mm: memcontrol: fix transparent huge page allocations under pressure
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
2f7dd7a4
JW
295 /* css_online() has been completed */
296 int initialized;
297
465939a1
LZ
298 /*
299 * the counter to account for mem+swap usage.
300 */
301 struct res_counter memsw;
59927fb9 302
510fc4e1
GC
303 /*
304 * the counter to account for kernel memory usage.
305 */
306 struct res_counter kmem;
18f59ea7
BS
307 /*
308 * Should the accounting and control be hierarchical, per subtree?
309 */
310 bool use_hierarchy;
510fc4e1 311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
312
313 bool oom_lock;
314 atomic_t under_oom;
3812c8c8 315 atomic_t oom_wakeups;
79dfdacc 316
1f4c025b 317 int swappiness;
3c11ecf4
KH
318 /* OOM-Killer disable */
319 int oom_kill_disable;
a7885eb8 320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
0999821b
GC
483/*
484 * The memcg_create_mutex will be held whenever a new cgroup is created.
485 * As a consequence, any change that needs to protect against new child cgroups
486 * appearing has to hold it as well.
487 */
488static DEFINE_MUTEX(memcg_create_mutex);
489
b2145145
WL
490struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
491{
a7c6d554 492 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
493}
494
70ddf637
AV
495/* Some nice accessors for the vmpressure. */
496struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
497{
498 if (!memcg)
499 memcg = root_mem_cgroup;
500 return &memcg->vmpressure;
501}
502
503struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
504{
505 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
506}
507
7ffc0edc
MH
508static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509{
510 return (memcg == root_mem_cgroup);
511}
512
4219b2da
LZ
513/*
514 * We restrict the id in the range of [1, 65535], so it can fit into
515 * an unsigned short.
516 */
517#define MEM_CGROUP_ID_MAX USHRT_MAX
518
34c00c31
LZ
519static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
520{
15a4c835 521 return memcg->css.id;
34c00c31
LZ
522}
523
524static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
525{
526 struct cgroup_subsys_state *css;
527
7d699ddb 528 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
529 return mem_cgroup_from_css(css);
530}
531
e1aab161 532/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 533#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 534
e1aab161
GC
535void sock_update_memcg(struct sock *sk)
536{
376be5ff 537 if (mem_cgroup_sockets_enabled) {
e1aab161 538 struct mem_cgroup *memcg;
3f134619 539 struct cg_proto *cg_proto;
e1aab161
GC
540
541 BUG_ON(!sk->sk_prot->proto_cgroup);
542
f3f511e1
GC
543 /* Socket cloning can throw us here with sk_cgrp already
544 * filled. It won't however, necessarily happen from
545 * process context. So the test for root memcg given
546 * the current task's memcg won't help us in this case.
547 *
548 * Respecting the original socket's memcg is a better
549 * decision in this case.
550 */
551 if (sk->sk_cgrp) {
552 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 553 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
554 return;
555 }
556
e1aab161
GC
557 rcu_read_lock();
558 memcg = mem_cgroup_from_task(current);
3f134619 559 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 560 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
561 memcg_proto_active(cg_proto) &&
562 css_tryget_online(&memcg->css)) {
3f134619 563 sk->sk_cgrp = cg_proto;
e1aab161
GC
564 }
565 rcu_read_unlock();
566 }
567}
568EXPORT_SYMBOL(sock_update_memcg);
569
570void sock_release_memcg(struct sock *sk)
571{
376be5ff 572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
573 struct mem_cgroup *memcg;
574 WARN_ON(!sk->sk_cgrp->memcg);
575 memcg = sk->sk_cgrp->memcg;
5347e5ae 576 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
577 }
578}
d1a4c0b3
GC
579
580struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581{
582 if (!memcg || mem_cgroup_is_root(memcg))
583 return NULL;
584
2e685cad 585 return &memcg->tcp_mem;
d1a4c0b3
GC
586}
587EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 588
3f134619
GC
589static void disarm_sock_keys(struct mem_cgroup *memcg)
590{
2e685cad 591 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
592 return;
593 static_key_slow_dec(&memcg_socket_limit_enabled);
594}
595#else
596static void disarm_sock_keys(struct mem_cgroup *memcg)
597{
598}
599#endif
600
a8964b9b 601#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
602/*
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
604 * The main reason for not using cgroup id for this:
605 * this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
55007d84
GC
609 *
610 * The current size of the caches array is stored in
611 * memcg_limited_groups_array_size. It will double each time we have to
612 * increase it.
613 */
614static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
615int memcg_limited_groups_array_size;
616
55007d84
GC
617/*
618 * MIN_SIZE is different than 1, because we would like to avoid going through
619 * the alloc/free process all the time. In a small machine, 4 kmem-limited
620 * cgroups is a reasonable guess. In the future, it could be a parameter or
621 * tunable, but that is strictly not necessary.
622 *
b8627835 623 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
624 * this constant directly from cgroup, but it is understandable that this is
625 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 626 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
627 * increase ours as well if it increases.
628 */
629#define MEMCG_CACHES_MIN_SIZE 4
b8627835 630#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 631
d7f25f8a
GC
632/*
633 * A lot of the calls to the cache allocation functions are expected to be
634 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635 * conditional to this static branch, we'll have to allow modules that does
636 * kmem_cache_alloc and the such to see this symbol as well
637 */
a8964b9b 638struct static_key memcg_kmem_enabled_key;
d7f25f8a 639EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 640
f3bb3043
VD
641static void memcg_free_cache_id(int id);
642
a8964b9b
GC
643static void disarm_kmem_keys(struct mem_cgroup *memcg)
644{
55007d84 645 if (memcg_kmem_is_active(memcg)) {
a8964b9b 646 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 647 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 648 }
bea207c8
GC
649 /*
650 * This check can't live in kmem destruction function,
651 * since the charges will outlive the cgroup
652 */
653 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
654}
655#else
656static void disarm_kmem_keys(struct mem_cgroup *memcg)
657{
658}
659#endif /* CONFIG_MEMCG_KMEM */
660
661static void disarm_static_keys(struct mem_cgroup *memcg)
662{
663 disarm_sock_keys(memcg);
664 disarm_kmem_keys(memcg);
665}
666
c0ff4b85 667static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 668
f64c3f54 669static struct mem_cgroup_per_zone *
e231875b 670mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 671{
e231875b
JZ
672 int nid = zone_to_nid(zone);
673 int zid = zone_idx(zone);
674
54f72fe0 675 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
676}
677
c0ff4b85 678struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 679{
c0ff4b85 680 return &memcg->css;
d324236b
WF
681}
682
f64c3f54 683static struct mem_cgroup_per_zone *
e231875b 684mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 685{
97a6c37b
JW
686 int nid = page_to_nid(page);
687 int zid = page_zonenum(page);
f64c3f54 688
e231875b 689 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
690}
691
bb4cc1a8
AM
692static struct mem_cgroup_tree_per_zone *
693soft_limit_tree_node_zone(int nid, int zid)
694{
695 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696}
697
698static struct mem_cgroup_tree_per_zone *
699soft_limit_tree_from_page(struct page *page)
700{
701 int nid = page_to_nid(page);
702 int zid = page_zonenum(page);
703
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705}
706
cf2c8127
JW
707static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz,
709 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
710{
711 struct rb_node **p = &mctz->rb_root.rb_node;
712 struct rb_node *parent = NULL;
713 struct mem_cgroup_per_zone *mz_node;
714
715 if (mz->on_tree)
716 return;
717
718 mz->usage_in_excess = new_usage_in_excess;
719 if (!mz->usage_in_excess)
720 return;
721 while (*p) {
722 parent = *p;
723 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
724 tree_node);
725 if (mz->usage_in_excess < mz_node->usage_in_excess)
726 p = &(*p)->rb_left;
727 /*
728 * We can't avoid mem cgroups that are over their soft
729 * limit by the same amount
730 */
731 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
732 p = &(*p)->rb_right;
733 }
734 rb_link_node(&mz->tree_node, parent, p);
735 rb_insert_color(&mz->tree_node, &mctz->rb_root);
736 mz->on_tree = true;
737}
738
cf2c8127
JW
739static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
741{
742 if (!mz->on_tree)
743 return;
744 rb_erase(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = false;
746}
747
cf2c8127
JW
748static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 750{
0a31bc97
JW
751 unsigned long flags;
752
753 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 754 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 755 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
756}
757
758
759static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
760{
761 unsigned long long excess;
762 struct mem_cgroup_per_zone *mz;
763 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 764
e231875b 765 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
766 /*
767 * Necessary to update all ancestors when hierarchy is used.
768 * because their event counter is not touched.
769 */
770 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 771 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
772 excess = res_counter_soft_limit_excess(&memcg->res);
773 /*
774 * We have to update the tree if mz is on RB-tree or
775 * mem is over its softlimit.
776 */
777 if (excess || mz->on_tree) {
0a31bc97
JW
778 unsigned long flags;
779
780 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
781 /* if on-tree, remove it */
782 if (mz->on_tree)
cf2c8127 783 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 /*
785 * Insert again. mz->usage_in_excess will be updated.
786 * If excess is 0, no tree ops.
787 */
cf2c8127 788 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 789 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
790 }
791 }
792}
793
794static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
795{
bb4cc1a8 796 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
797 struct mem_cgroup_per_zone *mz;
798 int nid, zid;
bb4cc1a8 799
e231875b
JZ
800 for_each_node(nid) {
801 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
802 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
803 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 804 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
805 }
806 }
807}
808
809static struct mem_cgroup_per_zone *
810__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811{
812 struct rb_node *rightmost = NULL;
813 struct mem_cgroup_per_zone *mz;
814
815retry:
816 mz = NULL;
817 rightmost = rb_last(&mctz->rb_root);
818 if (!rightmost)
819 goto done; /* Nothing to reclaim from */
820
821 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
822 /*
823 * Remove the node now but someone else can add it back,
824 * we will to add it back at the end of reclaim to its correct
825 * position in the tree.
826 */
cf2c8127 827 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 828 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 829 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
830 goto retry;
831done:
832 return mz;
833}
834
835static struct mem_cgroup_per_zone *
836mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
837{
838 struct mem_cgroup_per_zone *mz;
839
0a31bc97 840 spin_lock_irq(&mctz->lock);
bb4cc1a8 841 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 842 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
843 return mz;
844}
845
711d3d2c
KH
846/*
847 * Implementation Note: reading percpu statistics for memcg.
848 *
849 * Both of vmstat[] and percpu_counter has threshold and do periodic
850 * synchronization to implement "quick" read. There are trade-off between
851 * reading cost and precision of value. Then, we may have a chance to implement
852 * a periodic synchronizion of counter in memcg's counter.
853 *
854 * But this _read() function is used for user interface now. The user accounts
855 * memory usage by memory cgroup and he _always_ requires exact value because
856 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857 * have to visit all online cpus and make sum. So, for now, unnecessary
858 * synchronization is not implemented. (just implemented for cpu hotplug)
859 *
860 * If there are kernel internal actions which can make use of some not-exact
861 * value, and reading all cpu value can be performance bottleneck in some
862 * common workload, threashold and synchonization as vmstat[] should be
863 * implemented.
864 */
c0ff4b85 865static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 866 enum mem_cgroup_stat_index idx)
c62b1a3b 867{
7a159cc9 868 long val = 0;
c62b1a3b 869 int cpu;
c62b1a3b 870
711d3d2c
KH
871 get_online_cpus();
872 for_each_online_cpu(cpu)
c0ff4b85 873 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 874#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
875 spin_lock(&memcg->pcp_counter_lock);
876 val += memcg->nocpu_base.count[idx];
877 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
878#endif
879 put_online_cpus();
c62b1a3b
KH
880 return val;
881}
882
c0ff4b85 883static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
884 enum mem_cgroup_events_index idx)
885{
886 unsigned long val = 0;
887 int cpu;
888
9c567512 889 get_online_cpus();
e9f8974f 890 for_each_online_cpu(cpu)
c0ff4b85 891 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 892#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
893 spin_lock(&memcg->pcp_counter_lock);
894 val += memcg->nocpu_base.events[idx];
895 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 896#endif
9c567512 897 put_online_cpus();
e9f8974f
JW
898 return val;
899}
900
c0ff4b85 901static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 902 struct page *page,
0a31bc97 903 int nr_pages)
d52aa412 904{
b2402857
KH
905 /*
906 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 * counted as CACHE even if it's on ANON LRU.
908 */
0a31bc97 909 if (PageAnon(page))
b2402857 910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 911 nr_pages);
d52aa412 912 else
b2402857 913 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 914 nr_pages);
55e462b0 915
b070e65c
DR
916 if (PageTransHuge(page))
917 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
918 nr_pages);
919
e401f176
KH
920 /* pagein of a big page is an event. So, ignore page size */
921 if (nr_pages > 0)
c0ff4b85 922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 923 else {
c0ff4b85 924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
925 nr_pages = -nr_pages; /* for event */
926 }
e401f176 927
13114716 928 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
929}
930
e231875b 931unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
932{
933 struct mem_cgroup_per_zone *mz;
934
935 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
936 return mz->lru_size[lru];
937}
938
e231875b
JZ
939static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 int nid,
941 unsigned int lru_mask)
bb2a0de9 942{
e231875b 943 unsigned long nr = 0;
889976db
YH
944 int zid;
945
e231875b 946 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 947
e231875b
JZ
948 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
949 struct mem_cgroup_per_zone *mz;
950 enum lru_list lru;
951
952 for_each_lru(lru) {
953 if (!(BIT(lru) & lru_mask))
954 continue;
955 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
956 nr += mz->lru_size[lru];
957 }
958 }
959 return nr;
889976db 960}
bb2a0de9 961
c0ff4b85 962static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 963 unsigned int lru_mask)
6d12e2d8 964{
e231875b 965 unsigned long nr = 0;
889976db 966 int nid;
6d12e2d8 967
31aaea4a 968 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
969 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
970 return nr;
d52aa412
KH
971}
972
f53d7ce3
JW
973static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
7a159cc9
JW
975{
976 unsigned long val, next;
977
13114716 978 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 979 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 980 /* from time_after() in jiffies.h */
f53d7ce3
JW
981 if ((long)next - (long)val < 0) {
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
bb4cc1a8
AM
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
f53d7ce3
JW
989 case MEM_CGROUP_TARGET_NUMAINFO:
990 next = val + NUMAINFO_EVENTS_TARGET;
991 break;
992 default:
993 break;
994 }
995 __this_cpu_write(memcg->stat->targets[target], next);
996 return true;
7a159cc9 997 }
f53d7ce3 998 return false;
d2265e6f
KH
999}
1000
1001/*
1002 * Check events in order.
1003 *
1004 */
c0ff4b85 1005static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1006{
1007 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1010 bool do_softlimit;
82b3f2a7 1011 bool do_numainfo __maybe_unused;
f53d7ce3 1012
bb4cc1a8
AM
1013 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1015#if MAX_NUMNODES > 1
1016 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_NUMAINFO);
1018#endif
c0ff4b85 1019 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1020 if (unlikely(do_softlimit))
1021 mem_cgroup_update_tree(memcg, page);
453a9bf3 1022#if MAX_NUMNODES > 1
f53d7ce3 1023 if (unlikely(do_numainfo))
c0ff4b85 1024 atomic_inc(&memcg->numainfo_events);
453a9bf3 1025#endif
0a31bc97 1026 }
d2265e6f
KH
1027}
1028
cf475ad2 1029struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1030{
31a78f23
BS
1031 /*
1032 * mm_update_next_owner() may clear mm->owner to NULL
1033 * if it races with swapoff, page migration, etc.
1034 * So this can be called with p == NULL.
1035 */
1036 if (unlikely(!p))
1037 return NULL;
1038
073219e9 1039 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1040}
1041
df381975 1042static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1043{
c0ff4b85 1044 struct mem_cgroup *memcg = NULL;
0b7f569e 1045
54595fe2
KH
1046 rcu_read_lock();
1047 do {
6f6acb00
MH
1048 /*
1049 * Page cache insertions can happen withou an
1050 * actual mm context, e.g. during disk probing
1051 * on boot, loopback IO, acct() writes etc.
1052 */
1053 if (unlikely(!mm))
df381975 1054 memcg = root_mem_cgroup;
6f6acb00
MH
1055 else {
1056 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 if (unlikely(!memcg))
1058 memcg = root_mem_cgroup;
1059 }
ec903c0c 1060 } while (!css_tryget_online(&memcg->css));
54595fe2 1061 rcu_read_unlock();
c0ff4b85 1062 return memcg;
54595fe2
KH
1063}
1064
16248d8f
MH
1065/*
1066 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067 * ref. count) or NULL if the whole root's subtree has been visited.
1068 *
1069 * helper function to be used by mem_cgroup_iter
1070 */
1071static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1072 struct mem_cgroup *last_visited)
16248d8f 1073{
492eb21b 1074 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1075
bd8815a6 1076 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1077skip_node:
492eb21b 1078 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1079
1080 /*
1081 * Even if we found a group we have to make sure it is
1082 * alive. css && !memcg means that the groups should be
1083 * skipped and we should continue the tree walk.
1084 * last_visited css is safe to use because it is
1085 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1086 *
1087 * We do not take a reference on the root of the tree walk
1088 * because we might race with the root removal when it would
1089 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 * would end up in an endless loop because it expects that at
1091 * least one valid node will be returned. Root cannot disappear
1092 * because caller of the iterator should hold it already so
1093 * skipping css reference should be safe.
16248d8f 1094 */
492eb21b 1095 if (next_css) {
2f7dd7a4
JW
1096 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097
1098 if (next_css == &root->css)
1099 return memcg;
1100
1101 if (css_tryget_online(next_css)) {
1102 /*
1103 * Make sure the memcg is initialized:
1104 * mem_cgroup_css_online() orders the the
1105 * initialization against setting the flag.
1106 */
1107 if (smp_load_acquire(&memcg->initialized))
1108 return memcg;
1109 css_put(next_css);
1110 }
0eef6156
MH
1111
1112 prev_css = next_css;
1113 goto skip_node;
16248d8f
MH
1114 }
1115
1116 return NULL;
1117}
1118
519ebea3
JW
1119static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120{
1121 /*
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1125 */
1126 atomic_inc(&root->dead_count);
1127}
1128
1129static struct mem_cgroup *
1130mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 struct mem_cgroup *root,
1132 int *sequence)
1133{
1134 struct mem_cgroup *position = NULL;
1135 /*
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1138 *
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1142 */
1143 *sequence = atomic_read(&root->dead_count);
1144 if (iter->last_dead_count == *sequence) {
1145 smp_rmb();
1146 position = iter->last_visited;
ecc736fc
MH
1147
1148 /*
1149 * We cannot take a reference to root because we might race
1150 * with root removal and returning NULL would end up in
1151 * an endless loop on the iterator user level when root
1152 * would be returned all the time.
1153 */
1154 if (position && position != root &&
ec903c0c 1155 !css_tryget_online(&position->css))
519ebea3
JW
1156 position = NULL;
1157 }
1158 return position;
1159}
1160
1161static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *last_visited,
1163 struct mem_cgroup *new_position,
ecc736fc 1164 struct mem_cgroup *root,
519ebea3
JW
1165 int sequence)
1166{
ecc736fc
MH
1167 /* root reference counting symmetric to mem_cgroup_iter_load */
1168 if (last_visited && last_visited != root)
519ebea3
JW
1169 css_put(&last_visited->css);
1170 /*
1171 * We store the sequence count from the time @last_visited was
1172 * loaded successfully instead of rereading it here so that we
1173 * don't lose destruction events in between. We could have
1174 * raced with the destruction of @new_position after all.
1175 */
1176 iter->last_visited = new_position;
1177 smp_wmb();
1178 iter->last_dead_count = sequence;
1179}
1180
5660048c
JW
1181/**
1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183 * @root: hierarchy root
1184 * @prev: previously returned memcg, NULL on first invocation
1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186 *
1187 * Returns references to children of the hierarchy below @root, or
1188 * @root itself, or %NULL after a full round-trip.
1189 *
1190 * Caller must pass the return value in @prev on subsequent
1191 * invocations for reference counting, or use mem_cgroup_iter_break()
1192 * to cancel a hierarchy walk before the round-trip is complete.
1193 *
1194 * Reclaimers can specify a zone and a priority level in @reclaim to
1195 * divide up the memcgs in the hierarchy among all concurrent
1196 * reclaimers operating on the same zone and priority.
1197 */
694fbc0f 1198struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1199 struct mem_cgroup *prev,
694fbc0f 1200 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1201{
9f3a0d09 1202 struct mem_cgroup *memcg = NULL;
542f85f9 1203 struct mem_cgroup *last_visited = NULL;
711d3d2c 1204
694fbc0f
AM
1205 if (mem_cgroup_disabled())
1206 return NULL;
5660048c 1207
9f3a0d09
JW
1208 if (!root)
1209 root = root_mem_cgroup;
7d74b06f 1210
9f3a0d09 1211 if (prev && !reclaim)
542f85f9 1212 last_visited = prev;
14067bb3 1213
9f3a0d09
JW
1214 if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 if (prev)
c40046f3 1216 goto out_css_put;
694fbc0f 1217 return root;
9f3a0d09 1218 }
14067bb3 1219
542f85f9 1220 rcu_read_lock();
9f3a0d09 1221 while (!memcg) {
527a5ec9 1222 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1223 int uninitialized_var(seq);
711d3d2c 1224
527a5ec9 1225 if (reclaim) {
527a5ec9
JW
1226 struct mem_cgroup_per_zone *mz;
1227
e231875b 1228 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1229 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1230 if (prev && reclaim->generation != iter->generation) {
5f578161 1231 iter->last_visited = NULL;
542f85f9
MH
1232 goto out_unlock;
1233 }
5f578161 1234
519ebea3 1235 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1236 }
7d74b06f 1237
694fbc0f 1238 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1239
527a5ec9 1240 if (reclaim) {
ecc736fc
MH
1241 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1242 seq);
542f85f9 1243
19f39402 1244 if (!memcg)
527a5ec9
JW
1245 iter->generation++;
1246 else if (!prev && memcg)
1247 reclaim->generation = iter->generation;
1248 }
9f3a0d09 1249
694fbc0f 1250 if (prev && !memcg)
542f85f9 1251 goto out_unlock;
9f3a0d09 1252 }
542f85f9
MH
1253out_unlock:
1254 rcu_read_unlock();
c40046f3
MH
1255out_css_put:
1256 if (prev && prev != root)
1257 css_put(&prev->css);
1258
9f3a0d09 1259 return memcg;
14067bb3 1260}
7d74b06f 1261
5660048c
JW
1262/**
1263 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264 * @root: hierarchy root
1265 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1266 */
1267void mem_cgroup_iter_break(struct mem_cgroup *root,
1268 struct mem_cgroup *prev)
9f3a0d09
JW
1269{
1270 if (!root)
1271 root = root_mem_cgroup;
1272 if (prev && prev != root)
1273 css_put(&prev->css);
1274}
7d74b06f 1275
9f3a0d09
JW
1276/*
1277 * Iteration constructs for visiting all cgroups (under a tree). If
1278 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279 * be used for reference counting.
1280 */
1281#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1282 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1283 iter != NULL; \
527a5ec9 1284 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1285
9f3a0d09 1286#define for_each_mem_cgroup(iter) \
527a5ec9 1287 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1288 iter != NULL; \
527a5ec9 1289 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1290
68ae564b 1291void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1292{
c0ff4b85 1293 struct mem_cgroup *memcg;
456f998e 1294
456f998e 1295 rcu_read_lock();
c0ff4b85
R
1296 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1297 if (unlikely(!memcg))
456f998e
YH
1298 goto out;
1299
1300 switch (idx) {
456f998e 1301 case PGFAULT:
0e574a93
JW
1302 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1303 break;
1304 case PGMAJFAULT:
1305 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1306 break;
1307 default:
1308 BUG();
1309 }
1310out:
1311 rcu_read_unlock();
1312}
68ae564b 1313EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1314
925b7673
JW
1315/**
1316 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317 * @zone: zone of the wanted lruvec
fa9add64 1318 * @memcg: memcg of the wanted lruvec
925b7673
JW
1319 *
1320 * Returns the lru list vector holding pages for the given @zone and
1321 * @mem. This can be the global zone lruvec, if the memory controller
1322 * is disabled.
1323 */
1324struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1325 struct mem_cgroup *memcg)
1326{
1327 struct mem_cgroup_per_zone *mz;
bea8c150 1328 struct lruvec *lruvec;
925b7673 1329
bea8c150
HD
1330 if (mem_cgroup_disabled()) {
1331 lruvec = &zone->lruvec;
1332 goto out;
1333 }
925b7673 1334
e231875b 1335 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1336 lruvec = &mz->lruvec;
1337out:
1338 /*
1339 * Since a node can be onlined after the mem_cgroup was created,
1340 * we have to be prepared to initialize lruvec->zone here;
1341 * and if offlined then reonlined, we need to reinitialize it.
1342 */
1343 if (unlikely(lruvec->zone != zone))
1344 lruvec->zone = zone;
1345 return lruvec;
925b7673
JW
1346}
1347
925b7673 1348/**
fa9add64 1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1350 * @page: the page
fa9add64 1351 * @zone: zone of the page
925b7673 1352 */
fa9add64 1353struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1354{
08e552c6 1355 struct mem_cgroup_per_zone *mz;
925b7673
JW
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
bea8c150 1358 struct lruvec *lruvec;
6d12e2d8 1359
bea8c150
HD
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1363 }
925b7673 1364
08e552c6 1365 pc = lookup_page_cgroup(page);
38c5d72f 1366 memcg = pc->mem_cgroup;
7512102c
HD
1367
1368 /*
fa9add64 1369 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1372 *
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1376 */
fa9add64 1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1379
e231875b 1380 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1381 lruvec = &mz->lruvec;
1382out:
1383 /*
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1387 */
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
08e552c6 1391}
b69408e8 1392
925b7673 1393/**
fa9add64
HD
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
925b7673 1398 *
fa9add64
HD
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
3f58a829 1401 */
fa9add64
HD
1402void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
3f58a829
MK
1404{
1405 struct mem_cgroup_per_zone *mz;
fa9add64 1406 unsigned long *lru_size;
3f58a829
MK
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
fa9add64
HD
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1415}
544122e5 1416
3e92041d 1417/*
c0ff4b85 1418 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1419 * hierarchy subtree
1420 */
c3ac9a8a
JW
1421bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
3e92041d 1423{
91c63734
JW
1424 if (root_memcg == memcg)
1425 return true;
3a981f48 1426 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1427 return false;
b47f77b5 1428 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1429}
1430
1431static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433{
1434 bool ret;
1435
91c63734 1436 rcu_read_lock();
c3ac9a8a 1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1438 rcu_read_unlock();
1439 return ret;
3e92041d
MH
1440}
1441
ffbdccf5
DR
1442bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
4c4a2214 1444{
0b7f569e 1445 struct mem_cgroup *curr = NULL;
158e0a2d 1446 struct task_struct *p;
ffbdccf5 1447 bool ret;
4c4a2214 1448
158e0a2d 1449 p = find_lock_task_mm(task);
de077d22 1450 if (p) {
df381975 1451 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1452 task_unlock(p);
1453 } else {
1454 /*
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1458 */
ffbdccf5 1459 rcu_read_lock();
de077d22
DR
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
ffbdccf5 1463 rcu_read_unlock();
de077d22 1464 }
d31f56db 1465 /*
c0ff4b85 1466 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1467 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1468 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1470 */
c0ff4b85 1471 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1472 css_put(&curr->css);
4c4a2214
DR
1473 return ret;
1474}
1475
c56d5c7d 1476int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1477{
9b272977 1478 unsigned long inactive_ratio;
14797e23 1479 unsigned long inactive;
9b272977 1480 unsigned long active;
c772be93 1481 unsigned long gb;
14797e23 1482
4d7dcca2
HD
1483 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1484 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1485
c772be93
KM
1486 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1487 if (gb)
1488 inactive_ratio = int_sqrt(10 * gb);
1489 else
1490 inactive_ratio = 1;
1491
9b272977 1492 return inactive * inactive_ratio < active;
14797e23
KM
1493}
1494
6d61ef40
BS
1495#define mem_cgroup_from_res_counter(counter, member) \
1496 container_of(counter, struct mem_cgroup, member)
1497
19942822 1498/**
9d11ea9f 1499 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1500 * @memcg: the memory cgroup
19942822 1501 *
9d11ea9f 1502 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1503 * pages.
19942822 1504 */
c0ff4b85 1505static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1506{
9d11ea9f
JW
1507 unsigned long long margin;
1508
c0ff4b85 1509 margin = res_counter_margin(&memcg->res);
9d11ea9f 1510 if (do_swap_account)
c0ff4b85 1511 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1512 return margin >> PAGE_SHIFT;
19942822
JW
1513}
1514
1f4c025b 1515int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1516{
a7885eb8 1517 /* root ? */
14208b0e 1518 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1519 return vm_swappiness;
1520
bf1ff263 1521 return memcg->swappiness;
a7885eb8
KM
1522}
1523
619d094b
KH
1524/*
1525 * memcg->moving_account is used for checking possibility that some thread is
1526 * calling move_account(). When a thread on CPU-A starts moving pages under
1527 * a memcg, other threads should check memcg->moving_account under
1528 * rcu_read_lock(), like this:
1529 *
1530 * CPU-A CPU-B
1531 * rcu_read_lock()
1532 * memcg->moving_account+1 if (memcg->mocing_account)
1533 * take heavy locks.
1534 * synchronize_rcu() update something.
1535 * rcu_read_unlock()
1536 * start move here.
1537 */
4331f7d3
KH
1538
1539/* for quick checking without looking up memcg */
1540atomic_t memcg_moving __read_mostly;
1541
c0ff4b85 1542static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1543{
4331f7d3 1544 atomic_inc(&memcg_moving);
619d094b 1545 atomic_inc(&memcg->moving_account);
32047e2a
KH
1546 synchronize_rcu();
1547}
1548
c0ff4b85 1549static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1550{
619d094b
KH
1551 /*
1552 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1553 * We check NULL in callee rather than caller.
1554 */
4331f7d3
KH
1555 if (memcg) {
1556 atomic_dec(&memcg_moving);
619d094b 1557 atomic_dec(&memcg->moving_account);
4331f7d3 1558 }
32047e2a 1559}
619d094b 1560
32047e2a 1561/*
bdcbb659 1562 * A routine for checking "mem" is under move_account() or not.
32047e2a 1563 *
bdcbb659
QH
1564 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1565 * moving cgroups. This is for waiting at high-memory pressure
1566 * caused by "move".
32047e2a 1567 */
c0ff4b85 1568static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1569{
2bd9bb20
KH
1570 struct mem_cgroup *from;
1571 struct mem_cgroup *to;
4b534334 1572 bool ret = false;
2bd9bb20
KH
1573 /*
1574 * Unlike task_move routines, we access mc.to, mc.from not under
1575 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1576 */
1577 spin_lock(&mc.lock);
1578 from = mc.from;
1579 to = mc.to;
1580 if (!from)
1581 goto unlock;
3e92041d 1582
c0ff4b85
R
1583 ret = mem_cgroup_same_or_subtree(memcg, from)
1584 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1585unlock:
1586 spin_unlock(&mc.lock);
4b534334
KH
1587 return ret;
1588}
1589
c0ff4b85 1590static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1591{
1592 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1593 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1594 DEFINE_WAIT(wait);
1595 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1596 /* moving charge context might have finished. */
1597 if (mc.moving_task)
1598 schedule();
1599 finish_wait(&mc.waitq, &wait);
1600 return true;
1601 }
1602 }
1603 return false;
1604}
1605
312734c0
KH
1606/*
1607 * Take this lock when
1608 * - a code tries to modify page's memcg while it's USED.
1609 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1610 */
1611static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1613{
1614 spin_lock_irqsave(&memcg->move_lock, *flags);
1615}
1616
1617static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1618 unsigned long *flags)
1619{
1620 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1621}
1622
58cf188e 1623#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1624/**
58cf188e 1625 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1626 * @memcg: The memory cgroup that went over limit
1627 * @p: Task that is going to be killed
1628 *
1629 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1630 * enabled
1631 */
1632void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1633{
e61734c5 1634 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1635 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1636 struct mem_cgroup *iter;
1637 unsigned int i;
e222432b 1638
58cf188e 1639 if (!p)
e222432b
BS
1640 return;
1641
08088cb9 1642 mutex_lock(&oom_info_lock);
e222432b
BS
1643 rcu_read_lock();
1644
e61734c5
TH
1645 pr_info("Task in ");
1646 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1647 pr_info(" killed as a result of limit of ");
1648 pr_cont_cgroup_path(memcg->css.cgroup);
1649 pr_info("\n");
e222432b 1650
e222432b
BS
1651 rcu_read_unlock();
1652
d045197f 1653 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1654 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1655 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1656 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1657 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1658 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1659 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1660 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1661 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1662 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1663 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1664 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1665
1666 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1667 pr_info("Memory cgroup stats for ");
1668 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1669 pr_cont(":");
1670
1671 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1672 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1673 continue;
1674 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1675 K(mem_cgroup_read_stat(iter, i)));
1676 }
1677
1678 for (i = 0; i < NR_LRU_LISTS; i++)
1679 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1680 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1681
1682 pr_cont("\n");
1683 }
08088cb9 1684 mutex_unlock(&oom_info_lock);
e222432b
BS
1685}
1686
81d39c20
KH
1687/*
1688 * This function returns the number of memcg under hierarchy tree. Returns
1689 * 1(self count) if no children.
1690 */
c0ff4b85 1691static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1692{
1693 int num = 0;
7d74b06f
KH
1694 struct mem_cgroup *iter;
1695
c0ff4b85 1696 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1697 num++;
81d39c20
KH
1698 return num;
1699}
1700
a63d83f4
DR
1701/*
1702 * Return the memory (and swap, if configured) limit for a memcg.
1703 */
9cbb78bb 1704static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1705{
1706 u64 limit;
a63d83f4 1707
f3e8eb70 1708 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1709
a63d83f4 1710 /*
9a5a8f19 1711 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1712 */
9a5a8f19
MH
1713 if (mem_cgroup_swappiness(memcg)) {
1714 u64 memsw;
1715
1716 limit += total_swap_pages << PAGE_SHIFT;
1717 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1718
1719 /*
1720 * If memsw is finite and limits the amount of swap space
1721 * available to this memcg, return that limit.
1722 */
1723 limit = min(limit, memsw);
1724 }
1725
1726 return limit;
a63d83f4
DR
1727}
1728
19965460
DR
1729static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1730 int order)
9cbb78bb
DR
1731{
1732 struct mem_cgroup *iter;
1733 unsigned long chosen_points = 0;
1734 unsigned long totalpages;
1735 unsigned int points = 0;
1736 struct task_struct *chosen = NULL;
1737
876aafbf 1738 /*
465adcf1
DR
1739 * If current has a pending SIGKILL or is exiting, then automatically
1740 * select it. The goal is to allow it to allocate so that it may
1741 * quickly exit and free its memory.
876aafbf 1742 */
465adcf1 1743 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1744 set_thread_flag(TIF_MEMDIE);
1745 return;
1746 }
1747
1748 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1749 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1750 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1751 struct css_task_iter it;
9cbb78bb
DR
1752 struct task_struct *task;
1753
72ec7029
TH
1754 css_task_iter_start(&iter->css, &it);
1755 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1756 switch (oom_scan_process_thread(task, totalpages, NULL,
1757 false)) {
1758 case OOM_SCAN_SELECT:
1759 if (chosen)
1760 put_task_struct(chosen);
1761 chosen = task;
1762 chosen_points = ULONG_MAX;
1763 get_task_struct(chosen);
1764 /* fall through */
1765 case OOM_SCAN_CONTINUE:
1766 continue;
1767 case OOM_SCAN_ABORT:
72ec7029 1768 css_task_iter_end(&it);
9cbb78bb
DR
1769 mem_cgroup_iter_break(memcg, iter);
1770 if (chosen)
1771 put_task_struct(chosen);
1772 return;
1773 case OOM_SCAN_OK:
1774 break;
1775 };
1776 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1777 if (!points || points < chosen_points)
1778 continue;
1779 /* Prefer thread group leaders for display purposes */
1780 if (points == chosen_points &&
1781 thread_group_leader(chosen))
1782 continue;
1783
1784 if (chosen)
1785 put_task_struct(chosen);
1786 chosen = task;
1787 chosen_points = points;
1788 get_task_struct(chosen);
9cbb78bb 1789 }
72ec7029 1790 css_task_iter_end(&it);
9cbb78bb
DR
1791 }
1792
1793 if (!chosen)
1794 return;
1795 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1796 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1797 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1798}
1799
4d0c066d
KH
1800/**
1801 * test_mem_cgroup_node_reclaimable
dad7557e 1802 * @memcg: the target memcg
4d0c066d
KH
1803 * @nid: the node ID to be checked.
1804 * @noswap : specify true here if the user wants flle only information.
1805 *
1806 * This function returns whether the specified memcg contains any
1807 * reclaimable pages on a node. Returns true if there are any reclaimable
1808 * pages in the node.
1809 */
c0ff4b85 1810static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1811 int nid, bool noswap)
1812{
c0ff4b85 1813 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1814 return true;
1815 if (noswap || !total_swap_pages)
1816 return false;
c0ff4b85 1817 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1818 return true;
1819 return false;
1820
1821}
bb4cc1a8 1822#if MAX_NUMNODES > 1
889976db
YH
1823
1824/*
1825 * Always updating the nodemask is not very good - even if we have an empty
1826 * list or the wrong list here, we can start from some node and traverse all
1827 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1828 *
1829 */
c0ff4b85 1830static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1831{
1832 int nid;
453a9bf3
KH
1833 /*
1834 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1835 * pagein/pageout changes since the last update.
1836 */
c0ff4b85 1837 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1838 return;
c0ff4b85 1839 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1840 return;
1841
889976db 1842 /* make a nodemask where this memcg uses memory from */
31aaea4a 1843 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1844
31aaea4a 1845 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1846
c0ff4b85
R
1847 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1848 node_clear(nid, memcg->scan_nodes);
889976db 1849 }
453a9bf3 1850
c0ff4b85
R
1851 atomic_set(&memcg->numainfo_events, 0);
1852 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1853}
1854
1855/*
1856 * Selecting a node where we start reclaim from. Because what we need is just
1857 * reducing usage counter, start from anywhere is O,K. Considering
1858 * memory reclaim from current node, there are pros. and cons.
1859 *
1860 * Freeing memory from current node means freeing memory from a node which
1861 * we'll use or we've used. So, it may make LRU bad. And if several threads
1862 * hit limits, it will see a contention on a node. But freeing from remote
1863 * node means more costs for memory reclaim because of memory latency.
1864 *
1865 * Now, we use round-robin. Better algorithm is welcomed.
1866 */
c0ff4b85 1867int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1868{
1869 int node;
1870
c0ff4b85
R
1871 mem_cgroup_may_update_nodemask(memcg);
1872 node = memcg->last_scanned_node;
889976db 1873
c0ff4b85 1874 node = next_node(node, memcg->scan_nodes);
889976db 1875 if (node == MAX_NUMNODES)
c0ff4b85 1876 node = first_node(memcg->scan_nodes);
889976db
YH
1877 /*
1878 * We call this when we hit limit, not when pages are added to LRU.
1879 * No LRU may hold pages because all pages are UNEVICTABLE or
1880 * memcg is too small and all pages are not on LRU. In that case,
1881 * we use curret node.
1882 */
1883 if (unlikely(node == MAX_NUMNODES))
1884 node = numa_node_id();
1885
c0ff4b85 1886 memcg->last_scanned_node = node;
889976db
YH
1887 return node;
1888}
1889
bb4cc1a8
AM
1890/*
1891 * Check all nodes whether it contains reclaimable pages or not.
1892 * For quick scan, we make use of scan_nodes. This will allow us to skip
1893 * unused nodes. But scan_nodes is lazily updated and may not cotain
1894 * enough new information. We need to do double check.
1895 */
1896static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1897{
1898 int nid;
1899
1900 /*
1901 * quick check...making use of scan_node.
1902 * We can skip unused nodes.
1903 */
1904 if (!nodes_empty(memcg->scan_nodes)) {
1905 for (nid = first_node(memcg->scan_nodes);
1906 nid < MAX_NUMNODES;
1907 nid = next_node(nid, memcg->scan_nodes)) {
1908
1909 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1910 return true;
1911 }
1912 }
1913 /*
1914 * Check rest of nodes.
1915 */
1916 for_each_node_state(nid, N_MEMORY) {
1917 if (node_isset(nid, memcg->scan_nodes))
1918 continue;
1919 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1920 return true;
1921 }
1922 return false;
1923}
1924
889976db 1925#else
c0ff4b85 1926int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1927{
1928 return 0;
1929}
4d0c066d 1930
bb4cc1a8
AM
1931static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1932{
1933 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1934}
889976db
YH
1935#endif
1936
0608f43d
AM
1937static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1938 struct zone *zone,
1939 gfp_t gfp_mask,
1940 unsigned long *total_scanned)
1941{
1942 struct mem_cgroup *victim = NULL;
1943 int total = 0;
1944 int loop = 0;
1945 unsigned long excess;
1946 unsigned long nr_scanned;
1947 struct mem_cgroup_reclaim_cookie reclaim = {
1948 .zone = zone,
1949 .priority = 0,
1950 };
1951
1952 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1953
1954 while (1) {
1955 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1956 if (!victim) {
1957 loop++;
1958 if (loop >= 2) {
1959 /*
1960 * If we have not been able to reclaim
1961 * anything, it might because there are
1962 * no reclaimable pages under this hierarchy
1963 */
1964 if (!total)
1965 break;
1966 /*
1967 * We want to do more targeted reclaim.
1968 * excess >> 2 is not to excessive so as to
1969 * reclaim too much, nor too less that we keep
1970 * coming back to reclaim from this cgroup
1971 */
1972 if (total >= (excess >> 2) ||
1973 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1974 break;
1975 }
1976 continue;
1977 }
1978 if (!mem_cgroup_reclaimable(victim, false))
1979 continue;
1980 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1981 zone, &nr_scanned);
1982 *total_scanned += nr_scanned;
1983 if (!res_counter_soft_limit_excess(&root_memcg->res))
1984 break;
6d61ef40 1985 }
0608f43d
AM
1986 mem_cgroup_iter_break(root_memcg, victim);
1987 return total;
6d61ef40
BS
1988}
1989
0056f4e6
JW
1990#ifdef CONFIG_LOCKDEP
1991static struct lockdep_map memcg_oom_lock_dep_map = {
1992 .name = "memcg_oom_lock",
1993};
1994#endif
1995
fb2a6fc5
JW
1996static DEFINE_SPINLOCK(memcg_oom_lock);
1997
867578cb
KH
1998/*
1999 * Check OOM-Killer is already running under our hierarchy.
2000 * If someone is running, return false.
2001 */
fb2a6fc5 2002static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2003{
79dfdacc 2004 struct mem_cgroup *iter, *failed = NULL;
a636b327 2005
fb2a6fc5
JW
2006 spin_lock(&memcg_oom_lock);
2007
9f3a0d09 2008 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2009 if (iter->oom_lock) {
79dfdacc
MH
2010 /*
2011 * this subtree of our hierarchy is already locked
2012 * so we cannot give a lock.
2013 */
79dfdacc 2014 failed = iter;
9f3a0d09
JW
2015 mem_cgroup_iter_break(memcg, iter);
2016 break;
23751be0
JW
2017 } else
2018 iter->oom_lock = true;
7d74b06f 2019 }
867578cb 2020
fb2a6fc5
JW
2021 if (failed) {
2022 /*
2023 * OK, we failed to lock the whole subtree so we have
2024 * to clean up what we set up to the failing subtree
2025 */
2026 for_each_mem_cgroup_tree(iter, memcg) {
2027 if (iter == failed) {
2028 mem_cgroup_iter_break(memcg, iter);
2029 break;
2030 }
2031 iter->oom_lock = false;
79dfdacc 2032 }
0056f4e6
JW
2033 } else
2034 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2035
2036 spin_unlock(&memcg_oom_lock);
2037
2038 return !failed;
a636b327 2039}
0b7f569e 2040
fb2a6fc5 2041static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2042{
7d74b06f
KH
2043 struct mem_cgroup *iter;
2044
fb2a6fc5 2045 spin_lock(&memcg_oom_lock);
0056f4e6 2046 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2047 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2048 iter->oom_lock = false;
fb2a6fc5 2049 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2050}
2051
c0ff4b85 2052static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2053{
2054 struct mem_cgroup *iter;
2055
c0ff4b85 2056 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2057 atomic_inc(&iter->under_oom);
2058}
2059
c0ff4b85 2060static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2061{
2062 struct mem_cgroup *iter;
2063
867578cb
KH
2064 /*
2065 * When a new child is created while the hierarchy is under oom,
2066 * mem_cgroup_oom_lock() may not be called. We have to use
2067 * atomic_add_unless() here.
2068 */
c0ff4b85 2069 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2070 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2071}
2072
867578cb
KH
2073static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2074
dc98df5a 2075struct oom_wait_info {
d79154bb 2076 struct mem_cgroup *memcg;
dc98df5a
KH
2077 wait_queue_t wait;
2078};
2079
2080static int memcg_oom_wake_function(wait_queue_t *wait,
2081 unsigned mode, int sync, void *arg)
2082{
d79154bb
HD
2083 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2084 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2085 struct oom_wait_info *oom_wait_info;
2086
2087 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2088 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2089
dc98df5a 2090 /*
d79154bb 2091 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2092 * Then we can use css_is_ancestor without taking care of RCU.
2093 */
c0ff4b85
R
2094 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2095 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2096 return 0;
dc98df5a
KH
2097 return autoremove_wake_function(wait, mode, sync, arg);
2098}
2099
c0ff4b85 2100static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2101{
3812c8c8 2102 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2103 /* for filtering, pass "memcg" as argument. */
2104 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2105}
2106
c0ff4b85 2107static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2108{
c0ff4b85
R
2109 if (memcg && atomic_read(&memcg->under_oom))
2110 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2111}
2112
3812c8c8 2113static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2114{
3812c8c8
JW
2115 if (!current->memcg_oom.may_oom)
2116 return;
867578cb 2117 /*
49426420
JW
2118 * We are in the middle of the charge context here, so we
2119 * don't want to block when potentially sitting on a callstack
2120 * that holds all kinds of filesystem and mm locks.
2121 *
2122 * Also, the caller may handle a failed allocation gracefully
2123 * (like optional page cache readahead) and so an OOM killer
2124 * invocation might not even be necessary.
2125 *
2126 * That's why we don't do anything here except remember the
2127 * OOM context and then deal with it at the end of the page
2128 * fault when the stack is unwound, the locks are released,
2129 * and when we know whether the fault was overall successful.
867578cb 2130 */
49426420
JW
2131 css_get(&memcg->css);
2132 current->memcg_oom.memcg = memcg;
2133 current->memcg_oom.gfp_mask = mask;
2134 current->memcg_oom.order = order;
3812c8c8
JW
2135}
2136
2137/**
2138 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2139 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2140 *
49426420
JW
2141 * This has to be called at the end of a page fault if the memcg OOM
2142 * handler was enabled.
3812c8c8 2143 *
49426420 2144 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2145 * sleep on a waitqueue until the userspace task resolves the
2146 * situation. Sleeping directly in the charge context with all kinds
2147 * of locks held is not a good idea, instead we remember an OOM state
2148 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2149 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2150 *
2151 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2152 * completed, %false otherwise.
3812c8c8 2153 */
49426420 2154bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2155{
49426420 2156 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2157 struct oom_wait_info owait;
49426420 2158 bool locked;
3812c8c8
JW
2159
2160 /* OOM is global, do not handle */
3812c8c8 2161 if (!memcg)
49426420 2162 return false;
3812c8c8 2163
49426420
JW
2164 if (!handle)
2165 goto cleanup;
3812c8c8
JW
2166
2167 owait.memcg = memcg;
2168 owait.wait.flags = 0;
2169 owait.wait.func = memcg_oom_wake_function;
2170 owait.wait.private = current;
2171 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2172
3812c8c8 2173 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2174 mem_cgroup_mark_under_oom(memcg);
2175
2176 locked = mem_cgroup_oom_trylock(memcg);
2177
2178 if (locked)
2179 mem_cgroup_oom_notify(memcg);
2180
2181 if (locked && !memcg->oom_kill_disable) {
2182 mem_cgroup_unmark_under_oom(memcg);
2183 finish_wait(&memcg_oom_waitq, &owait.wait);
2184 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2185 current->memcg_oom.order);
2186 } else {
3812c8c8 2187 schedule();
49426420
JW
2188 mem_cgroup_unmark_under_oom(memcg);
2189 finish_wait(&memcg_oom_waitq, &owait.wait);
2190 }
2191
2192 if (locked) {
fb2a6fc5
JW
2193 mem_cgroup_oom_unlock(memcg);
2194 /*
2195 * There is no guarantee that an OOM-lock contender
2196 * sees the wakeups triggered by the OOM kill
2197 * uncharges. Wake any sleepers explicitely.
2198 */
2199 memcg_oom_recover(memcg);
2200 }
49426420
JW
2201cleanup:
2202 current->memcg_oom.memcg = NULL;
3812c8c8 2203 css_put(&memcg->css);
867578cb 2204 return true;
0b7f569e
KH
2205}
2206
d69b042f 2207/*
b5ffc856 2208 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2209 *
2210 * Notes: Race condition
2211 *
0a31bc97
JW
2212 * Charging occurs during page instantiation, while the page is
2213 * unmapped and locked in page migration, or while the page table is
2214 * locked in THP migration. No race is possible.
32047e2a 2215 *
0a31bc97 2216 * Uncharge happens to pages with zero references, no race possible.
32047e2a 2217 *
0a31bc97
JW
2218 * Charge moving between groups is protected by checking mm->moving
2219 * account and taking the move_lock in the slowpath.
d69b042f 2220 */
26174efd 2221
89c06bd5
KH
2222void __mem_cgroup_begin_update_page_stat(struct page *page,
2223 bool *locked, unsigned long *flags)
2224{
2225 struct mem_cgroup *memcg;
2226 struct page_cgroup *pc;
2227
2228 pc = lookup_page_cgroup(page);
2229again:
2230 memcg = pc->mem_cgroup;
2231 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232 return;
2233 /*
2234 * If this memory cgroup is not under account moving, we don't
da92c47d 2235 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2236 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2237 * rcu_read_unlock().
89c06bd5 2238 */
bdcbb659
QH
2239 VM_BUG_ON(!rcu_read_lock_held());
2240 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2241 return;
2242
2243 move_lock_mem_cgroup(memcg, flags);
2244 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2245 move_unlock_mem_cgroup(memcg, flags);
2246 goto again;
2247 }
2248 *locked = true;
2249}
2250
2251void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2252{
2253 struct page_cgroup *pc = lookup_page_cgroup(page);
2254
2255 /*
2256 * It's guaranteed that pc->mem_cgroup never changes while
2257 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2258 * should take move_lock_mem_cgroup().
89c06bd5
KH
2259 */
2260 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2261}
2262
2a7106f2 2263void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2264 enum mem_cgroup_stat_index idx, int val)
d69b042f 2265{
c0ff4b85 2266 struct mem_cgroup *memcg;
32047e2a 2267 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2268 unsigned long uninitialized_var(flags);
d69b042f 2269
cfa44946 2270 if (mem_cgroup_disabled())
d69b042f 2271 return;
89c06bd5 2272
658b72c5 2273 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2274 memcg = pc->mem_cgroup;
2275 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2276 return;
26174efd 2277
c0ff4b85 2278 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2279}
26174efd 2280
cdec2e42
KH
2281/*
2282 * size of first charge trial. "32" comes from vmscan.c's magic value.
2283 * TODO: maybe necessary to use big numbers in big irons.
2284 */
7ec99d62 2285#define CHARGE_BATCH 32U
cdec2e42
KH
2286struct memcg_stock_pcp {
2287 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2288 unsigned int nr_pages;
cdec2e42 2289 struct work_struct work;
26fe6168 2290 unsigned long flags;
a0db00fc 2291#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2292};
2293static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2294static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2295
a0956d54
SS
2296/**
2297 * consume_stock: Try to consume stocked charge on this cpu.
2298 * @memcg: memcg to consume from.
2299 * @nr_pages: how many pages to charge.
2300 *
2301 * The charges will only happen if @memcg matches the current cpu's memcg
2302 * stock, and at least @nr_pages are available in that stock. Failure to
2303 * service an allocation will refill the stock.
2304 *
2305 * returns true if successful, false otherwise.
cdec2e42 2306 */
a0956d54 2307static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2308{
2309 struct memcg_stock_pcp *stock;
2310 bool ret = true;
2311
a0956d54
SS
2312 if (nr_pages > CHARGE_BATCH)
2313 return false;
2314
cdec2e42 2315 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2316 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2317 stock->nr_pages -= nr_pages;
cdec2e42
KH
2318 else /* need to call res_counter_charge */
2319 ret = false;
2320 put_cpu_var(memcg_stock);
2321 return ret;
2322}
2323
2324/*
2325 * Returns stocks cached in percpu to res_counter and reset cached information.
2326 */
2327static void drain_stock(struct memcg_stock_pcp *stock)
2328{
2329 struct mem_cgroup *old = stock->cached;
2330
11c9ea4e
JW
2331 if (stock->nr_pages) {
2332 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2333
2334 res_counter_uncharge(&old->res, bytes);
cdec2e42 2335 if (do_swap_account)
11c9ea4e
JW
2336 res_counter_uncharge(&old->memsw, bytes);
2337 stock->nr_pages = 0;
cdec2e42
KH
2338 }
2339 stock->cached = NULL;
cdec2e42
KH
2340}
2341
2342/*
2343 * This must be called under preempt disabled or must be called by
2344 * a thread which is pinned to local cpu.
2345 */
2346static void drain_local_stock(struct work_struct *dummy)
2347{
7c8e0181 2348 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2349 drain_stock(stock);
26fe6168 2350 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2351}
2352
e4777496
MH
2353static void __init memcg_stock_init(void)
2354{
2355 int cpu;
2356
2357 for_each_possible_cpu(cpu) {
2358 struct memcg_stock_pcp *stock =
2359 &per_cpu(memcg_stock, cpu);
2360 INIT_WORK(&stock->work, drain_local_stock);
2361 }
2362}
2363
cdec2e42
KH
2364/*
2365 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2366 * This will be consumed by consume_stock() function, later.
cdec2e42 2367 */
c0ff4b85 2368static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2369{
2370 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2371
c0ff4b85 2372 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2373 drain_stock(stock);
c0ff4b85 2374 stock->cached = memcg;
cdec2e42 2375 }
11c9ea4e 2376 stock->nr_pages += nr_pages;
cdec2e42
KH
2377 put_cpu_var(memcg_stock);
2378}
2379
2380/*
c0ff4b85 2381 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2382 * of the hierarchy under it. sync flag says whether we should block
2383 * until the work is done.
cdec2e42 2384 */
c0ff4b85 2385static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2386{
26fe6168 2387 int cpu, curcpu;
d38144b7 2388
cdec2e42 2389 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2390 get_online_cpus();
5af12d0e 2391 curcpu = get_cpu();
cdec2e42
KH
2392 for_each_online_cpu(cpu) {
2393 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2394 struct mem_cgroup *memcg;
26fe6168 2395
c0ff4b85
R
2396 memcg = stock->cached;
2397 if (!memcg || !stock->nr_pages)
26fe6168 2398 continue;
c0ff4b85 2399 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2400 continue;
d1a05b69
MH
2401 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 if (cpu == curcpu)
2403 drain_local_stock(&stock->work);
2404 else
2405 schedule_work_on(cpu, &stock->work);
2406 }
cdec2e42 2407 }
5af12d0e 2408 put_cpu();
d38144b7
MH
2409
2410 if (!sync)
2411 goto out;
2412
2413 for_each_online_cpu(cpu) {
2414 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2415 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2416 flush_work(&stock->work);
2417 }
2418out:
f894ffa8 2419 put_online_cpus();
d38144b7
MH
2420}
2421
2422/*
2423 * Tries to drain stocked charges in other cpus. This function is asynchronous
2424 * and just put a work per cpu for draining localy on each cpu. Caller can
2425 * expects some charges will be back to res_counter later but cannot wait for
2426 * it.
2427 */
c0ff4b85 2428static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2429{
9f50fad6
MH
2430 /*
2431 * If someone calls draining, avoid adding more kworker runs.
2432 */
2433 if (!mutex_trylock(&percpu_charge_mutex))
2434 return;
c0ff4b85 2435 drain_all_stock(root_memcg, false);
9f50fad6 2436 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2437}
2438
2439/* This is a synchronous drain interface. */
c0ff4b85 2440static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2441{
2442 /* called when force_empty is called */
9f50fad6 2443 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2444 drain_all_stock(root_memcg, true);
9f50fad6 2445 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2446}
2447
711d3d2c
KH
2448/*
2449 * This function drains percpu counter value from DEAD cpu and
2450 * move it to local cpu. Note that this function can be preempted.
2451 */
c0ff4b85 2452static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2453{
2454 int i;
2455
c0ff4b85 2456 spin_lock(&memcg->pcp_counter_lock);
6104621d 2457 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2458 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2459
c0ff4b85
R
2460 per_cpu(memcg->stat->count[i], cpu) = 0;
2461 memcg->nocpu_base.count[i] += x;
711d3d2c 2462 }
e9f8974f 2463 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2464 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2465
c0ff4b85
R
2466 per_cpu(memcg->stat->events[i], cpu) = 0;
2467 memcg->nocpu_base.events[i] += x;
e9f8974f 2468 }
c0ff4b85 2469 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2470}
2471
0db0628d 2472static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2473 unsigned long action,
2474 void *hcpu)
2475{
2476 int cpu = (unsigned long)hcpu;
2477 struct memcg_stock_pcp *stock;
711d3d2c 2478 struct mem_cgroup *iter;
cdec2e42 2479
619d094b 2480 if (action == CPU_ONLINE)
1489ebad 2481 return NOTIFY_OK;
1489ebad 2482
d833049b 2483 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2484 return NOTIFY_OK;
711d3d2c 2485
9f3a0d09 2486 for_each_mem_cgroup(iter)
711d3d2c
KH
2487 mem_cgroup_drain_pcp_counter(iter, cpu);
2488
cdec2e42
KH
2489 stock = &per_cpu(memcg_stock, cpu);
2490 drain_stock(stock);
2491 return NOTIFY_OK;
2492}
2493
00501b53
JW
2494static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2495 unsigned int nr_pages)
8a9f3ccd 2496{
7ec99d62 2497 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2498 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2499 struct mem_cgroup *mem_over_limit;
2500 struct res_counter *fail_res;
2501 unsigned long nr_reclaimed;
6539cc05 2502 unsigned long long size;
b70a2a21
JW
2503 bool may_swap = true;
2504 bool drained = false;
05b84301 2505 int ret = 0;
a636b327 2506
ce00a967
JW
2507 if (mem_cgroup_is_root(memcg))
2508 goto done;
6539cc05 2509retry:
b6b6cc72
MH
2510 if (consume_stock(memcg, nr_pages))
2511 goto done;
8a9f3ccd 2512
6539cc05 2513 size = batch * PAGE_SIZE;
3fbe7244
JW
2514 if (!do_swap_account ||
2515 !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2516 if (!res_counter_charge(&memcg->res, size, &fail_res))
6539cc05 2517 goto done_restock;
3fbe7244
JW
2518 if (do_swap_account)
2519 res_counter_uncharge(&memcg->memsw, size);
2520 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2521 } else {
6539cc05 2522 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
b70a2a21 2523 may_swap = false;
3fbe7244 2524 }
7a81b88c 2525
6539cc05
JW
2526 if (batch > nr_pages) {
2527 batch = nr_pages;
2528 goto retry;
2529 }
6d61ef40 2530
06b078fc
JW
2531 /*
2532 * Unlike in global OOM situations, memcg is not in a physical
2533 * memory shortage. Allow dying and OOM-killed tasks to
2534 * bypass the last charges so that they can exit quickly and
2535 * free their memory.
2536 */
2537 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2538 fatal_signal_pending(current) ||
2539 current->flags & PF_EXITING))
2540 goto bypass;
2541
2542 if (unlikely(task_in_memcg_oom(current)))
2543 goto nomem;
2544
6539cc05
JW
2545 if (!(gfp_mask & __GFP_WAIT))
2546 goto nomem;
4b534334 2547
b70a2a21
JW
2548 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2549 gfp_mask, may_swap);
6539cc05 2550
61e02c74 2551 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2552 goto retry;
28c34c29 2553
b70a2a21
JW
2554 if (!drained) {
2555 drain_all_stock_async(mem_over_limit);
2556 drained = true;
2557 goto retry;
2558 }
2559
28c34c29
JW
2560 if (gfp_mask & __GFP_NORETRY)
2561 goto nomem;
6539cc05
JW
2562 /*
2563 * Even though the limit is exceeded at this point, reclaim
2564 * may have been able to free some pages. Retry the charge
2565 * before killing the task.
2566 *
2567 * Only for regular pages, though: huge pages are rather
2568 * unlikely to succeed so close to the limit, and we fall back
2569 * to regular pages anyway in case of failure.
2570 */
61e02c74 2571 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2572 goto retry;
2573 /*
2574 * At task move, charge accounts can be doubly counted. So, it's
2575 * better to wait until the end of task_move if something is going on.
2576 */
2577 if (mem_cgroup_wait_acct_move(mem_over_limit))
2578 goto retry;
2579
9b130619
JW
2580 if (nr_retries--)
2581 goto retry;
2582
06b078fc
JW
2583 if (gfp_mask & __GFP_NOFAIL)
2584 goto bypass;
2585
6539cc05
JW
2586 if (fatal_signal_pending(current))
2587 goto bypass;
2588
61e02c74 2589 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2590nomem:
6d1fdc48 2591 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2592 return -ENOMEM;
867578cb 2593bypass:
ce00a967 2594 return -EINTR;
6539cc05
JW
2595
2596done_restock:
2597 if (batch > nr_pages)
2598 refill_stock(memcg, batch - nr_pages);
2599done:
05b84301 2600 return ret;
7a81b88c 2601}
8a9f3ccd 2602
00501b53 2603static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2604{
05b84301 2605 unsigned long bytes = nr_pages * PAGE_SIZE;
e7018b8d 2606
ce00a967
JW
2607 if (mem_cgroup_is_root(memcg))
2608 return;
2609
05b84301
JW
2610 res_counter_uncharge(&memcg->res, bytes);
2611 if (do_swap_account)
2612 res_counter_uncharge(&memcg->memsw, bytes);
854ffa8d
DN
2613}
2614
d01dd17f
KH
2615/*
2616 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2617 * This is useful when moving usage to parent cgroup.
2618 */
2619static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2620 unsigned int nr_pages)
2621{
2622 unsigned long bytes = nr_pages * PAGE_SIZE;
2623
ce00a967
JW
2624 if (mem_cgroup_is_root(memcg))
2625 return;
2626
d01dd17f
KH
2627 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2628 if (do_swap_account)
2629 res_counter_uncharge_until(&memcg->memsw,
2630 memcg->memsw.parent, bytes);
2631}
2632
a3b2d692
KH
2633/*
2634 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2635 * rcu_read_lock(). The caller is responsible for calling
2636 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2637 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2638 */
2639static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2640{
a3b2d692
KH
2641 /* ID 0 is unused ID */
2642 if (!id)
2643 return NULL;
34c00c31 2644 return mem_cgroup_from_id(id);
a3b2d692
KH
2645}
2646
0a31bc97
JW
2647/*
2648 * try_get_mem_cgroup_from_page - look up page's memcg association
2649 * @page: the page
2650 *
2651 * Look up, get a css reference, and return the memcg that owns @page.
2652 *
2653 * The page must be locked to prevent racing with swap-in and page
2654 * cache charges. If coming from an unlocked page table, the caller
2655 * must ensure the page is on the LRU or this can race with charging.
2656 */
e42d9d5d 2657struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2658{
c0ff4b85 2659 struct mem_cgroup *memcg = NULL;
3c776e64 2660 struct page_cgroup *pc;
a3b2d692 2661 unsigned short id;
b5a84319
KH
2662 swp_entry_t ent;
2663
309381fe 2664 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2665
3c776e64 2666 pc = lookup_page_cgroup(page);
a3b2d692 2667 if (PageCgroupUsed(pc)) {
c0ff4b85 2668 memcg = pc->mem_cgroup;
ec903c0c 2669 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2670 memcg = NULL;
e42d9d5d 2671 } else if (PageSwapCache(page)) {
3c776e64 2672 ent.val = page_private(page);
9fb4b7cc 2673 id = lookup_swap_cgroup_id(ent);
a3b2d692 2674 rcu_read_lock();
c0ff4b85 2675 memcg = mem_cgroup_lookup(id);
ec903c0c 2676 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2677 memcg = NULL;
a3b2d692 2678 rcu_read_unlock();
3c776e64 2679 }
c0ff4b85 2680 return memcg;
b5a84319
KH
2681}
2682
0a31bc97
JW
2683static void lock_page_lru(struct page *page, int *isolated)
2684{
2685 struct zone *zone = page_zone(page);
2686
2687 spin_lock_irq(&zone->lru_lock);
2688 if (PageLRU(page)) {
2689 struct lruvec *lruvec;
2690
2691 lruvec = mem_cgroup_page_lruvec(page, zone);
2692 ClearPageLRU(page);
2693 del_page_from_lru_list(page, lruvec, page_lru(page));
2694 *isolated = 1;
2695 } else
2696 *isolated = 0;
2697}
2698
2699static void unlock_page_lru(struct page *page, int isolated)
2700{
2701 struct zone *zone = page_zone(page);
2702
2703 if (isolated) {
2704 struct lruvec *lruvec;
2705
2706 lruvec = mem_cgroup_page_lruvec(page, zone);
2707 VM_BUG_ON_PAGE(PageLRU(page), page);
2708 SetPageLRU(page);
2709 add_page_to_lru_list(page, lruvec, page_lru(page));
2710 }
2711 spin_unlock_irq(&zone->lru_lock);
2712}
2713
00501b53 2714static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2715 bool lrucare)
7a81b88c 2716{
ce587e65 2717 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2718 int isolated;
9ce70c02 2719
309381fe 2720 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2721 /*
2722 * we don't need page_cgroup_lock about tail pages, becase they are not
2723 * accessed by any other context at this point.
2724 */
9ce70c02
HD
2725
2726 /*
2727 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2728 * may already be on some other mem_cgroup's LRU. Take care of it.
2729 */
0a31bc97
JW
2730 if (lrucare)
2731 lock_page_lru(page, &isolated);
9ce70c02 2732
0a31bc97
JW
2733 /*
2734 * Nobody should be changing or seriously looking at
2735 * pc->mem_cgroup and pc->flags at this point:
2736 *
2737 * - the page is uncharged
2738 *
2739 * - the page is off-LRU
2740 *
2741 * - an anonymous fault has exclusive page access, except for
2742 * a locked page table
2743 *
2744 * - a page cache insertion, a swapin fault, or a migration
2745 * have the page locked
2746 */
c0ff4b85 2747 pc->mem_cgroup = memcg;
0a31bc97 2748 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2749
0a31bc97
JW
2750 if (lrucare)
2751 unlock_page_lru(page, isolated);
7a81b88c 2752}
66e1707b 2753
7cf27982
GC
2754static DEFINE_MUTEX(set_limit_mutex);
2755
7ae1e1d0 2756#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2757/*
2758 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2759 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2760 */
2761static DEFINE_MUTEX(memcg_slab_mutex);
2762
d6441637
VD
2763static DEFINE_MUTEX(activate_kmem_mutex);
2764
7ae1e1d0
GC
2765static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2766{
2767 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2768 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2769}
2770
1f458cbf
GC
2771/*
2772 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2773 * in the memcg_cache_params struct.
2774 */
2775static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2776{
2777 struct kmem_cache *cachep;
2778
2779 VM_BUG_ON(p->is_root_cache);
2780 cachep = p->root_cache;
7a67d7ab 2781 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2782}
2783
749c5415 2784#ifdef CONFIG_SLABINFO
2da8ca82 2785static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2786{
2da8ca82 2787 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2788 struct memcg_cache_params *params;
2789
2790 if (!memcg_can_account_kmem(memcg))
2791 return -EIO;
2792
2793 print_slabinfo_header(m);
2794
bd673145 2795 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2796 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2797 cache_show(memcg_params_to_cache(params), m);
bd673145 2798 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2799
2800 return 0;
2801}
2802#endif
2803
c67a8a68 2804static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2805{
2806 struct res_counter *fail_res;
7ae1e1d0 2807 int ret = 0;
7ae1e1d0
GC
2808
2809 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2810 if (ret)
2811 return ret;
2812
00501b53 2813 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
7ae1e1d0
GC
2814 if (ret == -EINTR) {
2815 /*
00501b53
JW
2816 * try_charge() chose to bypass to root due to OOM kill or
2817 * fatal signal. Since our only options are to either fail
2818 * the allocation or charge it to this cgroup, do it as a
2819 * temporary condition. But we can't fail. From a kmem/slab
2820 * perspective, the cache has already been selected, by
2821 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2822 * our minds.
2823 *
2824 * This condition will only trigger if the task entered
00501b53
JW
2825 * memcg_charge_kmem in a sane state, but was OOM-killed
2826 * during try_charge() above. Tasks that were already dying
2827 * when the allocation triggers should have been already
7ae1e1d0
GC
2828 * directed to the root cgroup in memcontrol.h
2829 */
2830 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2831 if (do_swap_account)
2832 res_counter_charge_nofail(&memcg->memsw, size,
2833 &fail_res);
2834 ret = 0;
2835 } else if (ret)
2836 res_counter_uncharge(&memcg->kmem, size);
2837
2838 return ret;
2839}
2840
c67a8a68 2841static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2842{
7ae1e1d0
GC
2843 res_counter_uncharge(&memcg->res, size);
2844 if (do_swap_account)
2845 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2846
2847 /* Not down to 0 */
2848 if (res_counter_uncharge(&memcg->kmem, size))
2849 return;
2850
10d5ebf4
LZ
2851 /*
2852 * Releases a reference taken in kmem_cgroup_css_offline in case
2853 * this last uncharge is racing with the offlining code or it is
2854 * outliving the memcg existence.
2855 *
2856 * The memory barrier imposed by test&clear is paired with the
2857 * explicit one in memcg_kmem_mark_dead().
2858 */
7de37682 2859 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2860 css_put(&memcg->css);
7ae1e1d0
GC
2861}
2862
2633d7a0
GC
2863/*
2864 * helper for acessing a memcg's index. It will be used as an index in the
2865 * child cache array in kmem_cache, and also to derive its name. This function
2866 * will return -1 when this is not a kmem-limited memcg.
2867 */
2868int memcg_cache_id(struct mem_cgroup *memcg)
2869{
2870 return memcg ? memcg->kmemcg_id : -1;
2871}
2872
f3bb3043 2873static int memcg_alloc_cache_id(void)
55007d84 2874{
f3bb3043
VD
2875 int id, size;
2876 int err;
2877
2878 id = ida_simple_get(&kmem_limited_groups,
2879 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2880 if (id < 0)
2881 return id;
55007d84 2882
f3bb3043
VD
2883 if (id < memcg_limited_groups_array_size)
2884 return id;
2885
2886 /*
2887 * There's no space for the new id in memcg_caches arrays,
2888 * so we have to grow them.
2889 */
2890
2891 size = 2 * (id + 1);
55007d84
GC
2892 if (size < MEMCG_CACHES_MIN_SIZE)
2893 size = MEMCG_CACHES_MIN_SIZE;
2894 else if (size > MEMCG_CACHES_MAX_SIZE)
2895 size = MEMCG_CACHES_MAX_SIZE;
2896
f3bb3043
VD
2897 mutex_lock(&memcg_slab_mutex);
2898 err = memcg_update_all_caches(size);
2899 mutex_unlock(&memcg_slab_mutex);
2900
2901 if (err) {
2902 ida_simple_remove(&kmem_limited_groups, id);
2903 return err;
2904 }
2905 return id;
2906}
2907
2908static void memcg_free_cache_id(int id)
2909{
2910 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2911}
2912
2913/*
2914 * We should update the current array size iff all caches updates succeed. This
2915 * can only be done from the slab side. The slab mutex needs to be held when
2916 * calling this.
2917 */
2918void memcg_update_array_size(int num)
2919{
f3bb3043 2920 memcg_limited_groups_array_size = num;
55007d84
GC
2921}
2922
776ed0f0
VD
2923static void memcg_register_cache(struct mem_cgroup *memcg,
2924 struct kmem_cache *root_cache)
2633d7a0 2925{
93f39eea
VD
2926 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2927 memcg_slab_mutex */
bd673145 2928 struct kmem_cache *cachep;
d7f25f8a
GC
2929 int id;
2930
bd673145
VD
2931 lockdep_assert_held(&memcg_slab_mutex);
2932
2933 id = memcg_cache_id(memcg);
2934
2935 /*
2936 * Since per-memcg caches are created asynchronously on first
2937 * allocation (see memcg_kmem_get_cache()), several threads can try to
2938 * create the same cache, but only one of them may succeed.
2939 */
2940 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2941 return;
2942
073ee1c6 2943 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2944 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2945 /*
bd673145
VD
2946 * If we could not create a memcg cache, do not complain, because
2947 * that's not critical at all as we can always proceed with the root
2948 * cache.
2edefe11 2949 */
bd673145
VD
2950 if (!cachep)
2951 return;
2edefe11 2952
33a690c4 2953 css_get(&memcg->css);
bd673145 2954 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2955
d7f25f8a 2956 /*
959c8963
VD
2957 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2958 * barrier here to ensure nobody will see the kmem_cache partially
2959 * initialized.
d7f25f8a 2960 */
959c8963
VD
2961 smp_wmb();
2962
bd673145
VD
2963 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2964 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2965}
d7f25f8a 2966
776ed0f0 2967static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2968{
bd673145 2969 struct kmem_cache *root_cache;
1aa13254
VD
2970 struct mem_cgroup *memcg;
2971 int id;
2972
bd673145 2973 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2974
bd673145 2975 BUG_ON(is_root_cache(cachep));
2edefe11 2976
bd673145
VD
2977 root_cache = cachep->memcg_params->root_cache;
2978 memcg = cachep->memcg_params->memcg;
96403da2 2979 id = memcg_cache_id(memcg);
d7f25f8a 2980
bd673145
VD
2981 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2982 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2983
bd673145
VD
2984 list_del(&cachep->memcg_params->list);
2985
2986 kmem_cache_destroy(cachep);
33a690c4
VD
2987
2988 /* drop the reference taken in memcg_register_cache */
2989 css_put(&memcg->css);
2633d7a0
GC
2990}
2991
0e9d92f2
GC
2992/*
2993 * During the creation a new cache, we need to disable our accounting mechanism
2994 * altogether. This is true even if we are not creating, but rather just
2995 * enqueing new caches to be created.
2996 *
2997 * This is because that process will trigger allocations; some visible, like
2998 * explicit kmallocs to auxiliary data structures, name strings and internal
2999 * cache structures; some well concealed, like INIT_WORK() that can allocate
3000 * objects during debug.
3001 *
3002 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3003 * to it. This may not be a bounded recursion: since the first cache creation
3004 * failed to complete (waiting on the allocation), we'll just try to create the
3005 * cache again, failing at the same point.
3006 *
3007 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3008 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3009 * inside the following two functions.
3010 */
3011static inline void memcg_stop_kmem_account(void)
3012{
3013 VM_BUG_ON(!current->mm);
3014 current->memcg_kmem_skip_account++;
3015}
3016
3017static inline void memcg_resume_kmem_account(void)
3018{
3019 VM_BUG_ON(!current->mm);
3020 current->memcg_kmem_skip_account--;
3021}
3022
776ed0f0 3023int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3024{
3025 struct kmem_cache *c;
b8529907 3026 int i, failed = 0;
7cf27982 3027
bd673145 3028 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3029 for_each_memcg_cache_index(i) {
3030 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3031 if (!c)
3032 continue;
3033
776ed0f0 3034 memcg_unregister_cache(c);
b8529907
VD
3035
3036 if (cache_from_memcg_idx(s, i))
3037 failed++;
7cf27982 3038 }
bd673145 3039 mutex_unlock(&memcg_slab_mutex);
b8529907 3040 return failed;
7cf27982
GC
3041}
3042
776ed0f0 3043static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3044{
3045 struct kmem_cache *cachep;
bd673145 3046 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3047
3048 if (!memcg_kmem_is_active(memcg))
3049 return;
3050
bd673145
VD
3051 mutex_lock(&memcg_slab_mutex);
3052 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3053 cachep = memcg_params_to_cache(params);
bd673145
VD
3054 kmem_cache_shrink(cachep);
3055 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3056 memcg_unregister_cache(cachep);
1f458cbf 3057 }
bd673145 3058 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3059}
3060
776ed0f0 3061struct memcg_register_cache_work {
5722d094
VD
3062 struct mem_cgroup *memcg;
3063 struct kmem_cache *cachep;
3064 struct work_struct work;
3065};
3066
776ed0f0 3067static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3068{
776ed0f0
VD
3069 struct memcg_register_cache_work *cw =
3070 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3071 struct mem_cgroup *memcg = cw->memcg;
3072 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3073
bd673145 3074 mutex_lock(&memcg_slab_mutex);
776ed0f0 3075 memcg_register_cache(memcg, cachep);
bd673145
VD
3076 mutex_unlock(&memcg_slab_mutex);
3077
5722d094 3078 css_put(&memcg->css);
d7f25f8a
GC
3079 kfree(cw);
3080}
3081
3082/*
3083 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3084 */
776ed0f0
VD
3085static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3086 struct kmem_cache *cachep)
d7f25f8a 3087{
776ed0f0 3088 struct memcg_register_cache_work *cw;
d7f25f8a 3089
776ed0f0 3090 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3091 if (cw == NULL) {
3092 css_put(&memcg->css);
d7f25f8a
GC
3093 return;
3094 }
3095
3096 cw->memcg = memcg;
3097 cw->cachep = cachep;
3098
776ed0f0 3099 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3100 schedule_work(&cw->work);
3101}
3102
776ed0f0
VD
3103static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3104 struct kmem_cache *cachep)
0e9d92f2
GC
3105{
3106 /*
3107 * We need to stop accounting when we kmalloc, because if the
3108 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3109 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3110 *
3111 * However, it is better to enclose the whole function. Depending on
3112 * the debugging options enabled, INIT_WORK(), for instance, can
3113 * trigger an allocation. This too, will make us recurse. Because at
3114 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3115 * the safest choice is to do it like this, wrapping the whole function.
3116 */
3117 memcg_stop_kmem_account();
776ed0f0 3118 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3119 memcg_resume_kmem_account();
3120}
c67a8a68
VD
3121
3122int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3123{
3124 int res;
3125
3126 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3127 PAGE_SIZE << order);
3128 if (!res)
3129 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3130 return res;
3131}
3132
3133void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3134{
3135 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3136 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3137}
3138
d7f25f8a
GC
3139/*
3140 * Return the kmem_cache we're supposed to use for a slab allocation.
3141 * We try to use the current memcg's version of the cache.
3142 *
3143 * If the cache does not exist yet, if we are the first user of it,
3144 * we either create it immediately, if possible, or create it asynchronously
3145 * in a workqueue.
3146 * In the latter case, we will let the current allocation go through with
3147 * the original cache.
3148 *
3149 * Can't be called in interrupt context or from kernel threads.
3150 * This function needs to be called with rcu_read_lock() held.
3151 */
3152struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3153 gfp_t gfp)
3154{
3155 struct mem_cgroup *memcg;
959c8963 3156 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3157
3158 VM_BUG_ON(!cachep->memcg_params);
3159 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3160
0e9d92f2
GC
3161 if (!current->mm || current->memcg_kmem_skip_account)
3162 return cachep;
3163
d7f25f8a
GC
3164 rcu_read_lock();
3165 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3166
3167 if (!memcg_can_account_kmem(memcg))
ca0dde97 3168 goto out;
d7f25f8a 3169
959c8963
VD
3170 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3171 if (likely(memcg_cachep)) {
3172 cachep = memcg_cachep;
ca0dde97 3173 goto out;
d7f25f8a
GC
3174 }
3175
ca0dde97 3176 /* The corresponding put will be done in the workqueue. */
ec903c0c 3177 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3178 goto out;
3179 rcu_read_unlock();
3180
3181 /*
3182 * If we are in a safe context (can wait, and not in interrupt
3183 * context), we could be be predictable and return right away.
3184 * This would guarantee that the allocation being performed
3185 * already belongs in the new cache.
3186 *
3187 * However, there are some clashes that can arrive from locking.
3188 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3189 * memcg_create_kmem_cache, this means no further allocation
3190 * could happen with the slab_mutex held. So it's better to
3191 * defer everything.
ca0dde97 3192 */
776ed0f0 3193 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3194 return cachep;
3195out:
3196 rcu_read_unlock();
3197 return cachep;
d7f25f8a 3198}
d7f25f8a 3199
7ae1e1d0
GC
3200/*
3201 * We need to verify if the allocation against current->mm->owner's memcg is
3202 * possible for the given order. But the page is not allocated yet, so we'll
3203 * need a further commit step to do the final arrangements.
3204 *
3205 * It is possible for the task to switch cgroups in this mean time, so at
3206 * commit time, we can't rely on task conversion any longer. We'll then use
3207 * the handle argument to return to the caller which cgroup we should commit
3208 * against. We could also return the memcg directly and avoid the pointer
3209 * passing, but a boolean return value gives better semantics considering
3210 * the compiled-out case as well.
3211 *
3212 * Returning true means the allocation is possible.
3213 */
3214bool
3215__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3216{
3217 struct mem_cgroup *memcg;
3218 int ret;
3219
3220 *_memcg = NULL;
6d42c232
GC
3221
3222 /*
3223 * Disabling accounting is only relevant for some specific memcg
3224 * internal allocations. Therefore we would initially not have such
52383431
VD
3225 * check here, since direct calls to the page allocator that are
3226 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3227 * outside memcg core. We are mostly concerned with cache allocations,
3228 * and by having this test at memcg_kmem_get_cache, we are already able
3229 * to relay the allocation to the root cache and bypass the memcg cache
3230 * altogether.
6d42c232
GC
3231 *
3232 * There is one exception, though: the SLUB allocator does not create
3233 * large order caches, but rather service large kmallocs directly from
3234 * the page allocator. Therefore, the following sequence when backed by
3235 * the SLUB allocator:
3236 *
f894ffa8
AM
3237 * memcg_stop_kmem_account();
3238 * kmalloc(<large_number>)
3239 * memcg_resume_kmem_account();
6d42c232
GC
3240 *
3241 * would effectively ignore the fact that we should skip accounting,
3242 * since it will drive us directly to this function without passing
3243 * through the cache selector memcg_kmem_get_cache. Such large
3244 * allocations are extremely rare but can happen, for instance, for the
3245 * cache arrays. We bring this test here.
3246 */
3247 if (!current->mm || current->memcg_kmem_skip_account)
3248 return true;
3249
df381975 3250 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3251
3252 if (!memcg_can_account_kmem(memcg)) {
3253 css_put(&memcg->css);
3254 return true;
3255 }
3256
7ae1e1d0
GC
3257 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3258 if (!ret)
3259 *_memcg = memcg;
7ae1e1d0
GC
3260
3261 css_put(&memcg->css);
3262 return (ret == 0);
3263}
3264
3265void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3266 int order)
3267{
3268 struct page_cgroup *pc;
3269
3270 VM_BUG_ON(mem_cgroup_is_root(memcg));
3271
3272 /* The page allocation failed. Revert */
3273 if (!page) {
3274 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3275 return;
3276 }
a840cda6
JW
3277 /*
3278 * The page is freshly allocated and not visible to any
3279 * outside callers yet. Set up pc non-atomically.
3280 */
7ae1e1d0 3281 pc = lookup_page_cgroup(page);
7ae1e1d0 3282 pc->mem_cgroup = memcg;
a840cda6 3283 pc->flags = PCG_USED;
7ae1e1d0
GC
3284}
3285
3286void __memcg_kmem_uncharge_pages(struct page *page, int order)
3287{
3288 struct mem_cgroup *memcg = NULL;
3289 struct page_cgroup *pc;
3290
3291
3292 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3293 if (!PageCgroupUsed(pc))
3294 return;
3295
a840cda6
JW
3296 memcg = pc->mem_cgroup;
3297 pc->flags = 0;
7ae1e1d0
GC
3298
3299 /*
3300 * We trust that only if there is a memcg associated with the page, it
3301 * is a valid allocation
3302 */
3303 if (!memcg)
3304 return;
3305
309381fe 3306 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3307 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3308}
1f458cbf 3309#else
776ed0f0 3310static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3311{
3312}
7ae1e1d0
GC
3313#endif /* CONFIG_MEMCG_KMEM */
3314
ca3e0214
KH
3315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3316
ca3e0214
KH
3317/*
3318 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3319 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3320 * charge/uncharge will be never happen and move_account() is done under
3321 * compound_lock(), so we don't have to take care of races.
ca3e0214 3322 */
e94c8a9c 3323void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3324{
3325 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3326 struct page_cgroup *pc;
b070e65c 3327 struct mem_cgroup *memcg;
e94c8a9c 3328 int i;
ca3e0214 3329
3d37c4a9
KH
3330 if (mem_cgroup_disabled())
3331 return;
b070e65c
DR
3332
3333 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3334 for (i = 1; i < HPAGE_PMD_NR; i++) {
3335 pc = head_pc + i;
b070e65c 3336 pc->mem_cgroup = memcg;
0a31bc97 3337 pc->flags = head_pc->flags;
e94c8a9c 3338 }
b070e65c
DR
3339 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3340 HPAGE_PMD_NR);
ca3e0214 3341}
12d27107 3342#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3343
f817ed48 3344/**
de3638d9 3345 * mem_cgroup_move_account - move account of the page
5564e88b 3346 * @page: the page
7ec99d62 3347 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3348 * @pc: page_cgroup of the page.
3349 * @from: mem_cgroup which the page is moved from.
3350 * @to: mem_cgroup which the page is moved to. @from != @to.
3351 *
3352 * The caller must confirm following.
08e552c6 3353 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3354 * - compound_lock is held when nr_pages > 1
f817ed48 3355 *
2f3479b1
KH
3356 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3357 * from old cgroup.
f817ed48 3358 */
7ec99d62
JW
3359static int mem_cgroup_move_account(struct page *page,
3360 unsigned int nr_pages,
3361 struct page_cgroup *pc,
3362 struct mem_cgroup *from,
2f3479b1 3363 struct mem_cgroup *to)
f817ed48 3364{
de3638d9
JW
3365 unsigned long flags;
3366 int ret;
987eba66 3367
f817ed48 3368 VM_BUG_ON(from == to);
309381fe 3369 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3370 /*
3371 * The page is isolated from LRU. So, collapse function
3372 * will not handle this page. But page splitting can happen.
3373 * Do this check under compound_page_lock(). The caller should
3374 * hold it.
3375 */
3376 ret = -EBUSY;
7ec99d62 3377 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3378 goto out;
3379
0a31bc97
JW
3380 /*
3381 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3382 * of its source page while we change it: page migration takes
3383 * both pages off the LRU, but page cache replacement doesn't.
3384 */
3385 if (!trylock_page(page))
3386 goto out;
de3638d9
JW
3387
3388 ret = -EINVAL;
3389 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3390 goto out_unlock;
de3638d9 3391
312734c0 3392 move_lock_mem_cgroup(from, &flags);
f817ed48 3393
0a31bc97 3394 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3395 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3396 nr_pages);
3397 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3398 nr_pages);
3399 }
3ea67d06 3400
59d1d256
JW
3401 if (PageWriteback(page)) {
3402 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3403 nr_pages);
3404 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3405 nr_pages);
3406 }
3ea67d06 3407
0a31bc97
JW
3408 /*
3409 * It is safe to change pc->mem_cgroup here because the page
3410 * is referenced, charged, and isolated - we can't race with
3411 * uncharging, charging, migration, or LRU putback.
3412 */
d69b042f 3413
854ffa8d 3414 /* caller should have done css_get */
08e552c6 3415 pc->mem_cgroup = to;
312734c0 3416 move_unlock_mem_cgroup(from, &flags);
de3638d9 3417 ret = 0;
0a31bc97
JW
3418
3419 local_irq_disable();
3420 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3421 memcg_check_events(to, page);
0a31bc97 3422 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3423 memcg_check_events(from, page);
0a31bc97
JW
3424 local_irq_enable();
3425out_unlock:
3426 unlock_page(page);
de3638d9 3427out:
f817ed48
KH
3428 return ret;
3429}
3430
2ef37d3f
MH
3431/**
3432 * mem_cgroup_move_parent - moves page to the parent group
3433 * @page: the page to move
3434 * @pc: page_cgroup of the page
3435 * @child: page's cgroup
3436 *
3437 * move charges to its parent or the root cgroup if the group has no
3438 * parent (aka use_hierarchy==0).
3439 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3440 * mem_cgroup_move_account fails) the failure is always temporary and
3441 * it signals a race with a page removal/uncharge or migration. In the
3442 * first case the page is on the way out and it will vanish from the LRU
3443 * on the next attempt and the call should be retried later.
3444 * Isolation from the LRU fails only if page has been isolated from
3445 * the LRU since we looked at it and that usually means either global
3446 * reclaim or migration going on. The page will either get back to the
3447 * LRU or vanish.
3448 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3449 * (!PageCgroupUsed) or moved to a different group. The page will
3450 * disappear in the next attempt.
f817ed48 3451 */
5564e88b
JW
3452static int mem_cgroup_move_parent(struct page *page,
3453 struct page_cgroup *pc,
6068bf01 3454 struct mem_cgroup *child)
f817ed48 3455{
f817ed48 3456 struct mem_cgroup *parent;
7ec99d62 3457 unsigned int nr_pages;
4be4489f 3458 unsigned long uninitialized_var(flags);
f817ed48
KH
3459 int ret;
3460
d8423011 3461 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3462
57f9fd7d
DN
3463 ret = -EBUSY;
3464 if (!get_page_unless_zero(page))
3465 goto out;
3466 if (isolate_lru_page(page))
3467 goto put;
52dbb905 3468
7ec99d62 3469 nr_pages = hpage_nr_pages(page);
08e552c6 3470
cc926f78
KH
3471 parent = parent_mem_cgroup(child);
3472 /*
3473 * If no parent, move charges to root cgroup.
3474 */
3475 if (!parent)
3476 parent = root_mem_cgroup;
f817ed48 3477
2ef37d3f 3478 if (nr_pages > 1) {
309381fe 3479 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3480 flags = compound_lock_irqsave(page);
2ef37d3f 3481 }
987eba66 3482
cc926f78 3483 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3484 pc, child, parent);
cc926f78
KH
3485 if (!ret)
3486 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3487
7ec99d62 3488 if (nr_pages > 1)
987eba66 3489 compound_unlock_irqrestore(page, flags);
08e552c6 3490 putback_lru_page(page);
57f9fd7d 3491put:
40d58138 3492 put_page(page);
57f9fd7d 3493out:
f817ed48
KH
3494 return ret;
3495}
3496
c255a458 3497#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3498static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3499 bool charge)
d13d1443 3500{
0a31bc97
JW
3501 int val = (charge) ? 1 : -1;
3502 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3503}
02491447
DN
3504
3505/**
3506 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3507 * @entry: swap entry to be moved
3508 * @from: mem_cgroup which the entry is moved from
3509 * @to: mem_cgroup which the entry is moved to
3510 *
3511 * It succeeds only when the swap_cgroup's record for this entry is the same
3512 * as the mem_cgroup's id of @from.
3513 *
3514 * Returns 0 on success, -EINVAL on failure.
3515 *
3516 * The caller must have charged to @to, IOW, called res_counter_charge() about
3517 * both res and memsw, and called css_get().
3518 */
3519static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3520 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3521{
3522 unsigned short old_id, new_id;
3523
34c00c31
LZ
3524 old_id = mem_cgroup_id(from);
3525 new_id = mem_cgroup_id(to);
02491447
DN
3526
3527 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3528 mem_cgroup_swap_statistics(from, false);
483c30b5 3529 mem_cgroup_swap_statistics(to, true);
02491447 3530 /*
483c30b5
DN
3531 * This function is only called from task migration context now.
3532 * It postpones res_counter and refcount handling till the end
3533 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3534 * improvement. But we cannot postpone css_get(to) because if
3535 * the process that has been moved to @to does swap-in, the
3536 * refcount of @to might be decreased to 0.
3537 *
3538 * We are in attach() phase, so the cgroup is guaranteed to be
3539 * alive, so we can just call css_get().
02491447 3540 */
4050377b 3541 css_get(&to->css);
02491447
DN
3542 return 0;
3543 }
3544 return -EINVAL;
3545}
3546#else
3547static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3548 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3549{
3550 return -EINVAL;
3551}
8c7c6e34 3552#endif
d13d1443 3553
f212ad7c
DN
3554#ifdef CONFIG_DEBUG_VM
3555static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3556{
3557 struct page_cgroup *pc;
3558
3559 pc = lookup_page_cgroup(page);
cfa44946
JW
3560 /*
3561 * Can be NULL while feeding pages into the page allocator for
3562 * the first time, i.e. during boot or memory hotplug;
3563 * or when mem_cgroup_disabled().
3564 */
f212ad7c
DN
3565 if (likely(pc) && PageCgroupUsed(pc))
3566 return pc;
3567 return NULL;
3568}
3569
3570bool mem_cgroup_bad_page_check(struct page *page)
3571{
3572 if (mem_cgroup_disabled())
3573 return false;
3574
3575 return lookup_page_cgroup_used(page) != NULL;
3576}
3577
3578void mem_cgroup_print_bad_page(struct page *page)
3579{
3580 struct page_cgroup *pc;
3581
3582 pc = lookup_page_cgroup_used(page);
3583 if (pc) {
d045197f
AM
3584 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3585 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3586 }
3587}
3588#endif
3589
d38d2a75 3590static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3591 unsigned long long val)
628f4235 3592{
81d39c20 3593 int retry_count;
628f4235 3594 int ret = 0;
81d39c20
KH
3595 int children = mem_cgroup_count_children(memcg);
3596 u64 curusage, oldusage;
3c11ecf4 3597 int enlarge;
81d39c20
KH
3598
3599 /*
3600 * For keeping hierarchical_reclaim simple, how long we should retry
3601 * is depends on callers. We set our retry-count to be function
3602 * of # of children which we should visit in this loop.
3603 */
3604 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3605
3606 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3607
3c11ecf4 3608 enlarge = 0;
8c7c6e34 3609 while (retry_count) {
628f4235
KH
3610 if (signal_pending(current)) {
3611 ret = -EINTR;
3612 break;
3613 }
8c7c6e34
KH
3614 /*
3615 * Rather than hide all in some function, I do this in
3616 * open coded manner. You see what this really does.
aaad153e 3617 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3618 */
3619 mutex_lock(&set_limit_mutex);
3fbe7244 3620 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
8c7c6e34
KH
3621 ret = -EINVAL;
3622 mutex_unlock(&set_limit_mutex);
628f4235
KH
3623 break;
3624 }
3c11ecf4 3625
3fbe7244 3626 if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3c11ecf4
KH
3627 enlarge = 1;
3628
8c7c6e34
KH
3629 ret = res_counter_set_limit(&memcg->res, val);
3630 mutex_unlock(&set_limit_mutex);
3631
3632 if (!ret)
3633 break;
3634
b70a2a21
JW
3635 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3636
81d39c20
KH
3637 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3638 /* Usage is reduced ? */
f894ffa8 3639 if (curusage >= oldusage)
81d39c20
KH
3640 retry_count--;
3641 else
3642 oldusage = curusage;
8c7c6e34 3643 }
3c11ecf4
KH
3644 if (!ret && enlarge)
3645 memcg_oom_recover(memcg);
14797e23 3646
8c7c6e34
KH
3647 return ret;
3648}
3649
338c8431
LZ
3650static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3651 unsigned long long val)
8c7c6e34 3652{
81d39c20 3653 int retry_count;
3fbe7244 3654 u64 oldusage, curusage;
81d39c20
KH
3655 int children = mem_cgroup_count_children(memcg);
3656 int ret = -EBUSY;
3c11ecf4 3657 int enlarge = 0;
8c7c6e34 3658
81d39c20 3659 /* see mem_cgroup_resize_res_limit */
f894ffa8 3660 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 3661 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3662 while (retry_count) {
3663 if (signal_pending(current)) {
3664 ret = -EINTR;
3665 break;
3666 }
3667 /*
3668 * Rather than hide all in some function, I do this in
3669 * open coded manner. You see what this really does.
aaad153e 3670 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3671 */
3672 mutex_lock(&set_limit_mutex);
3fbe7244 3673 if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
8c7c6e34
KH
3674 ret = -EINVAL;
3675 mutex_unlock(&set_limit_mutex);
3676 break;
3677 }
3fbe7244 3678 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3c11ecf4 3679 enlarge = 1;
8c7c6e34
KH
3680 ret = res_counter_set_limit(&memcg->memsw, val);
3681 mutex_unlock(&set_limit_mutex);
3682
3683 if (!ret)
3684 break;
3685
b70a2a21
JW
3686 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3687
8c7c6e34 3688 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3689 /* Usage is reduced ? */
8c7c6e34 3690 if (curusage >= oldusage)
628f4235 3691 retry_count--;
81d39c20
KH
3692 else
3693 oldusage = curusage;
628f4235 3694 }
3c11ecf4
KH
3695 if (!ret && enlarge)
3696 memcg_oom_recover(memcg);
628f4235
KH
3697 return ret;
3698}
3699
0608f43d
AM
3700unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3701 gfp_t gfp_mask,
3702 unsigned long *total_scanned)
3703{
3704 unsigned long nr_reclaimed = 0;
3705 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3706 unsigned long reclaimed;
3707 int loop = 0;
3708 struct mem_cgroup_tree_per_zone *mctz;
3709 unsigned long long excess;
3710 unsigned long nr_scanned;
3711
3712 if (order > 0)
3713 return 0;
3714
3715 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3716 /*
3717 * This loop can run a while, specially if mem_cgroup's continuously
3718 * keep exceeding their soft limit and putting the system under
3719 * pressure
3720 */
3721 do {
3722 if (next_mz)
3723 mz = next_mz;
3724 else
3725 mz = mem_cgroup_largest_soft_limit_node(mctz);
3726 if (!mz)
3727 break;
3728
3729 nr_scanned = 0;
3730 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3731 gfp_mask, &nr_scanned);
3732 nr_reclaimed += reclaimed;
3733 *total_scanned += nr_scanned;
0a31bc97 3734 spin_lock_irq(&mctz->lock);
0608f43d
AM
3735
3736 /*
3737 * If we failed to reclaim anything from this memory cgroup
3738 * it is time to move on to the next cgroup
3739 */
3740 next_mz = NULL;
3741 if (!reclaimed) {
3742 do {
3743 /*
3744 * Loop until we find yet another one.
3745 *
3746 * By the time we get the soft_limit lock
3747 * again, someone might have aded the
3748 * group back on the RB tree. Iterate to
3749 * make sure we get a different mem.
3750 * mem_cgroup_largest_soft_limit_node returns
3751 * NULL if no other cgroup is present on
3752 * the tree
3753 */
3754 next_mz =
3755 __mem_cgroup_largest_soft_limit_node(mctz);
3756 if (next_mz == mz)
3757 css_put(&next_mz->memcg->css);
3758 else /* next_mz == NULL or other memcg */
3759 break;
3760 } while (1);
3761 }
cf2c8127 3762 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3763 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3764 /*
3765 * One school of thought says that we should not add
3766 * back the node to the tree if reclaim returns 0.
3767 * But our reclaim could return 0, simply because due
3768 * to priority we are exposing a smaller subset of
3769 * memory to reclaim from. Consider this as a longer
3770 * term TODO.
3771 */
3772 /* If excess == 0, no tree ops */
cf2c8127 3773 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3774 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3775 css_put(&mz->memcg->css);
3776 loop++;
3777 /*
3778 * Could not reclaim anything and there are no more
3779 * mem cgroups to try or we seem to be looping without
3780 * reclaiming anything.
3781 */
3782 if (!nr_reclaimed &&
3783 (next_mz == NULL ||
3784 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3785 break;
3786 } while (!nr_reclaimed);
3787 if (next_mz)
3788 css_put(&next_mz->memcg->css);
3789 return nr_reclaimed;
3790}
3791
2ef37d3f
MH
3792/**
3793 * mem_cgroup_force_empty_list - clears LRU of a group
3794 * @memcg: group to clear
3795 * @node: NUMA node
3796 * @zid: zone id
3797 * @lru: lru to to clear
3798 *
3c935d18 3799 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3800 * reclaim the pages page themselves - pages are moved to the parent (or root)
3801 * group.
cc847582 3802 */
2ef37d3f 3803static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3804 int node, int zid, enum lru_list lru)
cc847582 3805{
bea8c150 3806 struct lruvec *lruvec;
2ef37d3f 3807 unsigned long flags;
072c56c1 3808 struct list_head *list;
925b7673
JW
3809 struct page *busy;
3810 struct zone *zone;
072c56c1 3811
08e552c6 3812 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3813 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3814 list = &lruvec->lists[lru];
cc847582 3815
f817ed48 3816 busy = NULL;
2ef37d3f 3817 do {
925b7673 3818 struct page_cgroup *pc;
5564e88b
JW
3819 struct page *page;
3820
08e552c6 3821 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3822 if (list_empty(list)) {
08e552c6 3823 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3824 break;
f817ed48 3825 }
925b7673
JW
3826 page = list_entry(list->prev, struct page, lru);
3827 if (busy == page) {
3828 list_move(&page->lru, list);
648bcc77 3829 busy = NULL;
08e552c6 3830 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3831 continue;
3832 }
08e552c6 3833 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3834
925b7673 3835 pc = lookup_page_cgroup(page);
5564e88b 3836
3c935d18 3837 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3838 /* found lock contention or "pc" is obsolete. */
925b7673 3839 busy = page;
f817ed48
KH
3840 } else
3841 busy = NULL;
2a7a0e0f 3842 cond_resched();
2ef37d3f 3843 } while (!list_empty(list));
cc847582
KH
3844}
3845
3846/*
c26251f9
MH
3847 * make mem_cgroup's charge to be 0 if there is no task by moving
3848 * all the charges and pages to the parent.
cc847582 3849 * This enables deleting this mem_cgroup.
c26251f9
MH
3850 *
3851 * Caller is responsible for holding css reference on the memcg.
cc847582 3852 */
ab5196c2 3853static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3854{
c26251f9 3855 int node, zid;
bea207c8 3856 u64 usage;
f817ed48 3857
fce66477 3858 do {
52d4b9ac
KH
3859 /* This is for making all *used* pages to be on LRU. */
3860 lru_add_drain_all();
c0ff4b85 3861 drain_all_stock_sync(memcg);
c0ff4b85 3862 mem_cgroup_start_move(memcg);
31aaea4a 3863 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3864 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3865 enum lru_list lru;
3866 for_each_lru(lru) {
2ef37d3f 3867 mem_cgroup_force_empty_list(memcg,
f156ab93 3868 node, zid, lru);
f817ed48 3869 }
1ecaab2b 3870 }
f817ed48 3871 }
c0ff4b85
R
3872 mem_cgroup_end_move(memcg);
3873 memcg_oom_recover(memcg);
52d4b9ac 3874 cond_resched();
f817ed48 3875
2ef37d3f 3876 /*
bea207c8
GC
3877 * Kernel memory may not necessarily be trackable to a specific
3878 * process. So they are not migrated, and therefore we can't
3879 * expect their value to drop to 0 here.
3880 * Having res filled up with kmem only is enough.
3881 *
2ef37d3f
MH
3882 * This is a safety check because mem_cgroup_force_empty_list
3883 * could have raced with mem_cgroup_replace_page_cache callers
3884 * so the lru seemed empty but the page could have been added
3885 * right after the check. RES_USAGE should be safe as we always
3886 * charge before adding to the LRU.
3887 */
bea207c8
GC
3888 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3889 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3890 } while (usage > 0);
c26251f9
MH
3891}
3892
ea280e7b
TH
3893/*
3894 * Test whether @memcg has children, dead or alive. Note that this
3895 * function doesn't care whether @memcg has use_hierarchy enabled and
3896 * returns %true if there are child csses according to the cgroup
3897 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3898 */
b5f99b53
GC
3899static inline bool memcg_has_children(struct mem_cgroup *memcg)
3900{
ea280e7b
TH
3901 bool ret;
3902
696ac172 3903 /*
ea280e7b
TH
3904 * The lock does not prevent addition or deletion of children, but
3905 * it prevents a new child from being initialized based on this
3906 * parent in css_online(), so it's enough to decide whether
3907 * hierarchically inherited attributes can still be changed or not.
696ac172 3908 */
ea280e7b
TH
3909 lockdep_assert_held(&memcg_create_mutex);
3910
3911 rcu_read_lock();
3912 ret = css_next_child(NULL, &memcg->css);
3913 rcu_read_unlock();
3914 return ret;
b5f99b53
GC
3915}
3916
c26251f9
MH
3917/*
3918 * Reclaims as many pages from the given memcg as possible and moves
3919 * the rest to the parent.
3920 *
3921 * Caller is responsible for holding css reference for memcg.
3922 */
3923static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3924{
3925 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3926
c1e862c1
KH
3927 /* we call try-to-free pages for make this cgroup empty */
3928 lru_add_drain_all();
f817ed48 3929 /* try to free all pages in this cgroup */
569530fb 3930 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3931 int progress;
c1e862c1 3932
c26251f9
MH
3933 if (signal_pending(current))
3934 return -EINTR;
3935
b70a2a21
JW
3936 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3937 GFP_KERNEL, true);
c1e862c1 3938 if (!progress) {
f817ed48 3939 nr_retries--;
c1e862c1 3940 /* maybe some writeback is necessary */
8aa7e847 3941 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3942 }
f817ed48
KH
3943
3944 }
ab5196c2
MH
3945
3946 return 0;
cc847582
KH
3947}
3948
6770c64e
TH
3949static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3950 char *buf, size_t nbytes,
3951 loff_t off)
c1e862c1 3952{
6770c64e 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3954
d8423011
MH
3955 if (mem_cgroup_is_root(memcg))
3956 return -EINVAL;
6770c64e 3957 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3958}
3959
182446d0
TH
3960static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3961 struct cftype *cft)
18f59ea7 3962{
182446d0 3963 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3964}
3965
182446d0
TH
3966static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3967 struct cftype *cft, u64 val)
18f59ea7
BS
3968{
3969 int retval = 0;
182446d0 3970 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3971 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3972
0999821b 3973 mutex_lock(&memcg_create_mutex);
567fb435
GC
3974
3975 if (memcg->use_hierarchy == val)
3976 goto out;
3977
18f59ea7 3978 /*
af901ca1 3979 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3980 * in the child subtrees. If it is unset, then the change can
3981 * occur, provided the current cgroup has no children.
3982 *
3983 * For the root cgroup, parent_mem is NULL, we allow value to be
3984 * set if there are no children.
3985 */
c0ff4b85 3986 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3987 (val == 1 || val == 0)) {
ea280e7b 3988 if (!memcg_has_children(memcg))
c0ff4b85 3989 memcg->use_hierarchy = val;
18f59ea7
BS
3990 else
3991 retval = -EBUSY;
3992 } else
3993 retval = -EINVAL;
567fb435
GC
3994
3995out:
0999821b 3996 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3997
3998 return retval;
3999}
4000
ce00a967
JW
4001static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4002 enum mem_cgroup_stat_index idx)
4003{
4004 struct mem_cgroup *iter;
4005 long val = 0;
4006
4007 /* Per-cpu values can be negative, use a signed accumulator */
4008 for_each_mem_cgroup_tree(iter, memcg)
4009 val += mem_cgroup_read_stat(iter, idx);
4010
4011 if (val < 0) /* race ? */
4012 val = 0;
4013 return val;
4014}
4015
4016static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4017{
4018 u64 val;
4019
4020 if (!mem_cgroup_is_root(memcg)) {
4021 if (!swap)
4022 return res_counter_read_u64(&memcg->res, RES_USAGE);
4023 else
4024 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4025 }
4026
4027 /*
4028 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4029 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4030 */
4031 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4032 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4033
4034 if (swap)
4035 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4036
4037 return val << PAGE_SHIFT;
4038}
4039
4040
791badbd 4041static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4042 struct cftype *cft)
8cdea7c0 4043{
182446d0 4044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
05b84301
JW
4045 enum res_type type = MEMFILE_TYPE(cft->private);
4046 int name = MEMFILE_ATTR(cft->private);
af36f906 4047
8c7c6e34
KH
4048 switch (type) {
4049 case _MEM:
ce00a967
JW
4050 if (name == RES_USAGE)
4051 return mem_cgroup_usage(memcg, false);
05b84301 4052 return res_counter_read_u64(&memcg->res, name);
8c7c6e34 4053 case _MEMSWAP:
ce00a967
JW
4054 if (name == RES_USAGE)
4055 return mem_cgroup_usage(memcg, true);
05b84301 4056 return res_counter_read_u64(&memcg->memsw, name);
510fc4e1 4057 case _KMEM:
05b84301 4058 return res_counter_read_u64(&memcg->kmem, name);
510fc4e1 4059 break;
8c7c6e34
KH
4060 default:
4061 BUG();
8c7c6e34 4062 }
8cdea7c0 4063}
510fc4e1 4064
510fc4e1 4065#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4066/* should be called with activate_kmem_mutex held */
4067static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4068 unsigned long long limit)
4069{
4070 int err = 0;
4071 int memcg_id;
4072
4073 if (memcg_kmem_is_active(memcg))
4074 return 0;
4075
4076 /*
4077 * We are going to allocate memory for data shared by all memory
4078 * cgroups so let's stop accounting here.
4079 */
4080 memcg_stop_kmem_account();
4081
510fc4e1
GC
4082 /*
4083 * For simplicity, we won't allow this to be disabled. It also can't
4084 * be changed if the cgroup has children already, or if tasks had
4085 * already joined.
4086 *
4087 * If tasks join before we set the limit, a person looking at
4088 * kmem.usage_in_bytes will have no way to determine when it took
4089 * place, which makes the value quite meaningless.
4090 *
4091 * After it first became limited, changes in the value of the limit are
4092 * of course permitted.
510fc4e1 4093 */
0999821b 4094 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4095 if (cgroup_has_tasks(memcg->css.cgroup) ||
4096 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4097 err = -EBUSY;
4098 mutex_unlock(&memcg_create_mutex);
4099 if (err)
4100 goto out;
510fc4e1 4101
f3bb3043 4102 memcg_id = memcg_alloc_cache_id();
d6441637
VD
4103 if (memcg_id < 0) {
4104 err = memcg_id;
4105 goto out;
4106 }
4107
d6441637
VD
4108 memcg->kmemcg_id = memcg_id;
4109 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4110
4111 /*
4112 * We couldn't have accounted to this cgroup, because it hasn't got the
4113 * active bit set yet, so this should succeed.
4114 */
4115 err = res_counter_set_limit(&memcg->kmem, limit);
4116 VM_BUG_ON(err);
4117
4118 static_key_slow_inc(&memcg_kmem_enabled_key);
4119 /*
4120 * Setting the active bit after enabling static branching will
4121 * guarantee no one starts accounting before all call sites are
4122 * patched.
4123 */
4124 memcg_kmem_set_active(memcg);
510fc4e1 4125out:
d6441637
VD
4126 memcg_resume_kmem_account();
4127 return err;
d6441637
VD
4128}
4129
4130static int memcg_activate_kmem(struct mem_cgroup *memcg,
4131 unsigned long long limit)
4132{
4133 int ret;
4134
4135 mutex_lock(&activate_kmem_mutex);
4136 ret = __memcg_activate_kmem(memcg, limit);
4137 mutex_unlock(&activate_kmem_mutex);
4138 return ret;
4139}
4140
4141static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4142 unsigned long long val)
4143{
4144 int ret;
4145
4146 if (!memcg_kmem_is_active(memcg))
4147 ret = memcg_activate_kmem(memcg, val);
4148 else
4149 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4150 return ret;
4151}
4152
55007d84 4153static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4154{
55007d84 4155 int ret = 0;
510fc4e1 4156 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4157
d6441637
VD
4158 if (!parent)
4159 return 0;
55007d84 4160
d6441637 4161 mutex_lock(&activate_kmem_mutex);
55007d84 4162 /*
d6441637
VD
4163 * If the parent cgroup is not kmem-active now, it cannot be activated
4164 * after this point, because it has at least one child already.
55007d84 4165 */
d6441637
VD
4166 if (memcg_kmem_is_active(parent))
4167 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4168 mutex_unlock(&activate_kmem_mutex);
55007d84 4169 return ret;
510fc4e1 4170}
d6441637
VD
4171#else
4172static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4173 unsigned long long val)
4174{
4175 return -EINVAL;
4176}
6d043990 4177#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4178
628f4235
KH
4179/*
4180 * The user of this function is...
4181 * RES_LIMIT.
4182 */
451af504
TH
4183static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4184 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4185{
451af504 4186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4187 enum res_type type;
4188 int name;
628f4235
KH
4189 unsigned long long val;
4190 int ret;
4191
451af504
TH
4192 buf = strstrip(buf);
4193 type = MEMFILE_TYPE(of_cft(of)->private);
4194 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4195
8c7c6e34 4196 switch (name) {
628f4235 4197 case RES_LIMIT:
4b3bde4c
BS
4198 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4199 ret = -EINVAL;
4200 break;
4201 }
628f4235 4202 /* This function does all necessary parse...reuse it */
451af504 4203 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
4204 if (ret)
4205 break;
4206 if (type == _MEM)
628f4235 4207 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4208 else if (type == _MEMSWAP)
8c7c6e34 4209 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4210 else if (type == _KMEM)
d6441637 4211 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
4212 else
4213 return -EINVAL;
628f4235 4214 break;
296c81d8 4215 case RES_SOFT_LIMIT:
451af504 4216 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
4217 if (ret)
4218 break;
4219 /*
4220 * For memsw, soft limits are hard to implement in terms
4221 * of semantics, for now, we support soft limits for
4222 * control without swap
4223 */
4224 if (type == _MEM)
4225 ret = res_counter_set_soft_limit(&memcg->res, val);
4226 else
4227 ret = -EINVAL;
4228 break;
628f4235
KH
4229 default:
4230 ret = -EINVAL; /* should be BUG() ? */
4231 break;
4232 }
451af504 4233 return ret ?: nbytes;
8cdea7c0
BS
4234}
4235
fee7b548
KH
4236static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4237 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4238{
fee7b548
KH
4239 unsigned long long min_limit, min_memsw_limit, tmp;
4240
4241 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4242 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4243 if (!memcg->use_hierarchy)
4244 goto out;
4245
5c9d535b
TH
4246 while (memcg->css.parent) {
4247 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
4248 if (!memcg->use_hierarchy)
4249 break;
4250 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4251 min_limit = min(min_limit, tmp);
4252 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4253 min_memsw_limit = min(min_memsw_limit, tmp);
4254 }
4255out:
4256 *mem_limit = min_limit;
4257 *memsw_limit = min_memsw_limit;
fee7b548
KH
4258}
4259
6770c64e
TH
4260static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4261 size_t nbytes, loff_t off)
c84872e1 4262{
6770c64e 4263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4264 int name;
4265 enum res_type type;
c84872e1 4266
6770c64e
TH
4267 type = MEMFILE_TYPE(of_cft(of)->private);
4268 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4269
8c7c6e34 4270 switch (name) {
29f2a4da 4271 case RES_MAX_USAGE:
8c7c6e34 4272 if (type == _MEM)
c0ff4b85 4273 res_counter_reset_max(&memcg->res);
510fc4e1 4274 else if (type == _MEMSWAP)
c0ff4b85 4275 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4276 else if (type == _KMEM)
4277 res_counter_reset_max(&memcg->kmem);
4278 else
4279 return -EINVAL;
29f2a4da
PE
4280 break;
4281 case RES_FAILCNT:
8c7c6e34 4282 if (type == _MEM)
c0ff4b85 4283 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4284 else if (type == _MEMSWAP)
c0ff4b85 4285 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4286 else if (type == _KMEM)
4287 res_counter_reset_failcnt(&memcg->kmem);
4288 else
4289 return -EINVAL;
29f2a4da
PE
4290 break;
4291 }
f64c3f54 4292
6770c64e 4293 return nbytes;
c84872e1
PE
4294}
4295
182446d0 4296static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4297 struct cftype *cft)
4298{
182446d0 4299 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4300}
4301
02491447 4302#ifdef CONFIG_MMU
182446d0 4303static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4304 struct cftype *cft, u64 val)
4305{
182446d0 4306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4307
4308 if (val >= (1 << NR_MOVE_TYPE))
4309 return -EINVAL;
ee5e8472 4310
7dc74be0 4311 /*
ee5e8472
GC
4312 * No kind of locking is needed in here, because ->can_attach() will
4313 * check this value once in the beginning of the process, and then carry
4314 * on with stale data. This means that changes to this value will only
4315 * affect task migrations starting after the change.
7dc74be0 4316 */
c0ff4b85 4317 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4318 return 0;
4319}
02491447 4320#else
182446d0 4321static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4322 struct cftype *cft, u64 val)
4323{
4324 return -ENOSYS;
4325}
4326#endif
7dc74be0 4327
406eb0c9 4328#ifdef CONFIG_NUMA
2da8ca82 4329static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4330{
25485de6
GT
4331 struct numa_stat {
4332 const char *name;
4333 unsigned int lru_mask;
4334 };
4335
4336 static const struct numa_stat stats[] = {
4337 { "total", LRU_ALL },
4338 { "file", LRU_ALL_FILE },
4339 { "anon", LRU_ALL_ANON },
4340 { "unevictable", BIT(LRU_UNEVICTABLE) },
4341 };
4342 const struct numa_stat *stat;
406eb0c9 4343 int nid;
25485de6 4344 unsigned long nr;
2da8ca82 4345 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4346
25485de6
GT
4347 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4348 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4349 seq_printf(m, "%s=%lu", stat->name, nr);
4350 for_each_node_state(nid, N_MEMORY) {
4351 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4352 stat->lru_mask);
4353 seq_printf(m, " N%d=%lu", nid, nr);
4354 }
4355 seq_putc(m, '\n');
406eb0c9 4356 }
406eb0c9 4357
071aee13
YH
4358 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4359 struct mem_cgroup *iter;
4360
4361 nr = 0;
4362 for_each_mem_cgroup_tree(iter, memcg)
4363 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4364 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4365 for_each_node_state(nid, N_MEMORY) {
4366 nr = 0;
4367 for_each_mem_cgroup_tree(iter, memcg)
4368 nr += mem_cgroup_node_nr_lru_pages(
4369 iter, nid, stat->lru_mask);
4370 seq_printf(m, " N%d=%lu", nid, nr);
4371 }
4372 seq_putc(m, '\n');
406eb0c9 4373 }
406eb0c9 4374
406eb0c9
YH
4375 return 0;
4376}
4377#endif /* CONFIG_NUMA */
4378
af7c4b0e
JW
4379static inline void mem_cgroup_lru_names_not_uptodate(void)
4380{
4381 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4382}
4383
2da8ca82 4384static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4385{
2da8ca82 4386 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
4387 struct mem_cgroup *mi;
4388 unsigned int i;
406eb0c9 4389
af7c4b0e 4390 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4391 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4392 continue;
af7c4b0e
JW
4393 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4394 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4395 }
7b854121 4396
af7c4b0e
JW
4397 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4398 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4399 mem_cgroup_read_events(memcg, i));
4400
4401 for (i = 0; i < NR_LRU_LISTS; i++)
4402 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4403 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4404
14067bb3 4405 /* Hierarchical information */
fee7b548
KH
4406 {
4407 unsigned long long limit, memsw_limit;
d79154bb 4408 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4409 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4410 if (do_swap_account)
78ccf5b5
JW
4411 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4412 memsw_limit);
fee7b548 4413 }
7f016ee8 4414
af7c4b0e
JW
4415 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4416 long long val = 0;
4417
bff6bb83 4418 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4419 continue;
af7c4b0e
JW
4420 for_each_mem_cgroup_tree(mi, memcg)
4421 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4422 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4423 }
4424
4425 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4426 unsigned long long val = 0;
4427
4428 for_each_mem_cgroup_tree(mi, memcg)
4429 val += mem_cgroup_read_events(mi, i);
4430 seq_printf(m, "total_%s %llu\n",
4431 mem_cgroup_events_names[i], val);
4432 }
4433
4434 for (i = 0; i < NR_LRU_LISTS; i++) {
4435 unsigned long long val = 0;
4436
4437 for_each_mem_cgroup_tree(mi, memcg)
4438 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4439 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4440 }
14067bb3 4441
7f016ee8 4442#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4443 {
4444 int nid, zid;
4445 struct mem_cgroup_per_zone *mz;
89abfab1 4446 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4447 unsigned long recent_rotated[2] = {0, 0};
4448 unsigned long recent_scanned[2] = {0, 0};
4449
4450 for_each_online_node(nid)
4451 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4452 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4453 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4454
89abfab1
HD
4455 recent_rotated[0] += rstat->recent_rotated[0];
4456 recent_rotated[1] += rstat->recent_rotated[1];
4457 recent_scanned[0] += rstat->recent_scanned[0];
4458 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4459 }
78ccf5b5
JW
4460 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4461 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4462 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4463 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4464 }
4465#endif
4466
d2ceb9b7
KH
4467 return 0;
4468}
4469
182446d0
TH
4470static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4471 struct cftype *cft)
a7885eb8 4472{
182446d0 4473 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4474
1f4c025b 4475 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4476}
4477
182446d0
TH
4478static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4479 struct cftype *cft, u64 val)
a7885eb8 4480{
182446d0 4481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4482
3dae7fec 4483 if (val > 100)
a7885eb8
KM
4484 return -EINVAL;
4485
14208b0e 4486 if (css->parent)
3dae7fec
JW
4487 memcg->swappiness = val;
4488 else
4489 vm_swappiness = val;
068b38c1 4490
a7885eb8
KM
4491 return 0;
4492}
4493
2e72b634
KS
4494static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4495{
4496 struct mem_cgroup_threshold_ary *t;
4497 u64 usage;
4498 int i;
4499
4500 rcu_read_lock();
4501 if (!swap)
2c488db2 4502 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4503 else
2c488db2 4504 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4505
4506 if (!t)
4507 goto unlock;
4508
ce00a967 4509 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4510
4511 /*
748dad36 4512 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4513 * If it's not true, a threshold was crossed after last
4514 * call of __mem_cgroup_threshold().
4515 */
5407a562 4516 i = t->current_threshold;
2e72b634
KS
4517
4518 /*
4519 * Iterate backward over array of thresholds starting from
4520 * current_threshold and check if a threshold is crossed.
4521 * If none of thresholds below usage is crossed, we read
4522 * only one element of the array here.
4523 */
4524 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4525 eventfd_signal(t->entries[i].eventfd, 1);
4526
4527 /* i = current_threshold + 1 */
4528 i++;
4529
4530 /*
4531 * Iterate forward over array of thresholds starting from
4532 * current_threshold+1 and check if a threshold is crossed.
4533 * If none of thresholds above usage is crossed, we read
4534 * only one element of the array here.
4535 */
4536 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4537 eventfd_signal(t->entries[i].eventfd, 1);
4538
4539 /* Update current_threshold */
5407a562 4540 t->current_threshold = i - 1;
2e72b634
KS
4541unlock:
4542 rcu_read_unlock();
4543}
4544
4545static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4546{
ad4ca5f4
KS
4547 while (memcg) {
4548 __mem_cgroup_threshold(memcg, false);
4549 if (do_swap_account)
4550 __mem_cgroup_threshold(memcg, true);
4551
4552 memcg = parent_mem_cgroup(memcg);
4553 }
2e72b634
KS
4554}
4555
4556static int compare_thresholds(const void *a, const void *b)
4557{
4558 const struct mem_cgroup_threshold *_a = a;
4559 const struct mem_cgroup_threshold *_b = b;
4560
2bff24a3
GT
4561 if (_a->threshold > _b->threshold)
4562 return 1;
4563
4564 if (_a->threshold < _b->threshold)
4565 return -1;
4566
4567 return 0;
2e72b634
KS
4568}
4569
c0ff4b85 4570static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4571{
4572 struct mem_cgroup_eventfd_list *ev;
4573
2bcf2e92
MH
4574 spin_lock(&memcg_oom_lock);
4575
c0ff4b85 4576 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4577 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4578
4579 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4580 return 0;
4581}
4582
c0ff4b85 4583static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4584{
7d74b06f
KH
4585 struct mem_cgroup *iter;
4586
c0ff4b85 4587 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4588 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4589}
4590
59b6f873 4591static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4592 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4593{
2c488db2
KS
4594 struct mem_cgroup_thresholds *thresholds;
4595 struct mem_cgroup_threshold_ary *new;
2e72b634 4596 u64 threshold, usage;
2c488db2 4597 int i, size, ret;
2e72b634
KS
4598
4599 ret = res_counter_memparse_write_strategy(args, &threshold);
4600 if (ret)
4601 return ret;
4602
4603 mutex_lock(&memcg->thresholds_lock);
2c488db2 4604
05b84301 4605 if (type == _MEM) {
2c488db2 4606 thresholds = &memcg->thresholds;
ce00a967 4607 usage = mem_cgroup_usage(memcg, false);
05b84301 4608 } else if (type == _MEMSWAP) {
2c488db2 4609 thresholds = &memcg->memsw_thresholds;
ce00a967 4610 usage = mem_cgroup_usage(memcg, true);
05b84301 4611 } else
2e72b634
KS
4612 BUG();
4613
2e72b634 4614 /* Check if a threshold crossed before adding a new one */
2c488db2 4615 if (thresholds->primary)
2e72b634
KS
4616 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4617
2c488db2 4618 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4619
4620 /* Allocate memory for new array of thresholds */
2c488db2 4621 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4622 GFP_KERNEL);
2c488db2 4623 if (!new) {
2e72b634
KS
4624 ret = -ENOMEM;
4625 goto unlock;
4626 }
2c488db2 4627 new->size = size;
2e72b634
KS
4628
4629 /* Copy thresholds (if any) to new array */
2c488db2
KS
4630 if (thresholds->primary) {
4631 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4632 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4633 }
4634
2e72b634 4635 /* Add new threshold */
2c488db2
KS
4636 new->entries[size - 1].eventfd = eventfd;
4637 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4638
4639 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4640 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4641 compare_thresholds, NULL);
4642
4643 /* Find current threshold */
2c488db2 4644 new->current_threshold = -1;
2e72b634 4645 for (i = 0; i < size; i++) {
748dad36 4646 if (new->entries[i].threshold <= usage) {
2e72b634 4647 /*
2c488db2
KS
4648 * new->current_threshold will not be used until
4649 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4650 * it here.
4651 */
2c488db2 4652 ++new->current_threshold;
748dad36
SZ
4653 } else
4654 break;
2e72b634
KS
4655 }
4656
2c488db2
KS
4657 /* Free old spare buffer and save old primary buffer as spare */
4658 kfree(thresholds->spare);
4659 thresholds->spare = thresholds->primary;
4660
4661 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4662
907860ed 4663 /* To be sure that nobody uses thresholds */
2e72b634
KS
4664 synchronize_rcu();
4665
2e72b634
KS
4666unlock:
4667 mutex_unlock(&memcg->thresholds_lock);
4668
4669 return ret;
4670}
4671
59b6f873 4672static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4673 struct eventfd_ctx *eventfd, const char *args)
4674{
59b6f873 4675 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4676}
4677
59b6f873 4678static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4679 struct eventfd_ctx *eventfd, const char *args)
4680{
59b6f873 4681 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4682}
4683
59b6f873 4684static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4685 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4686{
2c488db2
KS
4687 struct mem_cgroup_thresholds *thresholds;
4688 struct mem_cgroup_threshold_ary *new;
2e72b634 4689 u64 usage;
2c488db2 4690 int i, j, size;
2e72b634
KS
4691
4692 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4693
4694 if (type == _MEM) {
2c488db2 4695 thresholds = &memcg->thresholds;
ce00a967 4696 usage = mem_cgroup_usage(memcg, false);
05b84301 4697 } else if (type == _MEMSWAP) {
2c488db2 4698 thresholds = &memcg->memsw_thresholds;
ce00a967 4699 usage = mem_cgroup_usage(memcg, true);
05b84301 4700 } else
2e72b634
KS
4701 BUG();
4702
371528ca
AV
4703 if (!thresholds->primary)
4704 goto unlock;
4705
2e72b634
KS
4706 /* Check if a threshold crossed before removing */
4707 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4708
4709 /* Calculate new number of threshold */
2c488db2
KS
4710 size = 0;
4711 for (i = 0; i < thresholds->primary->size; i++) {
4712 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4713 size++;
4714 }
4715
2c488db2 4716 new = thresholds->spare;
907860ed 4717
2e72b634
KS
4718 /* Set thresholds array to NULL if we don't have thresholds */
4719 if (!size) {
2c488db2
KS
4720 kfree(new);
4721 new = NULL;
907860ed 4722 goto swap_buffers;
2e72b634
KS
4723 }
4724
2c488db2 4725 new->size = size;
2e72b634
KS
4726
4727 /* Copy thresholds and find current threshold */
2c488db2
KS
4728 new->current_threshold = -1;
4729 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4730 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4731 continue;
4732
2c488db2 4733 new->entries[j] = thresholds->primary->entries[i];
748dad36 4734 if (new->entries[j].threshold <= usage) {
2e72b634 4735 /*
2c488db2 4736 * new->current_threshold will not be used
2e72b634
KS
4737 * until rcu_assign_pointer(), so it's safe to increment
4738 * it here.
4739 */
2c488db2 4740 ++new->current_threshold;
2e72b634
KS
4741 }
4742 j++;
4743 }
4744
907860ed 4745swap_buffers:
2c488db2
KS
4746 /* Swap primary and spare array */
4747 thresholds->spare = thresholds->primary;
8c757763
SZ
4748 /* If all events are unregistered, free the spare array */
4749 if (!new) {
4750 kfree(thresholds->spare);
4751 thresholds->spare = NULL;
4752 }
4753
2c488db2 4754 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4755
907860ed 4756 /* To be sure that nobody uses thresholds */
2e72b634 4757 synchronize_rcu();
371528ca 4758unlock:
2e72b634 4759 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4760}
c1e862c1 4761
59b6f873 4762static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4763 struct eventfd_ctx *eventfd)
4764{
59b6f873 4765 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4766}
4767
59b6f873 4768static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4769 struct eventfd_ctx *eventfd)
4770{
59b6f873 4771 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4772}
4773
59b6f873 4774static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4775 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4776{
9490ff27 4777 struct mem_cgroup_eventfd_list *event;
9490ff27 4778
9490ff27
KH
4779 event = kmalloc(sizeof(*event), GFP_KERNEL);
4780 if (!event)
4781 return -ENOMEM;
4782
1af8efe9 4783 spin_lock(&memcg_oom_lock);
9490ff27
KH
4784
4785 event->eventfd = eventfd;
4786 list_add(&event->list, &memcg->oom_notify);
4787
4788 /* already in OOM ? */
79dfdacc 4789 if (atomic_read(&memcg->under_oom))
9490ff27 4790 eventfd_signal(eventfd, 1);
1af8efe9 4791 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4792
4793 return 0;
4794}
4795
59b6f873 4796static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4797 struct eventfd_ctx *eventfd)
9490ff27 4798{
9490ff27 4799 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4800
1af8efe9 4801 spin_lock(&memcg_oom_lock);
9490ff27 4802
c0ff4b85 4803 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4804 if (ev->eventfd == eventfd) {
4805 list_del(&ev->list);
4806 kfree(ev);
4807 }
4808 }
4809
1af8efe9 4810 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4811}
4812
2da8ca82 4813static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4814{
2da8ca82 4815 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4816
791badbd
TH
4817 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4818 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4819 return 0;
4820}
4821
182446d0 4822static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4823 struct cftype *cft, u64 val)
4824{
182446d0 4825 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4826
4827 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4828 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4829 return -EINVAL;
4830
c0ff4b85 4831 memcg->oom_kill_disable = val;
4d845ebf 4832 if (!val)
c0ff4b85 4833 memcg_oom_recover(memcg);
3dae7fec 4834
3c11ecf4
KH
4835 return 0;
4836}
4837
c255a458 4838#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4839static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4840{
55007d84
GC
4841 int ret;
4842
2633d7a0 4843 memcg->kmemcg_id = -1;
55007d84
GC
4844 ret = memcg_propagate_kmem(memcg);
4845 if (ret)
4846 return ret;
2633d7a0 4847
1d62e436 4848 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4849}
e5671dfa 4850
10d5ebf4 4851static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4852{
1d62e436 4853 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4854}
4855
4856static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4857{
4858 if (!memcg_kmem_is_active(memcg))
4859 return;
4860
4861 /*
4862 * kmem charges can outlive the cgroup. In the case of slab
4863 * pages, for instance, a page contain objects from various
4864 * processes. As we prevent from taking a reference for every
4865 * such allocation we have to be careful when doing uncharge
4866 * (see memcg_uncharge_kmem) and here during offlining.
4867 *
4868 * The idea is that that only the _last_ uncharge which sees
4869 * the dead memcg will drop the last reference. An additional
4870 * reference is taken here before the group is marked dead
4871 * which is then paired with css_put during uncharge resp. here.
4872 *
4873 * Although this might sound strange as this path is called from
ec903c0c
TH
4874 * css_offline() when the referencemight have dropped down to 0 and
4875 * shouldn't be incremented anymore (css_tryget_online() would
4876 * fail) we do not have other options because of the kmem
4877 * allocations lifetime.
10d5ebf4
LZ
4878 */
4879 css_get(&memcg->css);
7de37682
GC
4880
4881 memcg_kmem_mark_dead(memcg);
4882
4883 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4884 return;
4885
7de37682 4886 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4887 css_put(&memcg->css);
d1a4c0b3 4888}
e5671dfa 4889#else
cbe128e3 4890static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4891{
4892 return 0;
4893}
d1a4c0b3 4894
10d5ebf4
LZ
4895static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4896{
4897}
4898
4899static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4900{
4901}
e5671dfa
GC
4902#endif
4903
3bc942f3
TH
4904/*
4905 * DO NOT USE IN NEW FILES.
4906 *
4907 * "cgroup.event_control" implementation.
4908 *
4909 * This is way over-engineered. It tries to support fully configurable
4910 * events for each user. Such level of flexibility is completely
4911 * unnecessary especially in the light of the planned unified hierarchy.
4912 *
4913 * Please deprecate this and replace with something simpler if at all
4914 * possible.
4915 */
4916
79bd9814
TH
4917/*
4918 * Unregister event and free resources.
4919 *
4920 * Gets called from workqueue.
4921 */
3bc942f3 4922static void memcg_event_remove(struct work_struct *work)
79bd9814 4923{
3bc942f3
TH
4924 struct mem_cgroup_event *event =
4925 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4926 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4927
4928 remove_wait_queue(event->wqh, &event->wait);
4929
59b6f873 4930 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4931
4932 /* Notify userspace the event is going away. */
4933 eventfd_signal(event->eventfd, 1);
4934
4935 eventfd_ctx_put(event->eventfd);
4936 kfree(event);
59b6f873 4937 css_put(&memcg->css);
79bd9814
TH
4938}
4939
4940/*
4941 * Gets called on POLLHUP on eventfd when user closes it.
4942 *
4943 * Called with wqh->lock held and interrupts disabled.
4944 */
3bc942f3
TH
4945static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4946 int sync, void *key)
79bd9814 4947{
3bc942f3
TH
4948 struct mem_cgroup_event *event =
4949 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4950 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4951 unsigned long flags = (unsigned long)key;
4952
4953 if (flags & POLLHUP) {
4954 /*
4955 * If the event has been detached at cgroup removal, we
4956 * can simply return knowing the other side will cleanup
4957 * for us.
4958 *
4959 * We can't race against event freeing since the other
4960 * side will require wqh->lock via remove_wait_queue(),
4961 * which we hold.
4962 */
fba94807 4963 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4964 if (!list_empty(&event->list)) {
4965 list_del_init(&event->list);
4966 /*
4967 * We are in atomic context, but cgroup_event_remove()
4968 * may sleep, so we have to call it in workqueue.
4969 */
4970 schedule_work(&event->remove);
4971 }
fba94807 4972 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4973 }
4974
4975 return 0;
4976}
4977
3bc942f3 4978static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4979 wait_queue_head_t *wqh, poll_table *pt)
4980{
3bc942f3
TH
4981 struct mem_cgroup_event *event =
4982 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4983
4984 event->wqh = wqh;
4985 add_wait_queue(wqh, &event->wait);
4986}
4987
4988/*
3bc942f3
TH
4989 * DO NOT USE IN NEW FILES.
4990 *
79bd9814
TH
4991 * Parse input and register new cgroup event handler.
4992 *
4993 * Input must be in format '<event_fd> <control_fd> <args>'.
4994 * Interpretation of args is defined by control file implementation.
4995 */
451af504
TH
4996static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4997 char *buf, size_t nbytes, loff_t off)
79bd9814 4998{
451af504 4999 struct cgroup_subsys_state *css = of_css(of);
fba94807 5000 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5001 struct mem_cgroup_event *event;
79bd9814
TH
5002 struct cgroup_subsys_state *cfile_css;
5003 unsigned int efd, cfd;
5004 struct fd efile;
5005 struct fd cfile;
fba94807 5006 const char *name;
79bd9814
TH
5007 char *endp;
5008 int ret;
5009
451af504
TH
5010 buf = strstrip(buf);
5011
5012 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5013 if (*endp != ' ')
5014 return -EINVAL;
451af504 5015 buf = endp + 1;
79bd9814 5016
451af504 5017 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5018 if ((*endp != ' ') && (*endp != '\0'))
5019 return -EINVAL;
451af504 5020 buf = endp + 1;
79bd9814
TH
5021
5022 event = kzalloc(sizeof(*event), GFP_KERNEL);
5023 if (!event)
5024 return -ENOMEM;
5025
59b6f873 5026 event->memcg = memcg;
79bd9814 5027 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5028 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5029 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5030 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5031
5032 efile = fdget(efd);
5033 if (!efile.file) {
5034 ret = -EBADF;
5035 goto out_kfree;
5036 }
5037
5038 event->eventfd = eventfd_ctx_fileget(efile.file);
5039 if (IS_ERR(event->eventfd)) {
5040 ret = PTR_ERR(event->eventfd);
5041 goto out_put_efile;
5042 }
5043
5044 cfile = fdget(cfd);
5045 if (!cfile.file) {
5046 ret = -EBADF;
5047 goto out_put_eventfd;
5048 }
5049
5050 /* the process need read permission on control file */
5051 /* AV: shouldn't we check that it's been opened for read instead? */
5052 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5053 if (ret < 0)
5054 goto out_put_cfile;
5055
fba94807
TH
5056 /*
5057 * Determine the event callbacks and set them in @event. This used
5058 * to be done via struct cftype but cgroup core no longer knows
5059 * about these events. The following is crude but the whole thing
5060 * is for compatibility anyway.
3bc942f3
TH
5061 *
5062 * DO NOT ADD NEW FILES.
fba94807
TH
5063 */
5064 name = cfile.file->f_dentry->d_name.name;
5065
5066 if (!strcmp(name, "memory.usage_in_bytes")) {
5067 event->register_event = mem_cgroup_usage_register_event;
5068 event->unregister_event = mem_cgroup_usage_unregister_event;
5069 } else if (!strcmp(name, "memory.oom_control")) {
5070 event->register_event = mem_cgroup_oom_register_event;
5071 event->unregister_event = mem_cgroup_oom_unregister_event;
5072 } else if (!strcmp(name, "memory.pressure_level")) {
5073 event->register_event = vmpressure_register_event;
5074 event->unregister_event = vmpressure_unregister_event;
5075 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5076 event->register_event = memsw_cgroup_usage_register_event;
5077 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5078 } else {
5079 ret = -EINVAL;
5080 goto out_put_cfile;
5081 }
5082
79bd9814 5083 /*
b5557c4c
TH
5084 * Verify @cfile should belong to @css. Also, remaining events are
5085 * automatically removed on cgroup destruction but the removal is
5086 * asynchronous, so take an extra ref on @css.
79bd9814 5087 */
ec903c0c
TH
5088 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5089 &memory_cgrp_subsys);
79bd9814 5090 ret = -EINVAL;
5a17f543 5091 if (IS_ERR(cfile_css))
79bd9814 5092 goto out_put_cfile;
5a17f543
TH
5093 if (cfile_css != css) {
5094 css_put(cfile_css);
79bd9814 5095 goto out_put_cfile;
5a17f543 5096 }
79bd9814 5097
451af504 5098 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5099 if (ret)
5100 goto out_put_css;
5101
5102 efile.file->f_op->poll(efile.file, &event->pt);
5103
fba94807
TH
5104 spin_lock(&memcg->event_list_lock);
5105 list_add(&event->list, &memcg->event_list);
5106 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5107
5108 fdput(cfile);
5109 fdput(efile);
5110
451af504 5111 return nbytes;
79bd9814
TH
5112
5113out_put_css:
b5557c4c 5114 css_put(css);
79bd9814
TH
5115out_put_cfile:
5116 fdput(cfile);
5117out_put_eventfd:
5118 eventfd_ctx_put(event->eventfd);
5119out_put_efile:
5120 fdput(efile);
5121out_kfree:
5122 kfree(event);
5123
5124 return ret;
5125}
5126
8cdea7c0
BS
5127static struct cftype mem_cgroup_files[] = {
5128 {
0eea1030 5129 .name = "usage_in_bytes",
8c7c6e34 5130 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5131 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5132 },
c84872e1
PE
5133 {
5134 .name = "max_usage_in_bytes",
8c7c6e34 5135 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5136 .write = mem_cgroup_reset,
791badbd 5137 .read_u64 = mem_cgroup_read_u64,
c84872e1 5138 },
8cdea7c0 5139 {
0eea1030 5140 .name = "limit_in_bytes",
8c7c6e34 5141 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5142 .write = mem_cgroup_write,
791badbd 5143 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5144 },
296c81d8
BS
5145 {
5146 .name = "soft_limit_in_bytes",
5147 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5148 .write = mem_cgroup_write,
791badbd 5149 .read_u64 = mem_cgroup_read_u64,
296c81d8 5150 },
8cdea7c0
BS
5151 {
5152 .name = "failcnt",
8c7c6e34 5153 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5154 .write = mem_cgroup_reset,
791badbd 5155 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5156 },
d2ceb9b7
KH
5157 {
5158 .name = "stat",
2da8ca82 5159 .seq_show = memcg_stat_show,
d2ceb9b7 5160 },
c1e862c1
KH
5161 {
5162 .name = "force_empty",
6770c64e 5163 .write = mem_cgroup_force_empty_write,
c1e862c1 5164 },
18f59ea7
BS
5165 {
5166 .name = "use_hierarchy",
5167 .write_u64 = mem_cgroup_hierarchy_write,
5168 .read_u64 = mem_cgroup_hierarchy_read,
5169 },
79bd9814 5170 {
3bc942f3 5171 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5172 .write = memcg_write_event_control,
79bd9814
TH
5173 .flags = CFTYPE_NO_PREFIX,
5174 .mode = S_IWUGO,
5175 },
a7885eb8
KM
5176 {
5177 .name = "swappiness",
5178 .read_u64 = mem_cgroup_swappiness_read,
5179 .write_u64 = mem_cgroup_swappiness_write,
5180 },
7dc74be0
DN
5181 {
5182 .name = "move_charge_at_immigrate",
5183 .read_u64 = mem_cgroup_move_charge_read,
5184 .write_u64 = mem_cgroup_move_charge_write,
5185 },
9490ff27
KH
5186 {
5187 .name = "oom_control",
2da8ca82 5188 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5189 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5190 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5191 },
70ddf637
AV
5192 {
5193 .name = "pressure_level",
70ddf637 5194 },
406eb0c9
YH
5195#ifdef CONFIG_NUMA
5196 {
5197 .name = "numa_stat",
2da8ca82 5198 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5199 },
5200#endif
510fc4e1
GC
5201#ifdef CONFIG_MEMCG_KMEM
5202 {
5203 .name = "kmem.limit_in_bytes",
5204 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5205 .write = mem_cgroup_write,
791badbd 5206 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5207 },
5208 {
5209 .name = "kmem.usage_in_bytes",
5210 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5211 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5212 },
5213 {
5214 .name = "kmem.failcnt",
5215 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5216 .write = mem_cgroup_reset,
791badbd 5217 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5218 },
5219 {
5220 .name = "kmem.max_usage_in_bytes",
5221 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5222 .write = mem_cgroup_reset,
791badbd 5223 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5224 },
749c5415
GC
5225#ifdef CONFIG_SLABINFO
5226 {
5227 .name = "kmem.slabinfo",
2da8ca82 5228 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5229 },
5230#endif
8c7c6e34 5231#endif
6bc10349 5232 { }, /* terminate */
af36f906 5233};
8c7c6e34 5234
2d11085e
MH
5235#ifdef CONFIG_MEMCG_SWAP
5236static struct cftype memsw_cgroup_files[] = {
5237 {
5238 .name = "memsw.usage_in_bytes",
5239 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5240 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5241 },
5242 {
5243 .name = "memsw.max_usage_in_bytes",
5244 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5245 .write = mem_cgroup_reset,
791badbd 5246 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5247 },
5248 {
5249 .name = "memsw.limit_in_bytes",
5250 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5251 .write = mem_cgroup_write,
791badbd 5252 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5253 },
5254 {
5255 .name = "memsw.failcnt",
5256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5257 .write = mem_cgroup_reset,
791badbd 5258 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5259 },
5260 { }, /* terminate */
5261};
5262#endif
c0ff4b85 5263static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5264{
5265 struct mem_cgroup_per_node *pn;
1ecaab2b 5266 struct mem_cgroup_per_zone *mz;
41e3355d 5267 int zone, tmp = node;
1ecaab2b
KH
5268 /*
5269 * This routine is called against possible nodes.
5270 * But it's BUG to call kmalloc() against offline node.
5271 *
5272 * TODO: this routine can waste much memory for nodes which will
5273 * never be onlined. It's better to use memory hotplug callback
5274 * function.
5275 */
41e3355d
KH
5276 if (!node_state(node, N_NORMAL_MEMORY))
5277 tmp = -1;
17295c88 5278 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5279 if (!pn)
5280 return 1;
1ecaab2b 5281
1ecaab2b
KH
5282 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5283 mz = &pn->zoneinfo[zone];
bea8c150 5284 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5285 mz->usage_in_excess = 0;
5286 mz->on_tree = false;
d79154bb 5287 mz->memcg = memcg;
1ecaab2b 5288 }
54f72fe0 5289 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5290 return 0;
5291}
5292
c0ff4b85 5293static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5294{
54f72fe0 5295 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5296}
5297
33327948
KH
5298static struct mem_cgroup *mem_cgroup_alloc(void)
5299{
d79154bb 5300 struct mem_cgroup *memcg;
8ff69e2c 5301 size_t size;
33327948 5302
8ff69e2c
VD
5303 size = sizeof(struct mem_cgroup);
5304 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5305
8ff69e2c 5306 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5307 if (!memcg)
e7bbcdf3
DC
5308 return NULL;
5309
d79154bb
HD
5310 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5311 if (!memcg->stat)
d2e61b8d 5312 goto out_free;
d79154bb
HD
5313 spin_lock_init(&memcg->pcp_counter_lock);
5314 return memcg;
d2e61b8d
DC
5315
5316out_free:
8ff69e2c 5317 kfree(memcg);
d2e61b8d 5318 return NULL;
33327948
KH
5319}
5320
59927fb9 5321/*
c8b2a36f
GC
5322 * At destroying mem_cgroup, references from swap_cgroup can remain.
5323 * (scanning all at force_empty is too costly...)
5324 *
5325 * Instead of clearing all references at force_empty, we remember
5326 * the number of reference from swap_cgroup and free mem_cgroup when
5327 * it goes down to 0.
5328 *
5329 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5330 */
c8b2a36f
GC
5331
5332static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5333{
c8b2a36f 5334 int node;
59927fb9 5335
bb4cc1a8 5336 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5337
5338 for_each_node(node)
5339 free_mem_cgroup_per_zone_info(memcg, node);
5340
5341 free_percpu(memcg->stat);
5342
3f134619
GC
5343 /*
5344 * We need to make sure that (at least for now), the jump label
5345 * destruction code runs outside of the cgroup lock. This is because
5346 * get_online_cpus(), which is called from the static_branch update,
5347 * can't be called inside the cgroup_lock. cpusets are the ones
5348 * enforcing this dependency, so if they ever change, we might as well.
5349 *
5350 * schedule_work() will guarantee this happens. Be careful if you need
5351 * to move this code around, and make sure it is outside
5352 * the cgroup_lock.
5353 */
a8964b9b 5354 disarm_static_keys(memcg);
8ff69e2c 5355 kfree(memcg);
59927fb9 5356}
3afe36b1 5357
7bcc1bb1
DN
5358/*
5359 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5360 */
e1aab161 5361struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5362{
c0ff4b85 5363 if (!memcg->res.parent)
7bcc1bb1 5364 return NULL;
c0ff4b85 5365 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5366}
e1aab161 5367EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5368
bb4cc1a8
AM
5369static void __init mem_cgroup_soft_limit_tree_init(void)
5370{
5371 struct mem_cgroup_tree_per_node *rtpn;
5372 struct mem_cgroup_tree_per_zone *rtpz;
5373 int tmp, node, zone;
5374
5375 for_each_node(node) {
5376 tmp = node;
5377 if (!node_state(node, N_NORMAL_MEMORY))
5378 tmp = -1;
5379 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5380 BUG_ON(!rtpn);
5381
5382 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5383
5384 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5385 rtpz = &rtpn->rb_tree_per_zone[zone];
5386 rtpz->rb_root = RB_ROOT;
5387 spin_lock_init(&rtpz->lock);
5388 }
5389 }
5390}
5391
0eb253e2 5392static struct cgroup_subsys_state * __ref
eb95419b 5393mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5394{
d142e3e6 5395 struct mem_cgroup *memcg;
04046e1a 5396 long error = -ENOMEM;
6d12e2d8 5397 int node;
8cdea7c0 5398
c0ff4b85
R
5399 memcg = mem_cgroup_alloc();
5400 if (!memcg)
04046e1a 5401 return ERR_PTR(error);
78fb7466 5402
3ed28fa1 5403 for_each_node(node)
c0ff4b85 5404 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5405 goto free_out;
f64c3f54 5406
c077719b 5407 /* root ? */
eb95419b 5408 if (parent_css == NULL) {
a41c58a6 5409 root_mem_cgroup = memcg;
d142e3e6
GC
5410 res_counter_init(&memcg->res, NULL);
5411 res_counter_init(&memcg->memsw, NULL);
5412 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5413 }
28dbc4b6 5414
d142e3e6
GC
5415 memcg->last_scanned_node = MAX_NUMNODES;
5416 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5417 memcg->move_charge_at_immigrate = 0;
5418 mutex_init(&memcg->thresholds_lock);
5419 spin_lock_init(&memcg->move_lock);
70ddf637 5420 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5421 INIT_LIST_HEAD(&memcg->event_list);
5422 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5423
5424 return &memcg->css;
5425
5426free_out:
5427 __mem_cgroup_free(memcg);
5428 return ERR_PTR(error);
5429}
5430
5431static int
eb95419b 5432mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5433{
eb95419b 5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5435 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5436 int ret;
d142e3e6 5437
15a4c835 5438 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5439 return -ENOSPC;
5440
63876986 5441 if (!parent)
d142e3e6
GC
5442 return 0;
5443
0999821b 5444 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5445
5446 memcg->use_hierarchy = parent->use_hierarchy;
5447 memcg->oom_kill_disable = parent->oom_kill_disable;
5448 memcg->swappiness = mem_cgroup_swappiness(parent);
5449
5450 if (parent->use_hierarchy) {
c0ff4b85
R
5451 res_counter_init(&memcg->res, &parent->res);
5452 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5453 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5454
7bcc1bb1 5455 /*
8d76a979
LZ
5456 * No need to take a reference to the parent because cgroup
5457 * core guarantees its existence.
7bcc1bb1 5458 */
18f59ea7 5459 } else {
ce00a967
JW
5460 res_counter_init(&memcg->res, NULL);
5461 res_counter_init(&memcg->memsw, NULL);
5462 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5463 /*
5464 * Deeper hierachy with use_hierarchy == false doesn't make
5465 * much sense so let cgroup subsystem know about this
5466 * unfortunate state in our controller.
5467 */
d142e3e6 5468 if (parent != root_mem_cgroup)
073219e9 5469 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5470 }
0999821b 5471 mutex_unlock(&memcg_create_mutex);
d6441637 5472
2f7dd7a4
JW
5473 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5474 if (ret)
5475 return ret;
5476
5477 /*
5478 * Make sure the memcg is initialized: mem_cgroup_iter()
5479 * orders reading memcg->initialized against its callers
5480 * reading the memcg members.
5481 */
5482 smp_store_release(&memcg->initialized, 1);
5483
5484 return 0;
8cdea7c0
BS
5485}
5486
5f578161
MH
5487/*
5488 * Announce all parents that a group from their hierarchy is gone.
5489 */
5490static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5491{
5492 struct mem_cgroup *parent = memcg;
5493
5494 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5495 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5496
5497 /*
5498 * if the root memcg is not hierarchical we have to check it
5499 * explicitely.
5500 */
5501 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5502 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5503}
5504
eb95419b 5505static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5506{
eb95419b 5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5508 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5509 struct cgroup_subsys_state *iter;
79bd9814
TH
5510
5511 /*
5512 * Unregister events and notify userspace.
5513 * Notify userspace about cgroup removing only after rmdir of cgroup
5514 * directory to avoid race between userspace and kernelspace.
5515 */
fba94807
TH
5516 spin_lock(&memcg->event_list_lock);
5517 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5518 list_del_init(&event->list);
5519 schedule_work(&event->remove);
5520 }
fba94807 5521 spin_unlock(&memcg->event_list_lock);
ec64f515 5522
10d5ebf4
LZ
5523 kmem_cgroup_css_offline(memcg);
5524
5f578161 5525 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
5526
5527 /*
5528 * This requires that offlining is serialized. Right now that is
5529 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5530 */
5531 css_for_each_descendant_post(iter, css)
5532 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5533
776ed0f0 5534 memcg_unregister_all_caches(memcg);
33cb876e 5535 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5536}
5537
eb95419b 5538static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5539{
eb95419b 5540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5541 /*
5542 * XXX: css_offline() would be where we should reparent all
5543 * memory to prepare the cgroup for destruction. However,
ec903c0c 5544 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
5545 * under the same RCU lock region, which means that charging
5546 * could race with offlining. Offlining only happens to
5547 * cgroups with no tasks in them but charges can show up
5548 * without any tasks from the swapin path when the target
5549 * memcg is looked up from the swapout record and not from the
5550 * current task as it usually is. A race like this can leak
5551 * charges and put pages with stale cgroup pointers into
5552 * circulation:
5553 *
5554 * #0 #1
5555 * lookup_swap_cgroup_id()
5556 * rcu_read_lock()
5557 * mem_cgroup_lookup()
ec903c0c 5558 * css_tryget_online()
96f1c58d 5559 * rcu_read_unlock()
ec903c0c 5560 * disable css_tryget_online()
96f1c58d
JW
5561 * call_rcu()
5562 * offline_css()
5563 * reparent_charges()
5564 * res_counter_charge()
5565 * css_put()
5566 * css_free()
5567 * pc->mem_cgroup = dead memcg
5568 * add page to lru
5569 *
5570 * The bulk of the charges are still moved in offline_css() to
5571 * avoid pinning a lot of pages in case a long-term reference
5572 * like a swapout record is deferring the css_free() to long
5573 * after offlining. But this makes sure we catch any charges
5574 * made after offlining:
5575 */
5576 mem_cgroup_reparent_charges(memcg);
c268e994 5577
10d5ebf4 5578 memcg_destroy_kmem(memcg);
465939a1 5579 __mem_cgroup_free(memcg);
8cdea7c0
BS
5580}
5581
1ced953b
TH
5582/**
5583 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5584 * @css: the target css
5585 *
5586 * Reset the states of the mem_cgroup associated with @css. This is
5587 * invoked when the userland requests disabling on the default hierarchy
5588 * but the memcg is pinned through dependency. The memcg should stop
5589 * applying policies and should revert to the vanilla state as it may be
5590 * made visible again.
5591 *
5592 * The current implementation only resets the essential configurations.
5593 * This needs to be expanded to cover all the visible parts.
5594 */
5595static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5596{
5597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5598
5599 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5600 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5601 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5602 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5603}
5604
02491447 5605#ifdef CONFIG_MMU
7dc74be0 5606/* Handlers for move charge at task migration. */
854ffa8d 5607static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5608{
05b84301 5609 int ret;
9476db97
JW
5610
5611 /* Try a single bulk charge without reclaim first */
00501b53 5612 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5613 if (!ret) {
854ffa8d 5614 mc.precharge += count;
854ffa8d
DN
5615 return ret;
5616 }
692e7c45 5617 if (ret == -EINTR) {
00501b53 5618 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5619 return ret;
5620 }
9476db97
JW
5621
5622 /* Try charges one by one with reclaim */
854ffa8d 5623 while (count--) {
00501b53 5624 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5625 /*
5626 * In case of failure, any residual charges against
5627 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5628 * later on. However, cancel any charges that are
5629 * bypassed to root right away or they'll be lost.
9476db97 5630 */
692e7c45 5631 if (ret == -EINTR)
00501b53 5632 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5633 if (ret)
38c5d72f 5634 return ret;
854ffa8d 5635 mc.precharge++;
9476db97 5636 cond_resched();
854ffa8d 5637 }
9476db97 5638 return 0;
4ffef5fe
DN
5639}
5640
5641/**
8d32ff84 5642 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5643 * @vma: the vma the pte to be checked belongs
5644 * @addr: the address corresponding to the pte to be checked
5645 * @ptent: the pte to be checked
02491447 5646 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5647 *
5648 * Returns
5649 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5650 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5651 * move charge. if @target is not NULL, the page is stored in target->page
5652 * with extra refcnt got(Callers should handle it).
02491447
DN
5653 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5654 * target for charge migration. if @target is not NULL, the entry is stored
5655 * in target->ent.
4ffef5fe
DN
5656 *
5657 * Called with pte lock held.
5658 */
4ffef5fe
DN
5659union mc_target {
5660 struct page *page;
02491447 5661 swp_entry_t ent;
4ffef5fe
DN
5662};
5663
4ffef5fe 5664enum mc_target_type {
8d32ff84 5665 MC_TARGET_NONE = 0,
4ffef5fe 5666 MC_TARGET_PAGE,
02491447 5667 MC_TARGET_SWAP,
4ffef5fe
DN
5668};
5669
90254a65
DN
5670static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5671 unsigned long addr, pte_t ptent)
4ffef5fe 5672{
90254a65 5673 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5674
90254a65
DN
5675 if (!page || !page_mapped(page))
5676 return NULL;
5677 if (PageAnon(page)) {
5678 /* we don't move shared anon */
4b91355e 5679 if (!move_anon())
90254a65 5680 return NULL;
87946a72
DN
5681 } else if (!move_file())
5682 /* we ignore mapcount for file pages */
90254a65
DN
5683 return NULL;
5684 if (!get_page_unless_zero(page))
5685 return NULL;
5686
5687 return page;
5688}
5689
4b91355e 5690#ifdef CONFIG_SWAP
90254a65
DN
5691static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5692 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5693{
90254a65
DN
5694 struct page *page = NULL;
5695 swp_entry_t ent = pte_to_swp_entry(ptent);
5696
5697 if (!move_anon() || non_swap_entry(ent))
5698 return NULL;
4b91355e
KH
5699 /*
5700 * Because lookup_swap_cache() updates some statistics counter,
5701 * we call find_get_page() with swapper_space directly.
5702 */
33806f06 5703 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5704 if (do_swap_account)
5705 entry->val = ent.val;
5706
5707 return page;
5708}
4b91355e
KH
5709#else
5710static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5711 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5712{
5713 return NULL;
5714}
5715#endif
90254a65 5716
87946a72
DN
5717static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5718 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5719{
5720 struct page *page = NULL;
87946a72
DN
5721 struct address_space *mapping;
5722 pgoff_t pgoff;
5723
5724 if (!vma->vm_file) /* anonymous vma */
5725 return NULL;
5726 if (!move_file())
5727 return NULL;
5728
87946a72
DN
5729 mapping = vma->vm_file->f_mapping;
5730 if (pte_none(ptent))
5731 pgoff = linear_page_index(vma, addr);
5732 else /* pte_file(ptent) is true */
5733 pgoff = pte_to_pgoff(ptent);
5734
5735 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5736#ifdef CONFIG_SWAP
5737 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5738 if (shmem_mapping(mapping)) {
5739 page = find_get_entry(mapping, pgoff);
5740 if (radix_tree_exceptional_entry(page)) {
5741 swp_entry_t swp = radix_to_swp_entry(page);
5742 if (do_swap_account)
5743 *entry = swp;
5744 page = find_get_page(swap_address_space(swp), swp.val);
5745 }
5746 } else
5747 page = find_get_page(mapping, pgoff);
5748#else
5749 page = find_get_page(mapping, pgoff);
aa3b1895 5750#endif
87946a72
DN
5751 return page;
5752}
5753
8d32ff84 5754static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5755 unsigned long addr, pte_t ptent, union mc_target *target)
5756{
5757 struct page *page = NULL;
5758 struct page_cgroup *pc;
8d32ff84 5759 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5760 swp_entry_t ent = { .val = 0 };
5761
5762 if (pte_present(ptent))
5763 page = mc_handle_present_pte(vma, addr, ptent);
5764 else if (is_swap_pte(ptent))
5765 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5766 else if (pte_none(ptent) || pte_file(ptent))
5767 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5768
5769 if (!page && !ent.val)
8d32ff84 5770 return ret;
02491447
DN
5771 if (page) {
5772 pc = lookup_page_cgroup(page);
5773 /*
0a31bc97
JW
5774 * Do only loose check w/o serialization.
5775 * mem_cgroup_move_account() checks the pc is valid or
5776 * not under LRU exclusion.
02491447
DN
5777 */
5778 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5779 ret = MC_TARGET_PAGE;
5780 if (target)
5781 target->page = page;
5782 }
5783 if (!ret || !target)
5784 put_page(page);
5785 }
90254a65
DN
5786 /* There is a swap entry and a page doesn't exist or isn't charged */
5787 if (ent.val && !ret &&
34c00c31 5788 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5789 ret = MC_TARGET_SWAP;
5790 if (target)
5791 target->ent = ent;
4ffef5fe 5792 }
4ffef5fe
DN
5793 return ret;
5794}
5795
12724850
NH
5796#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5797/*
5798 * We don't consider swapping or file mapped pages because THP does not
5799 * support them for now.
5800 * Caller should make sure that pmd_trans_huge(pmd) is true.
5801 */
5802static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5803 unsigned long addr, pmd_t pmd, union mc_target *target)
5804{
5805 struct page *page = NULL;
5806 struct page_cgroup *pc;
5807 enum mc_target_type ret = MC_TARGET_NONE;
5808
5809 page = pmd_page(pmd);
309381fe 5810 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5811 if (!move_anon())
5812 return ret;
5813 pc = lookup_page_cgroup(page);
5814 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5815 ret = MC_TARGET_PAGE;
5816 if (target) {
5817 get_page(page);
5818 target->page = page;
5819 }
5820 }
5821 return ret;
5822}
5823#else
5824static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5825 unsigned long addr, pmd_t pmd, union mc_target *target)
5826{
5827 return MC_TARGET_NONE;
5828}
5829#endif
5830
4ffef5fe
DN
5831static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5832 unsigned long addr, unsigned long end,
5833 struct mm_walk *walk)
5834{
5835 struct vm_area_struct *vma = walk->private;
5836 pte_t *pte;
5837 spinlock_t *ptl;
5838
bf929152 5839 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5840 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5841 mc.precharge += HPAGE_PMD_NR;
bf929152 5842 spin_unlock(ptl);
1a5a9906 5843 return 0;
12724850 5844 }
03319327 5845
45f83cef
AA
5846 if (pmd_trans_unstable(pmd))
5847 return 0;
4ffef5fe
DN
5848 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5849 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5850 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5851 mc.precharge++; /* increment precharge temporarily */
5852 pte_unmap_unlock(pte - 1, ptl);
5853 cond_resched();
5854
7dc74be0
DN
5855 return 0;
5856}
5857
4ffef5fe
DN
5858static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5859{
5860 unsigned long precharge;
5861 struct vm_area_struct *vma;
5862
dfe076b0 5863 down_read(&mm->mmap_sem);
4ffef5fe
DN
5864 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5865 struct mm_walk mem_cgroup_count_precharge_walk = {
5866 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5867 .mm = mm,
5868 .private = vma,
5869 };
5870 if (is_vm_hugetlb_page(vma))
5871 continue;
4ffef5fe
DN
5872 walk_page_range(vma->vm_start, vma->vm_end,
5873 &mem_cgroup_count_precharge_walk);
5874 }
dfe076b0 5875 up_read(&mm->mmap_sem);
4ffef5fe
DN
5876
5877 precharge = mc.precharge;
5878 mc.precharge = 0;
5879
5880 return precharge;
5881}
5882
4ffef5fe
DN
5883static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5884{
dfe076b0
DN
5885 unsigned long precharge = mem_cgroup_count_precharge(mm);
5886
5887 VM_BUG_ON(mc.moving_task);
5888 mc.moving_task = current;
5889 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5890}
5891
dfe076b0
DN
5892/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5893static void __mem_cgroup_clear_mc(void)
4ffef5fe 5894{
2bd9bb20
KH
5895 struct mem_cgroup *from = mc.from;
5896 struct mem_cgroup *to = mc.to;
4050377b 5897 int i;
2bd9bb20 5898
4ffef5fe 5899 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5900 if (mc.precharge) {
00501b53 5901 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5902 mc.precharge = 0;
5903 }
5904 /*
5905 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5906 * we must uncharge here.
5907 */
5908 if (mc.moved_charge) {
00501b53 5909 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5910 mc.moved_charge = 0;
4ffef5fe 5911 }
483c30b5
DN
5912 /* we must fixup refcnts and charges */
5913 if (mc.moved_swap) {
483c30b5 5914 /* uncharge swap account from the old cgroup */
ce00a967
JW
5915 if (!mem_cgroup_is_root(mc.from))
5916 res_counter_uncharge(&mc.from->memsw,
5917 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
5918
5919 for (i = 0; i < mc.moved_swap; i++)
5920 css_put(&mc.from->css);
483c30b5 5921
05b84301
JW
5922 /*
5923 * we charged both to->res and to->memsw, so we should
5924 * uncharge to->res.
5925 */
ce00a967
JW
5926 if (!mem_cgroup_is_root(mc.to))
5927 res_counter_uncharge(&mc.to->res,
5928 PAGE_SIZE * mc.moved_swap);
4050377b 5929 /* we've already done css_get(mc.to) */
483c30b5
DN
5930 mc.moved_swap = 0;
5931 }
dfe076b0
DN
5932 memcg_oom_recover(from);
5933 memcg_oom_recover(to);
5934 wake_up_all(&mc.waitq);
5935}
5936
5937static void mem_cgroup_clear_mc(void)
5938{
5939 struct mem_cgroup *from = mc.from;
5940
5941 /*
5942 * we must clear moving_task before waking up waiters at the end of
5943 * task migration.
5944 */
5945 mc.moving_task = NULL;
5946 __mem_cgroup_clear_mc();
2bd9bb20 5947 spin_lock(&mc.lock);
4ffef5fe
DN
5948 mc.from = NULL;
5949 mc.to = NULL;
2bd9bb20 5950 spin_unlock(&mc.lock);
32047e2a 5951 mem_cgroup_end_move(from);
4ffef5fe
DN
5952}
5953
eb95419b 5954static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5955 struct cgroup_taskset *tset)
7dc74be0 5956{
2f7ee569 5957 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5958 int ret = 0;
eb95419b 5959 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5960 unsigned long move_charge_at_immigrate;
7dc74be0 5961
ee5e8472
GC
5962 /*
5963 * We are now commited to this value whatever it is. Changes in this
5964 * tunable will only affect upcoming migrations, not the current one.
5965 * So we need to save it, and keep it going.
5966 */
5967 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5968 if (move_charge_at_immigrate) {
7dc74be0
DN
5969 struct mm_struct *mm;
5970 struct mem_cgroup *from = mem_cgroup_from_task(p);
5971
c0ff4b85 5972 VM_BUG_ON(from == memcg);
7dc74be0
DN
5973
5974 mm = get_task_mm(p);
5975 if (!mm)
5976 return 0;
7dc74be0 5977 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5978 if (mm->owner == p) {
5979 VM_BUG_ON(mc.from);
5980 VM_BUG_ON(mc.to);
5981 VM_BUG_ON(mc.precharge);
854ffa8d 5982 VM_BUG_ON(mc.moved_charge);
483c30b5 5983 VM_BUG_ON(mc.moved_swap);
32047e2a 5984 mem_cgroup_start_move(from);
2bd9bb20 5985 spin_lock(&mc.lock);
4ffef5fe 5986 mc.from = from;
c0ff4b85 5987 mc.to = memcg;
ee5e8472 5988 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5989 spin_unlock(&mc.lock);
dfe076b0 5990 /* We set mc.moving_task later */
4ffef5fe
DN
5991
5992 ret = mem_cgroup_precharge_mc(mm);
5993 if (ret)
5994 mem_cgroup_clear_mc();
dfe076b0
DN
5995 }
5996 mmput(mm);
7dc74be0
DN
5997 }
5998 return ret;
5999}
6000
eb95419b 6001static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6002 struct cgroup_taskset *tset)
7dc74be0 6003{
4ffef5fe 6004 mem_cgroup_clear_mc();
7dc74be0
DN
6005}
6006
4ffef5fe
DN
6007static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6008 unsigned long addr, unsigned long end,
6009 struct mm_walk *walk)
7dc74be0 6010{
4ffef5fe
DN
6011 int ret = 0;
6012 struct vm_area_struct *vma = walk->private;
6013 pte_t *pte;
6014 spinlock_t *ptl;
12724850
NH
6015 enum mc_target_type target_type;
6016 union mc_target target;
6017 struct page *page;
6018 struct page_cgroup *pc;
4ffef5fe 6019
12724850
NH
6020 /*
6021 * We don't take compound_lock() here but no race with splitting thp
6022 * happens because:
6023 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6024 * under splitting, which means there's no concurrent thp split,
6025 * - if another thread runs into split_huge_page() just after we
6026 * entered this if-block, the thread must wait for page table lock
6027 * to be unlocked in __split_huge_page_splitting(), where the main
6028 * part of thp split is not executed yet.
6029 */
bf929152 6030 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6031 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6032 spin_unlock(ptl);
12724850
NH
6033 return 0;
6034 }
6035 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6036 if (target_type == MC_TARGET_PAGE) {
6037 page = target.page;
6038 if (!isolate_lru_page(page)) {
6039 pc = lookup_page_cgroup(page);
6040 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6041 pc, mc.from, mc.to)) {
12724850
NH
6042 mc.precharge -= HPAGE_PMD_NR;
6043 mc.moved_charge += HPAGE_PMD_NR;
6044 }
6045 putback_lru_page(page);
6046 }
6047 put_page(page);
6048 }
bf929152 6049 spin_unlock(ptl);
1a5a9906 6050 return 0;
12724850
NH
6051 }
6052
45f83cef
AA
6053 if (pmd_trans_unstable(pmd))
6054 return 0;
4ffef5fe
DN
6055retry:
6056 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6057 for (; addr != end; addr += PAGE_SIZE) {
6058 pte_t ptent = *(pte++);
02491447 6059 swp_entry_t ent;
4ffef5fe
DN
6060
6061 if (!mc.precharge)
6062 break;
6063
8d32ff84 6064 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6065 case MC_TARGET_PAGE:
6066 page = target.page;
6067 if (isolate_lru_page(page))
6068 goto put;
6069 pc = lookup_page_cgroup(page);
7ec99d62 6070 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6071 mc.from, mc.to)) {
4ffef5fe 6072 mc.precharge--;
854ffa8d
DN
6073 /* we uncharge from mc.from later. */
6074 mc.moved_charge++;
4ffef5fe
DN
6075 }
6076 putback_lru_page(page);
8d32ff84 6077put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6078 put_page(page);
6079 break;
02491447
DN
6080 case MC_TARGET_SWAP:
6081 ent = target.ent;
e91cbb42 6082 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6083 mc.precharge--;
483c30b5
DN
6084 /* we fixup refcnts and charges later. */
6085 mc.moved_swap++;
6086 }
02491447 6087 break;
4ffef5fe
DN
6088 default:
6089 break;
6090 }
6091 }
6092 pte_unmap_unlock(pte - 1, ptl);
6093 cond_resched();
6094
6095 if (addr != end) {
6096 /*
6097 * We have consumed all precharges we got in can_attach().
6098 * We try charge one by one, but don't do any additional
6099 * charges to mc.to if we have failed in charge once in attach()
6100 * phase.
6101 */
854ffa8d 6102 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6103 if (!ret)
6104 goto retry;
6105 }
6106
6107 return ret;
6108}
6109
6110static void mem_cgroup_move_charge(struct mm_struct *mm)
6111{
6112 struct vm_area_struct *vma;
6113
6114 lru_add_drain_all();
dfe076b0
DN
6115retry:
6116 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6117 /*
6118 * Someone who are holding the mmap_sem might be waiting in
6119 * waitq. So we cancel all extra charges, wake up all waiters,
6120 * and retry. Because we cancel precharges, we might not be able
6121 * to move enough charges, but moving charge is a best-effort
6122 * feature anyway, so it wouldn't be a big problem.
6123 */
6124 __mem_cgroup_clear_mc();
6125 cond_resched();
6126 goto retry;
6127 }
4ffef5fe
DN
6128 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6129 int ret;
6130 struct mm_walk mem_cgroup_move_charge_walk = {
6131 .pmd_entry = mem_cgroup_move_charge_pte_range,
6132 .mm = mm,
6133 .private = vma,
6134 };
6135 if (is_vm_hugetlb_page(vma))
6136 continue;
4ffef5fe
DN
6137 ret = walk_page_range(vma->vm_start, vma->vm_end,
6138 &mem_cgroup_move_charge_walk);
6139 if (ret)
6140 /*
6141 * means we have consumed all precharges and failed in
6142 * doing additional charge. Just abandon here.
6143 */
6144 break;
6145 }
dfe076b0 6146 up_read(&mm->mmap_sem);
7dc74be0
DN
6147}
6148
eb95419b 6149static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6150 struct cgroup_taskset *tset)
67e465a7 6151{
2f7ee569 6152 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6153 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6154
dfe076b0 6155 if (mm) {
a433658c
KM
6156 if (mc.to)
6157 mem_cgroup_move_charge(mm);
dfe076b0
DN
6158 mmput(mm);
6159 }
a433658c
KM
6160 if (mc.to)
6161 mem_cgroup_clear_mc();
67e465a7 6162}
5cfb80a7 6163#else /* !CONFIG_MMU */
eb95419b 6164static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6165 struct cgroup_taskset *tset)
5cfb80a7
DN
6166{
6167 return 0;
6168}
eb95419b 6169static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6170 struct cgroup_taskset *tset)
5cfb80a7
DN
6171{
6172}
eb95419b 6173static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6174 struct cgroup_taskset *tset)
5cfb80a7
DN
6175{
6176}
6177#endif
67e465a7 6178
f00baae7
TH
6179/*
6180 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6181 * to verify whether we're attached to the default hierarchy on each mount
6182 * attempt.
f00baae7 6183 */
eb95419b 6184static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6185{
6186 /*
aa6ec29b 6187 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6188 * guarantees that @root doesn't have any children, so turning it
6189 * on for the root memcg is enough.
6190 */
aa6ec29b 6191 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6192 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6193}
6194
073219e9 6195struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6196 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6197 .css_online = mem_cgroup_css_online,
92fb9748
TH
6198 .css_offline = mem_cgroup_css_offline,
6199 .css_free = mem_cgroup_css_free,
1ced953b 6200 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6201 .can_attach = mem_cgroup_can_attach,
6202 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6203 .attach = mem_cgroup_move_task,
f00baae7 6204 .bind = mem_cgroup_bind,
5577964e 6205 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6206 .early_init = 0,
8cdea7c0 6207};
c077719b 6208
c255a458 6209#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6210static int __init enable_swap_account(char *s)
6211{
a2c8990a 6212 if (!strcmp(s, "1"))
a42c390c 6213 really_do_swap_account = 1;
a2c8990a 6214 else if (!strcmp(s, "0"))
a42c390c
MH
6215 really_do_swap_account = 0;
6216 return 1;
6217}
a2c8990a 6218__setup("swapaccount=", enable_swap_account);
c077719b 6219
2d11085e
MH
6220static void __init memsw_file_init(void)
6221{
2cf669a5
TH
6222 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6223 memsw_cgroup_files));
6acc8b02
MH
6224}
6225
6226static void __init enable_swap_cgroup(void)
6227{
6228 if (!mem_cgroup_disabled() && really_do_swap_account) {
6229 do_swap_account = 1;
6230 memsw_file_init();
6231 }
2d11085e 6232}
6acc8b02 6233
2d11085e 6234#else
6acc8b02 6235static void __init enable_swap_cgroup(void)
2d11085e
MH
6236{
6237}
c077719b 6238#endif
2d11085e 6239
0a31bc97
JW
6240#ifdef CONFIG_MEMCG_SWAP
6241/**
6242 * mem_cgroup_swapout - transfer a memsw charge to swap
6243 * @page: page whose memsw charge to transfer
6244 * @entry: swap entry to move the charge to
6245 *
6246 * Transfer the memsw charge of @page to @entry.
6247 */
6248void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6249{
6250 struct page_cgroup *pc;
6251 unsigned short oldid;
6252
6253 VM_BUG_ON_PAGE(PageLRU(page), page);
6254 VM_BUG_ON_PAGE(page_count(page), page);
6255
6256 if (!do_swap_account)
6257 return;
6258
6259 pc = lookup_page_cgroup(page);
6260
6261 /* Readahead page, never charged */
6262 if (!PageCgroupUsed(pc))
6263 return;
6264
6265 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6266
6267 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6268 VM_BUG_ON_PAGE(oldid, page);
6269
6270 pc->flags &= ~PCG_MEMSW;
6271 css_get(&pc->mem_cgroup->css);
6272 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6273}
6274
6275/**
6276 * mem_cgroup_uncharge_swap - uncharge a swap entry
6277 * @entry: swap entry to uncharge
6278 *
6279 * Drop the memsw charge associated with @entry.
6280 */
6281void mem_cgroup_uncharge_swap(swp_entry_t entry)
6282{
6283 struct mem_cgroup *memcg;
6284 unsigned short id;
6285
6286 if (!do_swap_account)
6287 return;
6288
6289 id = swap_cgroup_record(entry, 0);
6290 rcu_read_lock();
6291 memcg = mem_cgroup_lookup(id);
6292 if (memcg) {
ce00a967
JW
6293 if (!mem_cgroup_is_root(memcg))
6294 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0a31bc97
JW
6295 mem_cgroup_swap_statistics(memcg, false);
6296 css_put(&memcg->css);
6297 }
6298 rcu_read_unlock();
6299}
6300#endif
6301
00501b53
JW
6302/**
6303 * mem_cgroup_try_charge - try charging a page
6304 * @page: page to charge
6305 * @mm: mm context of the victim
6306 * @gfp_mask: reclaim mode
6307 * @memcgp: charged memcg return
6308 *
6309 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6310 * pages according to @gfp_mask if necessary.
6311 *
6312 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6313 * Otherwise, an error code is returned.
6314 *
6315 * After page->mapping has been set up, the caller must finalize the
6316 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6317 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6318 */
6319int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6320 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6321{
6322 struct mem_cgroup *memcg = NULL;
6323 unsigned int nr_pages = 1;
6324 int ret = 0;
6325
6326 if (mem_cgroup_disabled())
6327 goto out;
6328
6329 if (PageSwapCache(page)) {
6330 struct page_cgroup *pc = lookup_page_cgroup(page);
6331 /*
6332 * Every swap fault against a single page tries to charge the
6333 * page, bail as early as possible. shmem_unuse() encounters
6334 * already charged pages, too. The USED bit is protected by
6335 * the page lock, which serializes swap cache removal, which
6336 * in turn serializes uncharging.
6337 */
6338 if (PageCgroupUsed(pc))
6339 goto out;
6340 }
6341
6342 if (PageTransHuge(page)) {
6343 nr_pages <<= compound_order(page);
6344 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6345 }
6346
6347 if (do_swap_account && PageSwapCache(page))
6348 memcg = try_get_mem_cgroup_from_page(page);
6349 if (!memcg)
6350 memcg = get_mem_cgroup_from_mm(mm);
6351
6352 ret = try_charge(memcg, gfp_mask, nr_pages);
6353
6354 css_put(&memcg->css);
6355
6356 if (ret == -EINTR) {
6357 memcg = root_mem_cgroup;
6358 ret = 0;
6359 }
6360out:
6361 *memcgp = memcg;
6362 return ret;
6363}
6364
6365/**
6366 * mem_cgroup_commit_charge - commit a page charge
6367 * @page: page to charge
6368 * @memcg: memcg to charge the page to
6369 * @lrucare: page might be on LRU already
6370 *
6371 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6372 * after page->mapping has been set up. This must happen atomically
6373 * as part of the page instantiation, i.e. under the page table lock
6374 * for anonymous pages, under the page lock for page and swap cache.
6375 *
6376 * In addition, the page must not be on the LRU during the commit, to
6377 * prevent racing with task migration. If it might be, use @lrucare.
6378 *
6379 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6380 */
6381void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6382 bool lrucare)
6383{
6384 unsigned int nr_pages = 1;
6385
6386 VM_BUG_ON_PAGE(!page->mapping, page);
6387 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6388
6389 if (mem_cgroup_disabled())
6390 return;
6391 /*
6392 * Swap faults will attempt to charge the same page multiple
6393 * times. But reuse_swap_page() might have removed the page
6394 * from swapcache already, so we can't check PageSwapCache().
6395 */
6396 if (!memcg)
6397 return;
6398
6abb5a86
JW
6399 commit_charge(page, memcg, lrucare);
6400
00501b53
JW
6401 if (PageTransHuge(page)) {
6402 nr_pages <<= compound_order(page);
6403 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6404 }
6405
6abb5a86
JW
6406 local_irq_disable();
6407 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6408 memcg_check_events(memcg, page);
6409 local_irq_enable();
00501b53
JW
6410
6411 if (do_swap_account && PageSwapCache(page)) {
6412 swp_entry_t entry = { .val = page_private(page) };
6413 /*
6414 * The swap entry might not get freed for a long time,
6415 * let's not wait for it. The page already received a
6416 * memory+swap charge, drop the swap entry duplicate.
6417 */
6418 mem_cgroup_uncharge_swap(entry);
6419 }
6420}
6421
6422/**
6423 * mem_cgroup_cancel_charge - cancel a page charge
6424 * @page: page to charge
6425 * @memcg: memcg to charge the page to
6426 *
6427 * Cancel a charge transaction started by mem_cgroup_try_charge().
6428 */
6429void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6430{
6431 unsigned int nr_pages = 1;
6432
6433 if (mem_cgroup_disabled())
6434 return;
6435 /*
6436 * Swap faults will attempt to charge the same page multiple
6437 * times. But reuse_swap_page() might have removed the page
6438 * from swapcache already, so we can't check PageSwapCache().
6439 */
6440 if (!memcg)
6441 return;
6442
6443 if (PageTransHuge(page)) {
6444 nr_pages <<= compound_order(page);
6445 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6446 }
6447
6448 cancel_charge(memcg, nr_pages);
6449}
6450
747db954
JW
6451static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6452 unsigned long nr_mem, unsigned long nr_memsw,
6453 unsigned long nr_anon, unsigned long nr_file,
6454 unsigned long nr_huge, struct page *dummy_page)
6455{
6456 unsigned long flags;
6457
ce00a967
JW
6458 if (!mem_cgroup_is_root(memcg)) {
6459 if (nr_mem)
6460 res_counter_uncharge(&memcg->res,
6461 nr_mem * PAGE_SIZE);
6462 if (nr_memsw)
6463 res_counter_uncharge(&memcg->memsw,
6464 nr_memsw * PAGE_SIZE);
6465 memcg_oom_recover(memcg);
6466 }
747db954
JW
6467
6468 local_irq_save(flags);
6469 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6470 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6471 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6472 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6473 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6474 memcg_check_events(memcg, dummy_page);
6475 local_irq_restore(flags);
6476}
6477
6478static void uncharge_list(struct list_head *page_list)
6479{
6480 struct mem_cgroup *memcg = NULL;
6481 unsigned long nr_memsw = 0;
6482 unsigned long nr_anon = 0;
6483 unsigned long nr_file = 0;
6484 unsigned long nr_huge = 0;
6485 unsigned long pgpgout = 0;
6486 unsigned long nr_mem = 0;
6487 struct list_head *next;
6488 struct page *page;
6489
6490 next = page_list->next;
6491 do {
6492 unsigned int nr_pages = 1;
6493 struct page_cgroup *pc;
6494
6495 page = list_entry(next, struct page, lru);
6496 next = page->lru.next;
6497
6498 VM_BUG_ON_PAGE(PageLRU(page), page);
6499 VM_BUG_ON_PAGE(page_count(page), page);
6500
6501 pc = lookup_page_cgroup(page);
6502 if (!PageCgroupUsed(pc))
6503 continue;
6504
6505 /*
6506 * Nobody should be changing or seriously looking at
6507 * pc->mem_cgroup and pc->flags at this point, we have
6508 * fully exclusive access to the page.
6509 */
6510
6511 if (memcg != pc->mem_cgroup) {
6512 if (memcg) {
6513 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6514 nr_anon, nr_file, nr_huge, page);
6515 pgpgout = nr_mem = nr_memsw = 0;
6516 nr_anon = nr_file = nr_huge = 0;
6517 }
6518 memcg = pc->mem_cgroup;
6519 }
6520
6521 if (PageTransHuge(page)) {
6522 nr_pages <<= compound_order(page);
6523 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6524 nr_huge += nr_pages;
6525 }
6526
6527 if (PageAnon(page))
6528 nr_anon += nr_pages;
6529 else
6530 nr_file += nr_pages;
6531
6532 if (pc->flags & PCG_MEM)
6533 nr_mem += nr_pages;
6534 if (pc->flags & PCG_MEMSW)
6535 nr_memsw += nr_pages;
6536 pc->flags = 0;
6537
6538 pgpgout++;
6539 } while (next != page_list);
6540
6541 if (memcg)
6542 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6543 nr_anon, nr_file, nr_huge, page);
6544}
6545
0a31bc97
JW
6546/**
6547 * mem_cgroup_uncharge - uncharge a page
6548 * @page: page to uncharge
6549 *
6550 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6551 * mem_cgroup_commit_charge().
6552 */
6553void mem_cgroup_uncharge(struct page *page)
6554{
0a31bc97 6555 struct page_cgroup *pc;
0a31bc97
JW
6556
6557 if (mem_cgroup_disabled())
6558 return;
6559
747db954 6560 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6561 pc = lookup_page_cgroup(page);
0a31bc97
JW
6562 if (!PageCgroupUsed(pc))
6563 return;
6564
747db954
JW
6565 INIT_LIST_HEAD(&page->lru);
6566 uncharge_list(&page->lru);
6567}
0a31bc97 6568
747db954
JW
6569/**
6570 * mem_cgroup_uncharge_list - uncharge a list of page
6571 * @page_list: list of pages to uncharge
6572 *
6573 * Uncharge a list of pages previously charged with
6574 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6575 */
6576void mem_cgroup_uncharge_list(struct list_head *page_list)
6577{
6578 if (mem_cgroup_disabled())
6579 return;
0a31bc97 6580
747db954
JW
6581 if (!list_empty(page_list))
6582 uncharge_list(page_list);
0a31bc97
JW
6583}
6584
6585/**
6586 * mem_cgroup_migrate - migrate a charge to another page
6587 * @oldpage: currently charged page
6588 * @newpage: page to transfer the charge to
6589 * @lrucare: both pages might be on the LRU already
6590 *
6591 * Migrate the charge from @oldpage to @newpage.
6592 *
6593 * Both pages must be locked, @newpage->mapping must be set up.
6594 */
6595void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6596 bool lrucare)
6597{
0a31bc97
JW
6598 struct page_cgroup *pc;
6599 int isolated;
6600
6601 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6602 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6603 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6604 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6605 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6606 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6607 newpage);
0a31bc97
JW
6608
6609 if (mem_cgroup_disabled())
6610 return;
6611
6612 /* Page cache replacement: new page already charged? */
6613 pc = lookup_page_cgroup(newpage);
6614 if (PageCgroupUsed(pc))
6615 return;
6616
6617 /* Re-entrant migration: old page already uncharged? */
6618 pc = lookup_page_cgroup(oldpage);
6619 if (!PageCgroupUsed(pc))
6620 return;
6621
6622 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6623 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6624
0a31bc97
JW
6625 if (lrucare)
6626 lock_page_lru(oldpage, &isolated);
6627
6628 pc->flags = 0;
6629
6630 if (lrucare)
6631 unlock_page_lru(oldpage, isolated);
6632
6abb5a86 6633 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6634}
6635
2d11085e 6636/*
1081312f
MH
6637 * subsys_initcall() for memory controller.
6638 *
6639 * Some parts like hotcpu_notifier() have to be initialized from this context
6640 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6641 * everything that doesn't depend on a specific mem_cgroup structure should
6642 * be initialized from here.
2d11085e
MH
6643 */
6644static int __init mem_cgroup_init(void)
6645{
6646 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6647 enable_swap_cgroup();
bb4cc1a8 6648 mem_cgroup_soft_limit_tree_init();
e4777496 6649 memcg_stock_init();
2d11085e
MH
6650 return 0;
6651}
6652subsys_initcall(mem_cgroup_init);
This page took 1.656375 seconds and 5 git commands to generate.