cgroups: add a per-subsystem hierarchy_mutex
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
8cdea7c0
BS
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
8cdea7c0
BS
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
8c7c6e34
KH
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
78fb7466
PE
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
78fb7466 145 */
6d12e2d8 146 struct mem_cgroup_lru_info info;
072c56c1 147
2733c06a
KM
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
6c48a1d0 153 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by cgroup_lock()
158 */
159 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
a636b327 164 unsigned long last_oom_jiffies;
8c7c6e34 165 atomic_t refcnt;
14797e23 166
a7885eb8
KM
167 unsigned int swappiness;
168
d52aa412 169 /*
c8dad2bb 170 * statistics. This must be placed at the end of memcg.
d52aa412
KH
171 */
172 struct mem_cgroup_stat stat;
8cdea7c0
BS
173};
174
217bc319
KH
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
181 NR_CHARGE_TYPE,
182};
183
52d4b9ac
KH
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 187#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 193 0, /* FORCE */
217bc319
KH
194};
195
8c7c6e34
KH
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
c05555b5
KH
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
d52aa412
KH
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 212 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 213 int cpu = get_cpu();
d52aa412 214
08e552c6 215 cpustat = &stat->cpustat[cpu];
c05555b5 216 if (PageCgroupCache(pc))
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 218 else
addb9efe 219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
220
221 if (charge)
addb9efe 222 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
addb9efe 225 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 227 put_cpu();
6d12e2d8
KH
228}
229
d5b69e38 230static struct mem_cgroup_per_zone *
6d12e2d8
KH
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
6d12e2d8
KH
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
d5b69e38 236static struct mem_cgroup_per_zone *
6d12e2d8
KH
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
d52aa412 242
54992762
KM
243 if (!mem)
244 return NULL;
245
6d12e2d8
KH
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 250 enum lru_list idx)
6d12e2d8
KH
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
d52aa412
KH
262}
263
d5b69e38 264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
cf475ad2 271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 272{
31a78f23
BS
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
78fb7466
PE
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
54595fe2
KH
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
08e552c6
KH
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
4f98a2fe 323
08e552c6
KH
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
6d12e2d8 329
f8d66542 330 if (mem_cgroup_disabled())
08e552c6
KH
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
544122e5 334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 335 return;
544122e5
KH
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
08e552c6
KH
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
343 list_del_init(&pc->lru);
344 return;
6d12e2d8
KH
345}
346
08e552c6 347void mem_cgroup_del_lru(struct page *page)
6d12e2d8 348{
08e552c6
KH
349 mem_cgroup_del_lru_list(page, page_lru(page));
350}
b69408e8 351
08e552c6
KH
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
b69408e8 356
f8d66542 357 if (mem_cgroup_disabled())
08e552c6 358 return;
6d12e2d8 359
08e552c6
KH
360 pc = lookup_page_cgroup(page);
361 smp_rmb();
362 /* unused page is not rotated. */
363 if (!PageCgroupUsed(pc))
364 return;
365 mz = page_cgroup_zoneinfo(pc);
366 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
367}
368
08e552c6 369void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 370{
08e552c6
KH
371 struct page_cgroup *pc;
372 struct mem_cgroup_per_zone *mz;
6d12e2d8 373
f8d66542 374 if (mem_cgroup_disabled())
08e552c6
KH
375 return;
376 pc = lookup_page_cgroup(page);
377 /* barrier to sync with "charge" */
378 smp_rmb();
379 if (!PageCgroupUsed(pc))
894bc310 380 return;
b69408e8 381
08e552c6 382 mz = page_cgroup_zoneinfo(pc);
b69408e8 383 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
384 list_add(&pc->lru, &mz->lists[lru]);
385}
544122e5 386
08e552c6 387/*
544122e5
KH
388 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389 * lru because the page may.be reused after it's fully uncharged (because of
390 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391 * it again. This function is only used to charge SwapCache. It's done under
392 * lock_page and expected that zone->lru_lock is never held.
08e552c6 393 */
544122e5 394static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 395{
544122e5
KH
396 unsigned long flags;
397 struct zone *zone = page_zone(page);
398 struct page_cgroup *pc = lookup_page_cgroup(page);
399
400 spin_lock_irqsave(&zone->lru_lock, flags);
401 /*
402 * Forget old LRU when this page_cgroup is *not* used. This Used bit
403 * is guarded by lock_page() because the page is SwapCache.
404 */
405 if (!PageCgroupUsed(pc))
406 mem_cgroup_del_lru_list(page, page_lru(page));
407 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
408}
409
544122e5
KH
410static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
411{
412 unsigned long flags;
413 struct zone *zone = page_zone(page);
414 struct page_cgroup *pc = lookup_page_cgroup(page);
415
416 spin_lock_irqsave(&zone->lru_lock, flags);
417 /* link when the page is linked to LRU but page_cgroup isn't */
418 if (PageLRU(page) && list_empty(&pc->lru))
419 mem_cgroup_add_lru_list(page, page_lru(page));
420 spin_unlock_irqrestore(&zone->lru_lock, flags);
421}
422
423
08e552c6
KH
424void mem_cgroup_move_lists(struct page *page,
425 enum lru_list from, enum lru_list to)
426{
f8d66542 427 if (mem_cgroup_disabled())
08e552c6
KH
428 return;
429 mem_cgroup_del_lru_list(page, from);
430 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
431}
432
4c4a2214
DR
433int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
434{
435 int ret;
436
437 task_lock(task);
bd845e38 438 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
439 task_unlock(task);
440 return ret;
441}
442
58ae83db
KH
443/*
444 * Calculate mapped_ratio under memory controller. This will be used in
445 * vmscan.c for deteremining we have to reclaim mapped pages.
446 */
447int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
448{
449 long total, rss;
450
451 /*
452 * usage is recorded in bytes. But, here, we assume the number of
453 * physical pages can be represented by "long" on any arch.
454 */
455 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
456 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
457 return (int)((rss * 100L) / total);
458}
8869b8f6 459
6c48a1d0
KH
460/*
461 * prev_priority control...this will be used in memory reclaim path.
462 */
463int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
464{
2733c06a
KM
465 int prev_priority;
466
467 spin_lock(&mem->reclaim_param_lock);
468 prev_priority = mem->prev_priority;
469 spin_unlock(&mem->reclaim_param_lock);
470
471 return prev_priority;
6c48a1d0
KH
472}
473
474void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
475{
2733c06a 476 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
477 if (priority < mem->prev_priority)
478 mem->prev_priority = priority;
2733c06a 479 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
480}
481
482void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
483{
2733c06a 484 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 485 mem->prev_priority = priority;
2733c06a 486 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
487}
488
c772be93 489static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
490{
491 unsigned long active;
492 unsigned long inactive;
c772be93
KM
493 unsigned long gb;
494 unsigned long inactive_ratio;
14797e23
KM
495
496 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
497 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
498
c772be93
KM
499 gb = (inactive + active) >> (30 - PAGE_SHIFT);
500 if (gb)
501 inactive_ratio = int_sqrt(10 * gb);
502 else
503 inactive_ratio = 1;
504
505 if (present_pages) {
506 present_pages[0] = inactive;
507 present_pages[1] = active;
508 }
509
510 return inactive_ratio;
511}
512
513int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
514{
515 unsigned long active;
516 unsigned long inactive;
517 unsigned long present_pages[2];
518 unsigned long inactive_ratio;
519
520 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
521
522 inactive = present_pages[0];
523 active = present_pages[1];
524
525 if (inactive * inactive_ratio < active)
14797e23
KM
526 return 1;
527
528 return 0;
529}
530
a3d8e054
KM
531unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
532 struct zone *zone,
533 enum lru_list lru)
534{
535 int nid = zone->zone_pgdat->node_id;
536 int zid = zone_idx(zone);
537 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
538
539 return MEM_CGROUP_ZSTAT(mz, lru);
540}
541
3e2f41f1
KM
542struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
543 struct zone *zone)
544{
545 int nid = zone->zone_pgdat->node_id;
546 int zid = zone_idx(zone);
547 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
548
549 return &mz->reclaim_stat;
550}
551
552struct zone_reclaim_stat *
553mem_cgroup_get_reclaim_stat_from_page(struct page *page)
554{
555 struct page_cgroup *pc;
556 struct mem_cgroup_per_zone *mz;
557
558 if (mem_cgroup_disabled())
559 return NULL;
560
561 pc = lookup_page_cgroup(page);
562 mz = page_cgroup_zoneinfo(pc);
563 if (!mz)
564 return NULL;
565
566 return &mz->reclaim_stat;
567}
568
66e1707b
BS
569unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
570 struct list_head *dst,
571 unsigned long *scanned, int order,
572 int mode, struct zone *z,
573 struct mem_cgroup *mem_cont,
4f98a2fe 574 int active, int file)
66e1707b
BS
575{
576 unsigned long nr_taken = 0;
577 struct page *page;
578 unsigned long scan;
579 LIST_HEAD(pc_list);
580 struct list_head *src;
ff7283fa 581 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
582 int nid = z->zone_pgdat->node_id;
583 int zid = zone_idx(z);
584 struct mem_cgroup_per_zone *mz;
4f98a2fe 585 int lru = LRU_FILE * !!file + !!active;
66e1707b 586
cf475ad2 587 BUG_ON(!mem_cont);
1ecaab2b 588 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 589 src = &mz->lists[lru];
66e1707b 590
ff7283fa
KH
591 scan = 0;
592 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 593 if (scan >= nr_to_scan)
ff7283fa 594 break;
08e552c6
KH
595
596 page = pc->page;
52d4b9ac
KH
597 if (unlikely(!PageCgroupUsed(pc)))
598 continue;
436c6541 599 if (unlikely(!PageLRU(page)))
ff7283fa 600 continue;
ff7283fa 601
436c6541 602 scan++;
4f98a2fe 603 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
604 list_move(&page->lru, dst);
605 nr_taken++;
606 }
607 }
608
66e1707b
BS
609 *scanned = scan;
610 return nr_taken;
611}
612
6d61ef40
BS
613#define mem_cgroup_from_res_counter(counter, member) \
614 container_of(counter, struct mem_cgroup, member)
615
616/*
617 * This routine finds the DFS walk successor. This routine should be
618 * called with cgroup_mutex held
619 */
620static struct mem_cgroup *
621mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
622{
623 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
624
625 curr_cgroup = curr->css.cgroup;
626 root_cgroup = root_mem->css.cgroup;
627
628 if (!list_empty(&curr_cgroup->children)) {
629 /*
630 * Walk down to children
631 */
632 mem_cgroup_put(curr);
633 cgroup = list_entry(curr_cgroup->children.next,
634 struct cgroup, sibling);
635 curr = mem_cgroup_from_cont(cgroup);
636 mem_cgroup_get(curr);
637 goto done;
638 }
639
640visit_parent:
641 if (curr_cgroup == root_cgroup) {
642 mem_cgroup_put(curr);
643 curr = root_mem;
644 mem_cgroup_get(curr);
645 goto done;
646 }
647
648 /*
649 * Goto next sibling
650 */
651 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
652 mem_cgroup_put(curr);
653 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
654 sibling);
655 curr = mem_cgroup_from_cont(cgroup);
656 mem_cgroup_get(curr);
657 goto done;
658 }
659
660 /*
661 * Go up to next parent and next parent's sibling if need be
662 */
663 curr_cgroup = curr_cgroup->parent;
664 goto visit_parent;
665
666done:
667 root_mem->last_scanned_child = curr;
668 return curr;
669}
670
671/*
672 * Visit the first child (need not be the first child as per the ordering
673 * of the cgroup list, since we track last_scanned_child) of @mem and use
674 * that to reclaim free pages from.
675 */
676static struct mem_cgroup *
677mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
678{
679 struct cgroup *cgroup;
680 struct mem_cgroup *ret;
54595fe2
KH
681 bool obsolete;
682
683 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
6d61ef40
BS
684
685 /*
686 * Scan all children under the mem_cgroup mem
687 */
688 cgroup_lock();
689 if (list_empty(&root_mem->css.cgroup->children)) {
690 ret = root_mem;
691 goto done;
692 }
693
694 if (!root_mem->last_scanned_child || obsolete) {
695
54595fe2 696 if (obsolete && root_mem->last_scanned_child)
6d61ef40
BS
697 mem_cgroup_put(root_mem->last_scanned_child);
698
699 cgroup = list_first_entry(&root_mem->css.cgroup->children,
700 struct cgroup, sibling);
701 ret = mem_cgroup_from_cont(cgroup);
702 mem_cgroup_get(ret);
703 } else
704 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
705 root_mem);
706
707done:
708 root_mem->last_scanned_child = ret;
709 cgroup_unlock();
710 return ret;
711}
712
b85a96c0
DN
713static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
714{
715 if (do_swap_account) {
716 if (res_counter_check_under_limit(&mem->res) &&
717 res_counter_check_under_limit(&mem->memsw))
718 return true;
719 } else
720 if (res_counter_check_under_limit(&mem->res))
721 return true;
722 return false;
723}
724
a7885eb8
KM
725static unsigned int get_swappiness(struct mem_cgroup *memcg)
726{
727 struct cgroup *cgrp = memcg->css.cgroup;
728 unsigned int swappiness;
729
730 /* root ? */
731 if (cgrp->parent == NULL)
732 return vm_swappiness;
733
734 spin_lock(&memcg->reclaim_param_lock);
735 swappiness = memcg->swappiness;
736 spin_unlock(&memcg->reclaim_param_lock);
737
738 return swappiness;
739}
740
6d61ef40
BS
741/*
742 * Dance down the hierarchy if needed to reclaim memory. We remember the
743 * last child we reclaimed from, so that we don't end up penalizing
744 * one child extensively based on its position in the children list.
745 *
746 * root_mem is the original ancestor that we've been reclaim from.
747 */
748static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
749 gfp_t gfp_mask, bool noswap)
750{
751 struct mem_cgroup *next_mem;
752 int ret = 0;
753
754 /*
755 * Reclaim unconditionally and don't check for return value.
756 * We need to reclaim in the current group and down the tree.
757 * One might think about checking for children before reclaiming,
758 * but there might be left over accounting, even after children
759 * have left.
760 */
a7885eb8
KM
761 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
762 get_swappiness(root_mem));
b85a96c0 763 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 764 return 0;
670ec2f1
DN
765 if (!root_mem->use_hierarchy)
766 return ret;
6d61ef40
BS
767
768 next_mem = mem_cgroup_get_first_node(root_mem);
769
770 while (next_mem != root_mem) {
54595fe2 771 if (mem_cgroup_is_obsolete(next_mem)) {
6d61ef40
BS
772 mem_cgroup_put(next_mem);
773 cgroup_lock();
774 next_mem = mem_cgroup_get_first_node(root_mem);
775 cgroup_unlock();
776 continue;
777 }
a7885eb8
KM
778 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
779 get_swappiness(next_mem));
b85a96c0 780 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
781 return 0;
782 cgroup_lock();
783 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
784 cgroup_unlock();
785 }
786 return ret;
787}
788
a636b327
KH
789bool mem_cgroup_oom_called(struct task_struct *task)
790{
791 bool ret = false;
792 struct mem_cgroup *mem;
793 struct mm_struct *mm;
794
795 rcu_read_lock();
796 mm = task->mm;
797 if (!mm)
798 mm = &init_mm;
799 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
800 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
801 ret = true;
802 rcu_read_unlock();
803 return ret;
804}
f817ed48
KH
805/*
806 * Unlike exported interface, "oom" parameter is added. if oom==true,
807 * oom-killer can be invoked.
8a9f3ccd 808 */
f817ed48 809static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
810 gfp_t gfp_mask, struct mem_cgroup **memcg,
811 bool oom)
8a9f3ccd 812{
6d61ef40 813 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 814 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 815 struct res_counter *fail_res;
a636b327
KH
816
817 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
818 /* Don't account this! */
819 *memcg = NULL;
820 return 0;
821 }
822
8a9f3ccd 823 /*
3be91277
HD
824 * We always charge the cgroup the mm_struct belongs to.
825 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
826 * thread group leader migrates. It's possible that mm is not
827 * set, if so charge the init_mm (happens for pagecache usage).
828 */
54595fe2
KH
829 mem = *memcg;
830 if (likely(!mem)) {
831 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 832 *memcg = mem;
e8589cc1 833 } else {
7a81b88c 834 css_get(&mem->css);
e8589cc1 835 }
54595fe2
KH
836 if (unlikely(!mem))
837 return 0;
838
839 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 840
8c7c6e34
KH
841 while (1) {
842 int ret;
843 bool noswap = false;
7a81b88c 844
28dbc4b6 845 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
846 if (likely(!ret)) {
847 if (!do_swap_account)
848 break;
28dbc4b6
BS
849 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
850 &fail_res);
8c7c6e34
KH
851 if (likely(!ret))
852 break;
853 /* mem+swap counter fails */
854 res_counter_uncharge(&mem->res, PAGE_SIZE);
855 noswap = true;
6d61ef40
BS
856 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
857 memsw);
858 } else
859 /* mem counter fails */
860 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
861 res);
862
3be91277 863 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 864 goto nomem;
e1a1cd59 865
6d61ef40
BS
866 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
867 noswap);
66e1707b
BS
868
869 /*
8869b8f6
HD
870 * try_to_free_mem_cgroup_pages() might not give us a full
871 * picture of reclaim. Some pages are reclaimed and might be
872 * moved to swap cache or just unmapped from the cgroup.
873 * Check the limit again to see if the reclaim reduced the
874 * current usage of the cgroup before giving up
8c7c6e34 875 *
8869b8f6 876 */
b85a96c0
DN
877 if (mem_cgroup_check_under_limit(mem_over_limit))
878 continue;
3be91277
HD
879
880 if (!nr_retries--) {
a636b327 881 if (oom) {
7f4d454d 882 mutex_lock(&memcg_tasklist);
88700756 883 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 884 mutex_unlock(&memcg_tasklist);
88700756 885 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 886 }
7a81b88c 887 goto nomem;
66e1707b 888 }
8a9f3ccd 889 }
7a81b88c
KH
890 return 0;
891nomem:
892 css_put(&mem->css);
893 return -ENOMEM;
894}
8a9f3ccd 895
b5a84319
KH
896static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
897{
898 struct mem_cgroup *mem;
899 swp_entry_t ent;
900
901 if (!PageSwapCache(page))
902 return NULL;
903
904 ent.val = page_private(page);
905 mem = lookup_swap_cgroup(ent);
906 if (!mem)
907 return NULL;
908 if (!css_tryget(&mem->css))
909 return NULL;
910 return mem;
911}
912
7a81b88c 913/*
a5e924f5 914 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
915 * USED state. If already USED, uncharge and return.
916 */
917
918static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
919 struct page_cgroup *pc,
920 enum charge_type ctype)
921{
7a81b88c
KH
922 /* try_charge() can return NULL to *memcg, taking care of it. */
923 if (!mem)
924 return;
52d4b9ac
KH
925
926 lock_page_cgroup(pc);
927 if (unlikely(PageCgroupUsed(pc))) {
928 unlock_page_cgroup(pc);
929 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
930 if (do_swap_account)
931 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 932 css_put(&mem->css);
7a81b88c 933 return;
52d4b9ac 934 }
8a9f3ccd 935 pc->mem_cgroup = mem;
08e552c6 936 smp_wmb();
c05555b5 937 pc->flags = pcg_default_flags[ctype];
3be91277 938
08e552c6 939 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 940
52d4b9ac 941 unlock_page_cgroup(pc);
7a81b88c 942}
66e1707b 943
f817ed48
KH
944/**
945 * mem_cgroup_move_account - move account of the page
946 * @pc: page_cgroup of the page.
947 * @from: mem_cgroup which the page is moved from.
948 * @to: mem_cgroup which the page is moved to. @from != @to.
949 *
950 * The caller must confirm following.
08e552c6 951 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
952 *
953 * returns 0 at success,
954 * returns -EBUSY when lock is busy or "pc" is unstable.
955 *
956 * This function does "uncharge" from old cgroup but doesn't do "charge" to
957 * new cgroup. It should be done by a caller.
958 */
959
960static int mem_cgroup_move_account(struct page_cgroup *pc,
961 struct mem_cgroup *from, struct mem_cgroup *to)
962{
963 struct mem_cgroup_per_zone *from_mz, *to_mz;
964 int nid, zid;
965 int ret = -EBUSY;
966
f817ed48 967 VM_BUG_ON(from == to);
08e552c6 968 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
969
970 nid = page_cgroup_nid(pc);
971 zid = page_cgroup_zid(pc);
972 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
973 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
974
f817ed48
KH
975 if (!trylock_page_cgroup(pc))
976 return ret;
977
978 if (!PageCgroupUsed(pc))
979 goto out;
980
981 if (pc->mem_cgroup != from)
982 goto out;
983
08e552c6
KH
984 css_put(&from->css);
985 res_counter_uncharge(&from->res, PAGE_SIZE);
986 mem_cgroup_charge_statistics(from, pc, false);
987 if (do_swap_account)
988 res_counter_uncharge(&from->memsw, PAGE_SIZE);
989 pc->mem_cgroup = to;
990 mem_cgroup_charge_statistics(to, pc, true);
991 css_get(&to->css);
992 ret = 0;
f817ed48
KH
993out:
994 unlock_page_cgroup(pc);
995 return ret;
996}
997
998/*
999 * move charges to its parent.
1000 */
1001
1002static int mem_cgroup_move_parent(struct page_cgroup *pc,
1003 struct mem_cgroup *child,
1004 gfp_t gfp_mask)
1005{
08e552c6 1006 struct page *page = pc->page;
f817ed48
KH
1007 struct cgroup *cg = child->css.cgroup;
1008 struct cgroup *pcg = cg->parent;
1009 struct mem_cgroup *parent;
f817ed48
KH
1010 int ret;
1011
1012 /* Is ROOT ? */
1013 if (!pcg)
1014 return -EINVAL;
1015
08e552c6 1016
f817ed48
KH
1017 parent = mem_cgroup_from_cont(pcg);
1018
08e552c6 1019
f817ed48 1020 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1021 if (ret || !parent)
f817ed48
KH
1022 return ret;
1023
08e552c6
KH
1024 if (!get_page_unless_zero(page))
1025 return -EBUSY;
1026
1027 ret = isolate_lru_page(page);
1028
1029 if (ret)
1030 goto cancel;
f817ed48 1031
f817ed48 1032 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1033
08e552c6 1034 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 1035 css_put(&parent->css);
08e552c6
KH
1036 putback_lru_page(page);
1037 if (!ret) {
1038 put_page(page);
1039 return 0;
8c7c6e34 1040 }
08e552c6
KH
1041 /* uncharge if move fails */
1042cancel:
1043 res_counter_uncharge(&parent->res, PAGE_SIZE);
1044 if (do_swap_account)
1045 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1046 put_page(page);
f817ed48
KH
1047 return ret;
1048}
1049
7a81b88c
KH
1050/*
1051 * Charge the memory controller for page usage.
1052 * Return
1053 * 0 if the charge was successful
1054 * < 0 if the cgroup is over its limit
1055 */
1056static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1057 gfp_t gfp_mask, enum charge_type ctype,
1058 struct mem_cgroup *memcg)
1059{
1060 struct mem_cgroup *mem;
1061 struct page_cgroup *pc;
1062 int ret;
1063
1064 pc = lookup_page_cgroup(page);
1065 /* can happen at boot */
1066 if (unlikely(!pc))
1067 return 0;
1068 prefetchw(pc);
1069
1070 mem = memcg;
f817ed48 1071 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1072 if (ret || !mem)
7a81b88c
KH
1073 return ret;
1074
1075 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1076 return 0;
8a9f3ccd
BS
1077}
1078
7a81b88c
KH
1079int mem_cgroup_newpage_charge(struct page *page,
1080 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1081{
f8d66542 1082 if (mem_cgroup_disabled())
cede86ac 1083 return 0;
52d4b9ac
KH
1084 if (PageCompound(page))
1085 return 0;
69029cd5
KH
1086 /*
1087 * If already mapped, we don't have to account.
1088 * If page cache, page->mapping has address_space.
1089 * But page->mapping may have out-of-use anon_vma pointer,
1090 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1091 * is NULL.
1092 */
1093 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1094 return 0;
1095 if (unlikely(!mm))
1096 mm = &init_mm;
217bc319 1097 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1098 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1099}
1100
e1a1cd59
BS
1101int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1102 gfp_t gfp_mask)
8697d331 1103{
b5a84319
KH
1104 struct mem_cgroup *mem = NULL;
1105 int ret;
1106
f8d66542 1107 if (mem_cgroup_disabled())
cede86ac 1108 return 0;
52d4b9ac
KH
1109 if (PageCompound(page))
1110 return 0;
accf163e
KH
1111 /*
1112 * Corner case handling. This is called from add_to_page_cache()
1113 * in usual. But some FS (shmem) precharges this page before calling it
1114 * and call add_to_page_cache() with GFP_NOWAIT.
1115 *
1116 * For GFP_NOWAIT case, the page may be pre-charged before calling
1117 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1118 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1119 * And when the page is SwapCache, it should take swap information
1120 * into account. This is under lock_page() now.
accf163e
KH
1121 */
1122 if (!(gfp_mask & __GFP_WAIT)) {
1123 struct page_cgroup *pc;
1124
52d4b9ac
KH
1125
1126 pc = lookup_page_cgroup(page);
1127 if (!pc)
1128 return 0;
1129 lock_page_cgroup(pc);
1130 if (PageCgroupUsed(pc)) {
1131 unlock_page_cgroup(pc);
accf163e
KH
1132 return 0;
1133 }
52d4b9ac 1134 unlock_page_cgroup(pc);
accf163e
KH
1135 }
1136
b5a84319
KH
1137 if (do_swap_account && PageSwapCache(page)) {
1138 mem = try_get_mem_cgroup_from_swapcache(page);
1139 if (mem)
1140 mm = NULL;
1141 else
1142 mem = NULL;
1143 /* SwapCache may be still linked to LRU now. */
1144 mem_cgroup_lru_del_before_commit_swapcache(page);
1145 }
1146
1147 if (unlikely(!mm && !mem))
8697d331 1148 mm = &init_mm;
accf163e 1149
c05555b5
KH
1150 if (page_is_file_cache(page))
1151 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1152 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319
KH
1153
1154 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1155 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1156 if (mem)
1157 css_put(&mem->css);
1158 if (PageSwapCache(page))
1159 mem_cgroup_lru_add_after_commit_swapcache(page);
1160
1161 if (do_swap_account && !ret && PageSwapCache(page)) {
1162 swp_entry_t ent = {.val = page_private(page)};
1163 /* avoid double counting */
1164 mem = swap_cgroup_record(ent, NULL);
1165 if (mem) {
1166 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1167 mem_cgroup_put(mem);
1168 }
1169 }
1170 return ret;
e8589cc1
KH
1171}
1172
54595fe2
KH
1173/*
1174 * While swap-in, try_charge -> commit or cancel, the page is locked.
1175 * And when try_charge() successfully returns, one refcnt to memcg without
1176 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1177 * "commit()" or removed by "cancel()"
1178 */
8c7c6e34
KH
1179int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1180 struct page *page,
1181 gfp_t mask, struct mem_cgroup **ptr)
1182{
1183 struct mem_cgroup *mem;
54595fe2 1184 int ret;
8c7c6e34 1185
f8d66542 1186 if (mem_cgroup_disabled())
8c7c6e34
KH
1187 return 0;
1188
1189 if (!do_swap_account)
1190 goto charge_cur_mm;
8c7c6e34
KH
1191 /*
1192 * A racing thread's fault, or swapoff, may have already updated
1193 * the pte, and even removed page from swap cache: return success
1194 * to go on to do_swap_page()'s pte_same() test, which should fail.
1195 */
1196 if (!PageSwapCache(page))
1197 return 0;
b5a84319 1198 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1199 if (!mem)
1200 goto charge_cur_mm;
8c7c6e34 1201 *ptr = mem;
54595fe2
KH
1202 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1203 /* drop extra refcnt from tryget */
1204 css_put(&mem->css);
1205 return ret;
8c7c6e34
KH
1206charge_cur_mm:
1207 if (unlikely(!mm))
1208 mm = &init_mm;
1209 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1210}
1211
7a81b88c
KH
1212void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1213{
1214 struct page_cgroup *pc;
1215
f8d66542 1216 if (mem_cgroup_disabled())
7a81b88c
KH
1217 return;
1218 if (!ptr)
1219 return;
1220 pc = lookup_page_cgroup(page);
544122e5 1221 mem_cgroup_lru_del_before_commit_swapcache(page);
7a81b88c 1222 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
544122e5 1223 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1224 /*
1225 * Now swap is on-memory. This means this page may be
1226 * counted both as mem and swap....double count.
03f3c433
KH
1227 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1228 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1229 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1230 */
03f3c433 1231 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1232 swp_entry_t ent = {.val = page_private(page)};
1233 struct mem_cgroup *memcg;
1234 memcg = swap_cgroup_record(ent, NULL);
1235 if (memcg) {
8c7c6e34
KH
1236 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1237 mem_cgroup_put(memcg);
1238 }
1239
1240 }
08e552c6 1241 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1242
7a81b88c
KH
1243}
1244
1245void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1246{
f8d66542 1247 if (mem_cgroup_disabled())
7a81b88c
KH
1248 return;
1249 if (!mem)
1250 return;
1251 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1252 if (do_swap_account)
1253 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1254 css_put(&mem->css);
1255}
1256
1257
8a9f3ccd 1258/*
69029cd5 1259 * uncharge if !page_mapped(page)
8a9f3ccd 1260 */
8c7c6e34 1261static struct mem_cgroup *
69029cd5 1262__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1263{
8289546e 1264 struct page_cgroup *pc;
8c7c6e34 1265 struct mem_cgroup *mem = NULL;
072c56c1 1266 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1267
f8d66542 1268 if (mem_cgroup_disabled())
8c7c6e34 1269 return NULL;
4077960e 1270
d13d1443 1271 if (PageSwapCache(page))
8c7c6e34 1272 return NULL;
d13d1443 1273
8697d331 1274 /*
3c541e14 1275 * Check if our page_cgroup is valid
8697d331 1276 */
52d4b9ac
KH
1277 pc = lookup_page_cgroup(page);
1278 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1279 return NULL;
b9c565d5 1280
52d4b9ac 1281 lock_page_cgroup(pc);
d13d1443 1282
8c7c6e34
KH
1283 mem = pc->mem_cgroup;
1284
d13d1443
KH
1285 if (!PageCgroupUsed(pc))
1286 goto unlock_out;
1287
1288 switch (ctype) {
1289 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1290 if (page_mapped(page))
1291 goto unlock_out;
1292 break;
1293 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1294 if (!PageAnon(page)) { /* Shared memory */
1295 if (page->mapping && !page_is_file_cache(page))
1296 goto unlock_out;
1297 } else if (page_mapped(page)) /* Anon */
1298 goto unlock_out;
1299 break;
1300 default:
1301 break;
52d4b9ac 1302 }
d13d1443 1303
8c7c6e34
KH
1304 res_counter_uncharge(&mem->res, PAGE_SIZE);
1305 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1306 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1307
08e552c6 1308 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1309 ClearPageCgroupUsed(pc);
544122e5
KH
1310 /*
1311 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1312 * freed from LRU. This is safe because uncharged page is expected not
1313 * to be reused (freed soon). Exception is SwapCache, it's handled by
1314 * special functions.
1315 */
b9c565d5 1316
69029cd5 1317 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1318 unlock_page_cgroup(pc);
fb59e9f1 1319
a7fe942e
KH
1320 /* at swapout, this memcg will be accessed to record to swap */
1321 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1322 css_put(&mem->css);
6d12e2d8 1323
8c7c6e34 1324 return mem;
d13d1443
KH
1325
1326unlock_out:
1327 unlock_page_cgroup(pc);
8c7c6e34 1328 return NULL;
3c541e14
BS
1329}
1330
69029cd5
KH
1331void mem_cgroup_uncharge_page(struct page *page)
1332{
52d4b9ac
KH
1333 /* early check. */
1334 if (page_mapped(page))
1335 return;
1336 if (page->mapping && !PageAnon(page))
1337 return;
69029cd5
KH
1338 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1339}
1340
1341void mem_cgroup_uncharge_cache_page(struct page *page)
1342{
1343 VM_BUG_ON(page_mapped(page));
b7abea96 1344 VM_BUG_ON(page->mapping);
69029cd5
KH
1345 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1346}
1347
8c7c6e34
KH
1348/*
1349 * called from __delete_from_swap_cache() and drop "page" account.
1350 * memcg information is recorded to swap_cgroup of "ent"
1351 */
1352void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1353{
1354 struct mem_cgroup *memcg;
1355
1356 memcg = __mem_cgroup_uncharge_common(page,
1357 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1358 /* record memcg information */
1359 if (do_swap_account && memcg) {
1360 swap_cgroup_record(ent, memcg);
1361 mem_cgroup_get(memcg);
1362 }
a7fe942e
KH
1363 if (memcg)
1364 css_put(&memcg->css);
8c7c6e34
KH
1365}
1366
1367#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1368/*
1369 * called from swap_entry_free(). remove record in swap_cgroup and
1370 * uncharge "memsw" account.
1371 */
1372void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1373{
8c7c6e34
KH
1374 struct mem_cgroup *memcg;
1375
1376 if (!do_swap_account)
1377 return;
1378
1379 memcg = swap_cgroup_record(ent, NULL);
1380 if (memcg) {
1381 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1382 mem_cgroup_put(memcg);
1383 }
d13d1443 1384}
8c7c6e34 1385#endif
d13d1443 1386
ae41be37 1387/*
01b1ae63
KH
1388 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1389 * page belongs to.
ae41be37 1390 */
01b1ae63 1391int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1392{
1393 struct page_cgroup *pc;
e8589cc1 1394 struct mem_cgroup *mem = NULL;
e8589cc1 1395 int ret = 0;
8869b8f6 1396
f8d66542 1397 if (mem_cgroup_disabled())
4077960e
BS
1398 return 0;
1399
52d4b9ac
KH
1400 pc = lookup_page_cgroup(page);
1401 lock_page_cgroup(pc);
1402 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1403 mem = pc->mem_cgroup;
1404 css_get(&mem->css);
e8589cc1 1405 }
52d4b9ac 1406 unlock_page_cgroup(pc);
01b1ae63 1407
e8589cc1 1408 if (mem) {
3bb4edf2 1409 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1410 css_put(&mem->css);
1411 }
01b1ae63 1412 *ptr = mem;
e8589cc1 1413 return ret;
ae41be37 1414}
8869b8f6 1415
69029cd5 1416/* remove redundant charge if migration failed*/
01b1ae63
KH
1417void mem_cgroup_end_migration(struct mem_cgroup *mem,
1418 struct page *oldpage, struct page *newpage)
ae41be37 1419{
01b1ae63
KH
1420 struct page *target, *unused;
1421 struct page_cgroup *pc;
1422 enum charge_type ctype;
1423
1424 if (!mem)
1425 return;
1426
1427 /* at migration success, oldpage->mapping is NULL. */
1428 if (oldpage->mapping) {
1429 target = oldpage;
1430 unused = NULL;
1431 } else {
1432 target = newpage;
1433 unused = oldpage;
1434 }
1435
1436 if (PageAnon(target))
1437 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1438 else if (page_is_file_cache(target))
1439 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1440 else
1441 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1442
1443 /* unused page is not on radix-tree now. */
d13d1443 1444 if (unused)
01b1ae63
KH
1445 __mem_cgroup_uncharge_common(unused, ctype);
1446
1447 pc = lookup_page_cgroup(target);
69029cd5 1448 /*
01b1ae63
KH
1449 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1450 * So, double-counting is effectively avoided.
1451 */
1452 __mem_cgroup_commit_charge(mem, pc, ctype);
1453
1454 /*
1455 * Both of oldpage and newpage are still under lock_page().
1456 * Then, we don't have to care about race in radix-tree.
1457 * But we have to be careful that this page is unmapped or not.
1458 *
1459 * There is a case for !page_mapped(). At the start of
1460 * migration, oldpage was mapped. But now, it's zapped.
1461 * But we know *target* page is not freed/reused under us.
1462 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1463 */
01b1ae63
KH
1464 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1465 mem_cgroup_uncharge_page(target);
ae41be37 1466}
78fb7466 1467
c9b0ed51
KH
1468/*
1469 * A call to try to shrink memory usage under specified resource controller.
1470 * This is typically used for page reclaiming for shmem for reducing side
1471 * effect of page allocation from shmem, which is used by some mem_cgroup.
1472 */
b5a84319
KH
1473int mem_cgroup_shrink_usage(struct page *page,
1474 struct mm_struct *mm,
1475 gfp_t gfp_mask)
c9b0ed51 1476{
b5a84319 1477 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1478 int progress = 0;
1479 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1480
f8d66542 1481 if (mem_cgroup_disabled())
cede86ac 1482 return 0;
b5a84319
KH
1483 if (page)
1484 mem = try_get_mem_cgroup_from_swapcache(page);
1485 if (!mem && mm)
1486 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1487 if (unlikely(!mem))
31a78f23 1488 return 0;
c9b0ed51
KH
1489
1490 do {
42e9abb6 1491 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1492 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1493 } while (!progress && --retry);
1494
1495 css_put(&mem->css);
1496 if (!retry)
1497 return -ENOMEM;
1498 return 0;
1499}
1500
8c7c6e34
KH
1501static DEFINE_MUTEX(set_limit_mutex);
1502
d38d2a75 1503static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1504 unsigned long long val)
628f4235
KH
1505{
1506
1507 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1508 int progress;
8c7c6e34 1509 u64 memswlimit;
628f4235
KH
1510 int ret = 0;
1511
8c7c6e34 1512 while (retry_count) {
628f4235
KH
1513 if (signal_pending(current)) {
1514 ret = -EINTR;
1515 break;
1516 }
8c7c6e34
KH
1517 /*
1518 * Rather than hide all in some function, I do this in
1519 * open coded manner. You see what this really does.
1520 * We have to guarantee mem->res.limit < mem->memsw.limit.
1521 */
1522 mutex_lock(&set_limit_mutex);
1523 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1524 if (memswlimit < val) {
1525 ret = -EINVAL;
1526 mutex_unlock(&set_limit_mutex);
628f4235
KH
1527 break;
1528 }
8c7c6e34
KH
1529 ret = res_counter_set_limit(&memcg->res, val);
1530 mutex_unlock(&set_limit_mutex);
1531
1532 if (!ret)
1533 break;
1534
42e9abb6
DN
1535 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1536 false);
8c7c6e34
KH
1537 if (!progress) retry_count--;
1538 }
14797e23 1539
8c7c6e34
KH
1540 return ret;
1541}
1542
1543int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1544 unsigned long long val)
1545{
1546 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1547 u64 memlimit, oldusage, curusage;
1548 int ret;
1549
1550 if (!do_swap_account)
1551 return -EINVAL;
1552
1553 while (retry_count) {
1554 if (signal_pending(current)) {
1555 ret = -EINTR;
1556 break;
1557 }
1558 /*
1559 * Rather than hide all in some function, I do this in
1560 * open coded manner. You see what this really does.
1561 * We have to guarantee mem->res.limit < mem->memsw.limit.
1562 */
1563 mutex_lock(&set_limit_mutex);
1564 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1565 if (memlimit > val) {
1566 ret = -EINVAL;
1567 mutex_unlock(&set_limit_mutex);
1568 break;
1569 }
1570 ret = res_counter_set_limit(&memcg->memsw, val);
1571 mutex_unlock(&set_limit_mutex);
1572
1573 if (!ret)
1574 break;
1575
1576 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1577 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1578 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1579 if (curusage >= oldusage)
628f4235
KH
1580 retry_count--;
1581 }
1582 return ret;
1583}
1584
cc847582
KH
1585/*
1586 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1587 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1588 */
f817ed48 1589static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1590 int node, int zid, enum lru_list lru)
cc847582 1591{
08e552c6
KH
1592 struct zone *zone;
1593 struct mem_cgroup_per_zone *mz;
f817ed48 1594 struct page_cgroup *pc, *busy;
08e552c6 1595 unsigned long flags, loop;
072c56c1 1596 struct list_head *list;
f817ed48 1597 int ret = 0;
072c56c1 1598
08e552c6
KH
1599 zone = &NODE_DATA(node)->node_zones[zid];
1600 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1601 list = &mz->lists[lru];
cc847582 1602
f817ed48
KH
1603 loop = MEM_CGROUP_ZSTAT(mz, lru);
1604 /* give some margin against EBUSY etc...*/
1605 loop += 256;
1606 busy = NULL;
1607 while (loop--) {
1608 ret = 0;
08e552c6 1609 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1610 if (list_empty(list)) {
08e552c6 1611 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1612 break;
f817ed48
KH
1613 }
1614 pc = list_entry(list->prev, struct page_cgroup, lru);
1615 if (busy == pc) {
1616 list_move(&pc->lru, list);
1617 busy = 0;
08e552c6 1618 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1619 continue;
1620 }
08e552c6 1621 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1622
2c26fdd7 1623 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1624 if (ret == -ENOMEM)
52d4b9ac 1625 break;
f817ed48
KH
1626
1627 if (ret == -EBUSY || ret == -EINVAL) {
1628 /* found lock contention or "pc" is obsolete. */
1629 busy = pc;
1630 cond_resched();
1631 } else
1632 busy = NULL;
cc847582 1633 }
08e552c6 1634
f817ed48
KH
1635 if (!ret && !list_empty(list))
1636 return -EBUSY;
1637 return ret;
cc847582
KH
1638}
1639
1640/*
1641 * make mem_cgroup's charge to be 0 if there is no task.
1642 * This enables deleting this mem_cgroup.
1643 */
c1e862c1 1644static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1645{
f817ed48
KH
1646 int ret;
1647 int node, zid, shrink;
1648 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1649 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1650
cc847582 1651 css_get(&mem->css);
f817ed48
KH
1652
1653 shrink = 0;
c1e862c1
KH
1654 /* should free all ? */
1655 if (free_all)
1656 goto try_to_free;
f817ed48 1657move_account:
1ecaab2b 1658 while (mem->res.usage > 0) {
f817ed48 1659 ret = -EBUSY;
c1e862c1
KH
1660 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1661 goto out;
1662 ret = -EINTR;
1663 if (signal_pending(current))
cc847582 1664 goto out;
52d4b9ac
KH
1665 /* This is for making all *used* pages to be on LRU. */
1666 lru_add_drain_all();
f817ed48
KH
1667 ret = 0;
1668 for_each_node_state(node, N_POSSIBLE) {
1669 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1670 enum lru_list l;
f817ed48
KH
1671 for_each_lru(l) {
1672 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1673 node, zid, l);
f817ed48
KH
1674 if (ret)
1675 break;
1676 }
1ecaab2b 1677 }
f817ed48
KH
1678 if (ret)
1679 break;
1680 }
1681 /* it seems parent cgroup doesn't have enough mem */
1682 if (ret == -ENOMEM)
1683 goto try_to_free;
52d4b9ac 1684 cond_resched();
cc847582
KH
1685 }
1686 ret = 0;
1687out:
1688 css_put(&mem->css);
1689 return ret;
f817ed48
KH
1690
1691try_to_free:
c1e862c1
KH
1692 /* returns EBUSY if there is a task or if we come here twice. */
1693 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1694 ret = -EBUSY;
1695 goto out;
1696 }
c1e862c1
KH
1697 /* we call try-to-free pages for make this cgroup empty */
1698 lru_add_drain_all();
f817ed48
KH
1699 /* try to free all pages in this cgroup */
1700 shrink = 1;
1701 while (nr_retries && mem->res.usage > 0) {
1702 int progress;
c1e862c1
KH
1703
1704 if (signal_pending(current)) {
1705 ret = -EINTR;
1706 goto out;
1707 }
a7885eb8
KM
1708 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1709 false, get_swappiness(mem));
c1e862c1 1710 if (!progress) {
f817ed48 1711 nr_retries--;
c1e862c1
KH
1712 /* maybe some writeback is necessary */
1713 congestion_wait(WRITE, HZ/10);
1714 }
f817ed48
KH
1715
1716 }
08e552c6 1717 lru_add_drain();
f817ed48
KH
1718 /* try move_account...there may be some *locked* pages. */
1719 if (mem->res.usage)
1720 goto move_account;
1721 ret = 0;
1722 goto out;
cc847582
KH
1723}
1724
c1e862c1
KH
1725int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1726{
1727 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1728}
1729
1730
18f59ea7
BS
1731static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1732{
1733 return mem_cgroup_from_cont(cont)->use_hierarchy;
1734}
1735
1736static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1737 u64 val)
1738{
1739 int retval = 0;
1740 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1741 struct cgroup *parent = cont->parent;
1742 struct mem_cgroup *parent_mem = NULL;
1743
1744 if (parent)
1745 parent_mem = mem_cgroup_from_cont(parent);
1746
1747 cgroup_lock();
1748 /*
1749 * If parent's use_hiearchy is set, we can't make any modifications
1750 * in the child subtrees. If it is unset, then the change can
1751 * occur, provided the current cgroup has no children.
1752 *
1753 * For the root cgroup, parent_mem is NULL, we allow value to be
1754 * set if there are no children.
1755 */
1756 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1757 (val == 1 || val == 0)) {
1758 if (list_empty(&cont->children))
1759 mem->use_hierarchy = val;
1760 else
1761 retval = -EBUSY;
1762 } else
1763 retval = -EINVAL;
1764 cgroup_unlock();
1765
1766 return retval;
1767}
1768
2c3daa72 1769static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1770{
8c7c6e34
KH
1771 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1772 u64 val = 0;
1773 int type, name;
1774
1775 type = MEMFILE_TYPE(cft->private);
1776 name = MEMFILE_ATTR(cft->private);
1777 switch (type) {
1778 case _MEM:
1779 val = res_counter_read_u64(&mem->res, name);
1780 break;
1781 case _MEMSWAP:
1782 if (do_swap_account)
1783 val = res_counter_read_u64(&mem->memsw, name);
1784 break;
1785 default:
1786 BUG();
1787 break;
1788 }
1789 return val;
8cdea7c0 1790}
628f4235
KH
1791/*
1792 * The user of this function is...
1793 * RES_LIMIT.
1794 */
856c13aa
PM
1795static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1796 const char *buffer)
8cdea7c0 1797{
628f4235 1798 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1799 int type, name;
628f4235
KH
1800 unsigned long long val;
1801 int ret;
1802
8c7c6e34
KH
1803 type = MEMFILE_TYPE(cft->private);
1804 name = MEMFILE_ATTR(cft->private);
1805 switch (name) {
628f4235
KH
1806 case RES_LIMIT:
1807 /* This function does all necessary parse...reuse it */
1808 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1809 if (ret)
1810 break;
1811 if (type == _MEM)
628f4235 1812 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1813 else
1814 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1815 break;
1816 default:
1817 ret = -EINVAL; /* should be BUG() ? */
1818 break;
1819 }
1820 return ret;
8cdea7c0
BS
1821}
1822
fee7b548
KH
1823static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1824 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1825{
1826 struct cgroup *cgroup;
1827 unsigned long long min_limit, min_memsw_limit, tmp;
1828
1829 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1830 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1831 cgroup = memcg->css.cgroup;
1832 if (!memcg->use_hierarchy)
1833 goto out;
1834
1835 while (cgroup->parent) {
1836 cgroup = cgroup->parent;
1837 memcg = mem_cgroup_from_cont(cgroup);
1838 if (!memcg->use_hierarchy)
1839 break;
1840 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1841 min_limit = min(min_limit, tmp);
1842 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1843 min_memsw_limit = min(min_memsw_limit, tmp);
1844 }
1845out:
1846 *mem_limit = min_limit;
1847 *memsw_limit = min_memsw_limit;
1848 return;
1849}
1850
29f2a4da 1851static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1852{
1853 struct mem_cgroup *mem;
8c7c6e34 1854 int type, name;
c84872e1
PE
1855
1856 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1857 type = MEMFILE_TYPE(event);
1858 name = MEMFILE_ATTR(event);
1859 switch (name) {
29f2a4da 1860 case RES_MAX_USAGE:
8c7c6e34
KH
1861 if (type == _MEM)
1862 res_counter_reset_max(&mem->res);
1863 else
1864 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1865 break;
1866 case RES_FAILCNT:
8c7c6e34
KH
1867 if (type == _MEM)
1868 res_counter_reset_failcnt(&mem->res);
1869 else
1870 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1871 break;
1872 }
85cc59db 1873 return 0;
c84872e1
PE
1874}
1875
d2ceb9b7
KH
1876static const struct mem_cgroup_stat_desc {
1877 const char *msg;
1878 u64 unit;
1879} mem_cgroup_stat_desc[] = {
1880 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1881 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1882 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1883 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1884};
1885
c64745cf
PM
1886static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1887 struct cgroup_map_cb *cb)
d2ceb9b7 1888{
d2ceb9b7
KH
1889 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1890 struct mem_cgroup_stat *stat = &mem_cont->stat;
1891 int i;
1892
1893 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1894 s64 val;
1895
1896 val = mem_cgroup_read_stat(stat, i);
1897 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1898 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1899 }
6d12e2d8
KH
1900 /* showing # of active pages */
1901 {
4f98a2fe
RR
1902 unsigned long active_anon, inactive_anon;
1903 unsigned long active_file, inactive_file;
7b854121 1904 unsigned long unevictable;
4f98a2fe
RR
1905
1906 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1907 LRU_INACTIVE_ANON);
1908 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1909 LRU_ACTIVE_ANON);
1910 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1911 LRU_INACTIVE_FILE);
1912 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1913 LRU_ACTIVE_FILE);
7b854121
LS
1914 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1915 LRU_UNEVICTABLE);
1916
4f98a2fe
RR
1917 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1918 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1919 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1920 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1921 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1922
6d12e2d8 1923 }
fee7b548
KH
1924 {
1925 unsigned long long limit, memsw_limit;
1926 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1927 cb->fill(cb, "hierarchical_memory_limit", limit);
1928 if (do_swap_account)
1929 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1930 }
7f016ee8
KM
1931
1932#ifdef CONFIG_DEBUG_VM
c772be93 1933 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1934
1935 {
1936 int nid, zid;
1937 struct mem_cgroup_per_zone *mz;
1938 unsigned long recent_rotated[2] = {0, 0};
1939 unsigned long recent_scanned[2] = {0, 0};
1940
1941 for_each_online_node(nid)
1942 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1943 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1944
1945 recent_rotated[0] +=
1946 mz->reclaim_stat.recent_rotated[0];
1947 recent_rotated[1] +=
1948 mz->reclaim_stat.recent_rotated[1];
1949 recent_scanned[0] +=
1950 mz->reclaim_stat.recent_scanned[0];
1951 recent_scanned[1] +=
1952 mz->reclaim_stat.recent_scanned[1];
1953 }
1954 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1955 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1956 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1957 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1958 }
1959#endif
1960
d2ceb9b7
KH
1961 return 0;
1962}
1963
a7885eb8
KM
1964static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1965{
1966 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1967
1968 return get_swappiness(memcg);
1969}
1970
1971static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1972 u64 val)
1973{
1974 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1975 struct mem_cgroup *parent;
1976 if (val > 100)
1977 return -EINVAL;
1978
1979 if (cgrp->parent == NULL)
1980 return -EINVAL;
1981
1982 parent = mem_cgroup_from_cont(cgrp->parent);
1983 /* If under hierarchy, only empty-root can set this value */
1984 if ((parent->use_hierarchy) ||
1985 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1986 return -EINVAL;
1987
1988 spin_lock(&memcg->reclaim_param_lock);
1989 memcg->swappiness = val;
1990 spin_unlock(&memcg->reclaim_param_lock);
1991
1992 return 0;
1993}
1994
c1e862c1 1995
8cdea7c0
BS
1996static struct cftype mem_cgroup_files[] = {
1997 {
0eea1030 1998 .name = "usage_in_bytes",
8c7c6e34 1999 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2000 .read_u64 = mem_cgroup_read,
8cdea7c0 2001 },
c84872e1
PE
2002 {
2003 .name = "max_usage_in_bytes",
8c7c6e34 2004 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2005 .trigger = mem_cgroup_reset,
c84872e1
PE
2006 .read_u64 = mem_cgroup_read,
2007 },
8cdea7c0 2008 {
0eea1030 2009 .name = "limit_in_bytes",
8c7c6e34 2010 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2011 .write_string = mem_cgroup_write,
2c3daa72 2012 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2013 },
2014 {
2015 .name = "failcnt",
8c7c6e34 2016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2017 .trigger = mem_cgroup_reset,
2c3daa72 2018 .read_u64 = mem_cgroup_read,
8cdea7c0 2019 },
d2ceb9b7
KH
2020 {
2021 .name = "stat",
c64745cf 2022 .read_map = mem_control_stat_show,
d2ceb9b7 2023 },
c1e862c1
KH
2024 {
2025 .name = "force_empty",
2026 .trigger = mem_cgroup_force_empty_write,
2027 },
18f59ea7
BS
2028 {
2029 .name = "use_hierarchy",
2030 .write_u64 = mem_cgroup_hierarchy_write,
2031 .read_u64 = mem_cgroup_hierarchy_read,
2032 },
a7885eb8
KM
2033 {
2034 .name = "swappiness",
2035 .read_u64 = mem_cgroup_swappiness_read,
2036 .write_u64 = mem_cgroup_swappiness_write,
2037 },
8cdea7c0
BS
2038};
2039
8c7c6e34
KH
2040#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2041static struct cftype memsw_cgroup_files[] = {
2042 {
2043 .name = "memsw.usage_in_bytes",
2044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2045 .read_u64 = mem_cgroup_read,
2046 },
2047 {
2048 .name = "memsw.max_usage_in_bytes",
2049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2050 .trigger = mem_cgroup_reset,
2051 .read_u64 = mem_cgroup_read,
2052 },
2053 {
2054 .name = "memsw.limit_in_bytes",
2055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2056 .write_string = mem_cgroup_write,
2057 .read_u64 = mem_cgroup_read,
2058 },
2059 {
2060 .name = "memsw.failcnt",
2061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2062 .trigger = mem_cgroup_reset,
2063 .read_u64 = mem_cgroup_read,
2064 },
2065};
2066
2067static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2068{
2069 if (!do_swap_account)
2070 return 0;
2071 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2072 ARRAY_SIZE(memsw_cgroup_files));
2073};
2074#else
2075static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2076{
2077 return 0;
2078}
2079#endif
2080
6d12e2d8
KH
2081static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2082{
2083 struct mem_cgroup_per_node *pn;
1ecaab2b 2084 struct mem_cgroup_per_zone *mz;
b69408e8 2085 enum lru_list l;
41e3355d 2086 int zone, tmp = node;
1ecaab2b
KH
2087 /*
2088 * This routine is called against possible nodes.
2089 * But it's BUG to call kmalloc() against offline node.
2090 *
2091 * TODO: this routine can waste much memory for nodes which will
2092 * never be onlined. It's better to use memory hotplug callback
2093 * function.
2094 */
41e3355d
KH
2095 if (!node_state(node, N_NORMAL_MEMORY))
2096 tmp = -1;
2097 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2098 if (!pn)
2099 return 1;
1ecaab2b 2100
6d12e2d8
KH
2101 mem->info.nodeinfo[node] = pn;
2102 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2103
2104 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2105 mz = &pn->zoneinfo[zone];
b69408e8
CL
2106 for_each_lru(l)
2107 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2108 }
6d12e2d8
KH
2109 return 0;
2110}
2111
1ecaab2b
KH
2112static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2113{
2114 kfree(mem->info.nodeinfo[node]);
2115}
2116
c8dad2bb
JB
2117static int mem_cgroup_size(void)
2118{
2119 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2120 return sizeof(struct mem_cgroup) + cpustat_size;
2121}
2122
33327948
KH
2123static struct mem_cgroup *mem_cgroup_alloc(void)
2124{
2125 struct mem_cgroup *mem;
c8dad2bb 2126 int size = mem_cgroup_size();
33327948 2127
c8dad2bb
JB
2128 if (size < PAGE_SIZE)
2129 mem = kmalloc(size, GFP_KERNEL);
33327948 2130 else
c8dad2bb 2131 mem = vmalloc(size);
33327948
KH
2132
2133 if (mem)
c8dad2bb 2134 memset(mem, 0, size);
33327948
KH
2135 return mem;
2136}
2137
8c7c6e34
KH
2138/*
2139 * At destroying mem_cgroup, references from swap_cgroup can remain.
2140 * (scanning all at force_empty is too costly...)
2141 *
2142 * Instead of clearing all references at force_empty, we remember
2143 * the number of reference from swap_cgroup and free mem_cgroup when
2144 * it goes down to 0.
2145 *
8c7c6e34
KH
2146 * Removal of cgroup itself succeeds regardless of refs from swap.
2147 */
2148
a7ba0eef 2149static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2150{
08e552c6
KH
2151 int node;
2152
08e552c6
KH
2153 for_each_node_state(node, N_POSSIBLE)
2154 free_mem_cgroup_per_zone_info(mem, node);
2155
c8dad2bb 2156 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2157 kfree(mem);
2158 else
2159 vfree(mem);
2160}
2161
8c7c6e34
KH
2162static void mem_cgroup_get(struct mem_cgroup *mem)
2163{
2164 atomic_inc(&mem->refcnt);
2165}
2166
2167static void mem_cgroup_put(struct mem_cgroup *mem)
2168{
a7ba0eef
KH
2169 if (atomic_dec_and_test(&mem->refcnt))
2170 __mem_cgroup_free(mem);
8c7c6e34
KH
2171}
2172
33327948 2173
c077719b
KH
2174#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2175static void __init enable_swap_cgroup(void)
2176{
f8d66542 2177 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2178 do_swap_account = 1;
2179}
2180#else
2181static void __init enable_swap_cgroup(void)
2182{
2183}
2184#endif
2185
8cdea7c0
BS
2186static struct cgroup_subsys_state *
2187mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2188{
28dbc4b6 2189 struct mem_cgroup *mem, *parent;
6d12e2d8 2190 int node;
8cdea7c0 2191
c8dad2bb
JB
2192 mem = mem_cgroup_alloc();
2193 if (!mem)
2194 return ERR_PTR(-ENOMEM);
78fb7466 2195
6d12e2d8
KH
2196 for_each_node_state(node, N_POSSIBLE)
2197 if (alloc_mem_cgroup_per_zone_info(mem, node))
2198 goto free_out;
c077719b 2199 /* root ? */
28dbc4b6 2200 if (cont->parent == NULL) {
c077719b 2201 enable_swap_cgroup();
28dbc4b6 2202 parent = NULL;
18f59ea7 2203 } else {
28dbc4b6 2204 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2205 mem->use_hierarchy = parent->use_hierarchy;
2206 }
28dbc4b6 2207
18f59ea7
BS
2208 if (parent && parent->use_hierarchy) {
2209 res_counter_init(&mem->res, &parent->res);
2210 res_counter_init(&mem->memsw, &parent->memsw);
2211 } else {
2212 res_counter_init(&mem->res, NULL);
2213 res_counter_init(&mem->memsw, NULL);
2214 }
6d61ef40 2215 mem->last_scanned_child = NULL;
2733c06a 2216 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2217
a7885eb8
KM
2218 if (parent)
2219 mem->swappiness = get_swappiness(parent);
a7ba0eef 2220 atomic_set(&mem->refcnt, 1);
8cdea7c0 2221 return &mem->css;
6d12e2d8 2222free_out:
a7ba0eef 2223 __mem_cgroup_free(mem);
2dda81ca 2224 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2225}
2226
df878fb0
KH
2227static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2228 struct cgroup *cont)
2229{
2230 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 2231 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2232}
2233
8cdea7c0
BS
2234static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2235 struct cgroup *cont)
2236{
a7ba0eef 2237 mem_cgroup_put(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2238}
2239
2240static int mem_cgroup_populate(struct cgroup_subsys *ss,
2241 struct cgroup *cont)
2242{
8c7c6e34
KH
2243 int ret;
2244
2245 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2246 ARRAY_SIZE(mem_cgroup_files));
2247
2248 if (!ret)
2249 ret = register_memsw_files(cont, ss);
2250 return ret;
8cdea7c0
BS
2251}
2252
67e465a7
BS
2253static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2254 struct cgroup *cont,
2255 struct cgroup *old_cont,
2256 struct task_struct *p)
2257{
7f4d454d 2258 mutex_lock(&memcg_tasklist);
67e465a7 2259 /*
f9717d28
NK
2260 * FIXME: It's better to move charges of this process from old
2261 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2262 */
7f4d454d 2263 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2264}
2265
8cdea7c0
BS
2266struct cgroup_subsys mem_cgroup_subsys = {
2267 .name = "memory",
2268 .subsys_id = mem_cgroup_subsys_id,
2269 .create = mem_cgroup_create,
df878fb0 2270 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2271 .destroy = mem_cgroup_destroy,
2272 .populate = mem_cgroup_populate,
67e465a7 2273 .attach = mem_cgroup_move_task,
6d12e2d8 2274 .early_init = 0,
8cdea7c0 2275};
c077719b
KH
2276
2277#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2278
2279static int __init disable_swap_account(char *s)
2280{
2281 really_do_swap_account = 0;
2282 return 1;
2283}
2284__setup("noswapaccount", disable_swap_account);
2285#endif
This page took 0.235243 seconds and 5 git commands to generate.