791 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2792 rcu_read_unlock();
2793 goto again;
2794 }
2795 rcu_read_unlock();
2796 }
8a9f3ccd 2797
4b534334 2798 do {
3812c8c8 2799 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2800
4b534334 2801 /* If killed, bypass charge */
f75ca962 2802 if (fatal_signal_pending(current)) {
c0ff4b85 2803 css_put(&memcg->css);
4b534334 2804 goto bypass;
f75ca962 2805 }
6d61ef40 2806
3812c8c8
JW
2807 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2808 nr_pages, invoke_oom);
4b534334
KH
2809 switch (ret) {
2810 case CHARGE_OK:
2811 break;
2812 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2813 batch = nr_pages;
c0ff4b85
R
2814 css_put(&memcg->css);
2815 memcg = NULL;
f75ca962 2816 goto again;
4b534334 2817 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2818 css_put(&memcg->css);
4b534334
KH
2819 goto nomem;
2820 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2821 if (!oom || invoke_oom) {
c0ff4b85 2822 css_put(&memcg->css);
867578cb 2823 goto nomem;
f75ca962 2824 }
4b534334
KH
2825 nr_oom_retries--;
2826 break;
66e1707b 2827 }
4b534334
KH
2828 } while (ret != CHARGE_OK);
2829
7ec99d62 2830 if (batch > nr_pages)
c0ff4b85
R
2831 refill_stock(memcg, batch - nr_pages);
2832 css_put(&memcg->css);
0c3e73e8 2833done:
c0ff4b85 2834 *ptr = memcg;
7a81b88c
KH
2835 return 0;
2836nomem:
3168ecbe
JW
2837 if (!(gfp_mask & __GFP_NOFAIL)) {
2838 *ptr = NULL;
2839 return -ENOMEM;
2840 }
867578cb 2841bypass:
38c5d72f
KH
2842 *ptr = root_mem_cgroup;
2843 return -EINTR;
7a81b88c 2844}
8a9f3ccd 2845
a3032a2c
DN
2846/*
2847 * Somemtimes we have to undo a charge we got by try_charge().
2848 * This function is for that and do uncharge, put css's refcnt.
2849 * gotten by try_charge().
2850 */
c0ff4b85 2851static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2852 unsigned int nr_pages)
a3032a2c 2853{
c0ff4b85 2854 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2855 unsigned long bytes = nr_pages * PAGE_SIZE;
2856
c0ff4b85 2857 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2858 if (do_swap_account)
c0ff4b85 2859 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2860 }
854ffa8d
DN
2861}
2862
d01dd17f
KH
2863/*
2864 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2865 * This is useful when moving usage to parent cgroup.
2866 */
2867static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2868 unsigned int nr_pages)
2869{
2870 unsigned long bytes = nr_pages * PAGE_SIZE;
2871
2872 if (mem_cgroup_is_root(memcg))
2873 return;
2874
2875 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2876 if (do_swap_account)
2877 res_counter_uncharge_until(&memcg->memsw,
2878 memcg->memsw.parent, bytes);
2879}
2880
a3b2d692
KH
2881/*
2882 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2883 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2884 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2885 * called against removed memcg.)
a3b2d692
KH
2886 */
2887static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2888{
a3b2d692
KH
2889 /* ID 0 is unused ID */
2890 if (!id)
2891 return NULL;
34c00c31 2892 return mem_cgroup_from_id(id);
a3b2d692
KH
2893}
2894
e42d9d5d 2895struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2896{
c0ff4b85 2897 struct mem_cgroup *memcg = NULL;
3c776e64 2898 struct page_cgroup *pc;
a3b2d692 2899 unsigned short id;
b5a84319
KH
2900 swp_entry_t ent;
2901
3c776e64
DN
2902 VM_BUG_ON(!PageLocked(page));
2903
3c776e64 2904 pc = lookup_page_cgroup(page);
c0bd3f63 2905 lock_page_cgroup(pc);
a3b2d692 2906 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2907 memcg = pc->mem_cgroup;
2908 if (memcg && !css_tryget(&memcg->css))
2909 memcg = NULL;
e42d9d5d 2910 } else if (PageSwapCache(page)) {
3c776e64 2911 ent.val = page_private(page);
9fb4b7cc 2912 id = lookup_swap_cgroup_id(ent);
a3b2d692 2913 rcu_read_lock();
c0ff4b85
R
2914 memcg = mem_cgroup_lookup(id);
2915 if (memcg && !css_tryget(&memcg->css))
2916 memcg = NULL;
a3b2d692 2917 rcu_read_unlock();
3c776e64 2918 }
c0bd3f63 2919 unlock_page_cgroup(pc);
c0ff4b85 2920 return memcg;
b5a84319
KH
2921}
2922
c0ff4b85 2923static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2924 struct page *page,
7ec99d62 2925 unsigned int nr_pages,
9ce70c02
HD
2926 enum charge_type ctype,
2927 bool lrucare)
7a81b88c 2928{
ce587e65 2929 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2930 struct zone *uninitialized_var(zone);
fa9add64 2931 struct lruvec *lruvec;
9ce70c02 2932 bool was_on_lru = false;
b2402857 2933 bool anon;
9ce70c02 2934
ca3e0214 2935 lock_page_cgroup(pc);
90deb788 2936 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2937 /*
2938 * we don't need page_cgroup_lock about tail pages, becase they are not
2939 * accessed by any other context at this point.
2940 */
9ce70c02
HD
2941
2942 /*
2943 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2944 * may already be on some other mem_cgroup's LRU. Take care of it.
2945 */
2946 if (lrucare) {
2947 zone = page_zone(page);
2948 spin_lock_irq(&zone->lru_lock);
2949 if (PageLRU(page)) {
fa9add64 2950 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2951 ClearPageLRU(page);
fa9add64 2952 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2953 was_on_lru = true;
2954 }
2955 }
2956
c0ff4b85 2957 pc->mem_cgroup = memcg;
261fb61a
KH
2958 /*
2959 * We access a page_cgroup asynchronously without lock_page_cgroup().
2960 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2961 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2962 * before USED bit, we need memory barrier here.
2963 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2964 */
08e552c6 2965 smp_wmb();
b2402857 2966 SetPageCgroupUsed(pc);
3be91277 2967
9ce70c02
HD
2968 if (lrucare) {
2969 if (was_on_lru) {
fa9add64 2970 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2971 VM_BUG_ON(PageLRU(page));
2972 SetPageLRU(page);
fa9add64 2973 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2974 }
2975 spin_unlock_irq(&zone->lru_lock);
2976 }
2977
41326c17 2978 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2979 anon = true;
2980 else
2981 anon = false;
2982
b070e65c 2983 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2984 unlock_page_cgroup(pc);
9ce70c02 2985
430e4863 2986 /*
bb4cc1a8
AM
2987 * "charge_statistics" updated event counter. Then, check it.
2988 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2989 * if they exceeds softlimit.
430e4863 2990 */
c0ff4b85 2991 memcg_check_events(memcg, page);
7a81b88c 2992}
66e1707b 2993
7cf27982
GC
2994static DEFINE_MUTEX(set_limit_mutex);
2995
7ae1e1d0
GC
2996#ifdef CONFIG_MEMCG_KMEM
2997static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2998{
2999 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3000 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
3001}
3002
1f458cbf
GC
3003/*
3004 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3005 * in the memcg_cache_params struct.
3006 */
3007static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3008{
3009 struct kmem_cache *cachep;
3010
3011 VM_BUG_ON(p->is_root_cache);
3012 cachep = p->root_cache;
7a67d7ab 3013 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3014}
3015
749c5415 3016#ifdef CONFIG_SLABINFO
2da8ca82 3017static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3018{
2da8ca82 3019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3020 struct memcg_cache_params *params;
3021
3022 if (!memcg_can_account_kmem(memcg))
3023 return -EIO;
3024
3025 print_slabinfo_header(m);
3026
3027 mutex_lock(&memcg->slab_caches_mutex);
3028 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3029 cache_show(memcg_params_to_cache(params), m);
3030 mutex_unlock(&memcg->slab_caches_mutex);
3031
3032 return 0;
3033}
3034#endif
3035
7ae1e1d0
GC
3036static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3037{
3038 struct res_counter *fail_res;
3039 struct mem_cgroup *_memcg;
3040 int ret = 0;
7ae1e1d0
GC
3041
3042 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3043 if (ret)
3044 return ret;
3045
7ae1e1d0
GC
3046 _memcg = memcg;
3047 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3048 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3049
3050 if (ret == -EINTR) {
3051 /*
3052 * __mem_cgroup_try_charge() chosed to bypass to root due to
3053 * OOM kill or fatal signal. Since our only options are to
3054 * either fail the allocation or charge it to this cgroup, do
3055 * it as a temporary condition. But we can't fail. From a
3056 * kmem/slab perspective, the cache has already been selected,
3057 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3058 * our minds.
3059 *
3060 * This condition will only trigger if the task entered
3061 * memcg_charge_kmem in a sane state, but was OOM-killed during
3062 * __mem_cgroup_try_charge() above. Tasks that were already
3063 * dying when the allocation triggers should have been already
3064 * directed to the root cgroup in memcontrol.h
3065 */
3066 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3067 if (do_swap_account)
3068 res_counter_charge_nofail(&memcg->memsw, size,
3069 &fail_res);
3070 ret = 0;
3071 } else if (ret)
3072 res_counter_uncharge(&memcg->kmem, size);
3073
3074 return ret;
3075}
3076
3077static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3078{
7ae1e1d0
GC
3079 res_counter_uncharge(&memcg->res, size);
3080 if (do_swap_account)
3081 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3082
3083 /* Not down to 0 */
3084 if (res_counter_uncharge(&memcg->kmem, size))
3085 return;
3086
10d5ebf4
LZ
3087 /*
3088 * Releases a reference taken in kmem_cgroup_css_offline in case
3089 * this last uncharge is racing with the offlining code or it is
3090 * outliving the memcg existence.
3091 *
3092 * The memory barrier imposed by test&clear is paired with the
3093 * explicit one in memcg_kmem_mark_dead().
3094 */
7de37682 3095 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3096 css_put(&memcg->css);
7ae1e1d0
GC
3097}
3098
2633d7a0
GC
3099void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3100{
3101 if (!memcg)
3102 return;
3103
3104 mutex_lock(&memcg->slab_caches_mutex);
3105 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3106 mutex_unlock(&memcg->slab_caches_mutex);
3107}
3108
3109/*
3110 * helper for acessing a memcg's index. It will be used as an index in the
3111 * child cache array in kmem_cache, and also to derive its name. This function
3112 * will return -1 when this is not a kmem-limited memcg.
3113 */
3114int memcg_cache_id(struct mem_cgroup *memcg)
3115{
3116 return memcg ? memcg->kmemcg_id : -1;
3117}
3118
55007d84
GC
3119/*
3120 * This ends up being protected by the set_limit mutex, during normal
3121 * operation, because that is its main call site.
3122 *
3123 * But when we create a new cache, we can call this as well if its parent
3124 * is kmem-limited. That will have to hold set_limit_mutex as well.
3125 */
3126int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3127{
3128 int num, ret;
3129
3130 num = ida_simple_get(&kmem_limited_groups,
3131 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3132 if (num < 0)
3133 return num;
3134 /*
3135 * After this point, kmem_accounted (that we test atomically in
3136 * the beginning of this conditional), is no longer 0. This
3137 * guarantees only one process will set the following boolean
3138 * to true. We don't need test_and_set because we're protected
3139 * by the set_limit_mutex anyway.
3140 */
3141 memcg_kmem_set_activated(memcg);
3142
3143 ret = memcg_update_all_caches(num+1);
3144 if (ret) {
3145 ida_simple_remove(&kmem_limited_groups, num);
3146 memcg_kmem_clear_activated(memcg);
3147 return ret;
3148 }
3149
3150 memcg->kmemcg_id = num;
3151 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3152 mutex_init(&memcg->slab_caches_mutex);
3153 return 0;
3154}
3155
3156static size_t memcg_caches_array_size(int num_groups)
3157{
3158 ssize_t size;
3159 if (num_groups <= 0)
3160 return 0;
3161
3162 size = 2 * num_groups;
3163 if (size < MEMCG_CACHES_MIN_SIZE)
3164 size = MEMCG_CACHES_MIN_SIZE;
3165 else if (size > MEMCG_CACHES_MAX_SIZE)
3166 size = MEMCG_CACHES_MAX_SIZE;
3167
3168 return size;
3169}
3170
3171/*
3172 * We should update the current array size iff all caches updates succeed. This
3173 * can only be done from the slab side. The slab mutex needs to be held when
3174 * calling this.
3175 */
3176void memcg_update_array_size(int num)
3177{
3178 if (num > memcg_limited_groups_array_size)
3179 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3180}
3181
15cf17d2
KK
3182static void kmem_cache_destroy_work_func(struct work_struct *w);
3183
55007d84
GC
3184int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3185{
3186 struct memcg_cache_params *cur_params = s->memcg_params;
3187
f35c3a8e 3188 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3189
3190 if (num_groups > memcg_limited_groups_array_size) {
3191 int i;
3192 ssize_t size = memcg_caches_array_size(num_groups);
3193
3194 size *= sizeof(void *);
90c7a79c 3195 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3196
3197 s->memcg_params = kzalloc(size, GFP_KERNEL);
3198 if (!s->memcg_params) {
3199 s->memcg_params = cur_params;
3200 return -ENOMEM;
3201 }
3202
3203 s->memcg_params->is_root_cache = true;
3204
3205 /*
3206 * There is the chance it will be bigger than
3207 * memcg_limited_groups_array_size, if we failed an allocation
3208 * in a cache, in which case all caches updated before it, will
3209 * have a bigger array.
3210 *
3211 * But if that is the case, the data after
3212 * memcg_limited_groups_array_size is certainly unused
3213 */
3214 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3215 if (!cur_params->memcg_caches[i])
3216 continue;
3217 s->memcg_params->memcg_caches[i] =
3218 cur_params->memcg_caches[i];
3219 }
3220
3221 /*
3222 * Ideally, we would wait until all caches succeed, and only
3223 * then free the old one. But this is not worth the extra
3224 * pointer per-cache we'd have to have for this.
3225 *
3226 * It is not a big deal if some caches are left with a size
3227 * bigger than the others. And all updates will reset this
3228 * anyway.
3229 */
3230 kfree(cur_params);
3231 }
3232 return 0;
3233}
3234
943a451a
GC
3235int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3236 struct kmem_cache *root_cache)
2633d7a0 3237{
90c7a79c 3238 size_t size;
2633d7a0
GC
3239
3240 if (!memcg_kmem_enabled())
3241 return 0;
3242
90c7a79c
AV
3243 if (!memcg) {
3244 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3245 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3246 } else
3247 size = sizeof(struct memcg_cache_params);
55007d84 3248
2633d7a0
GC
3249 s->memcg_params = kzalloc(size, GFP_KERNEL);
3250 if (!s->memcg_params)
3251 return -ENOMEM;
3252
943a451a 3253 if (memcg) {
2633d7a0 3254 s->memcg_params->memcg = memcg;
943a451a 3255 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3256 INIT_WORK(&s->memcg_params->destroy,
3257 kmem_cache_destroy_work_func);
4ba902b5
GC
3258 } else
3259 s->memcg_params->is_root_cache = true;
3260
2633d7a0
GC
3261 return 0;
3262}
3263
3264void memcg_release_cache(struct kmem_cache *s)
3265{
d7f25f8a
GC
3266 struct kmem_cache *root;
3267 struct mem_cgroup *memcg;
3268 int id;
3269
3270 /*
3271 * This happens, for instance, when a root cache goes away before we
3272 * add any memcg.
3273 */
3274 if (!s->memcg_params)
3275 return;
3276
3277 if (s->memcg_params->is_root_cache)
3278 goto out;
3279
3280 memcg = s->memcg_params->memcg;
3281 id = memcg_cache_id(memcg);
3282
3283 root = s->memcg_params->root_cache;
3284 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3285
3286 mutex_lock(&memcg->slab_caches_mutex);
3287 list_del(&s->memcg_params->list);
3288 mutex_unlock(&memcg->slab_caches_mutex);
3289
20f05310 3290 css_put(&memcg->css);
d7f25f8a 3291out:
2633d7a0
GC
3292 kfree(s->memcg_params);
3293}
3294
0e9d92f2
GC
3295/*
3296 * During the creation a new cache, we need to disable our accounting mechanism
3297 * altogether. This is true even if we are not creating, but rather just
3298 * enqueing new caches to be created.
3299 *
3300 * This is because that process will trigger allocations; some visible, like
3301 * explicit kmallocs to auxiliary data structures, name strings and internal
3302 * cache structures; some well concealed, like INIT_WORK() that can allocate
3303 * objects during debug.
3304 *
3305 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3306 * to it. This may not be a bounded recursion: since the first cache creation
3307 * failed to complete (waiting on the allocation), we'll just try to create the
3308 * cache again, failing at the same point.
3309 *
3310 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3311 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3312 * inside the following two functions.
3313 */
3314static inline void memcg_stop_kmem_account(void)
3315{
3316 VM_BUG_ON(!current->mm);
3317 current->memcg_kmem_skip_account++;
3318}
3319
3320static inline void memcg_resume_kmem_account(void)
3321{
3322 VM_BUG_ON(!current->mm);
3323 current->memcg_kmem_skip_account--;
3324}
3325
1f458cbf
GC
3326static void kmem_cache_destroy_work_func(struct work_struct *w)
3327{
3328 struct kmem_cache *cachep;
3329 struct memcg_cache_params *p;
3330
3331 p = container_of(w, struct memcg_cache_params, destroy);
3332
3333 cachep = memcg_params_to_cache(p);
3334
22933152
GC
3335 /*
3336 * If we get down to 0 after shrink, we could delete right away.
3337 * However, memcg_release_pages() already puts us back in the workqueue
3338 * in that case. If we proceed deleting, we'll get a dangling
3339 * reference, and removing the object from the workqueue in that case
3340 * is unnecessary complication. We are not a fast path.
3341 *
3342 * Note that this case is fundamentally different from racing with
3343 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3344 * kmem_cache_shrink, not only we would be reinserting a dead cache
3345 * into the queue, but doing so from inside the worker racing to
3346 * destroy it.
3347 *
3348 * So if we aren't down to zero, we'll just schedule a worker and try
3349 * again
3350 */
3351 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3352 kmem_cache_shrink(cachep);
3353 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3354 return;
3355 } else
1f458cbf
GC
3356 kmem_cache_destroy(cachep);
3357}
3358
3359void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3360{
3361 if (!cachep->memcg_params->dead)
3362 return;
3363
22933152
GC
3364 /*
3365 * There are many ways in which we can get here.
3366 *
3367 * We can get to a memory-pressure situation while the delayed work is
3368 * still pending to run. The vmscan shrinkers can then release all
3369 * cache memory and get us to destruction. If this is the case, we'll
3370 * be executed twice, which is a bug (the second time will execute over
3371 * bogus data). In this case, cancelling the work should be fine.
3372 *
3373 * But we can also get here from the worker itself, if
3374 * kmem_cache_shrink is enough to shake all the remaining objects and
3375 * get the page count to 0. In this case, we'll deadlock if we try to
3376 * cancel the work (the worker runs with an internal lock held, which
3377 * is the same lock we would hold for cancel_work_sync().)
3378 *
3379 * Since we can't possibly know who got us here, just refrain from
3380 * running if there is already work pending
3381 */
3382 if (work_pending(&cachep->memcg_params->destroy))
3383 return;
1f458cbf
GC
3384 /*
3385 * We have to defer the actual destroying to a workqueue, because
3386 * we might currently be in a context that cannot sleep.
3387 */
3388 schedule_work(&cachep->memcg_params->destroy);
3389}
3390
d9c10ddd
MH
3391/*
3392 * This lock protects updaters, not readers. We want readers to be as fast as
3393 * they can, and they will either see NULL or a valid cache value. Our model
3394 * allow them to see NULL, in which case the root memcg will be selected.
3395 *
3396 * We need this lock because multiple allocations to the same cache from a non
3397 * will span more than one worker. Only one of them can create the cache.
3398 */
3399static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3400
d9c10ddd
MH
3401/*
3402 * Called with memcg_cache_mutex held
3403 */
d7f25f8a
GC
3404static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3405 struct kmem_cache *s)
3406{
d7f25f8a 3407 struct kmem_cache *new;
d9c10ddd 3408 static char *tmp_name = NULL;
d7f25f8a 3409
d9c10ddd
MH
3410 lockdep_assert_held(&memcg_cache_mutex);
3411
3412 /*
3413 * kmem_cache_create_memcg duplicates the given name and
3414 * cgroup_name for this name requires RCU context.
3415 * This static temporary buffer is used to prevent from
3416 * pointless shortliving allocation.
3417 */
3418 if (!tmp_name) {
3419 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3420 if (!tmp_name)
3421 return NULL;
3422 }
3423
3424 rcu_read_lock();
3425 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3426 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3427 rcu_read_unlock();
d7f25f8a 3428
d9c10ddd 3429 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3430 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3431
d79923fa
GC
3432 if (new)
3433 new->allocflags |= __GFP_KMEMCG;
3434
d7f25f8a
GC
3435 return new;
3436}
3437
d7f25f8a
GC
3438static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3439 struct kmem_cache *cachep)
3440{
3441 struct kmem_cache *new_cachep;
3442 int idx;
3443
3444 BUG_ON(!memcg_can_account_kmem(memcg));
3445
3446 idx = memcg_cache_id(memcg);
3447
3448 mutex_lock(&memcg_cache_mutex);
7a67d7ab 3449 new_cachep = cache_from_memcg_idx(cachep, idx);
20f05310
LZ
3450 if (new_cachep) {
3451 css_put(&memcg->css);
d7f25f8a 3452 goto out;
20f05310 3453 }
d7f25f8a
GC
3454
3455 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3456 if (new_cachep == NULL) {
3457 new_cachep = cachep;
20f05310 3458 css_put(&memcg->css);
d7f25f8a
GC
3459 goto out;
3460 }
3461
1f458cbf 3462 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3463
3464 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3465 /*
3466 * the readers won't lock, make sure everybody sees the updated value,
3467 * so they won't put stuff in the queue again for no reason
3468 */
3469 wmb();
3470out:
3471 mutex_unlock(&memcg_cache_mutex);
3472 return new_cachep;
3473}
3474
7cf27982
GC
3475void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3476{
3477 struct kmem_cache *c;
3478 int i;
3479
3480 if (!s->memcg_params)
3481 return;
3482 if (!s->memcg_params->is_root_cache)
3483 return;
3484
3485 /*
3486 * If the cache is being destroyed, we trust that there is no one else
3487 * requesting objects from it. Even if there are, the sanity checks in
3488 * kmem_cache_destroy should caught this ill-case.
3489 *
3490 * Still, we don't want anyone else freeing memcg_caches under our
3491 * noses, which can happen if a new memcg comes to life. As usual,
3492 * we'll take the set_limit_mutex to protect ourselves against this.
3493 */
3494 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3495 for_each_memcg_cache_index(i) {
3496 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3497 if (!c)
3498 continue;
3499
3500 /*
3501 * We will now manually delete the caches, so to avoid races
3502 * we need to cancel all pending destruction workers and
3503 * proceed with destruction ourselves.
3504 *
3505 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3506 * and that could spawn the workers again: it is likely that
3507 * the cache still have active pages until this very moment.
3508 * This would lead us back to mem_cgroup_destroy_cache.
3509 *
3510 * But that will not execute at all if the "dead" flag is not
3511 * set, so flip it down to guarantee we are in control.
3512 */
3513 c->memcg_params->dead = false;
22933152 3514 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3515 kmem_cache_destroy(c);
3516 }
3517 mutex_unlock(&set_limit_mutex);
3518}
3519
d7f25f8a
GC
3520struct create_work {
3521 struct mem_cgroup *memcg;
3522 struct kmem_cache *cachep;
3523 struct work_struct work;
3524};
3525
1f458cbf
GC
3526static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3527{
3528 struct kmem_cache *cachep;
3529 struct memcg_cache_params *params;
3530
3531 if (!memcg_kmem_is_active(memcg))
3532 return;
3533
3534 mutex_lock(&memcg->slab_caches_mutex);
3535 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3536 cachep = memcg_params_to_cache(params);
3537 cachep->memcg_params->dead = true;
1f458cbf
GC
3538 schedule_work(&cachep->memcg_params->destroy);
3539 }
3540 mutex_unlock(&memcg->slab_caches_mutex);
3541}
3542
d7f25f8a
GC
3543static void memcg_create_cache_work_func(struct work_struct *w)
3544{
3545 struct create_work *cw;
3546
3547 cw = container_of(w, struct create_work, work);
3548 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3549 kfree(cw);
3550}
3551
3552/*
3553 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3554 */
0e9d92f2
GC
3555static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3556 struct kmem_cache *cachep)
d7f25f8a
GC
3557{
3558 struct create_work *cw;
3559
3560 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3561 if (cw == NULL) {
3562 css_put(&memcg->css);
d7f25f8a
GC
3563 return;
3564 }
3565
3566 cw->memcg = memcg;
3567 cw->cachep = cachep;
3568
3569 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3570 schedule_work(&cw->work);
3571}
3572
0e9d92f2
GC
3573static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3574 struct kmem_cache *cachep)
3575{
3576 /*
3577 * We need to stop accounting when we kmalloc, because if the
3578 * corresponding kmalloc cache is not yet created, the first allocation
3579 * in __memcg_create_cache_enqueue will recurse.
3580 *
3581 * However, it is better to enclose the whole function. Depending on
3582 * the debugging options enabled, INIT_WORK(), for instance, can
3583 * trigger an allocation. This too, will make us recurse. Because at
3584 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3585 * the safest choice is to do it like this, wrapping the whole function.
3586 */
3587 memcg_stop_kmem_account();
3588 __memcg_create_cache_enqueue(memcg, cachep);
3589 memcg_resume_kmem_account();
3590}
d7f25f8a
GC
3591/*
3592 * Return the kmem_cache we're supposed to use for a slab allocation.
3593 * We try to use the current memcg's version of the cache.
3594 *
3595 * If the cache does not exist yet, if we are the first user of it,
3596 * we either create it immediately, if possible, or create it asynchronously
3597 * in a workqueue.
3598 * In the latter case, we will let the current allocation go through with
3599 * the original cache.
3600 *
3601 * Can't be called in interrupt context or from kernel threads.
3602 * This function needs to be called with rcu_read_lock() held.
3603 */
3604struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3605 gfp_t gfp)
3606{
3607 struct mem_cgroup *memcg;
3608 int idx;
3609
3610 VM_BUG_ON(!cachep->memcg_params);
3611 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3612
0e9d92f2
GC
3613 if (!current->mm || current->memcg_kmem_skip_account)
3614 return cachep;
3615
d7f25f8a
GC
3616 rcu_read_lock();
3617 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3618
3619 if (!memcg_can_account_kmem(memcg))
ca0dde97 3620 goto out;
d7f25f8a
GC
3621
3622 idx = memcg_cache_id(memcg);
3623
3624 /*
3625 * barrier to mare sure we're always seeing the up to date value. The
3626 * code updating memcg_caches will issue a write barrier to match this.
3627 */
3628 read_barrier_depends();
7a67d7ab
QH
3629 if (likely(cache_from_memcg_idx(cachep, idx))) {
3630 cachep = cache_from_memcg_idx(cachep, idx);
ca0dde97 3631 goto out;
d7f25f8a
GC
3632 }
3633
ca0dde97
LZ
3634 /* The corresponding put will be done in the workqueue. */
3635 if (!css_tryget(&memcg->css))
3636 goto out;
3637 rcu_read_unlock();
3638
3639 /*
3640 * If we are in a safe context (can wait, and not in interrupt
3641 * context), we could be be predictable and return right away.
3642 * This would guarantee that the allocation being performed
3643 * already belongs in the new cache.
3644 *
3645 * However, there are some clashes that can arrive from locking.
3646 * For instance, because we acquire the slab_mutex while doing
3647 * kmem_cache_dup, this means no further allocation could happen
3648 * with the slab_mutex held.
3649 *
3650 * Also, because cache creation issue get_online_cpus(), this
3651 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3652 * that ends up reversed during cpu hotplug. (cpuset allocates
3653 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3654 * better to defer everything.
3655 */
3656 memcg_create_cache_enqueue(memcg, cachep);
3657 return cachep;
3658out:
3659 rcu_read_unlock();
3660 return cachep;
d7f25f8a
GC
3661}
3662EXPORT_SYMBOL(__memcg_kmem_get_cache);
3663
7ae1e1d0
GC
3664/*
3665 * We need to verify if the allocation against current->mm->owner's memcg is
3666 * possible for the given order. But the page is not allocated yet, so we'll
3667 * need a further commit step to do the final arrangements.
3668 *
3669 * It is possible for the task to switch cgroups in this mean time, so at
3670 * commit time, we can't rely on task conversion any longer. We'll then use
3671 * the handle argument to return to the caller which cgroup we should commit
3672 * against. We could also return the memcg directly and avoid the pointer
3673 * passing, but a boolean return value gives better semantics considering
3674 * the compiled-out case as well.
3675 *
3676 * Returning true means the allocation is possible.
3677 */
3678bool
3679__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3680{
3681 struct mem_cgroup *memcg;
3682 int ret;
3683
3684 *_memcg = NULL;
6d42c232
GC
3685
3686 /*
3687 * Disabling accounting is only relevant for some specific memcg
3688 * internal allocations. Therefore we would initially not have such
3689 * check here, since direct calls to the page allocator that are marked
3690 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3691 * concerned with cache allocations, and by having this test at
3692 * memcg_kmem_get_cache, we are already able to relay the allocation to
3693 * the root cache and bypass the memcg cache altogether.
3694 *
3695 * There is one exception, though: the SLUB allocator does not create
3696 * large order caches, but rather service large kmallocs directly from
3697 * the page allocator. Therefore, the following sequence when backed by
3698 * the SLUB allocator:
3699 *
f894ffa8
AM
3700 * memcg_stop_kmem_account();
3701 * kmalloc(<large_number>)
3702 * memcg_resume_kmem_account();
6d42c232
GC
3703 *
3704 * would effectively ignore the fact that we should skip accounting,
3705 * since it will drive us directly to this function without passing
3706 * through the cache selector memcg_kmem_get_cache. Such large
3707 * allocations are extremely rare but can happen, for instance, for the
3708 * cache arrays. We bring this test here.
3709 */
3710 if (!current->mm || current->memcg_kmem_skip_account)
3711 return true;
3712
7ae1e1d0
GC
3713 memcg = try_get_mem_cgroup_from_mm(current->mm);
3714
3715 /*
3716 * very rare case described in mem_cgroup_from_task. Unfortunately there
3717 * isn't much we can do without complicating this too much, and it would
3718 * be gfp-dependent anyway. Just let it go
3719 */
3720 if (unlikely(!memcg))
3721 return true;
3722
3723 if (!memcg_can_account_kmem(memcg)) {
3724 css_put(&memcg->css);
3725 return true;
3726 }
3727
7ae1e1d0
GC
3728 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3729 if (!ret)
3730 *_memcg = memcg;
7ae1e1d0
GC
3731
3732 css_put(&memcg->css);
3733 return (ret == 0);
3734}
3735
3736void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3737 int order)
3738{
3739 struct page_cgroup *pc;
3740
3741 VM_BUG_ON(mem_cgroup_is_root(memcg));
3742
3743 /* The page allocation failed. Revert */
3744 if (!page) {
3745 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3746 return;
3747 }
3748
3749 pc = lookup_page_cgroup(page);
3750 lock_page_cgroup(pc);
3751 pc->mem_cgroup = memcg;
3752 SetPageCgroupUsed(pc);
3753 unlock_page_cgroup(pc);
3754}
3755
3756void __memcg_kmem_uncharge_pages(struct page *page, int order)
3757{
3758 struct mem_cgroup *memcg = NULL;
3759 struct page_cgroup *pc;
3760
3761
3762 pc = lookup_page_cgroup(page);
3763 /*
3764 * Fast unlocked return. Theoretically might have changed, have to
3765 * check again after locking.
3766 */
3767 if (!PageCgroupUsed(pc))
3768 return;
3769
3770 lock_page_cgroup(pc);
3771 if (PageCgroupUsed(pc)) {
3772 memcg = pc->mem_cgroup;
3773 ClearPageCgroupUsed(pc);
3774 }
3775 unlock_page_cgroup(pc);
3776
3777 /*
3778 * We trust that only if there is a memcg associated with the page, it
3779 * is a valid allocation
3780 */
3781 if (!memcg)
3782 return;
3783
3784 VM_BUG_ON(mem_cgroup_is_root(memcg));
3785 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3786}
1f458cbf
GC
3787#else
3788static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3789{
3790}
7ae1e1d0
GC
3791#endif /* CONFIG_MEMCG_KMEM */
3792
ca3e0214
KH
3793#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3794
a0db00fc 3795#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3796/*
3797 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3798 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3799 * charge/uncharge will be never happen and move_account() is done under
3800 * compound_lock(), so we don't have to take care of races.
ca3e0214 3801 */
e94c8a9c 3802void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3803{
3804 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3805 struct page_cgroup *pc;
b070e65c 3806 struct mem_cgroup *memcg;
e94c8a9c 3807 int i;
ca3e0214 3808
3d37c4a9
KH
3809 if (mem_cgroup_disabled())
3810 return;
b070e65c
DR
3811
3812 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3813 for (i = 1; i < HPAGE_PMD_NR; i++) {
3814 pc = head_pc + i;
b070e65c 3815 pc->mem_cgroup = memcg;
e94c8a9c 3816 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3817 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3818 }
b070e65c
DR
3819 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3820 HPAGE_PMD_NR);
ca3e0214 3821}
12d27107 3822#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3823
3ea67d06
SZ
3824static inline
3825void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3826 struct mem_cgroup *to,
3827 unsigned int nr_pages,
3828 enum mem_cgroup_stat_index idx)
3829{
3830 /* Update stat data for mem_cgroup */
3831 preempt_disable();
5e8cfc3c 3832 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3833 __this_cpu_add(to->stat->count[idx], nr_pages);
3834 preempt_enable();
3835}
3836
f817ed48 3837/**
de3638d9 3838 * mem_cgroup_move_account - move account of the page
5564e88b 3839 * @page: the page
7ec99d62 3840 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3841 * @pc: page_cgroup of the page.
3842 * @from: mem_cgroup which the page is moved from.
3843 * @to: mem_cgroup which the page is moved to. @from != @to.
3844 *
3845 * The caller must confirm following.
08e552c6 3846 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3847 * - compound_lock is held when nr_pages > 1
f817ed48 3848 *
2f3479b1
KH
3849 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3850 * from old cgroup.
f817ed48 3851 */
7ec99d62
JW
3852static int mem_cgroup_move_account(struct page *page,
3853 unsigned int nr_pages,
3854 struct page_cgroup *pc,
3855 struct mem_cgroup *from,
2f3479b1 3856 struct mem_cgroup *to)
f817ed48 3857{
de3638d9
JW
3858 unsigned long flags;
3859 int ret;
b2402857 3860 bool anon = PageAnon(page);
987eba66 3861
f817ed48 3862 VM_BUG_ON(from == to);
5564e88b 3863 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3864 /*
3865 * The page is isolated from LRU. So, collapse function
3866 * will not handle this page. But page splitting can happen.
3867 * Do this check under compound_page_lock(). The caller should
3868 * hold it.
3869 */
3870 ret = -EBUSY;
7ec99d62 3871 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3872 goto out;
3873
3874 lock_page_cgroup(pc);
3875
3876 ret = -EINVAL;
3877 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3878 goto unlock;
3879
312734c0 3880 move_lock_mem_cgroup(from, &flags);
f817ed48 3881
3ea67d06
SZ
3882 if (!anon && page_mapped(page))
3883 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3884 MEM_CGROUP_STAT_FILE_MAPPED);
3885
3886 if (PageWriteback(page))
3887 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3888 MEM_CGROUP_STAT_WRITEBACK);
3889
b070e65c 3890 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3891
854ffa8d 3892 /* caller should have done css_get */
08e552c6 3893 pc->mem_cgroup = to;
b070e65c 3894 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3895 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3896 ret = 0;
3897unlock:
57f9fd7d 3898 unlock_page_cgroup(pc);
d2265e6f
KH
3899 /*
3900 * check events
3901 */
5564e88b
JW
3902 memcg_check_events(to, page);
3903 memcg_check_events(from, page);
de3638d9 3904out:
f817ed48
KH
3905 return ret;
3906}
3907
2ef37d3f
MH
3908/**
3909 * mem_cgroup_move_parent - moves page to the parent group
3910 * @page: the page to move
3911 * @pc: page_cgroup of the page
3912 * @child: page's cgroup
3913 *
3914 * move charges to its parent or the root cgroup if the group has no
3915 * parent (aka use_hierarchy==0).
3916 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3917 * mem_cgroup_move_account fails) the failure is always temporary and
3918 * it signals a race with a page removal/uncharge or migration. In the
3919 * first case the page is on the way out and it will vanish from the LRU
3920 * on the next attempt and the call should be retried later.
3921 * Isolation from the LRU fails only if page has been isolated from
3922 * the LRU since we looked at it and that usually means either global
3923 * reclaim or migration going on. The page will either get back to the
3924 * LRU or vanish.
3925 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3926 * (!PageCgroupUsed) or moved to a different group. The page will
3927 * disappear in the next attempt.
f817ed48 3928 */
5564e88b
JW
3929static int mem_cgroup_move_parent(struct page *page,
3930 struct page_cgroup *pc,
6068bf01 3931 struct mem_cgroup *child)
f817ed48 3932{
f817ed48 3933 struct mem_cgroup *parent;
7ec99d62 3934 unsigned int nr_pages;
4be4489f 3935 unsigned long uninitialized_var(flags);
f817ed48
KH
3936 int ret;
3937
d8423011 3938 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3939
57f9fd7d
DN
3940 ret = -EBUSY;
3941 if (!get_page_unless_zero(page))
3942 goto out;
3943 if (isolate_lru_page(page))
3944 goto put;
52dbb905 3945
7ec99d62 3946 nr_pages = hpage_nr_pages(page);
08e552c6 3947
cc926f78
KH
3948 parent = parent_mem_cgroup(child);
3949 /*
3950 * If no parent, move charges to root cgroup.
3951 */
3952 if (!parent)
3953 parent = root_mem_cgroup;
f817ed48 3954
2ef37d3f
MH
3955 if (nr_pages > 1) {
3956 VM_BUG_ON(!PageTransHuge(page));
987eba66 3957 flags = compound_lock_irqsave(page);
2ef37d3f 3958 }
987eba66 3959
cc926f78 3960 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3961 pc, child, parent);
cc926f78
KH
3962 if (!ret)
3963 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3964
7ec99d62 3965 if (nr_pages > 1)
987eba66 3966 compound_unlock_irqrestore(page, flags);
08e552c6 3967 putback_lru_page(page);
57f9fd7d 3968put:
40d58138 3969 put_page(page);
57f9fd7d 3970out:
f817ed48
KH
3971 return ret;
3972}
3973
7a81b88c
KH
3974/*
3975 * Charge the memory controller for page usage.
3976 * Return
3977 * 0 if the charge was successful
3978 * < 0 if the cgroup is over its limit
3979 */
3980static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3981 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3982{
c0ff4b85 3983 struct mem_cgroup *memcg = NULL;
7ec99d62 3984 unsigned int nr_pages = 1;
8493ae43 3985 bool oom = true;
7a81b88c 3986 int ret;
ec168510 3987
37c2ac78 3988 if (PageTransHuge(page)) {
7ec99d62 3989 nr_pages <<= compound_order(page);
37c2ac78 3990 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3991 /*
3992 * Never OOM-kill a process for a huge page. The
3993 * fault handler will fall back to regular pages.
3994 */
3995 oom = false;
37c2ac78 3996 }
7a81b88c 3997
c0ff4b85 3998 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3999 if (ret == -ENOMEM)
7a81b88c 4000 return ret;
ce587e65 4001 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 4002 return 0;
8a9f3ccd
BS
4003}
4004
7a81b88c
KH
4005int mem_cgroup_newpage_charge(struct page *page,
4006 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 4007{
f8d66542 4008 if (mem_cgroup_disabled())
cede86ac 4009 return 0;
7a0524cf
JW
4010 VM_BUG_ON(page_mapped(page));
4011 VM_BUG_ON(page->mapping && !PageAnon(page));
4012 VM_BUG_ON(!mm);
217bc319 4013 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 4014 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4015}
4016
54595fe2
KH
4017/*
4018 * While swap-in, try_charge -> commit or cancel, the page is locked.
4019 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4020 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4021 * "commit()" or removed by "cancel()"
4022 */
0435a2fd
JW
4023static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4024 struct page *page,
4025 gfp_t mask,
4026 struct mem_cgroup **memcgp)
8c7c6e34 4027{
c0ff4b85 4028 struct mem_cgroup *memcg;
90deb788 4029 struct page_cgroup *pc;
54595fe2 4030 int ret;
8c7c6e34 4031
90deb788
JW
4032 pc = lookup_page_cgroup(page);
4033 /*
4034 * Every swap fault against a single page tries to charge the
4035 * page, bail as early as possible. shmem_unuse() encounters
4036 * already charged pages, too. The USED bit is protected by
4037 * the page lock, which serializes swap cache removal, which
4038 * in turn serializes uncharging.
4039 */
4040 if (PageCgroupUsed(pc))
4041 return 0;
8c7c6e34
KH
4042 if (!do_swap_account)
4043 goto charge_cur_mm;
c0ff4b85
R
4044 memcg = try_get_mem_cgroup_from_page(page);
4045 if (!memcg)
54595fe2 4046 goto charge_cur_mm;
72835c86
JW
4047 *memcgp = memcg;
4048 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4049 css_put(&memcg->css);
38c5d72f
KH
4050 if (ret == -EINTR)
4051 ret = 0;
54595fe2 4052 return ret;
8c7c6e34 4053charge_cur_mm:
38c5d72f
KH
4054 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4055 if (ret == -EINTR)
4056 ret = 0;
4057 return ret;
8c7c6e34
KH
4058}
4059
0435a2fd
JW
4060int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4061 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4062{
4063 *memcgp = NULL;
4064 if (mem_cgroup_disabled())
4065 return 0;
bdf4f4d2
JW
4066 /*
4067 * A racing thread's fault, or swapoff, may have already
4068 * updated the pte, and even removed page from swap cache: in
4069 * those cases unuse_pte()'s pte_same() test will fail; but
4070 * there's also a KSM case which does need to charge the page.
4071 */
4072 if (!PageSwapCache(page)) {
4073 int ret;
4074
4075 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4076 if (ret == -EINTR)
4077 ret = 0;
4078 return ret;
4079 }
0435a2fd
JW
4080 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4081}
4082
827a03d2
JW
4083void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4084{
4085 if (mem_cgroup_disabled())
4086 return;
4087 if (!memcg)
4088 return;
4089 __mem_cgroup_cancel_charge(memcg, 1);
4090}
4091
83aae4c7 4092static void
72835c86 4093__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4094 enum charge_type ctype)
7a81b88c 4095{
f8d66542 4096 if (mem_cgroup_disabled())
7a81b88c 4097 return;
72835c86 4098 if (!memcg)
7a81b88c 4099 return;
5a6475a4 4100
ce587e65 4101 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4102 /*
4103 * Now swap is on-memory. This means this page may be
4104 * counted both as mem and swap....double count.
03f3c433
KH
4105 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4106 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4107 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4108 */
03f3c433 4109 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4110 swp_entry_t ent = {.val = page_private(page)};
86493009 4111 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4112 }
7a81b88c
KH
4113}
4114
72835c86
JW
4115void mem_cgroup_commit_charge_swapin(struct page *page,
4116 struct mem_cgroup *memcg)
83aae4c7 4117{
72835c86 4118 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4119 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4120}
4121
827a03d2
JW
4122int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4123 gfp_t gfp_mask)
7a81b88c 4124{
827a03d2
JW
4125 struct mem_cgroup *memcg = NULL;
4126 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4127 int ret;
4128
f8d66542 4129 if (mem_cgroup_disabled())
827a03d2
JW
4130 return 0;
4131 if (PageCompound(page))
4132 return 0;
4133
827a03d2
JW
4134 if (!PageSwapCache(page))
4135 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4136 else { /* page is swapcache/shmem */
0435a2fd
JW
4137 ret = __mem_cgroup_try_charge_swapin(mm, page,
4138 gfp_mask, &memcg);
827a03d2
JW
4139 if (!ret)
4140 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4141 }
4142 return ret;
7a81b88c
KH
4143}
4144
c0ff4b85 4145static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4146 unsigned int nr_pages,
4147 const enum charge_type ctype)
569b846d
KH
4148{
4149 struct memcg_batch_info *batch = NULL;
4150 bool uncharge_memsw = true;
7ec99d62 4151
569b846d
KH
4152 /* If swapout, usage of swap doesn't decrease */
4153 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4154 uncharge_memsw = false;
569b846d
KH
4155
4156 batch = &current->memcg_batch;
4157 /*
4158 * In usual, we do css_get() when we remember memcg pointer.
4159 * But in this case, we keep res->usage until end of a series of
4160 * uncharges. Then, it's ok to ignore memcg's refcnt.
4161 */
4162 if (!batch->memcg)
c0ff4b85 4163 batch->memcg = memcg;
3c11ecf4
KH
4164 /*
4165 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4166 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4167 * the same cgroup and we have chance to coalesce uncharges.
4168 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4169 * because we want to do uncharge as soon as possible.
4170 */
4171
4172 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4173 goto direct_uncharge;
4174
7ec99d62 4175 if (nr_pages > 1)
ec168510
AA
4176 goto direct_uncharge;
4177
569b846d
KH
4178 /*
4179 * In typical case, batch->memcg == mem. This means we can
4180 * merge a series of uncharges to an uncharge of res_counter.
4181 * If not, we uncharge res_counter ony by one.
4182 */
c0ff4b85 4183 if (batch->memcg != memcg)
569b846d
KH
4184 goto direct_uncharge;
4185 /* remember freed charge and uncharge it later */
7ffd4ca7 4186 batch->nr_pages++;
569b846d 4187 if (uncharge_memsw)
7ffd4ca7 4188 batch->memsw_nr_pages++;
569b846d
KH
4189 return;
4190direct_uncharge:
c0ff4b85 4191 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4192 if (uncharge_memsw)
c0ff4b85
R
4193 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4194 if (unlikely(batch->memcg != memcg))
4195 memcg_oom_recover(memcg);
569b846d 4196}
7a81b88c 4197
8a9f3ccd 4198/*
69029cd5 4199 * uncharge if !page_mapped(page)
8a9f3ccd 4200 */
8c7c6e34 4201static struct mem_cgroup *
0030f535
JW
4202__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4203 bool end_migration)
8a9f3ccd 4204{
c0ff4b85 4205 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4206 unsigned int nr_pages = 1;
4207 struct page_cgroup *pc;
b2402857 4208 bool anon;
8a9f3ccd 4209
f8d66542 4210 if (mem_cgroup_disabled())
8c7c6e34 4211 return NULL;
4077960e 4212
37c2ac78 4213 if (PageTransHuge(page)) {
7ec99d62 4214 nr_pages <<= compound_order(page);
37c2ac78
AA
4215 VM_BUG_ON(!PageTransHuge(page));
4216 }
8697d331 4217 /*
3c541e14 4218 * Check if our page_cgroup is valid
8697d331 4219 */
52d4b9ac 4220 pc = lookup_page_cgroup(page);
cfa44946 4221 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4222 return NULL;
b9c565d5 4223
52d4b9ac 4224 lock_page_cgroup(pc);
d13d1443 4225
c0ff4b85 4226 memcg = pc->mem_cgroup;
8c7c6e34 4227
d13d1443
KH
4228 if (!PageCgroupUsed(pc))
4229 goto unlock_out;
4230
b2402857
KH
4231 anon = PageAnon(page);
4232
d13d1443 4233 switch (ctype) {
41326c17 4234 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4235 /*
4236 * Generally PageAnon tells if it's the anon statistics to be
4237 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4238 * used before page reached the stage of being marked PageAnon.
4239 */
b2402857
KH
4240 anon = true;
4241 /* fallthrough */
8a9478ca 4242 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4243 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4244 if (page_mapped(page))
4245 goto unlock_out;
4246 /*
4247 * Pages under migration may not be uncharged. But
4248 * end_migration() /must/ be the one uncharging the
4249 * unused post-migration page and so it has to call
4250 * here with the migration bit still set. See the
4251 * res_counter handling below.
4252 */
4253 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4254 goto unlock_out;
4255 break;
4256 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4257 if (!PageAnon(page)) { /* Shared memory */
4258 if (page->mapping && !page_is_file_cache(page))
4259 goto unlock_out;
4260 } else if (page_mapped(page)) /* Anon */
4261 goto unlock_out;
4262 break;
4263 default:
4264 break;
52d4b9ac 4265 }
d13d1443 4266
b070e65c 4267 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4268
52d4b9ac 4269 ClearPageCgroupUsed(pc);
544122e5
KH
4270 /*
4271 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4272 * freed from LRU. This is safe because uncharged page is expected not
4273 * to be reused (freed soon). Exception is SwapCache, it's handled by
4274 * special functions.
4275 */
b9c565d5 4276
52d4b9ac 4277 unlock_page_cgroup(pc);
f75ca962 4278 /*
c0ff4b85 4279 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4280 * will never be freed, so it's safe to call css_get().
f75ca962 4281 */
c0ff4b85 4282 memcg_check_events(memcg, page);
f75ca962 4283 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4284 mem_cgroup_swap_statistics(memcg, true);
4050377b 4285 css_get(&memcg->css);
f75ca962 4286 }
0030f535
JW
4287 /*
4288 * Migration does not charge the res_counter for the
4289 * replacement page, so leave it alone when phasing out the
4290 * page that is unused after the migration.
4291 */
4292 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4293 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4294
c0ff4b85 4295 return memcg;
d13d1443
KH
4296
4297unlock_out:
4298 unlock_page_cgroup(pc);
8c7c6e34 4299 return NULL;
3c541e14
BS
4300}
4301
69029cd5
KH
4302void mem_cgroup_uncharge_page(struct page *page)
4303{
52d4b9ac
KH
4304 /* early check. */
4305 if (page_mapped(page))
4306 return;
40f23a21 4307 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4308 /*
4309 * If the page is in swap cache, uncharge should be deferred
4310 * to the swap path, which also properly accounts swap usage
4311 * and handles memcg lifetime.
4312 *
4313 * Note that this check is not stable and reclaim may add the
4314 * page to swap cache at any time after this. However, if the
4315 * page is not in swap cache by the time page->mapcount hits
4316 * 0, there won't be any page table references to the swap
4317 * slot, and reclaim will free it and not actually write the
4318 * page to disk.
4319 */
0c59b89c
JW
4320 if (PageSwapCache(page))
4321 return;
0030f535 4322 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4323}
4324
4325void mem_cgroup_uncharge_cache_page(struct page *page)
4326{
4327 VM_BUG_ON(page_mapped(page));
b7abea96 4328 VM_BUG_ON(page->mapping);
0030f535 4329 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4330}
4331
569b846d
KH
4332/*
4333 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4334 * In that cases, pages are freed continuously and we can expect pages
4335 * are in the same memcg. All these calls itself limits the number of
4336 * pages freed at once, then uncharge_start/end() is called properly.
4337 * This may be called prural(2) times in a context,
4338 */
4339
4340void mem_cgroup_uncharge_start(void)
4341{
4342 current->memcg_batch.do_batch++;
4343 /* We can do nest. */
4344 if (current->memcg_batch.do_batch == 1) {
4345 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4346 current->memcg_batch.nr_pages = 0;
4347 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4348 }
4349}
4350
4351void mem_cgroup_uncharge_end(void)
4352{
4353 struct memcg_batch_info *batch = &current->memcg_batch;
4354
4355 if (!batch->do_batch)
4356 return;
4357
4358 batch->do_batch--;
4359 if (batch->do_batch) /* If stacked, do nothing. */
4360 return;
4361
4362 if (!batch->memcg)
4363 return;
4364 /*
4365 * This "batch->memcg" is valid without any css_get/put etc...
4366 * bacause we hide charges behind us.
4367 */
7ffd4ca7
JW
4368 if (batch->nr_pages)
4369 res_counter_uncharge(&batch->memcg->res,
4370 batch->nr_pages * PAGE_SIZE);
4371 if (batch->memsw_nr_pages)
4372 res_counter_uncharge(&batch->memcg->memsw,
4373 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4374 memcg_oom_recover(batch->memcg);
569b846d
KH
4375 /* forget this pointer (for sanity check) */
4376 batch->memcg = NULL;
4377}
4378
e767e056 4379#ifdef CONFIG_SWAP
8c7c6e34 4380/*
e767e056 4381 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4382 * memcg information is recorded to swap_cgroup of "ent"
4383 */
8a9478ca
KH
4384void
4385mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4386{
4387 struct mem_cgroup *memcg;
8a9478ca
KH
4388 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4389
4390 if (!swapout) /* this was a swap cache but the swap is unused ! */
4391 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4392
0030f535 4393 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4394
f75ca962
KH
4395 /*
4396 * record memcg information, if swapout && memcg != NULL,
4050377b 4397 * css_get() was called in uncharge().
f75ca962
KH
4398 */
4399 if (do_swap_account && swapout && memcg)
34c00c31 4400 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4401}
e767e056 4402#endif
8c7c6e34 4403
c255a458 4404#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4405/*
4406 * called from swap_entry_free(). remove record in swap_cgroup and
4407 * uncharge "memsw" account.
4408 */
4409void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4410{
8c7c6e34 4411 struct mem_cgroup *memcg;
a3b2d692 4412 unsigned short id;
8c7c6e34
KH
4413
4414 if (!do_swap_account)
4415 return;
4416
a3b2d692
KH
4417 id = swap_cgroup_record(ent, 0);
4418 rcu_read_lock();
4419 memcg = mem_cgroup_lookup(id);
8c7c6e34 4420 if (memcg) {
a3b2d692
KH
4421 /*
4422 * We uncharge this because swap is freed.
4423 * This memcg can be obsolete one. We avoid calling css_tryget
4424 */
0c3e73e8 4425 if (!mem_cgroup_is_root(memcg))
4e649152 4426 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4427 mem_cgroup_swap_statistics(memcg, false);
4050377b 4428 css_put(&memcg->css);
8c7c6e34 4429 }
a3b2d692 4430 rcu_read_unlock();
d13d1443 4431}
02491447
DN
4432
4433/**
4434 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4435 * @entry: swap entry to be moved
4436 * @from: mem_cgroup which the entry is moved from
4437 * @to: mem_cgroup which the entry is moved to
4438 *
4439 * It succeeds only when the swap_cgroup's record for this entry is the same
4440 * as the mem_cgroup's id of @from.
4441 *
4442 * Returns 0 on success, -EINVAL on failure.
4443 *
4444 * The caller must have charged to @to, IOW, called res_counter_charge() about
4445 * both res and memsw, and called css_get().
4446 */
4447static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4448 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4449{
4450 unsigned short old_id, new_id;
4451
34c00c31
LZ
4452 old_id = mem_cgroup_id(from);
4453 new_id = mem_cgroup_id(to);
02491447
DN
4454
4455 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4456 mem_cgroup_swap_statistics(from, false);
483c30b5 4457 mem_cgroup_swap_statistics(to, true);
02491447 4458 /*
483c30b5
DN
4459 * This function is only called from task migration context now.
4460 * It postpones res_counter and refcount handling till the end
4461 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4462 * improvement. But we cannot postpone css_get(to) because if
4463 * the process that has been moved to @to does swap-in, the
4464 * refcount of @to might be decreased to 0.
4465 *
4466 * We are in attach() phase, so the cgroup is guaranteed to be
4467 * alive, so we can just call css_get().
02491447 4468 */
4050377b 4469 css_get(&to->css);
02491447
DN
4470 return 0;
4471 }
4472 return -EINVAL;
4473}
4474#else
4475static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4476 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4477{
4478 return -EINVAL;
4479}
8c7c6e34 4480#endif
d13d1443 4481
ae41be37 4482/*
01b1ae63
KH
4483 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4484 * page belongs to.
ae41be37 4485 */
0030f535
JW
4486void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4487 struct mem_cgroup **memcgp)
ae41be37 4488{
c0ff4b85 4489 struct mem_cgroup *memcg = NULL;
b32967ff 4490 unsigned int nr_pages = 1;
7ec99d62 4491 struct page_cgroup *pc;
ac39cf8c 4492 enum charge_type ctype;
8869b8f6 4493
72835c86 4494 *memcgp = NULL;
56039efa 4495
f8d66542 4496 if (mem_cgroup_disabled())
0030f535 4497 return;
4077960e 4498
b32967ff
MG
4499 if (PageTransHuge(page))
4500 nr_pages <<= compound_order(page);
4501
52d4b9ac
KH
4502 pc = lookup_page_cgroup(page);
4503 lock_page_cgroup(pc);
4504 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4505 memcg = pc->mem_cgroup;
4506 css_get(&memcg->css);
ac39cf8c 4507 /*
4508 * At migrating an anonymous page, its mapcount goes down
4509 * to 0 and uncharge() will be called. But, even if it's fully
4510 * unmapped, migration may fail and this page has to be
4511 * charged again. We set MIGRATION flag here and delay uncharge
4512 * until end_migration() is called
4513 *
4514 * Corner Case Thinking
4515 * A)
4516 * When the old page was mapped as Anon and it's unmap-and-freed
4517 * while migration was ongoing.
4518 * If unmap finds the old page, uncharge() of it will be delayed
4519 * until end_migration(). If unmap finds a new page, it's
4520 * uncharged when it make mapcount to be 1->0. If unmap code
4521 * finds swap_migration_entry, the new page will not be mapped
4522 * and end_migration() will find it(mapcount==0).
4523 *
4524 * B)
4525 * When the old page was mapped but migraion fails, the kernel
4526 * remaps it. A charge for it is kept by MIGRATION flag even
4527 * if mapcount goes down to 0. We can do remap successfully
4528 * without charging it again.
4529 *
4530 * C)
4531 * The "old" page is under lock_page() until the end of
4532 * migration, so, the old page itself will not be swapped-out.
4533 * If the new page is swapped out before end_migraton, our
4534 * hook to usual swap-out path will catch the event.
4535 */
4536 if (PageAnon(page))
4537 SetPageCgroupMigration(pc);
e8589cc1 4538 }
52d4b9ac 4539 unlock_page_cgroup(pc);
ac39cf8c 4540 /*
4541 * If the page is not charged at this point,
4542 * we return here.
4543 */
c0ff4b85 4544 if (!memcg)
0030f535 4545 return;
01b1ae63 4546
72835c86 4547 *memcgp = memcg;
ac39cf8c 4548 /*
4549 * We charge new page before it's used/mapped. So, even if unlock_page()
4550 * is called before end_migration, we can catch all events on this new
4551 * page. In the case new page is migrated but not remapped, new page's
4552 * mapcount will be finally 0 and we call uncharge in end_migration().
4553 */
ac39cf8c 4554 if (PageAnon(page))
41326c17 4555 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4556 else
62ba7442 4557 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4558 /*
4559 * The page is committed to the memcg, but it's not actually
4560 * charged to the res_counter since we plan on replacing the
4561 * old one and only one page is going to be left afterwards.
4562 */
b32967ff 4563 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4564}
8869b8f6 4565
69029cd5 4566/* remove redundant charge if migration failed*/
c0ff4b85 4567void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4568 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4569{
ac39cf8c 4570 struct page *used, *unused;
01b1ae63 4571 struct page_cgroup *pc;
b2402857 4572 bool anon;
01b1ae63 4573
c0ff4b85 4574 if (!memcg)
01b1ae63 4575 return;
b25ed609 4576
50de1dd9 4577 if (!migration_ok) {
ac39cf8c 4578 used = oldpage;
4579 unused = newpage;
01b1ae63 4580 } else {
ac39cf8c 4581 used = newpage;
01b1ae63
KH
4582 unused = oldpage;
4583 }
0030f535 4584 anon = PageAnon(used);
7d188958
JW
4585 __mem_cgroup_uncharge_common(unused,
4586 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4587 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4588 true);
0030f535 4589 css_put(&memcg->css);
69029cd5 4590 /*
ac39cf8c 4591 * We disallowed uncharge of pages under migration because mapcount
4592 * of the page goes down to zero, temporarly.
4593 * Clear the flag and check the page should be charged.
01b1ae63 4594 */
ac39cf8c 4595 pc = lookup_page_cgroup(oldpage);
4596 lock_page_cgroup(pc);
4597 ClearPageCgroupMigration(pc);
4598 unlock_page_cgroup(pc);
ac39cf8c 4599
01b1ae63 4600 /*
ac39cf8c 4601 * If a page is a file cache, radix-tree replacement is very atomic
4602 * and we can skip this check. When it was an Anon page, its mapcount
4603 * goes down to 0. But because we added MIGRATION flage, it's not
4604 * uncharged yet. There are several case but page->mapcount check
4605 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4606 * check. (see prepare_charge() also)
69029cd5 4607 */
b2402857 4608 if (anon)
ac39cf8c 4609 mem_cgroup_uncharge_page(used);
ae41be37 4610}
78fb7466 4611
ab936cbc
KH
4612/*
4613 * At replace page cache, newpage is not under any memcg but it's on
4614 * LRU. So, this function doesn't touch res_counter but handles LRU
4615 * in correct way. Both pages are locked so we cannot race with uncharge.
4616 */
4617void mem_cgroup_replace_page_cache(struct page *oldpage,
4618 struct page *newpage)
4619{
bde05d1c 4620 struct mem_cgroup *memcg = NULL;
ab936cbc 4621 struct page_cgroup *pc;
ab936cbc 4622 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4623
4624 if (mem_cgroup_disabled())
4625 return;
4626
4627 pc = lookup_page_cgroup(oldpage);
4628 /* fix accounting on old pages */
4629 lock_page_cgroup(pc);
bde05d1c
HD
4630 if (PageCgroupUsed(pc)) {
4631 memcg = pc->mem_cgroup;
b070e65c 4632 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4633 ClearPageCgroupUsed(pc);
4634 }
ab936cbc
KH
4635 unlock_page_cgroup(pc);
4636
bde05d1c
HD
4637 /*
4638 * When called from shmem_replace_page(), in some cases the
4639 * oldpage has already been charged, and in some cases not.
4640 */
4641 if (!memcg)
4642 return;
ab936cbc
KH
4643 /*
4644 * Even if newpage->mapping was NULL before starting replacement,
4645 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4646 * LRU while we overwrite pc->mem_cgroup.
4647 */
ce587e65 4648 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4649}
4650
f212ad7c
DN
4651#ifdef CONFIG_DEBUG_VM
4652static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4653{
4654 struct page_cgroup *pc;
4655
4656 pc = lookup_page_cgroup(page);
cfa44946
JW
4657 /*
4658 * Can be NULL while feeding pages into the page allocator for
4659 * the first time, i.e. during boot or memory hotplug;
4660 * or when mem_cgroup_disabled().
4661 */
f212ad7c
DN
4662 if (likely(pc) && PageCgroupUsed(pc))
4663 return pc;
4664 return NULL;
4665}
4666
4667bool mem_cgroup_bad_page_check(struct page *page)
4668{
4669 if (mem_cgroup_disabled())
4670 return false;
4671
4672 return lookup_page_cgroup_used(page) != NULL;
4673}
4674
4675void mem_cgroup_print_bad_page(struct page *page)
4676{
4677 struct page_cgroup *pc;
4678
4679 pc = lookup_page_cgroup_used(page);
4680 if (pc) {
d045197f
AM
4681 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4682 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4683 }
4684}
4685#endif
4686
d38d2a75 4687static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4688 unsigned long long val)
628f4235 4689{
81d39c20 4690 int retry_count;
3c11ecf4 4691 u64 memswlimit, memlimit;
628f4235 4692 int ret = 0;
81d39c20
KH
4693 int children = mem_cgroup_count_children(memcg);
4694 u64 curusage, oldusage;
3c11ecf4 4695 int enlarge;
81d39c20
KH
4696
4697 /*
4698 * For keeping hierarchical_reclaim simple, how long we should retry
4699 * is depends on callers. We set our retry-count to be function
4700 * of # of children which we should visit in this loop.
4701 */
4702 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4703
4704 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4705
3c11ecf4 4706 enlarge = 0;
8c7c6e34 4707 while (retry_count) {
628f4235
KH
4708 if (signal_pending(current)) {
4709 ret = -EINTR;
4710 break;
4711 }
8c7c6e34
KH
4712 /*
4713 * Rather than hide all in some function, I do this in
4714 * open coded manner. You see what this really does.
aaad153e 4715 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4716 */
4717 mutex_lock(&set_limit_mutex);
4718 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4719 if (memswlimit < val) {
4720 ret = -EINVAL;
4721 mutex_unlock(&set_limit_mutex);
628f4235
KH
4722 break;
4723 }
3c11ecf4
KH
4724
4725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4726 if (memlimit < val)
4727 enlarge = 1;
4728
8c7c6e34 4729 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4730 if (!ret) {
4731 if (memswlimit == val)
4732 memcg->memsw_is_minimum = true;
4733 else
4734 memcg->memsw_is_minimum = false;
4735 }
8c7c6e34
KH
4736 mutex_unlock(&set_limit_mutex);
4737
4738 if (!ret)
4739 break;
4740
5660048c
JW
4741 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4742 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4743 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4744 /* Usage is reduced ? */
f894ffa8 4745 if (curusage >= oldusage)
81d39c20
KH
4746 retry_count--;
4747 else
4748 oldusage = curusage;
8c7c6e34 4749 }
3c11ecf4
KH
4750 if (!ret && enlarge)
4751 memcg_oom_recover(memcg);
14797e23 4752
8c7c6e34
KH
4753 return ret;
4754}
4755
338c8431
LZ
4756static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4757 unsigned long long val)
8c7c6e34 4758{
81d39c20 4759 int retry_count;
3c11ecf4 4760 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4761 int children = mem_cgroup_count_children(memcg);
4762 int ret = -EBUSY;
3c11ecf4 4763 int enlarge = 0;
8c7c6e34 4764
81d39c20 4765 /* see mem_cgroup_resize_res_limit */
f894ffa8 4766 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4767 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4768 while (retry_count) {
4769 if (signal_pending(current)) {
4770 ret = -EINTR;
4771 break;
4772 }
4773 /*
4774 * Rather than hide all in some function, I do this in
4775 * open coded manner. You see what this really does.
aaad153e 4776 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4777 */
4778 mutex_lock(&set_limit_mutex);
4779 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4780 if (memlimit > val) {
4781 ret = -EINVAL;
4782 mutex_unlock(&set_limit_mutex);
4783 break;
4784 }
3c11ecf4
KH
4785 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4786 if (memswlimit < val)
4787 enlarge = 1;
8c7c6e34 4788 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4789 if (!ret) {
4790 if (memlimit == val)
4791 memcg->memsw_is_minimum = true;
4792 else
4793 memcg->memsw_is_minimum = false;
4794 }
8c7c6e34
KH
4795 mutex_unlock(&set_limit_mutex);
4796
4797 if (!ret)
4798 break;
4799
5660048c
JW
4800 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4801 MEM_CGROUP_RECLAIM_NOSWAP |
4802 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4803 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4804 /* Usage is reduced ? */
8c7c6e34 4805 if (curusage >= oldusage)
628f4235 4806 retry_count--;
81d39c20
KH
4807 else
4808 oldusage = curusage;
628f4235 4809 }
3c11ecf4
KH
4810 if (!ret && enlarge)
4811 memcg_oom_recover(memcg);
628f4235
KH
4812 return ret;
4813}
4814
0608f43d
AM
4815unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4816 gfp_t gfp_mask,
4817 unsigned long *total_scanned)
4818{
4819 unsigned long nr_reclaimed = 0;
4820 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4821 unsigned long reclaimed;
4822 int loop = 0;
4823 struct mem_cgroup_tree_per_zone *mctz;
4824 unsigned long long excess;
4825 unsigned long nr_scanned;
4826
4827 if (order > 0)
4828 return 0;
4829
4830 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4831 /*
4832 * This loop can run a while, specially if mem_cgroup's continuously
4833 * keep exceeding their soft limit and putting the system under
4834 * pressure
4835 */
4836 do {
4837 if (next_mz)
4838 mz = next_mz;
4839 else
4840 mz = mem_cgroup_largest_soft_limit_node(mctz);
4841 if (!mz)
4842 break;
4843
4844 nr_scanned = 0;
4845 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4846 gfp_mask, &nr_scanned);
4847 nr_reclaimed += reclaimed;
4848 *total_scanned += nr_scanned;
4849 spin_lock(&mctz->lock);
4850
4851 /*
4852 * If we failed to reclaim anything from this memory cgroup
4853 * it is time to move on to the next cgroup
4854 */
4855 next_mz = NULL;
4856 if (!reclaimed) {
4857 do {
4858 /*
4859 * Loop until we find yet another one.
4860 *
4861 * By the time we get the soft_limit lock
4862 * again, someone might have aded the
4863 * group back on the RB tree. Iterate to
4864 * make sure we get a different mem.
4865 * mem_cgroup_largest_soft_limit_node returns
4866 * NULL if no other cgroup is present on
4867 * the tree
4868 */
4869 next_mz =
4870 __mem_cgroup_largest_soft_limit_node(mctz);
4871 if (next_mz == mz)
4872 css_put(&next_mz->memcg->css);
4873 else /* next_mz == NULL or other memcg */
4874 break;
4875 } while (1);
4876 }
4877 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4878 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4879 /*
4880 * One school of thought says that we should not add
4881 * back the node to the tree if reclaim returns 0.
4882 * But our reclaim could return 0, simply because due
4883 * to priority we are exposing a smaller subset of
4884 * memory to reclaim from. Consider this as a longer
4885 * term TODO.
4886 */
4887 /* If excess == 0, no tree ops */
4888 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4889 spin_unlock(&mctz->lock);
4890 css_put(&mz->memcg->css);
4891 loop++;
4892 /*
4893 * Could not reclaim anything and there are no more
4894 * mem cgroups to try or we seem to be looping without
4895 * reclaiming anything.
4896 */
4897 if (!nr_reclaimed &&
4898 (next_mz == NULL ||
4899 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4900 break;
4901 } while (!nr_reclaimed);
4902 if (next_mz)
4903 css_put(&next_mz->memcg->css);
4904 return nr_reclaimed;
4905}
4906
2ef37d3f
MH
4907/**
4908 * mem_cgroup_force_empty_list - clears LRU of a group
4909 * @memcg: group to clear
4910 * @node: NUMA node
4911 * @zid: zone id
4912 * @lru: lru to to clear
4913 *
3c935d18 4914 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4915 * reclaim the pages page themselves - pages are moved to the parent (or root)
4916 * group.
cc847582 4917 */
2ef37d3f 4918static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4919 int node, int zid, enum lru_list lru)
cc847582 4920{
bea8c150 4921 struct lruvec *lruvec;
2ef37d3f 4922 unsigned long flags;
072c56c1 4923 struct list_head *list;
925b7673
JW
4924 struct page *busy;
4925 struct zone *zone;
072c56c1 4926
08e552c6 4927 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4928 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4929 list = &lruvec->lists[lru];
cc847582 4930
f817ed48 4931 busy = NULL;
2ef37d3f 4932 do {
925b7673 4933 struct page_cgroup *pc;
5564e88b
JW
4934 struct page *page;
4935
08e552c6 4936 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4937 if (list_empty(list)) {
08e552c6 4938 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4939 break;
f817ed48 4940 }
925b7673
JW
4941 page = list_entry(list->prev, struct page, lru);
4942 if (busy == page) {
4943 list_move(&page->lru, list);
648bcc77 4944 busy = NULL;
08e552c6 4945 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4946 continue;
4947 }
08e552c6 4948 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4949
925b7673 4950 pc = lookup_page_cgroup(page);
5564e88b 4951
3c935d18 4952 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4953 /* found lock contention or "pc" is obsolete. */
925b7673 4954 busy = page;
f817ed48
KH
4955 cond_resched();
4956 } else
4957 busy = NULL;
2ef37d3f 4958 } while (!list_empty(list));
cc847582
KH
4959}
4960
4961/*
c26251f9
MH
4962 * make mem_cgroup's charge to be 0 if there is no task by moving
4963 * all the charges and pages to the parent.
cc847582 4964 * This enables deleting this mem_cgroup.
c26251f9
MH
4965 *
4966 * Caller is responsible for holding css reference on the memcg.
cc847582 4967 */
ab5196c2 4968static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4969{
c26251f9 4970 int node, zid;
bea207c8 4971 u64 usage;
f817ed48 4972
fce66477 4973 do {
52d4b9ac
KH
4974 /* This is for making all *used* pages to be on LRU. */
4975 lru_add_drain_all();
c0ff4b85 4976 drain_all_stock_sync(memcg);
c0ff4b85 4977 mem_cgroup_start_move(memcg);
31aaea4a 4978 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4979 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4980 enum lru_list lru;
4981 for_each_lru(lru) {
2ef37d3f 4982 mem_cgroup_force_empty_list(memcg,
f156ab93 4983 node, zid, lru);
f817ed48 4984 }
1ecaab2b 4985 }
f817ed48 4986 }
c0ff4b85
R
4987 mem_cgroup_end_move(memcg);
4988 memcg_oom_recover(memcg);
52d4b9ac 4989 cond_resched();
f817ed48 4990
2ef37d3f 4991 /*
bea207c8
GC
4992 * Kernel memory may not necessarily be trackable to a specific
4993 * process. So they are not migrated, and therefore we can't
4994 * expect their value to drop to 0 here.
4995 * Having res filled up with kmem only is enough.
4996 *
2ef37d3f
MH
4997 * This is a safety check because mem_cgroup_force_empty_list
4998 * could have raced with mem_cgroup_replace_page_cache callers
4999 * so the lru seemed empty but the page could have been added
5000 * right after the check. RES_USAGE should be safe as we always
5001 * charge before adding to the LRU.
5002 */
bea207c8
GC
5003 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5004 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5005 } while (usage > 0);
c26251f9
MH
5006}
5007
b5f99b53
GC
5008static inline bool memcg_has_children(struct mem_cgroup *memcg)
5009{
696ac172
JW
5010 lockdep_assert_held(&memcg_create_mutex);
5011 /*
5012 * The lock does not prevent addition or deletion to the list
5013 * of children, but it prevents a new child from being
5014 * initialized based on this parent in css_online(), so it's
5015 * enough to decide whether hierarchically inherited
5016 * attributes can still be changed or not.
5017 */
5018 return memcg->use_hierarchy &&
5019 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5020}
5021
c26251f9
MH
5022/*
5023 * Reclaims as many pages from the given memcg as possible and moves
5024 * the rest to the parent.
5025 *
5026 * Caller is responsible for holding css reference for memcg.
5027 */
5028static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5029{
5030 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5031 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5032
c1e862c1 5033 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5034 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5035 return -EBUSY;
5036
c1e862c1
KH
5037 /* we call try-to-free pages for make this cgroup empty */
5038 lru_add_drain_all();
f817ed48 5039 /* try to free all pages in this cgroup */
569530fb 5040 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5041 int progress;
c1e862c1 5042
c26251f9
MH
5043 if (signal_pending(current))
5044 return -EINTR;
5045
c0ff4b85 5046 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5047 false);
c1e862c1 5048 if (!progress) {
f817ed48 5049 nr_retries--;
c1e862c1 5050 /* maybe some writeback is necessary */
8aa7e847 5051 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5052 }
f817ed48
KH
5053
5054 }
08e552c6 5055 lru_add_drain();
ab5196c2
MH
5056 mem_cgroup_reparent_charges(memcg);
5057
5058 return 0;
cc847582
KH
5059}
5060
182446d0
TH
5061static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5062 unsigned int event)
c1e862c1 5063{
182446d0 5064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5065
d8423011
MH
5066 if (mem_cgroup_is_root(memcg))
5067 return -EINVAL;
c33bd835 5068 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5069}
5070
182446d0
TH
5071static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5072 struct cftype *cft)
18f59ea7 5073{
182446d0 5074 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5075}
5076
182446d0
TH
5077static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5078 struct cftype *cft, u64 val)
18f59ea7
BS
5079{
5080 int retval = 0;
182446d0 5081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5082 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5083
0999821b 5084 mutex_lock(&memcg_create_mutex);
567fb435
GC
5085
5086 if (memcg->use_hierarchy == val)
5087 goto out;
5088
18f59ea7 5089 /*
af901ca1 5090 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5091 * in the child subtrees. If it is unset, then the change can
5092 * occur, provided the current cgroup has no children.
5093 *
5094 * For the root cgroup, parent_mem is NULL, we allow value to be
5095 * set if there are no children.
5096 */
c0ff4b85 5097 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5098 (val == 1 || val == 0)) {
696ac172 5099 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5100 memcg->use_hierarchy = val;
18f59ea7
BS
5101 else
5102 retval = -EBUSY;
5103 } else
5104 retval = -EINVAL;
567fb435
GC
5105
5106out:
0999821b 5107 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5108
5109 return retval;
5110}
5111
0c3e73e8 5112
c0ff4b85 5113static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5114 enum mem_cgroup_stat_index idx)
0c3e73e8 5115{
7d74b06f 5116 struct mem_cgroup *iter;
7a159cc9 5117 long val = 0;
0c3e73e8 5118
7a159cc9 5119 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5120 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5121 val += mem_cgroup_read_stat(iter, idx);
5122
5123 if (val < 0) /* race ? */
5124 val = 0;
5125 return val;
0c3e73e8
BS
5126}
5127
c0ff4b85 5128static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5129{
7d74b06f 5130 u64 val;
104f3928 5131
c0ff4b85 5132 if (!mem_cgroup_is_root(memcg)) {
104f3928 5133 if (!swap)
65c64ce8 5134 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5135 else
65c64ce8 5136 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5137 }
5138
b070e65c
DR
5139 /*
5140 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5141 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5142 */
c0ff4b85
R
5143 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5144 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5145
7d74b06f 5146 if (swap)
bff6bb83 5147 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5148
5149 return val << PAGE_SHIFT;
5150}
5151
791badbd
TH
5152static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5153 struct cftype *cft)
8cdea7c0 5154{
182446d0 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5156 u64 val;
791badbd 5157 int name;
86ae53e1 5158 enum res_type type;
8c7c6e34
KH
5159
5160 type = MEMFILE_TYPE(cft->private);
5161 name = MEMFILE_ATTR(cft->private);
af36f906 5162
8c7c6e34
KH
5163 switch (type) {
5164 case _MEM:
104f3928 5165 if (name == RES_USAGE)
c0ff4b85 5166 val = mem_cgroup_usage(memcg, false);
104f3928 5167 else
c0ff4b85 5168 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5169 break;
5170 case _MEMSWAP:
104f3928 5171 if (name == RES_USAGE)
c0ff4b85 5172 val = mem_cgroup_usage(memcg, true);
104f3928 5173 else
c0ff4b85 5174 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5175 break;
510fc4e1
GC
5176 case _KMEM:
5177 val = res_counter_read_u64(&memcg->kmem, name);
5178 break;
8c7c6e34
KH
5179 default:
5180 BUG();
8c7c6e34 5181 }
af36f906 5182
791badbd 5183 return val;
8cdea7c0 5184}
510fc4e1 5185
182446d0 5186static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5187{
5188 int ret = -EINVAL;
5189#ifdef CONFIG_MEMCG_KMEM
182446d0 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5191 /*
5192 * For simplicity, we won't allow this to be disabled. It also can't
5193 * be changed if the cgroup has children already, or if tasks had
5194 * already joined.
5195 *
5196 * If tasks join before we set the limit, a person looking at
5197 * kmem.usage_in_bytes will have no way to determine when it took
5198 * place, which makes the value quite meaningless.
5199 *
5200 * After it first became limited, changes in the value of the limit are
5201 * of course permitted.
510fc4e1 5202 */
0999821b 5203 mutex_lock(&memcg_create_mutex);
510fc4e1 5204 mutex_lock(&set_limit_mutex);
6de5a8bf 5205 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5206 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5207 ret = -EBUSY;
5208 goto out;
5209 }
5210 ret = res_counter_set_limit(&memcg->kmem, val);
5211 VM_BUG_ON(ret);
5212
55007d84
GC
5213 ret = memcg_update_cache_sizes(memcg);
5214 if (ret) {
6de5a8bf 5215 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5216 goto out;
5217 }
692e89ab
GC
5218 static_key_slow_inc(&memcg_kmem_enabled_key);
5219 /*
5220 * setting the active bit after the inc will guarantee no one
5221 * starts accounting before all call sites are patched
5222 */
5223 memcg_kmem_set_active(memcg);
510fc4e1
GC
5224 } else
5225 ret = res_counter_set_limit(&memcg->kmem, val);
5226out:
5227 mutex_unlock(&set_limit_mutex);
0999821b 5228 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5229#endif
5230 return ret;
5231}
5232
6d043990 5233#ifdef CONFIG_MEMCG_KMEM
55007d84 5234static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5235{
55007d84 5236 int ret = 0;
510fc4e1
GC
5237 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5238 if (!parent)
55007d84
GC
5239 goto out;
5240
510fc4e1 5241 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5242 /*
5243 * When that happen, we need to disable the static branch only on those
5244 * memcgs that enabled it. To achieve this, we would be forced to
5245 * complicate the code by keeping track of which memcgs were the ones
5246 * that actually enabled limits, and which ones got it from its
5247 * parents.
5248 *
5249 * It is a lot simpler just to do static_key_slow_inc() on every child
5250 * that is accounted.
5251 */
55007d84
GC
5252 if (!memcg_kmem_is_active(memcg))
5253 goto out;
5254
5255 /*
10d5ebf4
LZ
5256 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5257 * memcg is active already. If the later initialization fails then the
5258 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5259 */
55007d84
GC
5260 static_key_slow_inc(&memcg_kmem_enabled_key);
5261
5262 mutex_lock(&set_limit_mutex);
425c598d 5263 memcg_stop_kmem_account();
55007d84 5264 ret = memcg_update_cache_sizes(memcg);
425c598d 5265 memcg_resume_kmem_account();
55007d84 5266 mutex_unlock(&set_limit_mutex);
55007d84
GC
5267out:
5268 return ret;
510fc4e1 5269}
6d043990 5270#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5271
628f4235
KH
5272/*
5273 * The user of this function is...
5274 * RES_LIMIT.
5275 */
182446d0 5276static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5277 const char *buffer)
8cdea7c0 5278{
182446d0 5279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5280 enum res_type type;
5281 int name;
628f4235
KH
5282 unsigned long long val;
5283 int ret;
5284
8c7c6e34
KH
5285 type = MEMFILE_TYPE(cft->private);
5286 name = MEMFILE_ATTR(cft->private);
af36f906 5287
8c7c6e34 5288 switch (name) {
628f4235 5289 case RES_LIMIT:
4b3bde4c
BS
5290 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5291 ret = -EINVAL;
5292 break;
5293 }
628f4235
KH
5294 /* This function does all necessary parse...reuse it */
5295 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5296 if (ret)
5297 break;
5298 if (type == _MEM)
628f4235 5299 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5300 else if (type == _MEMSWAP)
8c7c6e34 5301 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5302 else if (type == _KMEM)
182446d0 5303 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5304 else
5305 return -EINVAL;
628f4235 5306 break;
296c81d8
BS
5307 case RES_SOFT_LIMIT:
5308 ret = res_counter_memparse_write_strategy(buffer, &val);
5309 if (ret)
5310 break;
5311 /*
5312 * For memsw, soft limits are hard to implement in terms
5313 * of semantics, for now, we support soft limits for
5314 * control without swap
5315 */
5316 if (type == _MEM)
5317 ret = res_counter_set_soft_limit(&memcg->res, val);
5318 else
5319 ret = -EINVAL;
5320 break;
628f4235
KH
5321 default:
5322 ret = -EINVAL; /* should be BUG() ? */
5323 break;
5324 }
5325 return ret;
8cdea7c0
BS
5326}
5327
fee7b548
KH
5328static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5329 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5330{
fee7b548
KH
5331 unsigned long long min_limit, min_memsw_limit, tmp;
5332
5333 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5334 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5335 if (!memcg->use_hierarchy)
5336 goto out;
5337
63876986
TH
5338 while (css_parent(&memcg->css)) {
5339 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5340 if (!memcg->use_hierarchy)
5341 break;
5342 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5343 min_limit = min(min_limit, tmp);
5344 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5345 min_memsw_limit = min(min_memsw_limit, tmp);
5346 }
5347out:
5348 *mem_limit = min_limit;
5349 *memsw_limit = min_memsw_limit;
fee7b548
KH
5350}
5351
182446d0 5352static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5353{
182446d0 5354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5355 int name;
5356 enum res_type type;
c84872e1 5357
8c7c6e34
KH
5358 type = MEMFILE_TYPE(event);
5359 name = MEMFILE_ATTR(event);
af36f906 5360
8c7c6e34 5361 switch (name) {
29f2a4da 5362 case RES_MAX_USAGE:
8c7c6e34 5363 if (type == _MEM)
c0ff4b85 5364 res_counter_reset_max(&memcg->res);
510fc4e1 5365 else if (type == _MEMSWAP)
c0ff4b85 5366 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5367 else if (type == _KMEM)
5368 res_counter_reset_max(&memcg->kmem);
5369 else
5370 return -EINVAL;
29f2a4da
PE
5371 break;
5372 case RES_FAILCNT:
8c7c6e34 5373 if (type == _MEM)
c0ff4b85 5374 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5375 else if (type == _MEMSWAP)
c0ff4b85 5376 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5377 else if (type == _KMEM)
5378 res_counter_reset_failcnt(&memcg->kmem);
5379 else
5380 return -EINVAL;
29f2a4da
PE
5381 break;
5382 }
f64c3f54 5383
85cc59db 5384 return 0;
c84872e1
PE
5385}
5386
182446d0 5387static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5388 struct cftype *cft)
5389{
182446d0 5390 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5391}
5392
02491447 5393#ifdef CONFIG_MMU
182446d0 5394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5395 struct cftype *cft, u64 val)
5396{
182446d0 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5398
5399 if (val >= (1 << NR_MOVE_TYPE))
5400 return -EINVAL;
ee5e8472 5401
7dc74be0 5402 /*
ee5e8472
GC
5403 * No kind of locking is needed in here, because ->can_attach() will
5404 * check this value once in the beginning of the process, and then carry
5405 * on with stale data. This means that changes to this value will only
5406 * affect task migrations starting after the change.
7dc74be0 5407 */
c0ff4b85 5408 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5409 return 0;
5410}
02491447 5411#else
182446d0 5412static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5413 struct cftype *cft, u64 val)
5414{
5415 return -ENOSYS;
5416}
5417#endif
7dc74be0 5418
406eb0c9 5419#ifdef CONFIG_NUMA
2da8ca82 5420static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5421{
25485de6
GT
5422 struct numa_stat {
5423 const char *name;
5424 unsigned int lru_mask;
5425 };
5426
5427 static const struct numa_stat stats[] = {
5428 { "total", LRU_ALL },
5429 { "file", LRU_ALL_FILE },
5430 { "anon", LRU_ALL_ANON },
5431 { "unevictable", BIT(LRU_UNEVICTABLE) },
5432 };
5433 const struct numa_stat *stat;
406eb0c9 5434 int nid;
25485de6 5435 unsigned long nr;
2da8ca82 5436 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5437
25485de6
GT
5438 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5439 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5440 seq_printf(m, "%s=%lu", stat->name, nr);
5441 for_each_node_state(nid, N_MEMORY) {
5442 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443 stat->lru_mask);
5444 seq_printf(m, " N%d=%lu", nid, nr);
5445 }
5446 seq_putc(m, '\n');
406eb0c9 5447 }
406eb0c9 5448
071aee13
YH
5449 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5450 struct mem_cgroup *iter;
5451
5452 nr = 0;
5453 for_each_mem_cgroup_tree(iter, memcg)
5454 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5455 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5456 for_each_node_state(nid, N_MEMORY) {
5457 nr = 0;
5458 for_each_mem_cgroup_tree(iter, memcg)
5459 nr += mem_cgroup_node_nr_lru_pages(
5460 iter, nid, stat->lru_mask);
5461 seq_printf(m, " N%d=%lu", nid, nr);
5462 }
5463 seq_putc(m, '\n');
406eb0c9 5464 }
406eb0c9 5465
406eb0c9
YH
5466 return 0;
5467}
5468#endif /* CONFIG_NUMA */
5469
af7c4b0e
JW
5470static inline void mem_cgroup_lru_names_not_uptodate(void)
5471{
5472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5473}
5474
2da8ca82 5475static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5476{
2da8ca82 5477 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5478 struct mem_cgroup *mi;
5479 unsigned int i;
406eb0c9 5480
af7c4b0e 5481 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5482 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5483 continue;
af7c4b0e
JW
5484 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5485 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5486 }
7b854121 5487
af7c4b0e
JW
5488 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5489 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5490 mem_cgroup_read_events(memcg, i));
5491
5492 for (i = 0; i < NR_LRU_LISTS; i++)
5493 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5494 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5495
14067bb3 5496 /* Hierarchical information */
fee7b548
KH
5497 {
5498 unsigned long long limit, memsw_limit;
d79154bb 5499 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5500 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5501 if (do_swap_account)
78ccf5b5
JW
5502 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5503 memsw_limit);
fee7b548 5504 }
7f016ee8 5505
af7c4b0e
JW
5506 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5507 long long val = 0;
5508
bff6bb83 5509 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5510 continue;
af7c4b0e
JW
5511 for_each_mem_cgroup_tree(mi, memcg)
5512 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5513 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5514 }
5515
5516 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5517 unsigned long long val = 0;
5518
5519 for_each_mem_cgroup_tree(mi, memcg)
5520 val += mem_cgroup_read_events(mi, i);
5521 seq_printf(m, "total_%s %llu\n",
5522 mem_cgroup_events_names[i], val);
5523 }
5524
5525 for (i = 0; i < NR_LRU_LISTS; i++) {
5526 unsigned long long val = 0;
5527
5528 for_each_mem_cgroup_tree(mi, memcg)
5529 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5530 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5531 }
14067bb3 5532
7f016ee8 5533#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5534 {
5535 int nid, zid;
5536 struct mem_cgroup_per_zone *mz;
89abfab1 5537 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5538 unsigned long recent_rotated[2] = {0, 0};
5539 unsigned long recent_scanned[2] = {0, 0};
5540
5541 for_each_online_node(nid)
5542 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5543 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5544 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5545
89abfab1
HD
5546 recent_rotated[0] += rstat->recent_rotated[0];
5547 recent_rotated[1] += rstat->recent_rotated[1];
5548 recent_scanned[0] += rstat->recent_scanned[0];
5549 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5550 }
78ccf5b5
JW
5551 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5552 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5553 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5554 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5555 }
5556#endif
5557
d2ceb9b7
KH
5558 return 0;
5559}
5560
182446d0
TH
5561static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5562 struct cftype *cft)
a7885eb8 5563{
182446d0 5564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5565
1f4c025b 5566 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5567}
5568
182446d0
TH
5569static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5570 struct cftype *cft, u64 val)
a7885eb8 5571{
182446d0 5572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5573 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5574
63876986 5575 if (val > 100 || !parent)
a7885eb8
KM
5576 return -EINVAL;
5577
0999821b 5578 mutex_lock(&memcg_create_mutex);
068b38c1 5579
a7885eb8 5580 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5581 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5582 mutex_unlock(&memcg_create_mutex);
a7885eb8 5583 return -EINVAL;
068b38c1 5584 }
a7885eb8 5585
a7885eb8 5586 memcg->swappiness = val;
a7885eb8 5587
0999821b 5588 mutex_unlock(&memcg_create_mutex);
068b38c1 5589
a7885eb8
KM
5590 return 0;
5591}
5592
2e72b634
KS
5593static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5594{
5595 struct mem_cgroup_threshold_ary *t;
5596 u64 usage;
5597 int i;
5598
5599 rcu_read_lock();
5600 if (!swap)
2c488db2 5601 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5602 else
2c488db2 5603 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5604
5605 if (!t)
5606 goto unlock;
5607
5608 usage = mem_cgroup_usage(memcg, swap);
5609
5610 /*
748dad36 5611 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5612 * If it's not true, a threshold was crossed after last
5613 * call of __mem_cgroup_threshold().
5614 */
5407a562 5615 i = t->current_threshold;
2e72b634
KS
5616
5617 /*
5618 * Iterate backward over array of thresholds starting from
5619 * current_threshold and check if a threshold is crossed.
5620 * If none of thresholds below usage is crossed, we read
5621 * only one element of the array here.
5622 */
5623 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5624 eventfd_signal(t->entries[i].eventfd, 1);
5625
5626 /* i = current_threshold + 1 */
5627 i++;
5628
5629 /*
5630 * Iterate forward over array of thresholds starting from
5631 * current_threshold+1 and check if a threshold is crossed.
5632 * If none of thresholds above usage is crossed, we read
5633 * only one element of the array here.
5634 */
5635 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5636 eventfd_signal(t->entries[i].eventfd, 1);
5637
5638 /* Update current_threshold */
5407a562 5639 t->current_threshold = i - 1;
2e72b634
KS
5640unlock:
5641 rcu_read_unlock();
5642}
5643
5644static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5645{
ad4ca5f4
KS
5646 while (memcg) {
5647 __mem_cgroup_threshold(memcg, false);
5648 if (do_swap_account)
5649 __mem_cgroup_threshold(memcg, true);
5650
5651 memcg = parent_mem_cgroup(memcg);
5652 }
2e72b634
KS
5653}
5654
5655static int compare_thresholds(const void *a, const void *b)
5656{
5657 const struct mem_cgroup_threshold *_a = a;
5658 const struct mem_cgroup_threshold *_b = b;
5659
2bff24a3
GT
5660 if (_a->threshold > _b->threshold)
5661 return 1;
5662
5663 if (_a->threshold < _b->threshold)
5664 return -1;
5665
5666 return 0;
2e72b634
KS
5667}
5668
c0ff4b85 5669static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5670{
5671 struct mem_cgroup_eventfd_list *ev;
5672
c0ff4b85 5673 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5674 eventfd_signal(ev->eventfd, 1);
5675 return 0;
5676}
5677
c0ff4b85 5678static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5679{
7d74b06f
KH
5680 struct mem_cgroup *iter;
5681
c0ff4b85 5682 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5683 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5684}
5685
59b6f873 5686static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5687 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5688{
2c488db2
KS
5689 struct mem_cgroup_thresholds *thresholds;
5690 struct mem_cgroup_threshold_ary *new;
2e72b634 5691 u64 threshold, usage;
2c488db2 5692 int i, size, ret;
2e72b634
KS
5693
5694 ret = res_counter_memparse_write_strategy(args, &threshold);
5695 if (ret)
5696 return ret;
5697
5698 mutex_lock(&memcg->thresholds_lock);
2c488db2 5699
2e72b634 5700 if (type == _MEM)
2c488db2 5701 thresholds = &memcg->thresholds;
2e72b634 5702 else if (type == _MEMSWAP)
2c488db2 5703 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5704 else
5705 BUG();
5706
5707 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5708
5709 /* Check if a threshold crossed before adding a new one */
2c488db2 5710 if (thresholds->primary)
2e72b634
KS
5711 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5712
2c488db2 5713 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5714
5715 /* Allocate memory for new array of thresholds */
2c488db2 5716 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5717 GFP_KERNEL);
2c488db2 5718 if (!new) {
2e72b634
KS
5719 ret = -ENOMEM;
5720 goto unlock;
5721 }
2c488db2 5722 new->size = size;
2e72b634
KS
5723
5724 /* Copy thresholds (if any) to new array */
2c488db2
KS
5725 if (thresholds->primary) {
5726 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5727 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5728 }
5729
2e72b634 5730 /* Add new threshold */
2c488db2
KS
5731 new->entries[size - 1].eventfd = eventfd;
5732 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5733
5734 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5735 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5736 compare_thresholds, NULL);
5737
5738 /* Find current threshold */
2c488db2 5739 new->current_threshold = -1;
2e72b634 5740 for (i = 0; i < size; i++) {
748dad36 5741 if (new->entries[i].threshold <= usage) {
2e72b634 5742 /*
2c488db2
KS
5743 * new->current_threshold will not be used until
5744 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5745 * it here.
5746 */
2c488db2 5747 ++new->current_threshold;
748dad36
SZ
5748 } else
5749 break;
2e72b634
KS
5750 }
5751
2c488db2
KS
5752 /* Free old spare buffer and save old primary buffer as spare */
5753 kfree(thresholds->spare);
5754 thresholds->spare = thresholds->primary;
5755
5756 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5757
907860ed 5758 /* To be sure that nobody uses thresholds */
2e72b634
KS
5759 synchronize_rcu();
5760
2e72b634
KS
5761unlock:
5762 mutex_unlock(&memcg->thresholds_lock);
5763
5764 return ret;
5765}
5766
59b6f873 5767static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5768 struct eventfd_ctx *eventfd, const char *args)
5769{
59b6f873 5770 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5771}
5772
59b6f873 5773static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5774 struct eventfd_ctx *eventfd, const char *args)
5775{
59b6f873 5776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5777}
5778
59b6f873 5779static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5780 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5781{
2c488db2
KS
5782 struct mem_cgroup_thresholds *thresholds;
5783 struct mem_cgroup_threshold_ary *new;
2e72b634 5784 u64 usage;
2c488db2 5785 int i, j, size;
2e72b634
KS
5786
5787 mutex_lock(&memcg->thresholds_lock);
5788 if (type == _MEM)
2c488db2 5789 thresholds = &memcg->thresholds;
2e72b634 5790 else if (type == _MEMSWAP)
2c488db2 5791 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5792 else
5793 BUG();
5794
371528ca
AV
5795 if (!thresholds->primary)
5796 goto unlock;
5797
2e72b634
KS
5798 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5799
5800 /* Check if a threshold crossed before removing */
5801 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5802
5803 /* Calculate new number of threshold */
2c488db2
KS
5804 size = 0;
5805 for (i = 0; i < thresholds->primary->size; i++) {
5806 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5807 size++;
5808 }
5809
2c488db2 5810 new = thresholds->spare;
907860ed 5811
2e72b634
KS
5812 /* Set thresholds array to NULL if we don't have thresholds */
5813 if (!size) {
2c488db2
KS
5814 kfree(new);
5815 new = NULL;
907860ed 5816 goto swap_buffers;
2e72b634
KS
5817 }
5818
2c488db2 5819 new->size = size;
2e72b634
KS
5820
5821 /* Copy thresholds and find current threshold */
2c488db2
KS
5822 new->current_threshold = -1;
5823 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5824 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5825 continue;
5826
2c488db2 5827 new->entries[j] = thresholds->primary->entries[i];
748dad36 5828 if (new->entries[j].threshold <= usage) {
2e72b634 5829 /*
2c488db2 5830 * new->current_threshold will not be used
2e72b634
KS
5831 * until rcu_assign_pointer(), so it's safe to increment
5832 * it here.
5833 */
2c488db2 5834 ++new->current_threshold;
2e72b634
KS
5835 }
5836 j++;
5837 }
5838
907860ed 5839swap_buffers:
2c488db2
KS
5840 /* Swap primary and spare array */
5841 thresholds->spare = thresholds->primary;
8c757763
SZ
5842 /* If all events are unregistered, free the spare array */
5843 if (!new) {
5844 kfree(thresholds->spare);
5845 thresholds->spare = NULL;
5846 }
5847
2c488db2 5848 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5849
907860ed 5850 /* To be sure that nobody uses thresholds */
2e72b634 5851 synchronize_rcu();
371528ca 5852unlock:
2e72b634 5853 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5854}
c1e862c1 5855
59b6f873 5856static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5857 struct eventfd_ctx *eventfd)
5858{
59b6f873 5859 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5860}
5861
59b6f873 5862static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5863 struct eventfd_ctx *eventfd)
5864{
59b6f873 5865 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5866}
5867
59b6f873 5868static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5869 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5870{
9490ff27 5871 struct mem_cgroup_eventfd_list *event;
9490ff27 5872
9490ff27
KH
5873 event = kmalloc(sizeof(*event), GFP_KERNEL);
5874 if (!event)
5875 return -ENOMEM;
5876
1af8efe9 5877 spin_lock(&memcg_oom_lock);
9490ff27
KH
5878
5879 event->eventfd = eventfd;
5880 list_add(&event->list, &memcg->oom_notify);
5881
5882 /* already in OOM ? */
79dfdacc 5883 if (atomic_read(&memcg->under_oom))
9490ff27 5884 eventfd_signal(eventfd, 1);
1af8efe9 5885 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5886
5887 return 0;
5888}
5889
59b6f873 5890static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5891 struct eventfd_ctx *eventfd)
9490ff27 5892{
9490ff27 5893 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5894
1af8efe9 5895 spin_lock(&memcg_oom_lock);
9490ff27 5896
c0ff4b85 5897 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5898 if (ev->eventfd == eventfd) {
5899 list_del(&ev->list);
5900 kfree(ev);
5901 }
5902 }
5903
1af8efe9 5904 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5905}
5906
2da8ca82 5907static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5908{
2da8ca82 5909 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5910
791badbd
TH
5911 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5912 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5913 return 0;
5914}
5915
182446d0 5916static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5917 struct cftype *cft, u64 val)
5918{
182446d0 5919 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5920 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5921
5922 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5923 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5924 return -EINVAL;
5925
0999821b 5926 mutex_lock(&memcg_create_mutex);
3c11ecf4 5927 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5928 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5929 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5930 return -EINVAL;
5931 }
c0ff4b85 5932 memcg->oom_kill_disable = val;
4d845ebf 5933 if (!val)
c0ff4b85 5934 memcg_oom_recover(memcg);
0999821b 5935 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5936 return 0;
5937}
5938
c255a458 5939#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5940static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5941{
55007d84
GC
5942 int ret;
5943
2633d7a0 5944 memcg->kmemcg_id = -1;
55007d84
GC
5945 ret = memcg_propagate_kmem(memcg);
5946 if (ret)
5947 return ret;
2633d7a0 5948
1d62e436 5949 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5950}
e5671dfa 5951
10d5ebf4 5952static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5953{
1d62e436 5954 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5955}
5956
5957static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5958{
5959 if (!memcg_kmem_is_active(memcg))
5960 return;
5961
5962 /*
5963 * kmem charges can outlive the cgroup. In the case of slab
5964 * pages, for instance, a page contain objects from various
5965 * processes. As we prevent from taking a reference for every
5966 * such allocation we have to be careful when doing uncharge
5967 * (see memcg_uncharge_kmem) and here during offlining.
5968 *
5969 * The idea is that that only the _last_ uncharge which sees
5970 * the dead memcg will drop the last reference. An additional
5971 * reference is taken here before the group is marked dead
5972 * which is then paired with css_put during uncharge resp. here.
5973 *
5974 * Although this might sound strange as this path is called from
5975 * css_offline() when the referencemight have dropped down to 0
5976 * and shouldn't be incremented anymore (css_tryget would fail)
5977 * we do not have other options because of the kmem allocations
5978 * lifetime.
5979 */
5980 css_get(&memcg->css);
7de37682
GC
5981
5982 memcg_kmem_mark_dead(memcg);
5983
5984 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5985 return;
5986
7de37682 5987 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5988 css_put(&memcg->css);
d1a4c0b3 5989}
e5671dfa 5990#else
cbe128e3 5991static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5992{
5993 return 0;
5994}
d1a4c0b3 5995
10d5ebf4
LZ
5996static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5997{
5998}
5999
6000static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
6001{
6002}
e5671dfa
GC
6003#endif
6004
3bc942f3
TH
6005/*
6006 * DO NOT USE IN NEW FILES.
6007 *
6008 * "cgroup.event_control" implementation.
6009 *
6010 * This is way over-engineered. It tries to support fully configurable
6011 * events for each user. Such level of flexibility is completely
6012 * unnecessary especially in the light of the planned unified hierarchy.
6013 *
6014 * Please deprecate this and replace with something simpler if at all
6015 * possible.
6016 */
6017
79bd9814
TH
6018/*
6019 * Unregister event and free resources.
6020 *
6021 * Gets called from workqueue.
6022 */
3bc942f3 6023static void memcg_event_remove(struct work_struct *work)
79bd9814 6024{
3bc942f3
TH
6025 struct mem_cgroup_event *event =
6026 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6027 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6028
6029 remove_wait_queue(event->wqh, &event->wait);
6030
59b6f873 6031 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6032
6033 /* Notify userspace the event is going away. */
6034 eventfd_signal(event->eventfd, 1);
6035
6036 eventfd_ctx_put(event->eventfd);
6037 kfree(event);
59b6f873 6038 css_put(&memcg->css);
79bd9814
TH
6039}
6040
6041/*
6042 * Gets called on POLLHUP on eventfd when user closes it.
6043 *
6044 * Called with wqh->lock held and interrupts disabled.
6045 */
3bc942f3
TH
6046static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6047 int sync, void *key)
79bd9814 6048{
3bc942f3
TH
6049 struct mem_cgroup_event *event =
6050 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6051 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6052 unsigned long flags = (unsigned long)key;
6053
6054 if (flags & POLLHUP) {
6055 /*
6056 * If the event has been detached at cgroup removal, we
6057 * can simply return knowing the other side will cleanup
6058 * for us.
6059 *
6060 * We can't race against event freeing since the other
6061 * side will require wqh->lock via remove_wait_queue(),
6062 * which we hold.
6063 */
fba94807 6064 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6065 if (!list_empty(&event->list)) {
6066 list_del_init(&event->list);
6067 /*
6068 * We are in atomic context, but cgroup_event_remove()
6069 * may sleep, so we have to call it in workqueue.
6070 */
6071 schedule_work(&event->remove);
6072 }
fba94807 6073 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6074 }
6075
6076 return 0;
6077}
6078
3bc942f3 6079static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6080 wait_queue_head_t *wqh, poll_table *pt)
6081{
3bc942f3
TH
6082 struct mem_cgroup_event *event =
6083 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6084
6085 event->wqh = wqh;
6086 add_wait_queue(wqh, &event->wait);
6087}
6088
6089/*
3bc942f3
TH
6090 * DO NOT USE IN NEW FILES.
6091 *
79bd9814
TH
6092 * Parse input and register new cgroup event handler.
6093 *
6094 * Input must be in format '<event_fd> <control_fd> <args>'.
6095 * Interpretation of args is defined by control file implementation.
6096 */
3bc942f3
TH
6097static int memcg_write_event_control(struct cgroup_subsys_state *css,
6098 struct cftype *cft, const char *buffer)
79bd9814 6099{
fba94807 6100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6101 struct mem_cgroup_event *event;
79bd9814
TH
6102 struct cgroup_subsys_state *cfile_css;
6103 unsigned int efd, cfd;
6104 struct fd efile;
6105 struct fd cfile;
fba94807 6106 const char *name;
79bd9814
TH
6107 char *endp;
6108 int ret;
6109
6110 efd = simple_strtoul(buffer, &endp, 10);
6111 if (*endp != ' ')
6112 return -EINVAL;
6113 buffer = endp + 1;
6114
6115 cfd = simple_strtoul(buffer, &endp, 10);
6116 if ((*endp != ' ') && (*endp != '\0'))
6117 return -EINVAL;
6118 buffer = endp + 1;
6119
6120 event = kzalloc(sizeof(*event), GFP_KERNEL);
6121 if (!event)
6122 return -ENOMEM;
6123
59b6f873 6124 event->memcg = memcg;
79bd9814 6125 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6126 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6127 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6128 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6129
6130 efile = fdget(efd);
6131 if (!efile.file) {
6132 ret = -EBADF;
6133 goto out_kfree;
6134 }
6135
6136 event->eventfd = eventfd_ctx_fileget(efile.file);
6137 if (IS_ERR(event->eventfd)) {
6138 ret = PTR_ERR(event->eventfd);
6139 goto out_put_efile;
6140 }
6141
6142 cfile = fdget(cfd);
6143 if (!cfile.file) {
6144 ret = -EBADF;
6145 goto out_put_eventfd;
6146 }
6147
6148 /* the process need read permission on control file */
6149 /* AV: shouldn't we check that it's been opened for read instead? */
6150 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6151 if (ret < 0)
6152 goto out_put_cfile;
6153
fba94807
TH
6154 /*
6155 * Determine the event callbacks and set them in @event. This used
6156 * to be done via struct cftype but cgroup core no longer knows
6157 * about these events. The following is crude but the whole thing
6158 * is for compatibility anyway.
3bc942f3
TH
6159 *
6160 * DO NOT ADD NEW FILES.
fba94807
TH
6161 */
6162 name = cfile.file->f_dentry->d_name.name;
6163
6164 if (!strcmp(name, "memory.usage_in_bytes")) {
6165 event->register_event = mem_cgroup_usage_register_event;
6166 event->unregister_event = mem_cgroup_usage_unregister_event;
6167 } else if (!strcmp(name, "memory.oom_control")) {
6168 event->register_event = mem_cgroup_oom_register_event;
6169 event->unregister_event = mem_cgroup_oom_unregister_event;
6170 } else if (!strcmp(name, "memory.pressure_level")) {
6171 event->register_event = vmpressure_register_event;
6172 event->unregister_event = vmpressure_unregister_event;
6173 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6174 event->register_event = memsw_cgroup_usage_register_event;
6175 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6176 } else {
6177 ret = -EINVAL;
6178 goto out_put_cfile;
6179 }
6180
79bd9814 6181 /*
b5557c4c
TH
6182 * Verify @cfile should belong to @css. Also, remaining events are
6183 * automatically removed on cgroup destruction but the removal is
6184 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6185 */
6186 rcu_read_lock();
6187
6188 ret = -EINVAL;
b5557c4c
TH
6189 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6190 &mem_cgroup_subsys);
6191 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6192 ret = 0;
6193
6194 rcu_read_unlock();
6195 if (ret)
6196 goto out_put_cfile;
6197
59b6f873 6198 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6199 if (ret)
6200 goto out_put_css;
6201
6202 efile.file->f_op->poll(efile.file, &event->pt);
6203
fba94807
TH
6204 spin_lock(&memcg->event_list_lock);
6205 list_add(&event->list, &memcg->event_list);
6206 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6207
6208 fdput(cfile);
6209 fdput(efile);
6210
6211 return 0;
6212
6213out_put_css:
b5557c4c 6214 css_put(css);
79bd9814
TH
6215out_put_cfile:
6216 fdput(cfile);
6217out_put_eventfd:
6218 eventfd_ctx_put(event->eventfd);
6219out_put_efile:
6220 fdput(efile);
6221out_kfree:
6222 kfree(event);
6223
6224 return ret;
6225}
6226
8cdea7c0
BS
6227static struct cftype mem_cgroup_files[] = {
6228 {
0eea1030 6229 .name = "usage_in_bytes",
8c7c6e34 6230 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6231 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6232 },
c84872e1
PE
6233 {
6234 .name = "max_usage_in_bytes",
8c7c6e34 6235 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6236 .trigger = mem_cgroup_reset,
791badbd 6237 .read_u64 = mem_cgroup_read_u64,
c84872e1 6238 },
8cdea7c0 6239 {
0eea1030 6240 .name = "limit_in_bytes",
8c7c6e34 6241 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6242 .write_string = mem_cgroup_write,
791badbd 6243 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6244 },
296c81d8
BS
6245 {
6246 .name = "soft_limit_in_bytes",
6247 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6248 .write_string = mem_cgroup_write,
791badbd 6249 .read_u64 = mem_cgroup_read_u64,
296c81d8 6250 },
8cdea7c0
BS
6251 {
6252 .name = "failcnt",
8c7c6e34 6253 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6254 .trigger = mem_cgroup_reset,
791badbd 6255 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6256 },
d2ceb9b7
KH
6257 {
6258 .name = "stat",
2da8ca82 6259 .seq_show = memcg_stat_show,
d2ceb9b7 6260 },
c1e862c1
KH
6261 {
6262 .name = "force_empty",
6263 .trigger = mem_cgroup_force_empty_write,
6264 },
18f59ea7
BS
6265 {
6266 .name = "use_hierarchy",
f00baae7 6267 .flags = CFTYPE_INSANE,
18f59ea7
BS
6268 .write_u64 = mem_cgroup_hierarchy_write,
6269 .read_u64 = mem_cgroup_hierarchy_read,
6270 },
79bd9814 6271 {
3bc942f3
TH
6272 .name = "cgroup.event_control", /* XXX: for compat */
6273 .write_string = memcg_write_event_control,
79bd9814
TH
6274 .flags = CFTYPE_NO_PREFIX,
6275 .mode = S_IWUGO,
6276 },
a7885eb8
KM
6277 {
6278 .name = "swappiness",
6279 .read_u64 = mem_cgroup_swappiness_read,
6280 .write_u64 = mem_cgroup_swappiness_write,
6281 },
7dc74be0
DN
6282 {
6283 .name = "move_charge_at_immigrate",
6284 .read_u64 = mem_cgroup_move_charge_read,
6285 .write_u64 = mem_cgroup_move_charge_write,
6286 },
9490ff27
KH
6287 {
6288 .name = "oom_control",
2da8ca82 6289 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6290 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6291 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6292 },
70ddf637
AV
6293 {
6294 .name = "pressure_level",
70ddf637 6295 },
406eb0c9
YH
6296#ifdef CONFIG_NUMA
6297 {
6298 .name = "numa_stat",
2da8ca82 6299 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6300 },
6301#endif
510fc4e1
GC
6302#ifdef CONFIG_MEMCG_KMEM
6303 {
6304 .name = "kmem.limit_in_bytes",
6305 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6306 .write_string = mem_cgroup_write,
791badbd 6307 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6308 },
6309 {
6310 .name = "kmem.usage_in_bytes",
6311 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6312 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6313 },
6314 {
6315 .name = "kmem.failcnt",
6316 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6317 .trigger = mem_cgroup_reset,
791badbd 6318 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6319 },
6320 {
6321 .name = "kmem.max_usage_in_bytes",
6322 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6323 .trigger = mem_cgroup_reset,
791badbd 6324 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6325 },
749c5415
GC
6326#ifdef CONFIG_SLABINFO
6327 {
6328 .name = "kmem.slabinfo",
2da8ca82 6329 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6330 },
6331#endif
8c7c6e34 6332#endif
6bc10349 6333 { }, /* terminate */
af36f906 6334};
8c7c6e34 6335
2d11085e
MH
6336#ifdef CONFIG_MEMCG_SWAP
6337static struct cftype memsw_cgroup_files[] = {
6338 {
6339 .name = "memsw.usage_in_bytes",
6340 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6341 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6342 },
6343 {
6344 .name = "memsw.max_usage_in_bytes",
6345 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6346 .trigger = mem_cgroup_reset,
791badbd 6347 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6348 },
6349 {
6350 .name = "memsw.limit_in_bytes",
6351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6352 .write_string = mem_cgroup_write,
791badbd 6353 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6354 },
6355 {
6356 .name = "memsw.failcnt",
6357 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6358 .trigger = mem_cgroup_reset,
791badbd 6359 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6360 },
6361 { }, /* terminate */
6362};
6363#endif
c0ff4b85 6364static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6365{
6366 struct mem_cgroup_per_node *pn;
1ecaab2b 6367 struct mem_cgroup_per_zone *mz;
41e3355d 6368 int zone, tmp = node;
1ecaab2b
KH
6369 /*
6370 * This routine is called against possible nodes.
6371 * But it's BUG to call kmalloc() against offline node.
6372 *
6373 * TODO: this routine can waste much memory for nodes which will
6374 * never be onlined. It's better to use memory hotplug callback
6375 * function.
6376 */
41e3355d
KH
6377 if (!node_state(node, N_NORMAL_MEMORY))
6378 tmp = -1;
17295c88 6379 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6380 if (!pn)
6381 return 1;
1ecaab2b 6382
1ecaab2b
KH
6383 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6384 mz = &pn->zoneinfo[zone];
bea8c150 6385 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6386 mz->usage_in_excess = 0;
6387 mz->on_tree = false;
d79154bb 6388 mz->memcg = memcg;
1ecaab2b 6389 }
54f72fe0 6390 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6391 return 0;
6392}
6393
c0ff4b85 6394static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6395{
54f72fe0 6396 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6397}
6398
33327948
KH
6399static struct mem_cgroup *mem_cgroup_alloc(void)
6400{
d79154bb 6401 struct mem_cgroup *memcg;
45cf7ebd 6402 size_t size = memcg_size();
33327948 6403
45cf7ebd 6404 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6405 if (size < PAGE_SIZE)
d79154bb 6406 memcg = kzalloc(size, GFP_KERNEL);
33327948 6407 else
d79154bb 6408 memcg = vzalloc(size);
33327948 6409
d79154bb 6410 if (!memcg)
e7bbcdf3
DC
6411 return NULL;
6412
d79154bb
HD
6413 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6414 if (!memcg->stat)
d2e61b8d 6415 goto out_free;
d79154bb
HD
6416 spin_lock_init(&memcg->pcp_counter_lock);
6417 return memcg;
d2e61b8d
DC
6418
6419out_free:
6420 if (size < PAGE_SIZE)
d79154bb 6421 kfree(memcg);
d2e61b8d 6422 else
d79154bb 6423 vfree(memcg);
d2e61b8d 6424 return NULL;
33327948
KH
6425}
6426
59927fb9 6427/*
c8b2a36f
GC
6428 * At destroying mem_cgroup, references from swap_cgroup can remain.
6429 * (scanning all at force_empty is too costly...)
6430 *
6431 * Instead of clearing all references at force_empty, we remember
6432 * the number of reference from swap_cgroup and free mem_cgroup when
6433 * it goes down to 0.
6434 *
6435 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6436 */
c8b2a36f
GC
6437
6438static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6439{
c8b2a36f 6440 int node;
45cf7ebd 6441 size_t size = memcg_size();
59927fb9 6442
bb4cc1a8 6443 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6444
6445 for_each_node(node)
6446 free_mem_cgroup_per_zone_info(memcg, node);
6447
6448 free_percpu(memcg->stat);
6449
3f134619
GC
6450 /*
6451 * We need to make sure that (at least for now), the jump label
6452 * destruction code runs outside of the cgroup lock. This is because
6453 * get_online_cpus(), which is called from the static_branch update,
6454 * can't be called inside the cgroup_lock. cpusets are the ones
6455 * enforcing this dependency, so if they ever change, we might as well.
6456 *
6457 * schedule_work() will guarantee this happens. Be careful if you need
6458 * to move this code around, and make sure it is outside
6459 * the cgroup_lock.
6460 */
a8964b9b 6461 disarm_static_keys(memcg);
3afe36b1
GC
6462 if (size < PAGE_SIZE)
6463 kfree(memcg);
6464 else
6465 vfree(memcg);
59927fb9 6466}
3afe36b1 6467
7bcc1bb1
DN
6468/*
6469 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6470 */
e1aab161 6471struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6472{
c0ff4b85 6473 if (!memcg->res.parent)
7bcc1bb1 6474 return NULL;
c0ff4b85 6475 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6476}
e1aab161 6477EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6478
bb4cc1a8
AM
6479static void __init mem_cgroup_soft_limit_tree_init(void)
6480{
6481 struct mem_cgroup_tree_per_node *rtpn;
6482 struct mem_cgroup_tree_per_zone *rtpz;
6483 int tmp, node, zone;
6484
6485 for_each_node(node) {
6486 tmp = node;
6487 if (!node_state(node, N_NORMAL_MEMORY))
6488 tmp = -1;
6489 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6490 BUG_ON(!rtpn);
6491
6492 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6493
6494 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6495 rtpz = &rtpn->rb_tree_per_zone[zone];
6496 rtpz->rb_root = RB_ROOT;
6497 spin_lock_init(&rtpz->lock);
6498 }
6499 }
6500}
6501
0eb253e2 6502static struct cgroup_subsys_state * __ref
eb95419b 6503mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6504{
d142e3e6 6505 struct mem_cgroup *memcg;
04046e1a 6506 long error = -ENOMEM;
6d12e2d8 6507 int node;
8cdea7c0 6508
c0ff4b85
R
6509 memcg = mem_cgroup_alloc();
6510 if (!memcg)
04046e1a 6511 return ERR_PTR(error);
78fb7466 6512
3ed28fa1 6513 for_each_node(node)
c0ff4b85 6514 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6515 goto free_out;
f64c3f54 6516
c077719b 6517 /* root ? */
eb95419b 6518 if (parent_css == NULL) {
a41c58a6 6519 root_mem_cgroup = memcg;
d142e3e6
GC
6520 res_counter_init(&memcg->res, NULL);
6521 res_counter_init(&memcg->memsw, NULL);
6522 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6523 }
28dbc4b6 6524
d142e3e6
GC
6525 memcg->last_scanned_node = MAX_NUMNODES;
6526 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6527 memcg->move_charge_at_immigrate = 0;
6528 mutex_init(&memcg->thresholds_lock);
6529 spin_lock_init(&memcg->move_lock);
70ddf637 6530 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6531 INIT_LIST_HEAD(&memcg->event_list);
6532 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6533
6534 return &memcg->css;
6535
6536free_out:
6537 __mem_cgroup_free(memcg);
6538 return ERR_PTR(error);
6539}
6540
6541static int
eb95419b 6542mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6543{
eb95419b
TH
6544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6545 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6546 int error = 0;
6547
4219b2da
LZ
6548 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6549 return -ENOSPC;
6550
63876986 6551 if (!parent)
d142e3e6
GC
6552 return 0;
6553
0999821b 6554 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6555
6556 memcg->use_hierarchy = parent->use_hierarchy;
6557 memcg->oom_kill_disable = parent->oom_kill_disable;
6558 memcg->swappiness = mem_cgroup_swappiness(parent);
6559
6560 if (parent->use_hierarchy) {
c0ff4b85
R
6561 res_counter_init(&memcg->res, &parent->res);
6562 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6563 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6564
7bcc1bb1 6565 /*
8d76a979
LZ
6566 * No need to take a reference to the parent because cgroup
6567 * core guarantees its existence.
7bcc1bb1 6568 */
18f59ea7 6569 } else {
c0ff4b85
R
6570 res_counter_init(&memcg->res, NULL);
6571 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6572 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6573 /*
6574 * Deeper hierachy with use_hierarchy == false doesn't make
6575 * much sense so let cgroup subsystem know about this
6576 * unfortunate state in our controller.
6577 */
d142e3e6 6578 if (parent != root_mem_cgroup)
8c7f6edb 6579 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6580 }
cbe128e3
GC
6581
6582 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6583 mutex_unlock(&memcg_create_mutex);
d142e3e6 6584 return error;
8cdea7c0
BS
6585}
6586
5f578161
MH
6587/*
6588 * Announce all parents that a group from their hierarchy is gone.
6589 */
6590static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6591{
6592 struct mem_cgroup *parent = memcg;
6593
6594 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6595 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6596
6597 /*
6598 * if the root memcg is not hierarchical we have to check it
6599 * explicitely.
6600 */
6601 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6602 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6603}
6604
eb95419b 6605static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6606{
eb95419b 6607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6608 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6609
6610 /*
6611 * Unregister events and notify userspace.
6612 * Notify userspace about cgroup removing only after rmdir of cgroup
6613 * directory to avoid race between userspace and kernelspace.
6614 */
fba94807
TH
6615 spin_lock(&memcg->event_list_lock);
6616 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6617 list_del_init(&event->list);
6618 schedule_work(&event->remove);
6619 }
fba94807 6620 spin_unlock(&memcg->event_list_lock);
ec64f515 6621
10d5ebf4
LZ
6622 kmem_cgroup_css_offline(memcg);
6623
5f578161 6624 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6625 mem_cgroup_reparent_charges(memcg);
1f458cbf 6626 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6627 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6628}
6629
eb95419b 6630static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6631{
eb95419b 6632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6633
10d5ebf4 6634 memcg_destroy_kmem(memcg);
465939a1 6635 __mem_cgroup_free(memcg);
8cdea7c0
BS
6636}
6637
02491447 6638#ifdef CONFIG_MMU
7dc74be0 6639/* Handlers for move charge at task migration. */
854ffa8d
DN
6640#define PRECHARGE_COUNT_AT_ONCE 256
6641static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6642{
854ffa8d
DN
6643 int ret = 0;
6644 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6645 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6646
c0ff4b85 6647 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6648 mc.precharge += count;
6649 /* we don't need css_get for root */
6650 return ret;
6651 }
6652 /* try to charge at once */
6653 if (count > 1) {
6654 struct res_counter *dummy;
6655 /*
c0ff4b85 6656 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6657 * by cgroup_lock_live_cgroup() that it is not removed and we
6658 * are still under the same cgroup_mutex. So we can postpone
6659 * css_get().
6660 */
c0ff4b85 6661 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6662 goto one_by_one;
c0ff4b85 6663 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6664 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6665 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6666 goto one_by_one;
6667 }
6668 mc.precharge += count;
854ffa8d
DN
6669 return ret;
6670 }
6671one_by_one:
6672 /* fall back to one by one charge */
6673 while (count--) {
6674 if (signal_pending(current)) {
6675 ret = -EINTR;
6676 break;
6677 }
6678 if (!batch_count--) {
6679 batch_count = PRECHARGE_COUNT_AT_ONCE;
6680 cond_resched();
6681 }
c0ff4b85
R
6682 ret = __mem_cgroup_try_charge(NULL,
6683 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6684 if (ret)
854ffa8d 6685 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6686 return ret;
854ffa8d
DN
6687 mc.precharge++;
6688 }
4ffef5fe
DN
6689 return ret;
6690}
6691
6692/**
8d32ff84 6693 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6694 * @vma: the vma the pte to be checked belongs
6695 * @addr: the address corresponding to the pte to be checked
6696 * @ptent: the pte to be checked
02491447 6697 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6698 *
6699 * Returns
6700 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6701 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6702 * move charge. if @target is not NULL, the page is stored in target->page
6703 * with extra refcnt got(Callers should handle it).
02491447
DN
6704 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6705 * target for charge migration. if @target is not NULL, the entry is stored
6706 * in target->ent.
4ffef5fe
DN
6707 *
6708 * Called with pte lock held.
6709 */
4ffef5fe
DN
6710union mc_target {
6711 struct page *page;
02491447 6712 swp_entry_t ent;
4ffef5fe
DN
6713};
6714
4ffef5fe 6715enum mc_target_type {
8d32ff84 6716 MC_TARGET_NONE = 0,
4ffef5fe 6717 MC_TARGET_PAGE,
02491447 6718 MC_TARGET_SWAP,
4ffef5fe
DN
6719};
6720
90254a65
DN
6721static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6722 unsigned long addr, pte_t ptent)
4ffef5fe 6723{
90254a65 6724 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6725
90254a65
DN
6726 if (!page || !page_mapped(page))
6727 return NULL;
6728 if (PageAnon(page)) {
6729 /* we don't move shared anon */
4b91355e 6730 if (!move_anon())
90254a65 6731 return NULL;
87946a72
DN
6732 } else if (!move_file())
6733 /* we ignore mapcount for file pages */
90254a65
DN
6734 return NULL;
6735 if (!get_page_unless_zero(page))
6736 return NULL;
6737
6738 return page;
6739}
6740
4b91355e 6741#ifdef CONFIG_SWAP
90254a65
DN
6742static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6743 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6744{
90254a65
DN
6745 struct page *page = NULL;
6746 swp_entry_t ent = pte_to_swp_entry(ptent);
6747
6748 if (!move_anon() || non_swap_entry(ent))
6749 return NULL;
4b91355e
KH
6750 /*
6751 * Because lookup_swap_cache() updates some statistics counter,
6752 * we call find_get_page() with swapper_space directly.
6753 */
33806f06 6754 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6755 if (do_swap_account)
6756 entry->val = ent.val;
6757
6758 return page;
6759}
4b91355e
KH
6760#else
6761static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6762 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6763{
6764 return NULL;
6765}
6766#endif
90254a65 6767
87946a72
DN
6768static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6770{
6771 struct page *page = NULL;
87946a72
DN
6772 struct address_space *mapping;
6773 pgoff_t pgoff;
6774
6775 if (!vma->vm_file) /* anonymous vma */
6776 return NULL;
6777 if (!move_file())
6778 return NULL;
6779
87946a72
DN
6780 mapping = vma->vm_file->f_mapping;
6781 if (pte_none(ptent))
6782 pgoff = linear_page_index(vma, addr);
6783 else /* pte_file(ptent) is true */
6784 pgoff = pte_to_pgoff(ptent);
6785
6786 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6787 page = find_get_page(mapping, pgoff);
6788
6789#ifdef CONFIG_SWAP
6790 /* shmem/tmpfs may report page out on swap: account for that too. */
6791 if (radix_tree_exceptional_entry(page)) {
6792 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6793 if (do_swap_account)
aa3b1895 6794 *entry = swap;
33806f06 6795 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6796 }
aa3b1895 6797#endif
87946a72
DN
6798 return page;
6799}
6800
8d32ff84 6801static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6802 unsigned long addr, pte_t ptent, union mc_target *target)
6803{
6804 struct page *page = NULL;
6805 struct page_cgroup *pc;
8d32ff84 6806 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6807 swp_entry_t ent = { .val = 0 };
6808
6809 if (pte_present(ptent))
6810 page = mc_handle_present_pte(vma, addr, ptent);
6811 else if (is_swap_pte(ptent))
6812 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6813 else if (pte_none(ptent) || pte_file(ptent))
6814 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6815
6816 if (!page && !ent.val)
8d32ff84 6817 return ret;
02491447
DN
6818 if (page) {
6819 pc = lookup_page_cgroup(page);
6820 /*
6821 * Do only loose check w/o page_cgroup lock.
6822 * mem_cgroup_move_account() checks the pc is valid or not under
6823 * the lock.
6824 */
6825 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6826 ret = MC_TARGET_PAGE;
6827 if (target)
6828 target->page = page;
6829 }
6830 if (!ret || !target)
6831 put_page(page);
6832 }
90254a65
DN
6833 /* There is a swap entry and a page doesn't exist or isn't charged */
6834 if (ent.val && !ret &&
34c00c31 6835 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6836 ret = MC_TARGET_SWAP;
6837 if (target)
6838 target->ent = ent;
4ffef5fe 6839 }
4ffef5fe
DN
6840 return ret;
6841}
6842
12724850
NH
6843#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6844/*
6845 * We don't consider swapping or file mapped pages because THP does not
6846 * support them for now.
6847 * Caller should make sure that pmd_trans_huge(pmd) is true.
6848 */
6849static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6850 unsigned long addr, pmd_t pmd, union mc_target *target)
6851{
6852 struct page *page = NULL;
6853 struct page_cgroup *pc;
6854 enum mc_target_type ret = MC_TARGET_NONE;
6855
6856 page = pmd_page(pmd);
6857 VM_BUG_ON(!page || !PageHead(page));
6858 if (!move_anon())
6859 return ret;
6860 pc = lookup_page_cgroup(page);
6861 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6862 ret = MC_TARGET_PAGE;
6863 if (target) {
6864 get_page(page);
6865 target->page = page;
6866 }
6867 }
6868 return ret;
6869}
6870#else
6871static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6872 unsigned long addr, pmd_t pmd, union mc_target *target)
6873{
6874 return MC_TARGET_NONE;
6875}
6876#endif
6877
4ffef5fe
DN
6878static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6879 unsigned long addr, unsigned long end,
6880 struct mm_walk *walk)
6881{
6882 struct vm_area_struct *vma = walk->private;
6883 pte_t *pte;
6884 spinlock_t *ptl;
6885
bf929152 6886 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6887 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6888 mc.precharge += HPAGE_PMD_NR;
bf929152 6889 spin_unlock(ptl);
1a5a9906 6890 return 0;
12724850 6891 }
03319327 6892
45f83cef
AA
6893 if (pmd_trans_unstable(pmd))
6894 return 0;
4ffef5fe
DN
6895 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6896 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6897 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6898 mc.precharge++; /* increment precharge temporarily */
6899 pte_unmap_unlock(pte - 1, ptl);
6900 cond_resched();
6901
7dc74be0
DN
6902 return 0;
6903}
6904
4ffef5fe
DN
6905static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6906{
6907 unsigned long precharge;
6908 struct vm_area_struct *vma;
6909
dfe076b0 6910 down_read(&mm->mmap_sem);
4ffef5fe
DN
6911 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6912 struct mm_walk mem_cgroup_count_precharge_walk = {
6913 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6914 .mm = mm,
6915 .private = vma,
6916 };
6917 if (is_vm_hugetlb_page(vma))
6918 continue;
4ffef5fe
DN
6919 walk_page_range(vma->vm_start, vma->vm_end,
6920 &mem_cgroup_count_precharge_walk);
6921 }
dfe076b0 6922 up_read(&mm->mmap_sem);
4ffef5fe
DN
6923
6924 precharge = mc.precharge;
6925 mc.precharge = 0;
6926
6927 return precharge;
6928}
6929
4ffef5fe
DN
6930static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6931{
dfe076b0
DN
6932 unsigned long precharge = mem_cgroup_count_precharge(mm);
6933
6934 VM_BUG_ON(mc.moving_task);
6935 mc.moving_task = current;
6936 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6937}
6938
dfe076b0
DN
6939/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6940static void __mem_cgroup_clear_mc(void)
4ffef5fe 6941{
2bd9bb20
KH
6942 struct mem_cgroup *from = mc.from;
6943 struct mem_cgroup *to = mc.to;
4050377b 6944 int i;
2bd9bb20 6945
4ffef5fe 6946 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6947 if (mc.precharge) {
6948 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6949 mc.precharge = 0;
6950 }
6951 /*
6952 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6953 * we must uncharge here.
6954 */
6955 if (mc.moved_charge) {
6956 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6957 mc.moved_charge = 0;
4ffef5fe 6958 }
483c30b5
DN
6959 /* we must fixup refcnts and charges */
6960 if (mc.moved_swap) {
483c30b5
DN
6961 /* uncharge swap account from the old cgroup */
6962 if (!mem_cgroup_is_root(mc.from))
6963 res_counter_uncharge(&mc.from->memsw,
6964 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6965
6966 for (i = 0; i < mc.moved_swap; i++)
6967 css_put(&mc.from->css);
483c30b5
DN
6968
6969 if (!mem_cgroup_is_root(mc.to)) {
6970 /*
6971 * we charged both to->res and to->memsw, so we should
6972 * uncharge to->res.
6973 */
6974 res_counter_uncharge(&mc.to->res,
6975 PAGE_SIZE * mc.moved_swap);
483c30b5 6976 }
4050377b 6977 /* we've already done css_get(mc.to) */
483c30b5
DN
6978 mc.moved_swap = 0;
6979 }
dfe076b0
DN
6980 memcg_oom_recover(from);
6981 memcg_oom_recover(to);
6982 wake_up_all(&mc.waitq);
6983}
6984
6985static void mem_cgroup_clear_mc(void)
6986{
6987 struct mem_cgroup *from = mc.from;
6988
6989 /*
6990 * we must clear moving_task before waking up waiters at the end of
6991 * task migration.
6992 */
6993 mc.moving_task = NULL;
6994 __mem_cgroup_clear_mc();
2bd9bb20 6995 spin_lock(&mc.lock);
4ffef5fe
DN
6996 mc.from = NULL;
6997 mc.to = NULL;
2bd9bb20 6998 spin_unlock(&mc.lock);
32047e2a 6999 mem_cgroup_end_move(from);
4ffef5fe
DN
7000}
7001
eb95419b 7002static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7003 struct cgroup_taskset *tset)
7dc74be0 7004{
2f7ee569 7005 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7006 int ret = 0;
eb95419b 7007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7008 unsigned long move_charge_at_immigrate;
7dc74be0 7009
ee5e8472
GC
7010 /*
7011 * We are now commited to this value whatever it is. Changes in this
7012 * tunable will only affect upcoming migrations, not the current one.
7013 * So we need to save it, and keep it going.
7014 */
7015 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7016 if (move_charge_at_immigrate) {
7dc74be0
DN
7017 struct mm_struct *mm;
7018 struct mem_cgroup *from = mem_cgroup_from_task(p);
7019
c0ff4b85 7020 VM_BUG_ON(from == memcg);
7dc74be0
DN
7021
7022 mm = get_task_mm(p);
7023 if (!mm)
7024 return 0;
7dc74be0 7025 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7026 if (mm->owner == p) {
7027 VM_BUG_ON(mc.from);
7028 VM_BUG_ON(mc.to);
7029 VM_BUG_ON(mc.precharge);
854ffa8d 7030 VM_BUG_ON(mc.moved_charge);
483c30b5 7031 VM_BUG_ON(mc.moved_swap);
32047e2a 7032 mem_cgroup_start_move(from);
2bd9bb20 7033 spin_lock(&mc.lock);
4ffef5fe 7034 mc.from = from;
c0ff4b85 7035 mc.to = memcg;
ee5e8472 7036 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7037 spin_unlock(&mc.lock);
dfe076b0 7038 /* We set mc.moving_task later */
4ffef5fe
DN
7039
7040 ret = mem_cgroup_precharge_mc(mm);
7041 if (ret)
7042 mem_cgroup_clear_mc();
dfe076b0
DN
7043 }
7044 mmput(mm);
7dc74be0
DN
7045 }
7046 return ret;
7047}
7048
eb95419b 7049static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7050 struct cgroup_taskset *tset)
7dc74be0 7051{
4ffef5fe 7052 mem_cgroup_clear_mc();
7dc74be0
DN
7053}
7054
4ffef5fe
DN
7055static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7056 unsigned long addr, unsigned long end,
7057 struct mm_walk *walk)
7dc74be0 7058{
4ffef5fe
DN
7059 int ret = 0;
7060 struct vm_area_struct *vma = walk->private;
7061 pte_t *pte;
7062 spinlock_t *ptl;
12724850
NH
7063 enum mc_target_type target_type;
7064 union mc_target target;
7065 struct page *page;
7066 struct page_cgroup *pc;
4ffef5fe 7067
12724850
NH
7068 /*
7069 * We don't take compound_lock() here but no race with splitting thp
7070 * happens because:
7071 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7072 * under splitting, which means there's no concurrent thp split,
7073 * - if another thread runs into split_huge_page() just after we
7074 * entered this if-block, the thread must wait for page table lock
7075 * to be unlocked in __split_huge_page_splitting(), where the main
7076 * part of thp split is not executed yet.
7077 */
bf929152 7078 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7079 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7080 spin_unlock(ptl);
12724850
NH
7081 return 0;
7082 }
7083 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7084 if (target_type == MC_TARGET_PAGE) {
7085 page = target.page;
7086 if (!isolate_lru_page(page)) {
7087 pc = lookup_page_cgroup(page);
7088 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7089 pc, mc.from, mc.to)) {
12724850
NH
7090 mc.precharge -= HPAGE_PMD_NR;
7091 mc.moved_charge += HPAGE_PMD_NR;
7092 }
7093 putback_lru_page(page);
7094 }
7095 put_page(page);
7096 }
bf929152 7097 spin_unlock(ptl);
1a5a9906 7098 return 0;
12724850
NH
7099 }
7100
45f83cef
AA
7101 if (pmd_trans_unstable(pmd))
7102 return 0;
4ffef5fe
DN
7103retry:
7104 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7105 for (; addr != end; addr += PAGE_SIZE) {
7106 pte_t ptent = *(pte++);
02491447 7107 swp_entry_t ent;
4ffef5fe
DN
7108
7109 if (!mc.precharge)
7110 break;
7111
8d32ff84 7112 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7113 case MC_TARGET_PAGE:
7114 page = target.page;
7115 if (isolate_lru_page(page))
7116 goto put;
7117 pc = lookup_page_cgroup(page);
7ec99d62 7118 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7119 mc.from, mc.to)) {
4ffef5fe 7120 mc.precharge--;
854ffa8d
DN
7121 /* we uncharge from mc.from later. */
7122 mc.moved_charge++;
4ffef5fe
DN
7123 }
7124 putback_lru_page(page);
8d32ff84 7125put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7126 put_page(page);
7127 break;
02491447
DN
7128 case MC_TARGET_SWAP:
7129 ent = target.ent;
e91cbb42 7130 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7131 mc.precharge--;
483c30b5
DN
7132 /* we fixup refcnts and charges later. */
7133 mc.moved_swap++;
7134 }
02491447 7135 break;
4ffef5fe
DN
7136 default:
7137 break;
7138 }
7139 }
7140 pte_unmap_unlock(pte - 1, ptl);
7141 cond_resched();
7142
7143 if (addr != end) {
7144 /*
7145 * We have consumed all precharges we got in can_attach().
7146 * We try charge one by one, but don't do any additional
7147 * charges to mc.to if we have failed in charge once in attach()
7148 * phase.
7149 */
854ffa8d 7150 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7151 if (!ret)
7152 goto retry;
7153 }
7154
7155 return ret;
7156}
7157
7158static void mem_cgroup_move_charge(struct mm_struct *mm)
7159{
7160 struct vm_area_struct *vma;
7161
7162 lru_add_drain_all();
dfe076b0
DN
7163retry:
7164 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7165 /*
7166 * Someone who are holding the mmap_sem might be waiting in
7167 * waitq. So we cancel all extra charges, wake up all waiters,
7168 * and retry. Because we cancel precharges, we might not be able
7169 * to move enough charges, but moving charge is a best-effort
7170 * feature anyway, so it wouldn't be a big problem.
7171 */
7172 __mem_cgroup_clear_mc();
7173 cond_resched();
7174 goto retry;
7175 }
4ffef5fe
DN
7176 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7177 int ret;
7178 struct mm_walk mem_cgroup_move_charge_walk = {
7179 .pmd_entry = mem_cgroup_move_charge_pte_range,
7180 .mm = mm,
7181 .private = vma,
7182 };
7183 if (is_vm_hugetlb_page(vma))
7184 continue;
4ffef5fe
DN
7185 ret = walk_page_range(vma->vm_start, vma->vm_end,
7186 &mem_cgroup_move_charge_walk);
7187 if (ret)
7188 /*
7189 * means we have consumed all precharges and failed in
7190 * doing additional charge. Just abandon here.
7191 */
7192 break;
7193 }
dfe076b0 7194 up_read(&mm->mmap_sem);
7dc74be0
DN
7195}
7196
eb95419b 7197static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7198 struct cgroup_taskset *tset)
67e465a7 7199{
2f7ee569 7200 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7201 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7202
dfe076b0 7203 if (mm) {
a433658c
KM
7204 if (mc.to)
7205 mem_cgroup_move_charge(mm);
dfe076b0
DN
7206 mmput(mm);
7207 }
a433658c
KM
7208 if (mc.to)
7209 mem_cgroup_clear_mc();
67e465a7 7210}
5cfb80a7 7211#else /* !CONFIG_MMU */
eb95419b 7212static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7213 struct cgroup_taskset *tset)
5cfb80a7
DN
7214{
7215 return 0;
7216}
eb95419b 7217static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7218 struct cgroup_taskset *tset)
5cfb80a7
DN
7219{
7220}
eb95419b 7221static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7222 struct cgroup_taskset *tset)
5cfb80a7
DN
7223{
7224}
7225#endif
67e465a7 7226
f00baae7
TH
7227/*
7228 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7229 * to verify sane_behavior flag on each mount attempt.
7230 */
eb95419b 7231static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7232{
7233 /*
7234 * use_hierarchy is forced with sane_behavior. cgroup core
7235 * guarantees that @root doesn't have any children, so turning it
7236 * on for the root memcg is enough.
7237 */
eb95419b
TH
7238 if (cgroup_sane_behavior(root_css->cgroup))
7239 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7240}
7241
8cdea7c0
BS
7242struct cgroup_subsys mem_cgroup_subsys = {
7243 .name = "memory",
7244 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7245 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7246 .css_online = mem_cgroup_css_online,
92fb9748
TH
7247 .css_offline = mem_cgroup_css_offline,
7248 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7249 .can_attach = mem_cgroup_can_attach,
7250 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7251 .attach = mem_cgroup_move_task,
f00baae7 7252 .bind = mem_cgroup_bind,
6bc10349 7253 .base_cftypes = mem_cgroup_files,
6d12e2d8 7254 .early_init = 0,
8cdea7c0 7255};
c077719b 7256
c255a458 7257#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7258static int __init enable_swap_account(char *s)
7259{
a2c8990a 7260 if (!strcmp(s, "1"))
a42c390c 7261 really_do_swap_account = 1;
a2c8990a 7262 else if (!strcmp(s, "0"))
a42c390c
MH
7263 really_do_swap_account = 0;
7264 return 1;
7265}
a2c8990a 7266__setup("swapaccount=", enable_swap_account);
c077719b 7267
2d11085e
MH
7268static void __init memsw_file_init(void)
7269{
6acc8b02
MH
7270 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7271}
7272
7273static void __init enable_swap_cgroup(void)
7274{
7275 if (!mem_cgroup_disabled() && really_do_swap_account) {
7276 do_swap_account = 1;
7277 memsw_file_init();
7278 }
2d11085e 7279}
6acc8b02 7280
2d11085e 7281#else
6acc8b02 7282static void __init enable_swap_cgroup(void)
2d11085e
MH
7283{
7284}
c077719b 7285#endif
2d11085e
MH
7286
7287/*
1081312f
MH
7288 * subsys_initcall() for memory controller.
7289 *
7290 * Some parts like hotcpu_notifier() have to be initialized from this context
7291 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7292 * everything that doesn't depend on a specific mem_cgroup structure should
7293 * be initialized from here.
2d11085e
MH
7294 */
7295static int __init mem_cgroup_init(void)
7296{
7297 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7298 enable_swap_cgroup();
bb4cc1a8 7299 mem_cgroup_soft_limit_tree_init();
e4777496 7300 memcg_stock_init();
2d11085e
MH
7301 return 0;
7302}
7303subsys_initcall(mem_cgroup_init);
This page took 1.255861 seconds and 5 git commands to generate.