mm: improve documentation of page_order
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &mem_cgroup_subsys);
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
c62b1a3b
KH
924 preempt_disable();
925
b2402857
KH
926 /*
927 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
928 * counted as CACHE even if it's on ANON LRU.
929 */
930 if (anon)
931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 932 nr_pages);
d52aa412 933 else
b2402857 934 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 935 nr_pages);
55e462b0 936
b070e65c
DR
937 if (PageTransHuge(page))
938 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
939 nr_pages);
940
e401f176
KH
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 944 else {
c0ff4b85 945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
946 nr_pages = -nr_pages; /* for event */
947 }
e401f176 948
13114716 949 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 950
c62b1a3b 951 preempt_enable();
6d12e2d8
KH
952}
953
bb2a0de9 954unsigned long
4d7dcca2 955mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
956{
957 struct mem_cgroup_per_zone *mz;
958
959 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
960 return mz->lru_size[lru];
961}
962
963static unsigned long
c0ff4b85 964mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 965 unsigned int lru_mask)
889976db
YH
966{
967 struct mem_cgroup_per_zone *mz;
f156ab93 968 enum lru_list lru;
bb2a0de9
KH
969 unsigned long ret = 0;
970
c0ff4b85 971 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 972
f156ab93
HD
973 for_each_lru(lru) {
974 if (BIT(lru) & lru_mask)
975 ret += mz->lru_size[lru];
bb2a0de9
KH
976 }
977 return ret;
978}
979
980static unsigned long
c0ff4b85 981mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
982 int nid, unsigned int lru_mask)
983{
889976db
YH
984 u64 total = 0;
985 int zid;
986
bb2a0de9 987 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
988 total += mem_cgroup_zone_nr_lru_pages(memcg,
989 nid, zid, lru_mask);
bb2a0de9 990
889976db
YH
991 return total;
992}
bb2a0de9 993
c0ff4b85 994static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 995 unsigned int lru_mask)
6d12e2d8 996{
889976db 997 int nid;
6d12e2d8
KH
998 u64 total = 0;
999
31aaea4a 1000 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1001 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1002 return total;
d52aa412
KH
1003}
1004
f53d7ce3
JW
1005static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006 enum mem_cgroup_events_target target)
7a159cc9
JW
1007{
1008 unsigned long val, next;
1009
13114716 1010 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1011 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1012 /* from time_after() in jiffies.h */
f53d7ce3
JW
1013 if ((long)next - (long)val < 0) {
1014 switch (target) {
1015 case MEM_CGROUP_TARGET_THRESH:
1016 next = val + THRESHOLDS_EVENTS_TARGET;
1017 break;
bb4cc1a8
AM
1018 case MEM_CGROUP_TARGET_SOFTLIMIT:
1019 next = val + SOFTLIMIT_EVENTS_TARGET;
1020 break;
f53d7ce3
JW
1021 case MEM_CGROUP_TARGET_NUMAINFO:
1022 next = val + NUMAINFO_EVENTS_TARGET;
1023 break;
1024 default:
1025 break;
1026 }
1027 __this_cpu_write(memcg->stat->targets[target], next);
1028 return true;
7a159cc9 1029 }
f53d7ce3 1030 return false;
d2265e6f
KH
1031}
1032
1033/*
1034 * Check events in order.
1035 *
1036 */
c0ff4b85 1037static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1038{
4799401f 1039 preempt_disable();
d2265e6f 1040 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1041 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1043 bool do_softlimit;
82b3f2a7 1044 bool do_numainfo __maybe_unused;
f53d7ce3 1045
bb4cc1a8
AM
1046 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1048#if MAX_NUMNODES > 1
1049 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050 MEM_CGROUP_TARGET_NUMAINFO);
1051#endif
1052 preempt_enable();
1053
c0ff4b85 1054 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1055 if (unlikely(do_softlimit))
1056 mem_cgroup_update_tree(memcg, page);
453a9bf3 1057#if MAX_NUMNODES > 1
f53d7ce3 1058 if (unlikely(do_numainfo))
c0ff4b85 1059 atomic_inc(&memcg->numainfo_events);
453a9bf3 1060#endif
f53d7ce3
JW
1061 } else
1062 preempt_enable();
d2265e6f
KH
1063}
1064
cf475ad2 1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1066{
31a78f23
BS
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
8af01f56 1075 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1076}
1077
a433658c 1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1079{
c0ff4b85 1080 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1081
1082 if (!mm)
1083 return NULL;
54595fe2
KH
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
c0ff4b85
R
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
54595fe2 1093 break;
c0ff4b85 1094 } while (!css_tryget(&memcg->css));
54595fe2 1095 rcu_read_unlock();
c0ff4b85 1096 return memcg;
54595fe2
KH
1097}
1098
16248d8f
MH
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1106 struct mem_cgroup *last_visited)
16248d8f 1107{
492eb21b 1108 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1109
bd8815a6 1110 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1111skip_node:
492eb21b 1112 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1113
1114 /*
1115 * Even if we found a group we have to make sure it is
1116 * alive. css && !memcg means that the groups should be
1117 * skipped and we should continue the tree walk.
1118 * last_visited css is safe to use because it is
1119 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1120 *
1121 * We do not take a reference on the root of the tree walk
1122 * because we might race with the root removal when it would
1123 * be the only node in the iterated hierarchy and mem_cgroup_iter
1124 * would end up in an endless loop because it expects that at
1125 * least one valid node will be returned. Root cannot disappear
1126 * because caller of the iterator should hold it already so
1127 * skipping css reference should be safe.
16248d8f 1128 */
492eb21b 1129 if (next_css) {
0eef6156
MH
1130 if ((next_css->flags & CSS_ONLINE) &&
1131 (next_css == &root->css || css_tryget(next_css)))
d8ad3055 1132 return mem_cgroup_from_css(next_css);
0eef6156
MH
1133
1134 prev_css = next_css;
1135 goto skip_node;
16248d8f
MH
1136 }
1137
1138 return NULL;
1139}
1140
519ebea3
JW
1141static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142{
1143 /*
1144 * When a group in the hierarchy below root is destroyed, the
1145 * hierarchy iterator can no longer be trusted since it might
1146 * have pointed to the destroyed group. Invalidate it.
1147 */
1148 atomic_inc(&root->dead_count);
1149}
1150
1151static struct mem_cgroup *
1152mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153 struct mem_cgroup *root,
1154 int *sequence)
1155{
1156 struct mem_cgroup *position = NULL;
1157 /*
1158 * A cgroup destruction happens in two stages: offlining and
1159 * release. They are separated by a RCU grace period.
1160 *
1161 * If the iterator is valid, we may still race with an
1162 * offlining. The RCU lock ensures the object won't be
1163 * released, tryget will fail if we lost the race.
1164 */
1165 *sequence = atomic_read(&root->dead_count);
1166 if (iter->last_dead_count == *sequence) {
1167 smp_rmb();
1168 position = iter->last_visited;
ecc736fc
MH
1169
1170 /*
1171 * We cannot take a reference to root because we might race
1172 * with root removal and returning NULL would end up in
1173 * an endless loop on the iterator user level when root
1174 * would be returned all the time.
1175 */
1176 if (position && position != root &&
1177 !css_tryget(&position->css))
519ebea3
JW
1178 position = NULL;
1179 }
1180 return position;
1181}
1182
1183static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1184 struct mem_cgroup *last_visited,
1185 struct mem_cgroup *new_position,
ecc736fc 1186 struct mem_cgroup *root,
519ebea3
JW
1187 int sequence)
1188{
ecc736fc
MH
1189 /* root reference counting symmetric to mem_cgroup_iter_load */
1190 if (last_visited && last_visited != root)
519ebea3
JW
1191 css_put(&last_visited->css);
1192 /*
1193 * We store the sequence count from the time @last_visited was
1194 * loaded successfully instead of rereading it here so that we
1195 * don't lose destruction events in between. We could have
1196 * raced with the destruction of @new_position after all.
1197 */
1198 iter->last_visited = new_position;
1199 smp_wmb();
1200 iter->last_dead_count = sequence;
1201}
1202
5660048c
JW
1203/**
1204 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205 * @root: hierarchy root
1206 * @prev: previously returned memcg, NULL on first invocation
1207 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1208 *
1209 * Returns references to children of the hierarchy below @root, or
1210 * @root itself, or %NULL after a full round-trip.
1211 *
1212 * Caller must pass the return value in @prev on subsequent
1213 * invocations for reference counting, or use mem_cgroup_iter_break()
1214 * to cancel a hierarchy walk before the round-trip is complete.
1215 *
1216 * Reclaimers can specify a zone and a priority level in @reclaim to
1217 * divide up the memcgs in the hierarchy among all concurrent
1218 * reclaimers operating on the same zone and priority.
1219 */
694fbc0f 1220struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1221 struct mem_cgroup *prev,
694fbc0f 1222 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1223{
9f3a0d09 1224 struct mem_cgroup *memcg = NULL;
542f85f9 1225 struct mem_cgroup *last_visited = NULL;
711d3d2c 1226
694fbc0f
AM
1227 if (mem_cgroup_disabled())
1228 return NULL;
5660048c 1229
9f3a0d09
JW
1230 if (!root)
1231 root = root_mem_cgroup;
7d74b06f 1232
9f3a0d09 1233 if (prev && !reclaim)
542f85f9 1234 last_visited = prev;
14067bb3 1235
9f3a0d09
JW
1236 if (!root->use_hierarchy && root != root_mem_cgroup) {
1237 if (prev)
c40046f3 1238 goto out_css_put;
694fbc0f 1239 return root;
9f3a0d09 1240 }
14067bb3 1241
542f85f9 1242 rcu_read_lock();
9f3a0d09 1243 while (!memcg) {
527a5ec9 1244 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1245 int uninitialized_var(seq);
711d3d2c 1246
527a5ec9
JW
1247 if (reclaim) {
1248 int nid = zone_to_nid(reclaim->zone);
1249 int zid = zone_idx(reclaim->zone);
1250 struct mem_cgroup_per_zone *mz;
1251
1252 mz = mem_cgroup_zoneinfo(root, nid, zid);
1253 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1254 if (prev && reclaim->generation != iter->generation) {
5f578161 1255 iter->last_visited = NULL;
542f85f9
MH
1256 goto out_unlock;
1257 }
5f578161 1258
519ebea3 1259 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1260 }
7d74b06f 1261
694fbc0f 1262 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1263
527a5ec9 1264 if (reclaim) {
ecc736fc
MH
1265 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1266 seq);
542f85f9 1267
19f39402 1268 if (!memcg)
527a5ec9
JW
1269 iter->generation++;
1270 else if (!prev && memcg)
1271 reclaim->generation = iter->generation;
1272 }
9f3a0d09 1273
694fbc0f 1274 if (prev && !memcg)
542f85f9 1275 goto out_unlock;
9f3a0d09 1276 }
542f85f9
MH
1277out_unlock:
1278 rcu_read_unlock();
c40046f3
MH
1279out_css_put:
1280 if (prev && prev != root)
1281 css_put(&prev->css);
1282
9f3a0d09 1283 return memcg;
14067bb3 1284}
7d74b06f 1285
5660048c
JW
1286/**
1287 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1288 * @root: hierarchy root
1289 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290 */
1291void mem_cgroup_iter_break(struct mem_cgroup *root,
1292 struct mem_cgroup *prev)
9f3a0d09
JW
1293{
1294 if (!root)
1295 root = root_mem_cgroup;
1296 if (prev && prev != root)
1297 css_put(&prev->css);
1298}
7d74b06f 1299
9f3a0d09
JW
1300/*
1301 * Iteration constructs for visiting all cgroups (under a tree). If
1302 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1303 * be used for reference counting.
1304 */
1305#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1306 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1307 iter != NULL; \
527a5ec9 1308 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1309
9f3a0d09 1310#define for_each_mem_cgroup(iter) \
527a5ec9 1311 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1312 iter != NULL; \
527a5ec9 1313 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1314
68ae564b 1315void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1316{
c0ff4b85 1317 struct mem_cgroup *memcg;
456f998e 1318
456f998e 1319 rcu_read_lock();
c0ff4b85
R
1320 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1321 if (unlikely(!memcg))
456f998e
YH
1322 goto out;
1323
1324 switch (idx) {
456f998e 1325 case PGFAULT:
0e574a93
JW
1326 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1327 break;
1328 case PGMAJFAULT:
1329 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1330 break;
1331 default:
1332 BUG();
1333 }
1334out:
1335 rcu_read_unlock();
1336}
68ae564b 1337EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1338
925b7673
JW
1339/**
1340 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1341 * @zone: zone of the wanted lruvec
fa9add64 1342 * @memcg: memcg of the wanted lruvec
925b7673
JW
1343 *
1344 * Returns the lru list vector holding pages for the given @zone and
1345 * @mem. This can be the global zone lruvec, if the memory controller
1346 * is disabled.
1347 */
1348struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1349 struct mem_cgroup *memcg)
1350{
1351 struct mem_cgroup_per_zone *mz;
bea8c150 1352 struct lruvec *lruvec;
925b7673 1353
bea8c150
HD
1354 if (mem_cgroup_disabled()) {
1355 lruvec = &zone->lruvec;
1356 goto out;
1357 }
925b7673
JW
1358
1359 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1360 lruvec = &mz->lruvec;
1361out:
1362 /*
1363 * Since a node can be onlined after the mem_cgroup was created,
1364 * we have to be prepared to initialize lruvec->zone here;
1365 * and if offlined then reonlined, we need to reinitialize it.
1366 */
1367 if (unlikely(lruvec->zone != zone))
1368 lruvec->zone = zone;
1369 return lruvec;
925b7673
JW
1370}
1371
08e552c6
KH
1372/*
1373 * Following LRU functions are allowed to be used without PCG_LOCK.
1374 * Operations are called by routine of global LRU independently from memcg.
1375 * What we have to take care of here is validness of pc->mem_cgroup.
1376 *
1377 * Changes to pc->mem_cgroup happens when
1378 * 1. charge
1379 * 2. moving account
1380 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1381 * It is added to LRU before charge.
1382 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1383 * When moving account, the page is not on LRU. It's isolated.
1384 */
4f98a2fe 1385
925b7673 1386/**
fa9add64 1387 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1388 * @page: the page
fa9add64 1389 * @zone: zone of the page
925b7673 1390 */
fa9add64 1391struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1392{
08e552c6 1393 struct mem_cgroup_per_zone *mz;
925b7673
JW
1394 struct mem_cgroup *memcg;
1395 struct page_cgroup *pc;
bea8c150 1396 struct lruvec *lruvec;
6d12e2d8 1397
bea8c150
HD
1398 if (mem_cgroup_disabled()) {
1399 lruvec = &zone->lruvec;
1400 goto out;
1401 }
925b7673 1402
08e552c6 1403 pc = lookup_page_cgroup(page);
38c5d72f 1404 memcg = pc->mem_cgroup;
7512102c
HD
1405
1406 /*
fa9add64 1407 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1408 * an uncharged page off lru does nothing to secure
1409 * its former mem_cgroup from sudden removal.
1410 *
1411 * Our caller holds lru_lock, and PageCgroupUsed is updated
1412 * under page_cgroup lock: between them, they make all uses
1413 * of pc->mem_cgroup safe.
1414 */
fa9add64 1415 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1416 pc->mem_cgroup = memcg = root_mem_cgroup;
1417
925b7673 1418 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1419 lruvec = &mz->lruvec;
1420out:
1421 /*
1422 * Since a node can be onlined after the mem_cgroup was created,
1423 * we have to be prepared to initialize lruvec->zone here;
1424 * and if offlined then reonlined, we need to reinitialize it.
1425 */
1426 if (unlikely(lruvec->zone != zone))
1427 lruvec->zone = zone;
1428 return lruvec;
08e552c6 1429}
b69408e8 1430
925b7673 1431/**
fa9add64
HD
1432 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1433 * @lruvec: mem_cgroup per zone lru vector
1434 * @lru: index of lru list the page is sitting on
1435 * @nr_pages: positive when adding or negative when removing
925b7673 1436 *
fa9add64
HD
1437 * This function must be called when a page is added to or removed from an
1438 * lru list.
3f58a829 1439 */
fa9add64
HD
1440void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1441 int nr_pages)
3f58a829
MK
1442{
1443 struct mem_cgroup_per_zone *mz;
fa9add64 1444 unsigned long *lru_size;
3f58a829
MK
1445
1446 if (mem_cgroup_disabled())
1447 return;
1448
fa9add64
HD
1449 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1450 lru_size = mz->lru_size + lru;
1451 *lru_size += nr_pages;
1452 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1453}
544122e5 1454
3e92041d 1455/*
c0ff4b85 1456 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1457 * hierarchy subtree
1458 */
c3ac9a8a
JW
1459bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1460 struct mem_cgroup *memcg)
3e92041d 1461{
91c63734
JW
1462 if (root_memcg == memcg)
1463 return true;
3a981f48 1464 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1465 return false;
b47f77b5 1466 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1467}
1468
1469static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1470 struct mem_cgroup *memcg)
1471{
1472 bool ret;
1473
91c63734 1474 rcu_read_lock();
c3ac9a8a 1475 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1476 rcu_read_unlock();
1477 return ret;
3e92041d
MH
1478}
1479
ffbdccf5
DR
1480bool task_in_mem_cgroup(struct task_struct *task,
1481 const struct mem_cgroup *memcg)
4c4a2214 1482{
0b7f569e 1483 struct mem_cgroup *curr = NULL;
158e0a2d 1484 struct task_struct *p;
ffbdccf5 1485 bool ret;
4c4a2214 1486
158e0a2d 1487 p = find_lock_task_mm(task);
de077d22
DR
1488 if (p) {
1489 curr = try_get_mem_cgroup_from_mm(p->mm);
1490 task_unlock(p);
1491 } else {
1492 /*
1493 * All threads may have already detached their mm's, but the oom
1494 * killer still needs to detect if they have already been oom
1495 * killed to prevent needlessly killing additional tasks.
1496 */
ffbdccf5 1497 rcu_read_lock();
de077d22
DR
1498 curr = mem_cgroup_from_task(task);
1499 if (curr)
1500 css_get(&curr->css);
ffbdccf5 1501 rcu_read_unlock();
de077d22 1502 }
0b7f569e 1503 if (!curr)
ffbdccf5 1504 return false;
d31f56db 1505 /*
c0ff4b85 1506 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1507 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1508 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1509 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1510 */
c0ff4b85 1511 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1512 css_put(&curr->css);
4c4a2214
DR
1513 return ret;
1514}
1515
c56d5c7d 1516int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1517{
9b272977 1518 unsigned long inactive_ratio;
14797e23 1519 unsigned long inactive;
9b272977 1520 unsigned long active;
c772be93 1521 unsigned long gb;
14797e23 1522
4d7dcca2
HD
1523 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1524 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1525
c772be93
KM
1526 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1527 if (gb)
1528 inactive_ratio = int_sqrt(10 * gb);
1529 else
1530 inactive_ratio = 1;
1531
9b272977 1532 return inactive * inactive_ratio < active;
14797e23
KM
1533}
1534
6d61ef40
BS
1535#define mem_cgroup_from_res_counter(counter, member) \
1536 container_of(counter, struct mem_cgroup, member)
1537
19942822 1538/**
9d11ea9f 1539 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1540 * @memcg: the memory cgroup
19942822 1541 *
9d11ea9f 1542 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1543 * pages.
19942822 1544 */
c0ff4b85 1545static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1546{
9d11ea9f
JW
1547 unsigned long long margin;
1548
c0ff4b85 1549 margin = res_counter_margin(&memcg->res);
9d11ea9f 1550 if (do_swap_account)
c0ff4b85 1551 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1552 return margin >> PAGE_SHIFT;
19942822
JW
1553}
1554
1f4c025b 1555int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1556{
a7885eb8 1557 /* root ? */
63876986 1558 if (!css_parent(&memcg->css))
a7885eb8
KM
1559 return vm_swappiness;
1560
bf1ff263 1561 return memcg->swappiness;
a7885eb8
KM
1562}
1563
619d094b
KH
1564/*
1565 * memcg->moving_account is used for checking possibility that some thread is
1566 * calling move_account(). When a thread on CPU-A starts moving pages under
1567 * a memcg, other threads should check memcg->moving_account under
1568 * rcu_read_lock(), like this:
1569 *
1570 * CPU-A CPU-B
1571 * rcu_read_lock()
1572 * memcg->moving_account+1 if (memcg->mocing_account)
1573 * take heavy locks.
1574 * synchronize_rcu() update something.
1575 * rcu_read_unlock()
1576 * start move here.
1577 */
4331f7d3
KH
1578
1579/* for quick checking without looking up memcg */
1580atomic_t memcg_moving __read_mostly;
1581
c0ff4b85 1582static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1583{
4331f7d3 1584 atomic_inc(&memcg_moving);
619d094b 1585 atomic_inc(&memcg->moving_account);
32047e2a
KH
1586 synchronize_rcu();
1587}
1588
c0ff4b85 1589static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1590{
619d094b
KH
1591 /*
1592 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1593 * We check NULL in callee rather than caller.
1594 */
4331f7d3
KH
1595 if (memcg) {
1596 atomic_dec(&memcg_moving);
619d094b 1597 atomic_dec(&memcg->moving_account);
4331f7d3 1598 }
32047e2a 1599}
619d094b 1600
32047e2a
KH
1601/*
1602 * 2 routines for checking "mem" is under move_account() or not.
1603 *
13fd1dd9
AM
1604 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1605 * is used for avoiding races in accounting. If true,
32047e2a
KH
1606 * pc->mem_cgroup may be overwritten.
1607 *
1608 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1609 * under hierarchy of moving cgroups. This is for
1610 * waiting at hith-memory prressure caused by "move".
1611 */
1612
13fd1dd9 1613static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1614{
1615 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1616 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1617}
4b534334 1618
c0ff4b85 1619static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1620{
2bd9bb20
KH
1621 struct mem_cgroup *from;
1622 struct mem_cgroup *to;
4b534334 1623 bool ret = false;
2bd9bb20
KH
1624 /*
1625 * Unlike task_move routines, we access mc.to, mc.from not under
1626 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1627 */
1628 spin_lock(&mc.lock);
1629 from = mc.from;
1630 to = mc.to;
1631 if (!from)
1632 goto unlock;
3e92041d 1633
c0ff4b85
R
1634 ret = mem_cgroup_same_or_subtree(memcg, from)
1635 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1636unlock:
1637 spin_unlock(&mc.lock);
4b534334
KH
1638 return ret;
1639}
1640
c0ff4b85 1641static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1642{
1643 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1644 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1645 DEFINE_WAIT(wait);
1646 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1647 /* moving charge context might have finished. */
1648 if (mc.moving_task)
1649 schedule();
1650 finish_wait(&mc.waitq, &wait);
1651 return true;
1652 }
1653 }
1654 return false;
1655}
1656
312734c0
KH
1657/*
1658 * Take this lock when
1659 * - a code tries to modify page's memcg while it's USED.
1660 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1661 * see mem_cgroup_stolen(), too.
312734c0
KH
1662 */
1663static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1664 unsigned long *flags)
1665{
1666 spin_lock_irqsave(&memcg->move_lock, *flags);
1667}
1668
1669static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1670 unsigned long *flags)
1671{
1672 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1673}
1674
58cf188e 1675#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1676/**
58cf188e 1677 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1678 * @memcg: The memory cgroup that went over limit
1679 * @p: Task that is going to be killed
1680 *
1681 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1682 * enabled
1683 */
1684void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1685{
e222432b 1686 /*
947b3dd1
MH
1687 * protects memcg_name and makes sure that parallel ooms do not
1688 * interleave
e222432b 1689 */
947b3dd1
MH
1690 static DEFINE_SPINLOCK(oom_info_lock);
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
e222432b
BS
1693 static char memcg_name[PATH_MAX];
1694 int ret;
58cf188e
SZ
1695 struct mem_cgroup *iter;
1696 unsigned int i;
e222432b 1697
58cf188e 1698 if (!p)
e222432b
BS
1699 return;
1700
947b3dd1 1701 spin_lock(&oom_info_lock);
e222432b
BS
1702 rcu_read_lock();
1703
1704 mem_cgrp = memcg->css.cgroup;
1705 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1706
1707 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708 if (ret < 0) {
1709 /*
1710 * Unfortunately, we are unable to convert to a useful name
1711 * But we'll still print out the usage information
1712 */
1713 rcu_read_unlock();
1714 goto done;
1715 }
1716 rcu_read_unlock();
1717
d045197f 1718 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1719
1720 rcu_read_lock();
1721 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722 if (ret < 0) {
1723 rcu_read_unlock();
1724 goto done;
1725 }
1726 rcu_read_unlock();
1727
1728 /*
1729 * Continues from above, so we don't need an KERN_ level
1730 */
d045197f 1731 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1732done:
1733
d045197f 1734 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1735 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1738 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1739 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1742 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1743 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1746
1747 for_each_mem_cgroup_tree(iter, memcg) {
1748 pr_info("Memory cgroup stats");
1749
1750 rcu_read_lock();
1751 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752 if (!ret)
1753 pr_cont(" for %s", memcg_name);
1754 rcu_read_unlock();
1755 pr_cont(":");
1756
1757 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759 continue;
1760 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761 K(mem_cgroup_read_stat(iter, i)));
1762 }
1763
1764 for (i = 0; i < NR_LRU_LISTS; i++)
1765 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1767
1768 pr_cont("\n");
1769 }
947b3dd1 1770 spin_unlock(&oom_info_lock);
e222432b
BS
1771}
1772
81d39c20
KH
1773/*
1774 * This function returns the number of memcg under hierarchy tree. Returns
1775 * 1(self count) if no children.
1776 */
c0ff4b85 1777static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1778{
1779 int num = 0;
7d74b06f
KH
1780 struct mem_cgroup *iter;
1781
c0ff4b85 1782 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1783 num++;
81d39c20
KH
1784 return num;
1785}
1786
a63d83f4
DR
1787/*
1788 * Return the memory (and swap, if configured) limit for a memcg.
1789 */
9cbb78bb 1790static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1791{
1792 u64 limit;
a63d83f4 1793
f3e8eb70 1794 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1795
a63d83f4 1796 /*
9a5a8f19 1797 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1798 */
9a5a8f19
MH
1799 if (mem_cgroup_swappiness(memcg)) {
1800 u64 memsw;
1801
1802 limit += total_swap_pages << PAGE_SHIFT;
1803 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804
1805 /*
1806 * If memsw is finite and limits the amount of swap space
1807 * available to this memcg, return that limit.
1808 */
1809 limit = min(limit, memsw);
1810 }
1811
1812 return limit;
a63d83f4
DR
1813}
1814
19965460
DR
1815static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1816 int order)
9cbb78bb
DR
1817{
1818 struct mem_cgroup *iter;
1819 unsigned long chosen_points = 0;
1820 unsigned long totalpages;
1821 unsigned int points = 0;
1822 struct task_struct *chosen = NULL;
1823
876aafbf 1824 /*
465adcf1
DR
1825 * If current has a pending SIGKILL or is exiting, then automatically
1826 * select it. The goal is to allow it to allocate so that it may
1827 * quickly exit and free its memory.
876aafbf 1828 */
465adcf1 1829 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1830 set_thread_flag(TIF_MEMDIE);
1831 return;
1832 }
1833
1834 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1835 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1836 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1837 struct css_task_iter it;
9cbb78bb
DR
1838 struct task_struct *task;
1839
72ec7029
TH
1840 css_task_iter_start(&iter->css, &it);
1841 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1842 switch (oom_scan_process_thread(task, totalpages, NULL,
1843 false)) {
1844 case OOM_SCAN_SELECT:
1845 if (chosen)
1846 put_task_struct(chosen);
1847 chosen = task;
1848 chosen_points = ULONG_MAX;
1849 get_task_struct(chosen);
1850 /* fall through */
1851 case OOM_SCAN_CONTINUE:
1852 continue;
1853 case OOM_SCAN_ABORT:
72ec7029 1854 css_task_iter_end(&it);
9cbb78bb
DR
1855 mem_cgroup_iter_break(memcg, iter);
1856 if (chosen)
1857 put_task_struct(chosen);
1858 return;
1859 case OOM_SCAN_OK:
1860 break;
1861 };
1862 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1863 if (!points || points < chosen_points)
1864 continue;
1865 /* Prefer thread group leaders for display purposes */
1866 if (points == chosen_points &&
1867 thread_group_leader(chosen))
1868 continue;
1869
1870 if (chosen)
1871 put_task_struct(chosen);
1872 chosen = task;
1873 chosen_points = points;
1874 get_task_struct(chosen);
9cbb78bb 1875 }
72ec7029 1876 css_task_iter_end(&it);
9cbb78bb
DR
1877 }
1878
1879 if (!chosen)
1880 return;
1881 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1882 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1883 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1884}
1885
5660048c
JW
1886static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1887 gfp_t gfp_mask,
1888 unsigned long flags)
1889{
1890 unsigned long total = 0;
1891 bool noswap = false;
1892 int loop;
1893
1894 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1895 noswap = true;
1896 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897 noswap = true;
1898
1899 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1900 if (loop)
1901 drain_all_stock_async(memcg);
1902 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1903 /*
1904 * Allow limit shrinkers, which are triggered directly
1905 * by userspace, to catch signals and stop reclaim
1906 * after minimal progress, regardless of the margin.
1907 */
1908 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1909 break;
1910 if (mem_cgroup_margin(memcg))
1911 break;
1912 /*
1913 * If nothing was reclaimed after two attempts, there
1914 * may be no reclaimable pages in this hierarchy.
1915 */
1916 if (loop && !total)
1917 break;
1918 }
1919 return total;
1920}
1921
4d0c066d
KH
1922/**
1923 * test_mem_cgroup_node_reclaimable
dad7557e 1924 * @memcg: the target memcg
4d0c066d
KH
1925 * @nid: the node ID to be checked.
1926 * @noswap : specify true here if the user wants flle only information.
1927 *
1928 * This function returns whether the specified memcg contains any
1929 * reclaimable pages on a node. Returns true if there are any reclaimable
1930 * pages in the node.
1931 */
c0ff4b85 1932static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1933 int nid, bool noswap)
1934{
c0ff4b85 1935 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1936 return true;
1937 if (noswap || !total_swap_pages)
1938 return false;
c0ff4b85 1939 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1940 return true;
1941 return false;
1942
1943}
bb4cc1a8 1944#if MAX_NUMNODES > 1
889976db
YH
1945
1946/*
1947 * Always updating the nodemask is not very good - even if we have an empty
1948 * list or the wrong list here, we can start from some node and traverse all
1949 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950 *
1951 */
c0ff4b85 1952static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1953{
1954 int nid;
453a9bf3
KH
1955 /*
1956 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1957 * pagein/pageout changes since the last update.
1958 */
c0ff4b85 1959 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1960 return;
c0ff4b85 1961 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1962 return;
1963
889976db 1964 /* make a nodemask where this memcg uses memory from */
31aaea4a 1965 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1966
31aaea4a 1967 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1968
c0ff4b85
R
1969 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1970 node_clear(nid, memcg->scan_nodes);
889976db 1971 }
453a9bf3 1972
c0ff4b85
R
1973 atomic_set(&memcg->numainfo_events, 0);
1974 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1975}
1976
1977/*
1978 * Selecting a node where we start reclaim from. Because what we need is just
1979 * reducing usage counter, start from anywhere is O,K. Considering
1980 * memory reclaim from current node, there are pros. and cons.
1981 *
1982 * Freeing memory from current node means freeing memory from a node which
1983 * we'll use or we've used. So, it may make LRU bad. And if several threads
1984 * hit limits, it will see a contention on a node. But freeing from remote
1985 * node means more costs for memory reclaim because of memory latency.
1986 *
1987 * Now, we use round-robin. Better algorithm is welcomed.
1988 */
c0ff4b85 1989int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1990{
1991 int node;
1992
c0ff4b85
R
1993 mem_cgroup_may_update_nodemask(memcg);
1994 node = memcg->last_scanned_node;
889976db 1995
c0ff4b85 1996 node = next_node(node, memcg->scan_nodes);
889976db 1997 if (node == MAX_NUMNODES)
c0ff4b85 1998 node = first_node(memcg->scan_nodes);
889976db
YH
1999 /*
2000 * We call this when we hit limit, not when pages are added to LRU.
2001 * No LRU may hold pages because all pages are UNEVICTABLE or
2002 * memcg is too small and all pages are not on LRU. In that case,
2003 * we use curret node.
2004 */
2005 if (unlikely(node == MAX_NUMNODES))
2006 node = numa_node_id();
2007
c0ff4b85 2008 memcg->last_scanned_node = node;
889976db
YH
2009 return node;
2010}
2011
bb4cc1a8
AM
2012/*
2013 * Check all nodes whether it contains reclaimable pages or not.
2014 * For quick scan, we make use of scan_nodes. This will allow us to skip
2015 * unused nodes. But scan_nodes is lazily updated and may not cotain
2016 * enough new information. We need to do double check.
2017 */
2018static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2019{
2020 int nid;
2021
2022 /*
2023 * quick check...making use of scan_node.
2024 * We can skip unused nodes.
2025 */
2026 if (!nodes_empty(memcg->scan_nodes)) {
2027 for (nid = first_node(memcg->scan_nodes);
2028 nid < MAX_NUMNODES;
2029 nid = next_node(nid, memcg->scan_nodes)) {
2030
2031 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 return true;
2033 }
2034 }
2035 /*
2036 * Check rest of nodes.
2037 */
2038 for_each_node_state(nid, N_MEMORY) {
2039 if (node_isset(nid, memcg->scan_nodes))
2040 continue;
2041 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2042 return true;
2043 }
2044 return false;
2045}
2046
889976db 2047#else
c0ff4b85 2048int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2049{
2050 return 0;
2051}
4d0c066d 2052
bb4cc1a8
AM
2053static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2054{
2055 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2056}
889976db
YH
2057#endif
2058
0608f43d
AM
2059static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060 struct zone *zone,
2061 gfp_t gfp_mask,
2062 unsigned long *total_scanned)
2063{
2064 struct mem_cgroup *victim = NULL;
2065 int total = 0;
2066 int loop = 0;
2067 unsigned long excess;
2068 unsigned long nr_scanned;
2069 struct mem_cgroup_reclaim_cookie reclaim = {
2070 .zone = zone,
2071 .priority = 0,
2072 };
2073
2074 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075
2076 while (1) {
2077 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2078 if (!victim) {
2079 loop++;
2080 if (loop >= 2) {
2081 /*
2082 * If we have not been able to reclaim
2083 * anything, it might because there are
2084 * no reclaimable pages under this hierarchy
2085 */
2086 if (!total)
2087 break;
2088 /*
2089 * We want to do more targeted reclaim.
2090 * excess >> 2 is not to excessive so as to
2091 * reclaim too much, nor too less that we keep
2092 * coming back to reclaim from this cgroup
2093 */
2094 if (total >= (excess >> 2) ||
2095 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2096 break;
2097 }
2098 continue;
2099 }
2100 if (!mem_cgroup_reclaimable(victim, false))
2101 continue;
2102 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2103 zone, &nr_scanned);
2104 *total_scanned += nr_scanned;
2105 if (!res_counter_soft_limit_excess(&root_memcg->res))
2106 break;
6d61ef40 2107 }
0608f43d
AM
2108 mem_cgroup_iter_break(root_memcg, victim);
2109 return total;
6d61ef40
BS
2110}
2111
0056f4e6
JW
2112#ifdef CONFIG_LOCKDEP
2113static struct lockdep_map memcg_oom_lock_dep_map = {
2114 .name = "memcg_oom_lock",
2115};
2116#endif
2117
fb2a6fc5
JW
2118static DEFINE_SPINLOCK(memcg_oom_lock);
2119
867578cb
KH
2120/*
2121 * Check OOM-Killer is already running under our hierarchy.
2122 * If someone is running, return false.
2123 */
fb2a6fc5 2124static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2125{
79dfdacc 2126 struct mem_cgroup *iter, *failed = NULL;
a636b327 2127
fb2a6fc5
JW
2128 spin_lock(&memcg_oom_lock);
2129
9f3a0d09 2130 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2131 if (iter->oom_lock) {
79dfdacc
MH
2132 /*
2133 * this subtree of our hierarchy is already locked
2134 * so we cannot give a lock.
2135 */
79dfdacc 2136 failed = iter;
9f3a0d09
JW
2137 mem_cgroup_iter_break(memcg, iter);
2138 break;
23751be0
JW
2139 } else
2140 iter->oom_lock = true;
7d74b06f 2141 }
867578cb 2142
fb2a6fc5
JW
2143 if (failed) {
2144 /*
2145 * OK, we failed to lock the whole subtree so we have
2146 * to clean up what we set up to the failing subtree
2147 */
2148 for_each_mem_cgroup_tree(iter, memcg) {
2149 if (iter == failed) {
2150 mem_cgroup_iter_break(memcg, iter);
2151 break;
2152 }
2153 iter->oom_lock = false;
79dfdacc 2154 }
0056f4e6
JW
2155 } else
2156 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2157
2158 spin_unlock(&memcg_oom_lock);
2159
2160 return !failed;
a636b327 2161}
0b7f569e 2162
fb2a6fc5 2163static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2164{
7d74b06f
KH
2165 struct mem_cgroup *iter;
2166
fb2a6fc5 2167 spin_lock(&memcg_oom_lock);
0056f4e6 2168 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2169 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2170 iter->oom_lock = false;
fb2a6fc5 2171 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2172}
2173
c0ff4b85 2174static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2175{
2176 struct mem_cgroup *iter;
2177
c0ff4b85 2178 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2179 atomic_inc(&iter->under_oom);
2180}
2181
c0ff4b85 2182static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2183{
2184 struct mem_cgroup *iter;
2185
867578cb
KH
2186 /*
2187 * When a new child is created while the hierarchy is under oom,
2188 * mem_cgroup_oom_lock() may not be called. We have to use
2189 * atomic_add_unless() here.
2190 */
c0ff4b85 2191 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2192 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2193}
2194
867578cb
KH
2195static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2196
dc98df5a 2197struct oom_wait_info {
d79154bb 2198 struct mem_cgroup *memcg;
dc98df5a
KH
2199 wait_queue_t wait;
2200};
2201
2202static int memcg_oom_wake_function(wait_queue_t *wait,
2203 unsigned mode, int sync, void *arg)
2204{
d79154bb
HD
2205 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2206 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2207 struct oom_wait_info *oom_wait_info;
2208
2209 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2210 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2211
dc98df5a 2212 /*
d79154bb 2213 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2214 * Then we can use css_is_ancestor without taking care of RCU.
2215 */
c0ff4b85
R
2216 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2217 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2218 return 0;
dc98df5a
KH
2219 return autoremove_wake_function(wait, mode, sync, arg);
2220}
2221
c0ff4b85 2222static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2223{
3812c8c8 2224 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2225 /* for filtering, pass "memcg" as argument. */
2226 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2227}
2228
c0ff4b85 2229static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2230{
c0ff4b85
R
2231 if (memcg && atomic_read(&memcg->under_oom))
2232 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2233}
2234
3812c8c8 2235static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2236{
3812c8c8
JW
2237 if (!current->memcg_oom.may_oom)
2238 return;
867578cb 2239 /*
49426420
JW
2240 * We are in the middle of the charge context here, so we
2241 * don't want to block when potentially sitting on a callstack
2242 * that holds all kinds of filesystem and mm locks.
2243 *
2244 * Also, the caller may handle a failed allocation gracefully
2245 * (like optional page cache readahead) and so an OOM killer
2246 * invocation might not even be necessary.
2247 *
2248 * That's why we don't do anything here except remember the
2249 * OOM context and then deal with it at the end of the page
2250 * fault when the stack is unwound, the locks are released,
2251 * and when we know whether the fault was overall successful.
867578cb 2252 */
49426420
JW
2253 css_get(&memcg->css);
2254 current->memcg_oom.memcg = memcg;
2255 current->memcg_oom.gfp_mask = mask;
2256 current->memcg_oom.order = order;
3812c8c8
JW
2257}
2258
2259/**
2260 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2261 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2262 *
49426420
JW
2263 * This has to be called at the end of a page fault if the memcg OOM
2264 * handler was enabled.
3812c8c8 2265 *
49426420 2266 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2267 * sleep on a waitqueue until the userspace task resolves the
2268 * situation. Sleeping directly in the charge context with all kinds
2269 * of locks held is not a good idea, instead we remember an OOM state
2270 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2271 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2272 *
2273 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2274 * completed, %false otherwise.
3812c8c8 2275 */
49426420 2276bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2277{
49426420 2278 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2279 struct oom_wait_info owait;
49426420 2280 bool locked;
3812c8c8
JW
2281
2282 /* OOM is global, do not handle */
3812c8c8 2283 if (!memcg)
49426420 2284 return false;
3812c8c8 2285
49426420
JW
2286 if (!handle)
2287 goto cleanup;
3812c8c8
JW
2288
2289 owait.memcg = memcg;
2290 owait.wait.flags = 0;
2291 owait.wait.func = memcg_oom_wake_function;
2292 owait.wait.private = current;
2293 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2294
3812c8c8 2295 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2296 mem_cgroup_mark_under_oom(memcg);
2297
2298 locked = mem_cgroup_oom_trylock(memcg);
2299
2300 if (locked)
2301 mem_cgroup_oom_notify(memcg);
2302
2303 if (locked && !memcg->oom_kill_disable) {
2304 mem_cgroup_unmark_under_oom(memcg);
2305 finish_wait(&memcg_oom_waitq, &owait.wait);
2306 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2307 current->memcg_oom.order);
2308 } else {
3812c8c8 2309 schedule();
49426420
JW
2310 mem_cgroup_unmark_under_oom(memcg);
2311 finish_wait(&memcg_oom_waitq, &owait.wait);
2312 }
2313
2314 if (locked) {
fb2a6fc5
JW
2315 mem_cgroup_oom_unlock(memcg);
2316 /*
2317 * There is no guarantee that an OOM-lock contender
2318 * sees the wakeups triggered by the OOM kill
2319 * uncharges. Wake any sleepers explicitely.
2320 */
2321 memcg_oom_recover(memcg);
2322 }
49426420
JW
2323cleanup:
2324 current->memcg_oom.memcg = NULL;
3812c8c8 2325 css_put(&memcg->css);
867578cb 2326 return true;
0b7f569e
KH
2327}
2328
d69b042f
BS
2329/*
2330 * Currently used to update mapped file statistics, but the routine can be
2331 * generalized to update other statistics as well.
32047e2a
KH
2332 *
2333 * Notes: Race condition
2334 *
2335 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2336 * it tends to be costly. But considering some conditions, we doesn't need
2337 * to do so _always_.
2338 *
2339 * Considering "charge", lock_page_cgroup() is not required because all
2340 * file-stat operations happen after a page is attached to radix-tree. There
2341 * are no race with "charge".
2342 *
2343 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2344 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2345 * if there are race with "uncharge". Statistics itself is properly handled
2346 * by flags.
2347 *
2348 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2349 * small, we check mm->moving_account and detect there are possibility of race
2350 * If there is, we take a lock.
d69b042f 2351 */
26174efd 2352
89c06bd5
KH
2353void __mem_cgroup_begin_update_page_stat(struct page *page,
2354 bool *locked, unsigned long *flags)
2355{
2356 struct mem_cgroup *memcg;
2357 struct page_cgroup *pc;
2358
2359 pc = lookup_page_cgroup(page);
2360again:
2361 memcg = pc->mem_cgroup;
2362 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 return;
2364 /*
2365 * If this memory cgroup is not under account moving, we don't
da92c47d 2366 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2367 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2368 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2369 */
13fd1dd9 2370 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2371 return;
2372
2373 move_lock_mem_cgroup(memcg, flags);
2374 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2375 move_unlock_mem_cgroup(memcg, flags);
2376 goto again;
2377 }
2378 *locked = true;
2379}
2380
2381void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2382{
2383 struct page_cgroup *pc = lookup_page_cgroup(page);
2384
2385 /*
2386 * It's guaranteed that pc->mem_cgroup never changes while
2387 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2388 * should take move_lock_mem_cgroup().
89c06bd5
KH
2389 */
2390 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391}
2392
2a7106f2 2393void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2394 enum mem_cgroup_stat_index idx, int val)
d69b042f 2395{
c0ff4b85 2396 struct mem_cgroup *memcg;
32047e2a 2397 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2398 unsigned long uninitialized_var(flags);
d69b042f 2399
cfa44946 2400 if (mem_cgroup_disabled())
d69b042f 2401 return;
89c06bd5 2402
658b72c5 2403 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2404 memcg = pc->mem_cgroup;
2405 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2406 return;
26174efd 2407
c0ff4b85 2408 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2409}
26174efd 2410
cdec2e42
KH
2411/*
2412 * size of first charge trial. "32" comes from vmscan.c's magic value.
2413 * TODO: maybe necessary to use big numbers in big irons.
2414 */
7ec99d62 2415#define CHARGE_BATCH 32U
cdec2e42
KH
2416struct memcg_stock_pcp {
2417 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2418 unsigned int nr_pages;
cdec2e42 2419 struct work_struct work;
26fe6168 2420 unsigned long flags;
a0db00fc 2421#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2422};
2423static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2424static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2425
a0956d54
SS
2426/**
2427 * consume_stock: Try to consume stocked charge on this cpu.
2428 * @memcg: memcg to consume from.
2429 * @nr_pages: how many pages to charge.
2430 *
2431 * The charges will only happen if @memcg matches the current cpu's memcg
2432 * stock, and at least @nr_pages are available in that stock. Failure to
2433 * service an allocation will refill the stock.
2434 *
2435 * returns true if successful, false otherwise.
cdec2e42 2436 */
a0956d54 2437static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2438{
2439 struct memcg_stock_pcp *stock;
2440 bool ret = true;
2441
a0956d54
SS
2442 if (nr_pages > CHARGE_BATCH)
2443 return false;
2444
cdec2e42 2445 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2446 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2447 stock->nr_pages -= nr_pages;
cdec2e42
KH
2448 else /* need to call res_counter_charge */
2449 ret = false;
2450 put_cpu_var(memcg_stock);
2451 return ret;
2452}
2453
2454/*
2455 * Returns stocks cached in percpu to res_counter and reset cached information.
2456 */
2457static void drain_stock(struct memcg_stock_pcp *stock)
2458{
2459 struct mem_cgroup *old = stock->cached;
2460
11c9ea4e
JW
2461 if (stock->nr_pages) {
2462 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2463
2464 res_counter_uncharge(&old->res, bytes);
cdec2e42 2465 if (do_swap_account)
11c9ea4e
JW
2466 res_counter_uncharge(&old->memsw, bytes);
2467 stock->nr_pages = 0;
cdec2e42
KH
2468 }
2469 stock->cached = NULL;
cdec2e42
KH
2470}
2471
2472/*
2473 * This must be called under preempt disabled or must be called by
2474 * a thread which is pinned to local cpu.
2475 */
2476static void drain_local_stock(struct work_struct *dummy)
2477{
2478 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2479 drain_stock(stock);
26fe6168 2480 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2481}
2482
e4777496
MH
2483static void __init memcg_stock_init(void)
2484{
2485 int cpu;
2486
2487 for_each_possible_cpu(cpu) {
2488 struct memcg_stock_pcp *stock =
2489 &per_cpu(memcg_stock, cpu);
2490 INIT_WORK(&stock->work, drain_local_stock);
2491 }
2492}
2493
cdec2e42
KH
2494/*
2495 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2496 * This will be consumed by consume_stock() function, later.
cdec2e42 2497 */
c0ff4b85 2498static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2499{
2500 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2501
c0ff4b85 2502 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2503 drain_stock(stock);
c0ff4b85 2504 stock->cached = memcg;
cdec2e42 2505 }
11c9ea4e 2506 stock->nr_pages += nr_pages;
cdec2e42
KH
2507 put_cpu_var(memcg_stock);
2508}
2509
2510/*
c0ff4b85 2511 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2512 * of the hierarchy under it. sync flag says whether we should block
2513 * until the work is done.
cdec2e42 2514 */
c0ff4b85 2515static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2516{
26fe6168 2517 int cpu, curcpu;
d38144b7 2518
cdec2e42 2519 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2520 get_online_cpus();
5af12d0e 2521 curcpu = get_cpu();
cdec2e42
KH
2522 for_each_online_cpu(cpu) {
2523 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2524 struct mem_cgroup *memcg;
26fe6168 2525
c0ff4b85
R
2526 memcg = stock->cached;
2527 if (!memcg || !stock->nr_pages)
26fe6168 2528 continue;
c0ff4b85 2529 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2530 continue;
d1a05b69
MH
2531 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2532 if (cpu == curcpu)
2533 drain_local_stock(&stock->work);
2534 else
2535 schedule_work_on(cpu, &stock->work);
2536 }
cdec2e42 2537 }
5af12d0e 2538 put_cpu();
d38144b7
MH
2539
2540 if (!sync)
2541 goto out;
2542
2543 for_each_online_cpu(cpu) {
2544 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2545 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2546 flush_work(&stock->work);
2547 }
2548out:
f894ffa8 2549 put_online_cpus();
d38144b7
MH
2550}
2551
2552/*
2553 * Tries to drain stocked charges in other cpus. This function is asynchronous
2554 * and just put a work per cpu for draining localy on each cpu. Caller can
2555 * expects some charges will be back to res_counter later but cannot wait for
2556 * it.
2557 */
c0ff4b85 2558static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2559{
9f50fad6
MH
2560 /*
2561 * If someone calls draining, avoid adding more kworker runs.
2562 */
2563 if (!mutex_trylock(&percpu_charge_mutex))
2564 return;
c0ff4b85 2565 drain_all_stock(root_memcg, false);
9f50fad6 2566 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2567}
2568
2569/* This is a synchronous drain interface. */
c0ff4b85 2570static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2571{
2572 /* called when force_empty is called */
9f50fad6 2573 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2574 drain_all_stock(root_memcg, true);
9f50fad6 2575 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2576}
2577
711d3d2c
KH
2578/*
2579 * This function drains percpu counter value from DEAD cpu and
2580 * move it to local cpu. Note that this function can be preempted.
2581 */
c0ff4b85 2582static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2583{
2584 int i;
2585
c0ff4b85 2586 spin_lock(&memcg->pcp_counter_lock);
6104621d 2587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2588 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2589
c0ff4b85
R
2590 per_cpu(memcg->stat->count[i], cpu) = 0;
2591 memcg->nocpu_base.count[i] += x;
711d3d2c 2592 }
e9f8974f 2593 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2594 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2595
c0ff4b85
R
2596 per_cpu(memcg->stat->events[i], cpu) = 0;
2597 memcg->nocpu_base.events[i] += x;
e9f8974f 2598 }
c0ff4b85 2599 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2600}
2601
0db0628d 2602static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2603 unsigned long action,
2604 void *hcpu)
2605{
2606 int cpu = (unsigned long)hcpu;
2607 struct memcg_stock_pcp *stock;
711d3d2c 2608 struct mem_cgroup *iter;
cdec2e42 2609
619d094b 2610 if (action == CPU_ONLINE)
1489ebad 2611 return NOTIFY_OK;
1489ebad 2612
d833049b 2613 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2614 return NOTIFY_OK;
711d3d2c 2615
9f3a0d09 2616 for_each_mem_cgroup(iter)
711d3d2c
KH
2617 mem_cgroup_drain_pcp_counter(iter, cpu);
2618
cdec2e42
KH
2619 stock = &per_cpu(memcg_stock, cpu);
2620 drain_stock(stock);
2621 return NOTIFY_OK;
2622}
2623
4b534334
KH
2624
2625/* See __mem_cgroup_try_charge() for details */
2626enum {
2627 CHARGE_OK, /* success */
2628 CHARGE_RETRY, /* need to retry but retry is not bad */
2629 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2630 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2631};
2632
c0ff4b85 2633static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2634 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2635 bool invoke_oom)
4b534334 2636{
7ec99d62 2637 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2638 struct mem_cgroup *mem_over_limit;
2639 struct res_counter *fail_res;
2640 unsigned long flags = 0;
2641 int ret;
2642
c0ff4b85 2643 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2644
2645 if (likely(!ret)) {
2646 if (!do_swap_account)
2647 return CHARGE_OK;
c0ff4b85 2648 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2649 if (likely(!ret))
2650 return CHARGE_OK;
2651
c0ff4b85 2652 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2653 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2654 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2655 } else
2656 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2657 /*
9221edb7
JW
2658 * Never reclaim on behalf of optional batching, retry with a
2659 * single page instead.
2660 */
4c9c5359 2661 if (nr_pages > min_pages)
4b534334
KH
2662 return CHARGE_RETRY;
2663
2664 if (!(gfp_mask & __GFP_WAIT))
2665 return CHARGE_WOULDBLOCK;
2666
4c9c5359
SS
2667 if (gfp_mask & __GFP_NORETRY)
2668 return CHARGE_NOMEM;
2669
5660048c 2670 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2671 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2672 return CHARGE_RETRY;
4b534334 2673 /*
19942822
JW
2674 * Even though the limit is exceeded at this point, reclaim
2675 * may have been able to free some pages. Retry the charge
2676 * before killing the task.
2677 *
2678 * Only for regular pages, though: huge pages are rather
2679 * unlikely to succeed so close to the limit, and we fall back
2680 * to regular pages anyway in case of failure.
4b534334 2681 */
4c9c5359 2682 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2683 return CHARGE_RETRY;
2684
2685 /*
2686 * At task move, charge accounts can be doubly counted. So, it's
2687 * better to wait until the end of task_move if something is going on.
2688 */
2689 if (mem_cgroup_wait_acct_move(mem_over_limit))
2690 return CHARGE_RETRY;
2691
3812c8c8
JW
2692 if (invoke_oom)
2693 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2694
3812c8c8 2695 return CHARGE_NOMEM;
4b534334
KH
2696}
2697
f817ed48 2698/*
38c5d72f
KH
2699 * __mem_cgroup_try_charge() does
2700 * 1. detect memcg to be charged against from passed *mm and *ptr,
2701 * 2. update res_counter
2702 * 3. call memory reclaim if necessary.
2703 *
2704 * In some special case, if the task is fatal, fatal_signal_pending() or
2705 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2706 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2707 * as possible without any hazards. 2: all pages should have a valid
2708 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2709 * pointer, that is treated as a charge to root_mem_cgroup.
2710 *
2711 * So __mem_cgroup_try_charge() will return
2712 * 0 ... on success, filling *ptr with a valid memcg pointer.
2713 * -ENOMEM ... charge failure because of resource limits.
2714 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2715 *
2716 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2717 * the oom-killer can be invoked.
8a9f3ccd 2718 */
f817ed48 2719static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2720 gfp_t gfp_mask,
7ec99d62 2721 unsigned int nr_pages,
c0ff4b85 2722 struct mem_cgroup **ptr,
7ec99d62 2723 bool oom)
8a9f3ccd 2724{
7ec99d62 2725 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2726 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2727 struct mem_cgroup *memcg = NULL;
4b534334 2728 int ret;
a636b327 2729
867578cb
KH
2730 /*
2731 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2732 * in system level. So, allow to go ahead dying process in addition to
2733 * MEMDIE process.
2734 */
2735 if (unlikely(test_thread_flag(TIF_MEMDIE)
2736 || fatal_signal_pending(current)))
2737 goto bypass;
a636b327 2738
49426420 2739 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2740 goto nomem;
49426420 2741
a0d8b00a
JW
2742 if (gfp_mask & __GFP_NOFAIL)
2743 oom = false;
2744
8a9f3ccd 2745 /*
3be91277
HD
2746 * We always charge the cgroup the mm_struct belongs to.
2747 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2748 * thread group leader migrates. It's possible that mm is not
24467cac 2749 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2750 */
c0ff4b85 2751 if (!*ptr && !mm)
38c5d72f 2752 *ptr = root_mem_cgroup;
f75ca962 2753again:
c0ff4b85
R
2754 if (*ptr) { /* css should be a valid one */
2755 memcg = *ptr;
c0ff4b85 2756 if (mem_cgroup_is_root(memcg))
f75ca962 2757 goto done;
a0956d54 2758 if (consume_stock(memcg, nr_pages))
f75ca962 2759 goto done;
c0ff4b85 2760 css_get(&memcg->css);
4b534334 2761 } else {
f75ca962 2762 struct task_struct *p;
54595fe2 2763
f75ca962
KH
2764 rcu_read_lock();
2765 p = rcu_dereference(mm->owner);
f75ca962 2766 /*
ebb76ce1 2767 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2768 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2769 * race with swapoff. Then, we have small risk of mis-accouning.
2770 * But such kind of mis-account by race always happens because
2771 * we don't have cgroup_mutex(). It's overkill and we allo that
2772 * small race, here.
2773 * (*) swapoff at el will charge against mm-struct not against
2774 * task-struct. So, mm->owner can be NULL.
f75ca962 2775 */
c0ff4b85 2776 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2777 if (!memcg)
2778 memcg = root_mem_cgroup;
2779 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2780 rcu_read_unlock();
2781 goto done;
2782 }
a0956d54 2783 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2784 /*
2785 * It seems dagerous to access memcg without css_get().
2786 * But considering how consume_stok works, it's not
2787 * necessary. If consume_stock success, some charges
2788 * from this memcg are cached on this cpu. So, we
2789 * don't need to call css_get()/css_tryget() before
2790 * calling consume_stock().
2791 */
2792 rcu_read_unlock();
2793 goto done;
2794 }
2795 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2796 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2797 rcu_read_unlock();
2798 goto again;
2799 }
2800 rcu_read_unlock();
2801 }
8a9f3ccd 2802
4b534334 2803 do {
3812c8c8 2804 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2805
4b534334 2806 /* If killed, bypass charge */
f75ca962 2807 if (fatal_signal_pending(current)) {
c0ff4b85 2808 css_put(&memcg->css);
4b534334 2809 goto bypass;
f75ca962 2810 }
6d61ef40 2811
3812c8c8
JW
2812 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2813 nr_pages, invoke_oom);
4b534334
KH
2814 switch (ret) {
2815 case CHARGE_OK:
2816 break;
2817 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2818 batch = nr_pages;
c0ff4b85
R
2819 css_put(&memcg->css);
2820 memcg = NULL;
f75ca962 2821 goto again;
4b534334 2822 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2823 css_put(&memcg->css);
4b534334
KH
2824 goto nomem;
2825 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2826 if (!oom || invoke_oom) {
c0ff4b85 2827 css_put(&memcg->css);
867578cb 2828 goto nomem;
f75ca962 2829 }
4b534334
KH
2830 nr_oom_retries--;
2831 break;
66e1707b 2832 }
4b534334
KH
2833 } while (ret != CHARGE_OK);
2834
7ec99d62 2835 if (batch > nr_pages)
c0ff4b85
R
2836 refill_stock(memcg, batch - nr_pages);
2837 css_put(&memcg->css);
0c3e73e8 2838done:
c0ff4b85 2839 *ptr = memcg;
7a81b88c
KH
2840 return 0;
2841nomem:
3168ecbe
JW
2842 if (!(gfp_mask & __GFP_NOFAIL)) {
2843 *ptr = NULL;
2844 return -ENOMEM;
2845 }
867578cb 2846bypass:
38c5d72f
KH
2847 *ptr = root_mem_cgroup;
2848 return -EINTR;
7a81b88c 2849}
8a9f3ccd 2850
a3032a2c
DN
2851/*
2852 * Somemtimes we have to undo a charge we got by try_charge().
2853 * This function is for that and do uncharge, put css's refcnt.
2854 * gotten by try_charge().
2855 */
c0ff4b85 2856static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2857 unsigned int nr_pages)
a3032a2c 2858{
c0ff4b85 2859 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2860 unsigned long bytes = nr_pages * PAGE_SIZE;
2861
c0ff4b85 2862 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2863 if (do_swap_account)
c0ff4b85 2864 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2865 }
854ffa8d
DN
2866}
2867
d01dd17f
KH
2868/*
2869 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2870 * This is useful when moving usage to parent cgroup.
2871 */
2872static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2873 unsigned int nr_pages)
2874{
2875 unsigned long bytes = nr_pages * PAGE_SIZE;
2876
2877 if (mem_cgroup_is_root(memcg))
2878 return;
2879
2880 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2881 if (do_swap_account)
2882 res_counter_uncharge_until(&memcg->memsw,
2883 memcg->memsw.parent, bytes);
2884}
2885
a3b2d692
KH
2886/*
2887 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2888 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2889 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2890 * called against removed memcg.)
a3b2d692
KH
2891 */
2892static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2893{
a3b2d692
KH
2894 /* ID 0 is unused ID */
2895 if (!id)
2896 return NULL;
34c00c31 2897 return mem_cgroup_from_id(id);
a3b2d692
KH
2898}
2899
e42d9d5d 2900struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2901{
c0ff4b85 2902 struct mem_cgroup *memcg = NULL;
3c776e64 2903 struct page_cgroup *pc;
a3b2d692 2904 unsigned short id;
b5a84319
KH
2905 swp_entry_t ent;
2906
309381fe 2907 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2908
3c776e64 2909 pc = lookup_page_cgroup(page);
c0bd3f63 2910 lock_page_cgroup(pc);
a3b2d692 2911 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2912 memcg = pc->mem_cgroup;
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
e42d9d5d 2915 } else if (PageSwapCache(page)) {
3c776e64 2916 ent.val = page_private(page);
9fb4b7cc 2917 id = lookup_swap_cgroup_id(ent);
a3b2d692 2918 rcu_read_lock();
c0ff4b85
R
2919 memcg = mem_cgroup_lookup(id);
2920 if (memcg && !css_tryget(&memcg->css))
2921 memcg = NULL;
a3b2d692 2922 rcu_read_unlock();
3c776e64 2923 }
c0bd3f63 2924 unlock_page_cgroup(pc);
c0ff4b85 2925 return memcg;
b5a84319
KH
2926}
2927
c0ff4b85 2928static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2929 struct page *page,
7ec99d62 2930 unsigned int nr_pages,
9ce70c02
HD
2931 enum charge_type ctype,
2932 bool lrucare)
7a81b88c 2933{
ce587e65 2934 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2935 struct zone *uninitialized_var(zone);
fa9add64 2936 struct lruvec *lruvec;
9ce70c02 2937 bool was_on_lru = false;
b2402857 2938 bool anon;
9ce70c02 2939
ca3e0214 2940 lock_page_cgroup(pc);
309381fe 2941 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2942 /*
2943 * we don't need page_cgroup_lock about tail pages, becase they are not
2944 * accessed by any other context at this point.
2945 */
9ce70c02
HD
2946
2947 /*
2948 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2949 * may already be on some other mem_cgroup's LRU. Take care of it.
2950 */
2951 if (lrucare) {
2952 zone = page_zone(page);
2953 spin_lock_irq(&zone->lru_lock);
2954 if (PageLRU(page)) {
fa9add64 2955 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2956 ClearPageLRU(page);
fa9add64 2957 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2958 was_on_lru = true;
2959 }
2960 }
2961
c0ff4b85 2962 pc->mem_cgroup = memcg;
261fb61a
KH
2963 /*
2964 * We access a page_cgroup asynchronously without lock_page_cgroup().
2965 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2966 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2967 * before USED bit, we need memory barrier here.
2968 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2969 */
08e552c6 2970 smp_wmb();
b2402857 2971 SetPageCgroupUsed(pc);
3be91277 2972
9ce70c02
HD
2973 if (lrucare) {
2974 if (was_on_lru) {
fa9add64 2975 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2976 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2977 SetPageLRU(page);
fa9add64 2978 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2979 }
2980 spin_unlock_irq(&zone->lru_lock);
2981 }
2982
41326c17 2983 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2984 anon = true;
2985 else
2986 anon = false;
2987
b070e65c 2988 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2989 unlock_page_cgroup(pc);
9ce70c02 2990
430e4863 2991 /*
bb4cc1a8
AM
2992 * "charge_statistics" updated event counter. Then, check it.
2993 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2994 * if they exceeds softlimit.
430e4863 2995 */
c0ff4b85 2996 memcg_check_events(memcg, page);
7a81b88c 2997}
66e1707b 2998
7cf27982
GC
2999static DEFINE_MUTEX(set_limit_mutex);
3000
7ae1e1d0 3001#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
3002static DEFINE_MUTEX(activate_kmem_mutex);
3003
7ae1e1d0
GC
3004static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
3005{
3006 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 3007 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
3008}
3009
1f458cbf
GC
3010/*
3011 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3012 * in the memcg_cache_params struct.
3013 */
3014static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3015{
3016 struct kmem_cache *cachep;
3017
3018 VM_BUG_ON(p->is_root_cache);
3019 cachep = p->root_cache;
7a67d7ab 3020 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3021}
3022
749c5415 3023#ifdef CONFIG_SLABINFO
2da8ca82 3024static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3025{
2da8ca82 3026 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3027 struct memcg_cache_params *params;
3028
3029 if (!memcg_can_account_kmem(memcg))
3030 return -EIO;
3031
3032 print_slabinfo_header(m);
3033
3034 mutex_lock(&memcg->slab_caches_mutex);
3035 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3036 cache_show(memcg_params_to_cache(params), m);
3037 mutex_unlock(&memcg->slab_caches_mutex);
3038
3039 return 0;
3040}
3041#endif
3042
7ae1e1d0
GC
3043static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3044{
3045 struct res_counter *fail_res;
3046 struct mem_cgroup *_memcg;
3047 int ret = 0;
7ae1e1d0
GC
3048
3049 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3050 if (ret)
3051 return ret;
3052
7ae1e1d0
GC
3053 _memcg = memcg;
3054 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3055 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3056
3057 if (ret == -EINTR) {
3058 /*
3059 * __mem_cgroup_try_charge() chosed to bypass to root due to
3060 * OOM kill or fatal signal. Since our only options are to
3061 * either fail the allocation or charge it to this cgroup, do
3062 * it as a temporary condition. But we can't fail. From a
3063 * kmem/slab perspective, the cache has already been selected,
3064 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3065 * our minds.
3066 *
3067 * This condition will only trigger if the task entered
3068 * memcg_charge_kmem in a sane state, but was OOM-killed during
3069 * __mem_cgroup_try_charge() above. Tasks that were already
3070 * dying when the allocation triggers should have been already
3071 * directed to the root cgroup in memcontrol.h
3072 */
3073 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3074 if (do_swap_account)
3075 res_counter_charge_nofail(&memcg->memsw, size,
3076 &fail_res);
3077 ret = 0;
3078 } else if (ret)
3079 res_counter_uncharge(&memcg->kmem, size);
3080
3081 return ret;
3082}
3083
3084static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3085{
7ae1e1d0
GC
3086 res_counter_uncharge(&memcg->res, size);
3087 if (do_swap_account)
3088 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3089
3090 /* Not down to 0 */
3091 if (res_counter_uncharge(&memcg->kmem, size))
3092 return;
3093
10d5ebf4
LZ
3094 /*
3095 * Releases a reference taken in kmem_cgroup_css_offline in case
3096 * this last uncharge is racing with the offlining code or it is
3097 * outliving the memcg existence.
3098 *
3099 * The memory barrier imposed by test&clear is paired with the
3100 * explicit one in memcg_kmem_mark_dead().
3101 */
7de37682 3102 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3103 css_put(&memcg->css);
7ae1e1d0
GC
3104}
3105
2633d7a0
GC
3106/*
3107 * helper for acessing a memcg's index. It will be used as an index in the
3108 * child cache array in kmem_cache, and also to derive its name. This function
3109 * will return -1 when this is not a kmem-limited memcg.
3110 */
3111int memcg_cache_id(struct mem_cgroup *memcg)
3112{
3113 return memcg ? memcg->kmemcg_id : -1;
3114}
3115
55007d84
GC
3116static size_t memcg_caches_array_size(int num_groups)
3117{
3118 ssize_t size;
3119 if (num_groups <= 0)
3120 return 0;
3121
3122 size = 2 * num_groups;
3123 if (size < MEMCG_CACHES_MIN_SIZE)
3124 size = MEMCG_CACHES_MIN_SIZE;
3125 else if (size > MEMCG_CACHES_MAX_SIZE)
3126 size = MEMCG_CACHES_MAX_SIZE;
3127
3128 return size;
3129}
3130
3131/*
3132 * We should update the current array size iff all caches updates succeed. This
3133 * can only be done from the slab side. The slab mutex needs to be held when
3134 * calling this.
3135 */
3136void memcg_update_array_size(int num)
3137{
3138 if (num > memcg_limited_groups_array_size)
3139 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3140}
3141
15cf17d2
KK
3142static void kmem_cache_destroy_work_func(struct work_struct *w);
3143
55007d84
GC
3144int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3145{
3146 struct memcg_cache_params *cur_params = s->memcg_params;
3147
f35c3a8e 3148 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3149
3150 if (num_groups > memcg_limited_groups_array_size) {
3151 int i;
f8570263 3152 struct memcg_cache_params *new_params;
55007d84
GC
3153 ssize_t size = memcg_caches_array_size(num_groups);
3154
3155 size *= sizeof(void *);
90c7a79c 3156 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3157
f8570263
VD
3158 new_params = kzalloc(size, GFP_KERNEL);
3159 if (!new_params)
55007d84 3160 return -ENOMEM;
55007d84 3161
f8570263 3162 new_params->is_root_cache = true;
55007d84
GC
3163
3164 /*
3165 * There is the chance it will be bigger than
3166 * memcg_limited_groups_array_size, if we failed an allocation
3167 * in a cache, in which case all caches updated before it, will
3168 * have a bigger array.
3169 *
3170 * But if that is the case, the data after
3171 * memcg_limited_groups_array_size is certainly unused
3172 */
3173 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3174 if (!cur_params->memcg_caches[i])
3175 continue;
f8570263 3176 new_params->memcg_caches[i] =
55007d84
GC
3177 cur_params->memcg_caches[i];
3178 }
3179
3180 /*
3181 * Ideally, we would wait until all caches succeed, and only
3182 * then free the old one. But this is not worth the extra
3183 * pointer per-cache we'd have to have for this.
3184 *
3185 * It is not a big deal if some caches are left with a size
3186 * bigger than the others. And all updates will reset this
3187 * anyway.
3188 */
f8570263
VD
3189 rcu_assign_pointer(s->memcg_params, new_params);
3190 if (cur_params)
3191 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3192 }
3193 return 0;
3194}
3195
363a044f
VD
3196int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3197 struct kmem_cache *root_cache)
2633d7a0 3198{
90c7a79c 3199 size_t size;
2633d7a0
GC
3200
3201 if (!memcg_kmem_enabled())
3202 return 0;
3203
90c7a79c
AV
3204 if (!memcg) {
3205 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3206 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3207 } else
3208 size = sizeof(struct memcg_cache_params);
55007d84 3209
2633d7a0
GC
3210 s->memcg_params = kzalloc(size, GFP_KERNEL);
3211 if (!s->memcg_params)
3212 return -ENOMEM;
3213
943a451a 3214 if (memcg) {
2633d7a0 3215 s->memcg_params->memcg = memcg;
943a451a 3216 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3217 INIT_WORK(&s->memcg_params->destroy,
3218 kmem_cache_destroy_work_func);
4ba902b5
GC
3219 } else
3220 s->memcg_params->is_root_cache = true;
3221
2633d7a0
GC
3222 return 0;
3223}
3224
363a044f
VD
3225void memcg_free_cache_params(struct kmem_cache *s)
3226{
3227 kfree(s->memcg_params);
3228}
3229
1aa13254 3230void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3231{
d7f25f8a
GC
3232 struct kmem_cache *root;
3233 struct mem_cgroup *memcg;
3234 int id;
3235
1aa13254
VD
3236 if (is_root_cache(s))
3237 return;
3238
2edefe11
VD
3239 /*
3240 * Holding the slab_mutex assures nobody will touch the memcg_caches
3241 * array while we are modifying it.
3242 */
3243 lockdep_assert_held(&slab_mutex);
3244
1aa13254
VD
3245 root = s->memcg_params->root_cache;
3246 memcg = s->memcg_params->memcg;
3247 id = memcg_cache_id(memcg);
3248
3249 css_get(&memcg->css);
3250
1aa13254 3251
d7f25f8a 3252 /*
959c8963
VD
3253 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3254 * barrier here to ensure nobody will see the kmem_cache partially
3255 * initialized.
d7f25f8a 3256 */
959c8963
VD
3257 smp_wmb();
3258
96403da2
VD
3259 /*
3260 * Initialize the pointer to this cache in its parent's memcg_params
3261 * before adding it to the memcg_slab_caches list, otherwise we can
3262 * fail to convert memcg_params_to_cache() while traversing the list.
3263 */
2edefe11 3264 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3265 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3266
3267 mutex_lock(&memcg->slab_caches_mutex);
3268 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3269 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3270}
d7f25f8a 3271
1aa13254
VD
3272void memcg_unregister_cache(struct kmem_cache *s)
3273{
3274 struct kmem_cache *root;
3275 struct mem_cgroup *memcg;
3276 int id;
3277
3278 if (is_root_cache(s))
3279 return;
d7f25f8a 3280
2edefe11
VD
3281 /*
3282 * Holding the slab_mutex assures nobody will touch the memcg_caches
3283 * array while we are modifying it.
3284 */
3285 lockdep_assert_held(&slab_mutex);
3286
d7f25f8a 3287 root = s->memcg_params->root_cache;
96403da2
VD
3288 memcg = s->memcg_params->memcg;
3289 id = memcg_cache_id(memcg);
d7f25f8a
GC
3290
3291 mutex_lock(&memcg->slab_caches_mutex);
3292 list_del(&s->memcg_params->list);
3293 mutex_unlock(&memcg->slab_caches_mutex);
3294
96403da2
VD
3295 /*
3296 * Clear the pointer to this cache in its parent's memcg_params only
3297 * after removing it from the memcg_slab_caches list, otherwise we can
3298 * fail to convert memcg_params_to_cache() while traversing the list.
3299 */
2edefe11 3300 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3301 root->memcg_params->memcg_caches[id] = NULL;
3302
20f05310 3303 css_put(&memcg->css);
2633d7a0
GC
3304}
3305
0e9d92f2
GC
3306/*
3307 * During the creation a new cache, we need to disable our accounting mechanism
3308 * altogether. This is true even if we are not creating, but rather just
3309 * enqueing new caches to be created.
3310 *
3311 * This is because that process will trigger allocations; some visible, like
3312 * explicit kmallocs to auxiliary data structures, name strings and internal
3313 * cache structures; some well concealed, like INIT_WORK() that can allocate
3314 * objects during debug.
3315 *
3316 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3317 * to it. This may not be a bounded recursion: since the first cache creation
3318 * failed to complete (waiting on the allocation), we'll just try to create the
3319 * cache again, failing at the same point.
3320 *
3321 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3322 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3323 * inside the following two functions.
3324 */
3325static inline void memcg_stop_kmem_account(void)
3326{
3327 VM_BUG_ON(!current->mm);
3328 current->memcg_kmem_skip_account++;
3329}
3330
3331static inline void memcg_resume_kmem_account(void)
3332{
3333 VM_BUG_ON(!current->mm);
3334 current->memcg_kmem_skip_account--;
3335}
3336
1f458cbf
GC
3337static void kmem_cache_destroy_work_func(struct work_struct *w)
3338{
3339 struct kmem_cache *cachep;
3340 struct memcg_cache_params *p;
3341
3342 p = container_of(w, struct memcg_cache_params, destroy);
3343
3344 cachep = memcg_params_to_cache(p);
3345
22933152
GC
3346 /*
3347 * If we get down to 0 after shrink, we could delete right away.
3348 * However, memcg_release_pages() already puts us back in the workqueue
3349 * in that case. If we proceed deleting, we'll get a dangling
3350 * reference, and removing the object from the workqueue in that case
3351 * is unnecessary complication. We are not a fast path.
3352 *
3353 * Note that this case is fundamentally different from racing with
3354 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3355 * kmem_cache_shrink, not only we would be reinserting a dead cache
3356 * into the queue, but doing so from inside the worker racing to
3357 * destroy it.
3358 *
3359 * So if we aren't down to zero, we'll just schedule a worker and try
3360 * again
3361 */
3362 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3363 kmem_cache_shrink(cachep);
3364 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3365 return;
3366 } else
1f458cbf
GC
3367 kmem_cache_destroy(cachep);
3368}
3369
3370void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3371{
3372 if (!cachep->memcg_params->dead)
3373 return;
3374
22933152
GC
3375 /*
3376 * There are many ways in which we can get here.
3377 *
3378 * We can get to a memory-pressure situation while the delayed work is
3379 * still pending to run. The vmscan shrinkers can then release all
3380 * cache memory and get us to destruction. If this is the case, we'll
3381 * be executed twice, which is a bug (the second time will execute over
3382 * bogus data). In this case, cancelling the work should be fine.
3383 *
3384 * But we can also get here from the worker itself, if
3385 * kmem_cache_shrink is enough to shake all the remaining objects and
3386 * get the page count to 0. In this case, we'll deadlock if we try to
3387 * cancel the work (the worker runs with an internal lock held, which
3388 * is the same lock we would hold for cancel_work_sync().)
3389 *
3390 * Since we can't possibly know who got us here, just refrain from
3391 * running if there is already work pending
3392 */
3393 if (work_pending(&cachep->memcg_params->destroy))
3394 return;
1f458cbf
GC
3395 /*
3396 * We have to defer the actual destroying to a workqueue, because
3397 * we might currently be in a context that cannot sleep.
3398 */
3399 schedule_work(&cachep->memcg_params->destroy);
3400}
3401
842e2873
VD
3402static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3403 struct kmem_cache *s)
d7f25f8a 3404{
d7f25f8a 3405 struct kmem_cache *new;
d9c10ddd 3406 static char *tmp_name = NULL;
842e2873 3407 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3408
842e2873 3409 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3410
842e2873 3411 mutex_lock(&mutex);
d9c10ddd
MH
3412 /*
3413 * kmem_cache_create_memcg duplicates the given name and
3414 * cgroup_name for this name requires RCU context.
3415 * This static temporary buffer is used to prevent from
3416 * pointless shortliving allocation.
3417 */
3418 if (!tmp_name) {
3419 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3420 if (!tmp_name)
3421 return NULL;
3422 }
3423
3424 rcu_read_lock();
3425 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3426 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3427 rcu_read_unlock();
d7f25f8a 3428
d9c10ddd 3429 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3430 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3431
d79923fa
GC
3432 if (new)
3433 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3434 else
3435 new = s;
d79923fa 3436
842e2873 3437 mutex_unlock(&mutex);
d7f25f8a
GC
3438 return new;
3439}
3440
7cf27982
GC
3441void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3442{
3443 struct kmem_cache *c;
3444 int i;
3445
3446 if (!s->memcg_params)
3447 return;
3448 if (!s->memcg_params->is_root_cache)
3449 return;
3450
3451 /*
3452 * If the cache is being destroyed, we trust that there is no one else
3453 * requesting objects from it. Even if there are, the sanity checks in
3454 * kmem_cache_destroy should caught this ill-case.
3455 *
3456 * Still, we don't want anyone else freeing memcg_caches under our
3457 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3458 * we'll take the activate_kmem_mutex to protect ourselves against
3459 * this.
7cf27982 3460 */
d6441637 3461 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3462 for_each_memcg_cache_index(i) {
3463 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3464 if (!c)
3465 continue;
3466
3467 /*
3468 * We will now manually delete the caches, so to avoid races
3469 * we need to cancel all pending destruction workers and
3470 * proceed with destruction ourselves.
3471 *
3472 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3473 * and that could spawn the workers again: it is likely that
3474 * the cache still have active pages until this very moment.
3475 * This would lead us back to mem_cgroup_destroy_cache.
3476 *
3477 * But that will not execute at all if the "dead" flag is not
3478 * set, so flip it down to guarantee we are in control.
3479 */
3480 c->memcg_params->dead = false;
22933152 3481 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3482 kmem_cache_destroy(c);
3483 }
d6441637 3484 mutex_unlock(&activate_kmem_mutex);
7cf27982
GC
3485}
3486
d7f25f8a
GC
3487struct create_work {
3488 struct mem_cgroup *memcg;
3489 struct kmem_cache *cachep;
3490 struct work_struct work;
3491};
3492
1f458cbf
GC
3493static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3494{
3495 struct kmem_cache *cachep;
3496 struct memcg_cache_params *params;
3497
3498 if (!memcg_kmem_is_active(memcg))
3499 return;
3500
3501 mutex_lock(&memcg->slab_caches_mutex);
3502 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3503 cachep = memcg_params_to_cache(params);
3504 cachep->memcg_params->dead = true;
1f458cbf
GC
3505 schedule_work(&cachep->memcg_params->destroy);
3506 }
3507 mutex_unlock(&memcg->slab_caches_mutex);
3508}
3509
d7f25f8a
GC
3510static void memcg_create_cache_work_func(struct work_struct *w)
3511{
3512 struct create_work *cw;
3513
3514 cw = container_of(w, struct create_work, work);
3515 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3516 css_put(&cw->memcg->css);
d7f25f8a
GC
3517 kfree(cw);
3518}
3519
3520/*
3521 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3522 */
0e9d92f2
GC
3523static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3524 struct kmem_cache *cachep)
d7f25f8a
GC
3525{
3526 struct create_work *cw;
3527
3528 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3529 if (cw == NULL) {
3530 css_put(&memcg->css);
d7f25f8a
GC
3531 return;
3532 }
3533
3534 cw->memcg = memcg;
3535 cw->cachep = cachep;
3536
3537 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3538 schedule_work(&cw->work);
3539}
3540
0e9d92f2
GC
3541static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3542 struct kmem_cache *cachep)
3543{
3544 /*
3545 * We need to stop accounting when we kmalloc, because if the
3546 * corresponding kmalloc cache is not yet created, the first allocation
3547 * in __memcg_create_cache_enqueue will recurse.
3548 *
3549 * However, it is better to enclose the whole function. Depending on
3550 * the debugging options enabled, INIT_WORK(), for instance, can
3551 * trigger an allocation. This too, will make us recurse. Because at
3552 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3553 * the safest choice is to do it like this, wrapping the whole function.
3554 */
3555 memcg_stop_kmem_account();
3556 __memcg_create_cache_enqueue(memcg, cachep);
3557 memcg_resume_kmem_account();
3558}
d7f25f8a
GC
3559/*
3560 * Return the kmem_cache we're supposed to use for a slab allocation.
3561 * We try to use the current memcg's version of the cache.
3562 *
3563 * If the cache does not exist yet, if we are the first user of it,
3564 * we either create it immediately, if possible, or create it asynchronously
3565 * in a workqueue.
3566 * In the latter case, we will let the current allocation go through with
3567 * the original cache.
3568 *
3569 * Can't be called in interrupt context or from kernel threads.
3570 * This function needs to be called with rcu_read_lock() held.
3571 */
3572struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3573 gfp_t gfp)
3574{
3575 struct mem_cgroup *memcg;
959c8963 3576 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3577
3578 VM_BUG_ON(!cachep->memcg_params);
3579 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3580
0e9d92f2
GC
3581 if (!current->mm || current->memcg_kmem_skip_account)
3582 return cachep;
3583
d7f25f8a
GC
3584 rcu_read_lock();
3585 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3586
3587 if (!memcg_can_account_kmem(memcg))
ca0dde97 3588 goto out;
d7f25f8a 3589
959c8963
VD
3590 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3591 if (likely(memcg_cachep)) {
3592 cachep = memcg_cachep;
ca0dde97 3593 goto out;
d7f25f8a
GC
3594 }
3595
ca0dde97
LZ
3596 /* The corresponding put will be done in the workqueue. */
3597 if (!css_tryget(&memcg->css))
3598 goto out;
3599 rcu_read_unlock();
3600
3601 /*
3602 * If we are in a safe context (can wait, and not in interrupt
3603 * context), we could be be predictable and return right away.
3604 * This would guarantee that the allocation being performed
3605 * already belongs in the new cache.
3606 *
3607 * However, there are some clashes that can arrive from locking.
3608 * For instance, because we acquire the slab_mutex while doing
3609 * kmem_cache_dup, this means no further allocation could happen
3610 * with the slab_mutex held.
3611 *
3612 * Also, because cache creation issue get_online_cpus(), this
3613 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3614 * that ends up reversed during cpu hotplug. (cpuset allocates
3615 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3616 * better to defer everything.
3617 */
3618 memcg_create_cache_enqueue(memcg, cachep);
3619 return cachep;
3620out:
3621 rcu_read_unlock();
3622 return cachep;
d7f25f8a
GC
3623}
3624EXPORT_SYMBOL(__memcg_kmem_get_cache);
3625
7ae1e1d0
GC
3626/*
3627 * We need to verify if the allocation against current->mm->owner's memcg is
3628 * possible for the given order. But the page is not allocated yet, so we'll
3629 * need a further commit step to do the final arrangements.
3630 *
3631 * It is possible for the task to switch cgroups in this mean time, so at
3632 * commit time, we can't rely on task conversion any longer. We'll then use
3633 * the handle argument to return to the caller which cgroup we should commit
3634 * against. We could also return the memcg directly and avoid the pointer
3635 * passing, but a boolean return value gives better semantics considering
3636 * the compiled-out case as well.
3637 *
3638 * Returning true means the allocation is possible.
3639 */
3640bool
3641__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3642{
3643 struct mem_cgroup *memcg;
3644 int ret;
3645
3646 *_memcg = NULL;
6d42c232
GC
3647
3648 /*
3649 * Disabling accounting is only relevant for some specific memcg
3650 * internal allocations. Therefore we would initially not have such
3651 * check here, since direct calls to the page allocator that are marked
3652 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3653 * concerned with cache allocations, and by having this test at
3654 * memcg_kmem_get_cache, we are already able to relay the allocation to
3655 * the root cache and bypass the memcg cache altogether.
3656 *
3657 * There is one exception, though: the SLUB allocator does not create
3658 * large order caches, but rather service large kmallocs directly from
3659 * the page allocator. Therefore, the following sequence when backed by
3660 * the SLUB allocator:
3661 *
f894ffa8
AM
3662 * memcg_stop_kmem_account();
3663 * kmalloc(<large_number>)
3664 * memcg_resume_kmem_account();
6d42c232
GC
3665 *
3666 * would effectively ignore the fact that we should skip accounting,
3667 * since it will drive us directly to this function without passing
3668 * through the cache selector memcg_kmem_get_cache. Such large
3669 * allocations are extremely rare but can happen, for instance, for the
3670 * cache arrays. We bring this test here.
3671 */
3672 if (!current->mm || current->memcg_kmem_skip_account)
3673 return true;
3674
7ae1e1d0
GC
3675 memcg = try_get_mem_cgroup_from_mm(current->mm);
3676
3677 /*
3678 * very rare case described in mem_cgroup_from_task. Unfortunately there
3679 * isn't much we can do without complicating this too much, and it would
3680 * be gfp-dependent anyway. Just let it go
3681 */
3682 if (unlikely(!memcg))
3683 return true;
3684
3685 if (!memcg_can_account_kmem(memcg)) {
3686 css_put(&memcg->css);
3687 return true;
3688 }
3689
7ae1e1d0
GC
3690 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3691 if (!ret)
3692 *_memcg = memcg;
7ae1e1d0
GC
3693
3694 css_put(&memcg->css);
3695 return (ret == 0);
3696}
3697
3698void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3699 int order)
3700{
3701 struct page_cgroup *pc;
3702
3703 VM_BUG_ON(mem_cgroup_is_root(memcg));
3704
3705 /* The page allocation failed. Revert */
3706 if (!page) {
3707 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3708 return;
3709 }
3710
3711 pc = lookup_page_cgroup(page);
3712 lock_page_cgroup(pc);
3713 pc->mem_cgroup = memcg;
3714 SetPageCgroupUsed(pc);
3715 unlock_page_cgroup(pc);
3716}
3717
3718void __memcg_kmem_uncharge_pages(struct page *page, int order)
3719{
3720 struct mem_cgroup *memcg = NULL;
3721 struct page_cgroup *pc;
3722
3723
3724 pc = lookup_page_cgroup(page);
3725 /*
3726 * Fast unlocked return. Theoretically might have changed, have to
3727 * check again after locking.
3728 */
3729 if (!PageCgroupUsed(pc))
3730 return;
3731
3732 lock_page_cgroup(pc);
3733 if (PageCgroupUsed(pc)) {
3734 memcg = pc->mem_cgroup;
3735 ClearPageCgroupUsed(pc);
3736 }
3737 unlock_page_cgroup(pc);
3738
3739 /*
3740 * We trust that only if there is a memcg associated with the page, it
3741 * is a valid allocation
3742 */
3743 if (!memcg)
3744 return;
3745
309381fe 3746 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3747 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3748}
1f458cbf
GC
3749#else
3750static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3751{
3752}
7ae1e1d0
GC
3753#endif /* CONFIG_MEMCG_KMEM */
3754
ca3e0214
KH
3755#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3756
a0db00fc 3757#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3758/*
3759 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3760 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3761 * charge/uncharge will be never happen and move_account() is done under
3762 * compound_lock(), so we don't have to take care of races.
ca3e0214 3763 */
e94c8a9c 3764void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3765{
3766 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3767 struct page_cgroup *pc;
b070e65c 3768 struct mem_cgroup *memcg;
e94c8a9c 3769 int i;
ca3e0214 3770
3d37c4a9
KH
3771 if (mem_cgroup_disabled())
3772 return;
b070e65c
DR
3773
3774 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3775 for (i = 1; i < HPAGE_PMD_NR; i++) {
3776 pc = head_pc + i;
b070e65c 3777 pc->mem_cgroup = memcg;
e94c8a9c 3778 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3779 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3780 }
b070e65c
DR
3781 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3782 HPAGE_PMD_NR);
ca3e0214 3783}
12d27107 3784#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3785
3ea67d06
SZ
3786static inline
3787void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3788 struct mem_cgroup *to,
3789 unsigned int nr_pages,
3790 enum mem_cgroup_stat_index idx)
3791{
3792 /* Update stat data for mem_cgroup */
3793 preempt_disable();
5e8cfc3c 3794 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3795 __this_cpu_add(to->stat->count[idx], nr_pages);
3796 preempt_enable();
3797}
3798
f817ed48 3799/**
de3638d9 3800 * mem_cgroup_move_account - move account of the page
5564e88b 3801 * @page: the page
7ec99d62 3802 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3803 * @pc: page_cgroup of the page.
3804 * @from: mem_cgroup which the page is moved from.
3805 * @to: mem_cgroup which the page is moved to. @from != @to.
3806 *
3807 * The caller must confirm following.
08e552c6 3808 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3809 * - compound_lock is held when nr_pages > 1
f817ed48 3810 *
2f3479b1
KH
3811 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3812 * from old cgroup.
f817ed48 3813 */
7ec99d62
JW
3814static int mem_cgroup_move_account(struct page *page,
3815 unsigned int nr_pages,
3816 struct page_cgroup *pc,
3817 struct mem_cgroup *from,
2f3479b1 3818 struct mem_cgroup *to)
f817ed48 3819{
de3638d9
JW
3820 unsigned long flags;
3821 int ret;
b2402857 3822 bool anon = PageAnon(page);
987eba66 3823
f817ed48 3824 VM_BUG_ON(from == to);
309381fe 3825 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3826 /*
3827 * The page is isolated from LRU. So, collapse function
3828 * will not handle this page. But page splitting can happen.
3829 * Do this check under compound_page_lock(). The caller should
3830 * hold it.
3831 */
3832 ret = -EBUSY;
7ec99d62 3833 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3834 goto out;
3835
3836 lock_page_cgroup(pc);
3837
3838 ret = -EINVAL;
3839 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3840 goto unlock;
3841
312734c0 3842 move_lock_mem_cgroup(from, &flags);
f817ed48 3843
3ea67d06
SZ
3844 if (!anon && page_mapped(page))
3845 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3846 MEM_CGROUP_STAT_FILE_MAPPED);
3847
3848 if (PageWriteback(page))
3849 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3850 MEM_CGROUP_STAT_WRITEBACK);
3851
b070e65c 3852 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3853
854ffa8d 3854 /* caller should have done css_get */
08e552c6 3855 pc->mem_cgroup = to;
b070e65c 3856 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3857 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3858 ret = 0;
3859unlock:
57f9fd7d 3860 unlock_page_cgroup(pc);
d2265e6f
KH
3861 /*
3862 * check events
3863 */
5564e88b
JW
3864 memcg_check_events(to, page);
3865 memcg_check_events(from, page);
de3638d9 3866out:
f817ed48
KH
3867 return ret;
3868}
3869
2ef37d3f
MH
3870/**
3871 * mem_cgroup_move_parent - moves page to the parent group
3872 * @page: the page to move
3873 * @pc: page_cgroup of the page
3874 * @child: page's cgroup
3875 *
3876 * move charges to its parent or the root cgroup if the group has no
3877 * parent (aka use_hierarchy==0).
3878 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3879 * mem_cgroup_move_account fails) the failure is always temporary and
3880 * it signals a race with a page removal/uncharge or migration. In the
3881 * first case the page is on the way out and it will vanish from the LRU
3882 * on the next attempt and the call should be retried later.
3883 * Isolation from the LRU fails only if page has been isolated from
3884 * the LRU since we looked at it and that usually means either global
3885 * reclaim or migration going on. The page will either get back to the
3886 * LRU or vanish.
3887 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3888 * (!PageCgroupUsed) or moved to a different group. The page will
3889 * disappear in the next attempt.
f817ed48 3890 */
5564e88b
JW
3891static int mem_cgroup_move_parent(struct page *page,
3892 struct page_cgroup *pc,
6068bf01 3893 struct mem_cgroup *child)
f817ed48 3894{
f817ed48 3895 struct mem_cgroup *parent;
7ec99d62 3896 unsigned int nr_pages;
4be4489f 3897 unsigned long uninitialized_var(flags);
f817ed48
KH
3898 int ret;
3899
d8423011 3900 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3901
57f9fd7d
DN
3902 ret = -EBUSY;
3903 if (!get_page_unless_zero(page))
3904 goto out;
3905 if (isolate_lru_page(page))
3906 goto put;
52dbb905 3907
7ec99d62 3908 nr_pages = hpage_nr_pages(page);
08e552c6 3909
cc926f78
KH
3910 parent = parent_mem_cgroup(child);
3911 /*
3912 * If no parent, move charges to root cgroup.
3913 */
3914 if (!parent)
3915 parent = root_mem_cgroup;
f817ed48 3916
2ef37d3f 3917 if (nr_pages > 1) {
309381fe 3918 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3919 flags = compound_lock_irqsave(page);
2ef37d3f 3920 }
987eba66 3921
cc926f78 3922 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3923 pc, child, parent);
cc926f78
KH
3924 if (!ret)
3925 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3926
7ec99d62 3927 if (nr_pages > 1)
987eba66 3928 compound_unlock_irqrestore(page, flags);
08e552c6 3929 putback_lru_page(page);
57f9fd7d 3930put:
40d58138 3931 put_page(page);
57f9fd7d 3932out:
f817ed48
KH
3933 return ret;
3934}
3935
7a81b88c
KH
3936/*
3937 * Charge the memory controller for page usage.
3938 * Return
3939 * 0 if the charge was successful
3940 * < 0 if the cgroup is over its limit
3941 */
3942static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3943 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3944{
c0ff4b85 3945 struct mem_cgroup *memcg = NULL;
7ec99d62 3946 unsigned int nr_pages = 1;
8493ae43 3947 bool oom = true;
7a81b88c 3948 int ret;
ec168510 3949
37c2ac78 3950 if (PageTransHuge(page)) {
7ec99d62 3951 nr_pages <<= compound_order(page);
309381fe 3952 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3953 /*
3954 * Never OOM-kill a process for a huge page. The
3955 * fault handler will fall back to regular pages.
3956 */
3957 oom = false;
37c2ac78 3958 }
7a81b88c 3959
c0ff4b85 3960 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3961 if (ret == -ENOMEM)
7a81b88c 3962 return ret;
ce587e65 3963 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3964 return 0;
8a9f3ccd
BS
3965}
3966
7a81b88c
KH
3967int mem_cgroup_newpage_charge(struct page *page,
3968 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3969{
f8d66542 3970 if (mem_cgroup_disabled())
cede86ac 3971 return 0;
309381fe
SL
3972 VM_BUG_ON_PAGE(page_mapped(page), page);
3973 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 3974 VM_BUG_ON(!mm);
217bc319 3975 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3976 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3977}
3978
54595fe2
KH
3979/*
3980 * While swap-in, try_charge -> commit or cancel, the page is locked.
3981 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3982 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3983 * "commit()" or removed by "cancel()"
3984 */
0435a2fd
JW
3985static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3986 struct page *page,
3987 gfp_t mask,
3988 struct mem_cgroup **memcgp)
8c7c6e34 3989{
c0ff4b85 3990 struct mem_cgroup *memcg;
90deb788 3991 struct page_cgroup *pc;
54595fe2 3992 int ret;
8c7c6e34 3993
90deb788
JW
3994 pc = lookup_page_cgroup(page);
3995 /*
3996 * Every swap fault against a single page tries to charge the
3997 * page, bail as early as possible. shmem_unuse() encounters
3998 * already charged pages, too. The USED bit is protected by
3999 * the page lock, which serializes swap cache removal, which
4000 * in turn serializes uncharging.
4001 */
4002 if (PageCgroupUsed(pc))
4003 return 0;
8c7c6e34
KH
4004 if (!do_swap_account)
4005 goto charge_cur_mm;
c0ff4b85
R
4006 memcg = try_get_mem_cgroup_from_page(page);
4007 if (!memcg)
54595fe2 4008 goto charge_cur_mm;
72835c86
JW
4009 *memcgp = memcg;
4010 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4011 css_put(&memcg->css);
38c5d72f
KH
4012 if (ret == -EINTR)
4013 ret = 0;
54595fe2 4014 return ret;
8c7c6e34 4015charge_cur_mm:
38c5d72f
KH
4016 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4017 if (ret == -EINTR)
4018 ret = 0;
4019 return ret;
8c7c6e34
KH
4020}
4021
0435a2fd
JW
4022int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4023 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4024{
4025 *memcgp = NULL;
4026 if (mem_cgroup_disabled())
4027 return 0;
bdf4f4d2
JW
4028 /*
4029 * A racing thread's fault, or swapoff, may have already
4030 * updated the pte, and even removed page from swap cache: in
4031 * those cases unuse_pte()'s pte_same() test will fail; but
4032 * there's also a KSM case which does need to charge the page.
4033 */
4034 if (!PageSwapCache(page)) {
4035 int ret;
4036
4037 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4038 if (ret == -EINTR)
4039 ret = 0;
4040 return ret;
4041 }
0435a2fd
JW
4042 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4043}
4044
827a03d2
JW
4045void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4046{
4047 if (mem_cgroup_disabled())
4048 return;
4049 if (!memcg)
4050 return;
4051 __mem_cgroup_cancel_charge(memcg, 1);
4052}
4053
83aae4c7 4054static void
72835c86 4055__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4056 enum charge_type ctype)
7a81b88c 4057{
f8d66542 4058 if (mem_cgroup_disabled())
7a81b88c 4059 return;
72835c86 4060 if (!memcg)
7a81b88c 4061 return;
5a6475a4 4062
ce587e65 4063 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4064 /*
4065 * Now swap is on-memory. This means this page may be
4066 * counted both as mem and swap....double count.
03f3c433
KH
4067 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4068 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4069 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4070 */
03f3c433 4071 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4072 swp_entry_t ent = {.val = page_private(page)};
86493009 4073 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4074 }
7a81b88c
KH
4075}
4076
72835c86
JW
4077void mem_cgroup_commit_charge_swapin(struct page *page,
4078 struct mem_cgroup *memcg)
83aae4c7 4079{
72835c86 4080 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4081 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4082}
4083
827a03d2
JW
4084int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4085 gfp_t gfp_mask)
7a81b88c 4086{
827a03d2
JW
4087 struct mem_cgroup *memcg = NULL;
4088 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4089 int ret;
4090
f8d66542 4091 if (mem_cgroup_disabled())
827a03d2
JW
4092 return 0;
4093 if (PageCompound(page))
4094 return 0;
4095
827a03d2
JW
4096 if (!PageSwapCache(page))
4097 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4098 else { /* page is swapcache/shmem */
0435a2fd
JW
4099 ret = __mem_cgroup_try_charge_swapin(mm, page,
4100 gfp_mask, &memcg);
827a03d2
JW
4101 if (!ret)
4102 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4103 }
4104 return ret;
7a81b88c
KH
4105}
4106
c0ff4b85 4107static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4108 unsigned int nr_pages,
4109 const enum charge_type ctype)
569b846d
KH
4110{
4111 struct memcg_batch_info *batch = NULL;
4112 bool uncharge_memsw = true;
7ec99d62 4113
569b846d
KH
4114 /* If swapout, usage of swap doesn't decrease */
4115 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4116 uncharge_memsw = false;
569b846d
KH
4117
4118 batch = &current->memcg_batch;
4119 /*
4120 * In usual, we do css_get() when we remember memcg pointer.
4121 * But in this case, we keep res->usage until end of a series of
4122 * uncharges. Then, it's ok to ignore memcg's refcnt.
4123 */
4124 if (!batch->memcg)
c0ff4b85 4125 batch->memcg = memcg;
3c11ecf4
KH
4126 /*
4127 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4128 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4129 * the same cgroup and we have chance to coalesce uncharges.
4130 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4131 * because we want to do uncharge as soon as possible.
4132 */
4133
4134 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4135 goto direct_uncharge;
4136
7ec99d62 4137 if (nr_pages > 1)
ec168510
AA
4138 goto direct_uncharge;
4139
569b846d
KH
4140 /*
4141 * In typical case, batch->memcg == mem. This means we can
4142 * merge a series of uncharges to an uncharge of res_counter.
4143 * If not, we uncharge res_counter ony by one.
4144 */
c0ff4b85 4145 if (batch->memcg != memcg)
569b846d
KH
4146 goto direct_uncharge;
4147 /* remember freed charge and uncharge it later */
7ffd4ca7 4148 batch->nr_pages++;
569b846d 4149 if (uncharge_memsw)
7ffd4ca7 4150 batch->memsw_nr_pages++;
569b846d
KH
4151 return;
4152direct_uncharge:
c0ff4b85 4153 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4154 if (uncharge_memsw)
c0ff4b85
R
4155 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4156 if (unlikely(batch->memcg != memcg))
4157 memcg_oom_recover(memcg);
569b846d 4158}
7a81b88c 4159
8a9f3ccd 4160/*
69029cd5 4161 * uncharge if !page_mapped(page)
8a9f3ccd 4162 */
8c7c6e34 4163static struct mem_cgroup *
0030f535
JW
4164__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4165 bool end_migration)
8a9f3ccd 4166{
c0ff4b85 4167 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4168 unsigned int nr_pages = 1;
4169 struct page_cgroup *pc;
b2402857 4170 bool anon;
8a9f3ccd 4171
f8d66542 4172 if (mem_cgroup_disabled())
8c7c6e34 4173 return NULL;
4077960e 4174
37c2ac78 4175 if (PageTransHuge(page)) {
7ec99d62 4176 nr_pages <<= compound_order(page);
309381fe 4177 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4178 }
8697d331 4179 /*
3c541e14 4180 * Check if our page_cgroup is valid
8697d331 4181 */
52d4b9ac 4182 pc = lookup_page_cgroup(page);
cfa44946 4183 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4184 return NULL;
b9c565d5 4185
52d4b9ac 4186 lock_page_cgroup(pc);
d13d1443 4187
c0ff4b85 4188 memcg = pc->mem_cgroup;
8c7c6e34 4189
d13d1443
KH
4190 if (!PageCgroupUsed(pc))
4191 goto unlock_out;
4192
b2402857
KH
4193 anon = PageAnon(page);
4194
d13d1443 4195 switch (ctype) {
41326c17 4196 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4197 /*
4198 * Generally PageAnon tells if it's the anon statistics to be
4199 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4200 * used before page reached the stage of being marked PageAnon.
4201 */
b2402857
KH
4202 anon = true;
4203 /* fallthrough */
8a9478ca 4204 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4205 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4206 if (page_mapped(page))
4207 goto unlock_out;
4208 /*
4209 * Pages under migration may not be uncharged. But
4210 * end_migration() /must/ be the one uncharging the
4211 * unused post-migration page and so it has to call
4212 * here with the migration bit still set. See the
4213 * res_counter handling below.
4214 */
4215 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4216 goto unlock_out;
4217 break;
4218 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4219 if (!PageAnon(page)) { /* Shared memory */
4220 if (page->mapping && !page_is_file_cache(page))
4221 goto unlock_out;
4222 } else if (page_mapped(page)) /* Anon */
4223 goto unlock_out;
4224 break;
4225 default:
4226 break;
52d4b9ac 4227 }
d13d1443 4228
b070e65c 4229 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4230
52d4b9ac 4231 ClearPageCgroupUsed(pc);
544122e5
KH
4232 /*
4233 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4234 * freed from LRU. This is safe because uncharged page is expected not
4235 * to be reused (freed soon). Exception is SwapCache, it's handled by
4236 * special functions.
4237 */
b9c565d5 4238
52d4b9ac 4239 unlock_page_cgroup(pc);
f75ca962 4240 /*
c0ff4b85 4241 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4242 * will never be freed, so it's safe to call css_get().
f75ca962 4243 */
c0ff4b85 4244 memcg_check_events(memcg, page);
f75ca962 4245 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4246 mem_cgroup_swap_statistics(memcg, true);
4050377b 4247 css_get(&memcg->css);
f75ca962 4248 }
0030f535
JW
4249 /*
4250 * Migration does not charge the res_counter for the
4251 * replacement page, so leave it alone when phasing out the
4252 * page that is unused after the migration.
4253 */
4254 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4255 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4256
c0ff4b85 4257 return memcg;
d13d1443
KH
4258
4259unlock_out:
4260 unlock_page_cgroup(pc);
8c7c6e34 4261 return NULL;
3c541e14
BS
4262}
4263
69029cd5
KH
4264void mem_cgroup_uncharge_page(struct page *page)
4265{
52d4b9ac
KH
4266 /* early check. */
4267 if (page_mapped(page))
4268 return;
309381fe 4269 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4270 /*
4271 * If the page is in swap cache, uncharge should be deferred
4272 * to the swap path, which also properly accounts swap usage
4273 * and handles memcg lifetime.
4274 *
4275 * Note that this check is not stable and reclaim may add the
4276 * page to swap cache at any time after this. However, if the
4277 * page is not in swap cache by the time page->mapcount hits
4278 * 0, there won't be any page table references to the swap
4279 * slot, and reclaim will free it and not actually write the
4280 * page to disk.
4281 */
0c59b89c
JW
4282 if (PageSwapCache(page))
4283 return;
0030f535 4284 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4285}
4286
4287void mem_cgroup_uncharge_cache_page(struct page *page)
4288{
309381fe
SL
4289 VM_BUG_ON_PAGE(page_mapped(page), page);
4290 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4291 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4292}
4293
569b846d
KH
4294/*
4295 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4296 * In that cases, pages are freed continuously and we can expect pages
4297 * are in the same memcg. All these calls itself limits the number of
4298 * pages freed at once, then uncharge_start/end() is called properly.
4299 * This may be called prural(2) times in a context,
4300 */
4301
4302void mem_cgroup_uncharge_start(void)
4303{
4304 current->memcg_batch.do_batch++;
4305 /* We can do nest. */
4306 if (current->memcg_batch.do_batch == 1) {
4307 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4308 current->memcg_batch.nr_pages = 0;
4309 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4310 }
4311}
4312
4313void mem_cgroup_uncharge_end(void)
4314{
4315 struct memcg_batch_info *batch = &current->memcg_batch;
4316
4317 if (!batch->do_batch)
4318 return;
4319
4320 batch->do_batch--;
4321 if (batch->do_batch) /* If stacked, do nothing. */
4322 return;
4323
4324 if (!batch->memcg)
4325 return;
4326 /*
4327 * This "batch->memcg" is valid without any css_get/put etc...
4328 * bacause we hide charges behind us.
4329 */
7ffd4ca7
JW
4330 if (batch->nr_pages)
4331 res_counter_uncharge(&batch->memcg->res,
4332 batch->nr_pages * PAGE_SIZE);
4333 if (batch->memsw_nr_pages)
4334 res_counter_uncharge(&batch->memcg->memsw,
4335 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4336 memcg_oom_recover(batch->memcg);
569b846d
KH
4337 /* forget this pointer (for sanity check) */
4338 batch->memcg = NULL;
4339}
4340
e767e056 4341#ifdef CONFIG_SWAP
8c7c6e34 4342/*
e767e056 4343 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4344 * memcg information is recorded to swap_cgroup of "ent"
4345 */
8a9478ca
KH
4346void
4347mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4348{
4349 struct mem_cgroup *memcg;
8a9478ca
KH
4350 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4351
4352 if (!swapout) /* this was a swap cache but the swap is unused ! */
4353 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4354
0030f535 4355 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4356
f75ca962
KH
4357 /*
4358 * record memcg information, if swapout && memcg != NULL,
4050377b 4359 * css_get() was called in uncharge().
f75ca962
KH
4360 */
4361 if (do_swap_account && swapout && memcg)
34c00c31 4362 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4363}
e767e056 4364#endif
8c7c6e34 4365
c255a458 4366#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4367/*
4368 * called from swap_entry_free(). remove record in swap_cgroup and
4369 * uncharge "memsw" account.
4370 */
4371void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4372{
8c7c6e34 4373 struct mem_cgroup *memcg;
a3b2d692 4374 unsigned short id;
8c7c6e34
KH
4375
4376 if (!do_swap_account)
4377 return;
4378
a3b2d692
KH
4379 id = swap_cgroup_record(ent, 0);
4380 rcu_read_lock();
4381 memcg = mem_cgroup_lookup(id);
8c7c6e34 4382 if (memcg) {
a3b2d692
KH
4383 /*
4384 * We uncharge this because swap is freed.
4385 * This memcg can be obsolete one. We avoid calling css_tryget
4386 */
0c3e73e8 4387 if (!mem_cgroup_is_root(memcg))
4e649152 4388 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4389 mem_cgroup_swap_statistics(memcg, false);
4050377b 4390 css_put(&memcg->css);
8c7c6e34 4391 }
a3b2d692 4392 rcu_read_unlock();
d13d1443 4393}
02491447
DN
4394
4395/**
4396 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4397 * @entry: swap entry to be moved
4398 * @from: mem_cgroup which the entry is moved from
4399 * @to: mem_cgroup which the entry is moved to
4400 *
4401 * It succeeds only when the swap_cgroup's record for this entry is the same
4402 * as the mem_cgroup's id of @from.
4403 *
4404 * Returns 0 on success, -EINVAL on failure.
4405 *
4406 * The caller must have charged to @to, IOW, called res_counter_charge() about
4407 * both res and memsw, and called css_get().
4408 */
4409static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4410 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4411{
4412 unsigned short old_id, new_id;
4413
34c00c31
LZ
4414 old_id = mem_cgroup_id(from);
4415 new_id = mem_cgroup_id(to);
02491447
DN
4416
4417 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4418 mem_cgroup_swap_statistics(from, false);
483c30b5 4419 mem_cgroup_swap_statistics(to, true);
02491447 4420 /*
483c30b5
DN
4421 * This function is only called from task migration context now.
4422 * It postpones res_counter and refcount handling till the end
4423 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4424 * improvement. But we cannot postpone css_get(to) because if
4425 * the process that has been moved to @to does swap-in, the
4426 * refcount of @to might be decreased to 0.
4427 *
4428 * We are in attach() phase, so the cgroup is guaranteed to be
4429 * alive, so we can just call css_get().
02491447 4430 */
4050377b 4431 css_get(&to->css);
02491447
DN
4432 return 0;
4433 }
4434 return -EINVAL;
4435}
4436#else
4437static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4438 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4439{
4440 return -EINVAL;
4441}
8c7c6e34 4442#endif
d13d1443 4443
ae41be37 4444/*
01b1ae63
KH
4445 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4446 * page belongs to.
ae41be37 4447 */
0030f535
JW
4448void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4449 struct mem_cgroup **memcgp)
ae41be37 4450{
c0ff4b85 4451 struct mem_cgroup *memcg = NULL;
b32967ff 4452 unsigned int nr_pages = 1;
7ec99d62 4453 struct page_cgroup *pc;
ac39cf8c 4454 enum charge_type ctype;
8869b8f6 4455
72835c86 4456 *memcgp = NULL;
56039efa 4457
f8d66542 4458 if (mem_cgroup_disabled())
0030f535 4459 return;
4077960e 4460
b32967ff
MG
4461 if (PageTransHuge(page))
4462 nr_pages <<= compound_order(page);
4463
52d4b9ac
KH
4464 pc = lookup_page_cgroup(page);
4465 lock_page_cgroup(pc);
4466 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4467 memcg = pc->mem_cgroup;
4468 css_get(&memcg->css);
ac39cf8c 4469 /*
4470 * At migrating an anonymous page, its mapcount goes down
4471 * to 0 and uncharge() will be called. But, even if it's fully
4472 * unmapped, migration may fail and this page has to be
4473 * charged again. We set MIGRATION flag here and delay uncharge
4474 * until end_migration() is called
4475 *
4476 * Corner Case Thinking
4477 * A)
4478 * When the old page was mapped as Anon and it's unmap-and-freed
4479 * while migration was ongoing.
4480 * If unmap finds the old page, uncharge() of it will be delayed
4481 * until end_migration(). If unmap finds a new page, it's
4482 * uncharged when it make mapcount to be 1->0. If unmap code
4483 * finds swap_migration_entry, the new page will not be mapped
4484 * and end_migration() will find it(mapcount==0).
4485 *
4486 * B)
4487 * When the old page was mapped but migraion fails, the kernel
4488 * remaps it. A charge for it is kept by MIGRATION flag even
4489 * if mapcount goes down to 0. We can do remap successfully
4490 * without charging it again.
4491 *
4492 * C)
4493 * The "old" page is under lock_page() until the end of
4494 * migration, so, the old page itself will not be swapped-out.
4495 * If the new page is swapped out before end_migraton, our
4496 * hook to usual swap-out path will catch the event.
4497 */
4498 if (PageAnon(page))
4499 SetPageCgroupMigration(pc);
e8589cc1 4500 }
52d4b9ac 4501 unlock_page_cgroup(pc);
ac39cf8c 4502 /*
4503 * If the page is not charged at this point,
4504 * we return here.
4505 */
c0ff4b85 4506 if (!memcg)
0030f535 4507 return;
01b1ae63 4508
72835c86 4509 *memcgp = memcg;
ac39cf8c 4510 /*
4511 * We charge new page before it's used/mapped. So, even if unlock_page()
4512 * is called before end_migration, we can catch all events on this new
4513 * page. In the case new page is migrated but not remapped, new page's
4514 * mapcount will be finally 0 and we call uncharge in end_migration().
4515 */
ac39cf8c 4516 if (PageAnon(page))
41326c17 4517 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4518 else
62ba7442 4519 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4520 /*
4521 * The page is committed to the memcg, but it's not actually
4522 * charged to the res_counter since we plan on replacing the
4523 * old one and only one page is going to be left afterwards.
4524 */
b32967ff 4525 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4526}
8869b8f6 4527
69029cd5 4528/* remove redundant charge if migration failed*/
c0ff4b85 4529void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4530 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4531{
ac39cf8c 4532 struct page *used, *unused;
01b1ae63 4533 struct page_cgroup *pc;
b2402857 4534 bool anon;
01b1ae63 4535
c0ff4b85 4536 if (!memcg)
01b1ae63 4537 return;
b25ed609 4538
50de1dd9 4539 if (!migration_ok) {
ac39cf8c 4540 used = oldpage;
4541 unused = newpage;
01b1ae63 4542 } else {
ac39cf8c 4543 used = newpage;
01b1ae63
KH
4544 unused = oldpage;
4545 }
0030f535 4546 anon = PageAnon(used);
7d188958
JW
4547 __mem_cgroup_uncharge_common(unused,
4548 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4549 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4550 true);
0030f535 4551 css_put(&memcg->css);
69029cd5 4552 /*
ac39cf8c 4553 * We disallowed uncharge of pages under migration because mapcount
4554 * of the page goes down to zero, temporarly.
4555 * Clear the flag and check the page should be charged.
01b1ae63 4556 */
ac39cf8c 4557 pc = lookup_page_cgroup(oldpage);
4558 lock_page_cgroup(pc);
4559 ClearPageCgroupMigration(pc);
4560 unlock_page_cgroup(pc);
ac39cf8c 4561
01b1ae63 4562 /*
ac39cf8c 4563 * If a page is a file cache, radix-tree replacement is very atomic
4564 * and we can skip this check. When it was an Anon page, its mapcount
4565 * goes down to 0. But because we added MIGRATION flage, it's not
4566 * uncharged yet. There are several case but page->mapcount check
4567 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4568 * check. (see prepare_charge() also)
69029cd5 4569 */
b2402857 4570 if (anon)
ac39cf8c 4571 mem_cgroup_uncharge_page(used);
ae41be37 4572}
78fb7466 4573
ab936cbc
KH
4574/*
4575 * At replace page cache, newpage is not under any memcg but it's on
4576 * LRU. So, this function doesn't touch res_counter but handles LRU
4577 * in correct way. Both pages are locked so we cannot race with uncharge.
4578 */
4579void mem_cgroup_replace_page_cache(struct page *oldpage,
4580 struct page *newpage)
4581{
bde05d1c 4582 struct mem_cgroup *memcg = NULL;
ab936cbc 4583 struct page_cgroup *pc;
ab936cbc 4584 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4585
4586 if (mem_cgroup_disabled())
4587 return;
4588
4589 pc = lookup_page_cgroup(oldpage);
4590 /* fix accounting on old pages */
4591 lock_page_cgroup(pc);
bde05d1c
HD
4592 if (PageCgroupUsed(pc)) {
4593 memcg = pc->mem_cgroup;
b070e65c 4594 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4595 ClearPageCgroupUsed(pc);
4596 }
ab936cbc
KH
4597 unlock_page_cgroup(pc);
4598
bde05d1c
HD
4599 /*
4600 * When called from shmem_replace_page(), in some cases the
4601 * oldpage has already been charged, and in some cases not.
4602 */
4603 if (!memcg)
4604 return;
ab936cbc
KH
4605 /*
4606 * Even if newpage->mapping was NULL before starting replacement,
4607 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4608 * LRU while we overwrite pc->mem_cgroup.
4609 */
ce587e65 4610 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4611}
4612
f212ad7c
DN
4613#ifdef CONFIG_DEBUG_VM
4614static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4615{
4616 struct page_cgroup *pc;
4617
4618 pc = lookup_page_cgroup(page);
cfa44946
JW
4619 /*
4620 * Can be NULL while feeding pages into the page allocator for
4621 * the first time, i.e. during boot or memory hotplug;
4622 * or when mem_cgroup_disabled().
4623 */
f212ad7c
DN
4624 if (likely(pc) && PageCgroupUsed(pc))
4625 return pc;
4626 return NULL;
4627}
4628
4629bool mem_cgroup_bad_page_check(struct page *page)
4630{
4631 if (mem_cgroup_disabled())
4632 return false;
4633
4634 return lookup_page_cgroup_used(page) != NULL;
4635}
4636
4637void mem_cgroup_print_bad_page(struct page *page)
4638{
4639 struct page_cgroup *pc;
4640
4641 pc = lookup_page_cgroup_used(page);
4642 if (pc) {
d045197f
AM
4643 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4644 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4645 }
4646}
4647#endif
4648
d38d2a75 4649static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4650 unsigned long long val)
628f4235 4651{
81d39c20 4652 int retry_count;
3c11ecf4 4653 u64 memswlimit, memlimit;
628f4235 4654 int ret = 0;
81d39c20
KH
4655 int children = mem_cgroup_count_children(memcg);
4656 u64 curusage, oldusage;
3c11ecf4 4657 int enlarge;
81d39c20
KH
4658
4659 /*
4660 * For keeping hierarchical_reclaim simple, how long we should retry
4661 * is depends on callers. We set our retry-count to be function
4662 * of # of children which we should visit in this loop.
4663 */
4664 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4665
4666 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4667
3c11ecf4 4668 enlarge = 0;
8c7c6e34 4669 while (retry_count) {
628f4235
KH
4670 if (signal_pending(current)) {
4671 ret = -EINTR;
4672 break;
4673 }
8c7c6e34
KH
4674 /*
4675 * Rather than hide all in some function, I do this in
4676 * open coded manner. You see what this really does.
aaad153e 4677 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4678 */
4679 mutex_lock(&set_limit_mutex);
4680 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4681 if (memswlimit < val) {
4682 ret = -EINVAL;
4683 mutex_unlock(&set_limit_mutex);
628f4235
KH
4684 break;
4685 }
3c11ecf4
KH
4686
4687 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4688 if (memlimit < val)
4689 enlarge = 1;
4690
8c7c6e34 4691 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4692 if (!ret) {
4693 if (memswlimit == val)
4694 memcg->memsw_is_minimum = true;
4695 else
4696 memcg->memsw_is_minimum = false;
4697 }
8c7c6e34
KH
4698 mutex_unlock(&set_limit_mutex);
4699
4700 if (!ret)
4701 break;
4702
5660048c
JW
4703 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4704 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4705 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4706 /* Usage is reduced ? */
f894ffa8 4707 if (curusage >= oldusage)
81d39c20
KH
4708 retry_count--;
4709 else
4710 oldusage = curusage;
8c7c6e34 4711 }
3c11ecf4
KH
4712 if (!ret && enlarge)
4713 memcg_oom_recover(memcg);
14797e23 4714
8c7c6e34
KH
4715 return ret;
4716}
4717
338c8431
LZ
4718static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4719 unsigned long long val)
8c7c6e34 4720{
81d39c20 4721 int retry_count;
3c11ecf4 4722 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4723 int children = mem_cgroup_count_children(memcg);
4724 int ret = -EBUSY;
3c11ecf4 4725 int enlarge = 0;
8c7c6e34 4726
81d39c20 4727 /* see mem_cgroup_resize_res_limit */
f894ffa8 4728 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4729 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4730 while (retry_count) {
4731 if (signal_pending(current)) {
4732 ret = -EINTR;
4733 break;
4734 }
4735 /*
4736 * Rather than hide all in some function, I do this in
4737 * open coded manner. You see what this really does.
aaad153e 4738 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4739 */
4740 mutex_lock(&set_limit_mutex);
4741 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4742 if (memlimit > val) {
4743 ret = -EINVAL;
4744 mutex_unlock(&set_limit_mutex);
4745 break;
4746 }
3c11ecf4
KH
4747 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4748 if (memswlimit < val)
4749 enlarge = 1;
8c7c6e34 4750 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4751 if (!ret) {
4752 if (memlimit == val)
4753 memcg->memsw_is_minimum = true;
4754 else
4755 memcg->memsw_is_minimum = false;
4756 }
8c7c6e34
KH
4757 mutex_unlock(&set_limit_mutex);
4758
4759 if (!ret)
4760 break;
4761
5660048c
JW
4762 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4763 MEM_CGROUP_RECLAIM_NOSWAP |
4764 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4765 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4766 /* Usage is reduced ? */
8c7c6e34 4767 if (curusage >= oldusage)
628f4235 4768 retry_count--;
81d39c20
KH
4769 else
4770 oldusage = curusage;
628f4235 4771 }
3c11ecf4
KH
4772 if (!ret && enlarge)
4773 memcg_oom_recover(memcg);
628f4235
KH
4774 return ret;
4775}
4776
0608f43d
AM
4777unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4778 gfp_t gfp_mask,
4779 unsigned long *total_scanned)
4780{
4781 unsigned long nr_reclaimed = 0;
4782 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4783 unsigned long reclaimed;
4784 int loop = 0;
4785 struct mem_cgroup_tree_per_zone *mctz;
4786 unsigned long long excess;
4787 unsigned long nr_scanned;
4788
4789 if (order > 0)
4790 return 0;
4791
4792 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4793 /*
4794 * This loop can run a while, specially if mem_cgroup's continuously
4795 * keep exceeding their soft limit and putting the system under
4796 * pressure
4797 */
4798 do {
4799 if (next_mz)
4800 mz = next_mz;
4801 else
4802 mz = mem_cgroup_largest_soft_limit_node(mctz);
4803 if (!mz)
4804 break;
4805
4806 nr_scanned = 0;
4807 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4808 gfp_mask, &nr_scanned);
4809 nr_reclaimed += reclaimed;
4810 *total_scanned += nr_scanned;
4811 spin_lock(&mctz->lock);
4812
4813 /*
4814 * If we failed to reclaim anything from this memory cgroup
4815 * it is time to move on to the next cgroup
4816 */
4817 next_mz = NULL;
4818 if (!reclaimed) {
4819 do {
4820 /*
4821 * Loop until we find yet another one.
4822 *
4823 * By the time we get the soft_limit lock
4824 * again, someone might have aded the
4825 * group back on the RB tree. Iterate to
4826 * make sure we get a different mem.
4827 * mem_cgroup_largest_soft_limit_node returns
4828 * NULL if no other cgroup is present on
4829 * the tree
4830 */
4831 next_mz =
4832 __mem_cgroup_largest_soft_limit_node(mctz);
4833 if (next_mz == mz)
4834 css_put(&next_mz->memcg->css);
4835 else /* next_mz == NULL or other memcg */
4836 break;
4837 } while (1);
4838 }
4839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4840 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4841 /*
4842 * One school of thought says that we should not add
4843 * back the node to the tree if reclaim returns 0.
4844 * But our reclaim could return 0, simply because due
4845 * to priority we are exposing a smaller subset of
4846 * memory to reclaim from. Consider this as a longer
4847 * term TODO.
4848 */
4849 /* If excess == 0, no tree ops */
4850 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4851 spin_unlock(&mctz->lock);
4852 css_put(&mz->memcg->css);
4853 loop++;
4854 /*
4855 * Could not reclaim anything and there are no more
4856 * mem cgroups to try or we seem to be looping without
4857 * reclaiming anything.
4858 */
4859 if (!nr_reclaimed &&
4860 (next_mz == NULL ||
4861 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4862 break;
4863 } while (!nr_reclaimed);
4864 if (next_mz)
4865 css_put(&next_mz->memcg->css);
4866 return nr_reclaimed;
4867}
4868
2ef37d3f
MH
4869/**
4870 * mem_cgroup_force_empty_list - clears LRU of a group
4871 * @memcg: group to clear
4872 * @node: NUMA node
4873 * @zid: zone id
4874 * @lru: lru to to clear
4875 *
3c935d18 4876 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4877 * reclaim the pages page themselves - pages are moved to the parent (or root)
4878 * group.
cc847582 4879 */
2ef37d3f 4880static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4881 int node, int zid, enum lru_list lru)
cc847582 4882{
bea8c150 4883 struct lruvec *lruvec;
2ef37d3f 4884 unsigned long flags;
072c56c1 4885 struct list_head *list;
925b7673
JW
4886 struct page *busy;
4887 struct zone *zone;
072c56c1 4888
08e552c6 4889 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4890 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4891 list = &lruvec->lists[lru];
cc847582 4892
f817ed48 4893 busy = NULL;
2ef37d3f 4894 do {
925b7673 4895 struct page_cgroup *pc;
5564e88b
JW
4896 struct page *page;
4897
08e552c6 4898 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4899 if (list_empty(list)) {
08e552c6 4900 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4901 break;
f817ed48 4902 }
925b7673
JW
4903 page = list_entry(list->prev, struct page, lru);
4904 if (busy == page) {
4905 list_move(&page->lru, list);
648bcc77 4906 busy = NULL;
08e552c6 4907 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4908 continue;
4909 }
08e552c6 4910 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4911
925b7673 4912 pc = lookup_page_cgroup(page);
5564e88b 4913
3c935d18 4914 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4915 /* found lock contention or "pc" is obsolete. */
925b7673 4916 busy = page;
f817ed48
KH
4917 cond_resched();
4918 } else
4919 busy = NULL;
2ef37d3f 4920 } while (!list_empty(list));
cc847582
KH
4921}
4922
4923/*
c26251f9
MH
4924 * make mem_cgroup's charge to be 0 if there is no task by moving
4925 * all the charges and pages to the parent.
cc847582 4926 * This enables deleting this mem_cgroup.
c26251f9
MH
4927 *
4928 * Caller is responsible for holding css reference on the memcg.
cc847582 4929 */
ab5196c2 4930static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4931{
c26251f9 4932 int node, zid;
bea207c8 4933 u64 usage;
f817ed48 4934
fce66477 4935 do {
52d4b9ac
KH
4936 /* This is for making all *used* pages to be on LRU. */
4937 lru_add_drain_all();
c0ff4b85 4938 drain_all_stock_sync(memcg);
c0ff4b85 4939 mem_cgroup_start_move(memcg);
31aaea4a 4940 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4941 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4942 enum lru_list lru;
4943 for_each_lru(lru) {
2ef37d3f 4944 mem_cgroup_force_empty_list(memcg,
f156ab93 4945 node, zid, lru);
f817ed48 4946 }
1ecaab2b 4947 }
f817ed48 4948 }
c0ff4b85
R
4949 mem_cgroup_end_move(memcg);
4950 memcg_oom_recover(memcg);
52d4b9ac 4951 cond_resched();
f817ed48 4952
2ef37d3f 4953 /*
bea207c8
GC
4954 * Kernel memory may not necessarily be trackable to a specific
4955 * process. So they are not migrated, and therefore we can't
4956 * expect their value to drop to 0 here.
4957 * Having res filled up with kmem only is enough.
4958 *
2ef37d3f
MH
4959 * This is a safety check because mem_cgroup_force_empty_list
4960 * could have raced with mem_cgroup_replace_page_cache callers
4961 * so the lru seemed empty but the page could have been added
4962 * right after the check. RES_USAGE should be safe as we always
4963 * charge before adding to the LRU.
4964 */
bea207c8
GC
4965 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4966 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4967 } while (usage > 0);
c26251f9
MH
4968}
4969
b5f99b53
GC
4970static inline bool memcg_has_children(struct mem_cgroup *memcg)
4971{
696ac172
JW
4972 lockdep_assert_held(&memcg_create_mutex);
4973 /*
4974 * The lock does not prevent addition or deletion to the list
4975 * of children, but it prevents a new child from being
4976 * initialized based on this parent in css_online(), so it's
4977 * enough to decide whether hierarchically inherited
4978 * attributes can still be changed or not.
4979 */
4980 return memcg->use_hierarchy &&
4981 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4982}
4983
c26251f9
MH
4984/*
4985 * Reclaims as many pages from the given memcg as possible and moves
4986 * the rest to the parent.
4987 *
4988 * Caller is responsible for holding css reference for memcg.
4989 */
4990static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4991{
4992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4993 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4994
c1e862c1 4995 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4996 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4997 return -EBUSY;
4998
c1e862c1
KH
4999 /* we call try-to-free pages for make this cgroup empty */
5000 lru_add_drain_all();
f817ed48 5001 /* try to free all pages in this cgroup */
569530fb 5002 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5003 int progress;
c1e862c1 5004
c26251f9
MH
5005 if (signal_pending(current))
5006 return -EINTR;
5007
c0ff4b85 5008 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5009 false);
c1e862c1 5010 if (!progress) {
f817ed48 5011 nr_retries--;
c1e862c1 5012 /* maybe some writeback is necessary */
8aa7e847 5013 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5014 }
f817ed48
KH
5015
5016 }
08e552c6 5017 lru_add_drain();
ab5196c2
MH
5018 mem_cgroup_reparent_charges(memcg);
5019
5020 return 0;
cc847582
KH
5021}
5022
182446d0
TH
5023static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5024 unsigned int event)
c1e862c1 5025{
182446d0 5026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5027
d8423011
MH
5028 if (mem_cgroup_is_root(memcg))
5029 return -EINVAL;
c33bd835 5030 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5031}
5032
182446d0
TH
5033static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5034 struct cftype *cft)
18f59ea7 5035{
182446d0 5036 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5037}
5038
182446d0
TH
5039static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5040 struct cftype *cft, u64 val)
18f59ea7
BS
5041{
5042 int retval = 0;
182446d0 5043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5044 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5045
0999821b 5046 mutex_lock(&memcg_create_mutex);
567fb435
GC
5047
5048 if (memcg->use_hierarchy == val)
5049 goto out;
5050
18f59ea7 5051 /*
af901ca1 5052 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5053 * in the child subtrees. If it is unset, then the change can
5054 * occur, provided the current cgroup has no children.
5055 *
5056 * For the root cgroup, parent_mem is NULL, we allow value to be
5057 * set if there are no children.
5058 */
c0ff4b85 5059 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5060 (val == 1 || val == 0)) {
696ac172 5061 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5062 memcg->use_hierarchy = val;
18f59ea7
BS
5063 else
5064 retval = -EBUSY;
5065 } else
5066 retval = -EINVAL;
567fb435
GC
5067
5068out:
0999821b 5069 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5070
5071 return retval;
5072}
5073
0c3e73e8 5074
c0ff4b85 5075static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5076 enum mem_cgroup_stat_index idx)
0c3e73e8 5077{
7d74b06f 5078 struct mem_cgroup *iter;
7a159cc9 5079 long val = 0;
0c3e73e8 5080
7a159cc9 5081 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5082 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5083 val += mem_cgroup_read_stat(iter, idx);
5084
5085 if (val < 0) /* race ? */
5086 val = 0;
5087 return val;
0c3e73e8
BS
5088}
5089
c0ff4b85 5090static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5091{
7d74b06f 5092 u64 val;
104f3928 5093
c0ff4b85 5094 if (!mem_cgroup_is_root(memcg)) {
104f3928 5095 if (!swap)
65c64ce8 5096 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5097 else
65c64ce8 5098 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5099 }
5100
b070e65c
DR
5101 /*
5102 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5103 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5104 */
c0ff4b85
R
5105 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5106 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5107
7d74b06f 5108 if (swap)
bff6bb83 5109 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5110
5111 return val << PAGE_SHIFT;
5112}
5113
791badbd
TH
5114static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5115 struct cftype *cft)
8cdea7c0 5116{
182446d0 5117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5118 u64 val;
791badbd 5119 int name;
86ae53e1 5120 enum res_type type;
8c7c6e34
KH
5121
5122 type = MEMFILE_TYPE(cft->private);
5123 name = MEMFILE_ATTR(cft->private);
af36f906 5124
8c7c6e34
KH
5125 switch (type) {
5126 case _MEM:
104f3928 5127 if (name == RES_USAGE)
c0ff4b85 5128 val = mem_cgroup_usage(memcg, false);
104f3928 5129 else
c0ff4b85 5130 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5131 break;
5132 case _MEMSWAP:
104f3928 5133 if (name == RES_USAGE)
c0ff4b85 5134 val = mem_cgroup_usage(memcg, true);
104f3928 5135 else
c0ff4b85 5136 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5137 break;
510fc4e1
GC
5138 case _KMEM:
5139 val = res_counter_read_u64(&memcg->kmem, name);
5140 break;
8c7c6e34
KH
5141 default:
5142 BUG();
8c7c6e34 5143 }
af36f906 5144
791badbd 5145 return val;
8cdea7c0 5146}
510fc4e1 5147
510fc4e1 5148#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5149/* should be called with activate_kmem_mutex held */
5150static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5151 unsigned long long limit)
5152{
5153 int err = 0;
5154 int memcg_id;
5155
5156 if (memcg_kmem_is_active(memcg))
5157 return 0;
5158
5159 /*
5160 * We are going to allocate memory for data shared by all memory
5161 * cgroups so let's stop accounting here.
5162 */
5163 memcg_stop_kmem_account();
5164
510fc4e1
GC
5165 /*
5166 * For simplicity, we won't allow this to be disabled. It also can't
5167 * be changed if the cgroup has children already, or if tasks had
5168 * already joined.
5169 *
5170 * If tasks join before we set the limit, a person looking at
5171 * kmem.usage_in_bytes will have no way to determine when it took
5172 * place, which makes the value quite meaningless.
5173 *
5174 * After it first became limited, changes in the value of the limit are
5175 * of course permitted.
510fc4e1 5176 */
0999821b 5177 mutex_lock(&memcg_create_mutex);
d6441637
VD
5178 if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
5179 err = -EBUSY;
5180 mutex_unlock(&memcg_create_mutex);
5181 if (err)
5182 goto out;
510fc4e1 5183
d6441637
VD
5184 memcg_id = ida_simple_get(&kmem_limited_groups,
5185 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5186 if (memcg_id < 0) {
5187 err = memcg_id;
5188 goto out;
5189 }
5190
5191 /*
5192 * Make sure we have enough space for this cgroup in each root cache's
5193 * memcg_params.
5194 */
5195 err = memcg_update_all_caches(memcg_id + 1);
5196 if (err)
5197 goto out_rmid;
5198
5199 memcg->kmemcg_id = memcg_id;
5200 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5201 mutex_init(&memcg->slab_caches_mutex);
5202
5203 /*
5204 * We couldn't have accounted to this cgroup, because it hasn't got the
5205 * active bit set yet, so this should succeed.
5206 */
5207 err = res_counter_set_limit(&memcg->kmem, limit);
5208 VM_BUG_ON(err);
5209
5210 static_key_slow_inc(&memcg_kmem_enabled_key);
5211 /*
5212 * Setting the active bit after enabling static branching will
5213 * guarantee no one starts accounting before all call sites are
5214 * patched.
5215 */
5216 memcg_kmem_set_active(memcg);
510fc4e1 5217out:
d6441637
VD
5218 memcg_resume_kmem_account();
5219 return err;
5220
5221out_rmid:
5222 ida_simple_remove(&kmem_limited_groups, memcg_id);
5223 goto out;
5224}
5225
5226static int memcg_activate_kmem(struct mem_cgroup *memcg,
5227 unsigned long long limit)
5228{
5229 int ret;
5230
5231 mutex_lock(&activate_kmem_mutex);
5232 ret = __memcg_activate_kmem(memcg, limit);
5233 mutex_unlock(&activate_kmem_mutex);
5234 return ret;
5235}
5236
5237static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5238 unsigned long long val)
5239{
5240 int ret;
5241
5242 if (!memcg_kmem_is_active(memcg))
5243 ret = memcg_activate_kmem(memcg, val);
5244 else
5245 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5246 return ret;
5247}
5248
55007d84 5249static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5250{
55007d84 5251 int ret = 0;
510fc4e1 5252 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5253
d6441637
VD
5254 if (!parent)
5255 return 0;
55007d84 5256
d6441637 5257 mutex_lock(&activate_kmem_mutex);
55007d84 5258 /*
d6441637
VD
5259 * If the parent cgroup is not kmem-active now, it cannot be activated
5260 * after this point, because it has at least one child already.
55007d84 5261 */
d6441637
VD
5262 if (memcg_kmem_is_active(parent))
5263 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5264 mutex_unlock(&activate_kmem_mutex);
55007d84 5265 return ret;
510fc4e1 5266}
d6441637
VD
5267#else
5268static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5269 unsigned long long val)
5270{
5271 return -EINVAL;
5272}
6d043990 5273#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5274
628f4235
KH
5275/*
5276 * The user of this function is...
5277 * RES_LIMIT.
5278 */
182446d0 5279static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5280 const char *buffer)
8cdea7c0 5281{
182446d0 5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5283 enum res_type type;
5284 int name;
628f4235
KH
5285 unsigned long long val;
5286 int ret;
5287
8c7c6e34
KH
5288 type = MEMFILE_TYPE(cft->private);
5289 name = MEMFILE_ATTR(cft->private);
af36f906 5290
8c7c6e34 5291 switch (name) {
628f4235 5292 case RES_LIMIT:
4b3bde4c
BS
5293 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5294 ret = -EINVAL;
5295 break;
5296 }
628f4235
KH
5297 /* This function does all necessary parse...reuse it */
5298 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5299 if (ret)
5300 break;
5301 if (type == _MEM)
628f4235 5302 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5303 else if (type == _MEMSWAP)
8c7c6e34 5304 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5305 else if (type == _KMEM)
d6441637 5306 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5307 else
5308 return -EINVAL;
628f4235 5309 break;
296c81d8
BS
5310 case RES_SOFT_LIMIT:
5311 ret = res_counter_memparse_write_strategy(buffer, &val);
5312 if (ret)
5313 break;
5314 /*
5315 * For memsw, soft limits are hard to implement in terms
5316 * of semantics, for now, we support soft limits for
5317 * control without swap
5318 */
5319 if (type == _MEM)
5320 ret = res_counter_set_soft_limit(&memcg->res, val);
5321 else
5322 ret = -EINVAL;
5323 break;
628f4235
KH
5324 default:
5325 ret = -EINVAL; /* should be BUG() ? */
5326 break;
5327 }
5328 return ret;
8cdea7c0
BS
5329}
5330
fee7b548
KH
5331static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5332 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5333{
fee7b548
KH
5334 unsigned long long min_limit, min_memsw_limit, tmp;
5335
5336 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5337 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5338 if (!memcg->use_hierarchy)
5339 goto out;
5340
63876986
TH
5341 while (css_parent(&memcg->css)) {
5342 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5343 if (!memcg->use_hierarchy)
5344 break;
5345 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5346 min_limit = min(min_limit, tmp);
5347 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5348 min_memsw_limit = min(min_memsw_limit, tmp);
5349 }
5350out:
5351 *mem_limit = min_limit;
5352 *memsw_limit = min_memsw_limit;
fee7b548
KH
5353}
5354
182446d0 5355static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5356{
182446d0 5357 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5358 int name;
5359 enum res_type type;
c84872e1 5360
8c7c6e34
KH
5361 type = MEMFILE_TYPE(event);
5362 name = MEMFILE_ATTR(event);
af36f906 5363
8c7c6e34 5364 switch (name) {
29f2a4da 5365 case RES_MAX_USAGE:
8c7c6e34 5366 if (type == _MEM)
c0ff4b85 5367 res_counter_reset_max(&memcg->res);
510fc4e1 5368 else if (type == _MEMSWAP)
c0ff4b85 5369 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5370 else if (type == _KMEM)
5371 res_counter_reset_max(&memcg->kmem);
5372 else
5373 return -EINVAL;
29f2a4da
PE
5374 break;
5375 case RES_FAILCNT:
8c7c6e34 5376 if (type == _MEM)
c0ff4b85 5377 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5378 else if (type == _MEMSWAP)
c0ff4b85 5379 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5380 else if (type == _KMEM)
5381 res_counter_reset_failcnt(&memcg->kmem);
5382 else
5383 return -EINVAL;
29f2a4da
PE
5384 break;
5385 }
f64c3f54 5386
85cc59db 5387 return 0;
c84872e1
PE
5388}
5389
182446d0 5390static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5391 struct cftype *cft)
5392{
182446d0 5393 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5394}
5395
02491447 5396#ifdef CONFIG_MMU
182446d0 5397static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5398 struct cftype *cft, u64 val)
5399{
182446d0 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5401
5402 if (val >= (1 << NR_MOVE_TYPE))
5403 return -EINVAL;
ee5e8472 5404
7dc74be0 5405 /*
ee5e8472
GC
5406 * No kind of locking is needed in here, because ->can_attach() will
5407 * check this value once in the beginning of the process, and then carry
5408 * on with stale data. This means that changes to this value will only
5409 * affect task migrations starting after the change.
7dc74be0 5410 */
c0ff4b85 5411 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5412 return 0;
5413}
02491447 5414#else
182446d0 5415static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5416 struct cftype *cft, u64 val)
5417{
5418 return -ENOSYS;
5419}
5420#endif
7dc74be0 5421
406eb0c9 5422#ifdef CONFIG_NUMA
2da8ca82 5423static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5424{
25485de6
GT
5425 struct numa_stat {
5426 const char *name;
5427 unsigned int lru_mask;
5428 };
5429
5430 static const struct numa_stat stats[] = {
5431 { "total", LRU_ALL },
5432 { "file", LRU_ALL_FILE },
5433 { "anon", LRU_ALL_ANON },
5434 { "unevictable", BIT(LRU_UNEVICTABLE) },
5435 };
5436 const struct numa_stat *stat;
406eb0c9 5437 int nid;
25485de6 5438 unsigned long nr;
2da8ca82 5439 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5440
25485de6
GT
5441 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5442 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5443 seq_printf(m, "%s=%lu", stat->name, nr);
5444 for_each_node_state(nid, N_MEMORY) {
5445 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5446 stat->lru_mask);
5447 seq_printf(m, " N%d=%lu", nid, nr);
5448 }
5449 seq_putc(m, '\n');
406eb0c9 5450 }
406eb0c9 5451
071aee13
YH
5452 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5453 struct mem_cgroup *iter;
5454
5455 nr = 0;
5456 for_each_mem_cgroup_tree(iter, memcg)
5457 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5458 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5459 for_each_node_state(nid, N_MEMORY) {
5460 nr = 0;
5461 for_each_mem_cgroup_tree(iter, memcg)
5462 nr += mem_cgroup_node_nr_lru_pages(
5463 iter, nid, stat->lru_mask);
5464 seq_printf(m, " N%d=%lu", nid, nr);
5465 }
5466 seq_putc(m, '\n');
406eb0c9 5467 }
406eb0c9 5468
406eb0c9
YH
5469 return 0;
5470}
5471#endif /* CONFIG_NUMA */
5472
af7c4b0e
JW
5473static inline void mem_cgroup_lru_names_not_uptodate(void)
5474{
5475 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5476}
5477
2da8ca82 5478static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5479{
2da8ca82 5480 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5481 struct mem_cgroup *mi;
5482 unsigned int i;
406eb0c9 5483
af7c4b0e 5484 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5485 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5486 continue;
af7c4b0e
JW
5487 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5488 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5489 }
7b854121 5490
af7c4b0e
JW
5491 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5492 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5493 mem_cgroup_read_events(memcg, i));
5494
5495 for (i = 0; i < NR_LRU_LISTS; i++)
5496 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5497 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5498
14067bb3 5499 /* Hierarchical information */
fee7b548
KH
5500 {
5501 unsigned long long limit, memsw_limit;
d79154bb 5502 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5503 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5504 if (do_swap_account)
78ccf5b5
JW
5505 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5506 memsw_limit);
fee7b548 5507 }
7f016ee8 5508
af7c4b0e
JW
5509 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5510 long long val = 0;
5511
bff6bb83 5512 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5513 continue;
af7c4b0e
JW
5514 for_each_mem_cgroup_tree(mi, memcg)
5515 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5516 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5517 }
5518
5519 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5520 unsigned long long val = 0;
5521
5522 for_each_mem_cgroup_tree(mi, memcg)
5523 val += mem_cgroup_read_events(mi, i);
5524 seq_printf(m, "total_%s %llu\n",
5525 mem_cgroup_events_names[i], val);
5526 }
5527
5528 for (i = 0; i < NR_LRU_LISTS; i++) {
5529 unsigned long long val = 0;
5530
5531 for_each_mem_cgroup_tree(mi, memcg)
5532 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5533 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5534 }
14067bb3 5535
7f016ee8 5536#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5537 {
5538 int nid, zid;
5539 struct mem_cgroup_per_zone *mz;
89abfab1 5540 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5541 unsigned long recent_rotated[2] = {0, 0};
5542 unsigned long recent_scanned[2] = {0, 0};
5543
5544 for_each_online_node(nid)
5545 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5546 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5547 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5548
89abfab1
HD
5549 recent_rotated[0] += rstat->recent_rotated[0];
5550 recent_rotated[1] += rstat->recent_rotated[1];
5551 recent_scanned[0] += rstat->recent_scanned[0];
5552 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5553 }
78ccf5b5
JW
5554 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5555 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5556 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5557 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5558 }
5559#endif
5560
d2ceb9b7
KH
5561 return 0;
5562}
5563
182446d0
TH
5564static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5565 struct cftype *cft)
a7885eb8 5566{
182446d0 5567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5568
1f4c025b 5569 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5570}
5571
182446d0
TH
5572static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5573 struct cftype *cft, u64 val)
a7885eb8 5574{
182446d0 5575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5576 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5577
63876986 5578 if (val > 100 || !parent)
a7885eb8
KM
5579 return -EINVAL;
5580
0999821b 5581 mutex_lock(&memcg_create_mutex);
068b38c1 5582
a7885eb8 5583 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5584 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5585 mutex_unlock(&memcg_create_mutex);
a7885eb8 5586 return -EINVAL;
068b38c1 5587 }
a7885eb8 5588
a7885eb8 5589 memcg->swappiness = val;
a7885eb8 5590
0999821b 5591 mutex_unlock(&memcg_create_mutex);
068b38c1 5592
a7885eb8
KM
5593 return 0;
5594}
5595
2e72b634
KS
5596static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5597{
5598 struct mem_cgroup_threshold_ary *t;
5599 u64 usage;
5600 int i;
5601
5602 rcu_read_lock();
5603 if (!swap)
2c488db2 5604 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5605 else
2c488db2 5606 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5607
5608 if (!t)
5609 goto unlock;
5610
5611 usage = mem_cgroup_usage(memcg, swap);
5612
5613 /*
748dad36 5614 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5615 * If it's not true, a threshold was crossed after last
5616 * call of __mem_cgroup_threshold().
5617 */
5407a562 5618 i = t->current_threshold;
2e72b634
KS
5619
5620 /*
5621 * Iterate backward over array of thresholds starting from
5622 * current_threshold and check if a threshold is crossed.
5623 * If none of thresholds below usage is crossed, we read
5624 * only one element of the array here.
5625 */
5626 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5627 eventfd_signal(t->entries[i].eventfd, 1);
5628
5629 /* i = current_threshold + 1 */
5630 i++;
5631
5632 /*
5633 * Iterate forward over array of thresholds starting from
5634 * current_threshold+1 and check if a threshold is crossed.
5635 * If none of thresholds above usage is crossed, we read
5636 * only one element of the array here.
5637 */
5638 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5639 eventfd_signal(t->entries[i].eventfd, 1);
5640
5641 /* Update current_threshold */
5407a562 5642 t->current_threshold = i - 1;
2e72b634
KS
5643unlock:
5644 rcu_read_unlock();
5645}
5646
5647static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5648{
ad4ca5f4
KS
5649 while (memcg) {
5650 __mem_cgroup_threshold(memcg, false);
5651 if (do_swap_account)
5652 __mem_cgroup_threshold(memcg, true);
5653
5654 memcg = parent_mem_cgroup(memcg);
5655 }
2e72b634
KS
5656}
5657
5658static int compare_thresholds(const void *a, const void *b)
5659{
5660 const struct mem_cgroup_threshold *_a = a;
5661 const struct mem_cgroup_threshold *_b = b;
5662
2bff24a3
GT
5663 if (_a->threshold > _b->threshold)
5664 return 1;
5665
5666 if (_a->threshold < _b->threshold)
5667 return -1;
5668
5669 return 0;
2e72b634
KS
5670}
5671
c0ff4b85 5672static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5673{
5674 struct mem_cgroup_eventfd_list *ev;
5675
c0ff4b85 5676 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5677 eventfd_signal(ev->eventfd, 1);
5678 return 0;
5679}
5680
c0ff4b85 5681static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5682{
7d74b06f
KH
5683 struct mem_cgroup *iter;
5684
c0ff4b85 5685 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5686 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5687}
5688
59b6f873 5689static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5690 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5691{
2c488db2
KS
5692 struct mem_cgroup_thresholds *thresholds;
5693 struct mem_cgroup_threshold_ary *new;
2e72b634 5694 u64 threshold, usage;
2c488db2 5695 int i, size, ret;
2e72b634
KS
5696
5697 ret = res_counter_memparse_write_strategy(args, &threshold);
5698 if (ret)
5699 return ret;
5700
5701 mutex_lock(&memcg->thresholds_lock);
2c488db2 5702
2e72b634 5703 if (type == _MEM)
2c488db2 5704 thresholds = &memcg->thresholds;
2e72b634 5705 else if (type == _MEMSWAP)
2c488db2 5706 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5707 else
5708 BUG();
5709
5710 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5711
5712 /* Check if a threshold crossed before adding a new one */
2c488db2 5713 if (thresholds->primary)
2e72b634
KS
5714 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5715
2c488db2 5716 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5717
5718 /* Allocate memory for new array of thresholds */
2c488db2 5719 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5720 GFP_KERNEL);
2c488db2 5721 if (!new) {
2e72b634
KS
5722 ret = -ENOMEM;
5723 goto unlock;
5724 }
2c488db2 5725 new->size = size;
2e72b634
KS
5726
5727 /* Copy thresholds (if any) to new array */
2c488db2
KS
5728 if (thresholds->primary) {
5729 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5730 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5731 }
5732
2e72b634 5733 /* Add new threshold */
2c488db2
KS
5734 new->entries[size - 1].eventfd = eventfd;
5735 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5736
5737 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5738 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5739 compare_thresholds, NULL);
5740
5741 /* Find current threshold */
2c488db2 5742 new->current_threshold = -1;
2e72b634 5743 for (i = 0; i < size; i++) {
748dad36 5744 if (new->entries[i].threshold <= usage) {
2e72b634 5745 /*
2c488db2
KS
5746 * new->current_threshold will not be used until
5747 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5748 * it here.
5749 */
2c488db2 5750 ++new->current_threshold;
748dad36
SZ
5751 } else
5752 break;
2e72b634
KS
5753 }
5754
2c488db2
KS
5755 /* Free old spare buffer and save old primary buffer as spare */
5756 kfree(thresholds->spare);
5757 thresholds->spare = thresholds->primary;
5758
5759 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5760
907860ed 5761 /* To be sure that nobody uses thresholds */
2e72b634
KS
5762 synchronize_rcu();
5763
2e72b634
KS
5764unlock:
5765 mutex_unlock(&memcg->thresholds_lock);
5766
5767 return ret;
5768}
5769
59b6f873 5770static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5771 struct eventfd_ctx *eventfd, const char *args)
5772{
59b6f873 5773 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5774}
5775
59b6f873 5776static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5777 struct eventfd_ctx *eventfd, const char *args)
5778{
59b6f873 5779 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5780}
5781
59b6f873 5782static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5783 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5784{
2c488db2
KS
5785 struct mem_cgroup_thresholds *thresholds;
5786 struct mem_cgroup_threshold_ary *new;
2e72b634 5787 u64 usage;
2c488db2 5788 int i, j, size;
2e72b634
KS
5789
5790 mutex_lock(&memcg->thresholds_lock);
5791 if (type == _MEM)
2c488db2 5792 thresholds = &memcg->thresholds;
2e72b634 5793 else if (type == _MEMSWAP)
2c488db2 5794 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5795 else
5796 BUG();
5797
371528ca
AV
5798 if (!thresholds->primary)
5799 goto unlock;
5800
2e72b634
KS
5801 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5802
5803 /* Check if a threshold crossed before removing */
5804 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5805
5806 /* Calculate new number of threshold */
2c488db2
KS
5807 size = 0;
5808 for (i = 0; i < thresholds->primary->size; i++) {
5809 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5810 size++;
5811 }
5812
2c488db2 5813 new = thresholds->spare;
907860ed 5814
2e72b634
KS
5815 /* Set thresholds array to NULL if we don't have thresholds */
5816 if (!size) {
2c488db2
KS
5817 kfree(new);
5818 new = NULL;
907860ed 5819 goto swap_buffers;
2e72b634
KS
5820 }
5821
2c488db2 5822 new->size = size;
2e72b634
KS
5823
5824 /* Copy thresholds and find current threshold */
2c488db2
KS
5825 new->current_threshold = -1;
5826 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5827 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5828 continue;
5829
2c488db2 5830 new->entries[j] = thresholds->primary->entries[i];
748dad36 5831 if (new->entries[j].threshold <= usage) {
2e72b634 5832 /*
2c488db2 5833 * new->current_threshold will not be used
2e72b634
KS
5834 * until rcu_assign_pointer(), so it's safe to increment
5835 * it here.
5836 */
2c488db2 5837 ++new->current_threshold;
2e72b634
KS
5838 }
5839 j++;
5840 }
5841
907860ed 5842swap_buffers:
2c488db2
KS
5843 /* Swap primary and spare array */
5844 thresholds->spare = thresholds->primary;
8c757763
SZ
5845 /* If all events are unregistered, free the spare array */
5846 if (!new) {
5847 kfree(thresholds->spare);
5848 thresholds->spare = NULL;
5849 }
5850
2c488db2 5851 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5852
907860ed 5853 /* To be sure that nobody uses thresholds */
2e72b634 5854 synchronize_rcu();
371528ca 5855unlock:
2e72b634 5856 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5857}
c1e862c1 5858
59b6f873 5859static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5860 struct eventfd_ctx *eventfd)
5861{
59b6f873 5862 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5863}
5864
59b6f873 5865static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5866 struct eventfd_ctx *eventfd)
5867{
59b6f873 5868 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5869}
5870
59b6f873 5871static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5872 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5873{
9490ff27 5874 struct mem_cgroup_eventfd_list *event;
9490ff27 5875
9490ff27
KH
5876 event = kmalloc(sizeof(*event), GFP_KERNEL);
5877 if (!event)
5878 return -ENOMEM;
5879
1af8efe9 5880 spin_lock(&memcg_oom_lock);
9490ff27
KH
5881
5882 event->eventfd = eventfd;
5883 list_add(&event->list, &memcg->oom_notify);
5884
5885 /* already in OOM ? */
79dfdacc 5886 if (atomic_read(&memcg->under_oom))
9490ff27 5887 eventfd_signal(eventfd, 1);
1af8efe9 5888 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5889
5890 return 0;
5891}
5892
59b6f873 5893static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5894 struct eventfd_ctx *eventfd)
9490ff27 5895{
9490ff27 5896 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5897
1af8efe9 5898 spin_lock(&memcg_oom_lock);
9490ff27 5899
c0ff4b85 5900 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5901 if (ev->eventfd == eventfd) {
5902 list_del(&ev->list);
5903 kfree(ev);
5904 }
5905 }
5906
1af8efe9 5907 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5908}
5909
2da8ca82 5910static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5911{
2da8ca82 5912 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5913
791badbd
TH
5914 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5915 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5916 return 0;
5917}
5918
182446d0 5919static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5920 struct cftype *cft, u64 val)
5921{
182446d0 5922 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5923 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5924
5925 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5926 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5927 return -EINVAL;
5928
0999821b 5929 mutex_lock(&memcg_create_mutex);
3c11ecf4 5930 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5931 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5932 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5933 return -EINVAL;
5934 }
c0ff4b85 5935 memcg->oom_kill_disable = val;
4d845ebf 5936 if (!val)
c0ff4b85 5937 memcg_oom_recover(memcg);
0999821b 5938 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5939 return 0;
5940}
5941
c255a458 5942#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5943static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5944{
55007d84
GC
5945 int ret;
5946
2633d7a0 5947 memcg->kmemcg_id = -1;
55007d84
GC
5948 ret = memcg_propagate_kmem(memcg);
5949 if (ret)
5950 return ret;
2633d7a0 5951
1d62e436 5952 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5953}
e5671dfa 5954
10d5ebf4 5955static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5956{
1d62e436 5957 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5958}
5959
5960static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5961{
5962 if (!memcg_kmem_is_active(memcg))
5963 return;
5964
5965 /*
5966 * kmem charges can outlive the cgroup. In the case of slab
5967 * pages, for instance, a page contain objects from various
5968 * processes. As we prevent from taking a reference for every
5969 * such allocation we have to be careful when doing uncharge
5970 * (see memcg_uncharge_kmem) and here during offlining.
5971 *
5972 * The idea is that that only the _last_ uncharge which sees
5973 * the dead memcg will drop the last reference. An additional
5974 * reference is taken here before the group is marked dead
5975 * which is then paired with css_put during uncharge resp. here.
5976 *
5977 * Although this might sound strange as this path is called from
5978 * css_offline() when the referencemight have dropped down to 0
5979 * and shouldn't be incremented anymore (css_tryget would fail)
5980 * we do not have other options because of the kmem allocations
5981 * lifetime.
5982 */
5983 css_get(&memcg->css);
7de37682
GC
5984
5985 memcg_kmem_mark_dead(memcg);
5986
5987 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5988 return;
5989
7de37682 5990 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5991 css_put(&memcg->css);
d1a4c0b3 5992}
e5671dfa 5993#else
cbe128e3 5994static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5995{
5996 return 0;
5997}
d1a4c0b3 5998
10d5ebf4
LZ
5999static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6000{
6001}
6002
6003static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
6004{
6005}
e5671dfa
GC
6006#endif
6007
3bc942f3
TH
6008/*
6009 * DO NOT USE IN NEW FILES.
6010 *
6011 * "cgroup.event_control" implementation.
6012 *
6013 * This is way over-engineered. It tries to support fully configurable
6014 * events for each user. Such level of flexibility is completely
6015 * unnecessary especially in the light of the planned unified hierarchy.
6016 *
6017 * Please deprecate this and replace with something simpler if at all
6018 * possible.
6019 */
6020
79bd9814
TH
6021/*
6022 * Unregister event and free resources.
6023 *
6024 * Gets called from workqueue.
6025 */
3bc942f3 6026static void memcg_event_remove(struct work_struct *work)
79bd9814 6027{
3bc942f3
TH
6028 struct mem_cgroup_event *event =
6029 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6030 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6031
6032 remove_wait_queue(event->wqh, &event->wait);
6033
59b6f873 6034 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6035
6036 /* Notify userspace the event is going away. */
6037 eventfd_signal(event->eventfd, 1);
6038
6039 eventfd_ctx_put(event->eventfd);
6040 kfree(event);
59b6f873 6041 css_put(&memcg->css);
79bd9814
TH
6042}
6043
6044/*
6045 * Gets called on POLLHUP on eventfd when user closes it.
6046 *
6047 * Called with wqh->lock held and interrupts disabled.
6048 */
3bc942f3
TH
6049static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6050 int sync, void *key)
79bd9814 6051{
3bc942f3
TH
6052 struct mem_cgroup_event *event =
6053 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6054 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6055 unsigned long flags = (unsigned long)key;
6056
6057 if (flags & POLLHUP) {
6058 /*
6059 * If the event has been detached at cgroup removal, we
6060 * can simply return knowing the other side will cleanup
6061 * for us.
6062 *
6063 * We can't race against event freeing since the other
6064 * side will require wqh->lock via remove_wait_queue(),
6065 * which we hold.
6066 */
fba94807 6067 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6068 if (!list_empty(&event->list)) {
6069 list_del_init(&event->list);
6070 /*
6071 * We are in atomic context, but cgroup_event_remove()
6072 * may sleep, so we have to call it in workqueue.
6073 */
6074 schedule_work(&event->remove);
6075 }
fba94807 6076 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6077 }
6078
6079 return 0;
6080}
6081
3bc942f3 6082static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6083 wait_queue_head_t *wqh, poll_table *pt)
6084{
3bc942f3
TH
6085 struct mem_cgroup_event *event =
6086 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6087
6088 event->wqh = wqh;
6089 add_wait_queue(wqh, &event->wait);
6090}
6091
6092/*
3bc942f3
TH
6093 * DO NOT USE IN NEW FILES.
6094 *
79bd9814
TH
6095 * Parse input and register new cgroup event handler.
6096 *
6097 * Input must be in format '<event_fd> <control_fd> <args>'.
6098 * Interpretation of args is defined by control file implementation.
6099 */
3bc942f3
TH
6100static int memcg_write_event_control(struct cgroup_subsys_state *css,
6101 struct cftype *cft, const char *buffer)
79bd9814 6102{
fba94807 6103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6104 struct mem_cgroup_event *event;
79bd9814
TH
6105 struct cgroup_subsys_state *cfile_css;
6106 unsigned int efd, cfd;
6107 struct fd efile;
6108 struct fd cfile;
fba94807 6109 const char *name;
79bd9814
TH
6110 char *endp;
6111 int ret;
6112
6113 efd = simple_strtoul(buffer, &endp, 10);
6114 if (*endp != ' ')
6115 return -EINVAL;
6116 buffer = endp + 1;
6117
6118 cfd = simple_strtoul(buffer, &endp, 10);
6119 if ((*endp != ' ') && (*endp != '\0'))
6120 return -EINVAL;
6121 buffer = endp + 1;
6122
6123 event = kzalloc(sizeof(*event), GFP_KERNEL);
6124 if (!event)
6125 return -ENOMEM;
6126
59b6f873 6127 event->memcg = memcg;
79bd9814 6128 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6129 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6130 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6131 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6132
6133 efile = fdget(efd);
6134 if (!efile.file) {
6135 ret = -EBADF;
6136 goto out_kfree;
6137 }
6138
6139 event->eventfd = eventfd_ctx_fileget(efile.file);
6140 if (IS_ERR(event->eventfd)) {
6141 ret = PTR_ERR(event->eventfd);
6142 goto out_put_efile;
6143 }
6144
6145 cfile = fdget(cfd);
6146 if (!cfile.file) {
6147 ret = -EBADF;
6148 goto out_put_eventfd;
6149 }
6150
6151 /* the process need read permission on control file */
6152 /* AV: shouldn't we check that it's been opened for read instead? */
6153 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6154 if (ret < 0)
6155 goto out_put_cfile;
6156
fba94807
TH
6157 /*
6158 * Determine the event callbacks and set them in @event. This used
6159 * to be done via struct cftype but cgroup core no longer knows
6160 * about these events. The following is crude but the whole thing
6161 * is for compatibility anyway.
3bc942f3
TH
6162 *
6163 * DO NOT ADD NEW FILES.
fba94807
TH
6164 */
6165 name = cfile.file->f_dentry->d_name.name;
6166
6167 if (!strcmp(name, "memory.usage_in_bytes")) {
6168 event->register_event = mem_cgroup_usage_register_event;
6169 event->unregister_event = mem_cgroup_usage_unregister_event;
6170 } else if (!strcmp(name, "memory.oom_control")) {
6171 event->register_event = mem_cgroup_oom_register_event;
6172 event->unregister_event = mem_cgroup_oom_unregister_event;
6173 } else if (!strcmp(name, "memory.pressure_level")) {
6174 event->register_event = vmpressure_register_event;
6175 event->unregister_event = vmpressure_unregister_event;
6176 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6177 event->register_event = memsw_cgroup_usage_register_event;
6178 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6179 } else {
6180 ret = -EINVAL;
6181 goto out_put_cfile;
6182 }
6183
79bd9814 6184 /*
b5557c4c
TH
6185 * Verify @cfile should belong to @css. Also, remaining events are
6186 * automatically removed on cgroup destruction but the removal is
6187 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6188 */
6189 rcu_read_lock();
6190
6191 ret = -EINVAL;
b5557c4c
TH
6192 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6193 &mem_cgroup_subsys);
6194 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6195 ret = 0;
6196
6197 rcu_read_unlock();
6198 if (ret)
6199 goto out_put_cfile;
6200
59b6f873 6201 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6202 if (ret)
6203 goto out_put_css;
6204
6205 efile.file->f_op->poll(efile.file, &event->pt);
6206
fba94807
TH
6207 spin_lock(&memcg->event_list_lock);
6208 list_add(&event->list, &memcg->event_list);
6209 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6210
6211 fdput(cfile);
6212 fdput(efile);
6213
6214 return 0;
6215
6216out_put_css:
b5557c4c 6217 css_put(css);
79bd9814
TH
6218out_put_cfile:
6219 fdput(cfile);
6220out_put_eventfd:
6221 eventfd_ctx_put(event->eventfd);
6222out_put_efile:
6223 fdput(efile);
6224out_kfree:
6225 kfree(event);
6226
6227 return ret;
6228}
6229
8cdea7c0
BS
6230static struct cftype mem_cgroup_files[] = {
6231 {
0eea1030 6232 .name = "usage_in_bytes",
8c7c6e34 6233 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6234 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6235 },
c84872e1
PE
6236 {
6237 .name = "max_usage_in_bytes",
8c7c6e34 6238 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6239 .trigger = mem_cgroup_reset,
791badbd 6240 .read_u64 = mem_cgroup_read_u64,
c84872e1 6241 },
8cdea7c0 6242 {
0eea1030 6243 .name = "limit_in_bytes",
8c7c6e34 6244 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6245 .write_string = mem_cgroup_write,
791badbd 6246 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6247 },
296c81d8
BS
6248 {
6249 .name = "soft_limit_in_bytes",
6250 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6251 .write_string = mem_cgroup_write,
791badbd 6252 .read_u64 = mem_cgroup_read_u64,
296c81d8 6253 },
8cdea7c0
BS
6254 {
6255 .name = "failcnt",
8c7c6e34 6256 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6257 .trigger = mem_cgroup_reset,
791badbd 6258 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6259 },
d2ceb9b7
KH
6260 {
6261 .name = "stat",
2da8ca82 6262 .seq_show = memcg_stat_show,
d2ceb9b7 6263 },
c1e862c1
KH
6264 {
6265 .name = "force_empty",
6266 .trigger = mem_cgroup_force_empty_write,
6267 },
18f59ea7
BS
6268 {
6269 .name = "use_hierarchy",
f00baae7 6270 .flags = CFTYPE_INSANE,
18f59ea7
BS
6271 .write_u64 = mem_cgroup_hierarchy_write,
6272 .read_u64 = mem_cgroup_hierarchy_read,
6273 },
79bd9814 6274 {
3bc942f3
TH
6275 .name = "cgroup.event_control", /* XXX: for compat */
6276 .write_string = memcg_write_event_control,
79bd9814
TH
6277 .flags = CFTYPE_NO_PREFIX,
6278 .mode = S_IWUGO,
6279 },
a7885eb8
KM
6280 {
6281 .name = "swappiness",
6282 .read_u64 = mem_cgroup_swappiness_read,
6283 .write_u64 = mem_cgroup_swappiness_write,
6284 },
7dc74be0
DN
6285 {
6286 .name = "move_charge_at_immigrate",
6287 .read_u64 = mem_cgroup_move_charge_read,
6288 .write_u64 = mem_cgroup_move_charge_write,
6289 },
9490ff27
KH
6290 {
6291 .name = "oom_control",
2da8ca82 6292 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6293 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6294 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6295 },
70ddf637
AV
6296 {
6297 .name = "pressure_level",
70ddf637 6298 },
406eb0c9
YH
6299#ifdef CONFIG_NUMA
6300 {
6301 .name = "numa_stat",
2da8ca82 6302 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6303 },
6304#endif
510fc4e1
GC
6305#ifdef CONFIG_MEMCG_KMEM
6306 {
6307 .name = "kmem.limit_in_bytes",
6308 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6309 .write_string = mem_cgroup_write,
791badbd 6310 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6311 },
6312 {
6313 .name = "kmem.usage_in_bytes",
6314 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6315 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6316 },
6317 {
6318 .name = "kmem.failcnt",
6319 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6320 .trigger = mem_cgroup_reset,
791badbd 6321 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6322 },
6323 {
6324 .name = "kmem.max_usage_in_bytes",
6325 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6326 .trigger = mem_cgroup_reset,
791badbd 6327 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6328 },
749c5415
GC
6329#ifdef CONFIG_SLABINFO
6330 {
6331 .name = "kmem.slabinfo",
2da8ca82 6332 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6333 },
6334#endif
8c7c6e34 6335#endif
6bc10349 6336 { }, /* terminate */
af36f906 6337};
8c7c6e34 6338
2d11085e
MH
6339#ifdef CONFIG_MEMCG_SWAP
6340static struct cftype memsw_cgroup_files[] = {
6341 {
6342 .name = "memsw.usage_in_bytes",
6343 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6344 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6345 },
6346 {
6347 .name = "memsw.max_usage_in_bytes",
6348 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6349 .trigger = mem_cgroup_reset,
791badbd 6350 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6351 },
6352 {
6353 .name = "memsw.limit_in_bytes",
6354 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6355 .write_string = mem_cgroup_write,
791badbd 6356 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6357 },
6358 {
6359 .name = "memsw.failcnt",
6360 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6361 .trigger = mem_cgroup_reset,
791badbd 6362 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6363 },
6364 { }, /* terminate */
6365};
6366#endif
c0ff4b85 6367static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6368{
6369 struct mem_cgroup_per_node *pn;
1ecaab2b 6370 struct mem_cgroup_per_zone *mz;
41e3355d 6371 int zone, tmp = node;
1ecaab2b
KH
6372 /*
6373 * This routine is called against possible nodes.
6374 * But it's BUG to call kmalloc() against offline node.
6375 *
6376 * TODO: this routine can waste much memory for nodes which will
6377 * never be onlined. It's better to use memory hotplug callback
6378 * function.
6379 */
41e3355d
KH
6380 if (!node_state(node, N_NORMAL_MEMORY))
6381 tmp = -1;
17295c88 6382 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6383 if (!pn)
6384 return 1;
1ecaab2b 6385
1ecaab2b
KH
6386 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6387 mz = &pn->zoneinfo[zone];
bea8c150 6388 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6389 mz->usage_in_excess = 0;
6390 mz->on_tree = false;
d79154bb 6391 mz->memcg = memcg;
1ecaab2b 6392 }
54f72fe0 6393 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6394 return 0;
6395}
6396
c0ff4b85 6397static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6398{
54f72fe0 6399 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6400}
6401
33327948
KH
6402static struct mem_cgroup *mem_cgroup_alloc(void)
6403{
d79154bb 6404 struct mem_cgroup *memcg;
8ff69e2c 6405 size_t size;
33327948 6406
8ff69e2c
VD
6407 size = sizeof(struct mem_cgroup);
6408 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6409
8ff69e2c 6410 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6411 if (!memcg)
e7bbcdf3
DC
6412 return NULL;
6413
d79154bb
HD
6414 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6415 if (!memcg->stat)
d2e61b8d 6416 goto out_free;
d79154bb
HD
6417 spin_lock_init(&memcg->pcp_counter_lock);
6418 return memcg;
d2e61b8d
DC
6419
6420out_free:
8ff69e2c 6421 kfree(memcg);
d2e61b8d 6422 return NULL;
33327948
KH
6423}
6424
59927fb9 6425/*
c8b2a36f
GC
6426 * At destroying mem_cgroup, references from swap_cgroup can remain.
6427 * (scanning all at force_empty is too costly...)
6428 *
6429 * Instead of clearing all references at force_empty, we remember
6430 * the number of reference from swap_cgroup and free mem_cgroup when
6431 * it goes down to 0.
6432 *
6433 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6434 */
c8b2a36f
GC
6435
6436static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6437{
c8b2a36f 6438 int node;
59927fb9 6439
bb4cc1a8 6440 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6441
6442 for_each_node(node)
6443 free_mem_cgroup_per_zone_info(memcg, node);
6444
6445 free_percpu(memcg->stat);
6446
3f134619
GC
6447 /*
6448 * We need to make sure that (at least for now), the jump label
6449 * destruction code runs outside of the cgroup lock. This is because
6450 * get_online_cpus(), which is called from the static_branch update,
6451 * can't be called inside the cgroup_lock. cpusets are the ones
6452 * enforcing this dependency, so if they ever change, we might as well.
6453 *
6454 * schedule_work() will guarantee this happens. Be careful if you need
6455 * to move this code around, and make sure it is outside
6456 * the cgroup_lock.
6457 */
a8964b9b 6458 disarm_static_keys(memcg);
8ff69e2c 6459 kfree(memcg);
59927fb9 6460}
3afe36b1 6461
7bcc1bb1
DN
6462/*
6463 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6464 */
e1aab161 6465struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6466{
c0ff4b85 6467 if (!memcg->res.parent)
7bcc1bb1 6468 return NULL;
c0ff4b85 6469 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6470}
e1aab161 6471EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6472
bb4cc1a8
AM
6473static void __init mem_cgroup_soft_limit_tree_init(void)
6474{
6475 struct mem_cgroup_tree_per_node *rtpn;
6476 struct mem_cgroup_tree_per_zone *rtpz;
6477 int tmp, node, zone;
6478
6479 for_each_node(node) {
6480 tmp = node;
6481 if (!node_state(node, N_NORMAL_MEMORY))
6482 tmp = -1;
6483 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6484 BUG_ON(!rtpn);
6485
6486 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6487
6488 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6489 rtpz = &rtpn->rb_tree_per_zone[zone];
6490 rtpz->rb_root = RB_ROOT;
6491 spin_lock_init(&rtpz->lock);
6492 }
6493 }
6494}
6495
0eb253e2 6496static struct cgroup_subsys_state * __ref
eb95419b 6497mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6498{
d142e3e6 6499 struct mem_cgroup *memcg;
04046e1a 6500 long error = -ENOMEM;
6d12e2d8 6501 int node;
8cdea7c0 6502
c0ff4b85
R
6503 memcg = mem_cgroup_alloc();
6504 if (!memcg)
04046e1a 6505 return ERR_PTR(error);
78fb7466 6506
3ed28fa1 6507 for_each_node(node)
c0ff4b85 6508 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6509 goto free_out;
f64c3f54 6510
c077719b 6511 /* root ? */
eb95419b 6512 if (parent_css == NULL) {
a41c58a6 6513 root_mem_cgroup = memcg;
d142e3e6
GC
6514 res_counter_init(&memcg->res, NULL);
6515 res_counter_init(&memcg->memsw, NULL);
6516 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6517 }
28dbc4b6 6518
d142e3e6
GC
6519 memcg->last_scanned_node = MAX_NUMNODES;
6520 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6521 memcg->move_charge_at_immigrate = 0;
6522 mutex_init(&memcg->thresholds_lock);
6523 spin_lock_init(&memcg->move_lock);
70ddf637 6524 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6525 INIT_LIST_HEAD(&memcg->event_list);
6526 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6527
6528 return &memcg->css;
6529
6530free_out:
6531 __mem_cgroup_free(memcg);
6532 return ERR_PTR(error);
6533}
6534
6535static int
eb95419b 6536mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6537{
eb95419b
TH
6538 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6539 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6540
4219b2da
LZ
6541 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6542 return -ENOSPC;
6543
63876986 6544 if (!parent)
d142e3e6
GC
6545 return 0;
6546
0999821b 6547 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6548
6549 memcg->use_hierarchy = parent->use_hierarchy;
6550 memcg->oom_kill_disable = parent->oom_kill_disable;
6551 memcg->swappiness = mem_cgroup_swappiness(parent);
6552
6553 if (parent->use_hierarchy) {
c0ff4b85
R
6554 res_counter_init(&memcg->res, &parent->res);
6555 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6556 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6557
7bcc1bb1 6558 /*
8d76a979
LZ
6559 * No need to take a reference to the parent because cgroup
6560 * core guarantees its existence.
7bcc1bb1 6561 */
18f59ea7 6562 } else {
c0ff4b85
R
6563 res_counter_init(&memcg->res, NULL);
6564 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6565 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6566 /*
6567 * Deeper hierachy with use_hierarchy == false doesn't make
6568 * much sense so let cgroup subsystem know about this
6569 * unfortunate state in our controller.
6570 */
d142e3e6 6571 if (parent != root_mem_cgroup)
8c7f6edb 6572 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6573 }
0999821b 6574 mutex_unlock(&memcg_create_mutex);
d6441637
VD
6575
6576 return memcg_init_kmem(memcg, &mem_cgroup_subsys);
8cdea7c0
BS
6577}
6578
5f578161
MH
6579/*
6580 * Announce all parents that a group from their hierarchy is gone.
6581 */
6582static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6583{
6584 struct mem_cgroup *parent = memcg;
6585
6586 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6587 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6588
6589 /*
6590 * if the root memcg is not hierarchical we have to check it
6591 * explicitely.
6592 */
6593 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6594 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6595}
6596
eb95419b 6597static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6598{
eb95419b 6599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6600 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6601
6602 /*
6603 * Unregister events and notify userspace.
6604 * Notify userspace about cgroup removing only after rmdir of cgroup
6605 * directory to avoid race between userspace and kernelspace.
6606 */
fba94807
TH
6607 spin_lock(&memcg->event_list_lock);
6608 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6609 list_del_init(&event->list);
6610 schedule_work(&event->remove);
6611 }
fba94807 6612 spin_unlock(&memcg->event_list_lock);
ec64f515 6613
10d5ebf4
LZ
6614 kmem_cgroup_css_offline(memcg);
6615
5f578161 6616 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6617 mem_cgroup_reparent_charges(memcg);
1f458cbf 6618 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6619 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6620}
6621
eb95419b 6622static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6623{
eb95419b 6624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6625 /*
6626 * XXX: css_offline() would be where we should reparent all
6627 * memory to prepare the cgroup for destruction. However,
6628 * memcg does not do css_tryget() and res_counter charging
6629 * under the same RCU lock region, which means that charging
6630 * could race with offlining. Offlining only happens to
6631 * cgroups with no tasks in them but charges can show up
6632 * without any tasks from the swapin path when the target
6633 * memcg is looked up from the swapout record and not from the
6634 * current task as it usually is. A race like this can leak
6635 * charges and put pages with stale cgroup pointers into
6636 * circulation:
6637 *
6638 * #0 #1
6639 * lookup_swap_cgroup_id()
6640 * rcu_read_lock()
6641 * mem_cgroup_lookup()
6642 * css_tryget()
6643 * rcu_read_unlock()
6644 * disable css_tryget()
6645 * call_rcu()
6646 * offline_css()
6647 * reparent_charges()
6648 * res_counter_charge()
6649 * css_put()
6650 * css_free()
6651 * pc->mem_cgroup = dead memcg
6652 * add page to lru
6653 *
6654 * The bulk of the charges are still moved in offline_css() to
6655 * avoid pinning a lot of pages in case a long-term reference
6656 * like a swapout record is deferring the css_free() to long
6657 * after offlining. But this makes sure we catch any charges
6658 * made after offlining:
6659 */
6660 mem_cgroup_reparent_charges(memcg);
c268e994 6661
10d5ebf4 6662 memcg_destroy_kmem(memcg);
465939a1 6663 __mem_cgroup_free(memcg);
8cdea7c0
BS
6664}
6665
02491447 6666#ifdef CONFIG_MMU
7dc74be0 6667/* Handlers for move charge at task migration. */
854ffa8d
DN
6668#define PRECHARGE_COUNT_AT_ONCE 256
6669static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6670{
854ffa8d
DN
6671 int ret = 0;
6672 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6673 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6674
c0ff4b85 6675 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6676 mc.precharge += count;
6677 /* we don't need css_get for root */
6678 return ret;
6679 }
6680 /* try to charge at once */
6681 if (count > 1) {
6682 struct res_counter *dummy;
6683 /*
c0ff4b85 6684 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6685 * by cgroup_lock_live_cgroup() that it is not removed and we
6686 * are still under the same cgroup_mutex. So we can postpone
6687 * css_get().
6688 */
c0ff4b85 6689 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6690 goto one_by_one;
c0ff4b85 6691 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6692 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6693 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6694 goto one_by_one;
6695 }
6696 mc.precharge += count;
854ffa8d
DN
6697 return ret;
6698 }
6699one_by_one:
6700 /* fall back to one by one charge */
6701 while (count--) {
6702 if (signal_pending(current)) {
6703 ret = -EINTR;
6704 break;
6705 }
6706 if (!batch_count--) {
6707 batch_count = PRECHARGE_COUNT_AT_ONCE;
6708 cond_resched();
6709 }
c0ff4b85
R
6710 ret = __mem_cgroup_try_charge(NULL,
6711 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6712 if (ret)
854ffa8d 6713 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6714 return ret;
854ffa8d
DN
6715 mc.precharge++;
6716 }
4ffef5fe
DN
6717 return ret;
6718}
6719
6720/**
8d32ff84 6721 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6722 * @vma: the vma the pte to be checked belongs
6723 * @addr: the address corresponding to the pte to be checked
6724 * @ptent: the pte to be checked
02491447 6725 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6726 *
6727 * Returns
6728 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6729 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6730 * move charge. if @target is not NULL, the page is stored in target->page
6731 * with extra refcnt got(Callers should handle it).
02491447
DN
6732 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6733 * target for charge migration. if @target is not NULL, the entry is stored
6734 * in target->ent.
4ffef5fe
DN
6735 *
6736 * Called with pte lock held.
6737 */
4ffef5fe
DN
6738union mc_target {
6739 struct page *page;
02491447 6740 swp_entry_t ent;
4ffef5fe
DN
6741};
6742
4ffef5fe 6743enum mc_target_type {
8d32ff84 6744 MC_TARGET_NONE = 0,
4ffef5fe 6745 MC_TARGET_PAGE,
02491447 6746 MC_TARGET_SWAP,
4ffef5fe
DN
6747};
6748
90254a65
DN
6749static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6750 unsigned long addr, pte_t ptent)
4ffef5fe 6751{
90254a65 6752 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6753
90254a65
DN
6754 if (!page || !page_mapped(page))
6755 return NULL;
6756 if (PageAnon(page)) {
6757 /* we don't move shared anon */
4b91355e 6758 if (!move_anon())
90254a65 6759 return NULL;
87946a72
DN
6760 } else if (!move_file())
6761 /* we ignore mapcount for file pages */
90254a65
DN
6762 return NULL;
6763 if (!get_page_unless_zero(page))
6764 return NULL;
6765
6766 return page;
6767}
6768
4b91355e 6769#ifdef CONFIG_SWAP
90254a65
DN
6770static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6771 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6772{
90254a65
DN
6773 struct page *page = NULL;
6774 swp_entry_t ent = pte_to_swp_entry(ptent);
6775
6776 if (!move_anon() || non_swap_entry(ent))
6777 return NULL;
4b91355e
KH
6778 /*
6779 * Because lookup_swap_cache() updates some statistics counter,
6780 * we call find_get_page() with swapper_space directly.
6781 */
33806f06 6782 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6783 if (do_swap_account)
6784 entry->val = ent.val;
6785
6786 return page;
6787}
4b91355e
KH
6788#else
6789static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6790 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6791{
6792 return NULL;
6793}
6794#endif
90254a65 6795
87946a72
DN
6796static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6797 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6798{
6799 struct page *page = NULL;
87946a72
DN
6800 struct address_space *mapping;
6801 pgoff_t pgoff;
6802
6803 if (!vma->vm_file) /* anonymous vma */
6804 return NULL;
6805 if (!move_file())
6806 return NULL;
6807
87946a72
DN
6808 mapping = vma->vm_file->f_mapping;
6809 if (pte_none(ptent))
6810 pgoff = linear_page_index(vma, addr);
6811 else /* pte_file(ptent) is true */
6812 pgoff = pte_to_pgoff(ptent);
6813
6814 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6815 page = find_get_page(mapping, pgoff);
6816
6817#ifdef CONFIG_SWAP
6818 /* shmem/tmpfs may report page out on swap: account for that too. */
6819 if (radix_tree_exceptional_entry(page)) {
6820 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6821 if (do_swap_account)
aa3b1895 6822 *entry = swap;
33806f06 6823 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6824 }
aa3b1895 6825#endif
87946a72
DN
6826 return page;
6827}
6828
8d32ff84 6829static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6830 unsigned long addr, pte_t ptent, union mc_target *target)
6831{
6832 struct page *page = NULL;
6833 struct page_cgroup *pc;
8d32ff84 6834 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6835 swp_entry_t ent = { .val = 0 };
6836
6837 if (pte_present(ptent))
6838 page = mc_handle_present_pte(vma, addr, ptent);
6839 else if (is_swap_pte(ptent))
6840 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6841 else if (pte_none(ptent) || pte_file(ptent))
6842 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6843
6844 if (!page && !ent.val)
8d32ff84 6845 return ret;
02491447
DN
6846 if (page) {
6847 pc = lookup_page_cgroup(page);
6848 /*
6849 * Do only loose check w/o page_cgroup lock.
6850 * mem_cgroup_move_account() checks the pc is valid or not under
6851 * the lock.
6852 */
6853 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6854 ret = MC_TARGET_PAGE;
6855 if (target)
6856 target->page = page;
6857 }
6858 if (!ret || !target)
6859 put_page(page);
6860 }
90254a65
DN
6861 /* There is a swap entry and a page doesn't exist or isn't charged */
6862 if (ent.val && !ret &&
34c00c31 6863 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6864 ret = MC_TARGET_SWAP;
6865 if (target)
6866 target->ent = ent;
4ffef5fe 6867 }
4ffef5fe
DN
6868 return ret;
6869}
6870
12724850
NH
6871#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6872/*
6873 * We don't consider swapping or file mapped pages because THP does not
6874 * support them for now.
6875 * Caller should make sure that pmd_trans_huge(pmd) is true.
6876 */
6877static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6878 unsigned long addr, pmd_t pmd, union mc_target *target)
6879{
6880 struct page *page = NULL;
6881 struct page_cgroup *pc;
6882 enum mc_target_type ret = MC_TARGET_NONE;
6883
6884 page = pmd_page(pmd);
309381fe 6885 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6886 if (!move_anon())
6887 return ret;
6888 pc = lookup_page_cgroup(page);
6889 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6890 ret = MC_TARGET_PAGE;
6891 if (target) {
6892 get_page(page);
6893 target->page = page;
6894 }
6895 }
6896 return ret;
6897}
6898#else
6899static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6900 unsigned long addr, pmd_t pmd, union mc_target *target)
6901{
6902 return MC_TARGET_NONE;
6903}
6904#endif
6905
4ffef5fe
DN
6906static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6907 unsigned long addr, unsigned long end,
6908 struct mm_walk *walk)
6909{
6910 struct vm_area_struct *vma = walk->private;
6911 pte_t *pte;
6912 spinlock_t *ptl;
6913
bf929152 6914 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6915 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6916 mc.precharge += HPAGE_PMD_NR;
bf929152 6917 spin_unlock(ptl);
1a5a9906 6918 return 0;
12724850 6919 }
03319327 6920
45f83cef
AA
6921 if (pmd_trans_unstable(pmd))
6922 return 0;
4ffef5fe
DN
6923 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6924 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6925 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6926 mc.precharge++; /* increment precharge temporarily */
6927 pte_unmap_unlock(pte - 1, ptl);
6928 cond_resched();
6929
7dc74be0
DN
6930 return 0;
6931}
6932
4ffef5fe
DN
6933static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6934{
6935 unsigned long precharge;
6936 struct vm_area_struct *vma;
6937
dfe076b0 6938 down_read(&mm->mmap_sem);
4ffef5fe
DN
6939 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6940 struct mm_walk mem_cgroup_count_precharge_walk = {
6941 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6942 .mm = mm,
6943 .private = vma,
6944 };
6945 if (is_vm_hugetlb_page(vma))
6946 continue;
4ffef5fe
DN
6947 walk_page_range(vma->vm_start, vma->vm_end,
6948 &mem_cgroup_count_precharge_walk);
6949 }
dfe076b0 6950 up_read(&mm->mmap_sem);
4ffef5fe
DN
6951
6952 precharge = mc.precharge;
6953 mc.precharge = 0;
6954
6955 return precharge;
6956}
6957
4ffef5fe
DN
6958static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6959{
dfe076b0
DN
6960 unsigned long precharge = mem_cgroup_count_precharge(mm);
6961
6962 VM_BUG_ON(mc.moving_task);
6963 mc.moving_task = current;
6964 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6965}
6966
dfe076b0
DN
6967/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6968static void __mem_cgroup_clear_mc(void)
4ffef5fe 6969{
2bd9bb20
KH
6970 struct mem_cgroup *from = mc.from;
6971 struct mem_cgroup *to = mc.to;
4050377b 6972 int i;
2bd9bb20 6973
4ffef5fe 6974 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6975 if (mc.precharge) {
6976 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6977 mc.precharge = 0;
6978 }
6979 /*
6980 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6981 * we must uncharge here.
6982 */
6983 if (mc.moved_charge) {
6984 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6985 mc.moved_charge = 0;
4ffef5fe 6986 }
483c30b5
DN
6987 /* we must fixup refcnts and charges */
6988 if (mc.moved_swap) {
483c30b5
DN
6989 /* uncharge swap account from the old cgroup */
6990 if (!mem_cgroup_is_root(mc.from))
6991 res_counter_uncharge(&mc.from->memsw,
6992 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6993
6994 for (i = 0; i < mc.moved_swap; i++)
6995 css_put(&mc.from->css);
483c30b5
DN
6996
6997 if (!mem_cgroup_is_root(mc.to)) {
6998 /*
6999 * we charged both to->res and to->memsw, so we should
7000 * uncharge to->res.
7001 */
7002 res_counter_uncharge(&mc.to->res,
7003 PAGE_SIZE * mc.moved_swap);
483c30b5 7004 }
4050377b 7005 /* we've already done css_get(mc.to) */
483c30b5
DN
7006 mc.moved_swap = 0;
7007 }
dfe076b0
DN
7008 memcg_oom_recover(from);
7009 memcg_oom_recover(to);
7010 wake_up_all(&mc.waitq);
7011}
7012
7013static void mem_cgroup_clear_mc(void)
7014{
7015 struct mem_cgroup *from = mc.from;
7016
7017 /*
7018 * we must clear moving_task before waking up waiters at the end of
7019 * task migration.
7020 */
7021 mc.moving_task = NULL;
7022 __mem_cgroup_clear_mc();
2bd9bb20 7023 spin_lock(&mc.lock);
4ffef5fe
DN
7024 mc.from = NULL;
7025 mc.to = NULL;
2bd9bb20 7026 spin_unlock(&mc.lock);
32047e2a 7027 mem_cgroup_end_move(from);
4ffef5fe
DN
7028}
7029
eb95419b 7030static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7031 struct cgroup_taskset *tset)
7dc74be0 7032{
2f7ee569 7033 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7034 int ret = 0;
eb95419b 7035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7036 unsigned long move_charge_at_immigrate;
7dc74be0 7037
ee5e8472
GC
7038 /*
7039 * We are now commited to this value whatever it is. Changes in this
7040 * tunable will only affect upcoming migrations, not the current one.
7041 * So we need to save it, and keep it going.
7042 */
7043 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7044 if (move_charge_at_immigrate) {
7dc74be0
DN
7045 struct mm_struct *mm;
7046 struct mem_cgroup *from = mem_cgroup_from_task(p);
7047
c0ff4b85 7048 VM_BUG_ON(from == memcg);
7dc74be0
DN
7049
7050 mm = get_task_mm(p);
7051 if (!mm)
7052 return 0;
7dc74be0 7053 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7054 if (mm->owner == p) {
7055 VM_BUG_ON(mc.from);
7056 VM_BUG_ON(mc.to);
7057 VM_BUG_ON(mc.precharge);
854ffa8d 7058 VM_BUG_ON(mc.moved_charge);
483c30b5 7059 VM_BUG_ON(mc.moved_swap);
32047e2a 7060 mem_cgroup_start_move(from);
2bd9bb20 7061 spin_lock(&mc.lock);
4ffef5fe 7062 mc.from = from;
c0ff4b85 7063 mc.to = memcg;
ee5e8472 7064 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7065 spin_unlock(&mc.lock);
dfe076b0 7066 /* We set mc.moving_task later */
4ffef5fe
DN
7067
7068 ret = mem_cgroup_precharge_mc(mm);
7069 if (ret)
7070 mem_cgroup_clear_mc();
dfe076b0
DN
7071 }
7072 mmput(mm);
7dc74be0
DN
7073 }
7074 return ret;
7075}
7076
eb95419b 7077static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7078 struct cgroup_taskset *tset)
7dc74be0 7079{
4ffef5fe 7080 mem_cgroup_clear_mc();
7dc74be0
DN
7081}
7082
4ffef5fe
DN
7083static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7084 unsigned long addr, unsigned long end,
7085 struct mm_walk *walk)
7dc74be0 7086{
4ffef5fe
DN
7087 int ret = 0;
7088 struct vm_area_struct *vma = walk->private;
7089 pte_t *pte;
7090 spinlock_t *ptl;
12724850
NH
7091 enum mc_target_type target_type;
7092 union mc_target target;
7093 struct page *page;
7094 struct page_cgroup *pc;
4ffef5fe 7095
12724850
NH
7096 /*
7097 * We don't take compound_lock() here but no race with splitting thp
7098 * happens because:
7099 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7100 * under splitting, which means there's no concurrent thp split,
7101 * - if another thread runs into split_huge_page() just after we
7102 * entered this if-block, the thread must wait for page table lock
7103 * to be unlocked in __split_huge_page_splitting(), where the main
7104 * part of thp split is not executed yet.
7105 */
bf929152 7106 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7107 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7108 spin_unlock(ptl);
12724850
NH
7109 return 0;
7110 }
7111 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7112 if (target_type == MC_TARGET_PAGE) {
7113 page = target.page;
7114 if (!isolate_lru_page(page)) {
7115 pc = lookup_page_cgroup(page);
7116 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7117 pc, mc.from, mc.to)) {
12724850
NH
7118 mc.precharge -= HPAGE_PMD_NR;
7119 mc.moved_charge += HPAGE_PMD_NR;
7120 }
7121 putback_lru_page(page);
7122 }
7123 put_page(page);
7124 }
bf929152 7125 spin_unlock(ptl);
1a5a9906 7126 return 0;
12724850
NH
7127 }
7128
45f83cef
AA
7129 if (pmd_trans_unstable(pmd))
7130 return 0;
4ffef5fe
DN
7131retry:
7132 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7133 for (; addr != end; addr += PAGE_SIZE) {
7134 pte_t ptent = *(pte++);
02491447 7135 swp_entry_t ent;
4ffef5fe
DN
7136
7137 if (!mc.precharge)
7138 break;
7139
8d32ff84 7140 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7141 case MC_TARGET_PAGE:
7142 page = target.page;
7143 if (isolate_lru_page(page))
7144 goto put;
7145 pc = lookup_page_cgroup(page);
7ec99d62 7146 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7147 mc.from, mc.to)) {
4ffef5fe 7148 mc.precharge--;
854ffa8d
DN
7149 /* we uncharge from mc.from later. */
7150 mc.moved_charge++;
4ffef5fe
DN
7151 }
7152 putback_lru_page(page);
8d32ff84 7153put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7154 put_page(page);
7155 break;
02491447
DN
7156 case MC_TARGET_SWAP:
7157 ent = target.ent;
e91cbb42 7158 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7159 mc.precharge--;
483c30b5
DN
7160 /* we fixup refcnts and charges later. */
7161 mc.moved_swap++;
7162 }
02491447 7163 break;
4ffef5fe
DN
7164 default:
7165 break;
7166 }
7167 }
7168 pte_unmap_unlock(pte - 1, ptl);
7169 cond_resched();
7170
7171 if (addr != end) {
7172 /*
7173 * We have consumed all precharges we got in can_attach().
7174 * We try charge one by one, but don't do any additional
7175 * charges to mc.to if we have failed in charge once in attach()
7176 * phase.
7177 */
854ffa8d 7178 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7179 if (!ret)
7180 goto retry;
7181 }
7182
7183 return ret;
7184}
7185
7186static void mem_cgroup_move_charge(struct mm_struct *mm)
7187{
7188 struct vm_area_struct *vma;
7189
7190 lru_add_drain_all();
dfe076b0
DN
7191retry:
7192 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7193 /*
7194 * Someone who are holding the mmap_sem might be waiting in
7195 * waitq. So we cancel all extra charges, wake up all waiters,
7196 * and retry. Because we cancel precharges, we might not be able
7197 * to move enough charges, but moving charge is a best-effort
7198 * feature anyway, so it wouldn't be a big problem.
7199 */
7200 __mem_cgroup_clear_mc();
7201 cond_resched();
7202 goto retry;
7203 }
4ffef5fe
DN
7204 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7205 int ret;
7206 struct mm_walk mem_cgroup_move_charge_walk = {
7207 .pmd_entry = mem_cgroup_move_charge_pte_range,
7208 .mm = mm,
7209 .private = vma,
7210 };
7211 if (is_vm_hugetlb_page(vma))
7212 continue;
4ffef5fe
DN
7213 ret = walk_page_range(vma->vm_start, vma->vm_end,
7214 &mem_cgroup_move_charge_walk);
7215 if (ret)
7216 /*
7217 * means we have consumed all precharges and failed in
7218 * doing additional charge. Just abandon here.
7219 */
7220 break;
7221 }
dfe076b0 7222 up_read(&mm->mmap_sem);
7dc74be0
DN
7223}
7224
eb95419b 7225static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7226 struct cgroup_taskset *tset)
67e465a7 7227{
2f7ee569 7228 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7229 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7230
dfe076b0 7231 if (mm) {
a433658c
KM
7232 if (mc.to)
7233 mem_cgroup_move_charge(mm);
dfe076b0
DN
7234 mmput(mm);
7235 }
a433658c
KM
7236 if (mc.to)
7237 mem_cgroup_clear_mc();
67e465a7 7238}
5cfb80a7 7239#else /* !CONFIG_MMU */
eb95419b 7240static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7241 struct cgroup_taskset *tset)
5cfb80a7
DN
7242{
7243 return 0;
7244}
eb95419b 7245static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7246 struct cgroup_taskset *tset)
5cfb80a7
DN
7247{
7248}
eb95419b 7249static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7250 struct cgroup_taskset *tset)
5cfb80a7
DN
7251{
7252}
7253#endif
67e465a7 7254
f00baae7
TH
7255/*
7256 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7257 * to verify sane_behavior flag on each mount attempt.
7258 */
eb95419b 7259static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7260{
7261 /*
7262 * use_hierarchy is forced with sane_behavior. cgroup core
7263 * guarantees that @root doesn't have any children, so turning it
7264 * on for the root memcg is enough.
7265 */
eb95419b
TH
7266 if (cgroup_sane_behavior(root_css->cgroup))
7267 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7268}
7269
8cdea7c0
BS
7270struct cgroup_subsys mem_cgroup_subsys = {
7271 .name = "memory",
7272 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7273 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7274 .css_online = mem_cgroup_css_online,
92fb9748
TH
7275 .css_offline = mem_cgroup_css_offline,
7276 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7277 .can_attach = mem_cgroup_can_attach,
7278 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7279 .attach = mem_cgroup_move_task,
f00baae7 7280 .bind = mem_cgroup_bind,
6bc10349 7281 .base_cftypes = mem_cgroup_files,
6d12e2d8 7282 .early_init = 0,
8cdea7c0 7283};
c077719b 7284
c255a458 7285#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7286static int __init enable_swap_account(char *s)
7287{
a2c8990a 7288 if (!strcmp(s, "1"))
a42c390c 7289 really_do_swap_account = 1;
a2c8990a 7290 else if (!strcmp(s, "0"))
a42c390c
MH
7291 really_do_swap_account = 0;
7292 return 1;
7293}
a2c8990a 7294__setup("swapaccount=", enable_swap_account);
c077719b 7295
2d11085e
MH
7296static void __init memsw_file_init(void)
7297{
6acc8b02
MH
7298 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7299}
7300
7301static void __init enable_swap_cgroup(void)
7302{
7303 if (!mem_cgroup_disabled() && really_do_swap_account) {
7304 do_swap_account = 1;
7305 memsw_file_init();
7306 }
2d11085e 7307}
6acc8b02 7308
2d11085e 7309#else
6acc8b02 7310static void __init enable_swap_cgroup(void)
2d11085e
MH
7311{
7312}
c077719b 7313#endif
2d11085e
MH
7314
7315/*
1081312f
MH
7316 * subsys_initcall() for memory controller.
7317 *
7318 * Some parts like hotcpu_notifier() have to be initialized from this context
7319 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7320 * everything that doesn't depend on a specific mem_cgroup structure should
7321 * be initialized from here.
2d11085e
MH
7322 */
7323static int __init mem_cgroup_init(void)
7324{
7325 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7326 enable_swap_cgroup();
bb4cc1a8 7327 mem_cgroup_soft_limit_tree_init();
e4777496 7328 memcg_stock_init();
2d11085e
MH
7329 return 0;
7330}
7331subsys_initcall(mem_cgroup_init);
This page took 1.079496 seconds and 5 git commands to generate.