mm, vmscan: move LRU lists to node
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
ad7fa852
TH
326/**
327 * mem_cgroup_css_from_page - css of the memcg associated with a page
328 * @page: page of interest
329 *
330 * If memcg is bound to the default hierarchy, css of the memcg associated
331 * with @page is returned. The returned css remains associated with @page
332 * until it is released.
333 *
334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335 * is returned.
ad7fa852
TH
336 */
337struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338{
339 struct mem_cgroup *memcg;
340
ad7fa852
TH
341 memcg = page->mem_cgroup;
342
9e10a130 343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
344 memcg = root_mem_cgroup;
345
ad7fa852
TH
346 return &memcg->css;
347}
348
2fc04524
VD
349/**
350 * page_cgroup_ino - return inode number of the memcg a page is charged to
351 * @page: the page
352 *
353 * Look up the closest online ancestor of the memory cgroup @page is charged to
354 * and return its inode number or 0 if @page is not charged to any cgroup. It
355 * is safe to call this function without holding a reference to @page.
356 *
357 * Note, this function is inherently racy, because there is nothing to prevent
358 * the cgroup inode from getting torn down and potentially reallocated a moment
359 * after page_cgroup_ino() returns, so it only should be used by callers that
360 * do not care (such as procfs interfaces).
361 */
362ino_t page_cgroup_ino(struct page *page)
363{
364 struct mem_cgroup *memcg;
365 unsigned long ino = 0;
366
367 rcu_read_lock();
368 memcg = READ_ONCE(page->mem_cgroup);
369 while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 memcg = parent_mem_cgroup(memcg);
371 if (memcg)
372 ino = cgroup_ino(memcg->css.cgroup);
373 rcu_read_unlock();
374 return ino;
375}
376
f64c3f54 377static struct mem_cgroup_per_zone *
e231875b 378mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 379{
97a6c37b
JW
380 int nid = page_to_nid(page);
381 int zid = page_zonenum(page);
f64c3f54 382
e231875b 383 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
384}
385
bb4cc1a8
AM
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
cf2c8127
JW
401static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
402 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 403 unsigned long new_usage_in_excess)
bb4cc1a8
AM
404{
405 struct rb_node **p = &mctz->rb_root.rb_node;
406 struct rb_node *parent = NULL;
407 struct mem_cgroup_per_zone *mz_node;
408
409 if (mz->on_tree)
410 return;
411
412 mz->usage_in_excess = new_usage_in_excess;
413 if (!mz->usage_in_excess)
414 return;
415 while (*p) {
416 parent = *p;
417 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 tree_node);
419 if (mz->usage_in_excess < mz_node->usage_in_excess)
420 p = &(*p)->rb_left;
421 /*
422 * We can't avoid mem cgroups that are over their soft
423 * limit by the same amount
424 */
425 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 p = &(*p)->rb_right;
427 }
428 rb_link_node(&mz->tree_node, parent, p);
429 rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 mz->on_tree = true;
431}
432
cf2c8127
JW
433static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
435{
436 if (!mz->on_tree)
437 return;
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440}
441
cf2c8127
JW
442static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 444{
0a31bc97
JW
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 448 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 449 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
450}
451
3e32cb2e
JW
452static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453{
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462}
bb4cc1a8
AM
463
464static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465{
3e32cb2e 466 unsigned long excess;
bb4cc1a8
AM
467 struct mem_cgroup_per_zone *mz;
468 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 469
e231875b 470 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 476 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 477 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
0a31bc97
JW
483 unsigned long flags;
484
485 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
486 /* if on-tree, remove it */
487 if (mz->on_tree)
cf2c8127 488 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
489 /*
490 * Insert again. mz->usage_in_excess will be updated.
491 * If excess is 0, no tree ops.
492 */
cf2c8127 493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 494 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
495 }
496 }
497}
498
499static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500{
bb4cc1a8 501 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
502 struct mem_cgroup_per_zone *mz;
503 int nid, zid;
bb4cc1a8 504
e231875b
JZ
505 for_each_node(nid) {
506 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
507 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
508 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 509 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
510 }
511 }
512}
513
514static struct mem_cgroup_per_zone *
515__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516{
517 struct rb_node *rightmost = NULL;
518 struct mem_cgroup_per_zone *mz;
519
520retry:
521 mz = NULL;
522 rightmost = rb_last(&mctz->rb_root);
523 if (!rightmost)
524 goto done; /* Nothing to reclaim from */
525
526 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 533 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 534 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
535 goto retry;
536done:
537 return mz;
538}
539
540static struct mem_cgroup_per_zone *
541mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542{
543 struct mem_cgroup_per_zone *mz;
544
0a31bc97 545 spin_lock_irq(&mctz->lock);
bb4cc1a8 546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 547 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
548 return mz;
549}
550
711d3d2c 551/*
484ebb3b
GT
552 * Return page count for single (non recursive) @memcg.
553 *
711d3d2c
KH
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 559 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 569 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
570 * implemented.
571 */
484ebb3b
GT
572static unsigned long
573mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 574{
7a159cc9 575 long val = 0;
c62b1a3b 576 int cpu;
c62b1a3b 577
484ebb3b 578 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 579 for_each_possible_cpu(cpu)
c0ff4b85 580 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
581 /*
582 * Summing races with updates, so val may be negative. Avoid exposing
583 * transient negative values.
584 */
585 if (val < 0)
586 val = 0;
c62b1a3b
KH
587 return val;
588}
589
c0ff4b85 590static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
591 enum mem_cgroup_events_index idx)
592{
593 unsigned long val = 0;
594 int cpu;
595
733a572e 596 for_each_possible_cpu(cpu)
c0ff4b85 597 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
598 return val;
599}
600
c0ff4b85 601static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 602 struct page *page,
f627c2f5 603 bool compound, int nr_pages)
d52aa412 604{
b2402857
KH
605 /*
606 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
607 * counted as CACHE even if it's on ANON LRU.
608 */
0a31bc97 609 if (PageAnon(page))
b2402857 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 611 nr_pages);
d52aa412 612 else
b2402857 613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 614 nr_pages);
55e462b0 615
f627c2f5
KS
616 if (compound) {
617 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
619 nr_pages);
f627c2f5 620 }
b070e65c 621
e401f176
KH
622 /* pagein of a big page is an event. So, ignore page size */
623 if (nr_pages > 0)
c0ff4b85 624 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 625 else {
c0ff4b85 626 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
627 nr_pages = -nr_pages; /* for event */
628 }
e401f176 629
13114716 630 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
631}
632
0a6b76dd
VD
633unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
634 int nid, unsigned int lru_mask)
bb2a0de9 635{
e231875b 636 unsigned long nr = 0;
889976db
YH
637 int zid;
638
e231875b 639 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 640
e231875b
JZ
641 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
642 struct mem_cgroup_per_zone *mz;
643 enum lru_list lru;
644
645 for_each_lru(lru) {
646 if (!(BIT(lru) & lru_mask))
647 continue;
648 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
649 nr += mz->lru_size[lru];
650 }
651 }
652 return nr;
889976db 653}
bb2a0de9 654
c0ff4b85 655static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 656 unsigned int lru_mask)
6d12e2d8 657{
e231875b 658 unsigned long nr = 0;
889976db 659 int nid;
6d12e2d8 660
31aaea4a 661 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
662 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
663 return nr;
d52aa412
KH
664}
665
f53d7ce3
JW
666static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
667 enum mem_cgroup_events_target target)
7a159cc9
JW
668{
669 unsigned long val, next;
670
13114716 671 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 672 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 673 /* from time_after() in jiffies.h */
f53d7ce3
JW
674 if ((long)next - (long)val < 0) {
675 switch (target) {
676 case MEM_CGROUP_TARGET_THRESH:
677 next = val + THRESHOLDS_EVENTS_TARGET;
678 break;
bb4cc1a8
AM
679 case MEM_CGROUP_TARGET_SOFTLIMIT:
680 next = val + SOFTLIMIT_EVENTS_TARGET;
681 break;
f53d7ce3
JW
682 case MEM_CGROUP_TARGET_NUMAINFO:
683 next = val + NUMAINFO_EVENTS_TARGET;
684 break;
685 default:
686 break;
687 }
688 __this_cpu_write(memcg->stat->targets[target], next);
689 return true;
7a159cc9 690 }
f53d7ce3 691 return false;
d2265e6f
KH
692}
693
694/*
695 * Check events in order.
696 *
697 */
c0ff4b85 698static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
699{
700 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
701 if (unlikely(mem_cgroup_event_ratelimit(memcg,
702 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 703 bool do_softlimit;
82b3f2a7 704 bool do_numainfo __maybe_unused;
f53d7ce3 705
bb4cc1a8
AM
706 do_softlimit = mem_cgroup_event_ratelimit(memcg,
707 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
708#if MAX_NUMNODES > 1
709 do_numainfo = mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_NUMAINFO);
711#endif
c0ff4b85 712 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
713 if (unlikely(do_softlimit))
714 mem_cgroup_update_tree(memcg, page);
453a9bf3 715#if MAX_NUMNODES > 1
f53d7ce3 716 if (unlikely(do_numainfo))
c0ff4b85 717 atomic_inc(&memcg->numainfo_events);
453a9bf3 718#endif
0a31bc97 719 }
d2265e6f
KH
720}
721
cf475ad2 722struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 723{
31a78f23
BS
724 /*
725 * mm_update_next_owner() may clear mm->owner to NULL
726 * if it races with swapoff, page migration, etc.
727 * So this can be called with p == NULL.
728 */
729 if (unlikely(!p))
730 return NULL;
731
073219e9 732 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 733}
33398cf2 734EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 735
df381975 736static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 737{
c0ff4b85 738 struct mem_cgroup *memcg = NULL;
0b7f569e 739
54595fe2
KH
740 rcu_read_lock();
741 do {
6f6acb00
MH
742 /*
743 * Page cache insertions can happen withou an
744 * actual mm context, e.g. during disk probing
745 * on boot, loopback IO, acct() writes etc.
746 */
747 if (unlikely(!mm))
df381975 748 memcg = root_mem_cgroup;
6f6acb00
MH
749 else {
750 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
751 if (unlikely(!memcg))
752 memcg = root_mem_cgroup;
753 }
ec903c0c 754 } while (!css_tryget_online(&memcg->css));
54595fe2 755 rcu_read_unlock();
c0ff4b85 756 return memcg;
54595fe2
KH
757}
758
5660048c
JW
759/**
760 * mem_cgroup_iter - iterate over memory cgroup hierarchy
761 * @root: hierarchy root
762 * @prev: previously returned memcg, NULL on first invocation
763 * @reclaim: cookie for shared reclaim walks, NULL for full walks
764 *
765 * Returns references to children of the hierarchy below @root, or
766 * @root itself, or %NULL after a full round-trip.
767 *
768 * Caller must pass the return value in @prev on subsequent
769 * invocations for reference counting, or use mem_cgroup_iter_break()
770 * to cancel a hierarchy walk before the round-trip is complete.
771 *
772 * Reclaimers can specify a zone and a priority level in @reclaim to
773 * divide up the memcgs in the hierarchy among all concurrent
774 * reclaimers operating on the same zone and priority.
775 */
694fbc0f 776struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 777 struct mem_cgroup *prev,
694fbc0f 778 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 779{
33398cf2 780 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 781 struct cgroup_subsys_state *css = NULL;
9f3a0d09 782 struct mem_cgroup *memcg = NULL;
5ac8fb31 783 struct mem_cgroup *pos = NULL;
711d3d2c 784
694fbc0f
AM
785 if (mem_cgroup_disabled())
786 return NULL;
5660048c 787
9f3a0d09
JW
788 if (!root)
789 root = root_mem_cgroup;
7d74b06f 790
9f3a0d09 791 if (prev && !reclaim)
5ac8fb31 792 pos = prev;
14067bb3 793
9f3a0d09
JW
794 if (!root->use_hierarchy && root != root_mem_cgroup) {
795 if (prev)
5ac8fb31 796 goto out;
694fbc0f 797 return root;
9f3a0d09 798 }
14067bb3 799
542f85f9 800 rcu_read_lock();
5f578161 801
5ac8fb31
JW
802 if (reclaim) {
803 struct mem_cgroup_per_zone *mz;
804
805 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
806 iter = &mz->iter[reclaim->priority];
807
808 if (prev && reclaim->generation != iter->generation)
809 goto out_unlock;
810
6df38689 811 while (1) {
4db0c3c2 812 pos = READ_ONCE(iter->position);
6df38689
VD
813 if (!pos || css_tryget(&pos->css))
814 break;
5ac8fb31 815 /*
6df38689
VD
816 * css reference reached zero, so iter->position will
817 * be cleared by ->css_released. However, we should not
818 * rely on this happening soon, because ->css_released
819 * is called from a work queue, and by busy-waiting we
820 * might block it. So we clear iter->position right
821 * away.
5ac8fb31 822 */
6df38689
VD
823 (void)cmpxchg(&iter->position, pos, NULL);
824 }
5ac8fb31
JW
825 }
826
827 if (pos)
828 css = &pos->css;
829
830 for (;;) {
831 css = css_next_descendant_pre(css, &root->css);
832 if (!css) {
833 /*
834 * Reclaimers share the hierarchy walk, and a
835 * new one might jump in right at the end of
836 * the hierarchy - make sure they see at least
837 * one group and restart from the beginning.
838 */
839 if (!prev)
840 continue;
841 break;
527a5ec9 842 }
7d74b06f 843
5ac8fb31
JW
844 /*
845 * Verify the css and acquire a reference. The root
846 * is provided by the caller, so we know it's alive
847 * and kicking, and don't take an extra reference.
848 */
849 memcg = mem_cgroup_from_css(css);
14067bb3 850
5ac8fb31
JW
851 if (css == &root->css)
852 break;
14067bb3 853
0b8f73e1
JW
854 if (css_tryget(css))
855 break;
9f3a0d09 856
5ac8fb31 857 memcg = NULL;
9f3a0d09 858 }
5ac8fb31
JW
859
860 if (reclaim) {
5ac8fb31 861 /*
6df38689
VD
862 * The position could have already been updated by a competing
863 * thread, so check that the value hasn't changed since we read
864 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 865 */
6df38689
VD
866 (void)cmpxchg(&iter->position, pos, memcg);
867
5ac8fb31
JW
868 if (pos)
869 css_put(&pos->css);
870
871 if (!memcg)
872 iter->generation++;
873 else if (!prev)
874 reclaim->generation = iter->generation;
9f3a0d09 875 }
5ac8fb31 876
542f85f9
MH
877out_unlock:
878 rcu_read_unlock();
5ac8fb31 879out:
c40046f3
MH
880 if (prev && prev != root)
881 css_put(&prev->css);
882
9f3a0d09 883 return memcg;
14067bb3 884}
7d74b06f 885
5660048c
JW
886/**
887 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
888 * @root: hierarchy root
889 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
890 */
891void mem_cgroup_iter_break(struct mem_cgroup *root,
892 struct mem_cgroup *prev)
9f3a0d09
JW
893{
894 if (!root)
895 root = root_mem_cgroup;
896 if (prev && prev != root)
897 css_put(&prev->css);
898}
7d74b06f 899
6df38689
VD
900static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
901{
902 struct mem_cgroup *memcg = dead_memcg;
903 struct mem_cgroup_reclaim_iter *iter;
904 struct mem_cgroup_per_zone *mz;
905 int nid, zid;
906 int i;
907
908 while ((memcg = parent_mem_cgroup(memcg))) {
909 for_each_node(nid) {
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
912 for (i = 0; i <= DEF_PRIORITY; i++) {
913 iter = &mz->iter[i];
914 cmpxchg(&iter->position,
915 dead_memcg, NULL);
916 }
917 }
918 }
919 }
920}
921
9f3a0d09
JW
922/*
923 * Iteration constructs for visiting all cgroups (under a tree). If
924 * loops are exited prematurely (break), mem_cgroup_iter_break() must
925 * be used for reference counting.
926 */
927#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 928 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 929 iter != NULL; \
527a5ec9 930 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 931
9f3a0d09 932#define for_each_mem_cgroup(iter) \
527a5ec9 933 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 934 iter != NULL; \
527a5ec9 935 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 936
925b7673 937/**
dfe0e773 938 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 939 * @page: the page
fa9add64 940 * @zone: zone of the page
dfe0e773
JW
941 *
942 * This function is only safe when following the LRU page isolation
943 * and putback protocol: the LRU lock must be held, and the page must
944 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 945 */
599d0c95 946struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 947{
08e552c6 948 struct mem_cgroup_per_zone *mz;
925b7673 949 struct mem_cgroup *memcg;
bea8c150 950 struct lruvec *lruvec;
6d12e2d8 951
bea8c150 952 if (mem_cgroup_disabled()) {
599d0c95 953 lruvec = &pgdat->lruvec;
bea8c150
HD
954 goto out;
955 }
925b7673 956
1306a85a 957 memcg = page->mem_cgroup;
7512102c 958 /*
dfe0e773 959 * Swapcache readahead pages are added to the LRU - and
29833315 960 * possibly migrated - before they are charged.
7512102c 961 */
29833315
JW
962 if (!memcg)
963 memcg = root_mem_cgroup;
7512102c 964
e231875b 965 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
966 lruvec = &mz->lruvec;
967out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
599d0c95
MG
973 if (unlikely(lruvec->pgdat != pgdat))
974 lruvec->pgdat = pgdat;
bea8c150 975 return lruvec;
08e552c6 976}
b69408e8 977
925b7673 978/**
fa9add64
HD
979 * mem_cgroup_update_lru_size - account for adding or removing an lru page
980 * @lruvec: mem_cgroup per zone lru vector
981 * @lru: index of lru list the page is sitting on
599d0c95 982 * @zid: Zone ID of the zone pages have been added to
fa9add64 983 * @nr_pages: positive when adding or negative when removing
925b7673 984 *
ca707239
HD
985 * This function must be called under lru_lock, just before a page is added
986 * to or just after a page is removed from an lru list (that ordering being
987 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 988 */
fa9add64 989void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
599d0c95 990 enum zone_type zid, int nr_pages)
3f58a829
MK
991{
992 struct mem_cgroup_per_zone *mz;
fa9add64 993 unsigned long *lru_size;
ca707239
HD
994 long size;
995 bool empty;
3f58a829 996
599d0c95 997 __update_lru_size(lruvec, lru, zid, nr_pages);
9d5e6a9f 998
3f58a829
MK
999 if (mem_cgroup_disabled())
1000 return;
1001
fa9add64
HD
1002 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1003 lru_size = mz->lru_size + lru;
ca707239
HD
1004 empty = list_empty(lruvec->lists + lru);
1005
1006 if (nr_pages < 0)
1007 *lru_size += nr_pages;
1008
1009 size = *lru_size;
1010 if (WARN_ONCE(size < 0 || empty != !size,
1011 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1012 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1013 VM_BUG_ON(1);
1014 *lru_size = 0;
1015 }
1016
1017 if (nr_pages > 0)
1018 *lru_size += nr_pages;
08e552c6 1019}
544122e5 1020
2314b42d 1021bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1022{
2314b42d 1023 struct mem_cgroup *task_memcg;
158e0a2d 1024 struct task_struct *p;
ffbdccf5 1025 bool ret;
4c4a2214 1026
158e0a2d 1027 p = find_lock_task_mm(task);
de077d22 1028 if (p) {
2314b42d 1029 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1030 task_unlock(p);
1031 } else {
1032 /*
1033 * All threads may have already detached their mm's, but the oom
1034 * killer still needs to detect if they have already been oom
1035 * killed to prevent needlessly killing additional tasks.
1036 */
ffbdccf5 1037 rcu_read_lock();
2314b42d
JW
1038 task_memcg = mem_cgroup_from_task(task);
1039 css_get(&task_memcg->css);
ffbdccf5 1040 rcu_read_unlock();
de077d22 1041 }
2314b42d
JW
1042 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1043 css_put(&task_memcg->css);
4c4a2214
DR
1044 return ret;
1045}
1046
19942822 1047/**
9d11ea9f 1048 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1049 * @memcg: the memory cgroup
19942822 1050 *
9d11ea9f 1051 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1052 * pages.
19942822 1053 */
c0ff4b85 1054static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1055{
3e32cb2e
JW
1056 unsigned long margin = 0;
1057 unsigned long count;
1058 unsigned long limit;
9d11ea9f 1059
3e32cb2e 1060 count = page_counter_read(&memcg->memory);
4db0c3c2 1061 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1062 if (count < limit)
1063 margin = limit - count;
1064
7941d214 1065 if (do_memsw_account()) {
3e32cb2e 1066 count = page_counter_read(&memcg->memsw);
4db0c3c2 1067 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1068 if (count <= limit)
1069 margin = min(margin, limit - count);
cbedbac3
LR
1070 else
1071 margin = 0;
3e32cb2e
JW
1072 }
1073
1074 return margin;
19942822
JW
1075}
1076
32047e2a 1077/*
bdcbb659 1078 * A routine for checking "mem" is under move_account() or not.
32047e2a 1079 *
bdcbb659
QH
1080 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1081 * moving cgroups. This is for waiting at high-memory pressure
1082 * caused by "move".
32047e2a 1083 */
c0ff4b85 1084static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1085{
2bd9bb20
KH
1086 struct mem_cgroup *from;
1087 struct mem_cgroup *to;
4b534334 1088 bool ret = false;
2bd9bb20
KH
1089 /*
1090 * Unlike task_move routines, we access mc.to, mc.from not under
1091 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1092 */
1093 spin_lock(&mc.lock);
1094 from = mc.from;
1095 to = mc.to;
1096 if (!from)
1097 goto unlock;
3e92041d 1098
2314b42d
JW
1099 ret = mem_cgroup_is_descendant(from, memcg) ||
1100 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1101unlock:
1102 spin_unlock(&mc.lock);
4b534334
KH
1103 return ret;
1104}
1105
c0ff4b85 1106static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1107{
1108 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1109 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1110 DEFINE_WAIT(wait);
1111 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1112 /* moving charge context might have finished. */
1113 if (mc.moving_task)
1114 schedule();
1115 finish_wait(&mc.waitq, &wait);
1116 return true;
1117 }
1118 }
1119 return false;
1120}
1121
58cf188e 1122#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1123/**
58cf188e 1124 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1125 * @memcg: The memory cgroup that went over limit
1126 * @p: Task that is going to be killed
1127 *
1128 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1129 * enabled
1130 */
1131void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1132{
58cf188e
SZ
1133 struct mem_cgroup *iter;
1134 unsigned int i;
e222432b 1135
e222432b
BS
1136 rcu_read_lock();
1137
2415b9f5
BV
1138 if (p) {
1139 pr_info("Task in ");
1140 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1141 pr_cont(" killed as a result of limit of ");
1142 } else {
1143 pr_info("Memory limit reached of cgroup ");
1144 }
1145
e61734c5 1146 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1147 pr_cont("\n");
e222432b 1148
e222432b
BS
1149 rcu_read_unlock();
1150
3e32cb2e
JW
1151 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1152 K((u64)page_counter_read(&memcg->memory)),
1153 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1154 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1155 K((u64)page_counter_read(&memcg->memsw)),
1156 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1157 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1158 K((u64)page_counter_read(&memcg->kmem)),
1159 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1160
1161 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1162 pr_info("Memory cgroup stats for ");
1163 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1164 pr_cont(":");
1165
1166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1167 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1168 continue;
484ebb3b 1169 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1170 K(mem_cgroup_read_stat(iter, i)));
1171 }
1172
1173 for (i = 0; i < NR_LRU_LISTS; i++)
1174 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1175 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1176
1177 pr_cont("\n");
1178 }
e222432b
BS
1179}
1180
81d39c20
KH
1181/*
1182 * This function returns the number of memcg under hierarchy tree. Returns
1183 * 1(self count) if no children.
1184 */
c0ff4b85 1185static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1186{
1187 int num = 0;
7d74b06f
KH
1188 struct mem_cgroup *iter;
1189
c0ff4b85 1190 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1191 num++;
81d39c20
KH
1192 return num;
1193}
1194
a63d83f4
DR
1195/*
1196 * Return the memory (and swap, if configured) limit for a memcg.
1197 */
3e32cb2e 1198static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1199{
3e32cb2e 1200 unsigned long limit;
f3e8eb70 1201
3e32cb2e 1202 limit = memcg->memory.limit;
9a5a8f19 1203 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1204 unsigned long memsw_limit;
37e84351 1205 unsigned long swap_limit;
9a5a8f19 1206
3e32cb2e 1207 memsw_limit = memcg->memsw.limit;
37e84351
VD
1208 swap_limit = memcg->swap.limit;
1209 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1210 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1211 }
9a5a8f19 1212 return limit;
a63d83f4
DR
1213}
1214
b6e6edcf 1215static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1216 int order)
9cbb78bb 1217{
6e0fc46d
DR
1218 struct oom_control oc = {
1219 .zonelist = NULL,
1220 .nodemask = NULL,
2a966b77 1221 .memcg = memcg,
6e0fc46d
DR
1222 .gfp_mask = gfp_mask,
1223 .order = order,
6e0fc46d 1224 };
9cbb78bb
DR
1225 struct mem_cgroup *iter;
1226 unsigned long chosen_points = 0;
1227 unsigned long totalpages;
1228 unsigned int points = 0;
1229 struct task_struct *chosen = NULL;
1230
dc56401f
JW
1231 mutex_lock(&oom_lock);
1232
876aafbf 1233 /*
465adcf1
DR
1234 * If current has a pending SIGKILL or is exiting, then automatically
1235 * select it. The goal is to allow it to allocate so that it may
1236 * quickly exit and free its memory.
876aafbf 1237 */
1af8bb43 1238 if (task_will_free_mem(current)) {
16e95196 1239 mark_oom_victim(current);
1af8bb43 1240 wake_oom_reaper(current);
dc56401f 1241 goto unlock;
876aafbf
DR
1242 }
1243
2a966b77 1244 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1245 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1246 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1247 struct css_task_iter it;
9cbb78bb
DR
1248 struct task_struct *task;
1249
72ec7029
TH
1250 css_task_iter_start(&iter->css, &it);
1251 while ((task = css_task_iter_next(&it))) {
fbe84a09 1252 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1253 case OOM_SCAN_SELECT:
1254 if (chosen)
1255 put_task_struct(chosen);
1256 chosen = task;
1257 chosen_points = ULONG_MAX;
1258 get_task_struct(chosen);
1259 /* fall through */
1260 case OOM_SCAN_CONTINUE:
1261 continue;
1262 case OOM_SCAN_ABORT:
72ec7029 1263 css_task_iter_end(&it);
9cbb78bb
DR
1264 mem_cgroup_iter_break(memcg, iter);
1265 if (chosen)
1266 put_task_struct(chosen);
1ebab2db
TH
1267 /* Set a dummy value to return "true". */
1268 chosen = (void *) 1;
dc56401f 1269 goto unlock;
9cbb78bb
DR
1270 case OOM_SCAN_OK:
1271 break;
1272 };
1273 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1274 if (!points || points < chosen_points)
1275 continue;
1276 /* Prefer thread group leaders for display purposes */
1277 if (points == chosen_points &&
1278 thread_group_leader(chosen))
1279 continue;
1280
1281 if (chosen)
1282 put_task_struct(chosen);
1283 chosen = task;
1284 chosen_points = points;
1285 get_task_struct(chosen);
9cbb78bb 1286 }
72ec7029 1287 css_task_iter_end(&it);
9cbb78bb
DR
1288 }
1289
dc56401f
JW
1290 if (chosen) {
1291 points = chosen_points * 1000 / totalpages;
2a966b77 1292 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1293 "Memory cgroup out of memory");
dc56401f
JW
1294 }
1295unlock:
1296 mutex_unlock(&oom_lock);
b6e6edcf 1297 return chosen;
9cbb78bb
DR
1298}
1299
ae6e71d3
MC
1300#if MAX_NUMNODES > 1
1301
4d0c066d
KH
1302/**
1303 * test_mem_cgroup_node_reclaimable
dad7557e 1304 * @memcg: the target memcg
4d0c066d
KH
1305 * @nid: the node ID to be checked.
1306 * @noswap : specify true here if the user wants flle only information.
1307 *
1308 * This function returns whether the specified memcg contains any
1309 * reclaimable pages on a node. Returns true if there are any reclaimable
1310 * pages in the node.
1311 */
c0ff4b85 1312static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1313 int nid, bool noswap)
1314{
c0ff4b85 1315 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1316 return true;
1317 if (noswap || !total_swap_pages)
1318 return false;
c0ff4b85 1319 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1320 return true;
1321 return false;
1322
1323}
889976db
YH
1324
1325/*
1326 * Always updating the nodemask is not very good - even if we have an empty
1327 * list or the wrong list here, we can start from some node and traverse all
1328 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1329 *
1330 */
c0ff4b85 1331static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1332{
1333 int nid;
453a9bf3
KH
1334 /*
1335 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1336 * pagein/pageout changes since the last update.
1337 */
c0ff4b85 1338 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1339 return;
c0ff4b85 1340 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1341 return;
1342
889976db 1343 /* make a nodemask where this memcg uses memory from */
31aaea4a 1344 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1345
31aaea4a 1346 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1347
c0ff4b85
R
1348 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1349 node_clear(nid, memcg->scan_nodes);
889976db 1350 }
453a9bf3 1351
c0ff4b85
R
1352 atomic_set(&memcg->numainfo_events, 0);
1353 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1354}
1355
1356/*
1357 * Selecting a node where we start reclaim from. Because what we need is just
1358 * reducing usage counter, start from anywhere is O,K. Considering
1359 * memory reclaim from current node, there are pros. and cons.
1360 *
1361 * Freeing memory from current node means freeing memory from a node which
1362 * we'll use or we've used. So, it may make LRU bad. And if several threads
1363 * hit limits, it will see a contention on a node. But freeing from remote
1364 * node means more costs for memory reclaim because of memory latency.
1365 *
1366 * Now, we use round-robin. Better algorithm is welcomed.
1367 */
c0ff4b85 1368int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1369{
1370 int node;
1371
c0ff4b85
R
1372 mem_cgroup_may_update_nodemask(memcg);
1373 node = memcg->last_scanned_node;
889976db 1374
0edaf86c 1375 node = next_node_in(node, memcg->scan_nodes);
889976db 1376 /*
fda3d69b
MH
1377 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1378 * last time it really checked all the LRUs due to rate limiting.
1379 * Fallback to the current node in that case for simplicity.
889976db
YH
1380 */
1381 if (unlikely(node == MAX_NUMNODES))
1382 node = numa_node_id();
1383
c0ff4b85 1384 memcg->last_scanned_node = node;
889976db
YH
1385 return node;
1386}
889976db 1387#else
c0ff4b85 1388int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1389{
1390 return 0;
1391}
1392#endif
1393
0608f43d
AM
1394static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1395 struct zone *zone,
1396 gfp_t gfp_mask,
1397 unsigned long *total_scanned)
1398{
1399 struct mem_cgroup *victim = NULL;
1400 int total = 0;
1401 int loop = 0;
1402 unsigned long excess;
1403 unsigned long nr_scanned;
1404 struct mem_cgroup_reclaim_cookie reclaim = {
1405 .zone = zone,
1406 .priority = 0,
1407 };
1408
3e32cb2e 1409 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1410
1411 while (1) {
1412 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1413 if (!victim) {
1414 loop++;
1415 if (loop >= 2) {
1416 /*
1417 * If we have not been able to reclaim
1418 * anything, it might because there are
1419 * no reclaimable pages under this hierarchy
1420 */
1421 if (!total)
1422 break;
1423 /*
1424 * We want to do more targeted reclaim.
1425 * excess >> 2 is not to excessive so as to
1426 * reclaim too much, nor too less that we keep
1427 * coming back to reclaim from this cgroup
1428 */
1429 if (total >= (excess >> 2) ||
1430 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1431 break;
1432 }
1433 continue;
1434 }
0608f43d
AM
1435 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1436 zone, &nr_scanned);
1437 *total_scanned += nr_scanned;
3e32cb2e 1438 if (!soft_limit_excess(root_memcg))
0608f43d 1439 break;
6d61ef40 1440 }
0608f43d
AM
1441 mem_cgroup_iter_break(root_memcg, victim);
1442 return total;
6d61ef40
BS
1443}
1444
0056f4e6
JW
1445#ifdef CONFIG_LOCKDEP
1446static struct lockdep_map memcg_oom_lock_dep_map = {
1447 .name = "memcg_oom_lock",
1448};
1449#endif
1450
fb2a6fc5
JW
1451static DEFINE_SPINLOCK(memcg_oom_lock);
1452
867578cb
KH
1453/*
1454 * Check OOM-Killer is already running under our hierarchy.
1455 * If someone is running, return false.
1456 */
fb2a6fc5 1457static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1458{
79dfdacc 1459 struct mem_cgroup *iter, *failed = NULL;
a636b327 1460
fb2a6fc5
JW
1461 spin_lock(&memcg_oom_lock);
1462
9f3a0d09 1463 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1464 if (iter->oom_lock) {
79dfdacc
MH
1465 /*
1466 * this subtree of our hierarchy is already locked
1467 * so we cannot give a lock.
1468 */
79dfdacc 1469 failed = iter;
9f3a0d09
JW
1470 mem_cgroup_iter_break(memcg, iter);
1471 break;
23751be0
JW
1472 } else
1473 iter->oom_lock = true;
7d74b06f 1474 }
867578cb 1475
fb2a6fc5
JW
1476 if (failed) {
1477 /*
1478 * OK, we failed to lock the whole subtree so we have
1479 * to clean up what we set up to the failing subtree
1480 */
1481 for_each_mem_cgroup_tree(iter, memcg) {
1482 if (iter == failed) {
1483 mem_cgroup_iter_break(memcg, iter);
1484 break;
1485 }
1486 iter->oom_lock = false;
79dfdacc 1487 }
0056f4e6
JW
1488 } else
1489 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1490
1491 spin_unlock(&memcg_oom_lock);
1492
1493 return !failed;
a636b327 1494}
0b7f569e 1495
fb2a6fc5 1496static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1497{
7d74b06f
KH
1498 struct mem_cgroup *iter;
1499
fb2a6fc5 1500 spin_lock(&memcg_oom_lock);
0056f4e6 1501 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1502 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1503 iter->oom_lock = false;
fb2a6fc5 1504 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1505}
1506
c0ff4b85 1507static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1508{
1509 struct mem_cgroup *iter;
1510
c2b42d3c 1511 spin_lock(&memcg_oom_lock);
c0ff4b85 1512 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1513 iter->under_oom++;
1514 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1515}
1516
c0ff4b85 1517static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1518{
1519 struct mem_cgroup *iter;
1520
867578cb
KH
1521 /*
1522 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1523 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1524 */
c2b42d3c 1525 spin_lock(&memcg_oom_lock);
c0ff4b85 1526 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1527 if (iter->under_oom > 0)
1528 iter->under_oom--;
1529 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1530}
1531
867578cb
KH
1532static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1533
dc98df5a 1534struct oom_wait_info {
d79154bb 1535 struct mem_cgroup *memcg;
dc98df5a
KH
1536 wait_queue_t wait;
1537};
1538
1539static int memcg_oom_wake_function(wait_queue_t *wait,
1540 unsigned mode, int sync, void *arg)
1541{
d79154bb
HD
1542 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1543 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1544 struct oom_wait_info *oom_wait_info;
1545
1546 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1547 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1548
2314b42d
JW
1549 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1550 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1551 return 0;
dc98df5a
KH
1552 return autoremove_wake_function(wait, mode, sync, arg);
1553}
1554
c0ff4b85 1555static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1556{
c2b42d3c
TH
1557 /*
1558 * For the following lockless ->under_oom test, the only required
1559 * guarantee is that it must see the state asserted by an OOM when
1560 * this function is called as a result of userland actions
1561 * triggered by the notification of the OOM. This is trivially
1562 * achieved by invoking mem_cgroup_mark_under_oom() before
1563 * triggering notification.
1564 */
1565 if (memcg && memcg->under_oom)
f4b90b70 1566 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1567}
1568
3812c8c8 1569static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1570{
d0db7afa 1571 if (!current->memcg_may_oom)
3812c8c8 1572 return;
867578cb 1573 /*
49426420
JW
1574 * We are in the middle of the charge context here, so we
1575 * don't want to block when potentially sitting on a callstack
1576 * that holds all kinds of filesystem and mm locks.
1577 *
1578 * Also, the caller may handle a failed allocation gracefully
1579 * (like optional page cache readahead) and so an OOM killer
1580 * invocation might not even be necessary.
1581 *
1582 * That's why we don't do anything here except remember the
1583 * OOM context and then deal with it at the end of the page
1584 * fault when the stack is unwound, the locks are released,
1585 * and when we know whether the fault was overall successful.
867578cb 1586 */
49426420 1587 css_get(&memcg->css);
626ebc41
TH
1588 current->memcg_in_oom = memcg;
1589 current->memcg_oom_gfp_mask = mask;
1590 current->memcg_oom_order = order;
3812c8c8
JW
1591}
1592
1593/**
1594 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1595 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1596 *
49426420
JW
1597 * This has to be called at the end of a page fault if the memcg OOM
1598 * handler was enabled.
3812c8c8 1599 *
49426420 1600 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1601 * sleep on a waitqueue until the userspace task resolves the
1602 * situation. Sleeping directly in the charge context with all kinds
1603 * of locks held is not a good idea, instead we remember an OOM state
1604 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1605 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1606 *
1607 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1608 * completed, %false otherwise.
3812c8c8 1609 */
49426420 1610bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1611{
626ebc41 1612 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1613 struct oom_wait_info owait;
49426420 1614 bool locked;
3812c8c8
JW
1615
1616 /* OOM is global, do not handle */
3812c8c8 1617 if (!memcg)
49426420 1618 return false;
3812c8c8 1619
c32b3cbe 1620 if (!handle || oom_killer_disabled)
49426420 1621 goto cleanup;
3812c8c8
JW
1622
1623 owait.memcg = memcg;
1624 owait.wait.flags = 0;
1625 owait.wait.func = memcg_oom_wake_function;
1626 owait.wait.private = current;
1627 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1628
3812c8c8 1629 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1630 mem_cgroup_mark_under_oom(memcg);
1631
1632 locked = mem_cgroup_oom_trylock(memcg);
1633
1634 if (locked)
1635 mem_cgroup_oom_notify(memcg);
1636
1637 if (locked && !memcg->oom_kill_disable) {
1638 mem_cgroup_unmark_under_oom(memcg);
1639 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1640 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1641 current->memcg_oom_order);
49426420 1642 } else {
3812c8c8 1643 schedule();
49426420
JW
1644 mem_cgroup_unmark_under_oom(memcg);
1645 finish_wait(&memcg_oom_waitq, &owait.wait);
1646 }
1647
1648 if (locked) {
fb2a6fc5
JW
1649 mem_cgroup_oom_unlock(memcg);
1650 /*
1651 * There is no guarantee that an OOM-lock contender
1652 * sees the wakeups triggered by the OOM kill
1653 * uncharges. Wake any sleepers explicitely.
1654 */
1655 memcg_oom_recover(memcg);
1656 }
49426420 1657cleanup:
626ebc41 1658 current->memcg_in_oom = NULL;
3812c8c8 1659 css_put(&memcg->css);
867578cb 1660 return true;
0b7f569e
KH
1661}
1662
d7365e78 1663/**
81f8c3a4
JW
1664 * lock_page_memcg - lock a page->mem_cgroup binding
1665 * @page: the page
32047e2a 1666 *
81f8c3a4
JW
1667 * This function protects unlocked LRU pages from being moved to
1668 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1669 */
62cccb8c 1670void lock_page_memcg(struct page *page)
89c06bd5
KH
1671{
1672 struct mem_cgroup *memcg;
6de22619 1673 unsigned long flags;
89c06bd5 1674
6de22619
JW
1675 /*
1676 * The RCU lock is held throughout the transaction. The fast
1677 * path can get away without acquiring the memcg->move_lock
1678 * because page moving starts with an RCU grace period.
6de22619 1679 */
d7365e78
JW
1680 rcu_read_lock();
1681
1682 if (mem_cgroup_disabled())
62cccb8c 1683 return;
89c06bd5 1684again:
1306a85a 1685 memcg = page->mem_cgroup;
29833315 1686 if (unlikely(!memcg))
62cccb8c 1687 return;
d7365e78 1688
bdcbb659 1689 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1690 return;
89c06bd5 1691
6de22619 1692 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1693 if (memcg != page->mem_cgroup) {
6de22619 1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1695 goto again;
1696 }
6de22619
JW
1697
1698 /*
1699 * When charge migration first begins, we can have locked and
1700 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1701 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1702 */
1703 memcg->move_lock_task = current;
1704 memcg->move_lock_flags = flags;
d7365e78 1705
62cccb8c 1706 return;
89c06bd5 1707}
81f8c3a4 1708EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1709
d7365e78 1710/**
81f8c3a4 1711 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1712 * @page: the page
d7365e78 1713 */
62cccb8c 1714void unlock_page_memcg(struct page *page)
89c06bd5 1715{
62cccb8c
JW
1716 struct mem_cgroup *memcg = page->mem_cgroup;
1717
6de22619
JW
1718 if (memcg && memcg->move_lock_task == current) {
1719 unsigned long flags = memcg->move_lock_flags;
1720
1721 memcg->move_lock_task = NULL;
1722 memcg->move_lock_flags = 0;
1723
1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 }
89c06bd5 1726
d7365e78 1727 rcu_read_unlock();
89c06bd5 1728}
81f8c3a4 1729EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1730
cdec2e42
KH
1731/*
1732 * size of first charge trial. "32" comes from vmscan.c's magic value.
1733 * TODO: maybe necessary to use big numbers in big irons.
1734 */
7ec99d62 1735#define CHARGE_BATCH 32U
cdec2e42
KH
1736struct memcg_stock_pcp {
1737 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1738 unsigned int nr_pages;
cdec2e42 1739 struct work_struct work;
26fe6168 1740 unsigned long flags;
a0db00fc 1741#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1742};
1743static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1744static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1745
a0956d54
SS
1746/**
1747 * consume_stock: Try to consume stocked charge on this cpu.
1748 * @memcg: memcg to consume from.
1749 * @nr_pages: how many pages to charge.
1750 *
1751 * The charges will only happen if @memcg matches the current cpu's memcg
1752 * stock, and at least @nr_pages are available in that stock. Failure to
1753 * service an allocation will refill the stock.
1754 *
1755 * returns true if successful, false otherwise.
cdec2e42 1756 */
a0956d54 1757static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1758{
1759 struct memcg_stock_pcp *stock;
3e32cb2e 1760 bool ret = false;
cdec2e42 1761
a0956d54 1762 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1763 return ret;
a0956d54 1764
cdec2e42 1765 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1766 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1767 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1768 ret = true;
1769 }
cdec2e42
KH
1770 put_cpu_var(memcg_stock);
1771 return ret;
1772}
1773
1774/*
3e32cb2e 1775 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1776 */
1777static void drain_stock(struct memcg_stock_pcp *stock)
1778{
1779 struct mem_cgroup *old = stock->cached;
1780
11c9ea4e 1781 if (stock->nr_pages) {
3e32cb2e 1782 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1783 if (do_memsw_account())
3e32cb2e 1784 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1785 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1786 stock->nr_pages = 0;
cdec2e42
KH
1787 }
1788 stock->cached = NULL;
cdec2e42
KH
1789}
1790
1791/*
1792 * This must be called under preempt disabled or must be called by
1793 * a thread which is pinned to local cpu.
1794 */
1795static void drain_local_stock(struct work_struct *dummy)
1796{
7c8e0181 1797 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1798 drain_stock(stock);
26fe6168 1799 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1800}
1801
1802/*
3e32cb2e 1803 * Cache charges(val) to local per_cpu area.
320cc51d 1804 * This will be consumed by consume_stock() function, later.
cdec2e42 1805 */
c0ff4b85 1806static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1807{
1808 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1809
c0ff4b85 1810 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1811 drain_stock(stock);
c0ff4b85 1812 stock->cached = memcg;
cdec2e42 1813 }
11c9ea4e 1814 stock->nr_pages += nr_pages;
cdec2e42
KH
1815 put_cpu_var(memcg_stock);
1816}
1817
1818/*
c0ff4b85 1819 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1820 * of the hierarchy under it.
cdec2e42 1821 */
6d3d6aa2 1822static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1823{
26fe6168 1824 int cpu, curcpu;
d38144b7 1825
6d3d6aa2
JW
1826 /* If someone's already draining, avoid adding running more workers. */
1827 if (!mutex_trylock(&percpu_charge_mutex))
1828 return;
cdec2e42 1829 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1830 get_online_cpus();
5af12d0e 1831 curcpu = get_cpu();
cdec2e42
KH
1832 for_each_online_cpu(cpu) {
1833 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1834 struct mem_cgroup *memcg;
26fe6168 1835
c0ff4b85
R
1836 memcg = stock->cached;
1837 if (!memcg || !stock->nr_pages)
26fe6168 1838 continue;
2314b42d 1839 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1840 continue;
d1a05b69
MH
1841 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1842 if (cpu == curcpu)
1843 drain_local_stock(&stock->work);
1844 else
1845 schedule_work_on(cpu, &stock->work);
1846 }
cdec2e42 1847 }
5af12d0e 1848 put_cpu();
f894ffa8 1849 put_online_cpus();
9f50fad6 1850 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1851}
1852
0db0628d 1853static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1854 unsigned long action,
1855 void *hcpu)
1856{
1857 int cpu = (unsigned long)hcpu;
1858 struct memcg_stock_pcp *stock;
1859
619d094b 1860 if (action == CPU_ONLINE)
1489ebad 1861 return NOTIFY_OK;
1489ebad 1862
d833049b 1863 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1864 return NOTIFY_OK;
711d3d2c 1865
cdec2e42
KH
1866 stock = &per_cpu(memcg_stock, cpu);
1867 drain_stock(stock);
1868 return NOTIFY_OK;
1869}
1870
f7e1cb6e
JW
1871static void reclaim_high(struct mem_cgroup *memcg,
1872 unsigned int nr_pages,
1873 gfp_t gfp_mask)
1874{
1875 do {
1876 if (page_counter_read(&memcg->memory) <= memcg->high)
1877 continue;
1878 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1879 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1880 } while ((memcg = parent_mem_cgroup(memcg)));
1881}
1882
1883static void high_work_func(struct work_struct *work)
1884{
1885 struct mem_cgroup *memcg;
1886
1887 memcg = container_of(work, struct mem_cgroup, high_work);
1888 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1889}
1890
b23afb93
TH
1891/*
1892 * Scheduled by try_charge() to be executed from the userland return path
1893 * and reclaims memory over the high limit.
1894 */
1895void mem_cgroup_handle_over_high(void)
1896{
1897 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1898 struct mem_cgroup *memcg;
b23afb93
TH
1899
1900 if (likely(!nr_pages))
1901 return;
1902
f7e1cb6e
JW
1903 memcg = get_mem_cgroup_from_mm(current->mm);
1904 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1905 css_put(&memcg->css);
1906 current->memcg_nr_pages_over_high = 0;
1907}
1908
00501b53
JW
1909static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1910 unsigned int nr_pages)
8a9f3ccd 1911{
7ec99d62 1912 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1913 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1914 struct mem_cgroup *mem_over_limit;
3e32cb2e 1915 struct page_counter *counter;
6539cc05 1916 unsigned long nr_reclaimed;
b70a2a21
JW
1917 bool may_swap = true;
1918 bool drained = false;
a636b327 1919
ce00a967 1920 if (mem_cgroup_is_root(memcg))
10d53c74 1921 return 0;
6539cc05 1922retry:
b6b6cc72 1923 if (consume_stock(memcg, nr_pages))
10d53c74 1924 return 0;
8a9f3ccd 1925
7941d214 1926 if (!do_memsw_account() ||
6071ca52
JW
1927 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1928 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1929 goto done_restock;
7941d214 1930 if (do_memsw_account())
3e32cb2e
JW
1931 page_counter_uncharge(&memcg->memsw, batch);
1932 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1933 } else {
3e32cb2e 1934 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1935 may_swap = false;
3fbe7244 1936 }
7a81b88c 1937
6539cc05
JW
1938 if (batch > nr_pages) {
1939 batch = nr_pages;
1940 goto retry;
1941 }
6d61ef40 1942
06b078fc
JW
1943 /*
1944 * Unlike in global OOM situations, memcg is not in a physical
1945 * memory shortage. Allow dying and OOM-killed tasks to
1946 * bypass the last charges so that they can exit quickly and
1947 * free their memory.
1948 */
1949 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1950 fatal_signal_pending(current) ||
1951 current->flags & PF_EXITING))
10d53c74 1952 goto force;
06b078fc
JW
1953
1954 if (unlikely(task_in_memcg_oom(current)))
1955 goto nomem;
1956
d0164adc 1957 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1958 goto nomem;
4b534334 1959
241994ed
JW
1960 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1961
b70a2a21
JW
1962 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1963 gfp_mask, may_swap);
6539cc05 1964
61e02c74 1965 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1966 goto retry;
28c34c29 1967
b70a2a21 1968 if (!drained) {
6d3d6aa2 1969 drain_all_stock(mem_over_limit);
b70a2a21
JW
1970 drained = true;
1971 goto retry;
1972 }
1973
28c34c29
JW
1974 if (gfp_mask & __GFP_NORETRY)
1975 goto nomem;
6539cc05
JW
1976 /*
1977 * Even though the limit is exceeded at this point, reclaim
1978 * may have been able to free some pages. Retry the charge
1979 * before killing the task.
1980 *
1981 * Only for regular pages, though: huge pages are rather
1982 * unlikely to succeed so close to the limit, and we fall back
1983 * to regular pages anyway in case of failure.
1984 */
61e02c74 1985 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1986 goto retry;
1987 /*
1988 * At task move, charge accounts can be doubly counted. So, it's
1989 * better to wait until the end of task_move if something is going on.
1990 */
1991 if (mem_cgroup_wait_acct_move(mem_over_limit))
1992 goto retry;
1993
9b130619
JW
1994 if (nr_retries--)
1995 goto retry;
1996
06b078fc 1997 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1998 goto force;
06b078fc 1999
6539cc05 2000 if (fatal_signal_pending(current))
10d53c74 2001 goto force;
6539cc05 2002
241994ed
JW
2003 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2004
3608de07
JM
2005 mem_cgroup_oom(mem_over_limit, gfp_mask,
2006 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2007nomem:
6d1fdc48 2008 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2009 return -ENOMEM;
10d53c74
TH
2010force:
2011 /*
2012 * The allocation either can't fail or will lead to more memory
2013 * being freed very soon. Allow memory usage go over the limit
2014 * temporarily by force charging it.
2015 */
2016 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2017 if (do_memsw_account())
10d53c74
TH
2018 page_counter_charge(&memcg->memsw, nr_pages);
2019 css_get_many(&memcg->css, nr_pages);
2020
2021 return 0;
6539cc05
JW
2022
2023done_restock:
e8ea14cc 2024 css_get_many(&memcg->css, batch);
6539cc05
JW
2025 if (batch > nr_pages)
2026 refill_stock(memcg, batch - nr_pages);
b23afb93 2027
241994ed 2028 /*
b23afb93
TH
2029 * If the hierarchy is above the normal consumption range, schedule
2030 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2031 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2032 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2033 * not recorded as it most likely matches current's and won't
2034 * change in the meantime. As high limit is checked again before
2035 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2036 */
2037 do {
b23afb93 2038 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2039 /* Don't bother a random interrupted task */
2040 if (in_interrupt()) {
2041 schedule_work(&memcg->high_work);
2042 break;
2043 }
9516a18a 2044 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2045 set_notify_resume(current);
2046 break;
2047 }
241994ed 2048 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2049
2050 return 0;
7a81b88c 2051}
8a9f3ccd 2052
00501b53 2053static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2054{
ce00a967
JW
2055 if (mem_cgroup_is_root(memcg))
2056 return;
2057
3e32cb2e 2058 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2059 if (do_memsw_account())
3e32cb2e 2060 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2061
e8ea14cc 2062 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2063}
2064
0a31bc97
JW
2065static void lock_page_lru(struct page *page, int *isolated)
2066{
2067 struct zone *zone = page_zone(page);
2068
a52633d8 2069 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2070 if (PageLRU(page)) {
2071 struct lruvec *lruvec;
2072
599d0c95 2073 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2074 ClearPageLRU(page);
2075 del_page_from_lru_list(page, lruvec, page_lru(page));
2076 *isolated = 1;
2077 } else
2078 *isolated = 0;
2079}
2080
2081static void unlock_page_lru(struct page *page, int isolated)
2082{
2083 struct zone *zone = page_zone(page);
2084
2085 if (isolated) {
2086 struct lruvec *lruvec;
2087
599d0c95 2088 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2089 VM_BUG_ON_PAGE(PageLRU(page), page);
2090 SetPageLRU(page);
2091 add_page_to_lru_list(page, lruvec, page_lru(page));
2092 }
a52633d8 2093 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2094}
2095
00501b53 2096static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2097 bool lrucare)
7a81b88c 2098{
0a31bc97 2099 int isolated;
9ce70c02 2100
1306a85a 2101 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2102
2103 /*
2104 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2105 * may already be on some other mem_cgroup's LRU. Take care of it.
2106 */
0a31bc97
JW
2107 if (lrucare)
2108 lock_page_lru(page, &isolated);
9ce70c02 2109
0a31bc97
JW
2110 /*
2111 * Nobody should be changing or seriously looking at
1306a85a 2112 * page->mem_cgroup at this point:
0a31bc97
JW
2113 *
2114 * - the page is uncharged
2115 *
2116 * - the page is off-LRU
2117 *
2118 * - an anonymous fault has exclusive page access, except for
2119 * a locked page table
2120 *
2121 * - a page cache insertion, a swapin fault, or a migration
2122 * have the page locked
2123 */
1306a85a 2124 page->mem_cgroup = memcg;
9ce70c02 2125
0a31bc97
JW
2126 if (lrucare)
2127 unlock_page_lru(page, isolated);
7a81b88c 2128}
66e1707b 2129
127424c8 2130#ifndef CONFIG_SLOB
f3bb3043 2131static int memcg_alloc_cache_id(void)
55007d84 2132{
f3bb3043
VD
2133 int id, size;
2134 int err;
2135
dbcf73e2 2136 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2137 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2138 if (id < 0)
2139 return id;
55007d84 2140
dbcf73e2 2141 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2142 return id;
2143
2144 /*
2145 * There's no space for the new id in memcg_caches arrays,
2146 * so we have to grow them.
2147 */
05257a1a 2148 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2149
2150 size = 2 * (id + 1);
55007d84
GC
2151 if (size < MEMCG_CACHES_MIN_SIZE)
2152 size = MEMCG_CACHES_MIN_SIZE;
2153 else if (size > MEMCG_CACHES_MAX_SIZE)
2154 size = MEMCG_CACHES_MAX_SIZE;
2155
f3bb3043 2156 err = memcg_update_all_caches(size);
60d3fd32
VD
2157 if (!err)
2158 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2159 if (!err)
2160 memcg_nr_cache_ids = size;
2161
2162 up_write(&memcg_cache_ids_sem);
2163
f3bb3043 2164 if (err) {
dbcf73e2 2165 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2166 return err;
2167 }
2168 return id;
2169}
2170
2171static void memcg_free_cache_id(int id)
2172{
dbcf73e2 2173 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2174}
2175
d5b3cf71 2176struct memcg_kmem_cache_create_work {
5722d094
VD
2177 struct mem_cgroup *memcg;
2178 struct kmem_cache *cachep;
2179 struct work_struct work;
2180};
2181
d5b3cf71 2182static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2183{
d5b3cf71
VD
2184 struct memcg_kmem_cache_create_work *cw =
2185 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2186 struct mem_cgroup *memcg = cw->memcg;
2187 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2188
d5b3cf71 2189 memcg_create_kmem_cache(memcg, cachep);
bd673145 2190
5722d094 2191 css_put(&memcg->css);
d7f25f8a
GC
2192 kfree(cw);
2193}
2194
2195/*
2196 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2197 */
d5b3cf71
VD
2198static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2199 struct kmem_cache *cachep)
d7f25f8a 2200{
d5b3cf71 2201 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2202
776ed0f0 2203 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2204 if (!cw)
d7f25f8a 2205 return;
8135be5a
VD
2206
2207 css_get(&memcg->css);
d7f25f8a
GC
2208
2209 cw->memcg = memcg;
2210 cw->cachep = cachep;
d5b3cf71 2211 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2212
d7f25f8a
GC
2213 schedule_work(&cw->work);
2214}
2215
d5b3cf71
VD
2216static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2217 struct kmem_cache *cachep)
0e9d92f2
GC
2218{
2219 /*
2220 * We need to stop accounting when we kmalloc, because if the
2221 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2222 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2223 *
2224 * However, it is better to enclose the whole function. Depending on
2225 * the debugging options enabled, INIT_WORK(), for instance, can
2226 * trigger an allocation. This too, will make us recurse. Because at
2227 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2228 * the safest choice is to do it like this, wrapping the whole function.
2229 */
6f185c29 2230 current->memcg_kmem_skip_account = 1;
d5b3cf71 2231 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2232 current->memcg_kmem_skip_account = 0;
0e9d92f2 2233}
c67a8a68 2234
45264778
VD
2235static inline bool memcg_kmem_bypass(void)
2236{
2237 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2238 return true;
2239 return false;
2240}
2241
2242/**
2243 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2244 * @cachep: the original global kmem cache
2245 *
d7f25f8a
GC
2246 * Return the kmem_cache we're supposed to use for a slab allocation.
2247 * We try to use the current memcg's version of the cache.
2248 *
45264778
VD
2249 * If the cache does not exist yet, if we are the first user of it, we
2250 * create it asynchronously in a workqueue and let the current allocation
2251 * go through with the original cache.
d7f25f8a 2252 *
45264778
VD
2253 * This function takes a reference to the cache it returns to assure it
2254 * won't get destroyed while we are working with it. Once the caller is
2255 * done with it, memcg_kmem_put_cache() must be called to release the
2256 * reference.
d7f25f8a 2257 */
45264778 2258struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2259{
2260 struct mem_cgroup *memcg;
959c8963 2261 struct kmem_cache *memcg_cachep;
2a4db7eb 2262 int kmemcg_id;
d7f25f8a 2263
f7ce3190 2264 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2265
45264778 2266 if (memcg_kmem_bypass())
230e9fc2
VD
2267 return cachep;
2268
9d100c5e 2269 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2270 return cachep;
2271
8135be5a 2272 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2273 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2274 if (kmemcg_id < 0)
ca0dde97 2275 goto out;
d7f25f8a 2276
2a4db7eb 2277 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2278 if (likely(memcg_cachep))
2279 return memcg_cachep;
ca0dde97
LZ
2280
2281 /*
2282 * If we are in a safe context (can wait, and not in interrupt
2283 * context), we could be be predictable and return right away.
2284 * This would guarantee that the allocation being performed
2285 * already belongs in the new cache.
2286 *
2287 * However, there are some clashes that can arrive from locking.
2288 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2289 * memcg_create_kmem_cache, this means no further allocation
2290 * could happen with the slab_mutex held. So it's better to
2291 * defer everything.
ca0dde97 2292 */
d5b3cf71 2293 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2294out:
8135be5a 2295 css_put(&memcg->css);
ca0dde97 2296 return cachep;
d7f25f8a 2297}
d7f25f8a 2298
45264778
VD
2299/**
2300 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2301 * @cachep: the cache returned by memcg_kmem_get_cache
2302 */
2303void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2304{
2305 if (!is_root_cache(cachep))
f7ce3190 2306 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2307}
2308
45264778
VD
2309/**
2310 * memcg_kmem_charge: charge a kmem page
2311 * @page: page to charge
2312 * @gfp: reclaim mode
2313 * @order: allocation order
2314 * @memcg: memory cgroup to charge
2315 *
2316 * Returns 0 on success, an error code on failure.
2317 */
2318int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
7ae1e1d0 2320{
f3ccb2c4
VD
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
7ae1e1d0
GC
2323 int ret;
2324
f3ccb2c4 2325 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2326 if (ret)
f3ccb2c4 2327 return ret;
52c29b04
JW
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
7ae1e1d0
GC
2333 }
2334
f3ccb2c4 2335 page->mem_cgroup = memcg;
7ae1e1d0 2336
f3ccb2c4 2337 return 0;
7ae1e1d0
GC
2338}
2339
45264778
VD
2340/**
2341 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2342 * @page: page to charge
2343 * @gfp: reclaim mode
2344 * @order: allocation order
2345 *
2346 * Returns 0 on success, an error code on failure.
2347 */
2348int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2349{
f3ccb2c4 2350 struct mem_cgroup *memcg;
fcff7d7e 2351 int ret = 0;
7ae1e1d0 2352
45264778
VD
2353 if (memcg_kmem_bypass())
2354 return 0;
2355
f3ccb2c4 2356 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2357 if (!mem_cgroup_is_root(memcg))
45264778 2358 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2359 css_put(&memcg->css);
d05e83a6 2360 return ret;
7ae1e1d0 2361}
45264778
VD
2362/**
2363 * memcg_kmem_uncharge: uncharge a kmem page
2364 * @page: page to uncharge
2365 * @order: allocation order
2366 */
2367void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2368{
1306a85a 2369 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2370 unsigned int nr_pages = 1 << order;
7ae1e1d0 2371
7ae1e1d0
GC
2372 if (!memcg)
2373 return;
2374
309381fe 2375 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2376
52c29b04
JW
2377 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2378 page_counter_uncharge(&memcg->kmem, nr_pages);
2379
f3ccb2c4 2380 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2381 if (do_memsw_account())
f3ccb2c4 2382 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2383
1306a85a 2384 page->mem_cgroup = NULL;
f3ccb2c4 2385 css_put_many(&memcg->css, nr_pages);
60d3fd32 2386}
127424c8 2387#endif /* !CONFIG_SLOB */
7ae1e1d0 2388
ca3e0214
KH
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
ca3e0214
KH
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2393 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2394 */
e94c8a9c 2395void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2396{
e94c8a9c 2397 int i;
ca3e0214 2398
3d37c4a9
KH
2399 if (mem_cgroup_disabled())
2400 return;
b070e65c 2401
29833315 2402 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2403 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2404
1306a85a 2405 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2406 HPAGE_PMD_NR);
ca3e0214 2407}
12d27107 2408#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2409
c255a458 2410#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2411static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2412 bool charge)
d13d1443 2413{
0a31bc97
JW
2414 int val = (charge) ? 1 : -1;
2415 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2416}
02491447
DN
2417
2418/**
2419 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2420 * @entry: swap entry to be moved
2421 * @from: mem_cgroup which the entry is moved from
2422 * @to: mem_cgroup which the entry is moved to
2423 *
2424 * It succeeds only when the swap_cgroup's record for this entry is the same
2425 * as the mem_cgroup's id of @from.
2426 *
2427 * Returns 0 on success, -EINVAL on failure.
2428 *
3e32cb2e 2429 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2430 * both res and memsw, and called css_get().
2431 */
2432static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2433 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2434{
2435 unsigned short old_id, new_id;
2436
34c00c31
LZ
2437 old_id = mem_cgroup_id(from);
2438 new_id = mem_cgroup_id(to);
02491447
DN
2439
2440 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2441 mem_cgroup_swap_statistics(from, false);
483c30b5 2442 mem_cgroup_swap_statistics(to, true);
02491447
DN
2443 return 0;
2444 }
2445 return -EINVAL;
2446}
2447#else
2448static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2449 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2450{
2451 return -EINVAL;
2452}
8c7c6e34 2453#endif
d13d1443 2454
3e32cb2e 2455static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2456
d38d2a75 2457static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2458 unsigned long limit)
628f4235 2459{
3e32cb2e
JW
2460 unsigned long curusage;
2461 unsigned long oldusage;
2462 bool enlarge = false;
81d39c20 2463 int retry_count;
3e32cb2e 2464 int ret;
81d39c20
KH
2465
2466 /*
2467 * For keeping hierarchical_reclaim simple, how long we should retry
2468 * is depends on callers. We set our retry-count to be function
2469 * of # of children which we should visit in this loop.
2470 */
3e32cb2e
JW
2471 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2472 mem_cgroup_count_children(memcg);
81d39c20 2473
3e32cb2e 2474 oldusage = page_counter_read(&memcg->memory);
628f4235 2475
3e32cb2e 2476 do {
628f4235
KH
2477 if (signal_pending(current)) {
2478 ret = -EINTR;
2479 break;
2480 }
3e32cb2e
JW
2481
2482 mutex_lock(&memcg_limit_mutex);
2483 if (limit > memcg->memsw.limit) {
2484 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2485 ret = -EINVAL;
628f4235
KH
2486 break;
2487 }
3e32cb2e
JW
2488 if (limit > memcg->memory.limit)
2489 enlarge = true;
2490 ret = page_counter_limit(&memcg->memory, limit);
2491 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2492
2493 if (!ret)
2494 break;
2495
b70a2a21
JW
2496 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2497
3e32cb2e 2498 curusage = page_counter_read(&memcg->memory);
81d39c20 2499 /* Usage is reduced ? */
f894ffa8 2500 if (curusage >= oldusage)
81d39c20
KH
2501 retry_count--;
2502 else
2503 oldusage = curusage;
3e32cb2e
JW
2504 } while (retry_count);
2505
3c11ecf4
KH
2506 if (!ret && enlarge)
2507 memcg_oom_recover(memcg);
14797e23 2508
8c7c6e34
KH
2509 return ret;
2510}
2511
338c8431 2512static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2513 unsigned long limit)
8c7c6e34 2514{
3e32cb2e
JW
2515 unsigned long curusage;
2516 unsigned long oldusage;
2517 bool enlarge = false;
81d39c20 2518 int retry_count;
3e32cb2e 2519 int ret;
8c7c6e34 2520
81d39c20 2521 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2522 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2523 mem_cgroup_count_children(memcg);
2524
2525 oldusage = page_counter_read(&memcg->memsw);
2526
2527 do {
8c7c6e34
KH
2528 if (signal_pending(current)) {
2529 ret = -EINTR;
2530 break;
2531 }
3e32cb2e
JW
2532
2533 mutex_lock(&memcg_limit_mutex);
2534 if (limit < memcg->memory.limit) {
2535 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2536 ret = -EINVAL;
8c7c6e34
KH
2537 break;
2538 }
3e32cb2e
JW
2539 if (limit > memcg->memsw.limit)
2540 enlarge = true;
2541 ret = page_counter_limit(&memcg->memsw, limit);
2542 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2543
2544 if (!ret)
2545 break;
2546
b70a2a21
JW
2547 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2548
3e32cb2e 2549 curusage = page_counter_read(&memcg->memsw);
81d39c20 2550 /* Usage is reduced ? */
8c7c6e34 2551 if (curusage >= oldusage)
628f4235 2552 retry_count--;
81d39c20
KH
2553 else
2554 oldusage = curusage;
3e32cb2e
JW
2555 } while (retry_count);
2556
3c11ecf4
KH
2557 if (!ret && enlarge)
2558 memcg_oom_recover(memcg);
3e32cb2e 2559
628f4235
KH
2560 return ret;
2561}
2562
0608f43d
AM
2563unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2564 gfp_t gfp_mask,
2565 unsigned long *total_scanned)
2566{
2567 unsigned long nr_reclaimed = 0;
2568 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2569 unsigned long reclaimed;
2570 int loop = 0;
2571 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2572 unsigned long excess;
0608f43d
AM
2573 unsigned long nr_scanned;
2574
2575 if (order > 0)
2576 return 0;
2577
2578 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2579 /*
2580 * This loop can run a while, specially if mem_cgroup's continuously
2581 * keep exceeding their soft limit and putting the system under
2582 * pressure
2583 */
2584 do {
2585 if (next_mz)
2586 mz = next_mz;
2587 else
2588 mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 if (!mz)
2590 break;
2591
2592 nr_scanned = 0;
2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2594 gfp_mask, &nr_scanned);
2595 nr_reclaimed += reclaimed;
2596 *total_scanned += nr_scanned;
0a31bc97 2597 spin_lock_irq(&mctz->lock);
bc2f2e7f 2598 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2599
2600 /*
2601 * If we failed to reclaim anything from this memory cgroup
2602 * it is time to move on to the next cgroup
2603 */
2604 next_mz = NULL;
bc2f2e7f
VD
2605 if (!reclaimed)
2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607
3e32cb2e 2608 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2609 /*
2610 * One school of thought says that we should not add
2611 * back the node to the tree if reclaim returns 0.
2612 * But our reclaim could return 0, simply because due
2613 * to priority we are exposing a smaller subset of
2614 * memory to reclaim from. Consider this as a longer
2615 * term TODO.
2616 */
2617 /* If excess == 0, no tree ops */
cf2c8127 2618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2619 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2620 css_put(&mz->memcg->css);
2621 loop++;
2622 /*
2623 * Could not reclaim anything and there are no more
2624 * mem cgroups to try or we seem to be looping without
2625 * reclaiming anything.
2626 */
2627 if (!nr_reclaimed &&
2628 (next_mz == NULL ||
2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 break;
2631 } while (!nr_reclaimed);
2632 if (next_mz)
2633 css_put(&next_mz->memcg->css);
2634 return nr_reclaimed;
2635}
2636
ea280e7b
TH
2637/*
2638 * Test whether @memcg has children, dead or alive. Note that this
2639 * function doesn't care whether @memcg has use_hierarchy enabled and
2640 * returns %true if there are child csses according to the cgroup
2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 */
b5f99b53
GC
2643static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644{
ea280e7b
TH
2645 bool ret;
2646
ea280e7b
TH
2647 rcu_read_lock();
2648 ret = css_next_child(NULL, &memcg->css);
2649 rcu_read_unlock();
2650 return ret;
b5f99b53
GC
2651}
2652
c26251f9 2653/*
51038171 2654 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2655 *
2656 * Caller is responsible for holding css reference for memcg.
2657 */
2658static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659{
2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2661
c1e862c1
KH
2662 /* we call try-to-free pages for make this cgroup empty */
2663 lru_add_drain_all();
f817ed48 2664 /* try to free all pages in this cgroup */
3e32cb2e 2665 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2666 int progress;
c1e862c1 2667
c26251f9
MH
2668 if (signal_pending(current))
2669 return -EINTR;
2670
b70a2a21
JW
2671 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 GFP_KERNEL, true);
c1e862c1 2673 if (!progress) {
f817ed48 2674 nr_retries--;
c1e862c1 2675 /* maybe some writeback is necessary */
8aa7e847 2676 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2677 }
f817ed48
KH
2678
2679 }
ab5196c2
MH
2680
2681 return 0;
cc847582
KH
2682}
2683
6770c64e
TH
2684static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 char *buf, size_t nbytes,
2686 loff_t off)
c1e862c1 2687{
6770c64e 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2689
d8423011
MH
2690 if (mem_cgroup_is_root(memcg))
2691 return -EINVAL;
6770c64e 2692 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2693}
2694
182446d0
TH
2695static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 struct cftype *cft)
18f59ea7 2697{
182446d0 2698 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2699}
2700
182446d0
TH
2701static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 struct cftype *cft, u64 val)
18f59ea7
BS
2703{
2704 int retval = 0;
182446d0 2705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2706 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2707
567fb435 2708 if (memcg->use_hierarchy == val)
0b8f73e1 2709 return 0;
567fb435 2710
18f59ea7 2711 /*
af901ca1 2712 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2713 * in the child subtrees. If it is unset, then the change can
2714 * occur, provided the current cgroup has no children.
2715 *
2716 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 * set if there are no children.
2718 */
c0ff4b85 2719 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2720 (val == 1 || val == 0)) {
ea280e7b 2721 if (!memcg_has_children(memcg))
c0ff4b85 2722 memcg->use_hierarchy = val;
18f59ea7
BS
2723 else
2724 retval = -EBUSY;
2725 } else
2726 retval = -EINVAL;
567fb435 2727
18f59ea7
BS
2728 return retval;
2729}
2730
72b54e73 2731static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2732{
2733 struct mem_cgroup *iter;
72b54e73 2734 int i;
ce00a967 2735
72b54e73 2736 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2737
72b54e73
VD
2738 for_each_mem_cgroup_tree(iter, memcg) {
2739 for (i = 0; i < MEMCG_NR_STAT; i++)
2740 stat[i] += mem_cgroup_read_stat(iter, i);
2741 }
ce00a967
JW
2742}
2743
72b54e73 2744static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2745{
2746 struct mem_cgroup *iter;
72b54e73 2747 int i;
587d9f72 2748
72b54e73 2749 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2750
72b54e73
VD
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 events[i] += mem_cgroup_read_events(iter, i);
2754 }
587d9f72
JW
2755}
2756
6f646156 2757static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2758{
72b54e73 2759 unsigned long val = 0;
ce00a967 2760
3e32cb2e 2761 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2762 struct mem_cgroup *iter;
2763
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 val += mem_cgroup_read_stat(iter,
2766 MEM_CGROUP_STAT_CACHE);
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_RSS);
2769 if (swap)
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_SWAP);
2772 }
3e32cb2e 2773 } else {
ce00a967 2774 if (!swap)
3e32cb2e 2775 val = page_counter_read(&memcg->memory);
ce00a967 2776 else
3e32cb2e 2777 val = page_counter_read(&memcg->memsw);
ce00a967 2778 }
c12176d3 2779 return val;
ce00a967
JW
2780}
2781
3e32cb2e
JW
2782enum {
2783 RES_USAGE,
2784 RES_LIMIT,
2785 RES_MAX_USAGE,
2786 RES_FAILCNT,
2787 RES_SOFT_LIMIT,
2788};
ce00a967 2789
791badbd 2790static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2791 struct cftype *cft)
8cdea7c0 2792{
182446d0 2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2794 struct page_counter *counter;
af36f906 2795
3e32cb2e 2796 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2797 case _MEM:
3e32cb2e
JW
2798 counter = &memcg->memory;
2799 break;
8c7c6e34 2800 case _MEMSWAP:
3e32cb2e
JW
2801 counter = &memcg->memsw;
2802 break;
510fc4e1 2803 case _KMEM:
3e32cb2e 2804 counter = &memcg->kmem;
510fc4e1 2805 break;
d55f90bf 2806 case _TCP:
0db15298 2807 counter = &memcg->tcpmem;
d55f90bf 2808 break;
8c7c6e34
KH
2809 default:
2810 BUG();
8c7c6e34 2811 }
3e32cb2e
JW
2812
2813 switch (MEMFILE_ATTR(cft->private)) {
2814 case RES_USAGE:
2815 if (counter == &memcg->memory)
c12176d3 2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2817 if (counter == &memcg->memsw)
c12176d3 2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2819 return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 case RES_LIMIT:
2821 return (u64)counter->limit * PAGE_SIZE;
2822 case RES_MAX_USAGE:
2823 return (u64)counter->watermark * PAGE_SIZE;
2824 case RES_FAILCNT:
2825 return counter->failcnt;
2826 case RES_SOFT_LIMIT:
2827 return (u64)memcg->soft_limit * PAGE_SIZE;
2828 default:
2829 BUG();
2830 }
8cdea7c0 2831}
510fc4e1 2832
127424c8 2833#ifndef CONFIG_SLOB
567e9ab2 2834static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2835{
d6441637
VD
2836 int memcg_id;
2837
b313aeee
VD
2838 if (cgroup_memory_nokmem)
2839 return 0;
2840
2a4db7eb 2841 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2842 BUG_ON(memcg->kmem_state);
d6441637 2843
f3bb3043 2844 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2845 if (memcg_id < 0)
2846 return memcg_id;
d6441637 2847
ef12947c 2848 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2849 /*
567e9ab2 2850 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2851 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2852 * guarantee no one starts accounting before all call sites are
2853 * patched.
2854 */
900a38f0 2855 memcg->kmemcg_id = memcg_id;
567e9ab2 2856 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2857
2858 return 0;
d6441637
VD
2859}
2860
8e0a8912
JW
2861static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862{
2863 struct cgroup_subsys_state *css;
2864 struct mem_cgroup *parent, *child;
2865 int kmemcg_id;
2866
2867 if (memcg->kmem_state != KMEM_ONLINE)
2868 return;
2869 /*
2870 * Clear the online state before clearing memcg_caches array
2871 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 * guarantees that no cache will be created for this cgroup
2873 * after we are done (see memcg_create_kmem_cache()).
2874 */
2875 memcg->kmem_state = KMEM_ALLOCATED;
2876
2877 memcg_deactivate_kmem_caches(memcg);
2878
2879 kmemcg_id = memcg->kmemcg_id;
2880 BUG_ON(kmemcg_id < 0);
2881
2882 parent = parent_mem_cgroup(memcg);
2883 if (!parent)
2884 parent = root_mem_cgroup;
2885
2886 /*
2887 * Change kmemcg_id of this cgroup and all its descendants to the
2888 * parent's id, and then move all entries from this cgroup's list_lrus
2889 * to ones of the parent. After we have finished, all list_lrus
2890 * corresponding to this cgroup are guaranteed to remain empty. The
2891 * ordering is imposed by list_lru_node->lock taken by
2892 * memcg_drain_all_list_lrus().
2893 */
3a06bb78 2894 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
3a06bb78
TH
2902 rcu_read_unlock();
2903
8e0a8912
JW
2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906 memcg_free_cache_id(kmemcg_id);
2907}
2908
2909static void memcg_free_kmem(struct mem_cgroup *memcg)
2910{
0b8f73e1
JW
2911 /* css_alloc() failed, offlining didn't happen */
2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 memcg_offline_kmem(memcg);
2914
8e0a8912
JW
2915 if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 memcg_destroy_kmem_caches(memcg);
2917 static_branch_dec(&memcg_kmem_enabled_key);
2918 WARN_ON(page_counter_read(&memcg->kmem));
2919 }
8e0a8912 2920}
d6441637 2921#else
0b8f73e1 2922static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2923{
2924 return 0;
2925}
2926static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927{
2928}
2929static void memcg_free_kmem(struct mem_cgroup *memcg)
2930{
2931}
2932#endif /* !CONFIG_SLOB */
2933
d6441637 2934static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2935 unsigned long limit)
d6441637 2936{
b313aeee 2937 int ret;
127424c8
JW
2938
2939 mutex_lock(&memcg_limit_mutex);
127424c8 2940 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2941 mutex_unlock(&memcg_limit_mutex);
2942 return ret;
d6441637 2943}
510fc4e1 2944
d55f90bf
VD
2945static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946{
2947 int ret;
2948
2949 mutex_lock(&memcg_limit_mutex);
2950
0db15298 2951 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2952 if (ret)
2953 goto out;
2954
0db15298 2955 if (!memcg->tcpmem_active) {
d55f90bf
VD
2956 /*
2957 * The active flag needs to be written after the static_key
2958 * update. This is what guarantees that the socket activation
2959 * function is the last one to run. See sock_update_memcg() for
2960 * details, and note that we don't mark any socket as belonging
2961 * to this memcg until that flag is up.
2962 *
2963 * We need to do this, because static_keys will span multiple
2964 * sites, but we can't control their order. If we mark a socket
2965 * as accounted, but the accounting functions are not patched in
2966 * yet, we'll lose accounting.
2967 *
2968 * We never race with the readers in sock_update_memcg(),
2969 * because when this value change, the code to process it is not
2970 * patched in yet.
2971 */
2972 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2973 memcg->tcpmem_active = true;
d55f90bf
VD
2974 }
2975out:
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978}
d55f90bf 2979
628f4235
KH
2980/*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
451af504
TH
2984static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2986{
451af504 2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2988 unsigned long nr_pages;
628f4235
KH
2989 int ret;
2990
451af504 2991 buf = strstrip(buf);
650c5e56 2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2993 if (ret)
2994 return ret;
af36f906 2995
3e32cb2e 2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2997 case RES_LIMIT:
4b3bde4c
BS
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3e32cb2e
JW
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3005 break;
3e32cb2e
JW
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3008 break;
3e32cb2e
JW
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
d55f90bf
VD
3012 case _TCP:
3013 ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 break;
3e32cb2e 3015 }
296c81d8 3016 break;
3e32cb2e
JW
3017 case RES_SOFT_LIMIT:
3018 memcg->soft_limit = nr_pages;
3019 ret = 0;
628f4235
KH
3020 break;
3021 }
451af504 3022 return ret ?: nbytes;
8cdea7c0
BS
3023}
3024
6770c64e
TH
3025static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 size_t nbytes, loff_t off)
c84872e1 3027{
6770c64e 3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3029 struct page_counter *counter;
c84872e1 3030
3e32cb2e
JW
3031 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 case _MEM:
3033 counter = &memcg->memory;
3034 break;
3035 case _MEMSWAP:
3036 counter = &memcg->memsw;
3037 break;
3038 case _KMEM:
3039 counter = &memcg->kmem;
3040 break;
d55f90bf 3041 case _TCP:
0db15298 3042 counter = &memcg->tcpmem;
d55f90bf 3043 break;
3e32cb2e
JW
3044 default:
3045 BUG();
3046 }
af36f906 3047
3e32cb2e 3048 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3049 case RES_MAX_USAGE:
3e32cb2e 3050 page_counter_reset_watermark(counter);
29f2a4da
PE
3051 break;
3052 case RES_FAILCNT:
3e32cb2e 3053 counter->failcnt = 0;
29f2a4da 3054 break;
3e32cb2e
JW
3055 default:
3056 BUG();
29f2a4da 3057 }
f64c3f54 3058
6770c64e 3059 return nbytes;
c84872e1
PE
3060}
3061
182446d0 3062static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3063 struct cftype *cft)
3064{
182446d0 3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3066}
3067
02491447 3068#ifdef CONFIG_MMU
182446d0 3069static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3070 struct cftype *cft, u64 val)
3071{
182446d0 3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3073
1dfab5ab 3074 if (val & ~MOVE_MASK)
7dc74be0 3075 return -EINVAL;
ee5e8472 3076
7dc74be0 3077 /*
ee5e8472
GC
3078 * No kind of locking is needed in here, because ->can_attach() will
3079 * check this value once in the beginning of the process, and then carry
3080 * on with stale data. This means that changes to this value will only
3081 * affect task migrations starting after the change.
7dc74be0 3082 */
c0ff4b85 3083 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3084 return 0;
3085}
02491447 3086#else
182446d0 3087static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3088 struct cftype *cft, u64 val)
3089{
3090 return -ENOSYS;
3091}
3092#endif
7dc74be0 3093
406eb0c9 3094#ifdef CONFIG_NUMA
2da8ca82 3095static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3096{
25485de6
GT
3097 struct numa_stat {
3098 const char *name;
3099 unsigned int lru_mask;
3100 };
3101
3102 static const struct numa_stat stats[] = {
3103 { "total", LRU_ALL },
3104 { "file", LRU_ALL_FILE },
3105 { "anon", LRU_ALL_ANON },
3106 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107 };
3108 const struct numa_stat *stat;
406eb0c9 3109 int nid;
25485de6 3110 unsigned long nr;
2da8ca82 3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3112
25485de6
GT
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 seq_printf(m, "%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
406eb0c9 3122 }
406eb0c9 3123
071aee13
YH
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 struct mem_cgroup *iter;
3126
3127 nr = 0;
3128 for_each_mem_cgroup_tree(iter, memcg)
3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_node_nr_lru_pages(
3135 iter, nid, stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
406eb0c9 3139 }
406eb0c9 3140
406eb0c9
YH
3141 return 0;
3142}
3143#endif /* CONFIG_NUMA */
3144
2da8ca82 3145static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3146{
2da8ca82 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3148 unsigned long memory, memsw;
af7c4b0e
JW
3149 struct mem_cgroup *mi;
3150 unsigned int i;
406eb0c9 3151
0ca44b14
GT
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 MEM_CGROUP_STAT_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
af7c4b0e 3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3160 continue;
484ebb3b 3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3163 }
7b854121 3164
af7c4b0e
JW
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 mem_cgroup_read_events(memcg, i));
3168
3169 for (i = 0; i < NR_LRU_LISTS; i++)
3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
14067bb3 3173 /* Hierarchical information */
3e32cb2e
JW
3174 memory = memsw = PAGE_COUNTER_MAX;
3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 memory = min(memory, mi->memory.limit);
3177 memsw = min(memsw, mi->memsw.limit);
fee7b548 3178 }
3e32cb2e
JW
3179 seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 (u64)memory * PAGE_SIZE);
7941d214 3181 if (do_memsw_account())
3e32cb2e
JW
3182 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 (u64)memsw * PAGE_SIZE);
7f016ee8 3184
af7c4b0e 3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3186 unsigned long long val = 0;
af7c4b0e 3187
7941d214 3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3189 continue;
af7c4b0e
JW
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3193 }
3194
3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_events(mi, i);
3200 seq_printf(m, "total_%s %llu\n",
3201 mem_cgroup_events_names[i], val);
3202 }
3203
3204 for (i = 0; i < NR_LRU_LISTS; i++) {
3205 unsigned long long val = 0;
3206
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3210 }
14067bb3 3211
7f016ee8 3212#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3213 {
3214 int nid, zid;
3215 struct mem_cgroup_per_zone *mz;
89abfab1 3216 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3217 unsigned long recent_rotated[2] = {0, 0};
3218 unsigned long recent_scanned[2] = {0, 0};
3219
3220 for_each_online_node(nid)
3221 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3222 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3223 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3224
89abfab1
HD
3225 recent_rotated[0] += rstat->recent_rotated[0];
3226 recent_rotated[1] += rstat->recent_rotated[1];
3227 recent_scanned[0] += rstat->recent_scanned[0];
3228 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3229 }
78ccf5b5
JW
3230 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3231 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3232 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3233 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3234 }
3235#endif
3236
d2ceb9b7
KH
3237 return 0;
3238}
3239
182446d0
TH
3240static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3241 struct cftype *cft)
a7885eb8 3242{
182446d0 3243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3244
1f4c025b 3245 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3246}
3247
182446d0
TH
3248static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3249 struct cftype *cft, u64 val)
a7885eb8 3250{
182446d0 3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3252
3dae7fec 3253 if (val > 100)
a7885eb8
KM
3254 return -EINVAL;
3255
14208b0e 3256 if (css->parent)
3dae7fec
JW
3257 memcg->swappiness = val;
3258 else
3259 vm_swappiness = val;
068b38c1 3260
a7885eb8
KM
3261 return 0;
3262}
3263
2e72b634
KS
3264static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3265{
3266 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3267 unsigned long usage;
2e72b634
KS
3268 int i;
3269
3270 rcu_read_lock();
3271 if (!swap)
2c488db2 3272 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3273 else
2c488db2 3274 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3275
3276 if (!t)
3277 goto unlock;
3278
ce00a967 3279 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3280
3281 /*
748dad36 3282 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3283 * If it's not true, a threshold was crossed after last
3284 * call of __mem_cgroup_threshold().
3285 */
5407a562 3286 i = t->current_threshold;
2e72b634
KS
3287
3288 /*
3289 * Iterate backward over array of thresholds starting from
3290 * current_threshold and check if a threshold is crossed.
3291 * If none of thresholds below usage is crossed, we read
3292 * only one element of the array here.
3293 */
3294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3295 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297 /* i = current_threshold + 1 */
3298 i++;
3299
3300 /*
3301 * Iterate forward over array of thresholds starting from
3302 * current_threshold+1 and check if a threshold is crossed.
3303 * If none of thresholds above usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* Update current_threshold */
5407a562 3310 t->current_threshold = i - 1;
2e72b634
KS
3311unlock:
3312 rcu_read_unlock();
3313}
3314
3315static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3316{
ad4ca5f4
KS
3317 while (memcg) {
3318 __mem_cgroup_threshold(memcg, false);
7941d214 3319 if (do_memsw_account())
ad4ca5f4
KS
3320 __mem_cgroup_threshold(memcg, true);
3321
3322 memcg = parent_mem_cgroup(memcg);
3323 }
2e72b634
KS
3324}
3325
3326static int compare_thresholds(const void *a, const void *b)
3327{
3328 const struct mem_cgroup_threshold *_a = a;
3329 const struct mem_cgroup_threshold *_b = b;
3330
2bff24a3
GT
3331 if (_a->threshold > _b->threshold)
3332 return 1;
3333
3334 if (_a->threshold < _b->threshold)
3335 return -1;
3336
3337 return 0;
2e72b634
KS
3338}
3339
c0ff4b85 3340static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3341{
3342 struct mem_cgroup_eventfd_list *ev;
3343
2bcf2e92
MH
3344 spin_lock(&memcg_oom_lock);
3345
c0ff4b85 3346 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3347 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3348
3349 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3350 return 0;
3351}
3352
c0ff4b85 3353static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3354{
7d74b06f
KH
3355 struct mem_cgroup *iter;
3356
c0ff4b85 3357 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3358 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3359}
3360
59b6f873 3361static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3362 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3363{
2c488db2
KS
3364 struct mem_cgroup_thresholds *thresholds;
3365 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3366 unsigned long threshold;
3367 unsigned long usage;
2c488db2 3368 int i, size, ret;
2e72b634 3369
650c5e56 3370 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3371 if (ret)
3372 return ret;
3373
3374 mutex_lock(&memcg->thresholds_lock);
2c488db2 3375
05b84301 3376 if (type == _MEM) {
2c488db2 3377 thresholds = &memcg->thresholds;
ce00a967 3378 usage = mem_cgroup_usage(memcg, false);
05b84301 3379 } else if (type == _MEMSWAP) {
2c488db2 3380 thresholds = &memcg->memsw_thresholds;
ce00a967 3381 usage = mem_cgroup_usage(memcg, true);
05b84301 3382 } else
2e72b634
KS
3383 BUG();
3384
2e72b634 3385 /* Check if a threshold crossed before adding a new one */
2c488db2 3386 if (thresholds->primary)
2e72b634
KS
3387 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3388
2c488db2 3389 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3390
3391 /* Allocate memory for new array of thresholds */
2c488db2 3392 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3393 GFP_KERNEL);
2c488db2 3394 if (!new) {
2e72b634
KS
3395 ret = -ENOMEM;
3396 goto unlock;
3397 }
2c488db2 3398 new->size = size;
2e72b634
KS
3399
3400 /* Copy thresholds (if any) to new array */
2c488db2
KS
3401 if (thresholds->primary) {
3402 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3403 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3404 }
3405
2e72b634 3406 /* Add new threshold */
2c488db2
KS
3407 new->entries[size - 1].eventfd = eventfd;
3408 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3409
3410 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3411 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3412 compare_thresholds, NULL);
3413
3414 /* Find current threshold */
2c488db2 3415 new->current_threshold = -1;
2e72b634 3416 for (i = 0; i < size; i++) {
748dad36 3417 if (new->entries[i].threshold <= usage) {
2e72b634 3418 /*
2c488db2
KS
3419 * new->current_threshold will not be used until
3420 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3421 * it here.
3422 */
2c488db2 3423 ++new->current_threshold;
748dad36
SZ
3424 } else
3425 break;
2e72b634
KS
3426 }
3427
2c488db2
KS
3428 /* Free old spare buffer and save old primary buffer as spare */
3429 kfree(thresholds->spare);
3430 thresholds->spare = thresholds->primary;
3431
3432 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3433
907860ed 3434 /* To be sure that nobody uses thresholds */
2e72b634
KS
3435 synchronize_rcu();
3436
2e72b634
KS
3437unlock:
3438 mutex_unlock(&memcg->thresholds_lock);
3439
3440 return ret;
3441}
3442
59b6f873 3443static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3444 struct eventfd_ctx *eventfd, const char *args)
3445{
59b6f873 3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3447}
3448
59b6f873 3449static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3450 struct eventfd_ctx *eventfd, const char *args)
3451{
59b6f873 3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3453}
3454
59b6f873 3455static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3456 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3457{
2c488db2
KS
3458 struct mem_cgroup_thresholds *thresholds;
3459 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3460 unsigned long usage;
2c488db2 3461 int i, j, size;
2e72b634
KS
3462
3463 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3464
3465 if (type == _MEM) {
2c488db2 3466 thresholds = &memcg->thresholds;
ce00a967 3467 usage = mem_cgroup_usage(memcg, false);
05b84301 3468 } else if (type == _MEMSWAP) {
2c488db2 3469 thresholds = &memcg->memsw_thresholds;
ce00a967 3470 usage = mem_cgroup_usage(memcg, true);
05b84301 3471 } else
2e72b634
KS
3472 BUG();
3473
371528ca
AV
3474 if (!thresholds->primary)
3475 goto unlock;
3476
2e72b634
KS
3477 /* Check if a threshold crossed before removing */
3478 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3479
3480 /* Calculate new number of threshold */
2c488db2
KS
3481 size = 0;
3482 for (i = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3484 size++;
3485 }
3486
2c488db2 3487 new = thresholds->spare;
907860ed 3488
2e72b634
KS
3489 /* Set thresholds array to NULL if we don't have thresholds */
3490 if (!size) {
2c488db2
KS
3491 kfree(new);
3492 new = NULL;
907860ed 3493 goto swap_buffers;
2e72b634
KS
3494 }
3495
2c488db2 3496 new->size = size;
2e72b634
KS
3497
3498 /* Copy thresholds and find current threshold */
2c488db2
KS
3499 new->current_threshold = -1;
3500 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3501 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3502 continue;
3503
2c488db2 3504 new->entries[j] = thresholds->primary->entries[i];
748dad36 3505 if (new->entries[j].threshold <= usage) {
2e72b634 3506 /*
2c488db2 3507 * new->current_threshold will not be used
2e72b634
KS
3508 * until rcu_assign_pointer(), so it's safe to increment
3509 * it here.
3510 */
2c488db2 3511 ++new->current_threshold;
2e72b634
KS
3512 }
3513 j++;
3514 }
3515
907860ed 3516swap_buffers:
2c488db2
KS
3517 /* Swap primary and spare array */
3518 thresholds->spare = thresholds->primary;
8c757763 3519
2c488db2 3520 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3521
907860ed 3522 /* To be sure that nobody uses thresholds */
2e72b634 3523 synchronize_rcu();
6611d8d7
MC
3524
3525 /* If all events are unregistered, free the spare array */
3526 if (!new) {
3527 kfree(thresholds->spare);
3528 thresholds->spare = NULL;
3529 }
371528ca 3530unlock:
2e72b634 3531 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3532}
c1e862c1 3533
59b6f873 3534static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3535 struct eventfd_ctx *eventfd)
3536{
59b6f873 3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3538}
3539
59b6f873 3540static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3541 struct eventfd_ctx *eventfd)
3542{
59b6f873 3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3544}
3545
59b6f873 3546static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3547 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3548{
9490ff27 3549 struct mem_cgroup_eventfd_list *event;
9490ff27 3550
9490ff27
KH
3551 event = kmalloc(sizeof(*event), GFP_KERNEL);
3552 if (!event)
3553 return -ENOMEM;
3554
1af8efe9 3555 spin_lock(&memcg_oom_lock);
9490ff27
KH
3556
3557 event->eventfd = eventfd;
3558 list_add(&event->list, &memcg->oom_notify);
3559
3560 /* already in OOM ? */
c2b42d3c 3561 if (memcg->under_oom)
9490ff27 3562 eventfd_signal(eventfd, 1);
1af8efe9 3563 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3564
3565 return 0;
3566}
3567
59b6f873 3568static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3569 struct eventfd_ctx *eventfd)
9490ff27 3570{
9490ff27 3571 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3572
1af8efe9 3573 spin_lock(&memcg_oom_lock);
9490ff27 3574
c0ff4b85 3575 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3576 if (ev->eventfd == eventfd) {
3577 list_del(&ev->list);
3578 kfree(ev);
3579 }
3580 }
3581
1af8efe9 3582 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3583}
3584
2da8ca82 3585static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3586{
2da8ca82 3587 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3588
791badbd 3589 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3590 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3591 return 0;
3592}
3593
182446d0 3594static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3595 struct cftype *cft, u64 val)
3596{
182446d0 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3598
3599 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3600 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3601 return -EINVAL;
3602
c0ff4b85 3603 memcg->oom_kill_disable = val;
4d845ebf 3604 if (!val)
c0ff4b85 3605 memcg_oom_recover(memcg);
3dae7fec 3606
3c11ecf4
KH
3607 return 0;
3608}
3609
52ebea74
TH
3610#ifdef CONFIG_CGROUP_WRITEBACK
3611
3612struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3613{
3614 return &memcg->cgwb_list;
3615}
3616
841710aa
TH
3617static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3618{
3619 return wb_domain_init(&memcg->cgwb_domain, gfp);
3620}
3621
3622static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3623{
3624 wb_domain_exit(&memcg->cgwb_domain);
3625}
3626
2529bb3a
TH
3627static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3628{
3629 wb_domain_size_changed(&memcg->cgwb_domain);
3630}
3631
841710aa
TH
3632struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3633{
3634 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3635
3636 if (!memcg->css.parent)
3637 return NULL;
3638
3639 return &memcg->cgwb_domain;
3640}
3641
c2aa723a
TH
3642/**
3643 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3644 * @wb: bdi_writeback in question
c5edf9cd
TH
3645 * @pfilepages: out parameter for number of file pages
3646 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3647 * @pdirty: out parameter for number of dirty pages
3648 * @pwriteback: out parameter for number of pages under writeback
3649 *
c5edf9cd
TH
3650 * Determine the numbers of file, headroom, dirty, and writeback pages in
3651 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3652 * is a bit more involved.
c2aa723a 3653 *
c5edf9cd
TH
3654 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3655 * headroom is calculated as the lowest headroom of itself and the
3656 * ancestors. Note that this doesn't consider the actual amount of
3657 * available memory in the system. The caller should further cap
3658 * *@pheadroom accordingly.
c2aa723a 3659 */
c5edf9cd
TH
3660void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3661 unsigned long *pheadroom, unsigned long *pdirty,
3662 unsigned long *pwriteback)
c2aa723a
TH
3663{
3664 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3665 struct mem_cgroup *parent;
c2aa723a
TH
3666
3667 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3668
3669 /* this should eventually include NR_UNSTABLE_NFS */
3670 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3671 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3672 (1 << LRU_ACTIVE_FILE));
3673 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3674
c2aa723a
TH
3675 while ((parent = parent_mem_cgroup(memcg))) {
3676 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3677 unsigned long used = page_counter_read(&memcg->memory);
3678
c5edf9cd 3679 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3680 memcg = parent;
3681 }
c2aa723a
TH
3682}
3683
841710aa
TH
3684#else /* CONFIG_CGROUP_WRITEBACK */
3685
3686static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3687{
3688 return 0;
3689}
3690
3691static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3692{
3693}
3694
2529bb3a
TH
3695static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3696{
3697}
3698
52ebea74
TH
3699#endif /* CONFIG_CGROUP_WRITEBACK */
3700
3bc942f3
TH
3701/*
3702 * DO NOT USE IN NEW FILES.
3703 *
3704 * "cgroup.event_control" implementation.
3705 *
3706 * This is way over-engineered. It tries to support fully configurable
3707 * events for each user. Such level of flexibility is completely
3708 * unnecessary especially in the light of the planned unified hierarchy.
3709 *
3710 * Please deprecate this and replace with something simpler if at all
3711 * possible.
3712 */
3713
79bd9814
TH
3714/*
3715 * Unregister event and free resources.
3716 *
3717 * Gets called from workqueue.
3718 */
3bc942f3 3719static void memcg_event_remove(struct work_struct *work)
79bd9814 3720{
3bc942f3
TH
3721 struct mem_cgroup_event *event =
3722 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3723 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3724
3725 remove_wait_queue(event->wqh, &event->wait);
3726
59b6f873 3727 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3728
3729 /* Notify userspace the event is going away. */
3730 eventfd_signal(event->eventfd, 1);
3731
3732 eventfd_ctx_put(event->eventfd);
3733 kfree(event);
59b6f873 3734 css_put(&memcg->css);
79bd9814
TH
3735}
3736
3737/*
3738 * Gets called on POLLHUP on eventfd when user closes it.
3739 *
3740 * Called with wqh->lock held and interrupts disabled.
3741 */
3bc942f3
TH
3742static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3743 int sync, void *key)
79bd9814 3744{
3bc942f3
TH
3745 struct mem_cgroup_event *event =
3746 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3747 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3748 unsigned long flags = (unsigned long)key;
3749
3750 if (flags & POLLHUP) {
3751 /*
3752 * If the event has been detached at cgroup removal, we
3753 * can simply return knowing the other side will cleanup
3754 * for us.
3755 *
3756 * We can't race against event freeing since the other
3757 * side will require wqh->lock via remove_wait_queue(),
3758 * which we hold.
3759 */
fba94807 3760 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3761 if (!list_empty(&event->list)) {
3762 list_del_init(&event->list);
3763 /*
3764 * We are in atomic context, but cgroup_event_remove()
3765 * may sleep, so we have to call it in workqueue.
3766 */
3767 schedule_work(&event->remove);
3768 }
fba94807 3769 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3770 }
3771
3772 return 0;
3773}
3774
3bc942f3 3775static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3776 wait_queue_head_t *wqh, poll_table *pt)
3777{
3bc942f3
TH
3778 struct mem_cgroup_event *event =
3779 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3780
3781 event->wqh = wqh;
3782 add_wait_queue(wqh, &event->wait);
3783}
3784
3785/*
3bc942f3
TH
3786 * DO NOT USE IN NEW FILES.
3787 *
79bd9814
TH
3788 * Parse input and register new cgroup event handler.
3789 *
3790 * Input must be in format '<event_fd> <control_fd> <args>'.
3791 * Interpretation of args is defined by control file implementation.
3792 */
451af504
TH
3793static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3794 char *buf, size_t nbytes, loff_t off)
79bd9814 3795{
451af504 3796 struct cgroup_subsys_state *css = of_css(of);
fba94807 3797 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3798 struct mem_cgroup_event *event;
79bd9814
TH
3799 struct cgroup_subsys_state *cfile_css;
3800 unsigned int efd, cfd;
3801 struct fd efile;
3802 struct fd cfile;
fba94807 3803 const char *name;
79bd9814
TH
3804 char *endp;
3805 int ret;
3806
451af504
TH
3807 buf = strstrip(buf);
3808
3809 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3810 if (*endp != ' ')
3811 return -EINVAL;
451af504 3812 buf = endp + 1;
79bd9814 3813
451af504 3814 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3815 if ((*endp != ' ') && (*endp != '\0'))
3816 return -EINVAL;
451af504 3817 buf = endp + 1;
79bd9814
TH
3818
3819 event = kzalloc(sizeof(*event), GFP_KERNEL);
3820 if (!event)
3821 return -ENOMEM;
3822
59b6f873 3823 event->memcg = memcg;
79bd9814 3824 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3825 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3826 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3827 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3828
3829 efile = fdget(efd);
3830 if (!efile.file) {
3831 ret = -EBADF;
3832 goto out_kfree;
3833 }
3834
3835 event->eventfd = eventfd_ctx_fileget(efile.file);
3836 if (IS_ERR(event->eventfd)) {
3837 ret = PTR_ERR(event->eventfd);
3838 goto out_put_efile;
3839 }
3840
3841 cfile = fdget(cfd);
3842 if (!cfile.file) {
3843 ret = -EBADF;
3844 goto out_put_eventfd;
3845 }
3846
3847 /* the process need read permission on control file */
3848 /* AV: shouldn't we check that it's been opened for read instead? */
3849 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3850 if (ret < 0)
3851 goto out_put_cfile;
3852
fba94807
TH
3853 /*
3854 * Determine the event callbacks and set them in @event. This used
3855 * to be done via struct cftype but cgroup core no longer knows
3856 * about these events. The following is crude but the whole thing
3857 * is for compatibility anyway.
3bc942f3
TH
3858 *
3859 * DO NOT ADD NEW FILES.
fba94807 3860 */
b583043e 3861 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3862
3863 if (!strcmp(name, "memory.usage_in_bytes")) {
3864 event->register_event = mem_cgroup_usage_register_event;
3865 event->unregister_event = mem_cgroup_usage_unregister_event;
3866 } else if (!strcmp(name, "memory.oom_control")) {
3867 event->register_event = mem_cgroup_oom_register_event;
3868 event->unregister_event = mem_cgroup_oom_unregister_event;
3869 } else if (!strcmp(name, "memory.pressure_level")) {
3870 event->register_event = vmpressure_register_event;
3871 event->unregister_event = vmpressure_unregister_event;
3872 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3873 event->register_event = memsw_cgroup_usage_register_event;
3874 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3875 } else {
3876 ret = -EINVAL;
3877 goto out_put_cfile;
3878 }
3879
79bd9814 3880 /*
b5557c4c
TH
3881 * Verify @cfile should belong to @css. Also, remaining events are
3882 * automatically removed on cgroup destruction but the removal is
3883 * asynchronous, so take an extra ref on @css.
79bd9814 3884 */
b583043e 3885 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3886 &memory_cgrp_subsys);
79bd9814 3887 ret = -EINVAL;
5a17f543 3888 if (IS_ERR(cfile_css))
79bd9814 3889 goto out_put_cfile;
5a17f543
TH
3890 if (cfile_css != css) {
3891 css_put(cfile_css);
79bd9814 3892 goto out_put_cfile;
5a17f543 3893 }
79bd9814 3894
451af504 3895 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3896 if (ret)
3897 goto out_put_css;
3898
3899 efile.file->f_op->poll(efile.file, &event->pt);
3900
fba94807
TH
3901 spin_lock(&memcg->event_list_lock);
3902 list_add(&event->list, &memcg->event_list);
3903 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3904
3905 fdput(cfile);
3906 fdput(efile);
3907
451af504 3908 return nbytes;
79bd9814
TH
3909
3910out_put_css:
b5557c4c 3911 css_put(css);
79bd9814
TH
3912out_put_cfile:
3913 fdput(cfile);
3914out_put_eventfd:
3915 eventfd_ctx_put(event->eventfd);
3916out_put_efile:
3917 fdput(efile);
3918out_kfree:
3919 kfree(event);
3920
3921 return ret;
3922}
3923
241994ed 3924static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3925 {
0eea1030 3926 .name = "usage_in_bytes",
8c7c6e34 3927 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3929 },
c84872e1
PE
3930 {
3931 .name = "max_usage_in_bytes",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3933 .write = mem_cgroup_reset,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
c84872e1 3935 },
8cdea7c0 3936 {
0eea1030 3937 .name = "limit_in_bytes",
8c7c6e34 3938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3939 .write = mem_cgroup_write,
791badbd 3940 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3941 },
296c81d8
BS
3942 {
3943 .name = "soft_limit_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3945 .write = mem_cgroup_write,
791badbd 3946 .read_u64 = mem_cgroup_read_u64,
296c81d8 3947 },
8cdea7c0
BS
3948 {
3949 .name = "failcnt",
8c7c6e34 3950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3951 .write = mem_cgroup_reset,
791badbd 3952 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3953 },
d2ceb9b7
KH
3954 {
3955 .name = "stat",
2da8ca82 3956 .seq_show = memcg_stat_show,
d2ceb9b7 3957 },
c1e862c1
KH
3958 {
3959 .name = "force_empty",
6770c64e 3960 .write = mem_cgroup_force_empty_write,
c1e862c1 3961 },
18f59ea7
BS
3962 {
3963 .name = "use_hierarchy",
3964 .write_u64 = mem_cgroup_hierarchy_write,
3965 .read_u64 = mem_cgroup_hierarchy_read,
3966 },
79bd9814 3967 {
3bc942f3 3968 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3969 .write = memcg_write_event_control,
7dbdb199 3970 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3971 },
a7885eb8
KM
3972 {
3973 .name = "swappiness",
3974 .read_u64 = mem_cgroup_swappiness_read,
3975 .write_u64 = mem_cgroup_swappiness_write,
3976 },
7dc74be0
DN
3977 {
3978 .name = "move_charge_at_immigrate",
3979 .read_u64 = mem_cgroup_move_charge_read,
3980 .write_u64 = mem_cgroup_move_charge_write,
3981 },
9490ff27
KH
3982 {
3983 .name = "oom_control",
2da8ca82 3984 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3985 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3986 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3987 },
70ddf637
AV
3988 {
3989 .name = "pressure_level",
70ddf637 3990 },
406eb0c9
YH
3991#ifdef CONFIG_NUMA
3992 {
3993 .name = "numa_stat",
2da8ca82 3994 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3995 },
3996#endif
510fc4e1
GC
3997 {
3998 .name = "kmem.limit_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4000 .write = mem_cgroup_write,
791badbd 4001 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4002 },
4003 {
4004 .name = "kmem.usage_in_bytes",
4005 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4006 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4007 },
4008 {
4009 .name = "kmem.failcnt",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4011 .write = mem_cgroup_reset,
791badbd 4012 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4013 },
4014 {
4015 .name = "kmem.max_usage_in_bytes",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4017 .write = mem_cgroup_reset,
791badbd 4018 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4019 },
749c5415
GC
4020#ifdef CONFIG_SLABINFO
4021 {
4022 .name = "kmem.slabinfo",
b047501c
VD
4023 .seq_start = slab_start,
4024 .seq_next = slab_next,
4025 .seq_stop = slab_stop,
4026 .seq_show = memcg_slab_show,
749c5415
GC
4027 },
4028#endif
d55f90bf
VD
4029 {
4030 .name = "kmem.tcp.limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 {
4036 .name = "kmem.tcp.usage_in_bytes",
4037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "kmem.tcp.failcnt",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4043 .write = mem_cgroup_reset,
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "kmem.tcp.max_usage_in_bytes",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
6bc10349 4052 { }, /* terminate */
af36f906 4053};
8c7c6e34 4054
73f576c0
JW
4055/*
4056 * Private memory cgroup IDR
4057 *
4058 * Swap-out records and page cache shadow entries need to store memcg
4059 * references in constrained space, so we maintain an ID space that is
4060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4061 * memory-controlled cgroups to 64k.
4062 *
4063 * However, there usually are many references to the oflline CSS after
4064 * the cgroup has been destroyed, such as page cache or reclaimable
4065 * slab objects, that don't need to hang on to the ID. We want to keep
4066 * those dead CSS from occupying IDs, or we might quickly exhaust the
4067 * relatively small ID space and prevent the creation of new cgroups
4068 * even when there are much fewer than 64k cgroups - possibly none.
4069 *
4070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4071 * be freed and recycled when it's no longer needed, which is usually
4072 * when the CSS is offlined.
4073 *
4074 * The only exception to that are records of swapped out tmpfs/shmem
4075 * pages that need to be attributed to live ancestors on swapin. But
4076 * those references are manageable from userspace.
4077 */
4078
4079static DEFINE_IDR(mem_cgroup_idr);
4080
4081static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082{
4083 atomic_inc(&memcg->id.ref);
4084}
4085
4086static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087{
4088 if (atomic_dec_and_test(&memcg->id.ref)) {
4089 idr_remove(&mem_cgroup_idr, memcg->id.id);
4090 memcg->id.id = 0;
4091
4092 /* Memcg ID pins CSS */
4093 css_put(&memcg->css);
4094 }
4095}
4096
4097/**
4098 * mem_cgroup_from_id - look up a memcg from a memcg id
4099 * @id: the memcg id to look up
4100 *
4101 * Caller must hold rcu_read_lock().
4102 */
4103struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104{
4105 WARN_ON_ONCE(!rcu_read_lock_held());
4106 return idr_find(&mem_cgroup_idr, id);
4107}
4108
c0ff4b85 4109static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4110{
4111 struct mem_cgroup_per_node *pn;
1ecaab2b 4112 struct mem_cgroup_per_zone *mz;
41e3355d 4113 int zone, tmp = node;
1ecaab2b
KH
4114 /*
4115 * This routine is called against possible nodes.
4116 * But it's BUG to call kmalloc() against offline node.
4117 *
4118 * TODO: this routine can waste much memory for nodes which will
4119 * never be onlined. It's better to use memory hotplug callback
4120 * function.
4121 */
41e3355d
KH
4122 if (!node_state(node, N_NORMAL_MEMORY))
4123 tmp = -1;
17295c88 4124 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4125 if (!pn)
4126 return 1;
1ecaab2b 4127
1ecaab2b
KH
4128 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4129 mz = &pn->zoneinfo[zone];
bea8c150 4130 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4131 mz->usage_in_excess = 0;
4132 mz->on_tree = false;
d79154bb 4133 mz->memcg = memcg;
1ecaab2b 4134 }
54f72fe0 4135 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4136 return 0;
4137}
4138
c0ff4b85 4139static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4140{
54f72fe0 4141 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4142}
4143
0b8f73e1 4144static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4145{
c8b2a36f 4146 int node;
59927fb9 4147
0b8f73e1 4148 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4149 for_each_node(node)
4150 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4151 free_percpu(memcg->stat);
8ff69e2c 4152 kfree(memcg);
59927fb9 4153}
3afe36b1 4154
0b8f73e1 4155static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4156{
d142e3e6 4157 struct mem_cgroup *memcg;
0b8f73e1 4158 size_t size;
6d12e2d8 4159 int node;
8cdea7c0 4160
0b8f73e1
JW
4161 size = sizeof(struct mem_cgroup);
4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163
4164 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4165 if (!memcg)
0b8f73e1
JW
4166 return NULL;
4167
73f576c0
JW
4168 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 1, MEM_CGROUP_ID_MAX,
4170 GFP_KERNEL);
4171 if (memcg->id.id < 0)
4172 goto fail;
4173
0b8f73e1
JW
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto fail;
78fb7466 4177
3ed28fa1 4178 for_each_node(node)
c0ff4b85 4179 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4180 goto fail;
f64c3f54 4181
0b8f73e1
JW
4182 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 goto fail;
28dbc4b6 4184
f7e1cb6e 4185 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4186 memcg->last_scanned_node = MAX_NUMNODES;
4187 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4188 mutex_init(&memcg->thresholds_lock);
4189 spin_lock_init(&memcg->move_lock);
70ddf637 4190 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4191 INIT_LIST_HEAD(&memcg->event_list);
4192 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4193 memcg->socket_pressure = jiffies;
127424c8 4194#ifndef CONFIG_SLOB
900a38f0 4195 memcg->kmemcg_id = -1;
900a38f0 4196#endif
52ebea74
TH
4197#ifdef CONFIG_CGROUP_WRITEBACK
4198 INIT_LIST_HEAD(&memcg->cgwb_list);
4199#endif
73f576c0 4200 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4201 return memcg;
4202fail:
73f576c0
JW
4203 if (memcg->id.id > 0)
4204 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4205 mem_cgroup_free(memcg);
4206 return NULL;
d142e3e6
GC
4207}
4208
0b8f73e1
JW
4209static struct cgroup_subsys_state * __ref
4210mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4211{
0b8f73e1
JW
4212 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 struct mem_cgroup *memcg;
4214 long error = -ENOMEM;
d142e3e6 4215
0b8f73e1
JW
4216 memcg = mem_cgroup_alloc();
4217 if (!memcg)
4218 return ERR_PTR(error);
d142e3e6 4219
0b8f73e1
JW
4220 memcg->high = PAGE_COUNTER_MAX;
4221 memcg->soft_limit = PAGE_COUNTER_MAX;
4222 if (parent) {
4223 memcg->swappiness = mem_cgroup_swappiness(parent);
4224 memcg->oom_kill_disable = parent->oom_kill_disable;
4225 }
4226 if (parent && parent->use_hierarchy) {
4227 memcg->use_hierarchy = true;
3e32cb2e 4228 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4229 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4230 page_counter_init(&memcg->memsw, &parent->memsw);
4231 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4232 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4233 } else {
3e32cb2e 4234 page_counter_init(&memcg->memory, NULL);
37e84351 4235 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4236 page_counter_init(&memcg->memsw, NULL);
4237 page_counter_init(&memcg->kmem, NULL);
0db15298 4238 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4239 /*
4240 * Deeper hierachy with use_hierarchy == false doesn't make
4241 * much sense so let cgroup subsystem know about this
4242 * unfortunate state in our controller.
4243 */
d142e3e6 4244 if (parent != root_mem_cgroup)
073219e9 4245 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4246 }
d6441637 4247
0b8f73e1
JW
4248 /* The following stuff does not apply to the root */
4249 if (!parent) {
4250 root_mem_cgroup = memcg;
4251 return &memcg->css;
4252 }
4253
b313aeee 4254 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4255 if (error)
4256 goto fail;
127424c8 4257
f7e1cb6e 4258 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4259 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4260
0b8f73e1
JW
4261 return &memcg->css;
4262fail:
4263 mem_cgroup_free(memcg);
ea3a9645 4264 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4265}
4266
73f576c0 4267static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4268{
73f576c0
JW
4269 /* Online state pins memcg ID, memcg ID pins CSS */
4270 mem_cgroup_id_get(mem_cgroup_from_css(css));
4271 css_get(css);
2f7dd7a4 4272 return 0;
8cdea7c0
BS
4273}
4274
eb95419b 4275static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4276{
eb95419b 4277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4278 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4279
4280 /*
4281 * Unregister events and notify userspace.
4282 * Notify userspace about cgroup removing only after rmdir of cgroup
4283 * directory to avoid race between userspace and kernelspace.
4284 */
fba94807
TH
4285 spin_lock(&memcg->event_list_lock);
4286 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4287 list_del_init(&event->list);
4288 schedule_work(&event->remove);
4289 }
fba94807 4290 spin_unlock(&memcg->event_list_lock);
ec64f515 4291
567e9ab2 4292 memcg_offline_kmem(memcg);
52ebea74 4293 wb_memcg_offline(memcg);
73f576c0
JW
4294
4295 mem_cgroup_id_put(memcg);
df878fb0
KH
4296}
4297
6df38689
VD
4298static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4299{
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
4302 invalidate_reclaim_iterators(memcg);
4303}
4304
eb95419b 4305static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4306{
eb95419b 4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4308
f7e1cb6e 4309 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4310 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4311
0db15298 4312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4313 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4314
0b8f73e1
JW
4315 vmpressure_cleanup(&memcg->vmpressure);
4316 cancel_work_sync(&memcg->high_work);
4317 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4318 memcg_free_kmem(memcg);
0b8f73e1 4319 mem_cgroup_free(memcg);
8cdea7c0
BS
4320}
4321
1ced953b
TH
4322/**
4323 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4324 * @css: the target css
4325 *
4326 * Reset the states of the mem_cgroup associated with @css. This is
4327 * invoked when the userland requests disabling on the default hierarchy
4328 * but the memcg is pinned through dependency. The memcg should stop
4329 * applying policies and should revert to the vanilla state as it may be
4330 * made visible again.
4331 *
4332 * The current implementation only resets the essential configurations.
4333 * This needs to be expanded to cover all the visible parts.
4334 */
4335static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4336{
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338
d334c9bc
VD
4339 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4340 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4344 memcg->low = 0;
4345 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4346 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4347 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4348}
4349
02491447 4350#ifdef CONFIG_MMU
7dc74be0 4351/* Handlers for move charge at task migration. */
854ffa8d 4352static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4353{
05b84301 4354 int ret;
9476db97 4355
d0164adc
MG
4356 /* Try a single bulk charge without reclaim first, kswapd may wake */
4357 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4358 if (!ret) {
854ffa8d 4359 mc.precharge += count;
854ffa8d
DN
4360 return ret;
4361 }
9476db97
JW
4362
4363 /* Try charges one by one with reclaim */
854ffa8d 4364 while (count--) {
00501b53 4365 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4366 if (ret)
38c5d72f 4367 return ret;
854ffa8d 4368 mc.precharge++;
9476db97 4369 cond_resched();
854ffa8d 4370 }
9476db97 4371 return 0;
4ffef5fe
DN
4372}
4373
4ffef5fe
DN
4374union mc_target {
4375 struct page *page;
02491447 4376 swp_entry_t ent;
4ffef5fe
DN
4377};
4378
4ffef5fe 4379enum mc_target_type {
8d32ff84 4380 MC_TARGET_NONE = 0,
4ffef5fe 4381 MC_TARGET_PAGE,
02491447 4382 MC_TARGET_SWAP,
4ffef5fe
DN
4383};
4384
90254a65
DN
4385static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4386 unsigned long addr, pte_t ptent)
4ffef5fe 4387{
90254a65 4388 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4389
90254a65
DN
4390 if (!page || !page_mapped(page))
4391 return NULL;
4392 if (PageAnon(page)) {
1dfab5ab 4393 if (!(mc.flags & MOVE_ANON))
90254a65 4394 return NULL;
1dfab5ab
JW
4395 } else {
4396 if (!(mc.flags & MOVE_FILE))
4397 return NULL;
4398 }
90254a65
DN
4399 if (!get_page_unless_zero(page))
4400 return NULL;
4401
4402 return page;
4403}
4404
4b91355e 4405#ifdef CONFIG_SWAP
90254a65 4406static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4407 pte_t ptent, swp_entry_t *entry)
90254a65 4408{
90254a65
DN
4409 struct page *page = NULL;
4410 swp_entry_t ent = pte_to_swp_entry(ptent);
4411
1dfab5ab 4412 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4413 return NULL;
4b91355e
KH
4414 /*
4415 * Because lookup_swap_cache() updates some statistics counter,
4416 * we call find_get_page() with swapper_space directly.
4417 */
33806f06 4418 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4419 if (do_memsw_account())
90254a65
DN
4420 entry->val = ent.val;
4421
4422 return page;
4423}
4b91355e
KH
4424#else
4425static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4426 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4427{
4428 return NULL;
4429}
4430#endif
90254a65 4431
87946a72
DN
4432static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4433 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4434{
4435 struct page *page = NULL;
87946a72
DN
4436 struct address_space *mapping;
4437 pgoff_t pgoff;
4438
4439 if (!vma->vm_file) /* anonymous vma */
4440 return NULL;
1dfab5ab 4441 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4442 return NULL;
4443
87946a72 4444 mapping = vma->vm_file->f_mapping;
0661a336 4445 pgoff = linear_page_index(vma, addr);
87946a72
DN
4446
4447 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4448#ifdef CONFIG_SWAP
4449 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4450 if (shmem_mapping(mapping)) {
4451 page = find_get_entry(mapping, pgoff);
4452 if (radix_tree_exceptional_entry(page)) {
4453 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4454 if (do_memsw_account())
139b6a6f
JW
4455 *entry = swp;
4456 page = find_get_page(swap_address_space(swp), swp.val);
4457 }
4458 } else
4459 page = find_get_page(mapping, pgoff);
4460#else
4461 page = find_get_page(mapping, pgoff);
aa3b1895 4462#endif
87946a72
DN
4463 return page;
4464}
4465
b1b0deab
CG
4466/**
4467 * mem_cgroup_move_account - move account of the page
4468 * @page: the page
25843c2b 4469 * @compound: charge the page as compound or small page
b1b0deab
CG
4470 * @from: mem_cgroup which the page is moved from.
4471 * @to: mem_cgroup which the page is moved to. @from != @to.
4472 *
3ac808fd 4473 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4474 *
4475 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4476 * from old cgroup.
4477 */
4478static int mem_cgroup_move_account(struct page *page,
f627c2f5 4479 bool compound,
b1b0deab
CG
4480 struct mem_cgroup *from,
4481 struct mem_cgroup *to)
4482{
4483 unsigned long flags;
f627c2f5 4484 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4485 int ret;
c4843a75 4486 bool anon;
b1b0deab
CG
4487
4488 VM_BUG_ON(from == to);
4489 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4490 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4491
4492 /*
6a93ca8f 4493 * Prevent mem_cgroup_migrate() from looking at
45637bab 4494 * page->mem_cgroup of its source page while we change it.
b1b0deab 4495 */
f627c2f5 4496 ret = -EBUSY;
b1b0deab
CG
4497 if (!trylock_page(page))
4498 goto out;
4499
4500 ret = -EINVAL;
4501 if (page->mem_cgroup != from)
4502 goto out_unlock;
4503
c4843a75
GT
4504 anon = PageAnon(page);
4505
b1b0deab
CG
4506 spin_lock_irqsave(&from->move_lock, flags);
4507
c4843a75 4508 if (!anon && page_mapped(page)) {
b1b0deab
CG
4509 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4510 nr_pages);
4511 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 nr_pages);
4513 }
4514
c4843a75
GT
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4525 nr_pages);
4526 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 nr_pages);
4528 }
4529 }
4530
b1b0deab
CG
4531 if (PageWriteback(page)) {
4532 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4533 nr_pages);
4534 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 nr_pages);
4536 }
4537
4538 /*
4539 * It is safe to change page->mem_cgroup here because the page
4540 * is referenced, charged, and isolated - we can't race with
4541 * uncharging, charging, migration, or LRU putback.
4542 */
4543
4544 /* caller should have done css_get */
4545 page->mem_cgroup = to;
4546 spin_unlock_irqrestore(&from->move_lock, flags);
4547
4548 ret = 0;
4549
4550 local_irq_disable();
f627c2f5 4551 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4552 memcg_check_events(to, page);
f627c2f5 4553 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4554 memcg_check_events(from, page);
4555 local_irq_enable();
4556out_unlock:
4557 unlock_page(page);
4558out:
4559 return ret;
4560}
4561
7cf7806c
LR
4562/**
4563 * get_mctgt_type - get target type of moving charge
4564 * @vma: the vma the pte to be checked belongs
4565 * @addr: the address corresponding to the pte to be checked
4566 * @ptent: the pte to be checked
4567 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4568 *
4569 * Returns
4570 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4571 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4572 * move charge. if @target is not NULL, the page is stored in target->page
4573 * with extra refcnt got(Callers should handle it).
4574 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4575 * target for charge migration. if @target is not NULL, the entry is stored
4576 * in target->ent.
4577 *
4578 * Called with pte lock held.
4579 */
4580
8d32ff84 4581static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4582 unsigned long addr, pte_t ptent, union mc_target *target)
4583{
4584 struct page *page = NULL;
8d32ff84 4585 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4586 swp_entry_t ent = { .val = 0 };
4587
4588 if (pte_present(ptent))
4589 page = mc_handle_present_pte(vma, addr, ptent);
4590 else if (is_swap_pte(ptent))
48406ef8 4591 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4592 else if (pte_none(ptent))
87946a72 4593 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4594
4595 if (!page && !ent.val)
8d32ff84 4596 return ret;
02491447 4597 if (page) {
02491447 4598 /*
0a31bc97 4599 * Do only loose check w/o serialization.
1306a85a 4600 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4601 * not under LRU exclusion.
02491447 4602 */
1306a85a 4603 if (page->mem_cgroup == mc.from) {
02491447
DN
4604 ret = MC_TARGET_PAGE;
4605 if (target)
4606 target->page = page;
4607 }
4608 if (!ret || !target)
4609 put_page(page);
4610 }
90254a65
DN
4611 /* There is a swap entry and a page doesn't exist or isn't charged */
4612 if (ent.val && !ret &&
34c00c31 4613 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4614 ret = MC_TARGET_SWAP;
4615 if (target)
4616 target->ent = ent;
4ffef5fe 4617 }
4ffef5fe
DN
4618 return ret;
4619}
4620
12724850
NH
4621#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4622/*
4623 * We don't consider swapping or file mapped pages because THP does not
4624 * support them for now.
4625 * Caller should make sure that pmd_trans_huge(pmd) is true.
4626 */
4627static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4628 unsigned long addr, pmd_t pmd, union mc_target *target)
4629{
4630 struct page *page = NULL;
12724850
NH
4631 enum mc_target_type ret = MC_TARGET_NONE;
4632
4633 page = pmd_page(pmd);
309381fe 4634 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4635 if (!(mc.flags & MOVE_ANON))
12724850 4636 return ret;
1306a85a 4637 if (page->mem_cgroup == mc.from) {
12724850
NH
4638 ret = MC_TARGET_PAGE;
4639 if (target) {
4640 get_page(page);
4641 target->page = page;
4642 }
4643 }
4644 return ret;
4645}
4646#else
4647static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 unsigned long addr, pmd_t pmd, union mc_target *target)
4649{
4650 return MC_TARGET_NONE;
4651}
4652#endif
4653
4ffef5fe
DN
4654static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4655 unsigned long addr, unsigned long end,
4656 struct mm_walk *walk)
4657{
26bcd64a 4658 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4659 pte_t *pte;
4660 spinlock_t *ptl;
4661
b6ec57f4
KS
4662 ptl = pmd_trans_huge_lock(pmd, vma);
4663 if (ptl) {
12724850
NH
4664 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4665 mc.precharge += HPAGE_PMD_NR;
bf929152 4666 spin_unlock(ptl);
1a5a9906 4667 return 0;
12724850 4668 }
03319327 4669
45f83cef
AA
4670 if (pmd_trans_unstable(pmd))
4671 return 0;
4ffef5fe
DN
4672 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4673 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4674 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4675 mc.precharge++; /* increment precharge temporarily */
4676 pte_unmap_unlock(pte - 1, ptl);
4677 cond_resched();
4678
7dc74be0
DN
4679 return 0;
4680}
4681
4ffef5fe
DN
4682static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4683{
4684 unsigned long precharge;
4ffef5fe 4685
26bcd64a
NH
4686 struct mm_walk mem_cgroup_count_precharge_walk = {
4687 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 .mm = mm,
4689 };
dfe076b0 4690 down_read(&mm->mmap_sem);
26bcd64a 4691 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4692 up_read(&mm->mmap_sem);
4ffef5fe
DN
4693
4694 precharge = mc.precharge;
4695 mc.precharge = 0;
4696
4697 return precharge;
4698}
4699
4ffef5fe
DN
4700static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701{
dfe076b0
DN
4702 unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704 VM_BUG_ON(mc.moving_task);
4705 mc.moving_task = current;
4706 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4707}
4708
dfe076b0
DN
4709/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710static void __mem_cgroup_clear_mc(void)
4ffef5fe 4711{
2bd9bb20
KH
4712 struct mem_cgroup *from = mc.from;
4713 struct mem_cgroup *to = mc.to;
4714
4ffef5fe 4715 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4716 if (mc.precharge) {
00501b53 4717 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4718 mc.precharge = 0;
4719 }
4720 /*
4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 * we must uncharge here.
4723 */
4724 if (mc.moved_charge) {
00501b53 4725 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4726 mc.moved_charge = 0;
4ffef5fe 4727 }
483c30b5
DN
4728 /* we must fixup refcnts and charges */
4729 if (mc.moved_swap) {
483c30b5 4730 /* uncharge swap account from the old cgroup */
ce00a967 4731 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4732 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4733
05b84301 4734 /*
3e32cb2e
JW
4735 * we charged both to->memory and to->memsw, so we
4736 * should uncharge to->memory.
05b84301 4737 */
ce00a967 4738 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4739 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4740
e8ea14cc 4741 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4742
4050377b 4743 /* we've already done css_get(mc.to) */
483c30b5
DN
4744 mc.moved_swap = 0;
4745 }
dfe076b0
DN
4746 memcg_oom_recover(from);
4747 memcg_oom_recover(to);
4748 wake_up_all(&mc.waitq);
4749}
4750
4751static void mem_cgroup_clear_mc(void)
4752{
264a0ae1
TH
4753 struct mm_struct *mm = mc.mm;
4754
dfe076b0
DN
4755 /*
4756 * we must clear moving_task before waking up waiters at the end of
4757 * task migration.
4758 */
4759 mc.moving_task = NULL;
4760 __mem_cgroup_clear_mc();
2bd9bb20 4761 spin_lock(&mc.lock);
4ffef5fe
DN
4762 mc.from = NULL;
4763 mc.to = NULL;
264a0ae1 4764 mc.mm = NULL;
2bd9bb20 4765 spin_unlock(&mc.lock);
264a0ae1
TH
4766
4767 mmput(mm);
4ffef5fe
DN
4768}
4769
1f7dd3e5 4770static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4771{
1f7dd3e5 4772 struct cgroup_subsys_state *css;
eed67d75 4773 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4774 struct mem_cgroup *from;
4530eddb 4775 struct task_struct *leader, *p;
9f2115f9 4776 struct mm_struct *mm;
1dfab5ab 4777 unsigned long move_flags;
9f2115f9 4778 int ret = 0;
7dc74be0 4779
1f7dd3e5
TH
4780 /* charge immigration isn't supported on the default hierarchy */
4781 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4782 return 0;
4783
4530eddb
TH
4784 /*
4785 * Multi-process migrations only happen on the default hierarchy
4786 * where charge immigration is not used. Perform charge
4787 * immigration if @tset contains a leader and whine if there are
4788 * multiple.
4789 */
4790 p = NULL;
1f7dd3e5 4791 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4792 WARN_ON_ONCE(p);
4793 p = leader;
1f7dd3e5 4794 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4795 }
4796 if (!p)
4797 return 0;
4798
1f7dd3e5
TH
4799 /*
4800 * We are now commited to this value whatever it is. Changes in this
4801 * tunable will only affect upcoming migrations, not the current one.
4802 * So we need to save it, and keep it going.
4803 */
4804 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4805 if (!move_flags)
4806 return 0;
4807
9f2115f9
TH
4808 from = mem_cgroup_from_task(p);
4809
4810 VM_BUG_ON(from == memcg);
4811
4812 mm = get_task_mm(p);
4813 if (!mm)
4814 return 0;
4815 /* We move charges only when we move a owner of the mm */
4816 if (mm->owner == p) {
4817 VM_BUG_ON(mc.from);
4818 VM_BUG_ON(mc.to);
4819 VM_BUG_ON(mc.precharge);
4820 VM_BUG_ON(mc.moved_charge);
4821 VM_BUG_ON(mc.moved_swap);
4822
4823 spin_lock(&mc.lock);
264a0ae1 4824 mc.mm = mm;
9f2115f9
TH
4825 mc.from = from;
4826 mc.to = memcg;
4827 mc.flags = move_flags;
4828 spin_unlock(&mc.lock);
4829 /* We set mc.moving_task later */
4830
4831 ret = mem_cgroup_precharge_mc(mm);
4832 if (ret)
4833 mem_cgroup_clear_mc();
264a0ae1
TH
4834 } else {
4835 mmput(mm);
7dc74be0
DN
4836 }
4837 return ret;
4838}
4839
1f7dd3e5 4840static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4841{
4e2f245d
JW
4842 if (mc.to)
4843 mem_cgroup_clear_mc();
7dc74be0
DN
4844}
4845
4ffef5fe
DN
4846static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 unsigned long addr, unsigned long end,
4848 struct mm_walk *walk)
7dc74be0 4849{
4ffef5fe 4850 int ret = 0;
26bcd64a 4851 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4852 pte_t *pte;
4853 spinlock_t *ptl;
12724850
NH
4854 enum mc_target_type target_type;
4855 union mc_target target;
4856 struct page *page;
4ffef5fe 4857
b6ec57f4
KS
4858 ptl = pmd_trans_huge_lock(pmd, vma);
4859 if (ptl) {
62ade86a 4860 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4861 spin_unlock(ptl);
12724850
NH
4862 return 0;
4863 }
4864 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4865 if (target_type == MC_TARGET_PAGE) {
4866 page = target.page;
4867 if (!isolate_lru_page(page)) {
f627c2f5 4868 if (!mem_cgroup_move_account(page, true,
1306a85a 4869 mc.from, mc.to)) {
12724850
NH
4870 mc.precharge -= HPAGE_PMD_NR;
4871 mc.moved_charge += HPAGE_PMD_NR;
4872 }
4873 putback_lru_page(page);
4874 }
4875 put_page(page);
4876 }
bf929152 4877 spin_unlock(ptl);
1a5a9906 4878 return 0;
12724850
NH
4879 }
4880
45f83cef
AA
4881 if (pmd_trans_unstable(pmd))
4882 return 0;
4ffef5fe
DN
4883retry:
4884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4885 for (; addr != end; addr += PAGE_SIZE) {
4886 pte_t ptent = *(pte++);
02491447 4887 swp_entry_t ent;
4ffef5fe
DN
4888
4889 if (!mc.precharge)
4890 break;
4891
8d32ff84 4892 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4893 case MC_TARGET_PAGE:
4894 page = target.page;
53f9263b
KS
4895 /*
4896 * We can have a part of the split pmd here. Moving it
4897 * can be done but it would be too convoluted so simply
4898 * ignore such a partial THP and keep it in original
4899 * memcg. There should be somebody mapping the head.
4900 */
4901 if (PageTransCompound(page))
4902 goto put;
4ffef5fe
DN
4903 if (isolate_lru_page(page))
4904 goto put;
f627c2f5
KS
4905 if (!mem_cgroup_move_account(page, false,
4906 mc.from, mc.to)) {
4ffef5fe 4907 mc.precharge--;
854ffa8d
DN
4908 /* we uncharge from mc.from later. */
4909 mc.moved_charge++;
4ffef5fe
DN
4910 }
4911 putback_lru_page(page);
8d32ff84 4912put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4913 put_page(page);
4914 break;
02491447
DN
4915 case MC_TARGET_SWAP:
4916 ent = target.ent;
e91cbb42 4917 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4918 mc.precharge--;
483c30b5
DN
4919 /* we fixup refcnts and charges later. */
4920 mc.moved_swap++;
4921 }
02491447 4922 break;
4ffef5fe
DN
4923 default:
4924 break;
4925 }
4926 }
4927 pte_unmap_unlock(pte - 1, ptl);
4928 cond_resched();
4929
4930 if (addr != end) {
4931 /*
4932 * We have consumed all precharges we got in can_attach().
4933 * We try charge one by one, but don't do any additional
4934 * charges to mc.to if we have failed in charge once in attach()
4935 * phase.
4936 */
854ffa8d 4937 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4938 if (!ret)
4939 goto retry;
4940 }
4941
4942 return ret;
4943}
4944
264a0ae1 4945static void mem_cgroup_move_charge(void)
4ffef5fe 4946{
26bcd64a
NH
4947 struct mm_walk mem_cgroup_move_charge_walk = {
4948 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4949 .mm = mc.mm,
26bcd64a 4950 };
4ffef5fe
DN
4951
4952 lru_add_drain_all();
312722cb 4953 /*
81f8c3a4
JW
4954 * Signal lock_page_memcg() to take the memcg's move_lock
4955 * while we're moving its pages to another memcg. Then wait
4956 * for already started RCU-only updates to finish.
312722cb
JW
4957 */
4958 atomic_inc(&mc.from->moving_account);
4959 synchronize_rcu();
dfe076b0 4960retry:
264a0ae1 4961 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4962 /*
4963 * Someone who are holding the mmap_sem might be waiting in
4964 * waitq. So we cancel all extra charges, wake up all waiters,
4965 * and retry. Because we cancel precharges, we might not be able
4966 * to move enough charges, but moving charge is a best-effort
4967 * feature anyway, so it wouldn't be a big problem.
4968 */
4969 __mem_cgroup_clear_mc();
4970 cond_resched();
4971 goto retry;
4972 }
26bcd64a
NH
4973 /*
4974 * When we have consumed all precharges and failed in doing
4975 * additional charge, the page walk just aborts.
4976 */
4977 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4978 up_read(&mc.mm->mmap_sem);
312722cb 4979 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4980}
4981
264a0ae1 4982static void mem_cgroup_move_task(void)
67e465a7 4983{
264a0ae1
TH
4984 if (mc.to) {
4985 mem_cgroup_move_charge();
a433658c 4986 mem_cgroup_clear_mc();
264a0ae1 4987 }
67e465a7 4988}
5cfb80a7 4989#else /* !CONFIG_MMU */
1f7dd3e5 4990static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4991{
4992 return 0;
4993}
1f7dd3e5 4994static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4995{
4996}
264a0ae1 4997static void mem_cgroup_move_task(void)
5cfb80a7
DN
4998{
4999}
5000#endif
67e465a7 5001
f00baae7
TH
5002/*
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5004 * to verify whether we're attached to the default hierarchy on each mount
5005 * attempt.
f00baae7 5006 */
eb95419b 5007static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5008{
5009 /*
aa6ec29b 5010 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5013 */
9e10a130 5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5015 root_mem_cgroup->use_hierarchy = true;
5016 else
5017 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5018}
5019
241994ed
JW
5020static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 struct cftype *cft)
5022{
f5fc3c5d
JW
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5026}
5027
5028static int memory_low_show(struct seq_file *m, void *v)
5029{
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5031 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5032
5033 if (low == PAGE_COUNTER_MAX)
d2973697 5034 seq_puts(m, "max\n");
241994ed
JW
5035 else
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037
5038 return 0;
5039}
5040
5041static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned long low;
5046 int err;
5047
5048 buf = strstrip(buf);
d2973697 5049 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5050 if (err)
5051 return err;
5052
5053 memcg->low = low;
5054
5055 return nbytes;
5056}
5057
5058static int memory_high_show(struct seq_file *m, void *v)
5059{
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5061 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5062
5063 if (high == PAGE_COUNTER_MAX)
d2973697 5064 seq_puts(m, "max\n");
241994ed
JW
5065 else
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067
5068 return 0;
5069}
5070
5071static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5075 unsigned long nr_pages;
241994ed
JW
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
d2973697 5080 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
588083bb
JW
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 GFP_KERNEL, true);
5090
2529bb3a 5091 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5092 return nbytes;
5093}
5094
5095static int memory_max_show(struct seq_file *m, void *v)
5096{
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5098 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5099
5100 if (max == PAGE_COUNTER_MAX)
d2973697 5101 seq_puts(m, "max\n");
241994ed
JW
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106}
5107
5108static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110{
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
241994ed
JW
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
d2973697 5118 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5119 if (err)
5120 return err;
5121
b6e6edcf
JW
5122 xchg(&memcg->memory.limit, max);
5123
5124 for (;;) {
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5126
5127 if (nr_pages <= max)
5128 break;
5129
5130 if (signal_pending(current)) {
5131 err = -EINTR;
5132 break;
5133 }
5134
5135 if (!drained) {
5136 drain_all_stock(memcg);
5137 drained = true;
5138 continue;
5139 }
5140
5141 if (nr_reclaims) {
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 GFP_KERNEL, true))
5144 nr_reclaims--;
5145 continue;
5146 }
5147
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 break;
5151 }
241994ed 5152
2529bb3a 5153 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5154 return nbytes;
5155}
5156
5157static int memory_events_show(struct seq_file *m, void *v)
5158{
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165
5166 return 0;
5167}
5168
587d9f72
JW
5169static int memory_stat_show(struct seq_file *m, void *v)
5170{
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5174 int i;
5175
5176 /*
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5179 *
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 *
5184 * Current memory state:
5185 */
5186
72b54e73
VD
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5189
587d9f72 5190 seq_printf(m, "anon %llu\n",
72b54e73 5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5192 seq_printf(m, "file %llu\n",
72b54e73 5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5194 seq_printf(m, "kernel_stack %llu\n",
5195 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5199 seq_printf(m, "sock %llu\n",
72b54e73 5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5201
5202 seq_printf(m, "file_mapped %llu\n",
72b54e73 5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5204 seq_printf(m, "file_dirty %llu\n",
72b54e73 5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5206 seq_printf(m, "file_writeback %llu\n",
72b54e73 5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5208
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5212
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 }
5218
27ee57c9
VD
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223
587d9f72
JW
5224 /* Accumulated memory events */
5225
5226 seq_printf(m, "pgfault %lu\n",
72b54e73 5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5228 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5230
5231 return 0;
5232}
5233
241994ed
JW
5234static struct cftype memory_files[] = {
5235 {
5236 .name = "current",
f5fc3c5d 5237 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5238 .read_u64 = memory_current_read,
5239 },
5240 {
5241 .name = "low",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5245 },
5246 {
5247 .name = "high",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5251 },
5252 {
5253 .name = "max",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5257 },
5258 {
5259 .name = "events",
5260 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5261 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5262 .seq_show = memory_events_show,
5263 },
587d9f72
JW
5264 {
5265 .name = "stat",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5268 },
241994ed
JW
5269 { } /* terminate */
5270};
5271
073219e9 5272struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5273 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5274 .css_online = mem_cgroup_css_online,
92fb9748 5275 .css_offline = mem_cgroup_css_offline,
6df38689 5276 .css_released = mem_cgroup_css_released,
92fb9748 5277 .css_free = mem_cgroup_css_free,
1ced953b 5278 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5281 .post_attach = mem_cgroup_move_task,
f00baae7 5282 .bind = mem_cgroup_bind,
241994ed
JW
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5285 .early_init = 0,
8cdea7c0 5286};
c077719b 5287
241994ed
JW
5288/**
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5292 *
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5295 */
5296bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297{
5298 if (mem_cgroup_disabled())
5299 return false;
5300
5301 /*
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5305 */
5306
5307 if (memcg == root_mem_cgroup)
5308 return false;
5309
4e54dede 5310 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5311 return false;
5312
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5315
5316 if (memcg == root_mem_cgroup)
5317 break;
5318
4e54dede 5319 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5320 return false;
5321 }
5322 return true;
5323}
5324
00501b53
JW
5325/**
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
25843c2b 5331 * @compound: charge the page as compound or small page
00501b53
JW
5332 *
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5335 *
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5338 *
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342 */
5343int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 bool compound)
00501b53
JW
5346{
5347 struct mem_cgroup *memcg = NULL;
f627c2f5 5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5349 int ret = 0;
5350
5351 if (mem_cgroup_disabled())
5352 goto out;
5353
5354 if (PageSwapCache(page)) {
00501b53
JW
5355 /*
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5361 */
e993d905 5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5363 if (page->mem_cgroup)
00501b53 5364 goto out;
e993d905 5365
37e84351 5366 if (do_swap_account) {
e993d905
VD
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5369
5370 rcu_read_lock();
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5373 memcg = NULL;
5374 rcu_read_unlock();
5375 }
00501b53
JW
5376 }
5377
00501b53
JW
5378 if (!memcg)
5379 memcg = get_mem_cgroup_from_mm(mm);
5380
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5382
5383 css_put(&memcg->css);
00501b53
JW
5384out:
5385 *memcgp = memcg;
5386 return ret;
5387}
5388
5389/**
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
25843c2b 5394 * @compound: charge the page as compound or small page
00501b53
JW
5395 *
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5400 *
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5403 *
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405 */
5406void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5407 bool lrucare, bool compound)
00501b53 5408{
f627c2f5 5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5410
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413
5414 if (mem_cgroup_disabled())
5415 return;
5416 /*
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5420 */
5421 if (!memcg)
5422 return;
5423
6abb5a86
JW
5424 commit_charge(page, memcg, lrucare);
5425
6abb5a86 5426 local_irq_disable();
f627c2f5 5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5428 memcg_check_events(memcg, page);
5429 local_irq_enable();
00501b53 5430
7941d214 5431 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5432 swp_entry_t entry = { .val = page_private(page) };
5433 /*
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5437 */
5438 mem_cgroup_uncharge_swap(entry);
5439 }
5440}
5441
5442/**
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
25843c2b 5446 * @compound: charge the page as compound or small page
00501b53
JW
5447 *
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5449 */
f627c2f5
KS
5450void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool compound)
00501b53 5452{
f627c2f5 5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5454
5455 if (mem_cgroup_disabled())
5456 return;
5457 /*
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5461 */
5462 if (!memcg)
5463 return;
5464
00501b53
JW
5465 cancel_charge(memcg, nr_pages);
5466}
5467
747db954 5468static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5469 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
747db954 5472{
5e8d35f8 5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5474 unsigned long flags;
5475
ce00a967 5476 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5477 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5478 if (do_memsw_account())
18eca2e6 5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5482 memcg_oom_recover(memcg);
5483 }
747db954
JW
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
e8ea14cc
JW
5493
5494 if (!mem_cgroup_is_root(memcg))
18eca2e6 5495 css_put_many(&memcg->css, nr_pages);
747db954
JW
5496}
5497
5498static void uncharge_list(struct list_head *page_list)
5499{
5500 struct mem_cgroup *memcg = NULL;
747db954
JW
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5e8d35f8 5504 unsigned long nr_kmem = 0;
747db954 5505 unsigned long pgpgout = 0;
747db954
JW
5506 struct list_head *next;
5507 struct page *page;
5508
8b592656
JW
5509 /*
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5512 */
747db954
JW
5513 next = page_list->next;
5514 do {
747db954
JW
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5517
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5520
1306a85a 5521 if (!page->mem_cgroup)
747db954
JW
5522 continue;
5523
5524 /*
5525 * Nobody should be changing or seriously looking at
1306a85a 5526 * page->mem_cgroup at this point, we have fully
29833315 5527 * exclusive access to the page.
747db954
JW
5528 */
5529
1306a85a 5530 if (memcg != page->mem_cgroup) {
747db954 5531 if (memcg) {
18eca2e6 5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
747db954 5536 }
1306a85a 5537 memcg = page->mem_cgroup;
747db954
JW
5538 }
5539
5e8d35f8
VD
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
747db954 5542
5e8d35f8
VD
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5e8d35f8
VD
5545 nr_huge += nr_pages;
5546 }
5547 if (PageAnon(page))
5548 nr_anon += nr_pages;
5549 else
5550 nr_file += nr_pages;
5551 pgpgout++;
5552 } else
5553 nr_kmem += 1 << compound_order(page);
747db954 5554
1306a85a 5555 page->mem_cgroup = NULL;
747db954
JW
5556 } while (next != page_list);
5557
5558 if (memcg)
18eca2e6 5559 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5560 nr_huge, nr_kmem, page);
747db954
JW
5561}
5562
0a31bc97
JW
5563/**
5564 * mem_cgroup_uncharge - uncharge a page
5565 * @page: page to uncharge
5566 *
5567 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568 * mem_cgroup_commit_charge().
5569 */
5570void mem_cgroup_uncharge(struct page *page)
5571{
0a31bc97
JW
5572 if (mem_cgroup_disabled())
5573 return;
5574
747db954 5575 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5576 if (!page->mem_cgroup)
0a31bc97
JW
5577 return;
5578
747db954
JW
5579 INIT_LIST_HEAD(&page->lru);
5580 uncharge_list(&page->lru);
5581}
0a31bc97 5582
747db954
JW
5583/**
5584 * mem_cgroup_uncharge_list - uncharge a list of page
5585 * @page_list: list of pages to uncharge
5586 *
5587 * Uncharge a list of pages previously charged with
5588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589 */
5590void mem_cgroup_uncharge_list(struct list_head *page_list)
5591{
5592 if (mem_cgroup_disabled())
5593 return;
0a31bc97 5594
747db954
JW
5595 if (!list_empty(page_list))
5596 uncharge_list(page_list);
0a31bc97
JW
5597}
5598
5599/**
6a93ca8f
JW
5600 * mem_cgroup_migrate - charge a page's replacement
5601 * @oldpage: currently circulating page
5602 * @newpage: replacement page
0a31bc97 5603 *
6a93ca8f
JW
5604 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605 * be uncharged upon free.
0a31bc97
JW
5606 *
5607 * Both pages must be locked, @newpage->mapping must be set up.
5608 */
6a93ca8f 5609void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5610{
29833315 5611 struct mem_cgroup *memcg;
44b7a8d3
JW
5612 unsigned int nr_pages;
5613 bool compound;
d93c4130 5614 unsigned long flags;
0a31bc97
JW
5615
5616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 newpage);
0a31bc97
JW
5621
5622 if (mem_cgroup_disabled())
5623 return;
5624
5625 /* Page cache replacement: new page already charged? */
1306a85a 5626 if (newpage->mem_cgroup)
0a31bc97
JW
5627 return;
5628
45637bab 5629 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5630 memcg = oldpage->mem_cgroup;
29833315 5631 if (!memcg)
0a31bc97
JW
5632 return;
5633
44b7a8d3
JW
5634 /* Force-charge the new page. The old one will be freed soon */
5635 compound = PageTransHuge(newpage);
5636 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637
5638 page_counter_charge(&memcg->memory, nr_pages);
5639 if (do_memsw_account())
5640 page_counter_charge(&memcg->memsw, nr_pages);
5641 css_get_many(&memcg->css, nr_pages);
0a31bc97 5642
9cf7666a 5643 commit_charge(newpage, memcg, false);
44b7a8d3 5644
d93c4130 5645 local_irq_save(flags);
44b7a8d3
JW
5646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 memcg_check_events(memcg, newpage);
d93c4130 5648 local_irq_restore(flags);
0a31bc97
JW
5649}
5650
ef12947c 5651DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5652EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653
5654void sock_update_memcg(struct sock *sk)
5655{
5656 struct mem_cgroup *memcg;
5657
5658 /* Socket cloning can throw us here with sk_cgrp already
5659 * filled. It won't however, necessarily happen from
5660 * process context. So the test for root memcg given
5661 * the current task's memcg won't help us in this case.
5662 *
5663 * Respecting the original socket's memcg is a better
5664 * decision in this case.
5665 */
5666 if (sk->sk_memcg) {
5667 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5668 css_get(&sk->sk_memcg->css);
5669 return;
5670 }
5671
5672 rcu_read_lock();
5673 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5674 if (memcg == root_mem_cgroup)
5675 goto out;
0db15298 5676 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5677 goto out;
f7e1cb6e 5678 if (css_tryget_online(&memcg->css))
11092087 5679 sk->sk_memcg = memcg;
f7e1cb6e 5680out:
11092087
JW
5681 rcu_read_unlock();
5682}
5683EXPORT_SYMBOL(sock_update_memcg);
5684
5685void sock_release_memcg(struct sock *sk)
5686{
5687 WARN_ON(!sk->sk_memcg);
5688 css_put(&sk->sk_memcg->css);
5689}
5690
5691/**
5692 * mem_cgroup_charge_skmem - charge socket memory
5693 * @memcg: memcg to charge
5694 * @nr_pages: number of pages to charge
5695 *
5696 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5697 * @memcg's configured limit, %false if the charge had to be forced.
5698 */
5699bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5700{
f7e1cb6e 5701 gfp_t gfp_mask = GFP_KERNEL;
11092087 5702
f7e1cb6e 5703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5704 struct page_counter *fail;
f7e1cb6e 5705
0db15298
JW
5706 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5707 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5708 return true;
5709 }
0db15298
JW
5710 page_counter_charge(&memcg->tcpmem, nr_pages);
5711 memcg->tcpmem_pressure = 1;
f7e1cb6e 5712 return false;
11092087 5713 }
d886f4e4 5714
f7e1cb6e
JW
5715 /* Don't block in the packet receive path */
5716 if (in_softirq())
5717 gfp_mask = GFP_NOWAIT;
5718
b2807f07
JW
5719 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5720
f7e1cb6e
JW
5721 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5722 return true;
5723
5724 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5725 return false;
5726}
5727
5728/**
5729 * mem_cgroup_uncharge_skmem - uncharge socket memory
5730 * @memcg - memcg to uncharge
5731 * @nr_pages - number of pages to uncharge
5732 */
5733void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5734{
f7e1cb6e 5735 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5736 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5737 return;
5738 }
d886f4e4 5739
b2807f07
JW
5740 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5741
f7e1cb6e
JW
5742 page_counter_uncharge(&memcg->memory, nr_pages);
5743 css_put_many(&memcg->css, nr_pages);
11092087
JW
5744}
5745
f7e1cb6e
JW
5746static int __init cgroup_memory(char *s)
5747{
5748 char *token;
5749
5750 while ((token = strsep(&s, ",")) != NULL) {
5751 if (!*token)
5752 continue;
5753 if (!strcmp(token, "nosocket"))
5754 cgroup_memory_nosocket = true;
04823c83
VD
5755 if (!strcmp(token, "nokmem"))
5756 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5757 }
5758 return 0;
5759}
5760__setup("cgroup.memory=", cgroup_memory);
11092087 5761
2d11085e 5762/*
1081312f
MH
5763 * subsys_initcall() for memory controller.
5764 *
5765 * Some parts like hotcpu_notifier() have to be initialized from this context
5766 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5767 * everything that doesn't depend on a specific mem_cgroup structure should
5768 * be initialized from here.
2d11085e
MH
5769 */
5770static int __init mem_cgroup_init(void)
5771{
95a045f6
JW
5772 int cpu, node;
5773
2d11085e 5774 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5775
5776 for_each_possible_cpu(cpu)
5777 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5778 drain_local_stock);
5779
5780 for_each_node(node) {
5781 struct mem_cgroup_tree_per_node *rtpn;
5782 int zone;
5783
5784 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5785 node_online(node) ? node : NUMA_NO_NODE);
5786
5787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5788 struct mem_cgroup_tree_per_zone *rtpz;
5789
5790 rtpz = &rtpn->rb_tree_per_zone[zone];
5791 rtpz->rb_root = RB_ROOT;
5792 spin_lock_init(&rtpz->lock);
5793 }
5794 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5795 }
5796
2d11085e
MH
5797 return 0;
5798}
5799subsys_initcall(mem_cgroup_init);
21afa38e
JW
5800
5801#ifdef CONFIG_MEMCG_SWAP
5802/**
5803 * mem_cgroup_swapout - transfer a memsw charge to swap
5804 * @page: page whose memsw charge to transfer
5805 * @entry: swap entry to move the charge to
5806 *
5807 * Transfer the memsw charge of @page to @entry.
5808 */
5809void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5810{
5811 struct mem_cgroup *memcg;
5812 unsigned short oldid;
5813
5814 VM_BUG_ON_PAGE(PageLRU(page), page);
5815 VM_BUG_ON_PAGE(page_count(page), page);
5816
7941d214 5817 if (!do_memsw_account())
21afa38e
JW
5818 return;
5819
5820 memcg = page->mem_cgroup;
5821
5822 /* Readahead page, never charged */
5823 if (!memcg)
5824 return;
5825
73f576c0 5826 mem_cgroup_id_get(memcg);
21afa38e
JW
5827 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5828 VM_BUG_ON_PAGE(oldid, page);
5829 mem_cgroup_swap_statistics(memcg, true);
5830
5831 page->mem_cgroup = NULL;
5832
5833 if (!mem_cgroup_is_root(memcg))
5834 page_counter_uncharge(&memcg->memory, 1);
5835
ce9ce665
SAS
5836 /*
5837 * Interrupts should be disabled here because the caller holds the
5838 * mapping->tree_lock lock which is taken with interrupts-off. It is
5839 * important here to have the interrupts disabled because it is the
5840 * only synchronisation we have for udpating the per-CPU variables.
5841 */
5842 VM_BUG_ON(!irqs_disabled());
f627c2f5 5843 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5844 memcg_check_events(memcg, page);
73f576c0
JW
5845
5846 if (!mem_cgroup_is_root(memcg))
5847 css_put(&memcg->css);
21afa38e
JW
5848}
5849
37e84351
VD
5850/*
5851 * mem_cgroup_try_charge_swap - try charging a swap entry
5852 * @page: page being added to swap
5853 * @entry: swap entry to charge
5854 *
5855 * Try to charge @entry to the memcg that @page belongs to.
5856 *
5857 * Returns 0 on success, -ENOMEM on failure.
5858 */
5859int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5860{
5861 struct mem_cgroup *memcg;
5862 struct page_counter *counter;
5863 unsigned short oldid;
5864
5865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5866 return 0;
5867
5868 memcg = page->mem_cgroup;
5869
5870 /* Readahead page, never charged */
5871 if (!memcg)
5872 return 0;
5873
5874 if (!mem_cgroup_is_root(memcg) &&
5875 !page_counter_try_charge(&memcg->swap, 1, &counter))
5876 return -ENOMEM;
5877
73f576c0 5878 mem_cgroup_id_get(memcg);
37e84351
VD
5879 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5880 VM_BUG_ON_PAGE(oldid, page);
5881 mem_cgroup_swap_statistics(memcg, true);
5882
37e84351
VD
5883 return 0;
5884}
5885
21afa38e
JW
5886/**
5887 * mem_cgroup_uncharge_swap - uncharge a swap entry
5888 * @entry: swap entry to uncharge
5889 *
37e84351 5890 * Drop the swap charge associated with @entry.
21afa38e
JW
5891 */
5892void mem_cgroup_uncharge_swap(swp_entry_t entry)
5893{
5894 struct mem_cgroup *memcg;
5895 unsigned short id;
5896
37e84351 5897 if (!do_swap_account)
21afa38e
JW
5898 return;
5899
5900 id = swap_cgroup_record(entry, 0);
5901 rcu_read_lock();
adbe427b 5902 memcg = mem_cgroup_from_id(id);
21afa38e 5903 if (memcg) {
37e84351
VD
5904 if (!mem_cgroup_is_root(memcg)) {
5905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5906 page_counter_uncharge(&memcg->swap, 1);
5907 else
5908 page_counter_uncharge(&memcg->memsw, 1);
5909 }
21afa38e 5910 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5911 mem_cgroup_id_put(memcg);
21afa38e
JW
5912 }
5913 rcu_read_unlock();
5914}
5915
d8b38438
VD
5916long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5917{
5918 long nr_swap_pages = get_nr_swap_pages();
5919
5920 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5921 return nr_swap_pages;
5922 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5923 nr_swap_pages = min_t(long, nr_swap_pages,
5924 READ_ONCE(memcg->swap.limit) -
5925 page_counter_read(&memcg->swap));
5926 return nr_swap_pages;
5927}
5928
5ccc5aba
VD
5929bool mem_cgroup_swap_full(struct page *page)
5930{
5931 struct mem_cgroup *memcg;
5932
5933 VM_BUG_ON_PAGE(!PageLocked(page), page);
5934
5935 if (vm_swap_full())
5936 return true;
5937 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5938 return false;
5939
5940 memcg = page->mem_cgroup;
5941 if (!memcg)
5942 return false;
5943
5944 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5945 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5946 return true;
5947
5948 return false;
5949}
5950
21afa38e
JW
5951/* for remember boot option*/
5952#ifdef CONFIG_MEMCG_SWAP_ENABLED
5953static int really_do_swap_account __initdata = 1;
5954#else
5955static int really_do_swap_account __initdata;
5956#endif
5957
5958static int __init enable_swap_account(char *s)
5959{
5960 if (!strcmp(s, "1"))
5961 really_do_swap_account = 1;
5962 else if (!strcmp(s, "0"))
5963 really_do_swap_account = 0;
5964 return 1;
5965}
5966__setup("swapaccount=", enable_swap_account);
5967
37e84351
VD
5968static u64 swap_current_read(struct cgroup_subsys_state *css,
5969 struct cftype *cft)
5970{
5971 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5972
5973 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5974}
5975
5976static int swap_max_show(struct seq_file *m, void *v)
5977{
5978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5979 unsigned long max = READ_ONCE(memcg->swap.limit);
5980
5981 if (max == PAGE_COUNTER_MAX)
5982 seq_puts(m, "max\n");
5983 else
5984 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5985
5986 return 0;
5987}
5988
5989static ssize_t swap_max_write(struct kernfs_open_file *of,
5990 char *buf, size_t nbytes, loff_t off)
5991{
5992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5993 unsigned long max;
5994 int err;
5995
5996 buf = strstrip(buf);
5997 err = page_counter_memparse(buf, "max", &max);
5998 if (err)
5999 return err;
6000
6001 mutex_lock(&memcg_limit_mutex);
6002 err = page_counter_limit(&memcg->swap, max);
6003 mutex_unlock(&memcg_limit_mutex);
6004 if (err)
6005 return err;
6006
6007 return nbytes;
6008}
6009
6010static struct cftype swap_files[] = {
6011 {
6012 .name = "swap.current",
6013 .flags = CFTYPE_NOT_ON_ROOT,
6014 .read_u64 = swap_current_read,
6015 },
6016 {
6017 .name = "swap.max",
6018 .flags = CFTYPE_NOT_ON_ROOT,
6019 .seq_show = swap_max_show,
6020 .write = swap_max_write,
6021 },
6022 { } /* terminate */
6023};
6024
21afa38e
JW
6025static struct cftype memsw_cgroup_files[] = {
6026 {
6027 .name = "memsw.usage_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 {
6032 .name = "memsw.max_usage_in_bytes",
6033 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6034 .write = mem_cgroup_reset,
6035 .read_u64 = mem_cgroup_read_u64,
6036 },
6037 {
6038 .name = "memsw.limit_in_bytes",
6039 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6040 .write = mem_cgroup_write,
6041 .read_u64 = mem_cgroup_read_u64,
6042 },
6043 {
6044 .name = "memsw.failcnt",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6046 .write = mem_cgroup_reset,
6047 .read_u64 = mem_cgroup_read_u64,
6048 },
6049 { }, /* terminate */
6050};
6051
6052static int __init mem_cgroup_swap_init(void)
6053{
6054 if (!mem_cgroup_disabled() && really_do_swap_account) {
6055 do_swap_account = 1;
37e84351
VD
6056 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6057 swap_files));
21afa38e
JW
6058 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6059 memsw_cgroup_files));
6060 }
6061 return 0;
6062}
6063subsys_initcall(mem_cgroup_swap_init);
6064
6065#endif /* CONFIG_MEMCG_SWAP */
This page took 1.317598 seconds and 5 git commands to generate.