per-zone and reclaim enhancements for memory controller: calculate mapper_ratio per...
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
92 unsigned long count[NR_MEM_CGROUP_ZSTAT];
93};
94/* Macro for accessing counter */
95#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
96
97struct mem_cgroup_per_node {
98 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
99};
100
101struct mem_cgroup_lru_info {
102 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
103};
104
8cdea7c0
BS
105/*
106 * The memory controller data structure. The memory controller controls both
107 * page cache and RSS per cgroup. We would eventually like to provide
108 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
109 * to help the administrator determine what knobs to tune.
110 *
111 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
112 * we hit the water mark. May be even add a low water mark, such that
113 * no reclaim occurs from a cgroup at it's low water mark, this is
114 * a feature that will be implemented much later in the future.
8cdea7c0
BS
115 */
116struct mem_cgroup {
117 struct cgroup_subsys_state css;
118 /*
119 * the counter to account for memory usage
120 */
121 struct res_counter res;
78fb7466
PE
122 /*
123 * Per cgroup active and inactive list, similar to the
124 * per zone LRU lists.
125 * TODO: Consider making these lists per zone
126 */
127 struct list_head active_list;
128 struct list_head inactive_list;
6d12e2d8 129 struct mem_cgroup_lru_info info;
66e1707b
BS
130 /*
131 * spin_lock to protect the per cgroup LRU
132 */
133 spinlock_t lru_lock;
8697d331 134 unsigned long control_type; /* control RSS or RSS+Pagecache */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0
BS
139};
140
8a9f3ccd
BS
141/*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
145 */
146#define PAGE_CGROUP_LOCK_BIT 0x0
147#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
148
8cdea7c0
BS
149/*
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
152 */
153struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
217bc319 159 int flags;
8cdea7c0 160};
217bc319 161#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 162#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 163
c0149530
KH
164static inline int page_cgroup_nid(struct page_cgroup *pc)
165{
166 return page_to_nid(pc->page);
167}
168
169static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
170{
171 return page_zonenum(pc->page);
172}
173
8697d331
BS
174enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
180};
181
217bc319
KH
182enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
185};
186
6d12e2d8 187
d52aa412
KH
188/*
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
190 */
191static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
193{
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
197
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
203}
204
205static inline struct mem_cgroup_per_zone *
206mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207{
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210}
211
212static inline struct mem_cgroup_per_zone *
213page_cgroup_zoneinfo(struct page_cgroup *pc)
214{
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
d52aa412 218
6d12e2d8
KH
219 return mem_cgroup_zoneinfo(mem, nid, zid);
220}
221
222static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
224{
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
228
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
233 }
234 return total;
d52aa412
KH
235}
236
8697d331 237static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
238
239static inline
240struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
241{
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
245}
246
78fb7466
PE
247static inline
248struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
249{
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
252}
253
254void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
255{
256 struct mem_cgroup *mem;
257
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
261}
262
263void mm_free_cgroup(struct mm_struct *mm)
264{
265 css_put(&mm->mem_cgroup->css);
266}
267
8a9f3ccd
BS
268static inline int page_cgroup_locked(struct page *page)
269{
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
272}
273
78fb7466
PE
274void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
275{
8a9f3ccd
BS
276 int locked;
277
278 /*
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
282 */
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
287}
288
289struct page_cgroup *page_get_page_cgroup(struct page *page)
290{
8a9f3ccd
BS
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
293}
294
8697d331 295static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
296{
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
299}
300
8697d331 301static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
302{
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
304}
305
9175e031
KH
306/*
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
310 */
d52aa412
KH
311static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
9175e031
KH
313{
314 int ret = 0;
315
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
323}
324
325/*
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
332 */
333
d52aa412
KH
334static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
9175e031
KH
336{
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
345}
346
6d12e2d8
KH
347static void __mem_cgroup_remove_list(struct page_cgroup *pc)
348{
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
351
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
356
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
359}
360
361static void __mem_cgroup_add_list(struct page_cgroup *pc)
362{
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
365
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368 list_add(&pc->lru, &pc->mem_cgroup->inactive_list);
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371 list_add(&pc->lru, &pc->mem_cgroup->active_list);
372 }
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
374}
375
8697d331 376static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 377{
6d12e2d8
KH
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
380
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
385
3564c7c4 386 if (active) {
6d12e2d8 387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
66e1707b 389 list_move(&pc->lru, &pc->mem_cgroup->active_list);
3564c7c4 390 } else {
6d12e2d8 391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
66e1707b 393 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
3564c7c4 394 }
66e1707b
BS
395}
396
4c4a2214
DR
397int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
398{
399 int ret;
400
401 task_lock(task);
402 ret = task->mm && mm_cgroup(task->mm) == mem;
403 task_unlock(task);
404 return ret;
405}
406
66e1707b
BS
407/*
408 * This routine assumes that the appropriate zone's lru lock is already held
409 */
410void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
411{
412 struct mem_cgroup *mem;
413 if (!pc)
414 return;
415
416 mem = pc->mem_cgroup;
417
418 spin_lock(&mem->lru_lock);
419 __mem_cgroup_move_lists(pc, active);
420 spin_unlock(&mem->lru_lock);
421}
422
58ae83db
KH
423/*
424 * Calculate mapped_ratio under memory controller. This will be used in
425 * vmscan.c for deteremining we have to reclaim mapped pages.
426 */
427int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
428{
429 long total, rss;
430
431 /*
432 * usage is recorded in bytes. But, here, we assume the number of
433 * physical pages can be represented by "long" on any arch.
434 */
435 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
436 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
437 return (int)((rss * 100L) / total);
438}
439
66e1707b
BS
440unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
441 struct list_head *dst,
442 unsigned long *scanned, int order,
443 int mode, struct zone *z,
444 struct mem_cgroup *mem_cont,
445 int active)
446{
447 unsigned long nr_taken = 0;
448 struct page *page;
449 unsigned long scan;
450 LIST_HEAD(pc_list);
451 struct list_head *src;
ff7283fa 452 struct page_cgroup *pc, *tmp;
66e1707b
BS
453
454 if (active)
455 src = &mem_cont->active_list;
456 else
457 src = &mem_cont->inactive_list;
458
459 spin_lock(&mem_cont->lru_lock);
ff7283fa
KH
460 scan = 0;
461 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 462 if (scan >= nr_to_scan)
ff7283fa 463 break;
66e1707b
BS
464 page = pc->page;
465 VM_BUG_ON(!pc);
466
436c6541 467 if (unlikely(!PageLRU(page)))
ff7283fa 468 continue;
ff7283fa 469
66e1707b
BS
470 if (PageActive(page) && !active) {
471 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
472 continue;
473 }
474 if (!PageActive(page) && active) {
475 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
476 continue;
477 }
478
479 /*
480 * Reclaim, per zone
481 * TODO: make the active/inactive lists per zone
482 */
483 if (page_zone(page) != z)
484 continue;
485
436c6541
HD
486 scan++;
487 list_move(&pc->lru, &pc_list);
66e1707b
BS
488
489 if (__isolate_lru_page(page, mode) == 0) {
490 list_move(&page->lru, dst);
491 nr_taken++;
492 }
493 }
494
495 list_splice(&pc_list, src);
496 spin_unlock(&mem_cont->lru_lock);
497
498 *scanned = scan;
499 return nr_taken;
500}
501
8a9f3ccd
BS
502/*
503 * Charge the memory controller for page usage.
504 * Return
505 * 0 if the charge was successful
506 * < 0 if the cgroup is over its limit
507 */
217bc319
KH
508static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
509 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
510{
511 struct mem_cgroup *mem;
9175e031 512 struct page_cgroup *pc;
66e1707b
BS
513 unsigned long flags;
514 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
515
516 /*
517 * Should page_cgroup's go to their own slab?
518 * One could optimize the performance of the charging routine
519 * by saving a bit in the page_flags and using it as a lock
520 * to see if the cgroup page already has a page_cgroup associated
521 * with it
522 */
66e1707b 523retry:
82369553
HD
524 if (page) {
525 lock_page_cgroup(page);
526 pc = page_get_page_cgroup(page);
527 /*
528 * The page_cgroup exists and
529 * the page has already been accounted.
530 */
531 if (pc) {
532 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
533 /* this page is under being uncharged ? */
534 unlock_page_cgroup(page);
535 cpu_relax();
536 goto retry;
537 } else {
538 unlock_page_cgroup(page);
539 goto done;
540 }
9175e031 541 }
82369553 542 unlock_page_cgroup(page);
8a9f3ccd 543 }
8a9f3ccd 544
e1a1cd59 545 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
546 if (pc == NULL)
547 goto err;
548
8a9f3ccd 549 /*
3be91277
HD
550 * We always charge the cgroup the mm_struct belongs to.
551 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
552 * thread group leader migrates. It's possible that mm is not
553 * set, if so charge the init_mm (happens for pagecache usage).
554 */
555 if (!mm)
556 mm = &init_mm;
557
3be91277 558 rcu_read_lock();
8a9f3ccd
BS
559 mem = rcu_dereference(mm->mem_cgroup);
560 /*
561 * For every charge from the cgroup, increment reference
562 * count
563 */
564 css_get(&mem->css);
565 rcu_read_unlock();
566
567 /*
568 * If we created the page_cgroup, we should free it on exceeding
569 * the cgroup limit.
570 */
0eea1030 571 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
572 if (!(gfp_mask & __GFP_WAIT))
573 goto out;
e1a1cd59
BS
574
575 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
576 continue;
577
578 /*
579 * try_to_free_mem_cgroup_pages() might not give us a full
580 * picture of reclaim. Some pages are reclaimed and might be
581 * moved to swap cache or just unmapped from the cgroup.
582 * Check the limit again to see if the reclaim reduced the
583 * current usage of the cgroup before giving up
584 */
585 if (res_counter_check_under_limit(&mem->res))
586 continue;
3be91277
HD
587
588 if (!nr_retries--) {
589 mem_cgroup_out_of_memory(mem, gfp_mask);
590 goto out;
66e1707b 591 }
3be91277 592 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
593 }
594
8a9f3ccd
BS
595 atomic_set(&pc->ref_cnt, 1);
596 pc->mem_cgroup = mem;
597 pc->page = page;
3564c7c4 598 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
599 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
600 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 601
82369553 602 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
9175e031 603 /*
3be91277
HD
604 * Another charge has been added to this page already.
605 * We take lock_page_cgroup(page) again and read
9175e031
KH
606 * page->cgroup, increment refcnt.... just retry is OK.
607 */
608 res_counter_uncharge(&mem->res, PAGE_SIZE);
609 css_put(&mem->css);
610 kfree(pc);
82369553
HD
611 if (!page)
612 goto done;
9175e031
KH
613 goto retry;
614 }
8a9f3ccd 615
66e1707b 616 spin_lock_irqsave(&mem->lru_lock, flags);
d52aa412 617 /* Update statistics vector */
6d12e2d8 618 __mem_cgroup_add_list(pc);
66e1707b
BS
619 spin_unlock_irqrestore(&mem->lru_lock, flags);
620
8a9f3ccd 621done:
8a9f3ccd 622 return 0;
3be91277
HD
623out:
624 css_put(&mem->css);
8a9f3ccd 625 kfree(pc);
8a9f3ccd 626err:
8a9f3ccd
BS
627 return -ENOMEM;
628}
629
217bc319
KH
630int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
631 gfp_t gfp_mask)
632{
633 return mem_cgroup_charge_common(page, mm, gfp_mask,
634 MEM_CGROUP_CHARGE_TYPE_MAPPED);
635}
636
8697d331
BS
637/*
638 * See if the cached pages should be charged at all?
639 */
e1a1cd59
BS
640int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
641 gfp_t gfp_mask)
8697d331 642{
ac44d354 643 int ret = 0;
8697d331
BS
644 struct mem_cgroup *mem;
645 if (!mm)
646 mm = &init_mm;
647
ac44d354 648 rcu_read_lock();
8697d331 649 mem = rcu_dereference(mm->mem_cgroup);
ac44d354
BS
650 css_get(&mem->css);
651 rcu_read_unlock();
8697d331 652 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
ac44d354 653 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 654 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354
BS
655 css_put(&mem->css);
656 return ret;
8697d331
BS
657}
658
8a9f3ccd
BS
659/*
660 * Uncharging is always a welcome operation, we never complain, simply
661 * uncharge.
662 */
663void mem_cgroup_uncharge(struct page_cgroup *pc)
664{
665 struct mem_cgroup *mem;
666 struct page *page;
66e1707b 667 unsigned long flags;
8a9f3ccd 668
8697d331
BS
669 /*
670 * This can handle cases when a page is not charged at all and we
671 * are switching between handling the control_type.
672 */
8a9f3ccd
BS
673 if (!pc)
674 return;
675
676 if (atomic_dec_and_test(&pc->ref_cnt)) {
677 page = pc->page;
9175e031
KH
678 /*
679 * get page->cgroup and clear it under lock.
cc847582 680 * force_empty can drop page->cgroup without checking refcnt.
9175e031
KH
681 */
682 if (clear_page_cgroup(page, pc) == pc) {
683 mem = pc->mem_cgroup;
684 css_put(&mem->css);
685 res_counter_uncharge(&mem->res, PAGE_SIZE);
686 spin_lock_irqsave(&mem->lru_lock, flags);
6d12e2d8 687 __mem_cgroup_remove_list(pc);
9175e031
KH
688 spin_unlock_irqrestore(&mem->lru_lock, flags);
689 kfree(pc);
9175e031 690 }
8a9f3ccd 691 }
78fb7466 692}
6d12e2d8 693
ae41be37
KH
694/*
695 * Returns non-zero if a page (under migration) has valid page_cgroup member.
696 * Refcnt of page_cgroup is incremented.
697 */
698
699int mem_cgroup_prepare_migration(struct page *page)
700{
701 struct page_cgroup *pc;
702 int ret = 0;
703 lock_page_cgroup(page);
704 pc = page_get_page_cgroup(page);
705 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
706 ret = 1;
707 unlock_page_cgroup(page);
708 return ret;
709}
710
711void mem_cgroup_end_migration(struct page *page)
712{
713 struct page_cgroup *pc = page_get_page_cgroup(page);
714 mem_cgroup_uncharge(pc);
715}
716/*
717 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
718 * And no race with uncharge() routines because page_cgroup for *page*
719 * has extra one reference by mem_cgroup_prepare_migration.
720 */
721
722void mem_cgroup_page_migration(struct page *page, struct page *newpage)
723{
724 struct page_cgroup *pc;
6d12e2d8
KH
725 struct mem_cgroup *mem;
726 unsigned long flags;
ae41be37
KH
727retry:
728 pc = page_get_page_cgroup(page);
729 if (!pc)
730 return;
6d12e2d8 731 mem = pc->mem_cgroup;
ae41be37
KH
732 if (clear_page_cgroup(page, pc) != pc)
733 goto retry;
6d12e2d8
KH
734
735 spin_lock_irqsave(&mem->lru_lock, flags);
736
737 __mem_cgroup_remove_list(pc);
ae41be37
KH
738 pc->page = newpage;
739 lock_page_cgroup(newpage);
740 page_assign_page_cgroup(newpage, pc);
741 unlock_page_cgroup(newpage);
6d12e2d8
KH
742 __mem_cgroup_add_list(pc);
743
744 spin_unlock_irqrestore(&mem->lru_lock, flags);
ae41be37
KH
745 return;
746}
78fb7466 747
cc847582
KH
748/*
749 * This routine traverse page_cgroup in given list and drop them all.
750 * This routine ignores page_cgroup->ref_cnt.
751 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
752 */
753#define FORCE_UNCHARGE_BATCH (128)
754static void
755mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
756{
757 struct page_cgroup *pc;
758 struct page *page;
759 int count;
760 unsigned long flags;
761
762retry:
763 count = FORCE_UNCHARGE_BATCH;
764 spin_lock_irqsave(&mem->lru_lock, flags);
765
766 while (--count && !list_empty(list)) {
767 pc = list_entry(list->prev, struct page_cgroup, lru);
768 page = pc->page;
769 /* Avoid race with charge */
770 atomic_set(&pc->ref_cnt, 0);
771 if (clear_page_cgroup(page, pc) == pc) {
772 css_put(&mem->css);
773 res_counter_uncharge(&mem->res, PAGE_SIZE);
6d12e2d8 774 __mem_cgroup_remove_list(pc);
cc847582
KH
775 kfree(pc);
776 } else /* being uncharged ? ...do relax */
777 break;
778 }
779 spin_unlock_irqrestore(&mem->lru_lock, flags);
780 if (!list_empty(list)) {
781 cond_resched();
782 goto retry;
783 }
784 return;
785}
786
787/*
788 * make mem_cgroup's charge to be 0 if there is no task.
789 * This enables deleting this mem_cgroup.
790 */
791
792int mem_cgroup_force_empty(struct mem_cgroup *mem)
793{
794 int ret = -EBUSY;
795 css_get(&mem->css);
796 /*
797 * page reclaim code (kswapd etc..) will move pages between
798` * active_list <-> inactive_list while we don't take a lock.
799 * So, we have to do loop here until all lists are empty.
800 */
801 while (!(list_empty(&mem->active_list) &&
802 list_empty(&mem->inactive_list))) {
803 if (atomic_read(&mem->css.cgroup->count) > 0)
804 goto out;
805 /* drop all page_cgroup in active_list */
806 mem_cgroup_force_empty_list(mem, &mem->active_list);
807 /* drop all page_cgroup in inactive_list */
808 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
809 }
810 ret = 0;
811out:
812 css_put(&mem->css);
813 return ret;
814}
815
816
817
0eea1030
BS
818int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
819{
820 *tmp = memparse(buf, &buf);
821 if (*buf != '\0')
822 return -EINVAL;
823
824 /*
825 * Round up the value to the closest page size
826 */
827 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
828 return 0;
829}
830
831static ssize_t mem_cgroup_read(struct cgroup *cont,
832 struct cftype *cft, struct file *file,
833 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
834{
835 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
836 cft->private, userbuf, nbytes, ppos,
837 NULL);
8cdea7c0
BS
838}
839
840static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
841 struct file *file, const char __user *userbuf,
842 size_t nbytes, loff_t *ppos)
843{
844 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
845 cft->private, userbuf, nbytes, ppos,
846 mem_cgroup_write_strategy);
8cdea7c0
BS
847}
848
8697d331
BS
849static ssize_t mem_control_type_write(struct cgroup *cont,
850 struct cftype *cft, struct file *file,
851 const char __user *userbuf,
852 size_t nbytes, loff_t *pos)
853{
854 int ret;
855 char *buf, *end;
856 unsigned long tmp;
857 struct mem_cgroup *mem;
858
859 mem = mem_cgroup_from_cont(cont);
860 buf = kmalloc(nbytes + 1, GFP_KERNEL);
861 ret = -ENOMEM;
862 if (buf == NULL)
863 goto out;
864
865 buf[nbytes] = 0;
866 ret = -EFAULT;
867 if (copy_from_user(buf, userbuf, nbytes))
868 goto out_free;
869
870 ret = -EINVAL;
871 tmp = simple_strtoul(buf, &end, 10);
872 if (*end != '\0')
873 goto out_free;
874
875 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
876 goto out_free;
877
878 mem->control_type = tmp;
879 ret = nbytes;
880out_free:
881 kfree(buf);
882out:
883 return ret;
884}
885
886static ssize_t mem_control_type_read(struct cgroup *cont,
887 struct cftype *cft,
888 struct file *file, char __user *userbuf,
889 size_t nbytes, loff_t *ppos)
890{
891 unsigned long val;
892 char buf[64], *s;
893 struct mem_cgroup *mem;
894
895 mem = mem_cgroup_from_cont(cont);
896 s = buf;
897 val = mem->control_type;
898 s += sprintf(s, "%lu\n", val);
899 return simple_read_from_buffer((void __user *)userbuf, nbytes,
900 ppos, buf, s - buf);
901}
902
cc847582
KH
903
904static ssize_t mem_force_empty_write(struct cgroup *cont,
905 struct cftype *cft, struct file *file,
906 const char __user *userbuf,
907 size_t nbytes, loff_t *ppos)
908{
909 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
910 int ret;
911 ret = mem_cgroup_force_empty(mem);
912 if (!ret)
913 ret = nbytes;
914 return ret;
915}
916
917/*
918 * Note: This should be removed if cgroup supports write-only file.
919 */
920
921static ssize_t mem_force_empty_read(struct cgroup *cont,
922 struct cftype *cft,
923 struct file *file, char __user *userbuf,
924 size_t nbytes, loff_t *ppos)
925{
926 return -EINVAL;
927}
928
929
d2ceb9b7
KH
930static const struct mem_cgroup_stat_desc {
931 const char *msg;
932 u64 unit;
933} mem_cgroup_stat_desc[] = {
934 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
935 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
936};
937
938static int mem_control_stat_show(struct seq_file *m, void *arg)
939{
940 struct cgroup *cont = m->private;
941 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
942 struct mem_cgroup_stat *stat = &mem_cont->stat;
943 int i;
944
945 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
946 s64 val;
947
948 val = mem_cgroup_read_stat(stat, i);
949 val *= mem_cgroup_stat_desc[i].unit;
950 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
951 (long long)val);
952 }
6d12e2d8
KH
953 /* showing # of active pages */
954 {
955 unsigned long active, inactive;
956
957 inactive = mem_cgroup_get_all_zonestat(mem_cont,
958 MEM_CGROUP_ZSTAT_INACTIVE);
959 active = mem_cgroup_get_all_zonestat(mem_cont,
960 MEM_CGROUP_ZSTAT_ACTIVE);
961 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
962 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
963 }
d2ceb9b7
KH
964 return 0;
965}
966
967static const struct file_operations mem_control_stat_file_operations = {
968 .read = seq_read,
969 .llseek = seq_lseek,
970 .release = single_release,
971};
972
973static int mem_control_stat_open(struct inode *unused, struct file *file)
974{
975 /* XXX __d_cont */
976 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
977
978 file->f_op = &mem_control_stat_file_operations;
979 return single_open(file, mem_control_stat_show, cont);
980}
981
982
983
8cdea7c0
BS
984static struct cftype mem_cgroup_files[] = {
985 {
0eea1030 986 .name = "usage_in_bytes",
8cdea7c0
BS
987 .private = RES_USAGE,
988 .read = mem_cgroup_read,
989 },
990 {
0eea1030 991 .name = "limit_in_bytes",
8cdea7c0
BS
992 .private = RES_LIMIT,
993 .write = mem_cgroup_write,
994 .read = mem_cgroup_read,
995 },
996 {
997 .name = "failcnt",
998 .private = RES_FAILCNT,
999 .read = mem_cgroup_read,
1000 },
8697d331
BS
1001 {
1002 .name = "control_type",
1003 .write = mem_control_type_write,
1004 .read = mem_control_type_read,
1005 },
cc847582
KH
1006 {
1007 .name = "force_empty",
1008 .write = mem_force_empty_write,
1009 .read = mem_force_empty_read,
1010 },
d2ceb9b7
KH
1011 {
1012 .name = "stat",
1013 .open = mem_control_stat_open,
1014 },
8cdea7c0
BS
1015};
1016
6d12e2d8
KH
1017static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1018{
1019 struct mem_cgroup_per_node *pn;
1020
1021 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1022 if (!pn)
1023 return 1;
1024 mem->info.nodeinfo[node] = pn;
1025 memset(pn, 0, sizeof(*pn));
1026 return 0;
1027}
1028
78fb7466
PE
1029static struct mem_cgroup init_mem_cgroup;
1030
8cdea7c0
BS
1031static struct cgroup_subsys_state *
1032mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1033{
1034 struct mem_cgroup *mem;
6d12e2d8 1035 int node;
8cdea7c0 1036
78fb7466
PE
1037 if (unlikely((cont->parent) == NULL)) {
1038 mem = &init_mem_cgroup;
1039 init_mm.mem_cgroup = mem;
1040 } else
1041 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1042
1043 if (mem == NULL)
1044 return NULL;
8cdea7c0
BS
1045
1046 res_counter_init(&mem->res);
8a9f3ccd
BS
1047 INIT_LIST_HEAD(&mem->active_list);
1048 INIT_LIST_HEAD(&mem->inactive_list);
66e1707b 1049 spin_lock_init(&mem->lru_lock);
8697d331 1050 mem->control_type = MEM_CGROUP_TYPE_ALL;
6d12e2d8
KH
1051 memset(&mem->info, 0, sizeof(mem->info));
1052
1053 for_each_node_state(node, N_POSSIBLE)
1054 if (alloc_mem_cgroup_per_zone_info(mem, node))
1055 goto free_out;
1056
8cdea7c0 1057 return &mem->css;
6d12e2d8
KH
1058free_out:
1059 for_each_node_state(node, N_POSSIBLE)
1060 kfree(mem->info.nodeinfo[node]);
1061 if (cont->parent != NULL)
1062 kfree(mem);
1063 return NULL;
8cdea7c0
BS
1064}
1065
df878fb0
KH
1066static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1067 struct cgroup *cont)
1068{
1069 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1070 mem_cgroup_force_empty(mem);
1071}
1072
8cdea7c0
BS
1073static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1074 struct cgroup *cont)
1075{
6d12e2d8
KH
1076 int node;
1077 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1078
1079 for_each_node_state(node, N_POSSIBLE)
1080 kfree(mem->info.nodeinfo[node]);
1081
8cdea7c0
BS
1082 kfree(mem_cgroup_from_cont(cont));
1083}
1084
1085static int mem_cgroup_populate(struct cgroup_subsys *ss,
1086 struct cgroup *cont)
1087{
1088 return cgroup_add_files(cont, ss, mem_cgroup_files,
1089 ARRAY_SIZE(mem_cgroup_files));
1090}
1091
67e465a7
BS
1092static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1093 struct cgroup *cont,
1094 struct cgroup *old_cont,
1095 struct task_struct *p)
1096{
1097 struct mm_struct *mm;
1098 struct mem_cgroup *mem, *old_mem;
1099
1100 mm = get_task_mm(p);
1101 if (mm == NULL)
1102 return;
1103
1104 mem = mem_cgroup_from_cont(cont);
1105 old_mem = mem_cgroup_from_cont(old_cont);
1106
1107 if (mem == old_mem)
1108 goto out;
1109
1110 /*
1111 * Only thread group leaders are allowed to migrate, the mm_struct is
1112 * in effect owned by the leader
1113 */
1114 if (p->tgid != p->pid)
1115 goto out;
1116
1117 css_get(&mem->css);
1118 rcu_assign_pointer(mm->mem_cgroup, mem);
1119 css_put(&old_mem->css);
1120
1121out:
1122 mmput(mm);
1123 return;
1124}
1125
8cdea7c0
BS
1126struct cgroup_subsys mem_cgroup_subsys = {
1127 .name = "memory",
1128 .subsys_id = mem_cgroup_subsys_id,
1129 .create = mem_cgroup_create,
df878fb0 1130 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1131 .destroy = mem_cgroup_destroy,
1132 .populate = mem_cgroup_populate,
67e465a7 1133 .attach = mem_cgroup_move_task,
6d12e2d8 1134 .early_init = 0,
8cdea7c0 1135};
This page took 0.090797 seconds and 5 git commands to generate.