memcg: remove KMEM_ACCOUNTED_ACTIVATED flag
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
5f578161
MH
152 unsigned long last_dead_count;
153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &mem_cgroup_subsys);
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
c62b1a3b
KH
924 preempt_disable();
925
b2402857
KH
926 /*
927 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
928 * counted as CACHE even if it's on ANON LRU.
929 */
930 if (anon)
931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 932 nr_pages);
d52aa412 933 else
b2402857 934 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 935 nr_pages);
55e462b0 936
b070e65c
DR
937 if (PageTransHuge(page))
938 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
939 nr_pages);
940
e401f176
KH
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 944 else {
c0ff4b85 945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
946 nr_pages = -nr_pages; /* for event */
947 }
e401f176 948
13114716 949 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 950
c62b1a3b 951 preempt_enable();
6d12e2d8
KH
952}
953
bb2a0de9 954unsigned long
4d7dcca2 955mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
956{
957 struct mem_cgroup_per_zone *mz;
958
959 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
960 return mz->lru_size[lru];
961}
962
963static unsigned long
c0ff4b85 964mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 965 unsigned int lru_mask)
889976db
YH
966{
967 struct mem_cgroup_per_zone *mz;
f156ab93 968 enum lru_list lru;
bb2a0de9
KH
969 unsigned long ret = 0;
970
c0ff4b85 971 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 972
f156ab93
HD
973 for_each_lru(lru) {
974 if (BIT(lru) & lru_mask)
975 ret += mz->lru_size[lru];
bb2a0de9
KH
976 }
977 return ret;
978}
979
980static unsigned long
c0ff4b85 981mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
982 int nid, unsigned int lru_mask)
983{
889976db
YH
984 u64 total = 0;
985 int zid;
986
bb2a0de9 987 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
988 total += mem_cgroup_zone_nr_lru_pages(memcg,
989 nid, zid, lru_mask);
bb2a0de9 990
889976db
YH
991 return total;
992}
bb2a0de9 993
c0ff4b85 994static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 995 unsigned int lru_mask)
6d12e2d8 996{
889976db 997 int nid;
6d12e2d8
KH
998 u64 total = 0;
999
31aaea4a 1000 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1001 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1002 return total;
d52aa412
KH
1003}
1004
f53d7ce3
JW
1005static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006 enum mem_cgroup_events_target target)
7a159cc9
JW
1007{
1008 unsigned long val, next;
1009
13114716 1010 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1011 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1012 /* from time_after() in jiffies.h */
f53d7ce3
JW
1013 if ((long)next - (long)val < 0) {
1014 switch (target) {
1015 case MEM_CGROUP_TARGET_THRESH:
1016 next = val + THRESHOLDS_EVENTS_TARGET;
1017 break;
bb4cc1a8
AM
1018 case MEM_CGROUP_TARGET_SOFTLIMIT:
1019 next = val + SOFTLIMIT_EVENTS_TARGET;
1020 break;
f53d7ce3
JW
1021 case MEM_CGROUP_TARGET_NUMAINFO:
1022 next = val + NUMAINFO_EVENTS_TARGET;
1023 break;
1024 default:
1025 break;
1026 }
1027 __this_cpu_write(memcg->stat->targets[target], next);
1028 return true;
7a159cc9 1029 }
f53d7ce3 1030 return false;
d2265e6f
KH
1031}
1032
1033/*
1034 * Check events in order.
1035 *
1036 */
c0ff4b85 1037static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1038{
4799401f 1039 preempt_disable();
d2265e6f 1040 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1041 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1043 bool do_softlimit;
82b3f2a7 1044 bool do_numainfo __maybe_unused;
f53d7ce3 1045
bb4cc1a8
AM
1046 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1048#if MAX_NUMNODES > 1
1049 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050 MEM_CGROUP_TARGET_NUMAINFO);
1051#endif
1052 preempt_enable();
1053
c0ff4b85 1054 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1055 if (unlikely(do_softlimit))
1056 mem_cgroup_update_tree(memcg, page);
453a9bf3 1057#if MAX_NUMNODES > 1
f53d7ce3 1058 if (unlikely(do_numainfo))
c0ff4b85 1059 atomic_inc(&memcg->numainfo_events);
453a9bf3 1060#endif
f53d7ce3
JW
1061 } else
1062 preempt_enable();
d2265e6f
KH
1063}
1064
cf475ad2 1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1066{
31a78f23
BS
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
8af01f56 1075 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1076}
1077
a433658c 1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1079{
c0ff4b85 1080 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1081
1082 if (!mm)
1083 return NULL;
54595fe2
KH
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
c0ff4b85
R
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
54595fe2 1093 break;
c0ff4b85 1094 } while (!css_tryget(&memcg->css));
54595fe2 1095 rcu_read_unlock();
c0ff4b85 1096 return memcg;
54595fe2
KH
1097}
1098
16248d8f
MH
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1106 struct mem_cgroup *last_visited)
16248d8f 1107{
492eb21b 1108 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1109
bd8815a6 1110 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1111skip_node:
492eb21b 1112 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1113
1114 /*
1115 * Even if we found a group we have to make sure it is
1116 * alive. css && !memcg means that the groups should be
1117 * skipped and we should continue the tree walk.
1118 * last_visited css is safe to use because it is
1119 * protected by css_get and the tree walk is rcu safe.
1120 */
492eb21b
TH
1121 if (next_css) {
1122 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1123
694fbc0f
AM
1124 if (css_tryget(&mem->css))
1125 return mem;
1126 else {
492eb21b 1127 prev_css = next_css;
16248d8f
MH
1128 goto skip_node;
1129 }
1130 }
1131
1132 return NULL;
1133}
1134
519ebea3
JW
1135static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1136{
1137 /*
1138 * When a group in the hierarchy below root is destroyed, the
1139 * hierarchy iterator can no longer be trusted since it might
1140 * have pointed to the destroyed group. Invalidate it.
1141 */
1142 atomic_inc(&root->dead_count);
1143}
1144
1145static struct mem_cgroup *
1146mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1147 struct mem_cgroup *root,
1148 int *sequence)
1149{
1150 struct mem_cgroup *position = NULL;
1151 /*
1152 * A cgroup destruction happens in two stages: offlining and
1153 * release. They are separated by a RCU grace period.
1154 *
1155 * If the iterator is valid, we may still race with an
1156 * offlining. The RCU lock ensures the object won't be
1157 * released, tryget will fail if we lost the race.
1158 */
1159 *sequence = atomic_read(&root->dead_count);
1160 if (iter->last_dead_count == *sequence) {
1161 smp_rmb();
1162 position = iter->last_visited;
1163 if (position && !css_tryget(&position->css))
1164 position = NULL;
1165 }
1166 return position;
1167}
1168
1169static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1170 struct mem_cgroup *last_visited,
1171 struct mem_cgroup *new_position,
1172 int sequence)
1173{
1174 if (last_visited)
1175 css_put(&last_visited->css);
1176 /*
1177 * We store the sequence count from the time @last_visited was
1178 * loaded successfully instead of rereading it here so that we
1179 * don't lose destruction events in between. We could have
1180 * raced with the destruction of @new_position after all.
1181 */
1182 iter->last_visited = new_position;
1183 smp_wmb();
1184 iter->last_dead_count = sequence;
1185}
1186
5660048c
JW
1187/**
1188 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1189 * @root: hierarchy root
1190 * @prev: previously returned memcg, NULL on first invocation
1191 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1192 *
1193 * Returns references to children of the hierarchy below @root, or
1194 * @root itself, or %NULL after a full round-trip.
1195 *
1196 * Caller must pass the return value in @prev on subsequent
1197 * invocations for reference counting, or use mem_cgroup_iter_break()
1198 * to cancel a hierarchy walk before the round-trip is complete.
1199 *
1200 * Reclaimers can specify a zone and a priority level in @reclaim to
1201 * divide up the memcgs in the hierarchy among all concurrent
1202 * reclaimers operating on the same zone and priority.
1203 */
694fbc0f 1204struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1205 struct mem_cgroup *prev,
694fbc0f 1206 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1207{
9f3a0d09 1208 struct mem_cgroup *memcg = NULL;
542f85f9 1209 struct mem_cgroup *last_visited = NULL;
711d3d2c 1210
694fbc0f
AM
1211 if (mem_cgroup_disabled())
1212 return NULL;
5660048c 1213
9f3a0d09
JW
1214 if (!root)
1215 root = root_mem_cgroup;
7d74b06f 1216
9f3a0d09 1217 if (prev && !reclaim)
542f85f9 1218 last_visited = prev;
14067bb3 1219
9f3a0d09
JW
1220 if (!root->use_hierarchy && root != root_mem_cgroup) {
1221 if (prev)
c40046f3 1222 goto out_css_put;
694fbc0f 1223 return root;
9f3a0d09 1224 }
14067bb3 1225
542f85f9 1226 rcu_read_lock();
9f3a0d09 1227 while (!memcg) {
527a5ec9 1228 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1229 int uninitialized_var(seq);
711d3d2c 1230
527a5ec9
JW
1231 if (reclaim) {
1232 int nid = zone_to_nid(reclaim->zone);
1233 int zid = zone_idx(reclaim->zone);
1234 struct mem_cgroup_per_zone *mz;
1235
1236 mz = mem_cgroup_zoneinfo(root, nid, zid);
1237 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1238 if (prev && reclaim->generation != iter->generation) {
5f578161 1239 iter->last_visited = NULL;
542f85f9
MH
1240 goto out_unlock;
1241 }
5f578161 1242
519ebea3 1243 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1244 }
7d74b06f 1245
694fbc0f 1246 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1247
527a5ec9 1248 if (reclaim) {
519ebea3 1249 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1250
19f39402 1251 if (!memcg)
527a5ec9
JW
1252 iter->generation++;
1253 else if (!prev && memcg)
1254 reclaim->generation = iter->generation;
1255 }
9f3a0d09 1256
694fbc0f 1257 if (prev && !memcg)
542f85f9 1258 goto out_unlock;
9f3a0d09 1259 }
542f85f9
MH
1260out_unlock:
1261 rcu_read_unlock();
c40046f3
MH
1262out_css_put:
1263 if (prev && prev != root)
1264 css_put(&prev->css);
1265
9f3a0d09 1266 return memcg;
14067bb3 1267}
7d74b06f 1268
5660048c
JW
1269/**
1270 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1271 * @root: hierarchy root
1272 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1273 */
1274void mem_cgroup_iter_break(struct mem_cgroup *root,
1275 struct mem_cgroup *prev)
9f3a0d09
JW
1276{
1277 if (!root)
1278 root = root_mem_cgroup;
1279 if (prev && prev != root)
1280 css_put(&prev->css);
1281}
7d74b06f 1282
9f3a0d09
JW
1283/*
1284 * Iteration constructs for visiting all cgroups (under a tree). If
1285 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1286 * be used for reference counting.
1287 */
1288#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1289 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1290 iter != NULL; \
527a5ec9 1291 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1292
9f3a0d09 1293#define for_each_mem_cgroup(iter) \
527a5ec9 1294 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1295 iter != NULL; \
527a5ec9 1296 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1297
68ae564b 1298void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1299{
c0ff4b85 1300 struct mem_cgroup *memcg;
456f998e 1301
456f998e 1302 rcu_read_lock();
c0ff4b85
R
1303 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1304 if (unlikely(!memcg))
456f998e
YH
1305 goto out;
1306
1307 switch (idx) {
456f998e 1308 case PGFAULT:
0e574a93
JW
1309 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1310 break;
1311 case PGMAJFAULT:
1312 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1313 break;
1314 default:
1315 BUG();
1316 }
1317out:
1318 rcu_read_unlock();
1319}
68ae564b 1320EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1321
925b7673
JW
1322/**
1323 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1324 * @zone: zone of the wanted lruvec
fa9add64 1325 * @memcg: memcg of the wanted lruvec
925b7673
JW
1326 *
1327 * Returns the lru list vector holding pages for the given @zone and
1328 * @mem. This can be the global zone lruvec, if the memory controller
1329 * is disabled.
1330 */
1331struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1332 struct mem_cgroup *memcg)
1333{
1334 struct mem_cgroup_per_zone *mz;
bea8c150 1335 struct lruvec *lruvec;
925b7673 1336
bea8c150
HD
1337 if (mem_cgroup_disabled()) {
1338 lruvec = &zone->lruvec;
1339 goto out;
1340 }
925b7673
JW
1341
1342 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1343 lruvec = &mz->lruvec;
1344out:
1345 /*
1346 * Since a node can be onlined after the mem_cgroup was created,
1347 * we have to be prepared to initialize lruvec->zone here;
1348 * and if offlined then reonlined, we need to reinitialize it.
1349 */
1350 if (unlikely(lruvec->zone != zone))
1351 lruvec->zone = zone;
1352 return lruvec;
925b7673
JW
1353}
1354
08e552c6
KH
1355/*
1356 * Following LRU functions are allowed to be used without PCG_LOCK.
1357 * Operations are called by routine of global LRU independently from memcg.
1358 * What we have to take care of here is validness of pc->mem_cgroup.
1359 *
1360 * Changes to pc->mem_cgroup happens when
1361 * 1. charge
1362 * 2. moving account
1363 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1364 * It is added to LRU before charge.
1365 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1366 * When moving account, the page is not on LRU. It's isolated.
1367 */
4f98a2fe 1368
925b7673 1369/**
fa9add64 1370 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1371 * @page: the page
fa9add64 1372 * @zone: zone of the page
925b7673 1373 */
fa9add64 1374struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1375{
08e552c6 1376 struct mem_cgroup_per_zone *mz;
925b7673
JW
1377 struct mem_cgroup *memcg;
1378 struct page_cgroup *pc;
bea8c150 1379 struct lruvec *lruvec;
6d12e2d8 1380
bea8c150
HD
1381 if (mem_cgroup_disabled()) {
1382 lruvec = &zone->lruvec;
1383 goto out;
1384 }
925b7673 1385
08e552c6 1386 pc = lookup_page_cgroup(page);
38c5d72f 1387 memcg = pc->mem_cgroup;
7512102c
HD
1388
1389 /*
fa9add64 1390 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1391 * an uncharged page off lru does nothing to secure
1392 * its former mem_cgroup from sudden removal.
1393 *
1394 * Our caller holds lru_lock, and PageCgroupUsed is updated
1395 * under page_cgroup lock: between them, they make all uses
1396 * of pc->mem_cgroup safe.
1397 */
fa9add64 1398 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1399 pc->mem_cgroup = memcg = root_mem_cgroup;
1400
925b7673 1401 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1402 lruvec = &mz->lruvec;
1403out:
1404 /*
1405 * Since a node can be onlined after the mem_cgroup was created,
1406 * we have to be prepared to initialize lruvec->zone here;
1407 * and if offlined then reonlined, we need to reinitialize it.
1408 */
1409 if (unlikely(lruvec->zone != zone))
1410 lruvec->zone = zone;
1411 return lruvec;
08e552c6 1412}
b69408e8 1413
925b7673 1414/**
fa9add64
HD
1415 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1416 * @lruvec: mem_cgroup per zone lru vector
1417 * @lru: index of lru list the page is sitting on
1418 * @nr_pages: positive when adding or negative when removing
925b7673 1419 *
fa9add64
HD
1420 * This function must be called when a page is added to or removed from an
1421 * lru list.
3f58a829 1422 */
fa9add64
HD
1423void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1424 int nr_pages)
3f58a829
MK
1425{
1426 struct mem_cgroup_per_zone *mz;
fa9add64 1427 unsigned long *lru_size;
3f58a829
MK
1428
1429 if (mem_cgroup_disabled())
1430 return;
1431
fa9add64
HD
1432 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1433 lru_size = mz->lru_size + lru;
1434 *lru_size += nr_pages;
1435 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1436}
544122e5 1437
3e92041d 1438/*
c0ff4b85 1439 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1440 * hierarchy subtree
1441 */
c3ac9a8a
JW
1442bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1443 struct mem_cgroup *memcg)
3e92041d 1444{
91c63734
JW
1445 if (root_memcg == memcg)
1446 return true;
3a981f48 1447 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1448 return false;
b47f77b5 1449 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1450}
1451
1452static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1453 struct mem_cgroup *memcg)
1454{
1455 bool ret;
1456
91c63734 1457 rcu_read_lock();
c3ac9a8a 1458 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1459 rcu_read_unlock();
1460 return ret;
3e92041d
MH
1461}
1462
ffbdccf5
DR
1463bool task_in_mem_cgroup(struct task_struct *task,
1464 const struct mem_cgroup *memcg)
4c4a2214 1465{
0b7f569e 1466 struct mem_cgroup *curr = NULL;
158e0a2d 1467 struct task_struct *p;
ffbdccf5 1468 bool ret;
4c4a2214 1469
158e0a2d 1470 p = find_lock_task_mm(task);
de077d22
DR
1471 if (p) {
1472 curr = try_get_mem_cgroup_from_mm(p->mm);
1473 task_unlock(p);
1474 } else {
1475 /*
1476 * All threads may have already detached their mm's, but the oom
1477 * killer still needs to detect if they have already been oom
1478 * killed to prevent needlessly killing additional tasks.
1479 */
ffbdccf5 1480 rcu_read_lock();
de077d22
DR
1481 curr = mem_cgroup_from_task(task);
1482 if (curr)
1483 css_get(&curr->css);
ffbdccf5 1484 rcu_read_unlock();
de077d22 1485 }
0b7f569e 1486 if (!curr)
ffbdccf5 1487 return false;
d31f56db 1488 /*
c0ff4b85 1489 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1490 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1491 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1492 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1493 */
c0ff4b85 1494 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1495 css_put(&curr->css);
4c4a2214
DR
1496 return ret;
1497}
1498
c56d5c7d 1499int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1500{
9b272977 1501 unsigned long inactive_ratio;
14797e23 1502 unsigned long inactive;
9b272977 1503 unsigned long active;
c772be93 1504 unsigned long gb;
14797e23 1505
4d7dcca2
HD
1506 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1507 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1508
c772be93
KM
1509 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1510 if (gb)
1511 inactive_ratio = int_sqrt(10 * gb);
1512 else
1513 inactive_ratio = 1;
1514
9b272977 1515 return inactive * inactive_ratio < active;
14797e23
KM
1516}
1517
6d61ef40
BS
1518#define mem_cgroup_from_res_counter(counter, member) \
1519 container_of(counter, struct mem_cgroup, member)
1520
19942822 1521/**
9d11ea9f 1522 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1523 * @memcg: the memory cgroup
19942822 1524 *
9d11ea9f 1525 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1526 * pages.
19942822 1527 */
c0ff4b85 1528static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1529{
9d11ea9f
JW
1530 unsigned long long margin;
1531
c0ff4b85 1532 margin = res_counter_margin(&memcg->res);
9d11ea9f 1533 if (do_swap_account)
c0ff4b85 1534 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1535 return margin >> PAGE_SHIFT;
19942822
JW
1536}
1537
1f4c025b 1538int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1539{
a7885eb8 1540 /* root ? */
63876986 1541 if (!css_parent(&memcg->css))
a7885eb8
KM
1542 return vm_swappiness;
1543
bf1ff263 1544 return memcg->swappiness;
a7885eb8
KM
1545}
1546
619d094b
KH
1547/*
1548 * memcg->moving_account is used for checking possibility that some thread is
1549 * calling move_account(). When a thread on CPU-A starts moving pages under
1550 * a memcg, other threads should check memcg->moving_account under
1551 * rcu_read_lock(), like this:
1552 *
1553 * CPU-A CPU-B
1554 * rcu_read_lock()
1555 * memcg->moving_account+1 if (memcg->mocing_account)
1556 * take heavy locks.
1557 * synchronize_rcu() update something.
1558 * rcu_read_unlock()
1559 * start move here.
1560 */
4331f7d3
KH
1561
1562/* for quick checking without looking up memcg */
1563atomic_t memcg_moving __read_mostly;
1564
c0ff4b85 1565static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1566{
4331f7d3 1567 atomic_inc(&memcg_moving);
619d094b 1568 atomic_inc(&memcg->moving_account);
32047e2a
KH
1569 synchronize_rcu();
1570}
1571
c0ff4b85 1572static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1573{
619d094b
KH
1574 /*
1575 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1576 * We check NULL in callee rather than caller.
1577 */
4331f7d3
KH
1578 if (memcg) {
1579 atomic_dec(&memcg_moving);
619d094b 1580 atomic_dec(&memcg->moving_account);
4331f7d3 1581 }
32047e2a 1582}
619d094b 1583
32047e2a
KH
1584/*
1585 * 2 routines for checking "mem" is under move_account() or not.
1586 *
13fd1dd9
AM
1587 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1588 * is used for avoiding races in accounting. If true,
32047e2a
KH
1589 * pc->mem_cgroup may be overwritten.
1590 *
1591 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1592 * under hierarchy of moving cgroups. This is for
1593 * waiting at hith-memory prressure caused by "move".
1594 */
1595
13fd1dd9 1596static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1597{
1598 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1599 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1600}
4b534334 1601
c0ff4b85 1602static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1603{
2bd9bb20
KH
1604 struct mem_cgroup *from;
1605 struct mem_cgroup *to;
4b534334 1606 bool ret = false;
2bd9bb20
KH
1607 /*
1608 * Unlike task_move routines, we access mc.to, mc.from not under
1609 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1610 */
1611 spin_lock(&mc.lock);
1612 from = mc.from;
1613 to = mc.to;
1614 if (!from)
1615 goto unlock;
3e92041d 1616
c0ff4b85
R
1617 ret = mem_cgroup_same_or_subtree(memcg, from)
1618 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1619unlock:
1620 spin_unlock(&mc.lock);
4b534334
KH
1621 return ret;
1622}
1623
c0ff4b85 1624static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1625{
1626 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1627 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1628 DEFINE_WAIT(wait);
1629 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1630 /* moving charge context might have finished. */
1631 if (mc.moving_task)
1632 schedule();
1633 finish_wait(&mc.waitq, &wait);
1634 return true;
1635 }
1636 }
1637 return false;
1638}
1639
312734c0
KH
1640/*
1641 * Take this lock when
1642 * - a code tries to modify page's memcg while it's USED.
1643 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1644 * see mem_cgroup_stolen(), too.
312734c0
KH
1645 */
1646static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1647 unsigned long *flags)
1648{
1649 spin_lock_irqsave(&memcg->move_lock, *flags);
1650}
1651
1652static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1653 unsigned long *flags)
1654{
1655 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1656}
1657
58cf188e 1658#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1659/**
58cf188e 1660 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1661 * @memcg: The memory cgroup that went over limit
1662 * @p: Task that is going to be killed
1663 *
1664 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1665 * enabled
1666 */
1667void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1668{
e222432b 1669 /*
947b3dd1
MH
1670 * protects memcg_name and makes sure that parallel ooms do not
1671 * interleave
e222432b 1672 */
947b3dd1
MH
1673 static DEFINE_SPINLOCK(oom_info_lock);
1674 struct cgroup *task_cgrp;
1675 struct cgroup *mem_cgrp;
e222432b
BS
1676 static char memcg_name[PATH_MAX];
1677 int ret;
58cf188e
SZ
1678 struct mem_cgroup *iter;
1679 unsigned int i;
e222432b 1680
58cf188e 1681 if (!p)
e222432b
BS
1682 return;
1683
947b3dd1 1684 spin_lock(&oom_info_lock);
e222432b
BS
1685 rcu_read_lock();
1686
1687 mem_cgrp = memcg->css.cgroup;
1688 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1689
1690 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1691 if (ret < 0) {
1692 /*
1693 * Unfortunately, we are unable to convert to a useful name
1694 * But we'll still print out the usage information
1695 */
1696 rcu_read_unlock();
1697 goto done;
1698 }
1699 rcu_read_unlock();
1700
d045197f 1701 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1702
1703 rcu_read_lock();
1704 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1705 if (ret < 0) {
1706 rcu_read_unlock();
1707 goto done;
1708 }
1709 rcu_read_unlock();
1710
1711 /*
1712 * Continues from above, so we don't need an KERN_ level
1713 */
d045197f 1714 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1715done:
1716
d045197f 1717 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1718 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1719 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1720 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1721 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1722 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1723 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1724 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1725 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1726 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1727 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1728 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1729
1730 for_each_mem_cgroup_tree(iter, memcg) {
1731 pr_info("Memory cgroup stats");
1732
1733 rcu_read_lock();
1734 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1735 if (!ret)
1736 pr_cont(" for %s", memcg_name);
1737 rcu_read_unlock();
1738 pr_cont(":");
1739
1740 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1741 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1742 continue;
1743 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1744 K(mem_cgroup_read_stat(iter, i)));
1745 }
1746
1747 for (i = 0; i < NR_LRU_LISTS; i++)
1748 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1749 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1750
1751 pr_cont("\n");
1752 }
947b3dd1 1753 spin_unlock(&oom_info_lock);
e222432b
BS
1754}
1755
81d39c20
KH
1756/*
1757 * This function returns the number of memcg under hierarchy tree. Returns
1758 * 1(self count) if no children.
1759 */
c0ff4b85 1760static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1761{
1762 int num = 0;
7d74b06f
KH
1763 struct mem_cgroup *iter;
1764
c0ff4b85 1765 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1766 num++;
81d39c20
KH
1767 return num;
1768}
1769
a63d83f4
DR
1770/*
1771 * Return the memory (and swap, if configured) limit for a memcg.
1772 */
9cbb78bb 1773static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1774{
1775 u64 limit;
a63d83f4 1776
f3e8eb70 1777 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1778
a63d83f4 1779 /*
9a5a8f19 1780 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1781 */
9a5a8f19
MH
1782 if (mem_cgroup_swappiness(memcg)) {
1783 u64 memsw;
1784
1785 limit += total_swap_pages << PAGE_SHIFT;
1786 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1787
1788 /*
1789 * If memsw is finite and limits the amount of swap space
1790 * available to this memcg, return that limit.
1791 */
1792 limit = min(limit, memsw);
1793 }
1794
1795 return limit;
a63d83f4
DR
1796}
1797
19965460
DR
1798static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1799 int order)
9cbb78bb
DR
1800{
1801 struct mem_cgroup *iter;
1802 unsigned long chosen_points = 0;
1803 unsigned long totalpages;
1804 unsigned int points = 0;
1805 struct task_struct *chosen = NULL;
1806
876aafbf 1807 /*
465adcf1
DR
1808 * If current has a pending SIGKILL or is exiting, then automatically
1809 * select it. The goal is to allow it to allocate so that it may
1810 * quickly exit and free its memory.
876aafbf 1811 */
465adcf1 1812 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1813 set_thread_flag(TIF_MEMDIE);
1814 return;
1815 }
1816
1817 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1818 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1819 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1820 struct css_task_iter it;
9cbb78bb
DR
1821 struct task_struct *task;
1822
72ec7029
TH
1823 css_task_iter_start(&iter->css, &it);
1824 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1825 switch (oom_scan_process_thread(task, totalpages, NULL,
1826 false)) {
1827 case OOM_SCAN_SELECT:
1828 if (chosen)
1829 put_task_struct(chosen);
1830 chosen = task;
1831 chosen_points = ULONG_MAX;
1832 get_task_struct(chosen);
1833 /* fall through */
1834 case OOM_SCAN_CONTINUE:
1835 continue;
1836 case OOM_SCAN_ABORT:
72ec7029 1837 css_task_iter_end(&it);
9cbb78bb
DR
1838 mem_cgroup_iter_break(memcg, iter);
1839 if (chosen)
1840 put_task_struct(chosen);
1841 return;
1842 case OOM_SCAN_OK:
1843 break;
1844 };
1845 points = oom_badness(task, memcg, NULL, totalpages);
1846 if (points > chosen_points) {
1847 if (chosen)
1848 put_task_struct(chosen);
1849 chosen = task;
1850 chosen_points = points;
1851 get_task_struct(chosen);
1852 }
1853 }
72ec7029 1854 css_task_iter_end(&it);
9cbb78bb
DR
1855 }
1856
1857 if (!chosen)
1858 return;
1859 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1860 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1861 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1862}
1863
5660048c
JW
1864static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1865 gfp_t gfp_mask,
1866 unsigned long flags)
1867{
1868 unsigned long total = 0;
1869 bool noswap = false;
1870 int loop;
1871
1872 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1873 noswap = true;
1874 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1875 noswap = true;
1876
1877 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1878 if (loop)
1879 drain_all_stock_async(memcg);
1880 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1881 /*
1882 * Allow limit shrinkers, which are triggered directly
1883 * by userspace, to catch signals and stop reclaim
1884 * after minimal progress, regardless of the margin.
1885 */
1886 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1887 break;
1888 if (mem_cgroup_margin(memcg))
1889 break;
1890 /*
1891 * If nothing was reclaimed after two attempts, there
1892 * may be no reclaimable pages in this hierarchy.
1893 */
1894 if (loop && !total)
1895 break;
1896 }
1897 return total;
1898}
1899
4d0c066d
KH
1900/**
1901 * test_mem_cgroup_node_reclaimable
dad7557e 1902 * @memcg: the target memcg
4d0c066d
KH
1903 * @nid: the node ID to be checked.
1904 * @noswap : specify true here if the user wants flle only information.
1905 *
1906 * This function returns whether the specified memcg contains any
1907 * reclaimable pages on a node. Returns true if there are any reclaimable
1908 * pages in the node.
1909 */
c0ff4b85 1910static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1911 int nid, bool noswap)
1912{
c0ff4b85 1913 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1914 return true;
1915 if (noswap || !total_swap_pages)
1916 return false;
c0ff4b85 1917 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1918 return true;
1919 return false;
1920
1921}
bb4cc1a8 1922#if MAX_NUMNODES > 1
889976db
YH
1923
1924/*
1925 * Always updating the nodemask is not very good - even if we have an empty
1926 * list or the wrong list here, we can start from some node and traverse all
1927 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1928 *
1929 */
c0ff4b85 1930static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1931{
1932 int nid;
453a9bf3
KH
1933 /*
1934 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1935 * pagein/pageout changes since the last update.
1936 */
c0ff4b85 1937 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1938 return;
c0ff4b85 1939 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1940 return;
1941
889976db 1942 /* make a nodemask where this memcg uses memory from */
31aaea4a 1943 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1944
31aaea4a 1945 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1946
c0ff4b85
R
1947 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1948 node_clear(nid, memcg->scan_nodes);
889976db 1949 }
453a9bf3 1950
c0ff4b85
R
1951 atomic_set(&memcg->numainfo_events, 0);
1952 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1953}
1954
1955/*
1956 * Selecting a node where we start reclaim from. Because what we need is just
1957 * reducing usage counter, start from anywhere is O,K. Considering
1958 * memory reclaim from current node, there are pros. and cons.
1959 *
1960 * Freeing memory from current node means freeing memory from a node which
1961 * we'll use or we've used. So, it may make LRU bad. And if several threads
1962 * hit limits, it will see a contention on a node. But freeing from remote
1963 * node means more costs for memory reclaim because of memory latency.
1964 *
1965 * Now, we use round-robin. Better algorithm is welcomed.
1966 */
c0ff4b85 1967int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1968{
1969 int node;
1970
c0ff4b85
R
1971 mem_cgroup_may_update_nodemask(memcg);
1972 node = memcg->last_scanned_node;
889976db 1973
c0ff4b85 1974 node = next_node(node, memcg->scan_nodes);
889976db 1975 if (node == MAX_NUMNODES)
c0ff4b85 1976 node = first_node(memcg->scan_nodes);
889976db
YH
1977 /*
1978 * We call this when we hit limit, not when pages are added to LRU.
1979 * No LRU may hold pages because all pages are UNEVICTABLE or
1980 * memcg is too small and all pages are not on LRU. In that case,
1981 * we use curret node.
1982 */
1983 if (unlikely(node == MAX_NUMNODES))
1984 node = numa_node_id();
1985
c0ff4b85 1986 memcg->last_scanned_node = node;
889976db
YH
1987 return node;
1988}
1989
bb4cc1a8
AM
1990/*
1991 * Check all nodes whether it contains reclaimable pages or not.
1992 * For quick scan, we make use of scan_nodes. This will allow us to skip
1993 * unused nodes. But scan_nodes is lazily updated and may not cotain
1994 * enough new information. We need to do double check.
1995 */
1996static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1997{
1998 int nid;
1999
2000 /*
2001 * quick check...making use of scan_node.
2002 * We can skip unused nodes.
2003 */
2004 if (!nodes_empty(memcg->scan_nodes)) {
2005 for (nid = first_node(memcg->scan_nodes);
2006 nid < MAX_NUMNODES;
2007 nid = next_node(nid, memcg->scan_nodes)) {
2008
2009 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2010 return true;
2011 }
2012 }
2013 /*
2014 * Check rest of nodes.
2015 */
2016 for_each_node_state(nid, N_MEMORY) {
2017 if (node_isset(nid, memcg->scan_nodes))
2018 continue;
2019 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2020 return true;
2021 }
2022 return false;
2023}
2024
889976db 2025#else
c0ff4b85 2026int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2027{
2028 return 0;
2029}
4d0c066d 2030
bb4cc1a8
AM
2031static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2032{
2033 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2034}
889976db
YH
2035#endif
2036
0608f43d
AM
2037static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2038 struct zone *zone,
2039 gfp_t gfp_mask,
2040 unsigned long *total_scanned)
2041{
2042 struct mem_cgroup *victim = NULL;
2043 int total = 0;
2044 int loop = 0;
2045 unsigned long excess;
2046 unsigned long nr_scanned;
2047 struct mem_cgroup_reclaim_cookie reclaim = {
2048 .zone = zone,
2049 .priority = 0,
2050 };
2051
2052 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2053
2054 while (1) {
2055 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2056 if (!victim) {
2057 loop++;
2058 if (loop >= 2) {
2059 /*
2060 * If we have not been able to reclaim
2061 * anything, it might because there are
2062 * no reclaimable pages under this hierarchy
2063 */
2064 if (!total)
2065 break;
2066 /*
2067 * We want to do more targeted reclaim.
2068 * excess >> 2 is not to excessive so as to
2069 * reclaim too much, nor too less that we keep
2070 * coming back to reclaim from this cgroup
2071 */
2072 if (total >= (excess >> 2) ||
2073 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2074 break;
2075 }
2076 continue;
2077 }
2078 if (!mem_cgroup_reclaimable(victim, false))
2079 continue;
2080 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2081 zone, &nr_scanned);
2082 *total_scanned += nr_scanned;
2083 if (!res_counter_soft_limit_excess(&root_memcg->res))
2084 break;
6d61ef40 2085 }
0608f43d
AM
2086 mem_cgroup_iter_break(root_memcg, victim);
2087 return total;
6d61ef40
BS
2088}
2089
0056f4e6
JW
2090#ifdef CONFIG_LOCKDEP
2091static struct lockdep_map memcg_oom_lock_dep_map = {
2092 .name = "memcg_oom_lock",
2093};
2094#endif
2095
fb2a6fc5
JW
2096static DEFINE_SPINLOCK(memcg_oom_lock);
2097
867578cb
KH
2098/*
2099 * Check OOM-Killer is already running under our hierarchy.
2100 * If someone is running, return false.
2101 */
fb2a6fc5 2102static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2103{
79dfdacc 2104 struct mem_cgroup *iter, *failed = NULL;
a636b327 2105
fb2a6fc5
JW
2106 spin_lock(&memcg_oom_lock);
2107
9f3a0d09 2108 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2109 if (iter->oom_lock) {
79dfdacc
MH
2110 /*
2111 * this subtree of our hierarchy is already locked
2112 * so we cannot give a lock.
2113 */
79dfdacc 2114 failed = iter;
9f3a0d09
JW
2115 mem_cgroup_iter_break(memcg, iter);
2116 break;
23751be0
JW
2117 } else
2118 iter->oom_lock = true;
7d74b06f 2119 }
867578cb 2120
fb2a6fc5
JW
2121 if (failed) {
2122 /*
2123 * OK, we failed to lock the whole subtree so we have
2124 * to clean up what we set up to the failing subtree
2125 */
2126 for_each_mem_cgroup_tree(iter, memcg) {
2127 if (iter == failed) {
2128 mem_cgroup_iter_break(memcg, iter);
2129 break;
2130 }
2131 iter->oom_lock = false;
79dfdacc 2132 }
0056f4e6
JW
2133 } else
2134 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2135
2136 spin_unlock(&memcg_oom_lock);
2137
2138 return !failed;
a636b327 2139}
0b7f569e 2140
fb2a6fc5 2141static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2142{
7d74b06f
KH
2143 struct mem_cgroup *iter;
2144
fb2a6fc5 2145 spin_lock(&memcg_oom_lock);
0056f4e6 2146 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2147 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2148 iter->oom_lock = false;
fb2a6fc5 2149 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2150}
2151
c0ff4b85 2152static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2153{
2154 struct mem_cgroup *iter;
2155
c0ff4b85 2156 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2157 atomic_inc(&iter->under_oom);
2158}
2159
c0ff4b85 2160static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2161{
2162 struct mem_cgroup *iter;
2163
867578cb
KH
2164 /*
2165 * When a new child is created while the hierarchy is under oom,
2166 * mem_cgroup_oom_lock() may not be called. We have to use
2167 * atomic_add_unless() here.
2168 */
c0ff4b85 2169 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2170 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2171}
2172
867578cb
KH
2173static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2174
dc98df5a 2175struct oom_wait_info {
d79154bb 2176 struct mem_cgroup *memcg;
dc98df5a
KH
2177 wait_queue_t wait;
2178};
2179
2180static int memcg_oom_wake_function(wait_queue_t *wait,
2181 unsigned mode, int sync, void *arg)
2182{
d79154bb
HD
2183 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2184 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2185 struct oom_wait_info *oom_wait_info;
2186
2187 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2188 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2189
dc98df5a 2190 /*
d79154bb 2191 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2192 * Then we can use css_is_ancestor without taking care of RCU.
2193 */
c0ff4b85
R
2194 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2195 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2196 return 0;
dc98df5a
KH
2197 return autoremove_wake_function(wait, mode, sync, arg);
2198}
2199
c0ff4b85 2200static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2201{
3812c8c8 2202 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2203 /* for filtering, pass "memcg" as argument. */
2204 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2205}
2206
c0ff4b85 2207static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2208{
c0ff4b85
R
2209 if (memcg && atomic_read(&memcg->under_oom))
2210 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2211}
2212
3812c8c8 2213static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2214{
3812c8c8
JW
2215 if (!current->memcg_oom.may_oom)
2216 return;
867578cb 2217 /*
49426420
JW
2218 * We are in the middle of the charge context here, so we
2219 * don't want to block when potentially sitting on a callstack
2220 * that holds all kinds of filesystem and mm locks.
2221 *
2222 * Also, the caller may handle a failed allocation gracefully
2223 * (like optional page cache readahead) and so an OOM killer
2224 * invocation might not even be necessary.
2225 *
2226 * That's why we don't do anything here except remember the
2227 * OOM context and then deal with it at the end of the page
2228 * fault when the stack is unwound, the locks are released,
2229 * and when we know whether the fault was overall successful.
867578cb 2230 */
49426420
JW
2231 css_get(&memcg->css);
2232 current->memcg_oom.memcg = memcg;
2233 current->memcg_oom.gfp_mask = mask;
2234 current->memcg_oom.order = order;
3812c8c8
JW
2235}
2236
2237/**
2238 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2239 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2240 *
49426420
JW
2241 * This has to be called at the end of a page fault if the memcg OOM
2242 * handler was enabled.
3812c8c8 2243 *
49426420 2244 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2245 * sleep on a waitqueue until the userspace task resolves the
2246 * situation. Sleeping directly in the charge context with all kinds
2247 * of locks held is not a good idea, instead we remember an OOM state
2248 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2249 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2250 *
2251 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2252 * completed, %false otherwise.
3812c8c8 2253 */
49426420 2254bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2255{
49426420 2256 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2257 struct oom_wait_info owait;
49426420 2258 bool locked;
3812c8c8
JW
2259
2260 /* OOM is global, do not handle */
3812c8c8 2261 if (!memcg)
49426420 2262 return false;
3812c8c8 2263
49426420
JW
2264 if (!handle)
2265 goto cleanup;
3812c8c8
JW
2266
2267 owait.memcg = memcg;
2268 owait.wait.flags = 0;
2269 owait.wait.func = memcg_oom_wake_function;
2270 owait.wait.private = current;
2271 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2272
3812c8c8 2273 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2274 mem_cgroup_mark_under_oom(memcg);
2275
2276 locked = mem_cgroup_oom_trylock(memcg);
2277
2278 if (locked)
2279 mem_cgroup_oom_notify(memcg);
2280
2281 if (locked && !memcg->oom_kill_disable) {
2282 mem_cgroup_unmark_under_oom(memcg);
2283 finish_wait(&memcg_oom_waitq, &owait.wait);
2284 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2285 current->memcg_oom.order);
2286 } else {
3812c8c8 2287 schedule();
49426420
JW
2288 mem_cgroup_unmark_under_oom(memcg);
2289 finish_wait(&memcg_oom_waitq, &owait.wait);
2290 }
2291
2292 if (locked) {
fb2a6fc5
JW
2293 mem_cgroup_oom_unlock(memcg);
2294 /*
2295 * There is no guarantee that an OOM-lock contender
2296 * sees the wakeups triggered by the OOM kill
2297 * uncharges. Wake any sleepers explicitely.
2298 */
2299 memcg_oom_recover(memcg);
2300 }
49426420
JW
2301cleanup:
2302 current->memcg_oom.memcg = NULL;
3812c8c8 2303 css_put(&memcg->css);
867578cb 2304 return true;
0b7f569e
KH
2305}
2306
d69b042f
BS
2307/*
2308 * Currently used to update mapped file statistics, but the routine can be
2309 * generalized to update other statistics as well.
32047e2a
KH
2310 *
2311 * Notes: Race condition
2312 *
2313 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2314 * it tends to be costly. But considering some conditions, we doesn't need
2315 * to do so _always_.
2316 *
2317 * Considering "charge", lock_page_cgroup() is not required because all
2318 * file-stat operations happen after a page is attached to radix-tree. There
2319 * are no race with "charge".
2320 *
2321 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2322 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2323 * if there are race with "uncharge". Statistics itself is properly handled
2324 * by flags.
2325 *
2326 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2327 * small, we check mm->moving_account and detect there are possibility of race
2328 * If there is, we take a lock.
d69b042f 2329 */
26174efd 2330
89c06bd5
KH
2331void __mem_cgroup_begin_update_page_stat(struct page *page,
2332 bool *locked, unsigned long *flags)
2333{
2334 struct mem_cgroup *memcg;
2335 struct page_cgroup *pc;
2336
2337 pc = lookup_page_cgroup(page);
2338again:
2339 memcg = pc->mem_cgroup;
2340 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2341 return;
2342 /*
2343 * If this memory cgroup is not under account moving, we don't
da92c47d 2344 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2345 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2346 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2347 */
13fd1dd9 2348 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2349 return;
2350
2351 move_lock_mem_cgroup(memcg, flags);
2352 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2353 move_unlock_mem_cgroup(memcg, flags);
2354 goto again;
2355 }
2356 *locked = true;
2357}
2358
2359void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2360{
2361 struct page_cgroup *pc = lookup_page_cgroup(page);
2362
2363 /*
2364 * It's guaranteed that pc->mem_cgroup never changes while
2365 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2366 * should take move_lock_mem_cgroup().
89c06bd5
KH
2367 */
2368 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2369}
2370
2a7106f2 2371void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2372 enum mem_cgroup_stat_index idx, int val)
d69b042f 2373{
c0ff4b85 2374 struct mem_cgroup *memcg;
32047e2a 2375 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2376 unsigned long uninitialized_var(flags);
d69b042f 2377
cfa44946 2378 if (mem_cgroup_disabled())
d69b042f 2379 return;
89c06bd5 2380
658b72c5 2381 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2382 memcg = pc->mem_cgroup;
2383 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2384 return;
26174efd 2385
c0ff4b85 2386 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2387}
26174efd 2388
cdec2e42
KH
2389/*
2390 * size of first charge trial. "32" comes from vmscan.c's magic value.
2391 * TODO: maybe necessary to use big numbers in big irons.
2392 */
7ec99d62 2393#define CHARGE_BATCH 32U
cdec2e42
KH
2394struct memcg_stock_pcp {
2395 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2396 unsigned int nr_pages;
cdec2e42 2397 struct work_struct work;
26fe6168 2398 unsigned long flags;
a0db00fc 2399#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2400};
2401static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2402static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2403
a0956d54
SS
2404/**
2405 * consume_stock: Try to consume stocked charge on this cpu.
2406 * @memcg: memcg to consume from.
2407 * @nr_pages: how many pages to charge.
2408 *
2409 * The charges will only happen if @memcg matches the current cpu's memcg
2410 * stock, and at least @nr_pages are available in that stock. Failure to
2411 * service an allocation will refill the stock.
2412 *
2413 * returns true if successful, false otherwise.
cdec2e42 2414 */
a0956d54 2415static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2416{
2417 struct memcg_stock_pcp *stock;
2418 bool ret = true;
2419
a0956d54
SS
2420 if (nr_pages > CHARGE_BATCH)
2421 return false;
2422
cdec2e42 2423 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2424 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2425 stock->nr_pages -= nr_pages;
cdec2e42
KH
2426 else /* need to call res_counter_charge */
2427 ret = false;
2428 put_cpu_var(memcg_stock);
2429 return ret;
2430}
2431
2432/*
2433 * Returns stocks cached in percpu to res_counter and reset cached information.
2434 */
2435static void drain_stock(struct memcg_stock_pcp *stock)
2436{
2437 struct mem_cgroup *old = stock->cached;
2438
11c9ea4e
JW
2439 if (stock->nr_pages) {
2440 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2441
2442 res_counter_uncharge(&old->res, bytes);
cdec2e42 2443 if (do_swap_account)
11c9ea4e
JW
2444 res_counter_uncharge(&old->memsw, bytes);
2445 stock->nr_pages = 0;
cdec2e42
KH
2446 }
2447 stock->cached = NULL;
cdec2e42
KH
2448}
2449
2450/*
2451 * This must be called under preempt disabled or must be called by
2452 * a thread which is pinned to local cpu.
2453 */
2454static void drain_local_stock(struct work_struct *dummy)
2455{
2456 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2457 drain_stock(stock);
26fe6168 2458 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2459}
2460
e4777496
MH
2461static void __init memcg_stock_init(void)
2462{
2463 int cpu;
2464
2465 for_each_possible_cpu(cpu) {
2466 struct memcg_stock_pcp *stock =
2467 &per_cpu(memcg_stock, cpu);
2468 INIT_WORK(&stock->work, drain_local_stock);
2469 }
2470}
2471
cdec2e42
KH
2472/*
2473 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2474 * This will be consumed by consume_stock() function, later.
cdec2e42 2475 */
c0ff4b85 2476static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2477{
2478 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2479
c0ff4b85 2480 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2481 drain_stock(stock);
c0ff4b85 2482 stock->cached = memcg;
cdec2e42 2483 }
11c9ea4e 2484 stock->nr_pages += nr_pages;
cdec2e42
KH
2485 put_cpu_var(memcg_stock);
2486}
2487
2488/*
c0ff4b85 2489 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2490 * of the hierarchy under it. sync flag says whether we should block
2491 * until the work is done.
cdec2e42 2492 */
c0ff4b85 2493static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2494{
26fe6168 2495 int cpu, curcpu;
d38144b7 2496
cdec2e42 2497 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2498 get_online_cpus();
5af12d0e 2499 curcpu = get_cpu();
cdec2e42
KH
2500 for_each_online_cpu(cpu) {
2501 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2502 struct mem_cgroup *memcg;
26fe6168 2503
c0ff4b85
R
2504 memcg = stock->cached;
2505 if (!memcg || !stock->nr_pages)
26fe6168 2506 continue;
c0ff4b85 2507 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2508 continue;
d1a05b69
MH
2509 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2510 if (cpu == curcpu)
2511 drain_local_stock(&stock->work);
2512 else
2513 schedule_work_on(cpu, &stock->work);
2514 }
cdec2e42 2515 }
5af12d0e 2516 put_cpu();
d38144b7
MH
2517
2518 if (!sync)
2519 goto out;
2520
2521 for_each_online_cpu(cpu) {
2522 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2523 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2524 flush_work(&stock->work);
2525 }
2526out:
f894ffa8 2527 put_online_cpus();
d38144b7
MH
2528}
2529
2530/*
2531 * Tries to drain stocked charges in other cpus. This function is asynchronous
2532 * and just put a work per cpu for draining localy on each cpu. Caller can
2533 * expects some charges will be back to res_counter later but cannot wait for
2534 * it.
2535 */
c0ff4b85 2536static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2537{
9f50fad6
MH
2538 /*
2539 * If someone calls draining, avoid adding more kworker runs.
2540 */
2541 if (!mutex_trylock(&percpu_charge_mutex))
2542 return;
c0ff4b85 2543 drain_all_stock(root_memcg, false);
9f50fad6 2544 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2545}
2546
2547/* This is a synchronous drain interface. */
c0ff4b85 2548static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2549{
2550 /* called when force_empty is called */
9f50fad6 2551 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2552 drain_all_stock(root_memcg, true);
9f50fad6 2553 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2554}
2555
711d3d2c
KH
2556/*
2557 * This function drains percpu counter value from DEAD cpu and
2558 * move it to local cpu. Note that this function can be preempted.
2559 */
c0ff4b85 2560static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2561{
2562 int i;
2563
c0ff4b85 2564 spin_lock(&memcg->pcp_counter_lock);
6104621d 2565 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2566 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2567
c0ff4b85
R
2568 per_cpu(memcg->stat->count[i], cpu) = 0;
2569 memcg->nocpu_base.count[i] += x;
711d3d2c 2570 }
e9f8974f 2571 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2572 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2573
c0ff4b85
R
2574 per_cpu(memcg->stat->events[i], cpu) = 0;
2575 memcg->nocpu_base.events[i] += x;
e9f8974f 2576 }
c0ff4b85 2577 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2578}
2579
0db0628d 2580static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2581 unsigned long action,
2582 void *hcpu)
2583{
2584 int cpu = (unsigned long)hcpu;
2585 struct memcg_stock_pcp *stock;
711d3d2c 2586 struct mem_cgroup *iter;
cdec2e42 2587
619d094b 2588 if (action == CPU_ONLINE)
1489ebad 2589 return NOTIFY_OK;
1489ebad 2590
d833049b 2591 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2592 return NOTIFY_OK;
711d3d2c 2593
9f3a0d09 2594 for_each_mem_cgroup(iter)
711d3d2c
KH
2595 mem_cgroup_drain_pcp_counter(iter, cpu);
2596
cdec2e42
KH
2597 stock = &per_cpu(memcg_stock, cpu);
2598 drain_stock(stock);
2599 return NOTIFY_OK;
2600}
2601
4b534334
KH
2602
2603/* See __mem_cgroup_try_charge() for details */
2604enum {
2605 CHARGE_OK, /* success */
2606 CHARGE_RETRY, /* need to retry but retry is not bad */
2607 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2608 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2609};
2610
c0ff4b85 2611static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2612 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2613 bool invoke_oom)
4b534334 2614{
7ec99d62 2615 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2616 struct mem_cgroup *mem_over_limit;
2617 struct res_counter *fail_res;
2618 unsigned long flags = 0;
2619 int ret;
2620
c0ff4b85 2621 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2622
2623 if (likely(!ret)) {
2624 if (!do_swap_account)
2625 return CHARGE_OK;
c0ff4b85 2626 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2627 if (likely(!ret))
2628 return CHARGE_OK;
2629
c0ff4b85 2630 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2631 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2632 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2633 } else
2634 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2635 /*
9221edb7
JW
2636 * Never reclaim on behalf of optional batching, retry with a
2637 * single page instead.
2638 */
4c9c5359 2639 if (nr_pages > min_pages)
4b534334
KH
2640 return CHARGE_RETRY;
2641
2642 if (!(gfp_mask & __GFP_WAIT))
2643 return CHARGE_WOULDBLOCK;
2644
4c9c5359
SS
2645 if (gfp_mask & __GFP_NORETRY)
2646 return CHARGE_NOMEM;
2647
5660048c 2648 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2649 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2650 return CHARGE_RETRY;
4b534334 2651 /*
19942822
JW
2652 * Even though the limit is exceeded at this point, reclaim
2653 * may have been able to free some pages. Retry the charge
2654 * before killing the task.
2655 *
2656 * Only for regular pages, though: huge pages are rather
2657 * unlikely to succeed so close to the limit, and we fall back
2658 * to regular pages anyway in case of failure.
4b534334 2659 */
4c9c5359 2660 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2661 return CHARGE_RETRY;
2662
2663 /*
2664 * At task move, charge accounts can be doubly counted. So, it's
2665 * better to wait until the end of task_move if something is going on.
2666 */
2667 if (mem_cgroup_wait_acct_move(mem_over_limit))
2668 return CHARGE_RETRY;
2669
3812c8c8
JW
2670 if (invoke_oom)
2671 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2672
3812c8c8 2673 return CHARGE_NOMEM;
4b534334
KH
2674}
2675
f817ed48 2676/*
38c5d72f
KH
2677 * __mem_cgroup_try_charge() does
2678 * 1. detect memcg to be charged against from passed *mm and *ptr,
2679 * 2. update res_counter
2680 * 3. call memory reclaim if necessary.
2681 *
2682 * In some special case, if the task is fatal, fatal_signal_pending() or
2683 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2684 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2685 * as possible without any hazards. 2: all pages should have a valid
2686 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2687 * pointer, that is treated as a charge to root_mem_cgroup.
2688 *
2689 * So __mem_cgroup_try_charge() will return
2690 * 0 ... on success, filling *ptr with a valid memcg pointer.
2691 * -ENOMEM ... charge failure because of resource limits.
2692 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2693 *
2694 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2695 * the oom-killer can be invoked.
8a9f3ccd 2696 */
f817ed48 2697static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2698 gfp_t gfp_mask,
7ec99d62 2699 unsigned int nr_pages,
c0ff4b85 2700 struct mem_cgroup **ptr,
7ec99d62 2701 bool oom)
8a9f3ccd 2702{
7ec99d62 2703 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2704 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2705 struct mem_cgroup *memcg = NULL;
4b534334 2706 int ret;
a636b327 2707
867578cb
KH
2708 /*
2709 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2710 * in system level. So, allow to go ahead dying process in addition to
2711 * MEMDIE process.
2712 */
2713 if (unlikely(test_thread_flag(TIF_MEMDIE)
2714 || fatal_signal_pending(current)))
2715 goto bypass;
a636b327 2716
49426420 2717 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2718 goto nomem;
49426420 2719
a0d8b00a
JW
2720 if (gfp_mask & __GFP_NOFAIL)
2721 oom = false;
2722
8a9f3ccd 2723 /*
3be91277
HD
2724 * We always charge the cgroup the mm_struct belongs to.
2725 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2726 * thread group leader migrates. It's possible that mm is not
24467cac 2727 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2728 */
c0ff4b85 2729 if (!*ptr && !mm)
38c5d72f 2730 *ptr = root_mem_cgroup;
f75ca962 2731again:
c0ff4b85
R
2732 if (*ptr) { /* css should be a valid one */
2733 memcg = *ptr;
c0ff4b85 2734 if (mem_cgroup_is_root(memcg))
f75ca962 2735 goto done;
a0956d54 2736 if (consume_stock(memcg, nr_pages))
f75ca962 2737 goto done;
c0ff4b85 2738 css_get(&memcg->css);
4b534334 2739 } else {
f75ca962 2740 struct task_struct *p;
54595fe2 2741
f75ca962
KH
2742 rcu_read_lock();
2743 p = rcu_dereference(mm->owner);
f75ca962 2744 /*
ebb76ce1 2745 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2746 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2747 * race with swapoff. Then, we have small risk of mis-accouning.
2748 * But such kind of mis-account by race always happens because
2749 * we don't have cgroup_mutex(). It's overkill and we allo that
2750 * small race, here.
2751 * (*) swapoff at el will charge against mm-struct not against
2752 * task-struct. So, mm->owner can be NULL.
f75ca962 2753 */
c0ff4b85 2754 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2755 if (!memcg)
2756 memcg = root_mem_cgroup;
2757 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2758 rcu_read_unlock();
2759 goto done;
2760 }
a0956d54 2761 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2762 /*
2763 * It seems dagerous to access memcg without css_get().
2764 * But considering how consume_stok works, it's not
2765 * necessary. If consume_stock success, some charges
2766 * from this memcg are cached on this cpu. So, we
2767 * don't need to call css_get()/css_tryget() before
2768 * calling consume_stock().
2769 */
2770 rcu_read_unlock();
2771 goto done;
2772 }
2773 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2774 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2775 rcu_read_unlock();
2776 goto again;
2777 }
2778 rcu_read_unlock();
2779 }
8a9f3ccd 2780
4b534334 2781 do {
3812c8c8 2782 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2783
4b534334 2784 /* If killed, bypass charge */
f75ca962 2785 if (fatal_signal_pending(current)) {
c0ff4b85 2786 css_put(&memcg->css);
4b534334 2787 goto bypass;
f75ca962 2788 }
6d61ef40 2789
3812c8c8
JW
2790 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2791 nr_pages, invoke_oom);
4b534334
KH
2792 switch (ret) {
2793 case CHARGE_OK:
2794 break;
2795 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2796 batch = nr_pages;
c0ff4b85
R
2797 css_put(&memcg->css);
2798 memcg = NULL;
f75ca962 2799 goto again;
4b534334 2800 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2801 css_put(&memcg->css);
4b534334
KH
2802 goto nomem;
2803 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2804 if (!oom || invoke_oom) {
c0ff4b85 2805 css_put(&memcg->css);
867578cb 2806 goto nomem;
f75ca962 2807 }
4b534334
KH
2808 nr_oom_retries--;
2809 break;
66e1707b 2810 }
4b534334
KH
2811 } while (ret != CHARGE_OK);
2812
7ec99d62 2813 if (batch > nr_pages)
c0ff4b85
R
2814 refill_stock(memcg, batch - nr_pages);
2815 css_put(&memcg->css);
0c3e73e8 2816done:
c0ff4b85 2817 *ptr = memcg;
7a81b88c
KH
2818 return 0;
2819nomem:
3168ecbe
JW
2820 if (!(gfp_mask & __GFP_NOFAIL)) {
2821 *ptr = NULL;
2822 return -ENOMEM;
2823 }
867578cb 2824bypass:
38c5d72f
KH
2825 *ptr = root_mem_cgroup;
2826 return -EINTR;
7a81b88c 2827}
8a9f3ccd 2828
a3032a2c
DN
2829/*
2830 * Somemtimes we have to undo a charge we got by try_charge().
2831 * This function is for that and do uncharge, put css's refcnt.
2832 * gotten by try_charge().
2833 */
c0ff4b85 2834static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2835 unsigned int nr_pages)
a3032a2c 2836{
c0ff4b85 2837 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2838 unsigned long bytes = nr_pages * PAGE_SIZE;
2839
c0ff4b85 2840 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2841 if (do_swap_account)
c0ff4b85 2842 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2843 }
854ffa8d
DN
2844}
2845
d01dd17f
KH
2846/*
2847 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2848 * This is useful when moving usage to parent cgroup.
2849 */
2850static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2851 unsigned int nr_pages)
2852{
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
2855 if (mem_cgroup_is_root(memcg))
2856 return;
2857
2858 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2859 if (do_swap_account)
2860 res_counter_uncharge_until(&memcg->memsw,
2861 memcg->memsw.parent, bytes);
2862}
2863
a3b2d692
KH
2864/*
2865 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2866 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2867 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2868 * called against removed memcg.)
a3b2d692
KH
2869 */
2870static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2871{
a3b2d692
KH
2872 /* ID 0 is unused ID */
2873 if (!id)
2874 return NULL;
34c00c31 2875 return mem_cgroup_from_id(id);
a3b2d692
KH
2876}
2877
e42d9d5d 2878struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2879{
c0ff4b85 2880 struct mem_cgroup *memcg = NULL;
3c776e64 2881 struct page_cgroup *pc;
a3b2d692 2882 unsigned short id;
b5a84319
KH
2883 swp_entry_t ent;
2884
309381fe 2885 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2886
3c776e64 2887 pc = lookup_page_cgroup(page);
c0bd3f63 2888 lock_page_cgroup(pc);
a3b2d692 2889 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2890 memcg = pc->mem_cgroup;
2891 if (memcg && !css_tryget(&memcg->css))
2892 memcg = NULL;
e42d9d5d 2893 } else if (PageSwapCache(page)) {
3c776e64 2894 ent.val = page_private(page);
9fb4b7cc 2895 id = lookup_swap_cgroup_id(ent);
a3b2d692 2896 rcu_read_lock();
c0ff4b85
R
2897 memcg = mem_cgroup_lookup(id);
2898 if (memcg && !css_tryget(&memcg->css))
2899 memcg = NULL;
a3b2d692 2900 rcu_read_unlock();
3c776e64 2901 }
c0bd3f63 2902 unlock_page_cgroup(pc);
c0ff4b85 2903 return memcg;
b5a84319
KH
2904}
2905
c0ff4b85 2906static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2907 struct page *page,
7ec99d62 2908 unsigned int nr_pages,
9ce70c02
HD
2909 enum charge_type ctype,
2910 bool lrucare)
7a81b88c 2911{
ce587e65 2912 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2913 struct zone *uninitialized_var(zone);
fa9add64 2914 struct lruvec *lruvec;
9ce70c02 2915 bool was_on_lru = false;
b2402857 2916 bool anon;
9ce70c02 2917
ca3e0214 2918 lock_page_cgroup(pc);
309381fe 2919 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2920 /*
2921 * we don't need page_cgroup_lock about tail pages, becase they are not
2922 * accessed by any other context at this point.
2923 */
9ce70c02
HD
2924
2925 /*
2926 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2927 * may already be on some other mem_cgroup's LRU. Take care of it.
2928 */
2929 if (lrucare) {
2930 zone = page_zone(page);
2931 spin_lock_irq(&zone->lru_lock);
2932 if (PageLRU(page)) {
fa9add64 2933 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2934 ClearPageLRU(page);
fa9add64 2935 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2936 was_on_lru = true;
2937 }
2938 }
2939
c0ff4b85 2940 pc->mem_cgroup = memcg;
261fb61a
KH
2941 /*
2942 * We access a page_cgroup asynchronously without lock_page_cgroup().
2943 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2944 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2945 * before USED bit, we need memory barrier here.
2946 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2947 */
08e552c6 2948 smp_wmb();
b2402857 2949 SetPageCgroupUsed(pc);
3be91277 2950
9ce70c02
HD
2951 if (lrucare) {
2952 if (was_on_lru) {
fa9add64 2953 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2954 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2955 SetPageLRU(page);
fa9add64 2956 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2957 }
2958 spin_unlock_irq(&zone->lru_lock);
2959 }
2960
41326c17 2961 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2962 anon = true;
2963 else
2964 anon = false;
2965
b070e65c 2966 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2967 unlock_page_cgroup(pc);
9ce70c02 2968
430e4863 2969 /*
bb4cc1a8
AM
2970 * "charge_statistics" updated event counter. Then, check it.
2971 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2972 * if they exceeds softlimit.
430e4863 2973 */
c0ff4b85 2974 memcg_check_events(memcg, page);
7a81b88c 2975}
66e1707b 2976
7cf27982
GC
2977static DEFINE_MUTEX(set_limit_mutex);
2978
7ae1e1d0
GC
2979#ifdef CONFIG_MEMCG_KMEM
2980static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2981{
2982 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2983 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2984}
2985
1f458cbf
GC
2986/*
2987 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2988 * in the memcg_cache_params struct.
2989 */
2990static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2991{
2992 struct kmem_cache *cachep;
2993
2994 VM_BUG_ON(p->is_root_cache);
2995 cachep = p->root_cache;
7a67d7ab 2996 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2997}
2998
749c5415 2999#ifdef CONFIG_SLABINFO
2da8ca82 3000static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3001{
2da8ca82 3002 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3003 struct memcg_cache_params *params;
3004
3005 if (!memcg_can_account_kmem(memcg))
3006 return -EIO;
3007
3008 print_slabinfo_header(m);
3009
3010 mutex_lock(&memcg->slab_caches_mutex);
3011 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3012 cache_show(memcg_params_to_cache(params), m);
3013 mutex_unlock(&memcg->slab_caches_mutex);
3014
3015 return 0;
3016}
3017#endif
3018
7ae1e1d0
GC
3019static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3020{
3021 struct res_counter *fail_res;
3022 struct mem_cgroup *_memcg;
3023 int ret = 0;
7ae1e1d0
GC
3024
3025 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3026 if (ret)
3027 return ret;
3028
7ae1e1d0
GC
3029 _memcg = memcg;
3030 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3031 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3032
3033 if (ret == -EINTR) {
3034 /*
3035 * __mem_cgroup_try_charge() chosed to bypass to root due to
3036 * OOM kill or fatal signal. Since our only options are to
3037 * either fail the allocation or charge it to this cgroup, do
3038 * it as a temporary condition. But we can't fail. From a
3039 * kmem/slab perspective, the cache has already been selected,
3040 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3041 * our minds.
3042 *
3043 * This condition will only trigger if the task entered
3044 * memcg_charge_kmem in a sane state, but was OOM-killed during
3045 * __mem_cgroup_try_charge() above. Tasks that were already
3046 * dying when the allocation triggers should have been already
3047 * directed to the root cgroup in memcontrol.h
3048 */
3049 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3050 if (do_swap_account)
3051 res_counter_charge_nofail(&memcg->memsw, size,
3052 &fail_res);
3053 ret = 0;
3054 } else if (ret)
3055 res_counter_uncharge(&memcg->kmem, size);
3056
3057 return ret;
3058}
3059
3060static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3061{
7ae1e1d0
GC
3062 res_counter_uncharge(&memcg->res, size);
3063 if (do_swap_account)
3064 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3065
3066 /* Not down to 0 */
3067 if (res_counter_uncharge(&memcg->kmem, size))
3068 return;
3069
10d5ebf4
LZ
3070 /*
3071 * Releases a reference taken in kmem_cgroup_css_offline in case
3072 * this last uncharge is racing with the offlining code or it is
3073 * outliving the memcg existence.
3074 *
3075 * The memory barrier imposed by test&clear is paired with the
3076 * explicit one in memcg_kmem_mark_dead().
3077 */
7de37682 3078 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3079 css_put(&memcg->css);
7ae1e1d0
GC
3080}
3081
2633d7a0
GC
3082/*
3083 * helper for acessing a memcg's index. It will be used as an index in the
3084 * child cache array in kmem_cache, and also to derive its name. This function
3085 * will return -1 when this is not a kmem-limited memcg.
3086 */
3087int memcg_cache_id(struct mem_cgroup *memcg)
3088{
3089 return memcg ? memcg->kmemcg_id : -1;
3090}
3091
55007d84
GC
3092/*
3093 * This ends up being protected by the set_limit mutex, during normal
3094 * operation, because that is its main call site.
3095 *
3096 * But when we create a new cache, we can call this as well if its parent
3097 * is kmem-limited. That will have to hold set_limit_mutex as well.
3098 */
2753b35b 3099static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
55007d84
GC
3100{
3101 int num, ret;
3102
3103 num = ida_simple_get(&kmem_limited_groups,
3104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3105 if (num < 0)
3106 return num;
55007d84
GC
3107
3108 ret = memcg_update_all_caches(num+1);
3109 if (ret) {
3110 ida_simple_remove(&kmem_limited_groups, num);
55007d84
GC
3111 return ret;
3112 }
3113
3114 memcg->kmemcg_id = num;
3115 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3116 mutex_init(&memcg->slab_caches_mutex);
3117 return 0;
3118}
3119
3120static size_t memcg_caches_array_size(int num_groups)
3121{
3122 ssize_t size;
3123 if (num_groups <= 0)
3124 return 0;
3125
3126 size = 2 * num_groups;
3127 if (size < MEMCG_CACHES_MIN_SIZE)
3128 size = MEMCG_CACHES_MIN_SIZE;
3129 else if (size > MEMCG_CACHES_MAX_SIZE)
3130 size = MEMCG_CACHES_MAX_SIZE;
3131
3132 return size;
3133}
3134
3135/*
3136 * We should update the current array size iff all caches updates succeed. This
3137 * can only be done from the slab side. The slab mutex needs to be held when
3138 * calling this.
3139 */
3140void memcg_update_array_size(int num)
3141{
3142 if (num > memcg_limited_groups_array_size)
3143 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3144}
3145
15cf17d2
KK
3146static void kmem_cache_destroy_work_func(struct work_struct *w);
3147
55007d84
GC
3148int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3149{
3150 struct memcg_cache_params *cur_params = s->memcg_params;
3151
f35c3a8e 3152 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3153
3154 if (num_groups > memcg_limited_groups_array_size) {
3155 int i;
f8570263 3156 struct memcg_cache_params *new_params;
55007d84
GC
3157 ssize_t size = memcg_caches_array_size(num_groups);
3158
3159 size *= sizeof(void *);
90c7a79c 3160 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3161
f8570263
VD
3162 new_params = kzalloc(size, GFP_KERNEL);
3163 if (!new_params)
55007d84 3164 return -ENOMEM;
55007d84 3165
f8570263 3166 new_params->is_root_cache = true;
55007d84
GC
3167
3168 /*
3169 * There is the chance it will be bigger than
3170 * memcg_limited_groups_array_size, if we failed an allocation
3171 * in a cache, in which case all caches updated before it, will
3172 * have a bigger array.
3173 *
3174 * But if that is the case, the data after
3175 * memcg_limited_groups_array_size is certainly unused
3176 */
3177 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3178 if (!cur_params->memcg_caches[i])
3179 continue;
f8570263 3180 new_params->memcg_caches[i] =
55007d84
GC
3181 cur_params->memcg_caches[i];
3182 }
3183
3184 /*
3185 * Ideally, we would wait until all caches succeed, and only
3186 * then free the old one. But this is not worth the extra
3187 * pointer per-cache we'd have to have for this.
3188 *
3189 * It is not a big deal if some caches are left with a size
3190 * bigger than the others. And all updates will reset this
3191 * anyway.
3192 */
f8570263
VD
3193 rcu_assign_pointer(s->memcg_params, new_params);
3194 if (cur_params)
3195 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3196 }
3197 return 0;
3198}
3199
363a044f
VD
3200int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3201 struct kmem_cache *root_cache)
2633d7a0 3202{
90c7a79c 3203 size_t size;
2633d7a0
GC
3204
3205 if (!memcg_kmem_enabled())
3206 return 0;
3207
90c7a79c
AV
3208 if (!memcg) {
3209 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3210 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3211 } else
3212 size = sizeof(struct memcg_cache_params);
55007d84 3213
2633d7a0
GC
3214 s->memcg_params = kzalloc(size, GFP_KERNEL);
3215 if (!s->memcg_params)
3216 return -ENOMEM;
3217
943a451a 3218 if (memcg) {
2633d7a0 3219 s->memcg_params->memcg = memcg;
943a451a 3220 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3221 INIT_WORK(&s->memcg_params->destroy,
3222 kmem_cache_destroy_work_func);
4ba902b5
GC
3223 } else
3224 s->memcg_params->is_root_cache = true;
3225
2633d7a0
GC
3226 return 0;
3227}
3228
363a044f
VD
3229void memcg_free_cache_params(struct kmem_cache *s)
3230{
3231 kfree(s->memcg_params);
3232}
3233
1aa13254 3234void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3235{
d7f25f8a
GC
3236 struct kmem_cache *root;
3237 struct mem_cgroup *memcg;
3238 int id;
3239
1aa13254
VD
3240 if (is_root_cache(s))
3241 return;
3242
2edefe11
VD
3243 /*
3244 * Holding the slab_mutex assures nobody will touch the memcg_caches
3245 * array while we are modifying it.
3246 */
3247 lockdep_assert_held(&slab_mutex);
3248
1aa13254
VD
3249 root = s->memcg_params->root_cache;
3250 memcg = s->memcg_params->memcg;
3251 id = memcg_cache_id(memcg);
3252
3253 css_get(&memcg->css);
3254
1aa13254 3255
d7f25f8a 3256 /*
959c8963
VD
3257 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3258 * barrier here to ensure nobody will see the kmem_cache partially
3259 * initialized.
d7f25f8a 3260 */
959c8963
VD
3261 smp_wmb();
3262
96403da2
VD
3263 /*
3264 * Initialize the pointer to this cache in its parent's memcg_params
3265 * before adding it to the memcg_slab_caches list, otherwise we can
3266 * fail to convert memcg_params_to_cache() while traversing the list.
3267 */
2edefe11 3268 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3269 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3270
3271 mutex_lock(&memcg->slab_caches_mutex);
3272 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3273 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3274}
d7f25f8a 3275
1aa13254
VD
3276void memcg_unregister_cache(struct kmem_cache *s)
3277{
3278 struct kmem_cache *root;
3279 struct mem_cgroup *memcg;
3280 int id;
3281
3282 if (is_root_cache(s))
3283 return;
d7f25f8a 3284
2edefe11
VD
3285 /*
3286 * Holding the slab_mutex assures nobody will touch the memcg_caches
3287 * array while we are modifying it.
3288 */
3289 lockdep_assert_held(&slab_mutex);
3290
d7f25f8a 3291 root = s->memcg_params->root_cache;
96403da2
VD
3292 memcg = s->memcg_params->memcg;
3293 id = memcg_cache_id(memcg);
d7f25f8a
GC
3294
3295 mutex_lock(&memcg->slab_caches_mutex);
3296 list_del(&s->memcg_params->list);
3297 mutex_unlock(&memcg->slab_caches_mutex);
3298
96403da2
VD
3299 /*
3300 * Clear the pointer to this cache in its parent's memcg_params only
3301 * after removing it from the memcg_slab_caches list, otherwise we can
3302 * fail to convert memcg_params_to_cache() while traversing the list.
3303 */
2edefe11 3304 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3305 root->memcg_params->memcg_caches[id] = NULL;
3306
20f05310 3307 css_put(&memcg->css);
2633d7a0
GC
3308}
3309
0e9d92f2
GC
3310/*
3311 * During the creation a new cache, we need to disable our accounting mechanism
3312 * altogether. This is true even if we are not creating, but rather just
3313 * enqueing new caches to be created.
3314 *
3315 * This is because that process will trigger allocations; some visible, like
3316 * explicit kmallocs to auxiliary data structures, name strings and internal
3317 * cache structures; some well concealed, like INIT_WORK() that can allocate
3318 * objects during debug.
3319 *
3320 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3321 * to it. This may not be a bounded recursion: since the first cache creation
3322 * failed to complete (waiting on the allocation), we'll just try to create the
3323 * cache again, failing at the same point.
3324 *
3325 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3326 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3327 * inside the following two functions.
3328 */
3329static inline void memcg_stop_kmem_account(void)
3330{
3331 VM_BUG_ON(!current->mm);
3332 current->memcg_kmem_skip_account++;
3333}
3334
3335static inline void memcg_resume_kmem_account(void)
3336{
3337 VM_BUG_ON(!current->mm);
3338 current->memcg_kmem_skip_account--;
3339}
3340
1f458cbf
GC
3341static void kmem_cache_destroy_work_func(struct work_struct *w)
3342{
3343 struct kmem_cache *cachep;
3344 struct memcg_cache_params *p;
3345
3346 p = container_of(w, struct memcg_cache_params, destroy);
3347
3348 cachep = memcg_params_to_cache(p);
3349
22933152
GC
3350 /*
3351 * If we get down to 0 after shrink, we could delete right away.
3352 * However, memcg_release_pages() already puts us back in the workqueue
3353 * in that case. If we proceed deleting, we'll get a dangling
3354 * reference, and removing the object from the workqueue in that case
3355 * is unnecessary complication. We are not a fast path.
3356 *
3357 * Note that this case is fundamentally different from racing with
3358 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3359 * kmem_cache_shrink, not only we would be reinserting a dead cache
3360 * into the queue, but doing so from inside the worker racing to
3361 * destroy it.
3362 *
3363 * So if we aren't down to zero, we'll just schedule a worker and try
3364 * again
3365 */
3366 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3367 kmem_cache_shrink(cachep);
3368 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3369 return;
3370 } else
1f458cbf
GC
3371 kmem_cache_destroy(cachep);
3372}
3373
3374void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3375{
3376 if (!cachep->memcg_params->dead)
3377 return;
3378
22933152
GC
3379 /*
3380 * There are many ways in which we can get here.
3381 *
3382 * We can get to a memory-pressure situation while the delayed work is
3383 * still pending to run. The vmscan shrinkers can then release all
3384 * cache memory and get us to destruction. If this is the case, we'll
3385 * be executed twice, which is a bug (the second time will execute over
3386 * bogus data). In this case, cancelling the work should be fine.
3387 *
3388 * But we can also get here from the worker itself, if
3389 * kmem_cache_shrink is enough to shake all the remaining objects and
3390 * get the page count to 0. In this case, we'll deadlock if we try to
3391 * cancel the work (the worker runs with an internal lock held, which
3392 * is the same lock we would hold for cancel_work_sync().)
3393 *
3394 * Since we can't possibly know who got us here, just refrain from
3395 * running if there is already work pending
3396 */
3397 if (work_pending(&cachep->memcg_params->destroy))
3398 return;
1f458cbf
GC
3399 /*
3400 * We have to defer the actual destroying to a workqueue, because
3401 * we might currently be in a context that cannot sleep.
3402 */
3403 schedule_work(&cachep->memcg_params->destroy);
3404}
3405
842e2873
VD
3406static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3407 struct kmem_cache *s)
d7f25f8a 3408{
d7f25f8a 3409 struct kmem_cache *new;
d9c10ddd 3410 static char *tmp_name = NULL;
842e2873 3411 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3412
842e2873 3413 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3414
842e2873 3415 mutex_lock(&mutex);
d9c10ddd
MH
3416 /*
3417 * kmem_cache_create_memcg duplicates the given name and
3418 * cgroup_name for this name requires RCU context.
3419 * This static temporary buffer is used to prevent from
3420 * pointless shortliving allocation.
3421 */
3422 if (!tmp_name) {
3423 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3424 if (!tmp_name)
3425 return NULL;
3426 }
3427
3428 rcu_read_lock();
3429 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3430 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3431 rcu_read_unlock();
d7f25f8a 3432
d9c10ddd 3433 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3434 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3435
d79923fa
GC
3436 if (new)
3437 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3438 else
3439 new = s;
d79923fa 3440
842e2873 3441 mutex_unlock(&mutex);
d7f25f8a
GC
3442 return new;
3443}
3444
7cf27982
GC
3445void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3446{
3447 struct kmem_cache *c;
3448 int i;
3449
3450 if (!s->memcg_params)
3451 return;
3452 if (!s->memcg_params->is_root_cache)
3453 return;
3454
3455 /*
3456 * If the cache is being destroyed, we trust that there is no one else
3457 * requesting objects from it. Even if there are, the sanity checks in
3458 * kmem_cache_destroy should caught this ill-case.
3459 *
3460 * Still, we don't want anyone else freeing memcg_caches under our
3461 * noses, which can happen if a new memcg comes to life. As usual,
3462 * we'll take the set_limit_mutex to protect ourselves against this.
3463 */
3464 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3465 for_each_memcg_cache_index(i) {
3466 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3467 if (!c)
3468 continue;
3469
3470 /*
3471 * We will now manually delete the caches, so to avoid races
3472 * we need to cancel all pending destruction workers and
3473 * proceed with destruction ourselves.
3474 *
3475 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3476 * and that could spawn the workers again: it is likely that
3477 * the cache still have active pages until this very moment.
3478 * This would lead us back to mem_cgroup_destroy_cache.
3479 *
3480 * But that will not execute at all if the "dead" flag is not
3481 * set, so flip it down to guarantee we are in control.
3482 */
3483 c->memcg_params->dead = false;
22933152 3484 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3485 kmem_cache_destroy(c);
3486 }
3487 mutex_unlock(&set_limit_mutex);
3488}
3489
d7f25f8a
GC
3490struct create_work {
3491 struct mem_cgroup *memcg;
3492 struct kmem_cache *cachep;
3493 struct work_struct work;
3494};
3495
1f458cbf
GC
3496static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3497{
3498 struct kmem_cache *cachep;
3499 struct memcg_cache_params *params;
3500
3501 if (!memcg_kmem_is_active(memcg))
3502 return;
3503
3504 mutex_lock(&memcg->slab_caches_mutex);
3505 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3506 cachep = memcg_params_to_cache(params);
3507 cachep->memcg_params->dead = true;
1f458cbf
GC
3508 schedule_work(&cachep->memcg_params->destroy);
3509 }
3510 mutex_unlock(&memcg->slab_caches_mutex);
3511}
3512
d7f25f8a
GC
3513static void memcg_create_cache_work_func(struct work_struct *w)
3514{
3515 struct create_work *cw;
3516
3517 cw = container_of(w, struct create_work, work);
3518 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3519 css_put(&cw->memcg->css);
d7f25f8a
GC
3520 kfree(cw);
3521}
3522
3523/*
3524 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3525 */
0e9d92f2
GC
3526static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3527 struct kmem_cache *cachep)
d7f25f8a
GC
3528{
3529 struct create_work *cw;
3530
3531 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3532 if (cw == NULL) {
3533 css_put(&memcg->css);
d7f25f8a
GC
3534 return;
3535 }
3536
3537 cw->memcg = memcg;
3538 cw->cachep = cachep;
3539
3540 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3541 schedule_work(&cw->work);
3542}
3543
0e9d92f2
GC
3544static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3545 struct kmem_cache *cachep)
3546{
3547 /*
3548 * We need to stop accounting when we kmalloc, because if the
3549 * corresponding kmalloc cache is not yet created, the first allocation
3550 * in __memcg_create_cache_enqueue will recurse.
3551 *
3552 * However, it is better to enclose the whole function. Depending on
3553 * the debugging options enabled, INIT_WORK(), for instance, can
3554 * trigger an allocation. This too, will make us recurse. Because at
3555 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3556 * the safest choice is to do it like this, wrapping the whole function.
3557 */
3558 memcg_stop_kmem_account();
3559 __memcg_create_cache_enqueue(memcg, cachep);
3560 memcg_resume_kmem_account();
3561}
d7f25f8a
GC
3562/*
3563 * Return the kmem_cache we're supposed to use for a slab allocation.
3564 * We try to use the current memcg's version of the cache.
3565 *
3566 * If the cache does not exist yet, if we are the first user of it,
3567 * we either create it immediately, if possible, or create it asynchronously
3568 * in a workqueue.
3569 * In the latter case, we will let the current allocation go through with
3570 * the original cache.
3571 *
3572 * Can't be called in interrupt context or from kernel threads.
3573 * This function needs to be called with rcu_read_lock() held.
3574 */
3575struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3576 gfp_t gfp)
3577{
3578 struct mem_cgroup *memcg;
959c8963 3579 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3580
3581 VM_BUG_ON(!cachep->memcg_params);
3582 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3583
0e9d92f2
GC
3584 if (!current->mm || current->memcg_kmem_skip_account)
3585 return cachep;
3586
d7f25f8a
GC
3587 rcu_read_lock();
3588 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3589
3590 if (!memcg_can_account_kmem(memcg))
ca0dde97 3591 goto out;
d7f25f8a 3592
959c8963
VD
3593 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3594 if (likely(memcg_cachep)) {
3595 cachep = memcg_cachep;
ca0dde97 3596 goto out;
d7f25f8a
GC
3597 }
3598
ca0dde97
LZ
3599 /* The corresponding put will be done in the workqueue. */
3600 if (!css_tryget(&memcg->css))
3601 goto out;
3602 rcu_read_unlock();
3603
3604 /*
3605 * If we are in a safe context (can wait, and not in interrupt
3606 * context), we could be be predictable and return right away.
3607 * This would guarantee that the allocation being performed
3608 * already belongs in the new cache.
3609 *
3610 * However, there are some clashes that can arrive from locking.
3611 * For instance, because we acquire the slab_mutex while doing
3612 * kmem_cache_dup, this means no further allocation could happen
3613 * with the slab_mutex held.
3614 *
3615 * Also, because cache creation issue get_online_cpus(), this
3616 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3617 * that ends up reversed during cpu hotplug. (cpuset allocates
3618 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3619 * better to defer everything.
3620 */
3621 memcg_create_cache_enqueue(memcg, cachep);
3622 return cachep;
3623out:
3624 rcu_read_unlock();
3625 return cachep;
d7f25f8a
GC
3626}
3627EXPORT_SYMBOL(__memcg_kmem_get_cache);
3628
7ae1e1d0
GC
3629/*
3630 * We need to verify if the allocation against current->mm->owner's memcg is
3631 * possible for the given order. But the page is not allocated yet, so we'll
3632 * need a further commit step to do the final arrangements.
3633 *
3634 * It is possible for the task to switch cgroups in this mean time, so at
3635 * commit time, we can't rely on task conversion any longer. We'll then use
3636 * the handle argument to return to the caller which cgroup we should commit
3637 * against. We could also return the memcg directly and avoid the pointer
3638 * passing, but a boolean return value gives better semantics considering
3639 * the compiled-out case as well.
3640 *
3641 * Returning true means the allocation is possible.
3642 */
3643bool
3644__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3645{
3646 struct mem_cgroup *memcg;
3647 int ret;
3648
3649 *_memcg = NULL;
6d42c232
GC
3650
3651 /*
3652 * Disabling accounting is only relevant for some specific memcg
3653 * internal allocations. Therefore we would initially not have such
3654 * check here, since direct calls to the page allocator that are marked
3655 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3656 * concerned with cache allocations, and by having this test at
3657 * memcg_kmem_get_cache, we are already able to relay the allocation to
3658 * the root cache and bypass the memcg cache altogether.
3659 *
3660 * There is one exception, though: the SLUB allocator does not create
3661 * large order caches, but rather service large kmallocs directly from
3662 * the page allocator. Therefore, the following sequence when backed by
3663 * the SLUB allocator:
3664 *
f894ffa8
AM
3665 * memcg_stop_kmem_account();
3666 * kmalloc(<large_number>)
3667 * memcg_resume_kmem_account();
6d42c232
GC
3668 *
3669 * would effectively ignore the fact that we should skip accounting,
3670 * since it will drive us directly to this function without passing
3671 * through the cache selector memcg_kmem_get_cache. Such large
3672 * allocations are extremely rare but can happen, for instance, for the
3673 * cache arrays. We bring this test here.
3674 */
3675 if (!current->mm || current->memcg_kmem_skip_account)
3676 return true;
3677
7ae1e1d0
GC
3678 memcg = try_get_mem_cgroup_from_mm(current->mm);
3679
3680 /*
3681 * very rare case described in mem_cgroup_from_task. Unfortunately there
3682 * isn't much we can do without complicating this too much, and it would
3683 * be gfp-dependent anyway. Just let it go
3684 */
3685 if (unlikely(!memcg))
3686 return true;
3687
3688 if (!memcg_can_account_kmem(memcg)) {
3689 css_put(&memcg->css);
3690 return true;
3691 }
3692
7ae1e1d0
GC
3693 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3694 if (!ret)
3695 *_memcg = memcg;
7ae1e1d0
GC
3696
3697 css_put(&memcg->css);
3698 return (ret == 0);
3699}
3700
3701void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3702 int order)
3703{
3704 struct page_cgroup *pc;
3705
3706 VM_BUG_ON(mem_cgroup_is_root(memcg));
3707
3708 /* The page allocation failed. Revert */
3709 if (!page) {
3710 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3711 return;
3712 }
3713
3714 pc = lookup_page_cgroup(page);
3715 lock_page_cgroup(pc);
3716 pc->mem_cgroup = memcg;
3717 SetPageCgroupUsed(pc);
3718 unlock_page_cgroup(pc);
3719}
3720
3721void __memcg_kmem_uncharge_pages(struct page *page, int order)
3722{
3723 struct mem_cgroup *memcg = NULL;
3724 struct page_cgroup *pc;
3725
3726
3727 pc = lookup_page_cgroup(page);
3728 /*
3729 * Fast unlocked return. Theoretically might have changed, have to
3730 * check again after locking.
3731 */
3732 if (!PageCgroupUsed(pc))
3733 return;
3734
3735 lock_page_cgroup(pc);
3736 if (PageCgroupUsed(pc)) {
3737 memcg = pc->mem_cgroup;
3738 ClearPageCgroupUsed(pc);
3739 }
3740 unlock_page_cgroup(pc);
3741
3742 /*
3743 * We trust that only if there is a memcg associated with the page, it
3744 * is a valid allocation
3745 */
3746 if (!memcg)
3747 return;
3748
309381fe 3749 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3750 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3751}
1f458cbf
GC
3752#else
3753static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3754{
3755}
7ae1e1d0
GC
3756#endif /* CONFIG_MEMCG_KMEM */
3757
ca3e0214
KH
3758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3759
a0db00fc 3760#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3761/*
3762 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3763 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3764 * charge/uncharge will be never happen and move_account() is done under
3765 * compound_lock(), so we don't have to take care of races.
ca3e0214 3766 */
e94c8a9c 3767void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3768{
3769 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3770 struct page_cgroup *pc;
b070e65c 3771 struct mem_cgroup *memcg;
e94c8a9c 3772 int i;
ca3e0214 3773
3d37c4a9
KH
3774 if (mem_cgroup_disabled())
3775 return;
b070e65c
DR
3776
3777 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3778 for (i = 1; i < HPAGE_PMD_NR; i++) {
3779 pc = head_pc + i;
b070e65c 3780 pc->mem_cgroup = memcg;
e94c8a9c 3781 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3782 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3783 }
b070e65c
DR
3784 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3785 HPAGE_PMD_NR);
ca3e0214 3786}
12d27107 3787#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3788
3ea67d06
SZ
3789static inline
3790void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3791 struct mem_cgroup *to,
3792 unsigned int nr_pages,
3793 enum mem_cgroup_stat_index idx)
3794{
3795 /* Update stat data for mem_cgroup */
3796 preempt_disable();
5e8cfc3c 3797 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3798 __this_cpu_add(to->stat->count[idx], nr_pages);
3799 preempt_enable();
3800}
3801
f817ed48 3802/**
de3638d9 3803 * mem_cgroup_move_account - move account of the page
5564e88b 3804 * @page: the page
7ec99d62 3805 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3806 * @pc: page_cgroup of the page.
3807 * @from: mem_cgroup which the page is moved from.
3808 * @to: mem_cgroup which the page is moved to. @from != @to.
3809 *
3810 * The caller must confirm following.
08e552c6 3811 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3812 * - compound_lock is held when nr_pages > 1
f817ed48 3813 *
2f3479b1
KH
3814 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3815 * from old cgroup.
f817ed48 3816 */
7ec99d62
JW
3817static int mem_cgroup_move_account(struct page *page,
3818 unsigned int nr_pages,
3819 struct page_cgroup *pc,
3820 struct mem_cgroup *from,
2f3479b1 3821 struct mem_cgroup *to)
f817ed48 3822{
de3638d9
JW
3823 unsigned long flags;
3824 int ret;
b2402857 3825 bool anon = PageAnon(page);
987eba66 3826
f817ed48 3827 VM_BUG_ON(from == to);
309381fe 3828 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3829 /*
3830 * The page is isolated from LRU. So, collapse function
3831 * will not handle this page. But page splitting can happen.
3832 * Do this check under compound_page_lock(). The caller should
3833 * hold it.
3834 */
3835 ret = -EBUSY;
7ec99d62 3836 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3837 goto out;
3838
3839 lock_page_cgroup(pc);
3840
3841 ret = -EINVAL;
3842 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3843 goto unlock;
3844
312734c0 3845 move_lock_mem_cgroup(from, &flags);
f817ed48 3846
3ea67d06
SZ
3847 if (!anon && page_mapped(page))
3848 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3849 MEM_CGROUP_STAT_FILE_MAPPED);
3850
3851 if (PageWriteback(page))
3852 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3853 MEM_CGROUP_STAT_WRITEBACK);
3854
b070e65c 3855 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3856
854ffa8d 3857 /* caller should have done css_get */
08e552c6 3858 pc->mem_cgroup = to;
b070e65c 3859 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3860 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3861 ret = 0;
3862unlock:
57f9fd7d 3863 unlock_page_cgroup(pc);
d2265e6f
KH
3864 /*
3865 * check events
3866 */
5564e88b
JW
3867 memcg_check_events(to, page);
3868 memcg_check_events(from, page);
de3638d9 3869out:
f817ed48
KH
3870 return ret;
3871}
3872
2ef37d3f
MH
3873/**
3874 * mem_cgroup_move_parent - moves page to the parent group
3875 * @page: the page to move
3876 * @pc: page_cgroup of the page
3877 * @child: page's cgroup
3878 *
3879 * move charges to its parent or the root cgroup if the group has no
3880 * parent (aka use_hierarchy==0).
3881 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3882 * mem_cgroup_move_account fails) the failure is always temporary and
3883 * it signals a race with a page removal/uncharge or migration. In the
3884 * first case the page is on the way out and it will vanish from the LRU
3885 * on the next attempt and the call should be retried later.
3886 * Isolation from the LRU fails only if page has been isolated from
3887 * the LRU since we looked at it and that usually means either global
3888 * reclaim or migration going on. The page will either get back to the
3889 * LRU or vanish.
3890 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3891 * (!PageCgroupUsed) or moved to a different group. The page will
3892 * disappear in the next attempt.
f817ed48 3893 */
5564e88b
JW
3894static int mem_cgroup_move_parent(struct page *page,
3895 struct page_cgroup *pc,
6068bf01 3896 struct mem_cgroup *child)
f817ed48 3897{
f817ed48 3898 struct mem_cgroup *parent;
7ec99d62 3899 unsigned int nr_pages;
4be4489f 3900 unsigned long uninitialized_var(flags);
f817ed48
KH
3901 int ret;
3902
d8423011 3903 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3904
57f9fd7d
DN
3905 ret = -EBUSY;
3906 if (!get_page_unless_zero(page))
3907 goto out;
3908 if (isolate_lru_page(page))
3909 goto put;
52dbb905 3910
7ec99d62 3911 nr_pages = hpage_nr_pages(page);
08e552c6 3912
cc926f78
KH
3913 parent = parent_mem_cgroup(child);
3914 /*
3915 * If no parent, move charges to root cgroup.
3916 */
3917 if (!parent)
3918 parent = root_mem_cgroup;
f817ed48 3919
2ef37d3f 3920 if (nr_pages > 1) {
309381fe 3921 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3922 flags = compound_lock_irqsave(page);
2ef37d3f 3923 }
987eba66 3924
cc926f78 3925 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3926 pc, child, parent);
cc926f78
KH
3927 if (!ret)
3928 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3929
7ec99d62 3930 if (nr_pages > 1)
987eba66 3931 compound_unlock_irqrestore(page, flags);
08e552c6 3932 putback_lru_page(page);
57f9fd7d 3933put:
40d58138 3934 put_page(page);
57f9fd7d 3935out:
f817ed48
KH
3936 return ret;
3937}
3938
7a81b88c
KH
3939/*
3940 * Charge the memory controller for page usage.
3941 * Return
3942 * 0 if the charge was successful
3943 * < 0 if the cgroup is over its limit
3944 */
3945static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3946 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3947{
c0ff4b85 3948 struct mem_cgroup *memcg = NULL;
7ec99d62 3949 unsigned int nr_pages = 1;
8493ae43 3950 bool oom = true;
7a81b88c 3951 int ret;
ec168510 3952
37c2ac78 3953 if (PageTransHuge(page)) {
7ec99d62 3954 nr_pages <<= compound_order(page);
309381fe 3955 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3956 /*
3957 * Never OOM-kill a process for a huge page. The
3958 * fault handler will fall back to regular pages.
3959 */
3960 oom = false;
37c2ac78 3961 }
7a81b88c 3962
c0ff4b85 3963 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3964 if (ret == -ENOMEM)
7a81b88c 3965 return ret;
ce587e65 3966 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3967 return 0;
8a9f3ccd
BS
3968}
3969
7a81b88c
KH
3970int mem_cgroup_newpage_charge(struct page *page,
3971 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3972{
f8d66542 3973 if (mem_cgroup_disabled())
cede86ac 3974 return 0;
309381fe
SL
3975 VM_BUG_ON_PAGE(page_mapped(page), page);
3976 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 3977 VM_BUG_ON(!mm);
217bc319 3978 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3979 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3980}
3981
54595fe2
KH
3982/*
3983 * While swap-in, try_charge -> commit or cancel, the page is locked.
3984 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3985 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3986 * "commit()" or removed by "cancel()"
3987 */
0435a2fd
JW
3988static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3989 struct page *page,
3990 gfp_t mask,
3991 struct mem_cgroup **memcgp)
8c7c6e34 3992{
c0ff4b85 3993 struct mem_cgroup *memcg;
90deb788 3994 struct page_cgroup *pc;
54595fe2 3995 int ret;
8c7c6e34 3996
90deb788
JW
3997 pc = lookup_page_cgroup(page);
3998 /*
3999 * Every swap fault against a single page tries to charge the
4000 * page, bail as early as possible. shmem_unuse() encounters
4001 * already charged pages, too. The USED bit is protected by
4002 * the page lock, which serializes swap cache removal, which
4003 * in turn serializes uncharging.
4004 */
4005 if (PageCgroupUsed(pc))
4006 return 0;
8c7c6e34
KH
4007 if (!do_swap_account)
4008 goto charge_cur_mm;
c0ff4b85
R
4009 memcg = try_get_mem_cgroup_from_page(page);
4010 if (!memcg)
54595fe2 4011 goto charge_cur_mm;
72835c86
JW
4012 *memcgp = memcg;
4013 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4014 css_put(&memcg->css);
38c5d72f
KH
4015 if (ret == -EINTR)
4016 ret = 0;
54595fe2 4017 return ret;
8c7c6e34 4018charge_cur_mm:
38c5d72f
KH
4019 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4020 if (ret == -EINTR)
4021 ret = 0;
4022 return ret;
8c7c6e34
KH
4023}
4024
0435a2fd
JW
4025int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4026 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4027{
4028 *memcgp = NULL;
4029 if (mem_cgroup_disabled())
4030 return 0;
bdf4f4d2
JW
4031 /*
4032 * A racing thread's fault, or swapoff, may have already
4033 * updated the pte, and even removed page from swap cache: in
4034 * those cases unuse_pte()'s pte_same() test will fail; but
4035 * there's also a KSM case which does need to charge the page.
4036 */
4037 if (!PageSwapCache(page)) {
4038 int ret;
4039
4040 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4041 if (ret == -EINTR)
4042 ret = 0;
4043 return ret;
4044 }
0435a2fd
JW
4045 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4046}
4047
827a03d2
JW
4048void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4049{
4050 if (mem_cgroup_disabled())
4051 return;
4052 if (!memcg)
4053 return;
4054 __mem_cgroup_cancel_charge(memcg, 1);
4055}
4056
83aae4c7 4057static void
72835c86 4058__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4059 enum charge_type ctype)
7a81b88c 4060{
f8d66542 4061 if (mem_cgroup_disabled())
7a81b88c 4062 return;
72835c86 4063 if (!memcg)
7a81b88c 4064 return;
5a6475a4 4065
ce587e65 4066 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4067 /*
4068 * Now swap is on-memory. This means this page may be
4069 * counted both as mem and swap....double count.
03f3c433
KH
4070 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4071 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4072 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4073 */
03f3c433 4074 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4075 swp_entry_t ent = {.val = page_private(page)};
86493009 4076 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4077 }
7a81b88c
KH
4078}
4079
72835c86
JW
4080void mem_cgroup_commit_charge_swapin(struct page *page,
4081 struct mem_cgroup *memcg)
83aae4c7 4082{
72835c86 4083 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4084 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4085}
4086
827a03d2
JW
4087int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4088 gfp_t gfp_mask)
7a81b88c 4089{
827a03d2
JW
4090 struct mem_cgroup *memcg = NULL;
4091 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4092 int ret;
4093
f8d66542 4094 if (mem_cgroup_disabled())
827a03d2
JW
4095 return 0;
4096 if (PageCompound(page))
4097 return 0;
4098
827a03d2
JW
4099 if (!PageSwapCache(page))
4100 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4101 else { /* page is swapcache/shmem */
0435a2fd
JW
4102 ret = __mem_cgroup_try_charge_swapin(mm, page,
4103 gfp_mask, &memcg);
827a03d2
JW
4104 if (!ret)
4105 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4106 }
4107 return ret;
7a81b88c
KH
4108}
4109
c0ff4b85 4110static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4111 unsigned int nr_pages,
4112 const enum charge_type ctype)
569b846d
KH
4113{
4114 struct memcg_batch_info *batch = NULL;
4115 bool uncharge_memsw = true;
7ec99d62 4116
569b846d
KH
4117 /* If swapout, usage of swap doesn't decrease */
4118 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4119 uncharge_memsw = false;
569b846d
KH
4120
4121 batch = &current->memcg_batch;
4122 /*
4123 * In usual, we do css_get() when we remember memcg pointer.
4124 * But in this case, we keep res->usage until end of a series of
4125 * uncharges. Then, it's ok to ignore memcg's refcnt.
4126 */
4127 if (!batch->memcg)
c0ff4b85 4128 batch->memcg = memcg;
3c11ecf4
KH
4129 /*
4130 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4131 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4132 * the same cgroup and we have chance to coalesce uncharges.
4133 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4134 * because we want to do uncharge as soon as possible.
4135 */
4136
4137 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4138 goto direct_uncharge;
4139
7ec99d62 4140 if (nr_pages > 1)
ec168510
AA
4141 goto direct_uncharge;
4142
569b846d
KH
4143 /*
4144 * In typical case, batch->memcg == mem. This means we can
4145 * merge a series of uncharges to an uncharge of res_counter.
4146 * If not, we uncharge res_counter ony by one.
4147 */
c0ff4b85 4148 if (batch->memcg != memcg)
569b846d
KH
4149 goto direct_uncharge;
4150 /* remember freed charge and uncharge it later */
7ffd4ca7 4151 batch->nr_pages++;
569b846d 4152 if (uncharge_memsw)
7ffd4ca7 4153 batch->memsw_nr_pages++;
569b846d
KH
4154 return;
4155direct_uncharge:
c0ff4b85 4156 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4157 if (uncharge_memsw)
c0ff4b85
R
4158 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4159 if (unlikely(batch->memcg != memcg))
4160 memcg_oom_recover(memcg);
569b846d 4161}
7a81b88c 4162
8a9f3ccd 4163/*
69029cd5 4164 * uncharge if !page_mapped(page)
8a9f3ccd 4165 */
8c7c6e34 4166static struct mem_cgroup *
0030f535
JW
4167__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4168 bool end_migration)
8a9f3ccd 4169{
c0ff4b85 4170 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4171 unsigned int nr_pages = 1;
4172 struct page_cgroup *pc;
b2402857 4173 bool anon;
8a9f3ccd 4174
f8d66542 4175 if (mem_cgroup_disabled())
8c7c6e34 4176 return NULL;
4077960e 4177
37c2ac78 4178 if (PageTransHuge(page)) {
7ec99d62 4179 nr_pages <<= compound_order(page);
309381fe 4180 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4181 }
8697d331 4182 /*
3c541e14 4183 * Check if our page_cgroup is valid
8697d331 4184 */
52d4b9ac 4185 pc = lookup_page_cgroup(page);
cfa44946 4186 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4187 return NULL;
b9c565d5 4188
52d4b9ac 4189 lock_page_cgroup(pc);
d13d1443 4190
c0ff4b85 4191 memcg = pc->mem_cgroup;
8c7c6e34 4192
d13d1443
KH
4193 if (!PageCgroupUsed(pc))
4194 goto unlock_out;
4195
b2402857
KH
4196 anon = PageAnon(page);
4197
d13d1443 4198 switch (ctype) {
41326c17 4199 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4200 /*
4201 * Generally PageAnon tells if it's the anon statistics to be
4202 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4203 * used before page reached the stage of being marked PageAnon.
4204 */
b2402857
KH
4205 anon = true;
4206 /* fallthrough */
8a9478ca 4207 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4208 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4209 if (page_mapped(page))
4210 goto unlock_out;
4211 /*
4212 * Pages under migration may not be uncharged. But
4213 * end_migration() /must/ be the one uncharging the
4214 * unused post-migration page and so it has to call
4215 * here with the migration bit still set. See the
4216 * res_counter handling below.
4217 */
4218 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4219 goto unlock_out;
4220 break;
4221 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4222 if (!PageAnon(page)) { /* Shared memory */
4223 if (page->mapping && !page_is_file_cache(page))
4224 goto unlock_out;
4225 } else if (page_mapped(page)) /* Anon */
4226 goto unlock_out;
4227 break;
4228 default:
4229 break;
52d4b9ac 4230 }
d13d1443 4231
b070e65c 4232 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4233
52d4b9ac 4234 ClearPageCgroupUsed(pc);
544122e5
KH
4235 /*
4236 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4237 * freed from LRU. This is safe because uncharged page is expected not
4238 * to be reused (freed soon). Exception is SwapCache, it's handled by
4239 * special functions.
4240 */
b9c565d5 4241
52d4b9ac 4242 unlock_page_cgroup(pc);
f75ca962 4243 /*
c0ff4b85 4244 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4245 * will never be freed, so it's safe to call css_get().
f75ca962 4246 */
c0ff4b85 4247 memcg_check_events(memcg, page);
f75ca962 4248 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4249 mem_cgroup_swap_statistics(memcg, true);
4050377b 4250 css_get(&memcg->css);
f75ca962 4251 }
0030f535
JW
4252 /*
4253 * Migration does not charge the res_counter for the
4254 * replacement page, so leave it alone when phasing out the
4255 * page that is unused after the migration.
4256 */
4257 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4258 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4259
c0ff4b85 4260 return memcg;
d13d1443
KH
4261
4262unlock_out:
4263 unlock_page_cgroup(pc);
8c7c6e34 4264 return NULL;
3c541e14
BS
4265}
4266
69029cd5
KH
4267void mem_cgroup_uncharge_page(struct page *page)
4268{
52d4b9ac
KH
4269 /* early check. */
4270 if (page_mapped(page))
4271 return;
309381fe 4272 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4273 /*
4274 * If the page is in swap cache, uncharge should be deferred
4275 * to the swap path, which also properly accounts swap usage
4276 * and handles memcg lifetime.
4277 *
4278 * Note that this check is not stable and reclaim may add the
4279 * page to swap cache at any time after this. However, if the
4280 * page is not in swap cache by the time page->mapcount hits
4281 * 0, there won't be any page table references to the swap
4282 * slot, and reclaim will free it and not actually write the
4283 * page to disk.
4284 */
0c59b89c
JW
4285 if (PageSwapCache(page))
4286 return;
0030f535 4287 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4288}
4289
4290void mem_cgroup_uncharge_cache_page(struct page *page)
4291{
309381fe
SL
4292 VM_BUG_ON_PAGE(page_mapped(page), page);
4293 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4294 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4295}
4296
569b846d
KH
4297/*
4298 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4299 * In that cases, pages are freed continuously and we can expect pages
4300 * are in the same memcg. All these calls itself limits the number of
4301 * pages freed at once, then uncharge_start/end() is called properly.
4302 * This may be called prural(2) times in a context,
4303 */
4304
4305void mem_cgroup_uncharge_start(void)
4306{
4307 current->memcg_batch.do_batch++;
4308 /* We can do nest. */
4309 if (current->memcg_batch.do_batch == 1) {
4310 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4311 current->memcg_batch.nr_pages = 0;
4312 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4313 }
4314}
4315
4316void mem_cgroup_uncharge_end(void)
4317{
4318 struct memcg_batch_info *batch = &current->memcg_batch;
4319
4320 if (!batch->do_batch)
4321 return;
4322
4323 batch->do_batch--;
4324 if (batch->do_batch) /* If stacked, do nothing. */
4325 return;
4326
4327 if (!batch->memcg)
4328 return;
4329 /*
4330 * This "batch->memcg" is valid without any css_get/put etc...
4331 * bacause we hide charges behind us.
4332 */
7ffd4ca7
JW
4333 if (batch->nr_pages)
4334 res_counter_uncharge(&batch->memcg->res,
4335 batch->nr_pages * PAGE_SIZE);
4336 if (batch->memsw_nr_pages)
4337 res_counter_uncharge(&batch->memcg->memsw,
4338 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4339 memcg_oom_recover(batch->memcg);
569b846d
KH
4340 /* forget this pointer (for sanity check) */
4341 batch->memcg = NULL;
4342}
4343
e767e056 4344#ifdef CONFIG_SWAP
8c7c6e34 4345/*
e767e056 4346 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4347 * memcg information is recorded to swap_cgroup of "ent"
4348 */
8a9478ca
KH
4349void
4350mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4351{
4352 struct mem_cgroup *memcg;
8a9478ca
KH
4353 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4354
4355 if (!swapout) /* this was a swap cache but the swap is unused ! */
4356 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4357
0030f535 4358 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4359
f75ca962
KH
4360 /*
4361 * record memcg information, if swapout && memcg != NULL,
4050377b 4362 * css_get() was called in uncharge().
f75ca962
KH
4363 */
4364 if (do_swap_account && swapout && memcg)
34c00c31 4365 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4366}
e767e056 4367#endif
8c7c6e34 4368
c255a458 4369#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4370/*
4371 * called from swap_entry_free(). remove record in swap_cgroup and
4372 * uncharge "memsw" account.
4373 */
4374void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4375{
8c7c6e34 4376 struct mem_cgroup *memcg;
a3b2d692 4377 unsigned short id;
8c7c6e34
KH
4378
4379 if (!do_swap_account)
4380 return;
4381
a3b2d692
KH
4382 id = swap_cgroup_record(ent, 0);
4383 rcu_read_lock();
4384 memcg = mem_cgroup_lookup(id);
8c7c6e34 4385 if (memcg) {
a3b2d692
KH
4386 /*
4387 * We uncharge this because swap is freed.
4388 * This memcg can be obsolete one. We avoid calling css_tryget
4389 */
0c3e73e8 4390 if (!mem_cgroup_is_root(memcg))
4e649152 4391 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4392 mem_cgroup_swap_statistics(memcg, false);
4050377b 4393 css_put(&memcg->css);
8c7c6e34 4394 }
a3b2d692 4395 rcu_read_unlock();
d13d1443 4396}
02491447
DN
4397
4398/**
4399 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4400 * @entry: swap entry to be moved
4401 * @from: mem_cgroup which the entry is moved from
4402 * @to: mem_cgroup which the entry is moved to
4403 *
4404 * It succeeds only when the swap_cgroup's record for this entry is the same
4405 * as the mem_cgroup's id of @from.
4406 *
4407 * Returns 0 on success, -EINVAL on failure.
4408 *
4409 * The caller must have charged to @to, IOW, called res_counter_charge() about
4410 * both res and memsw, and called css_get().
4411 */
4412static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4413 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4414{
4415 unsigned short old_id, new_id;
4416
34c00c31
LZ
4417 old_id = mem_cgroup_id(from);
4418 new_id = mem_cgroup_id(to);
02491447
DN
4419
4420 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4421 mem_cgroup_swap_statistics(from, false);
483c30b5 4422 mem_cgroup_swap_statistics(to, true);
02491447 4423 /*
483c30b5
DN
4424 * This function is only called from task migration context now.
4425 * It postpones res_counter and refcount handling till the end
4426 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4427 * improvement. But we cannot postpone css_get(to) because if
4428 * the process that has been moved to @to does swap-in, the
4429 * refcount of @to might be decreased to 0.
4430 *
4431 * We are in attach() phase, so the cgroup is guaranteed to be
4432 * alive, so we can just call css_get().
02491447 4433 */
4050377b 4434 css_get(&to->css);
02491447
DN
4435 return 0;
4436 }
4437 return -EINVAL;
4438}
4439#else
4440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4441 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4442{
4443 return -EINVAL;
4444}
8c7c6e34 4445#endif
d13d1443 4446
ae41be37 4447/*
01b1ae63
KH
4448 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4449 * page belongs to.
ae41be37 4450 */
0030f535
JW
4451void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4452 struct mem_cgroup **memcgp)
ae41be37 4453{
c0ff4b85 4454 struct mem_cgroup *memcg = NULL;
b32967ff 4455 unsigned int nr_pages = 1;
7ec99d62 4456 struct page_cgroup *pc;
ac39cf8c 4457 enum charge_type ctype;
8869b8f6 4458
72835c86 4459 *memcgp = NULL;
56039efa 4460
f8d66542 4461 if (mem_cgroup_disabled())
0030f535 4462 return;
4077960e 4463
b32967ff
MG
4464 if (PageTransHuge(page))
4465 nr_pages <<= compound_order(page);
4466
52d4b9ac
KH
4467 pc = lookup_page_cgroup(page);
4468 lock_page_cgroup(pc);
4469 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4470 memcg = pc->mem_cgroup;
4471 css_get(&memcg->css);
ac39cf8c 4472 /*
4473 * At migrating an anonymous page, its mapcount goes down
4474 * to 0 and uncharge() will be called. But, even if it's fully
4475 * unmapped, migration may fail and this page has to be
4476 * charged again. We set MIGRATION flag here and delay uncharge
4477 * until end_migration() is called
4478 *
4479 * Corner Case Thinking
4480 * A)
4481 * When the old page was mapped as Anon and it's unmap-and-freed
4482 * while migration was ongoing.
4483 * If unmap finds the old page, uncharge() of it will be delayed
4484 * until end_migration(). If unmap finds a new page, it's
4485 * uncharged when it make mapcount to be 1->0. If unmap code
4486 * finds swap_migration_entry, the new page will not be mapped
4487 * and end_migration() will find it(mapcount==0).
4488 *
4489 * B)
4490 * When the old page was mapped but migraion fails, the kernel
4491 * remaps it. A charge for it is kept by MIGRATION flag even
4492 * if mapcount goes down to 0. We can do remap successfully
4493 * without charging it again.
4494 *
4495 * C)
4496 * The "old" page is under lock_page() until the end of
4497 * migration, so, the old page itself will not be swapped-out.
4498 * If the new page is swapped out before end_migraton, our
4499 * hook to usual swap-out path will catch the event.
4500 */
4501 if (PageAnon(page))
4502 SetPageCgroupMigration(pc);
e8589cc1 4503 }
52d4b9ac 4504 unlock_page_cgroup(pc);
ac39cf8c 4505 /*
4506 * If the page is not charged at this point,
4507 * we return here.
4508 */
c0ff4b85 4509 if (!memcg)
0030f535 4510 return;
01b1ae63 4511
72835c86 4512 *memcgp = memcg;
ac39cf8c 4513 /*
4514 * We charge new page before it's used/mapped. So, even if unlock_page()
4515 * is called before end_migration, we can catch all events on this new
4516 * page. In the case new page is migrated but not remapped, new page's
4517 * mapcount will be finally 0 and we call uncharge in end_migration().
4518 */
ac39cf8c 4519 if (PageAnon(page))
41326c17 4520 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4521 else
62ba7442 4522 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4523 /*
4524 * The page is committed to the memcg, but it's not actually
4525 * charged to the res_counter since we plan on replacing the
4526 * old one and only one page is going to be left afterwards.
4527 */
b32967ff 4528 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4529}
8869b8f6 4530
69029cd5 4531/* remove redundant charge if migration failed*/
c0ff4b85 4532void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4533 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4534{
ac39cf8c 4535 struct page *used, *unused;
01b1ae63 4536 struct page_cgroup *pc;
b2402857 4537 bool anon;
01b1ae63 4538
c0ff4b85 4539 if (!memcg)
01b1ae63 4540 return;
b25ed609 4541
50de1dd9 4542 if (!migration_ok) {
ac39cf8c 4543 used = oldpage;
4544 unused = newpage;
01b1ae63 4545 } else {
ac39cf8c 4546 used = newpage;
01b1ae63
KH
4547 unused = oldpage;
4548 }
0030f535 4549 anon = PageAnon(used);
7d188958
JW
4550 __mem_cgroup_uncharge_common(unused,
4551 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4552 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4553 true);
0030f535 4554 css_put(&memcg->css);
69029cd5 4555 /*
ac39cf8c 4556 * We disallowed uncharge of pages under migration because mapcount
4557 * of the page goes down to zero, temporarly.
4558 * Clear the flag and check the page should be charged.
01b1ae63 4559 */
ac39cf8c 4560 pc = lookup_page_cgroup(oldpage);
4561 lock_page_cgroup(pc);
4562 ClearPageCgroupMigration(pc);
4563 unlock_page_cgroup(pc);
ac39cf8c 4564
01b1ae63 4565 /*
ac39cf8c 4566 * If a page is a file cache, radix-tree replacement is very atomic
4567 * and we can skip this check. When it was an Anon page, its mapcount
4568 * goes down to 0. But because we added MIGRATION flage, it's not
4569 * uncharged yet. There are several case but page->mapcount check
4570 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4571 * check. (see prepare_charge() also)
69029cd5 4572 */
b2402857 4573 if (anon)
ac39cf8c 4574 mem_cgroup_uncharge_page(used);
ae41be37 4575}
78fb7466 4576
ab936cbc
KH
4577/*
4578 * At replace page cache, newpage is not under any memcg but it's on
4579 * LRU. So, this function doesn't touch res_counter but handles LRU
4580 * in correct way. Both pages are locked so we cannot race with uncharge.
4581 */
4582void mem_cgroup_replace_page_cache(struct page *oldpage,
4583 struct page *newpage)
4584{
bde05d1c 4585 struct mem_cgroup *memcg = NULL;
ab936cbc 4586 struct page_cgroup *pc;
ab936cbc 4587 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4588
4589 if (mem_cgroup_disabled())
4590 return;
4591
4592 pc = lookup_page_cgroup(oldpage);
4593 /* fix accounting on old pages */
4594 lock_page_cgroup(pc);
bde05d1c
HD
4595 if (PageCgroupUsed(pc)) {
4596 memcg = pc->mem_cgroup;
b070e65c 4597 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4598 ClearPageCgroupUsed(pc);
4599 }
ab936cbc
KH
4600 unlock_page_cgroup(pc);
4601
bde05d1c
HD
4602 /*
4603 * When called from shmem_replace_page(), in some cases the
4604 * oldpage has already been charged, and in some cases not.
4605 */
4606 if (!memcg)
4607 return;
ab936cbc
KH
4608 /*
4609 * Even if newpage->mapping was NULL before starting replacement,
4610 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4611 * LRU while we overwrite pc->mem_cgroup.
4612 */
ce587e65 4613 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4614}
4615
f212ad7c
DN
4616#ifdef CONFIG_DEBUG_VM
4617static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4618{
4619 struct page_cgroup *pc;
4620
4621 pc = lookup_page_cgroup(page);
cfa44946
JW
4622 /*
4623 * Can be NULL while feeding pages into the page allocator for
4624 * the first time, i.e. during boot or memory hotplug;
4625 * or when mem_cgroup_disabled().
4626 */
f212ad7c
DN
4627 if (likely(pc) && PageCgroupUsed(pc))
4628 return pc;
4629 return NULL;
4630}
4631
4632bool mem_cgroup_bad_page_check(struct page *page)
4633{
4634 if (mem_cgroup_disabled())
4635 return false;
4636
4637 return lookup_page_cgroup_used(page) != NULL;
4638}
4639
4640void mem_cgroup_print_bad_page(struct page *page)
4641{
4642 struct page_cgroup *pc;
4643
4644 pc = lookup_page_cgroup_used(page);
4645 if (pc) {
d045197f
AM
4646 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4647 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4648 }
4649}
4650#endif
4651
d38d2a75 4652static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4653 unsigned long long val)
628f4235 4654{
81d39c20 4655 int retry_count;
3c11ecf4 4656 u64 memswlimit, memlimit;
628f4235 4657 int ret = 0;
81d39c20
KH
4658 int children = mem_cgroup_count_children(memcg);
4659 u64 curusage, oldusage;
3c11ecf4 4660 int enlarge;
81d39c20
KH
4661
4662 /*
4663 * For keeping hierarchical_reclaim simple, how long we should retry
4664 * is depends on callers. We set our retry-count to be function
4665 * of # of children which we should visit in this loop.
4666 */
4667 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4668
4669 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4670
3c11ecf4 4671 enlarge = 0;
8c7c6e34 4672 while (retry_count) {
628f4235
KH
4673 if (signal_pending(current)) {
4674 ret = -EINTR;
4675 break;
4676 }
8c7c6e34
KH
4677 /*
4678 * Rather than hide all in some function, I do this in
4679 * open coded manner. You see what this really does.
aaad153e 4680 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4681 */
4682 mutex_lock(&set_limit_mutex);
4683 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4684 if (memswlimit < val) {
4685 ret = -EINVAL;
4686 mutex_unlock(&set_limit_mutex);
628f4235
KH
4687 break;
4688 }
3c11ecf4
KH
4689
4690 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4691 if (memlimit < val)
4692 enlarge = 1;
4693
8c7c6e34 4694 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4695 if (!ret) {
4696 if (memswlimit == val)
4697 memcg->memsw_is_minimum = true;
4698 else
4699 memcg->memsw_is_minimum = false;
4700 }
8c7c6e34
KH
4701 mutex_unlock(&set_limit_mutex);
4702
4703 if (!ret)
4704 break;
4705
5660048c
JW
4706 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4707 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4708 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4709 /* Usage is reduced ? */
f894ffa8 4710 if (curusage >= oldusage)
81d39c20
KH
4711 retry_count--;
4712 else
4713 oldusage = curusage;
8c7c6e34 4714 }
3c11ecf4
KH
4715 if (!ret && enlarge)
4716 memcg_oom_recover(memcg);
14797e23 4717
8c7c6e34
KH
4718 return ret;
4719}
4720
338c8431
LZ
4721static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4722 unsigned long long val)
8c7c6e34 4723{
81d39c20 4724 int retry_count;
3c11ecf4 4725 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4726 int children = mem_cgroup_count_children(memcg);
4727 int ret = -EBUSY;
3c11ecf4 4728 int enlarge = 0;
8c7c6e34 4729
81d39c20 4730 /* see mem_cgroup_resize_res_limit */
f894ffa8 4731 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4732 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4733 while (retry_count) {
4734 if (signal_pending(current)) {
4735 ret = -EINTR;
4736 break;
4737 }
4738 /*
4739 * Rather than hide all in some function, I do this in
4740 * open coded manner. You see what this really does.
aaad153e 4741 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4742 */
4743 mutex_lock(&set_limit_mutex);
4744 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4745 if (memlimit > val) {
4746 ret = -EINVAL;
4747 mutex_unlock(&set_limit_mutex);
4748 break;
4749 }
3c11ecf4
KH
4750 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4751 if (memswlimit < val)
4752 enlarge = 1;
8c7c6e34 4753 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4754 if (!ret) {
4755 if (memlimit == val)
4756 memcg->memsw_is_minimum = true;
4757 else
4758 memcg->memsw_is_minimum = false;
4759 }
8c7c6e34
KH
4760 mutex_unlock(&set_limit_mutex);
4761
4762 if (!ret)
4763 break;
4764
5660048c
JW
4765 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4766 MEM_CGROUP_RECLAIM_NOSWAP |
4767 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4768 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4769 /* Usage is reduced ? */
8c7c6e34 4770 if (curusage >= oldusage)
628f4235 4771 retry_count--;
81d39c20
KH
4772 else
4773 oldusage = curusage;
628f4235 4774 }
3c11ecf4
KH
4775 if (!ret && enlarge)
4776 memcg_oom_recover(memcg);
628f4235
KH
4777 return ret;
4778}
4779
0608f43d
AM
4780unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4781 gfp_t gfp_mask,
4782 unsigned long *total_scanned)
4783{
4784 unsigned long nr_reclaimed = 0;
4785 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4786 unsigned long reclaimed;
4787 int loop = 0;
4788 struct mem_cgroup_tree_per_zone *mctz;
4789 unsigned long long excess;
4790 unsigned long nr_scanned;
4791
4792 if (order > 0)
4793 return 0;
4794
4795 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4796 /*
4797 * This loop can run a while, specially if mem_cgroup's continuously
4798 * keep exceeding their soft limit and putting the system under
4799 * pressure
4800 */
4801 do {
4802 if (next_mz)
4803 mz = next_mz;
4804 else
4805 mz = mem_cgroup_largest_soft_limit_node(mctz);
4806 if (!mz)
4807 break;
4808
4809 nr_scanned = 0;
4810 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4811 gfp_mask, &nr_scanned);
4812 nr_reclaimed += reclaimed;
4813 *total_scanned += nr_scanned;
4814 spin_lock(&mctz->lock);
4815
4816 /*
4817 * If we failed to reclaim anything from this memory cgroup
4818 * it is time to move on to the next cgroup
4819 */
4820 next_mz = NULL;
4821 if (!reclaimed) {
4822 do {
4823 /*
4824 * Loop until we find yet another one.
4825 *
4826 * By the time we get the soft_limit lock
4827 * again, someone might have aded the
4828 * group back on the RB tree. Iterate to
4829 * make sure we get a different mem.
4830 * mem_cgroup_largest_soft_limit_node returns
4831 * NULL if no other cgroup is present on
4832 * the tree
4833 */
4834 next_mz =
4835 __mem_cgroup_largest_soft_limit_node(mctz);
4836 if (next_mz == mz)
4837 css_put(&next_mz->memcg->css);
4838 else /* next_mz == NULL or other memcg */
4839 break;
4840 } while (1);
4841 }
4842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4843 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4844 /*
4845 * One school of thought says that we should not add
4846 * back the node to the tree if reclaim returns 0.
4847 * But our reclaim could return 0, simply because due
4848 * to priority we are exposing a smaller subset of
4849 * memory to reclaim from. Consider this as a longer
4850 * term TODO.
4851 */
4852 /* If excess == 0, no tree ops */
4853 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4854 spin_unlock(&mctz->lock);
4855 css_put(&mz->memcg->css);
4856 loop++;
4857 /*
4858 * Could not reclaim anything and there are no more
4859 * mem cgroups to try or we seem to be looping without
4860 * reclaiming anything.
4861 */
4862 if (!nr_reclaimed &&
4863 (next_mz == NULL ||
4864 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4865 break;
4866 } while (!nr_reclaimed);
4867 if (next_mz)
4868 css_put(&next_mz->memcg->css);
4869 return nr_reclaimed;
4870}
4871
2ef37d3f
MH
4872/**
4873 * mem_cgroup_force_empty_list - clears LRU of a group
4874 * @memcg: group to clear
4875 * @node: NUMA node
4876 * @zid: zone id
4877 * @lru: lru to to clear
4878 *
3c935d18 4879 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4880 * reclaim the pages page themselves - pages are moved to the parent (or root)
4881 * group.
cc847582 4882 */
2ef37d3f 4883static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4884 int node, int zid, enum lru_list lru)
cc847582 4885{
bea8c150 4886 struct lruvec *lruvec;
2ef37d3f 4887 unsigned long flags;
072c56c1 4888 struct list_head *list;
925b7673
JW
4889 struct page *busy;
4890 struct zone *zone;
072c56c1 4891
08e552c6 4892 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4893 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4894 list = &lruvec->lists[lru];
cc847582 4895
f817ed48 4896 busy = NULL;
2ef37d3f 4897 do {
925b7673 4898 struct page_cgroup *pc;
5564e88b
JW
4899 struct page *page;
4900
08e552c6 4901 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4902 if (list_empty(list)) {
08e552c6 4903 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4904 break;
f817ed48 4905 }
925b7673
JW
4906 page = list_entry(list->prev, struct page, lru);
4907 if (busy == page) {
4908 list_move(&page->lru, list);
648bcc77 4909 busy = NULL;
08e552c6 4910 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4911 continue;
4912 }
08e552c6 4913 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4914
925b7673 4915 pc = lookup_page_cgroup(page);
5564e88b 4916
3c935d18 4917 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4918 /* found lock contention or "pc" is obsolete. */
925b7673 4919 busy = page;
f817ed48
KH
4920 cond_resched();
4921 } else
4922 busy = NULL;
2ef37d3f 4923 } while (!list_empty(list));
cc847582
KH
4924}
4925
4926/*
c26251f9
MH
4927 * make mem_cgroup's charge to be 0 if there is no task by moving
4928 * all the charges and pages to the parent.
cc847582 4929 * This enables deleting this mem_cgroup.
c26251f9
MH
4930 *
4931 * Caller is responsible for holding css reference on the memcg.
cc847582 4932 */
ab5196c2 4933static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4934{
c26251f9 4935 int node, zid;
bea207c8 4936 u64 usage;
f817ed48 4937
fce66477 4938 do {
52d4b9ac
KH
4939 /* This is for making all *used* pages to be on LRU. */
4940 lru_add_drain_all();
c0ff4b85 4941 drain_all_stock_sync(memcg);
c0ff4b85 4942 mem_cgroup_start_move(memcg);
31aaea4a 4943 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4944 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4945 enum lru_list lru;
4946 for_each_lru(lru) {
2ef37d3f 4947 mem_cgroup_force_empty_list(memcg,
f156ab93 4948 node, zid, lru);
f817ed48 4949 }
1ecaab2b 4950 }
f817ed48 4951 }
c0ff4b85
R
4952 mem_cgroup_end_move(memcg);
4953 memcg_oom_recover(memcg);
52d4b9ac 4954 cond_resched();
f817ed48 4955
2ef37d3f 4956 /*
bea207c8
GC
4957 * Kernel memory may not necessarily be trackable to a specific
4958 * process. So they are not migrated, and therefore we can't
4959 * expect their value to drop to 0 here.
4960 * Having res filled up with kmem only is enough.
4961 *
2ef37d3f
MH
4962 * This is a safety check because mem_cgroup_force_empty_list
4963 * could have raced with mem_cgroup_replace_page_cache callers
4964 * so the lru seemed empty but the page could have been added
4965 * right after the check. RES_USAGE should be safe as we always
4966 * charge before adding to the LRU.
4967 */
bea207c8
GC
4968 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4969 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4970 } while (usage > 0);
c26251f9
MH
4971}
4972
b5f99b53
GC
4973static inline bool memcg_has_children(struct mem_cgroup *memcg)
4974{
696ac172
JW
4975 lockdep_assert_held(&memcg_create_mutex);
4976 /*
4977 * The lock does not prevent addition or deletion to the list
4978 * of children, but it prevents a new child from being
4979 * initialized based on this parent in css_online(), so it's
4980 * enough to decide whether hierarchically inherited
4981 * attributes can still be changed or not.
4982 */
4983 return memcg->use_hierarchy &&
4984 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4985}
4986
c26251f9
MH
4987/*
4988 * Reclaims as many pages from the given memcg as possible and moves
4989 * the rest to the parent.
4990 *
4991 * Caller is responsible for holding css reference for memcg.
4992 */
4993static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4994{
4995 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4996 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4997
c1e862c1 4998 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4999 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5000 return -EBUSY;
5001
c1e862c1
KH
5002 /* we call try-to-free pages for make this cgroup empty */
5003 lru_add_drain_all();
f817ed48 5004 /* try to free all pages in this cgroup */
569530fb 5005 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5006 int progress;
c1e862c1 5007
c26251f9
MH
5008 if (signal_pending(current))
5009 return -EINTR;
5010
c0ff4b85 5011 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5012 false);
c1e862c1 5013 if (!progress) {
f817ed48 5014 nr_retries--;
c1e862c1 5015 /* maybe some writeback is necessary */
8aa7e847 5016 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5017 }
f817ed48
KH
5018
5019 }
08e552c6 5020 lru_add_drain();
ab5196c2
MH
5021 mem_cgroup_reparent_charges(memcg);
5022
5023 return 0;
cc847582
KH
5024}
5025
182446d0
TH
5026static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5027 unsigned int event)
c1e862c1 5028{
182446d0 5029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5030
d8423011
MH
5031 if (mem_cgroup_is_root(memcg))
5032 return -EINVAL;
c33bd835 5033 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5034}
5035
182446d0
TH
5036static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5037 struct cftype *cft)
18f59ea7 5038{
182446d0 5039 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5040}
5041
182446d0
TH
5042static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5043 struct cftype *cft, u64 val)
18f59ea7
BS
5044{
5045 int retval = 0;
182446d0 5046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5047 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5048
0999821b 5049 mutex_lock(&memcg_create_mutex);
567fb435
GC
5050
5051 if (memcg->use_hierarchy == val)
5052 goto out;
5053
18f59ea7 5054 /*
af901ca1 5055 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5056 * in the child subtrees. If it is unset, then the change can
5057 * occur, provided the current cgroup has no children.
5058 *
5059 * For the root cgroup, parent_mem is NULL, we allow value to be
5060 * set if there are no children.
5061 */
c0ff4b85 5062 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5063 (val == 1 || val == 0)) {
696ac172 5064 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5065 memcg->use_hierarchy = val;
18f59ea7
BS
5066 else
5067 retval = -EBUSY;
5068 } else
5069 retval = -EINVAL;
567fb435
GC
5070
5071out:
0999821b 5072 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5073
5074 return retval;
5075}
5076
0c3e73e8 5077
c0ff4b85 5078static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5079 enum mem_cgroup_stat_index idx)
0c3e73e8 5080{
7d74b06f 5081 struct mem_cgroup *iter;
7a159cc9 5082 long val = 0;
0c3e73e8 5083
7a159cc9 5084 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5085 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5086 val += mem_cgroup_read_stat(iter, idx);
5087
5088 if (val < 0) /* race ? */
5089 val = 0;
5090 return val;
0c3e73e8
BS
5091}
5092
c0ff4b85 5093static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5094{
7d74b06f 5095 u64 val;
104f3928 5096
c0ff4b85 5097 if (!mem_cgroup_is_root(memcg)) {
104f3928 5098 if (!swap)
65c64ce8 5099 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5100 else
65c64ce8 5101 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5102 }
5103
b070e65c
DR
5104 /*
5105 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5106 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5107 */
c0ff4b85
R
5108 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5109 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5110
7d74b06f 5111 if (swap)
bff6bb83 5112 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5113
5114 return val << PAGE_SHIFT;
5115}
5116
791badbd
TH
5117static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5118 struct cftype *cft)
8cdea7c0 5119{
182446d0 5120 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5121 u64 val;
791badbd 5122 int name;
86ae53e1 5123 enum res_type type;
8c7c6e34
KH
5124
5125 type = MEMFILE_TYPE(cft->private);
5126 name = MEMFILE_ATTR(cft->private);
af36f906 5127
8c7c6e34
KH
5128 switch (type) {
5129 case _MEM:
104f3928 5130 if (name == RES_USAGE)
c0ff4b85 5131 val = mem_cgroup_usage(memcg, false);
104f3928 5132 else
c0ff4b85 5133 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5134 break;
5135 case _MEMSWAP:
104f3928 5136 if (name == RES_USAGE)
c0ff4b85 5137 val = mem_cgroup_usage(memcg, true);
104f3928 5138 else
c0ff4b85 5139 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5140 break;
510fc4e1
GC
5141 case _KMEM:
5142 val = res_counter_read_u64(&memcg->kmem, name);
5143 break;
8c7c6e34
KH
5144 default:
5145 BUG();
8c7c6e34 5146 }
af36f906 5147
791badbd 5148 return val;
8cdea7c0 5149}
510fc4e1 5150
182446d0 5151static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5152{
5153 int ret = -EINVAL;
5154#ifdef CONFIG_MEMCG_KMEM
182446d0 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5156 /*
5157 * For simplicity, we won't allow this to be disabled. It also can't
5158 * be changed if the cgroup has children already, or if tasks had
5159 * already joined.
5160 *
5161 * If tasks join before we set the limit, a person looking at
5162 * kmem.usage_in_bytes will have no way to determine when it took
5163 * place, which makes the value quite meaningless.
5164 *
5165 * After it first became limited, changes in the value of the limit are
5166 * of course permitted.
510fc4e1 5167 */
0999821b 5168 mutex_lock(&memcg_create_mutex);
510fc4e1 5169 mutex_lock(&set_limit_mutex);
6de5a8bf 5170 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5171 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5172 ret = -EBUSY;
5173 goto out;
5174 }
5175 ret = res_counter_set_limit(&memcg->kmem, val);
5176 VM_BUG_ON(ret);
5177
55007d84
GC
5178 ret = memcg_update_cache_sizes(memcg);
5179 if (ret) {
6de5a8bf 5180 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5181 goto out;
5182 }
692e89ab
GC
5183 static_key_slow_inc(&memcg_kmem_enabled_key);
5184 /*
5185 * setting the active bit after the inc will guarantee no one
5186 * starts accounting before all call sites are patched
5187 */
5188 memcg_kmem_set_active(memcg);
510fc4e1
GC
5189 } else
5190 ret = res_counter_set_limit(&memcg->kmem, val);
5191out:
5192 mutex_unlock(&set_limit_mutex);
0999821b 5193 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5194#endif
5195 return ret;
5196}
5197
6d043990 5198#ifdef CONFIG_MEMCG_KMEM
55007d84 5199static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5200{
55007d84 5201 int ret = 0;
510fc4e1
GC
5202 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5203 if (!parent)
55007d84
GC
5204 goto out;
5205
510fc4e1 5206 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5207 /*
5208 * When that happen, we need to disable the static branch only on those
5209 * memcgs that enabled it. To achieve this, we would be forced to
5210 * complicate the code by keeping track of which memcgs were the ones
5211 * that actually enabled limits, and which ones got it from its
5212 * parents.
5213 *
5214 * It is a lot simpler just to do static_key_slow_inc() on every child
5215 * that is accounted.
5216 */
55007d84
GC
5217 if (!memcg_kmem_is_active(memcg))
5218 goto out;
5219
5220 /*
10d5ebf4
LZ
5221 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5222 * memcg is active already. If the later initialization fails then the
5223 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5224 */
55007d84
GC
5225 static_key_slow_inc(&memcg_kmem_enabled_key);
5226
5227 mutex_lock(&set_limit_mutex);
425c598d 5228 memcg_stop_kmem_account();
55007d84 5229 ret = memcg_update_cache_sizes(memcg);
425c598d 5230 memcg_resume_kmem_account();
55007d84 5231 mutex_unlock(&set_limit_mutex);
55007d84
GC
5232out:
5233 return ret;
510fc4e1 5234}
6d043990 5235#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5236
628f4235
KH
5237/*
5238 * The user of this function is...
5239 * RES_LIMIT.
5240 */
182446d0 5241static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5242 const char *buffer)
8cdea7c0 5243{
182446d0 5244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5245 enum res_type type;
5246 int name;
628f4235
KH
5247 unsigned long long val;
5248 int ret;
5249
8c7c6e34
KH
5250 type = MEMFILE_TYPE(cft->private);
5251 name = MEMFILE_ATTR(cft->private);
af36f906 5252
8c7c6e34 5253 switch (name) {
628f4235 5254 case RES_LIMIT:
4b3bde4c
BS
5255 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5256 ret = -EINVAL;
5257 break;
5258 }
628f4235
KH
5259 /* This function does all necessary parse...reuse it */
5260 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5261 if (ret)
5262 break;
5263 if (type == _MEM)
628f4235 5264 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5265 else if (type == _MEMSWAP)
8c7c6e34 5266 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5267 else if (type == _KMEM)
182446d0 5268 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5269 else
5270 return -EINVAL;
628f4235 5271 break;
296c81d8
BS
5272 case RES_SOFT_LIMIT:
5273 ret = res_counter_memparse_write_strategy(buffer, &val);
5274 if (ret)
5275 break;
5276 /*
5277 * For memsw, soft limits are hard to implement in terms
5278 * of semantics, for now, we support soft limits for
5279 * control without swap
5280 */
5281 if (type == _MEM)
5282 ret = res_counter_set_soft_limit(&memcg->res, val);
5283 else
5284 ret = -EINVAL;
5285 break;
628f4235
KH
5286 default:
5287 ret = -EINVAL; /* should be BUG() ? */
5288 break;
5289 }
5290 return ret;
8cdea7c0
BS
5291}
5292
fee7b548
KH
5293static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5294 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5295{
fee7b548
KH
5296 unsigned long long min_limit, min_memsw_limit, tmp;
5297
5298 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5299 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5300 if (!memcg->use_hierarchy)
5301 goto out;
5302
63876986
TH
5303 while (css_parent(&memcg->css)) {
5304 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5305 if (!memcg->use_hierarchy)
5306 break;
5307 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5308 min_limit = min(min_limit, tmp);
5309 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5310 min_memsw_limit = min(min_memsw_limit, tmp);
5311 }
5312out:
5313 *mem_limit = min_limit;
5314 *memsw_limit = min_memsw_limit;
fee7b548
KH
5315}
5316
182446d0 5317static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5318{
182446d0 5319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5320 int name;
5321 enum res_type type;
c84872e1 5322
8c7c6e34
KH
5323 type = MEMFILE_TYPE(event);
5324 name = MEMFILE_ATTR(event);
af36f906 5325
8c7c6e34 5326 switch (name) {
29f2a4da 5327 case RES_MAX_USAGE:
8c7c6e34 5328 if (type == _MEM)
c0ff4b85 5329 res_counter_reset_max(&memcg->res);
510fc4e1 5330 else if (type == _MEMSWAP)
c0ff4b85 5331 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5332 else if (type == _KMEM)
5333 res_counter_reset_max(&memcg->kmem);
5334 else
5335 return -EINVAL;
29f2a4da
PE
5336 break;
5337 case RES_FAILCNT:
8c7c6e34 5338 if (type == _MEM)
c0ff4b85 5339 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5340 else if (type == _MEMSWAP)
c0ff4b85 5341 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5342 else if (type == _KMEM)
5343 res_counter_reset_failcnt(&memcg->kmem);
5344 else
5345 return -EINVAL;
29f2a4da
PE
5346 break;
5347 }
f64c3f54 5348
85cc59db 5349 return 0;
c84872e1
PE
5350}
5351
182446d0 5352static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5353 struct cftype *cft)
5354{
182446d0 5355 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5356}
5357
02491447 5358#ifdef CONFIG_MMU
182446d0 5359static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5360 struct cftype *cft, u64 val)
5361{
182446d0 5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5363
5364 if (val >= (1 << NR_MOVE_TYPE))
5365 return -EINVAL;
ee5e8472 5366
7dc74be0 5367 /*
ee5e8472
GC
5368 * No kind of locking is needed in here, because ->can_attach() will
5369 * check this value once in the beginning of the process, and then carry
5370 * on with stale data. This means that changes to this value will only
5371 * affect task migrations starting after the change.
7dc74be0 5372 */
c0ff4b85 5373 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5374 return 0;
5375}
02491447 5376#else
182446d0 5377static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5378 struct cftype *cft, u64 val)
5379{
5380 return -ENOSYS;
5381}
5382#endif
7dc74be0 5383
406eb0c9 5384#ifdef CONFIG_NUMA
2da8ca82 5385static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5386{
25485de6
GT
5387 struct numa_stat {
5388 const char *name;
5389 unsigned int lru_mask;
5390 };
5391
5392 static const struct numa_stat stats[] = {
5393 { "total", LRU_ALL },
5394 { "file", LRU_ALL_FILE },
5395 { "anon", LRU_ALL_ANON },
5396 { "unevictable", BIT(LRU_UNEVICTABLE) },
5397 };
5398 const struct numa_stat *stat;
406eb0c9 5399 int nid;
25485de6 5400 unsigned long nr;
2da8ca82 5401 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5402
25485de6
GT
5403 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5404 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5405 seq_printf(m, "%s=%lu", stat->name, nr);
5406 for_each_node_state(nid, N_MEMORY) {
5407 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5408 stat->lru_mask);
5409 seq_printf(m, " N%d=%lu", nid, nr);
5410 }
5411 seq_putc(m, '\n');
406eb0c9 5412 }
406eb0c9 5413
071aee13
YH
5414 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5415 struct mem_cgroup *iter;
5416
5417 nr = 0;
5418 for_each_mem_cgroup_tree(iter, memcg)
5419 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5420 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5421 for_each_node_state(nid, N_MEMORY) {
5422 nr = 0;
5423 for_each_mem_cgroup_tree(iter, memcg)
5424 nr += mem_cgroup_node_nr_lru_pages(
5425 iter, nid, stat->lru_mask);
5426 seq_printf(m, " N%d=%lu", nid, nr);
5427 }
5428 seq_putc(m, '\n');
406eb0c9 5429 }
406eb0c9 5430
406eb0c9
YH
5431 return 0;
5432}
5433#endif /* CONFIG_NUMA */
5434
af7c4b0e
JW
5435static inline void mem_cgroup_lru_names_not_uptodate(void)
5436{
5437 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5438}
5439
2da8ca82 5440static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5441{
2da8ca82 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5443 struct mem_cgroup *mi;
5444 unsigned int i;
406eb0c9 5445
af7c4b0e 5446 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5447 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5448 continue;
af7c4b0e
JW
5449 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5450 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5451 }
7b854121 5452
af7c4b0e
JW
5453 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5454 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5455 mem_cgroup_read_events(memcg, i));
5456
5457 for (i = 0; i < NR_LRU_LISTS; i++)
5458 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5459 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5460
14067bb3 5461 /* Hierarchical information */
fee7b548
KH
5462 {
5463 unsigned long long limit, memsw_limit;
d79154bb 5464 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5465 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5466 if (do_swap_account)
78ccf5b5
JW
5467 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5468 memsw_limit);
fee7b548 5469 }
7f016ee8 5470
af7c4b0e
JW
5471 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5472 long long val = 0;
5473
bff6bb83 5474 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5475 continue;
af7c4b0e
JW
5476 for_each_mem_cgroup_tree(mi, memcg)
5477 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5478 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5479 }
5480
5481 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5482 unsigned long long val = 0;
5483
5484 for_each_mem_cgroup_tree(mi, memcg)
5485 val += mem_cgroup_read_events(mi, i);
5486 seq_printf(m, "total_%s %llu\n",
5487 mem_cgroup_events_names[i], val);
5488 }
5489
5490 for (i = 0; i < NR_LRU_LISTS; i++) {
5491 unsigned long long val = 0;
5492
5493 for_each_mem_cgroup_tree(mi, memcg)
5494 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5495 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5496 }
14067bb3 5497
7f016ee8 5498#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5499 {
5500 int nid, zid;
5501 struct mem_cgroup_per_zone *mz;
89abfab1 5502 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5503 unsigned long recent_rotated[2] = {0, 0};
5504 unsigned long recent_scanned[2] = {0, 0};
5505
5506 for_each_online_node(nid)
5507 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5508 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5509 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5510
89abfab1
HD
5511 recent_rotated[0] += rstat->recent_rotated[0];
5512 recent_rotated[1] += rstat->recent_rotated[1];
5513 recent_scanned[0] += rstat->recent_scanned[0];
5514 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5515 }
78ccf5b5
JW
5516 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5517 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5518 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5519 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5520 }
5521#endif
5522
d2ceb9b7
KH
5523 return 0;
5524}
5525
182446d0
TH
5526static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5527 struct cftype *cft)
a7885eb8 5528{
182446d0 5529 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5530
1f4c025b 5531 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5532}
5533
182446d0
TH
5534static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5535 struct cftype *cft, u64 val)
a7885eb8 5536{
182446d0 5537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5538 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5539
63876986 5540 if (val > 100 || !parent)
a7885eb8
KM
5541 return -EINVAL;
5542
0999821b 5543 mutex_lock(&memcg_create_mutex);
068b38c1 5544
a7885eb8 5545 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5546 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5547 mutex_unlock(&memcg_create_mutex);
a7885eb8 5548 return -EINVAL;
068b38c1 5549 }
a7885eb8 5550
a7885eb8 5551 memcg->swappiness = val;
a7885eb8 5552
0999821b 5553 mutex_unlock(&memcg_create_mutex);
068b38c1 5554
a7885eb8
KM
5555 return 0;
5556}
5557
2e72b634
KS
5558static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5559{
5560 struct mem_cgroup_threshold_ary *t;
5561 u64 usage;
5562 int i;
5563
5564 rcu_read_lock();
5565 if (!swap)
2c488db2 5566 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5567 else
2c488db2 5568 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5569
5570 if (!t)
5571 goto unlock;
5572
5573 usage = mem_cgroup_usage(memcg, swap);
5574
5575 /*
748dad36 5576 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5577 * If it's not true, a threshold was crossed after last
5578 * call of __mem_cgroup_threshold().
5579 */
5407a562 5580 i = t->current_threshold;
2e72b634
KS
5581
5582 /*
5583 * Iterate backward over array of thresholds starting from
5584 * current_threshold and check if a threshold is crossed.
5585 * If none of thresholds below usage is crossed, we read
5586 * only one element of the array here.
5587 */
5588 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5589 eventfd_signal(t->entries[i].eventfd, 1);
5590
5591 /* i = current_threshold + 1 */
5592 i++;
5593
5594 /*
5595 * Iterate forward over array of thresholds starting from
5596 * current_threshold+1 and check if a threshold is crossed.
5597 * If none of thresholds above usage is crossed, we read
5598 * only one element of the array here.
5599 */
5600 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5601 eventfd_signal(t->entries[i].eventfd, 1);
5602
5603 /* Update current_threshold */
5407a562 5604 t->current_threshold = i - 1;
2e72b634
KS
5605unlock:
5606 rcu_read_unlock();
5607}
5608
5609static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5610{
ad4ca5f4
KS
5611 while (memcg) {
5612 __mem_cgroup_threshold(memcg, false);
5613 if (do_swap_account)
5614 __mem_cgroup_threshold(memcg, true);
5615
5616 memcg = parent_mem_cgroup(memcg);
5617 }
2e72b634
KS
5618}
5619
5620static int compare_thresholds(const void *a, const void *b)
5621{
5622 const struct mem_cgroup_threshold *_a = a;
5623 const struct mem_cgroup_threshold *_b = b;
5624
2bff24a3
GT
5625 if (_a->threshold > _b->threshold)
5626 return 1;
5627
5628 if (_a->threshold < _b->threshold)
5629 return -1;
5630
5631 return 0;
2e72b634
KS
5632}
5633
c0ff4b85 5634static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5635{
5636 struct mem_cgroup_eventfd_list *ev;
5637
c0ff4b85 5638 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5639 eventfd_signal(ev->eventfd, 1);
5640 return 0;
5641}
5642
c0ff4b85 5643static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5644{
7d74b06f
KH
5645 struct mem_cgroup *iter;
5646
c0ff4b85 5647 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5648 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5649}
5650
59b6f873 5651static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5652 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5653{
2c488db2
KS
5654 struct mem_cgroup_thresholds *thresholds;
5655 struct mem_cgroup_threshold_ary *new;
2e72b634 5656 u64 threshold, usage;
2c488db2 5657 int i, size, ret;
2e72b634
KS
5658
5659 ret = res_counter_memparse_write_strategy(args, &threshold);
5660 if (ret)
5661 return ret;
5662
5663 mutex_lock(&memcg->thresholds_lock);
2c488db2 5664
2e72b634 5665 if (type == _MEM)
2c488db2 5666 thresholds = &memcg->thresholds;
2e72b634 5667 else if (type == _MEMSWAP)
2c488db2 5668 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5669 else
5670 BUG();
5671
5672 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5673
5674 /* Check if a threshold crossed before adding a new one */
2c488db2 5675 if (thresholds->primary)
2e72b634
KS
5676 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5677
2c488db2 5678 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5679
5680 /* Allocate memory for new array of thresholds */
2c488db2 5681 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5682 GFP_KERNEL);
2c488db2 5683 if (!new) {
2e72b634
KS
5684 ret = -ENOMEM;
5685 goto unlock;
5686 }
2c488db2 5687 new->size = size;
2e72b634
KS
5688
5689 /* Copy thresholds (if any) to new array */
2c488db2
KS
5690 if (thresholds->primary) {
5691 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5692 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5693 }
5694
2e72b634 5695 /* Add new threshold */
2c488db2
KS
5696 new->entries[size - 1].eventfd = eventfd;
5697 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5698
5699 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5700 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5701 compare_thresholds, NULL);
5702
5703 /* Find current threshold */
2c488db2 5704 new->current_threshold = -1;
2e72b634 5705 for (i = 0; i < size; i++) {
748dad36 5706 if (new->entries[i].threshold <= usage) {
2e72b634 5707 /*
2c488db2
KS
5708 * new->current_threshold will not be used until
5709 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5710 * it here.
5711 */
2c488db2 5712 ++new->current_threshold;
748dad36
SZ
5713 } else
5714 break;
2e72b634
KS
5715 }
5716
2c488db2
KS
5717 /* Free old spare buffer and save old primary buffer as spare */
5718 kfree(thresholds->spare);
5719 thresholds->spare = thresholds->primary;
5720
5721 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5722
907860ed 5723 /* To be sure that nobody uses thresholds */
2e72b634
KS
5724 synchronize_rcu();
5725
2e72b634
KS
5726unlock:
5727 mutex_unlock(&memcg->thresholds_lock);
5728
5729 return ret;
5730}
5731
59b6f873 5732static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5733 struct eventfd_ctx *eventfd, const char *args)
5734{
59b6f873 5735 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5736}
5737
59b6f873 5738static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5739 struct eventfd_ctx *eventfd, const char *args)
5740{
59b6f873 5741 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5742}
5743
59b6f873 5744static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5745 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5746{
2c488db2
KS
5747 struct mem_cgroup_thresholds *thresholds;
5748 struct mem_cgroup_threshold_ary *new;
2e72b634 5749 u64 usage;
2c488db2 5750 int i, j, size;
2e72b634
KS
5751
5752 mutex_lock(&memcg->thresholds_lock);
5753 if (type == _MEM)
2c488db2 5754 thresholds = &memcg->thresholds;
2e72b634 5755 else if (type == _MEMSWAP)
2c488db2 5756 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5757 else
5758 BUG();
5759
371528ca
AV
5760 if (!thresholds->primary)
5761 goto unlock;
5762
2e72b634
KS
5763 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5764
5765 /* Check if a threshold crossed before removing */
5766 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5767
5768 /* Calculate new number of threshold */
2c488db2
KS
5769 size = 0;
5770 for (i = 0; i < thresholds->primary->size; i++) {
5771 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5772 size++;
5773 }
5774
2c488db2 5775 new = thresholds->spare;
907860ed 5776
2e72b634
KS
5777 /* Set thresholds array to NULL if we don't have thresholds */
5778 if (!size) {
2c488db2
KS
5779 kfree(new);
5780 new = NULL;
907860ed 5781 goto swap_buffers;
2e72b634
KS
5782 }
5783
2c488db2 5784 new->size = size;
2e72b634
KS
5785
5786 /* Copy thresholds and find current threshold */
2c488db2
KS
5787 new->current_threshold = -1;
5788 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5789 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5790 continue;
5791
2c488db2 5792 new->entries[j] = thresholds->primary->entries[i];
748dad36 5793 if (new->entries[j].threshold <= usage) {
2e72b634 5794 /*
2c488db2 5795 * new->current_threshold will not be used
2e72b634
KS
5796 * until rcu_assign_pointer(), so it's safe to increment
5797 * it here.
5798 */
2c488db2 5799 ++new->current_threshold;
2e72b634
KS
5800 }
5801 j++;
5802 }
5803
907860ed 5804swap_buffers:
2c488db2
KS
5805 /* Swap primary and spare array */
5806 thresholds->spare = thresholds->primary;
8c757763
SZ
5807 /* If all events are unregistered, free the spare array */
5808 if (!new) {
5809 kfree(thresholds->spare);
5810 thresholds->spare = NULL;
5811 }
5812
2c488db2 5813 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5814
907860ed 5815 /* To be sure that nobody uses thresholds */
2e72b634 5816 synchronize_rcu();
371528ca 5817unlock:
2e72b634 5818 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5819}
c1e862c1 5820
59b6f873 5821static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5822 struct eventfd_ctx *eventfd)
5823{
59b6f873 5824 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5825}
5826
59b6f873 5827static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5828 struct eventfd_ctx *eventfd)
5829{
59b6f873 5830 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5831}
5832
59b6f873 5833static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5834 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5835{
9490ff27 5836 struct mem_cgroup_eventfd_list *event;
9490ff27 5837
9490ff27
KH
5838 event = kmalloc(sizeof(*event), GFP_KERNEL);
5839 if (!event)
5840 return -ENOMEM;
5841
1af8efe9 5842 spin_lock(&memcg_oom_lock);
9490ff27
KH
5843
5844 event->eventfd = eventfd;
5845 list_add(&event->list, &memcg->oom_notify);
5846
5847 /* already in OOM ? */
79dfdacc 5848 if (atomic_read(&memcg->under_oom))
9490ff27 5849 eventfd_signal(eventfd, 1);
1af8efe9 5850 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5851
5852 return 0;
5853}
5854
59b6f873 5855static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5856 struct eventfd_ctx *eventfd)
9490ff27 5857{
9490ff27 5858 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5859
1af8efe9 5860 spin_lock(&memcg_oom_lock);
9490ff27 5861
c0ff4b85 5862 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5863 if (ev->eventfd == eventfd) {
5864 list_del(&ev->list);
5865 kfree(ev);
5866 }
5867 }
5868
1af8efe9 5869 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5870}
5871
2da8ca82 5872static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5873{
2da8ca82 5874 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5875
791badbd
TH
5876 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5877 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5878 return 0;
5879}
5880
182446d0 5881static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5882 struct cftype *cft, u64 val)
5883{
182446d0 5884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5885 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5886
5887 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5888 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5889 return -EINVAL;
5890
0999821b 5891 mutex_lock(&memcg_create_mutex);
3c11ecf4 5892 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5893 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5894 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5895 return -EINVAL;
5896 }
c0ff4b85 5897 memcg->oom_kill_disable = val;
4d845ebf 5898 if (!val)
c0ff4b85 5899 memcg_oom_recover(memcg);
0999821b 5900 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5901 return 0;
5902}
5903
c255a458 5904#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5905static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5906{
55007d84
GC
5907 int ret;
5908
2633d7a0 5909 memcg->kmemcg_id = -1;
55007d84
GC
5910 ret = memcg_propagate_kmem(memcg);
5911 if (ret)
5912 return ret;
2633d7a0 5913
1d62e436 5914 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5915}
e5671dfa 5916
10d5ebf4 5917static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5918{
1d62e436 5919 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5920}
5921
5922static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5923{
5924 if (!memcg_kmem_is_active(memcg))
5925 return;
5926
5927 /*
5928 * kmem charges can outlive the cgroup. In the case of slab
5929 * pages, for instance, a page contain objects from various
5930 * processes. As we prevent from taking a reference for every
5931 * such allocation we have to be careful when doing uncharge
5932 * (see memcg_uncharge_kmem) and here during offlining.
5933 *
5934 * The idea is that that only the _last_ uncharge which sees
5935 * the dead memcg will drop the last reference. An additional
5936 * reference is taken here before the group is marked dead
5937 * which is then paired with css_put during uncharge resp. here.
5938 *
5939 * Although this might sound strange as this path is called from
5940 * css_offline() when the referencemight have dropped down to 0
5941 * and shouldn't be incremented anymore (css_tryget would fail)
5942 * we do not have other options because of the kmem allocations
5943 * lifetime.
5944 */
5945 css_get(&memcg->css);
7de37682
GC
5946
5947 memcg_kmem_mark_dead(memcg);
5948
5949 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5950 return;
5951
7de37682 5952 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5953 css_put(&memcg->css);
d1a4c0b3 5954}
e5671dfa 5955#else
cbe128e3 5956static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5957{
5958 return 0;
5959}
d1a4c0b3 5960
10d5ebf4
LZ
5961static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5962{
5963}
5964
5965static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5966{
5967}
e5671dfa
GC
5968#endif
5969
3bc942f3
TH
5970/*
5971 * DO NOT USE IN NEW FILES.
5972 *
5973 * "cgroup.event_control" implementation.
5974 *
5975 * This is way over-engineered. It tries to support fully configurable
5976 * events for each user. Such level of flexibility is completely
5977 * unnecessary especially in the light of the planned unified hierarchy.
5978 *
5979 * Please deprecate this and replace with something simpler if at all
5980 * possible.
5981 */
5982
79bd9814
TH
5983/*
5984 * Unregister event and free resources.
5985 *
5986 * Gets called from workqueue.
5987 */
3bc942f3 5988static void memcg_event_remove(struct work_struct *work)
79bd9814 5989{
3bc942f3
TH
5990 struct mem_cgroup_event *event =
5991 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5992 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5993
5994 remove_wait_queue(event->wqh, &event->wait);
5995
59b6f873 5996 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5997
5998 /* Notify userspace the event is going away. */
5999 eventfd_signal(event->eventfd, 1);
6000
6001 eventfd_ctx_put(event->eventfd);
6002 kfree(event);
59b6f873 6003 css_put(&memcg->css);
79bd9814
TH
6004}
6005
6006/*
6007 * Gets called on POLLHUP on eventfd when user closes it.
6008 *
6009 * Called with wqh->lock held and interrupts disabled.
6010 */
3bc942f3
TH
6011static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6012 int sync, void *key)
79bd9814 6013{
3bc942f3
TH
6014 struct mem_cgroup_event *event =
6015 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6016 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6017 unsigned long flags = (unsigned long)key;
6018
6019 if (flags & POLLHUP) {
6020 /*
6021 * If the event has been detached at cgroup removal, we
6022 * can simply return knowing the other side will cleanup
6023 * for us.
6024 *
6025 * We can't race against event freeing since the other
6026 * side will require wqh->lock via remove_wait_queue(),
6027 * which we hold.
6028 */
fba94807 6029 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6030 if (!list_empty(&event->list)) {
6031 list_del_init(&event->list);
6032 /*
6033 * We are in atomic context, but cgroup_event_remove()
6034 * may sleep, so we have to call it in workqueue.
6035 */
6036 schedule_work(&event->remove);
6037 }
fba94807 6038 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6039 }
6040
6041 return 0;
6042}
6043
3bc942f3 6044static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6045 wait_queue_head_t *wqh, poll_table *pt)
6046{
3bc942f3
TH
6047 struct mem_cgroup_event *event =
6048 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6049
6050 event->wqh = wqh;
6051 add_wait_queue(wqh, &event->wait);
6052}
6053
6054/*
3bc942f3
TH
6055 * DO NOT USE IN NEW FILES.
6056 *
79bd9814
TH
6057 * Parse input and register new cgroup event handler.
6058 *
6059 * Input must be in format '<event_fd> <control_fd> <args>'.
6060 * Interpretation of args is defined by control file implementation.
6061 */
3bc942f3
TH
6062static int memcg_write_event_control(struct cgroup_subsys_state *css,
6063 struct cftype *cft, const char *buffer)
79bd9814 6064{
fba94807 6065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6066 struct mem_cgroup_event *event;
79bd9814
TH
6067 struct cgroup_subsys_state *cfile_css;
6068 unsigned int efd, cfd;
6069 struct fd efile;
6070 struct fd cfile;
fba94807 6071 const char *name;
79bd9814
TH
6072 char *endp;
6073 int ret;
6074
6075 efd = simple_strtoul(buffer, &endp, 10);
6076 if (*endp != ' ')
6077 return -EINVAL;
6078 buffer = endp + 1;
6079
6080 cfd = simple_strtoul(buffer, &endp, 10);
6081 if ((*endp != ' ') && (*endp != '\0'))
6082 return -EINVAL;
6083 buffer = endp + 1;
6084
6085 event = kzalloc(sizeof(*event), GFP_KERNEL);
6086 if (!event)
6087 return -ENOMEM;
6088
59b6f873 6089 event->memcg = memcg;
79bd9814 6090 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6091 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6092 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6093 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6094
6095 efile = fdget(efd);
6096 if (!efile.file) {
6097 ret = -EBADF;
6098 goto out_kfree;
6099 }
6100
6101 event->eventfd = eventfd_ctx_fileget(efile.file);
6102 if (IS_ERR(event->eventfd)) {
6103 ret = PTR_ERR(event->eventfd);
6104 goto out_put_efile;
6105 }
6106
6107 cfile = fdget(cfd);
6108 if (!cfile.file) {
6109 ret = -EBADF;
6110 goto out_put_eventfd;
6111 }
6112
6113 /* the process need read permission on control file */
6114 /* AV: shouldn't we check that it's been opened for read instead? */
6115 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6116 if (ret < 0)
6117 goto out_put_cfile;
6118
fba94807
TH
6119 /*
6120 * Determine the event callbacks and set them in @event. This used
6121 * to be done via struct cftype but cgroup core no longer knows
6122 * about these events. The following is crude but the whole thing
6123 * is for compatibility anyway.
3bc942f3
TH
6124 *
6125 * DO NOT ADD NEW FILES.
fba94807
TH
6126 */
6127 name = cfile.file->f_dentry->d_name.name;
6128
6129 if (!strcmp(name, "memory.usage_in_bytes")) {
6130 event->register_event = mem_cgroup_usage_register_event;
6131 event->unregister_event = mem_cgroup_usage_unregister_event;
6132 } else if (!strcmp(name, "memory.oom_control")) {
6133 event->register_event = mem_cgroup_oom_register_event;
6134 event->unregister_event = mem_cgroup_oom_unregister_event;
6135 } else if (!strcmp(name, "memory.pressure_level")) {
6136 event->register_event = vmpressure_register_event;
6137 event->unregister_event = vmpressure_unregister_event;
6138 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6139 event->register_event = memsw_cgroup_usage_register_event;
6140 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6141 } else {
6142 ret = -EINVAL;
6143 goto out_put_cfile;
6144 }
6145
79bd9814 6146 /*
b5557c4c
TH
6147 * Verify @cfile should belong to @css. Also, remaining events are
6148 * automatically removed on cgroup destruction but the removal is
6149 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6150 */
6151 rcu_read_lock();
6152
6153 ret = -EINVAL;
b5557c4c
TH
6154 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6155 &mem_cgroup_subsys);
6156 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6157 ret = 0;
6158
6159 rcu_read_unlock();
6160 if (ret)
6161 goto out_put_cfile;
6162
59b6f873 6163 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6164 if (ret)
6165 goto out_put_css;
6166
6167 efile.file->f_op->poll(efile.file, &event->pt);
6168
fba94807
TH
6169 spin_lock(&memcg->event_list_lock);
6170 list_add(&event->list, &memcg->event_list);
6171 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6172
6173 fdput(cfile);
6174 fdput(efile);
6175
6176 return 0;
6177
6178out_put_css:
b5557c4c 6179 css_put(css);
79bd9814
TH
6180out_put_cfile:
6181 fdput(cfile);
6182out_put_eventfd:
6183 eventfd_ctx_put(event->eventfd);
6184out_put_efile:
6185 fdput(efile);
6186out_kfree:
6187 kfree(event);
6188
6189 return ret;
6190}
6191
8cdea7c0
BS
6192static struct cftype mem_cgroup_files[] = {
6193 {
0eea1030 6194 .name = "usage_in_bytes",
8c7c6e34 6195 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6196 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6197 },
c84872e1
PE
6198 {
6199 .name = "max_usage_in_bytes",
8c7c6e34 6200 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6201 .trigger = mem_cgroup_reset,
791badbd 6202 .read_u64 = mem_cgroup_read_u64,
c84872e1 6203 },
8cdea7c0 6204 {
0eea1030 6205 .name = "limit_in_bytes",
8c7c6e34 6206 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6207 .write_string = mem_cgroup_write,
791badbd 6208 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6209 },
296c81d8
BS
6210 {
6211 .name = "soft_limit_in_bytes",
6212 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6213 .write_string = mem_cgroup_write,
791badbd 6214 .read_u64 = mem_cgroup_read_u64,
296c81d8 6215 },
8cdea7c0
BS
6216 {
6217 .name = "failcnt",
8c7c6e34 6218 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6219 .trigger = mem_cgroup_reset,
791badbd 6220 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6221 },
d2ceb9b7
KH
6222 {
6223 .name = "stat",
2da8ca82 6224 .seq_show = memcg_stat_show,
d2ceb9b7 6225 },
c1e862c1
KH
6226 {
6227 .name = "force_empty",
6228 .trigger = mem_cgroup_force_empty_write,
6229 },
18f59ea7
BS
6230 {
6231 .name = "use_hierarchy",
f00baae7 6232 .flags = CFTYPE_INSANE,
18f59ea7
BS
6233 .write_u64 = mem_cgroup_hierarchy_write,
6234 .read_u64 = mem_cgroup_hierarchy_read,
6235 },
79bd9814 6236 {
3bc942f3
TH
6237 .name = "cgroup.event_control", /* XXX: for compat */
6238 .write_string = memcg_write_event_control,
79bd9814
TH
6239 .flags = CFTYPE_NO_PREFIX,
6240 .mode = S_IWUGO,
6241 },
a7885eb8
KM
6242 {
6243 .name = "swappiness",
6244 .read_u64 = mem_cgroup_swappiness_read,
6245 .write_u64 = mem_cgroup_swappiness_write,
6246 },
7dc74be0
DN
6247 {
6248 .name = "move_charge_at_immigrate",
6249 .read_u64 = mem_cgroup_move_charge_read,
6250 .write_u64 = mem_cgroup_move_charge_write,
6251 },
9490ff27
KH
6252 {
6253 .name = "oom_control",
2da8ca82 6254 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6255 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6256 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6257 },
70ddf637
AV
6258 {
6259 .name = "pressure_level",
70ddf637 6260 },
406eb0c9
YH
6261#ifdef CONFIG_NUMA
6262 {
6263 .name = "numa_stat",
2da8ca82 6264 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6265 },
6266#endif
510fc4e1
GC
6267#ifdef CONFIG_MEMCG_KMEM
6268 {
6269 .name = "kmem.limit_in_bytes",
6270 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6271 .write_string = mem_cgroup_write,
791badbd 6272 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6273 },
6274 {
6275 .name = "kmem.usage_in_bytes",
6276 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6277 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6278 },
6279 {
6280 .name = "kmem.failcnt",
6281 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6282 .trigger = mem_cgroup_reset,
791badbd 6283 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6284 },
6285 {
6286 .name = "kmem.max_usage_in_bytes",
6287 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6288 .trigger = mem_cgroup_reset,
791badbd 6289 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6290 },
749c5415
GC
6291#ifdef CONFIG_SLABINFO
6292 {
6293 .name = "kmem.slabinfo",
2da8ca82 6294 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6295 },
6296#endif
8c7c6e34 6297#endif
6bc10349 6298 { }, /* terminate */
af36f906 6299};
8c7c6e34 6300
2d11085e
MH
6301#ifdef CONFIG_MEMCG_SWAP
6302static struct cftype memsw_cgroup_files[] = {
6303 {
6304 .name = "memsw.usage_in_bytes",
6305 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6306 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6307 },
6308 {
6309 .name = "memsw.max_usage_in_bytes",
6310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6311 .trigger = mem_cgroup_reset,
791badbd 6312 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6313 },
6314 {
6315 .name = "memsw.limit_in_bytes",
6316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6317 .write_string = mem_cgroup_write,
791badbd 6318 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6319 },
6320 {
6321 .name = "memsw.failcnt",
6322 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6323 .trigger = mem_cgroup_reset,
791badbd 6324 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6325 },
6326 { }, /* terminate */
6327};
6328#endif
c0ff4b85 6329static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6330{
6331 struct mem_cgroup_per_node *pn;
1ecaab2b 6332 struct mem_cgroup_per_zone *mz;
41e3355d 6333 int zone, tmp = node;
1ecaab2b
KH
6334 /*
6335 * This routine is called against possible nodes.
6336 * But it's BUG to call kmalloc() against offline node.
6337 *
6338 * TODO: this routine can waste much memory for nodes which will
6339 * never be onlined. It's better to use memory hotplug callback
6340 * function.
6341 */
41e3355d
KH
6342 if (!node_state(node, N_NORMAL_MEMORY))
6343 tmp = -1;
17295c88 6344 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6345 if (!pn)
6346 return 1;
1ecaab2b 6347
1ecaab2b
KH
6348 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6349 mz = &pn->zoneinfo[zone];
bea8c150 6350 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6351 mz->usage_in_excess = 0;
6352 mz->on_tree = false;
d79154bb 6353 mz->memcg = memcg;
1ecaab2b 6354 }
54f72fe0 6355 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6356 return 0;
6357}
6358
c0ff4b85 6359static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6360{
54f72fe0 6361 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6362}
6363
33327948
KH
6364static struct mem_cgroup *mem_cgroup_alloc(void)
6365{
d79154bb 6366 struct mem_cgroup *memcg;
8ff69e2c 6367 size_t size;
33327948 6368
8ff69e2c
VD
6369 size = sizeof(struct mem_cgroup);
6370 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6371
8ff69e2c 6372 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6373 if (!memcg)
e7bbcdf3
DC
6374 return NULL;
6375
d79154bb
HD
6376 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6377 if (!memcg->stat)
d2e61b8d 6378 goto out_free;
d79154bb
HD
6379 spin_lock_init(&memcg->pcp_counter_lock);
6380 return memcg;
d2e61b8d
DC
6381
6382out_free:
8ff69e2c 6383 kfree(memcg);
d2e61b8d 6384 return NULL;
33327948
KH
6385}
6386
59927fb9 6387/*
c8b2a36f
GC
6388 * At destroying mem_cgroup, references from swap_cgroup can remain.
6389 * (scanning all at force_empty is too costly...)
6390 *
6391 * Instead of clearing all references at force_empty, we remember
6392 * the number of reference from swap_cgroup and free mem_cgroup when
6393 * it goes down to 0.
6394 *
6395 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6396 */
c8b2a36f
GC
6397
6398static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6399{
c8b2a36f 6400 int node;
59927fb9 6401
bb4cc1a8 6402 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6403
6404 for_each_node(node)
6405 free_mem_cgroup_per_zone_info(memcg, node);
6406
6407 free_percpu(memcg->stat);
6408
3f134619
GC
6409 /*
6410 * We need to make sure that (at least for now), the jump label
6411 * destruction code runs outside of the cgroup lock. This is because
6412 * get_online_cpus(), which is called from the static_branch update,
6413 * can't be called inside the cgroup_lock. cpusets are the ones
6414 * enforcing this dependency, so if they ever change, we might as well.
6415 *
6416 * schedule_work() will guarantee this happens. Be careful if you need
6417 * to move this code around, and make sure it is outside
6418 * the cgroup_lock.
6419 */
a8964b9b 6420 disarm_static_keys(memcg);
8ff69e2c 6421 kfree(memcg);
59927fb9 6422}
3afe36b1 6423
7bcc1bb1
DN
6424/*
6425 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6426 */
e1aab161 6427struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6428{
c0ff4b85 6429 if (!memcg->res.parent)
7bcc1bb1 6430 return NULL;
c0ff4b85 6431 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6432}
e1aab161 6433EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6434
bb4cc1a8
AM
6435static void __init mem_cgroup_soft_limit_tree_init(void)
6436{
6437 struct mem_cgroup_tree_per_node *rtpn;
6438 struct mem_cgroup_tree_per_zone *rtpz;
6439 int tmp, node, zone;
6440
6441 for_each_node(node) {
6442 tmp = node;
6443 if (!node_state(node, N_NORMAL_MEMORY))
6444 tmp = -1;
6445 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6446 BUG_ON(!rtpn);
6447
6448 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6449
6450 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6451 rtpz = &rtpn->rb_tree_per_zone[zone];
6452 rtpz->rb_root = RB_ROOT;
6453 spin_lock_init(&rtpz->lock);
6454 }
6455 }
6456}
6457
0eb253e2 6458static struct cgroup_subsys_state * __ref
eb95419b 6459mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6460{
d142e3e6 6461 struct mem_cgroup *memcg;
04046e1a 6462 long error = -ENOMEM;
6d12e2d8 6463 int node;
8cdea7c0 6464
c0ff4b85
R
6465 memcg = mem_cgroup_alloc();
6466 if (!memcg)
04046e1a 6467 return ERR_PTR(error);
78fb7466 6468
3ed28fa1 6469 for_each_node(node)
c0ff4b85 6470 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6471 goto free_out;
f64c3f54 6472
c077719b 6473 /* root ? */
eb95419b 6474 if (parent_css == NULL) {
a41c58a6 6475 root_mem_cgroup = memcg;
d142e3e6
GC
6476 res_counter_init(&memcg->res, NULL);
6477 res_counter_init(&memcg->memsw, NULL);
6478 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6479 }
28dbc4b6 6480
d142e3e6
GC
6481 memcg->last_scanned_node = MAX_NUMNODES;
6482 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6483 memcg->move_charge_at_immigrate = 0;
6484 mutex_init(&memcg->thresholds_lock);
6485 spin_lock_init(&memcg->move_lock);
70ddf637 6486 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6487 INIT_LIST_HEAD(&memcg->event_list);
6488 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6489
6490 return &memcg->css;
6491
6492free_out:
6493 __mem_cgroup_free(memcg);
6494 return ERR_PTR(error);
6495}
6496
6497static int
eb95419b 6498mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6499{
eb95419b
TH
6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6502 int error = 0;
6503
4219b2da
LZ
6504 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6505 return -ENOSPC;
6506
63876986 6507 if (!parent)
d142e3e6
GC
6508 return 0;
6509
0999821b 6510 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6511
6512 memcg->use_hierarchy = parent->use_hierarchy;
6513 memcg->oom_kill_disable = parent->oom_kill_disable;
6514 memcg->swappiness = mem_cgroup_swappiness(parent);
6515
6516 if (parent->use_hierarchy) {
c0ff4b85
R
6517 res_counter_init(&memcg->res, &parent->res);
6518 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6519 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6520
7bcc1bb1 6521 /*
8d76a979
LZ
6522 * No need to take a reference to the parent because cgroup
6523 * core guarantees its existence.
7bcc1bb1 6524 */
18f59ea7 6525 } else {
c0ff4b85
R
6526 res_counter_init(&memcg->res, NULL);
6527 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6528 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6529 /*
6530 * Deeper hierachy with use_hierarchy == false doesn't make
6531 * much sense so let cgroup subsystem know about this
6532 * unfortunate state in our controller.
6533 */
d142e3e6 6534 if (parent != root_mem_cgroup)
8c7f6edb 6535 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6536 }
cbe128e3
GC
6537
6538 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6539 mutex_unlock(&memcg_create_mutex);
d142e3e6 6540 return error;
8cdea7c0
BS
6541}
6542
5f578161
MH
6543/*
6544 * Announce all parents that a group from their hierarchy is gone.
6545 */
6546static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6547{
6548 struct mem_cgroup *parent = memcg;
6549
6550 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6551 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6552
6553 /*
6554 * if the root memcg is not hierarchical we have to check it
6555 * explicitely.
6556 */
6557 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6558 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6559}
6560
eb95419b 6561static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6562{
eb95419b 6563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6564 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6565
6566 /*
6567 * Unregister events and notify userspace.
6568 * Notify userspace about cgroup removing only after rmdir of cgroup
6569 * directory to avoid race between userspace and kernelspace.
6570 */
fba94807
TH
6571 spin_lock(&memcg->event_list_lock);
6572 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6573 list_del_init(&event->list);
6574 schedule_work(&event->remove);
6575 }
fba94807 6576 spin_unlock(&memcg->event_list_lock);
ec64f515 6577
10d5ebf4
LZ
6578 kmem_cgroup_css_offline(memcg);
6579
5f578161 6580 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6581 mem_cgroup_reparent_charges(memcg);
1f458cbf 6582 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6583 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6584}
6585
eb95419b 6586static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6587{
eb95419b 6588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6589 /*
6590 * XXX: css_offline() would be where we should reparent all
6591 * memory to prepare the cgroup for destruction. However,
6592 * memcg does not do css_tryget() and res_counter charging
6593 * under the same RCU lock region, which means that charging
6594 * could race with offlining. Offlining only happens to
6595 * cgroups with no tasks in them but charges can show up
6596 * without any tasks from the swapin path when the target
6597 * memcg is looked up from the swapout record and not from the
6598 * current task as it usually is. A race like this can leak
6599 * charges and put pages with stale cgroup pointers into
6600 * circulation:
6601 *
6602 * #0 #1
6603 * lookup_swap_cgroup_id()
6604 * rcu_read_lock()
6605 * mem_cgroup_lookup()
6606 * css_tryget()
6607 * rcu_read_unlock()
6608 * disable css_tryget()
6609 * call_rcu()
6610 * offline_css()
6611 * reparent_charges()
6612 * res_counter_charge()
6613 * css_put()
6614 * css_free()
6615 * pc->mem_cgroup = dead memcg
6616 * add page to lru
6617 *
6618 * The bulk of the charges are still moved in offline_css() to
6619 * avoid pinning a lot of pages in case a long-term reference
6620 * like a swapout record is deferring the css_free() to long
6621 * after offlining. But this makes sure we catch any charges
6622 * made after offlining:
6623 */
6624 mem_cgroup_reparent_charges(memcg);
c268e994 6625
10d5ebf4 6626 memcg_destroy_kmem(memcg);
465939a1 6627 __mem_cgroup_free(memcg);
8cdea7c0
BS
6628}
6629
02491447 6630#ifdef CONFIG_MMU
7dc74be0 6631/* Handlers for move charge at task migration. */
854ffa8d
DN
6632#define PRECHARGE_COUNT_AT_ONCE 256
6633static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6634{
854ffa8d
DN
6635 int ret = 0;
6636 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6637 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6638
c0ff4b85 6639 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6640 mc.precharge += count;
6641 /* we don't need css_get for root */
6642 return ret;
6643 }
6644 /* try to charge at once */
6645 if (count > 1) {
6646 struct res_counter *dummy;
6647 /*
c0ff4b85 6648 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6649 * by cgroup_lock_live_cgroup() that it is not removed and we
6650 * are still under the same cgroup_mutex. So we can postpone
6651 * css_get().
6652 */
c0ff4b85 6653 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6654 goto one_by_one;
c0ff4b85 6655 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6656 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6657 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6658 goto one_by_one;
6659 }
6660 mc.precharge += count;
854ffa8d
DN
6661 return ret;
6662 }
6663one_by_one:
6664 /* fall back to one by one charge */
6665 while (count--) {
6666 if (signal_pending(current)) {
6667 ret = -EINTR;
6668 break;
6669 }
6670 if (!batch_count--) {
6671 batch_count = PRECHARGE_COUNT_AT_ONCE;
6672 cond_resched();
6673 }
c0ff4b85
R
6674 ret = __mem_cgroup_try_charge(NULL,
6675 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6676 if (ret)
854ffa8d 6677 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6678 return ret;
854ffa8d
DN
6679 mc.precharge++;
6680 }
4ffef5fe
DN
6681 return ret;
6682}
6683
6684/**
8d32ff84 6685 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6686 * @vma: the vma the pte to be checked belongs
6687 * @addr: the address corresponding to the pte to be checked
6688 * @ptent: the pte to be checked
02491447 6689 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6690 *
6691 * Returns
6692 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6693 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6694 * move charge. if @target is not NULL, the page is stored in target->page
6695 * with extra refcnt got(Callers should handle it).
02491447
DN
6696 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6697 * target for charge migration. if @target is not NULL, the entry is stored
6698 * in target->ent.
4ffef5fe
DN
6699 *
6700 * Called with pte lock held.
6701 */
4ffef5fe
DN
6702union mc_target {
6703 struct page *page;
02491447 6704 swp_entry_t ent;
4ffef5fe
DN
6705};
6706
4ffef5fe 6707enum mc_target_type {
8d32ff84 6708 MC_TARGET_NONE = 0,
4ffef5fe 6709 MC_TARGET_PAGE,
02491447 6710 MC_TARGET_SWAP,
4ffef5fe
DN
6711};
6712
90254a65
DN
6713static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6714 unsigned long addr, pte_t ptent)
4ffef5fe 6715{
90254a65 6716 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6717
90254a65
DN
6718 if (!page || !page_mapped(page))
6719 return NULL;
6720 if (PageAnon(page)) {
6721 /* we don't move shared anon */
4b91355e 6722 if (!move_anon())
90254a65 6723 return NULL;
87946a72
DN
6724 } else if (!move_file())
6725 /* we ignore mapcount for file pages */
90254a65
DN
6726 return NULL;
6727 if (!get_page_unless_zero(page))
6728 return NULL;
6729
6730 return page;
6731}
6732
4b91355e 6733#ifdef CONFIG_SWAP
90254a65
DN
6734static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6735 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6736{
90254a65
DN
6737 struct page *page = NULL;
6738 swp_entry_t ent = pte_to_swp_entry(ptent);
6739
6740 if (!move_anon() || non_swap_entry(ent))
6741 return NULL;
4b91355e
KH
6742 /*
6743 * Because lookup_swap_cache() updates some statistics counter,
6744 * we call find_get_page() with swapper_space directly.
6745 */
33806f06 6746 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6747 if (do_swap_account)
6748 entry->val = ent.val;
6749
6750 return page;
6751}
4b91355e
KH
6752#else
6753static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6754 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6755{
6756 return NULL;
6757}
6758#endif
90254a65 6759
87946a72
DN
6760static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6761 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6762{
6763 struct page *page = NULL;
87946a72
DN
6764 struct address_space *mapping;
6765 pgoff_t pgoff;
6766
6767 if (!vma->vm_file) /* anonymous vma */
6768 return NULL;
6769 if (!move_file())
6770 return NULL;
6771
87946a72
DN
6772 mapping = vma->vm_file->f_mapping;
6773 if (pte_none(ptent))
6774 pgoff = linear_page_index(vma, addr);
6775 else /* pte_file(ptent) is true */
6776 pgoff = pte_to_pgoff(ptent);
6777
6778 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6779 page = find_get_page(mapping, pgoff);
6780
6781#ifdef CONFIG_SWAP
6782 /* shmem/tmpfs may report page out on swap: account for that too. */
6783 if (radix_tree_exceptional_entry(page)) {
6784 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6785 if (do_swap_account)
aa3b1895 6786 *entry = swap;
33806f06 6787 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6788 }
aa3b1895 6789#endif
87946a72
DN
6790 return page;
6791}
6792
8d32ff84 6793static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6794 unsigned long addr, pte_t ptent, union mc_target *target)
6795{
6796 struct page *page = NULL;
6797 struct page_cgroup *pc;
8d32ff84 6798 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6799 swp_entry_t ent = { .val = 0 };
6800
6801 if (pte_present(ptent))
6802 page = mc_handle_present_pte(vma, addr, ptent);
6803 else if (is_swap_pte(ptent))
6804 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6805 else if (pte_none(ptent) || pte_file(ptent))
6806 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6807
6808 if (!page && !ent.val)
8d32ff84 6809 return ret;
02491447
DN
6810 if (page) {
6811 pc = lookup_page_cgroup(page);
6812 /*
6813 * Do only loose check w/o page_cgroup lock.
6814 * mem_cgroup_move_account() checks the pc is valid or not under
6815 * the lock.
6816 */
6817 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6818 ret = MC_TARGET_PAGE;
6819 if (target)
6820 target->page = page;
6821 }
6822 if (!ret || !target)
6823 put_page(page);
6824 }
90254a65
DN
6825 /* There is a swap entry and a page doesn't exist or isn't charged */
6826 if (ent.val && !ret &&
34c00c31 6827 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6828 ret = MC_TARGET_SWAP;
6829 if (target)
6830 target->ent = ent;
4ffef5fe 6831 }
4ffef5fe
DN
6832 return ret;
6833}
6834
12724850
NH
6835#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6836/*
6837 * We don't consider swapping or file mapped pages because THP does not
6838 * support them for now.
6839 * Caller should make sure that pmd_trans_huge(pmd) is true.
6840 */
6841static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6842 unsigned long addr, pmd_t pmd, union mc_target *target)
6843{
6844 struct page *page = NULL;
6845 struct page_cgroup *pc;
6846 enum mc_target_type ret = MC_TARGET_NONE;
6847
6848 page = pmd_page(pmd);
309381fe 6849 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6850 if (!move_anon())
6851 return ret;
6852 pc = lookup_page_cgroup(page);
6853 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6854 ret = MC_TARGET_PAGE;
6855 if (target) {
6856 get_page(page);
6857 target->page = page;
6858 }
6859 }
6860 return ret;
6861}
6862#else
6863static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6864 unsigned long addr, pmd_t pmd, union mc_target *target)
6865{
6866 return MC_TARGET_NONE;
6867}
6868#endif
6869
4ffef5fe
DN
6870static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6871 unsigned long addr, unsigned long end,
6872 struct mm_walk *walk)
6873{
6874 struct vm_area_struct *vma = walk->private;
6875 pte_t *pte;
6876 spinlock_t *ptl;
6877
bf929152 6878 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6879 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6880 mc.precharge += HPAGE_PMD_NR;
bf929152 6881 spin_unlock(ptl);
1a5a9906 6882 return 0;
12724850 6883 }
03319327 6884
45f83cef
AA
6885 if (pmd_trans_unstable(pmd))
6886 return 0;
4ffef5fe
DN
6887 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6888 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6889 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6890 mc.precharge++; /* increment precharge temporarily */
6891 pte_unmap_unlock(pte - 1, ptl);
6892 cond_resched();
6893
7dc74be0
DN
6894 return 0;
6895}
6896
4ffef5fe
DN
6897static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6898{
6899 unsigned long precharge;
6900 struct vm_area_struct *vma;
6901
dfe076b0 6902 down_read(&mm->mmap_sem);
4ffef5fe
DN
6903 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6904 struct mm_walk mem_cgroup_count_precharge_walk = {
6905 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6906 .mm = mm,
6907 .private = vma,
6908 };
6909 if (is_vm_hugetlb_page(vma))
6910 continue;
4ffef5fe
DN
6911 walk_page_range(vma->vm_start, vma->vm_end,
6912 &mem_cgroup_count_precharge_walk);
6913 }
dfe076b0 6914 up_read(&mm->mmap_sem);
4ffef5fe
DN
6915
6916 precharge = mc.precharge;
6917 mc.precharge = 0;
6918
6919 return precharge;
6920}
6921
4ffef5fe
DN
6922static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6923{
dfe076b0
DN
6924 unsigned long precharge = mem_cgroup_count_precharge(mm);
6925
6926 VM_BUG_ON(mc.moving_task);
6927 mc.moving_task = current;
6928 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6929}
6930
dfe076b0
DN
6931/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6932static void __mem_cgroup_clear_mc(void)
4ffef5fe 6933{
2bd9bb20
KH
6934 struct mem_cgroup *from = mc.from;
6935 struct mem_cgroup *to = mc.to;
4050377b 6936 int i;
2bd9bb20 6937
4ffef5fe 6938 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6939 if (mc.precharge) {
6940 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6941 mc.precharge = 0;
6942 }
6943 /*
6944 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6945 * we must uncharge here.
6946 */
6947 if (mc.moved_charge) {
6948 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6949 mc.moved_charge = 0;
4ffef5fe 6950 }
483c30b5
DN
6951 /* we must fixup refcnts and charges */
6952 if (mc.moved_swap) {
483c30b5
DN
6953 /* uncharge swap account from the old cgroup */
6954 if (!mem_cgroup_is_root(mc.from))
6955 res_counter_uncharge(&mc.from->memsw,
6956 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6957
6958 for (i = 0; i < mc.moved_swap; i++)
6959 css_put(&mc.from->css);
483c30b5
DN
6960
6961 if (!mem_cgroup_is_root(mc.to)) {
6962 /*
6963 * we charged both to->res and to->memsw, so we should
6964 * uncharge to->res.
6965 */
6966 res_counter_uncharge(&mc.to->res,
6967 PAGE_SIZE * mc.moved_swap);
483c30b5 6968 }
4050377b 6969 /* we've already done css_get(mc.to) */
483c30b5
DN
6970 mc.moved_swap = 0;
6971 }
dfe076b0
DN
6972 memcg_oom_recover(from);
6973 memcg_oom_recover(to);
6974 wake_up_all(&mc.waitq);
6975}
6976
6977static void mem_cgroup_clear_mc(void)
6978{
6979 struct mem_cgroup *from = mc.from;
6980
6981 /*
6982 * we must clear moving_task before waking up waiters at the end of
6983 * task migration.
6984 */
6985 mc.moving_task = NULL;
6986 __mem_cgroup_clear_mc();
2bd9bb20 6987 spin_lock(&mc.lock);
4ffef5fe
DN
6988 mc.from = NULL;
6989 mc.to = NULL;
2bd9bb20 6990 spin_unlock(&mc.lock);
32047e2a 6991 mem_cgroup_end_move(from);
4ffef5fe
DN
6992}
6993
eb95419b 6994static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6995 struct cgroup_taskset *tset)
7dc74be0 6996{
2f7ee569 6997 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6998 int ret = 0;
eb95419b 6999 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7000 unsigned long move_charge_at_immigrate;
7dc74be0 7001
ee5e8472
GC
7002 /*
7003 * We are now commited to this value whatever it is. Changes in this
7004 * tunable will only affect upcoming migrations, not the current one.
7005 * So we need to save it, and keep it going.
7006 */
7007 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7008 if (move_charge_at_immigrate) {
7dc74be0
DN
7009 struct mm_struct *mm;
7010 struct mem_cgroup *from = mem_cgroup_from_task(p);
7011
c0ff4b85 7012 VM_BUG_ON(from == memcg);
7dc74be0
DN
7013
7014 mm = get_task_mm(p);
7015 if (!mm)
7016 return 0;
7dc74be0 7017 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7018 if (mm->owner == p) {
7019 VM_BUG_ON(mc.from);
7020 VM_BUG_ON(mc.to);
7021 VM_BUG_ON(mc.precharge);
854ffa8d 7022 VM_BUG_ON(mc.moved_charge);
483c30b5 7023 VM_BUG_ON(mc.moved_swap);
32047e2a 7024 mem_cgroup_start_move(from);
2bd9bb20 7025 spin_lock(&mc.lock);
4ffef5fe 7026 mc.from = from;
c0ff4b85 7027 mc.to = memcg;
ee5e8472 7028 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7029 spin_unlock(&mc.lock);
dfe076b0 7030 /* We set mc.moving_task later */
4ffef5fe
DN
7031
7032 ret = mem_cgroup_precharge_mc(mm);
7033 if (ret)
7034 mem_cgroup_clear_mc();
dfe076b0
DN
7035 }
7036 mmput(mm);
7dc74be0
DN
7037 }
7038 return ret;
7039}
7040
eb95419b 7041static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7042 struct cgroup_taskset *tset)
7dc74be0 7043{
4ffef5fe 7044 mem_cgroup_clear_mc();
7dc74be0
DN
7045}
7046
4ffef5fe
DN
7047static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7048 unsigned long addr, unsigned long end,
7049 struct mm_walk *walk)
7dc74be0 7050{
4ffef5fe
DN
7051 int ret = 0;
7052 struct vm_area_struct *vma = walk->private;
7053 pte_t *pte;
7054 spinlock_t *ptl;
12724850
NH
7055 enum mc_target_type target_type;
7056 union mc_target target;
7057 struct page *page;
7058 struct page_cgroup *pc;
4ffef5fe 7059
12724850
NH
7060 /*
7061 * We don't take compound_lock() here but no race with splitting thp
7062 * happens because:
7063 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7064 * under splitting, which means there's no concurrent thp split,
7065 * - if another thread runs into split_huge_page() just after we
7066 * entered this if-block, the thread must wait for page table lock
7067 * to be unlocked in __split_huge_page_splitting(), where the main
7068 * part of thp split is not executed yet.
7069 */
bf929152 7070 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7071 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7072 spin_unlock(ptl);
12724850
NH
7073 return 0;
7074 }
7075 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7076 if (target_type == MC_TARGET_PAGE) {
7077 page = target.page;
7078 if (!isolate_lru_page(page)) {
7079 pc = lookup_page_cgroup(page);
7080 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7081 pc, mc.from, mc.to)) {
12724850
NH
7082 mc.precharge -= HPAGE_PMD_NR;
7083 mc.moved_charge += HPAGE_PMD_NR;
7084 }
7085 putback_lru_page(page);
7086 }
7087 put_page(page);
7088 }
bf929152 7089 spin_unlock(ptl);
1a5a9906 7090 return 0;
12724850
NH
7091 }
7092
45f83cef
AA
7093 if (pmd_trans_unstable(pmd))
7094 return 0;
4ffef5fe
DN
7095retry:
7096 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7097 for (; addr != end; addr += PAGE_SIZE) {
7098 pte_t ptent = *(pte++);
02491447 7099 swp_entry_t ent;
4ffef5fe
DN
7100
7101 if (!mc.precharge)
7102 break;
7103
8d32ff84 7104 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7105 case MC_TARGET_PAGE:
7106 page = target.page;
7107 if (isolate_lru_page(page))
7108 goto put;
7109 pc = lookup_page_cgroup(page);
7ec99d62 7110 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7111 mc.from, mc.to)) {
4ffef5fe 7112 mc.precharge--;
854ffa8d
DN
7113 /* we uncharge from mc.from later. */
7114 mc.moved_charge++;
4ffef5fe
DN
7115 }
7116 putback_lru_page(page);
8d32ff84 7117put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7118 put_page(page);
7119 break;
02491447
DN
7120 case MC_TARGET_SWAP:
7121 ent = target.ent;
e91cbb42 7122 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7123 mc.precharge--;
483c30b5
DN
7124 /* we fixup refcnts and charges later. */
7125 mc.moved_swap++;
7126 }
02491447 7127 break;
4ffef5fe
DN
7128 default:
7129 break;
7130 }
7131 }
7132 pte_unmap_unlock(pte - 1, ptl);
7133 cond_resched();
7134
7135 if (addr != end) {
7136 /*
7137 * We have consumed all precharges we got in can_attach().
7138 * We try charge one by one, but don't do any additional
7139 * charges to mc.to if we have failed in charge once in attach()
7140 * phase.
7141 */
854ffa8d 7142 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7143 if (!ret)
7144 goto retry;
7145 }
7146
7147 return ret;
7148}
7149
7150static void mem_cgroup_move_charge(struct mm_struct *mm)
7151{
7152 struct vm_area_struct *vma;
7153
7154 lru_add_drain_all();
dfe076b0
DN
7155retry:
7156 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7157 /*
7158 * Someone who are holding the mmap_sem might be waiting in
7159 * waitq. So we cancel all extra charges, wake up all waiters,
7160 * and retry. Because we cancel precharges, we might not be able
7161 * to move enough charges, but moving charge is a best-effort
7162 * feature anyway, so it wouldn't be a big problem.
7163 */
7164 __mem_cgroup_clear_mc();
7165 cond_resched();
7166 goto retry;
7167 }
4ffef5fe
DN
7168 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7169 int ret;
7170 struct mm_walk mem_cgroup_move_charge_walk = {
7171 .pmd_entry = mem_cgroup_move_charge_pte_range,
7172 .mm = mm,
7173 .private = vma,
7174 };
7175 if (is_vm_hugetlb_page(vma))
7176 continue;
4ffef5fe
DN
7177 ret = walk_page_range(vma->vm_start, vma->vm_end,
7178 &mem_cgroup_move_charge_walk);
7179 if (ret)
7180 /*
7181 * means we have consumed all precharges and failed in
7182 * doing additional charge. Just abandon here.
7183 */
7184 break;
7185 }
dfe076b0 7186 up_read(&mm->mmap_sem);
7dc74be0
DN
7187}
7188
eb95419b 7189static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7190 struct cgroup_taskset *tset)
67e465a7 7191{
2f7ee569 7192 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7193 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7194
dfe076b0 7195 if (mm) {
a433658c
KM
7196 if (mc.to)
7197 mem_cgroup_move_charge(mm);
dfe076b0
DN
7198 mmput(mm);
7199 }
a433658c
KM
7200 if (mc.to)
7201 mem_cgroup_clear_mc();
67e465a7 7202}
5cfb80a7 7203#else /* !CONFIG_MMU */
eb95419b 7204static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7205 struct cgroup_taskset *tset)
5cfb80a7
DN
7206{
7207 return 0;
7208}
eb95419b 7209static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7210 struct cgroup_taskset *tset)
5cfb80a7
DN
7211{
7212}
eb95419b 7213static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7214 struct cgroup_taskset *tset)
5cfb80a7
DN
7215{
7216}
7217#endif
67e465a7 7218
f00baae7
TH
7219/*
7220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7221 * to verify sane_behavior flag on each mount attempt.
7222 */
eb95419b 7223static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7224{
7225 /*
7226 * use_hierarchy is forced with sane_behavior. cgroup core
7227 * guarantees that @root doesn't have any children, so turning it
7228 * on for the root memcg is enough.
7229 */
eb95419b
TH
7230 if (cgroup_sane_behavior(root_css->cgroup))
7231 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7232}
7233
8cdea7c0
BS
7234struct cgroup_subsys mem_cgroup_subsys = {
7235 .name = "memory",
7236 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7237 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7238 .css_online = mem_cgroup_css_online,
92fb9748
TH
7239 .css_offline = mem_cgroup_css_offline,
7240 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7241 .can_attach = mem_cgroup_can_attach,
7242 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7243 .attach = mem_cgroup_move_task,
f00baae7 7244 .bind = mem_cgroup_bind,
6bc10349 7245 .base_cftypes = mem_cgroup_files,
6d12e2d8 7246 .early_init = 0,
8cdea7c0 7247};
c077719b 7248
c255a458 7249#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7250static int __init enable_swap_account(char *s)
7251{
a2c8990a 7252 if (!strcmp(s, "1"))
a42c390c 7253 really_do_swap_account = 1;
a2c8990a 7254 else if (!strcmp(s, "0"))
a42c390c
MH
7255 really_do_swap_account = 0;
7256 return 1;
7257}
a2c8990a 7258__setup("swapaccount=", enable_swap_account);
c077719b 7259
2d11085e
MH
7260static void __init memsw_file_init(void)
7261{
6acc8b02
MH
7262 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7263}
7264
7265static void __init enable_swap_cgroup(void)
7266{
7267 if (!mem_cgroup_disabled() && really_do_swap_account) {
7268 do_swap_account = 1;
7269 memsw_file_init();
7270 }
2d11085e 7271}
6acc8b02 7272
2d11085e 7273#else
6acc8b02 7274static void __init enable_swap_cgroup(void)
2d11085e
MH
7275{
7276}
c077719b 7277#endif
2d11085e
MH
7278
7279/*
1081312f
MH
7280 * subsys_initcall() for memory controller.
7281 *
7282 * Some parts like hotcpu_notifier() have to be initialized from this context
7283 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7284 * everything that doesn't depend on a specific mem_cgroup structure should
7285 * be initialized from here.
2d11085e
MH
7286 */
7287static int __init mem_cgroup_init(void)
7288{
7289 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7290 enable_swap_cgroup();
bb4cc1a8 7291 mem_cgroup_soft_limit_tree_init();
e4777496 7292 memcg_stock_init();
2d11085e
MH
7293 return 0;
7294}
7295subsys_initcall(mem_cgroup_init);
This page took 1.147652 seconds and 5 git commands to generate.