mm: fix huge zero page accounting in smaps report
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c 1287 /*
dfe0e773 1288 * Swapcache readahead pages are added to the LRU - and
29833315 1289 * possibly migrated - before they are charged.
7512102c 1290 */
29833315
JW
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
7512102c 1293
e231875b 1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1295 lruvec = &mz->lruvec;
1296out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
08e552c6 1305}
b69408e8 1306
925b7673 1307/**
fa9add64
HD
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
925b7673 1312 *
fa9add64
HD
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
3f58a829 1315 */
fa9add64
HD
1316void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
3f58a829
MK
1318{
1319 struct mem_cgroup_per_zone *mz;
fa9add64 1320 unsigned long *lru_size;
3f58a829
MK
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
fa9add64
HD
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1329}
544122e5 1330
2314b42d 1331bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1332{
2314b42d 1333 if (root == memcg)
91c63734 1334 return true;
2314b42d 1335 if (!root->use_hierarchy)
91c63734 1336 return false;
2314b42d 1337 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
3e92041d
MH
1338}
1339
2314b42d 1340bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
4c4a2214 1341{
2314b42d 1342 struct mem_cgroup *task_memcg;
158e0a2d 1343 struct task_struct *p;
ffbdccf5 1344 bool ret;
4c4a2214 1345
158e0a2d 1346 p = find_lock_task_mm(task);
de077d22 1347 if (p) {
2314b42d 1348 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1349 task_unlock(p);
1350 } else {
1351 /*
1352 * All threads may have already detached their mm's, but the oom
1353 * killer still needs to detect if they have already been oom
1354 * killed to prevent needlessly killing additional tasks.
1355 */
ffbdccf5 1356 rcu_read_lock();
2314b42d
JW
1357 task_memcg = mem_cgroup_from_task(task);
1358 css_get(&task_memcg->css);
ffbdccf5 1359 rcu_read_unlock();
de077d22 1360 }
2314b42d
JW
1361 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1362 css_put(&task_memcg->css);
4c4a2214
DR
1363 return ret;
1364}
1365
c56d5c7d 1366int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1367{
9b272977 1368 unsigned long inactive_ratio;
14797e23 1369 unsigned long inactive;
9b272977 1370 unsigned long active;
c772be93 1371 unsigned long gb;
14797e23 1372
4d7dcca2
HD
1373 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1374 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1375
c772be93
KM
1376 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1377 if (gb)
1378 inactive_ratio = int_sqrt(10 * gb);
1379 else
1380 inactive_ratio = 1;
1381
9b272977 1382 return inactive * inactive_ratio < active;
14797e23
KM
1383}
1384
3e32cb2e 1385#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1386 container_of(counter, struct mem_cgroup, member)
1387
19942822 1388/**
9d11ea9f 1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1390 * @memcg: the memory cgroup
19942822 1391 *
9d11ea9f 1392 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1393 * pages.
19942822 1394 */
c0ff4b85 1395static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1396{
3e32cb2e
JW
1397 unsigned long margin = 0;
1398 unsigned long count;
1399 unsigned long limit;
9d11ea9f 1400
3e32cb2e
JW
1401 count = page_counter_read(&memcg->memory);
1402 limit = ACCESS_ONCE(memcg->memory.limit);
1403 if (count < limit)
1404 margin = limit - count;
1405
1406 if (do_swap_account) {
1407 count = page_counter_read(&memcg->memsw);
1408 limit = ACCESS_ONCE(memcg->memsw.limit);
1409 if (count <= limit)
1410 margin = min(margin, limit - count);
1411 }
1412
1413 return margin;
19942822
JW
1414}
1415
1f4c025b 1416int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1417{
a7885eb8 1418 /* root ? */
14208b0e 1419 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1420 return vm_swappiness;
1421
bf1ff263 1422 return memcg->swappiness;
a7885eb8
KM
1423}
1424
32047e2a 1425/*
bdcbb659 1426 * A routine for checking "mem" is under move_account() or not.
32047e2a 1427 *
bdcbb659
QH
1428 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1429 * moving cgroups. This is for waiting at high-memory pressure
1430 * caused by "move".
32047e2a 1431 */
c0ff4b85 1432static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1433{
2bd9bb20
KH
1434 struct mem_cgroup *from;
1435 struct mem_cgroup *to;
4b534334 1436 bool ret = false;
2bd9bb20
KH
1437 /*
1438 * Unlike task_move routines, we access mc.to, mc.from not under
1439 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1440 */
1441 spin_lock(&mc.lock);
1442 from = mc.from;
1443 to = mc.to;
1444 if (!from)
1445 goto unlock;
3e92041d 1446
2314b42d
JW
1447 ret = mem_cgroup_is_descendant(from, memcg) ||
1448 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1449unlock:
1450 spin_unlock(&mc.lock);
4b534334
KH
1451 return ret;
1452}
1453
c0ff4b85 1454static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1455{
1456 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1457 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1458 DEFINE_WAIT(wait);
1459 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1460 /* moving charge context might have finished. */
1461 if (mc.moving_task)
1462 schedule();
1463 finish_wait(&mc.waitq, &wait);
1464 return true;
1465 }
1466 }
1467 return false;
1468}
1469
58cf188e 1470#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1471/**
58cf188e 1472 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1473 * @memcg: The memory cgroup that went over limit
1474 * @p: Task that is going to be killed
1475 *
1476 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1477 * enabled
1478 */
1479void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1480{
e61734c5 1481 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1482 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1483 struct mem_cgroup *iter;
1484 unsigned int i;
e222432b 1485
58cf188e 1486 if (!p)
e222432b
BS
1487 return;
1488
08088cb9 1489 mutex_lock(&oom_info_lock);
e222432b
BS
1490 rcu_read_lock();
1491
e61734c5
TH
1492 pr_info("Task in ");
1493 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1494 pr_info(" killed as a result of limit of ");
1495 pr_cont_cgroup_path(memcg->css.cgroup);
1496 pr_info("\n");
e222432b 1497
e222432b
BS
1498 rcu_read_unlock();
1499
3e32cb2e
JW
1500 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1501 K((u64)page_counter_read(&memcg->memory)),
1502 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1503 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1504 K((u64)page_counter_read(&memcg->memsw)),
1505 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1506 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->kmem)),
1508 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1509
1510 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1511 pr_info("Memory cgroup stats for ");
1512 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1513 pr_cont(":");
1514
1515 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1516 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1517 continue;
1518 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1519 K(mem_cgroup_read_stat(iter, i)));
1520 }
1521
1522 for (i = 0; i < NR_LRU_LISTS; i++)
1523 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1524 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1525
1526 pr_cont("\n");
1527 }
08088cb9 1528 mutex_unlock(&oom_info_lock);
e222432b
BS
1529}
1530
81d39c20
KH
1531/*
1532 * This function returns the number of memcg under hierarchy tree. Returns
1533 * 1(self count) if no children.
1534 */
c0ff4b85 1535static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1536{
1537 int num = 0;
7d74b06f
KH
1538 struct mem_cgroup *iter;
1539
c0ff4b85 1540 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1541 num++;
81d39c20
KH
1542 return num;
1543}
1544
a63d83f4
DR
1545/*
1546 * Return the memory (and swap, if configured) limit for a memcg.
1547 */
3e32cb2e 1548static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1549{
3e32cb2e 1550 unsigned long limit;
a63d83f4 1551
3e32cb2e 1552 limit = memcg->memory.limit;
9a5a8f19 1553 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1554 unsigned long memsw_limit;
9a5a8f19 1555
3e32cb2e
JW
1556 memsw_limit = memcg->memsw.limit;
1557 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1558 }
9a5a8f19 1559 return limit;
a63d83f4
DR
1560}
1561
19965460
DR
1562static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1563 int order)
9cbb78bb
DR
1564{
1565 struct mem_cgroup *iter;
1566 unsigned long chosen_points = 0;
1567 unsigned long totalpages;
1568 unsigned int points = 0;
1569 struct task_struct *chosen = NULL;
1570
876aafbf 1571 /*
465adcf1
DR
1572 * If current has a pending SIGKILL or is exiting, then automatically
1573 * select it. The goal is to allow it to allocate so that it may
1574 * quickly exit and free its memory.
876aafbf 1575 */
465adcf1 1576 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1577 set_thread_flag(TIF_MEMDIE);
1578 return;
1579 }
1580
1581 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1582 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1583 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1584 struct css_task_iter it;
9cbb78bb
DR
1585 struct task_struct *task;
1586
72ec7029
TH
1587 css_task_iter_start(&iter->css, &it);
1588 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1589 switch (oom_scan_process_thread(task, totalpages, NULL,
1590 false)) {
1591 case OOM_SCAN_SELECT:
1592 if (chosen)
1593 put_task_struct(chosen);
1594 chosen = task;
1595 chosen_points = ULONG_MAX;
1596 get_task_struct(chosen);
1597 /* fall through */
1598 case OOM_SCAN_CONTINUE:
1599 continue;
1600 case OOM_SCAN_ABORT:
72ec7029 1601 css_task_iter_end(&it);
9cbb78bb
DR
1602 mem_cgroup_iter_break(memcg, iter);
1603 if (chosen)
1604 put_task_struct(chosen);
1605 return;
1606 case OOM_SCAN_OK:
1607 break;
1608 };
1609 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1610 if (!points || points < chosen_points)
1611 continue;
1612 /* Prefer thread group leaders for display purposes */
1613 if (points == chosen_points &&
1614 thread_group_leader(chosen))
1615 continue;
1616
1617 if (chosen)
1618 put_task_struct(chosen);
1619 chosen = task;
1620 chosen_points = points;
1621 get_task_struct(chosen);
9cbb78bb 1622 }
72ec7029 1623 css_task_iter_end(&it);
9cbb78bb
DR
1624 }
1625
1626 if (!chosen)
1627 return;
1628 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1629 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1630 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1631}
1632
4d0c066d
KH
1633/**
1634 * test_mem_cgroup_node_reclaimable
dad7557e 1635 * @memcg: the target memcg
4d0c066d
KH
1636 * @nid: the node ID to be checked.
1637 * @noswap : specify true here if the user wants flle only information.
1638 *
1639 * This function returns whether the specified memcg contains any
1640 * reclaimable pages on a node. Returns true if there are any reclaimable
1641 * pages in the node.
1642 */
c0ff4b85 1643static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1644 int nid, bool noswap)
1645{
c0ff4b85 1646 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1647 return true;
1648 if (noswap || !total_swap_pages)
1649 return false;
c0ff4b85 1650 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1651 return true;
1652 return false;
1653
1654}
bb4cc1a8 1655#if MAX_NUMNODES > 1
889976db
YH
1656
1657/*
1658 * Always updating the nodemask is not very good - even if we have an empty
1659 * list or the wrong list here, we can start from some node and traverse all
1660 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1661 *
1662 */
c0ff4b85 1663static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1664{
1665 int nid;
453a9bf3
KH
1666 /*
1667 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1668 * pagein/pageout changes since the last update.
1669 */
c0ff4b85 1670 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1671 return;
c0ff4b85 1672 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1673 return;
1674
889976db 1675 /* make a nodemask where this memcg uses memory from */
31aaea4a 1676 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1677
31aaea4a 1678 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1679
c0ff4b85
R
1680 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1681 node_clear(nid, memcg->scan_nodes);
889976db 1682 }
453a9bf3 1683
c0ff4b85
R
1684 atomic_set(&memcg->numainfo_events, 0);
1685 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1686}
1687
1688/*
1689 * Selecting a node where we start reclaim from. Because what we need is just
1690 * reducing usage counter, start from anywhere is O,K. Considering
1691 * memory reclaim from current node, there are pros. and cons.
1692 *
1693 * Freeing memory from current node means freeing memory from a node which
1694 * we'll use or we've used. So, it may make LRU bad. And if several threads
1695 * hit limits, it will see a contention on a node. But freeing from remote
1696 * node means more costs for memory reclaim because of memory latency.
1697 *
1698 * Now, we use round-robin. Better algorithm is welcomed.
1699 */
c0ff4b85 1700int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1701{
1702 int node;
1703
c0ff4b85
R
1704 mem_cgroup_may_update_nodemask(memcg);
1705 node = memcg->last_scanned_node;
889976db 1706
c0ff4b85 1707 node = next_node(node, memcg->scan_nodes);
889976db 1708 if (node == MAX_NUMNODES)
c0ff4b85 1709 node = first_node(memcg->scan_nodes);
889976db
YH
1710 /*
1711 * We call this when we hit limit, not when pages are added to LRU.
1712 * No LRU may hold pages because all pages are UNEVICTABLE or
1713 * memcg is too small and all pages are not on LRU. In that case,
1714 * we use curret node.
1715 */
1716 if (unlikely(node == MAX_NUMNODES))
1717 node = numa_node_id();
1718
c0ff4b85 1719 memcg->last_scanned_node = node;
889976db
YH
1720 return node;
1721}
889976db 1722#else
c0ff4b85 1723int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1724{
1725 return 0;
1726}
1727#endif
1728
0608f43d
AM
1729static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1730 struct zone *zone,
1731 gfp_t gfp_mask,
1732 unsigned long *total_scanned)
1733{
1734 struct mem_cgroup *victim = NULL;
1735 int total = 0;
1736 int loop = 0;
1737 unsigned long excess;
1738 unsigned long nr_scanned;
1739 struct mem_cgroup_reclaim_cookie reclaim = {
1740 .zone = zone,
1741 .priority = 0,
1742 };
1743
3e32cb2e 1744 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1745
1746 while (1) {
1747 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1748 if (!victim) {
1749 loop++;
1750 if (loop >= 2) {
1751 /*
1752 * If we have not been able to reclaim
1753 * anything, it might because there are
1754 * no reclaimable pages under this hierarchy
1755 */
1756 if (!total)
1757 break;
1758 /*
1759 * We want to do more targeted reclaim.
1760 * excess >> 2 is not to excessive so as to
1761 * reclaim too much, nor too less that we keep
1762 * coming back to reclaim from this cgroup
1763 */
1764 if (total >= (excess >> 2) ||
1765 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1766 break;
1767 }
1768 continue;
1769 }
0608f43d
AM
1770 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1771 zone, &nr_scanned);
1772 *total_scanned += nr_scanned;
3e32cb2e 1773 if (!soft_limit_excess(root_memcg))
0608f43d 1774 break;
6d61ef40 1775 }
0608f43d
AM
1776 mem_cgroup_iter_break(root_memcg, victim);
1777 return total;
6d61ef40
BS
1778}
1779
0056f4e6
JW
1780#ifdef CONFIG_LOCKDEP
1781static struct lockdep_map memcg_oom_lock_dep_map = {
1782 .name = "memcg_oom_lock",
1783};
1784#endif
1785
fb2a6fc5
JW
1786static DEFINE_SPINLOCK(memcg_oom_lock);
1787
867578cb
KH
1788/*
1789 * Check OOM-Killer is already running under our hierarchy.
1790 * If someone is running, return false.
1791 */
fb2a6fc5 1792static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1793{
79dfdacc 1794 struct mem_cgroup *iter, *failed = NULL;
a636b327 1795
fb2a6fc5
JW
1796 spin_lock(&memcg_oom_lock);
1797
9f3a0d09 1798 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1799 if (iter->oom_lock) {
79dfdacc
MH
1800 /*
1801 * this subtree of our hierarchy is already locked
1802 * so we cannot give a lock.
1803 */
79dfdacc 1804 failed = iter;
9f3a0d09
JW
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
23751be0
JW
1807 } else
1808 iter->oom_lock = true;
7d74b06f 1809 }
867578cb 1810
fb2a6fc5
JW
1811 if (failed) {
1812 /*
1813 * OK, we failed to lock the whole subtree so we have
1814 * to clean up what we set up to the failing subtree
1815 */
1816 for_each_mem_cgroup_tree(iter, memcg) {
1817 if (iter == failed) {
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
1820 }
1821 iter->oom_lock = false;
79dfdacc 1822 }
0056f4e6
JW
1823 } else
1824 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1825
1826 spin_unlock(&memcg_oom_lock);
1827
1828 return !failed;
a636b327 1829}
0b7f569e 1830
fb2a6fc5 1831static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1832{
7d74b06f
KH
1833 struct mem_cgroup *iter;
1834
fb2a6fc5 1835 spin_lock(&memcg_oom_lock);
0056f4e6 1836 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1837 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1838 iter->oom_lock = false;
fb2a6fc5 1839 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1840}
1841
c0ff4b85 1842static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1843{
1844 struct mem_cgroup *iter;
1845
c0ff4b85 1846 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1847 atomic_inc(&iter->under_oom);
1848}
1849
c0ff4b85 1850static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1851{
1852 struct mem_cgroup *iter;
1853
867578cb
KH
1854 /*
1855 * When a new child is created while the hierarchy is under oom,
1856 * mem_cgroup_oom_lock() may not be called. We have to use
1857 * atomic_add_unless() here.
1858 */
c0ff4b85 1859 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1860 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1861}
1862
867578cb
KH
1863static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1864
dc98df5a 1865struct oom_wait_info {
d79154bb 1866 struct mem_cgroup *memcg;
dc98df5a
KH
1867 wait_queue_t wait;
1868};
1869
1870static int memcg_oom_wake_function(wait_queue_t *wait,
1871 unsigned mode, int sync, void *arg)
1872{
d79154bb
HD
1873 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1874 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1875 struct oom_wait_info *oom_wait_info;
1876
1877 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1878 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1879
2314b42d
JW
1880 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1881 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1882 return 0;
dc98df5a
KH
1883 return autoremove_wake_function(wait, mode, sync, arg);
1884}
1885
c0ff4b85 1886static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1887{
3812c8c8 1888 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1889 /* for filtering, pass "memcg" as argument. */
1890 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1891}
1892
c0ff4b85 1893static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1894{
c0ff4b85
R
1895 if (memcg && atomic_read(&memcg->under_oom))
1896 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1897}
1898
3812c8c8 1899static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1900{
3812c8c8
JW
1901 if (!current->memcg_oom.may_oom)
1902 return;
867578cb 1903 /*
49426420
JW
1904 * We are in the middle of the charge context here, so we
1905 * don't want to block when potentially sitting on a callstack
1906 * that holds all kinds of filesystem and mm locks.
1907 *
1908 * Also, the caller may handle a failed allocation gracefully
1909 * (like optional page cache readahead) and so an OOM killer
1910 * invocation might not even be necessary.
1911 *
1912 * That's why we don't do anything here except remember the
1913 * OOM context and then deal with it at the end of the page
1914 * fault when the stack is unwound, the locks are released,
1915 * and when we know whether the fault was overall successful.
867578cb 1916 */
49426420
JW
1917 css_get(&memcg->css);
1918 current->memcg_oom.memcg = memcg;
1919 current->memcg_oom.gfp_mask = mask;
1920 current->memcg_oom.order = order;
3812c8c8
JW
1921}
1922
1923/**
1924 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1925 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1926 *
49426420
JW
1927 * This has to be called at the end of a page fault if the memcg OOM
1928 * handler was enabled.
3812c8c8 1929 *
49426420 1930 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1931 * sleep on a waitqueue until the userspace task resolves the
1932 * situation. Sleeping directly in the charge context with all kinds
1933 * of locks held is not a good idea, instead we remember an OOM state
1934 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1935 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1936 *
1937 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1938 * completed, %false otherwise.
3812c8c8 1939 */
49426420 1940bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1941{
49426420 1942 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1943 struct oom_wait_info owait;
49426420 1944 bool locked;
3812c8c8
JW
1945
1946 /* OOM is global, do not handle */
3812c8c8 1947 if (!memcg)
49426420 1948 return false;
3812c8c8 1949
49426420
JW
1950 if (!handle)
1951 goto cleanup;
3812c8c8
JW
1952
1953 owait.memcg = memcg;
1954 owait.wait.flags = 0;
1955 owait.wait.func = memcg_oom_wake_function;
1956 owait.wait.private = current;
1957 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1958
3812c8c8 1959 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1960 mem_cgroup_mark_under_oom(memcg);
1961
1962 locked = mem_cgroup_oom_trylock(memcg);
1963
1964 if (locked)
1965 mem_cgroup_oom_notify(memcg);
1966
1967 if (locked && !memcg->oom_kill_disable) {
1968 mem_cgroup_unmark_under_oom(memcg);
1969 finish_wait(&memcg_oom_waitq, &owait.wait);
1970 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1971 current->memcg_oom.order);
1972 } else {
3812c8c8 1973 schedule();
49426420
JW
1974 mem_cgroup_unmark_under_oom(memcg);
1975 finish_wait(&memcg_oom_waitq, &owait.wait);
1976 }
1977
1978 if (locked) {
fb2a6fc5
JW
1979 mem_cgroup_oom_unlock(memcg);
1980 /*
1981 * There is no guarantee that an OOM-lock contender
1982 * sees the wakeups triggered by the OOM kill
1983 * uncharges. Wake any sleepers explicitely.
1984 */
1985 memcg_oom_recover(memcg);
1986 }
49426420
JW
1987cleanup:
1988 current->memcg_oom.memcg = NULL;
3812c8c8 1989 css_put(&memcg->css);
867578cb 1990 return true;
0b7f569e
KH
1991}
1992
d7365e78
JW
1993/**
1994 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1995 * @page: page that is going to change accounted state
1996 * @locked: &memcg->move_lock slowpath was taken
1997 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1998 *
d7365e78
JW
1999 * This function must mark the beginning of an accounted page state
2000 * change to prevent double accounting when the page is concurrently
2001 * being moved to another memcg:
32047e2a 2002 *
d7365e78
JW
2003 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2004 * if (TestClearPageState(page))
2005 * mem_cgroup_update_page_stat(memcg, state, -1);
2006 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2007 *
d7365e78
JW
2008 * The RCU lock is held throughout the transaction. The fast path can
2009 * get away without acquiring the memcg->move_lock (@locked is false)
2010 * because page moving starts with an RCU grace period.
32047e2a 2011 *
d7365e78
JW
2012 * The RCU lock also protects the memcg from being freed when the page
2013 * state that is going to change is the only thing preventing the page
2014 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2015 * which allows migration to go ahead and uncharge the page before the
2016 * account transaction might be complete.
d69b042f 2017 */
d7365e78
JW
2018struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2019 bool *locked,
2020 unsigned long *flags)
89c06bd5
KH
2021{
2022 struct mem_cgroup *memcg;
2023 struct page_cgroup *pc;
2024
d7365e78
JW
2025 rcu_read_lock();
2026
2027 if (mem_cgroup_disabled())
2028 return NULL;
2029
89c06bd5
KH
2030 pc = lookup_page_cgroup(page);
2031again:
2032 memcg = pc->mem_cgroup;
29833315 2033 if (unlikely(!memcg))
d7365e78
JW
2034 return NULL;
2035
2036 *locked = false;
bdcbb659 2037 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2038 return memcg;
89c06bd5 2039
354a4783 2040 spin_lock_irqsave(&memcg->move_lock, *flags);
29833315 2041 if (memcg != pc->mem_cgroup) {
354a4783 2042 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2043 goto again;
2044 }
2045 *locked = true;
d7365e78
JW
2046
2047 return memcg;
89c06bd5
KH
2048}
2049
d7365e78
JW
2050/**
2051 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2052 * @memcg: the memcg that was accounted against
2053 * @locked: value received from mem_cgroup_begin_page_stat()
2054 * @flags: value received from mem_cgroup_begin_page_stat()
2055 */
2056void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2057 unsigned long flags)
89c06bd5 2058{
d7365e78 2059 if (memcg && locked)
354a4783 2060 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5 2061
d7365e78 2062 rcu_read_unlock();
89c06bd5
KH
2063}
2064
d7365e78
JW
2065/**
2066 * mem_cgroup_update_page_stat - update page state statistics
2067 * @memcg: memcg to account against
2068 * @idx: page state item to account
2069 * @val: number of pages (positive or negative)
2070 *
2071 * See mem_cgroup_begin_page_stat() for locking requirements.
2072 */
2073void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2074 enum mem_cgroup_stat_index idx, int val)
d69b042f 2075{
658b72c5 2076 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2077
d7365e78
JW
2078 if (memcg)
2079 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2080}
26174efd 2081
cdec2e42
KH
2082/*
2083 * size of first charge trial. "32" comes from vmscan.c's magic value.
2084 * TODO: maybe necessary to use big numbers in big irons.
2085 */
7ec99d62 2086#define CHARGE_BATCH 32U
cdec2e42
KH
2087struct memcg_stock_pcp {
2088 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2089 unsigned int nr_pages;
cdec2e42 2090 struct work_struct work;
26fe6168 2091 unsigned long flags;
a0db00fc 2092#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2095static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2096
a0956d54
SS
2097/**
2098 * consume_stock: Try to consume stocked charge on this cpu.
2099 * @memcg: memcg to consume from.
2100 * @nr_pages: how many pages to charge.
2101 *
2102 * The charges will only happen if @memcg matches the current cpu's memcg
2103 * stock, and at least @nr_pages are available in that stock. Failure to
2104 * service an allocation will refill the stock.
2105 *
2106 * returns true if successful, false otherwise.
cdec2e42 2107 */
a0956d54 2108static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2109{
2110 struct memcg_stock_pcp *stock;
3e32cb2e 2111 bool ret = false;
cdec2e42 2112
a0956d54 2113 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2114 return ret;
a0956d54 2115
cdec2e42 2116 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2117 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2118 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2119 ret = true;
2120 }
cdec2e42
KH
2121 put_cpu_var(memcg_stock);
2122 return ret;
2123}
2124
2125/*
3e32cb2e 2126 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2127 */
2128static void drain_stock(struct memcg_stock_pcp *stock)
2129{
2130 struct mem_cgroup *old = stock->cached;
2131
11c9ea4e 2132 if (stock->nr_pages) {
3e32cb2e 2133 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2134 if (do_swap_account)
3e32cb2e 2135 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2136 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2137 stock->nr_pages = 0;
cdec2e42
KH
2138 }
2139 stock->cached = NULL;
cdec2e42
KH
2140}
2141
2142/*
2143 * This must be called under preempt disabled or must be called by
2144 * a thread which is pinned to local cpu.
2145 */
2146static void drain_local_stock(struct work_struct *dummy)
2147{
7c8e0181 2148 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2149 drain_stock(stock);
26fe6168 2150 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2151}
2152
e4777496
MH
2153static void __init memcg_stock_init(void)
2154{
2155 int cpu;
2156
2157 for_each_possible_cpu(cpu) {
2158 struct memcg_stock_pcp *stock =
2159 &per_cpu(memcg_stock, cpu);
2160 INIT_WORK(&stock->work, drain_local_stock);
2161 }
2162}
2163
cdec2e42 2164/*
3e32cb2e 2165 * Cache charges(val) to local per_cpu area.
320cc51d 2166 * This will be consumed by consume_stock() function, later.
cdec2e42 2167 */
c0ff4b85 2168static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2169{
2170 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2171
c0ff4b85 2172 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2173 drain_stock(stock);
c0ff4b85 2174 stock->cached = memcg;
cdec2e42 2175 }
11c9ea4e 2176 stock->nr_pages += nr_pages;
cdec2e42
KH
2177 put_cpu_var(memcg_stock);
2178}
2179
2180/*
c0ff4b85 2181 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2182 * of the hierarchy under it.
cdec2e42 2183 */
6d3d6aa2 2184static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2185{
26fe6168 2186 int cpu, curcpu;
d38144b7 2187
6d3d6aa2
JW
2188 /* If someone's already draining, avoid adding running more workers. */
2189 if (!mutex_trylock(&percpu_charge_mutex))
2190 return;
cdec2e42 2191 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2192 get_online_cpus();
5af12d0e 2193 curcpu = get_cpu();
cdec2e42
KH
2194 for_each_online_cpu(cpu) {
2195 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2196 struct mem_cgroup *memcg;
26fe6168 2197
c0ff4b85
R
2198 memcg = stock->cached;
2199 if (!memcg || !stock->nr_pages)
26fe6168 2200 continue;
2314b42d 2201 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2202 continue;
d1a05b69
MH
2203 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2204 if (cpu == curcpu)
2205 drain_local_stock(&stock->work);
2206 else
2207 schedule_work_on(cpu, &stock->work);
2208 }
cdec2e42 2209 }
5af12d0e 2210 put_cpu();
f894ffa8 2211 put_online_cpus();
9f50fad6 2212 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2213}
2214
711d3d2c
KH
2215/*
2216 * This function drains percpu counter value from DEAD cpu and
2217 * move it to local cpu. Note that this function can be preempted.
2218 */
c0ff4b85 2219static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2220{
2221 int i;
2222
c0ff4b85 2223 spin_lock(&memcg->pcp_counter_lock);
6104621d 2224 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2225 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2226
c0ff4b85
R
2227 per_cpu(memcg->stat->count[i], cpu) = 0;
2228 memcg->nocpu_base.count[i] += x;
711d3d2c 2229 }
e9f8974f 2230 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2231 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2232
c0ff4b85
R
2233 per_cpu(memcg->stat->events[i], cpu) = 0;
2234 memcg->nocpu_base.events[i] += x;
e9f8974f 2235 }
c0ff4b85 2236 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2237}
2238
0db0628d 2239static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2240 unsigned long action,
2241 void *hcpu)
2242{
2243 int cpu = (unsigned long)hcpu;
2244 struct memcg_stock_pcp *stock;
711d3d2c 2245 struct mem_cgroup *iter;
cdec2e42 2246
619d094b 2247 if (action == CPU_ONLINE)
1489ebad 2248 return NOTIFY_OK;
1489ebad 2249
d833049b 2250 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2251 return NOTIFY_OK;
711d3d2c 2252
9f3a0d09 2253 for_each_mem_cgroup(iter)
711d3d2c
KH
2254 mem_cgroup_drain_pcp_counter(iter, cpu);
2255
cdec2e42
KH
2256 stock = &per_cpu(memcg_stock, cpu);
2257 drain_stock(stock);
2258 return NOTIFY_OK;
2259}
2260
00501b53
JW
2261static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2262 unsigned int nr_pages)
8a9f3ccd 2263{
7ec99d62 2264 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2265 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2266 struct mem_cgroup *mem_over_limit;
3e32cb2e 2267 struct page_counter *counter;
6539cc05 2268 unsigned long nr_reclaimed;
b70a2a21
JW
2269 bool may_swap = true;
2270 bool drained = false;
05b84301 2271 int ret = 0;
a636b327 2272
ce00a967
JW
2273 if (mem_cgroup_is_root(memcg))
2274 goto done;
6539cc05 2275retry:
b6b6cc72
MH
2276 if (consume_stock(memcg, nr_pages))
2277 goto done;
8a9f3ccd 2278
3fbe7244 2279 if (!do_swap_account ||
3e32cb2e
JW
2280 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2281 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2282 goto done_restock;
3fbe7244 2283 if (do_swap_account)
3e32cb2e
JW
2284 page_counter_uncharge(&memcg->memsw, batch);
2285 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2286 } else {
3e32cb2e 2287 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2288 may_swap = false;
3fbe7244 2289 }
7a81b88c 2290
6539cc05
JW
2291 if (batch > nr_pages) {
2292 batch = nr_pages;
2293 goto retry;
2294 }
6d61ef40 2295
06b078fc
JW
2296 /*
2297 * Unlike in global OOM situations, memcg is not in a physical
2298 * memory shortage. Allow dying and OOM-killed tasks to
2299 * bypass the last charges so that they can exit quickly and
2300 * free their memory.
2301 */
2302 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2303 fatal_signal_pending(current) ||
2304 current->flags & PF_EXITING))
2305 goto bypass;
2306
2307 if (unlikely(task_in_memcg_oom(current)))
2308 goto nomem;
2309
6539cc05
JW
2310 if (!(gfp_mask & __GFP_WAIT))
2311 goto nomem;
4b534334 2312
b70a2a21
JW
2313 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2314 gfp_mask, may_swap);
6539cc05 2315
61e02c74 2316 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2317 goto retry;
28c34c29 2318
b70a2a21 2319 if (!drained) {
6d3d6aa2 2320 drain_all_stock(mem_over_limit);
b70a2a21
JW
2321 drained = true;
2322 goto retry;
2323 }
2324
28c34c29
JW
2325 if (gfp_mask & __GFP_NORETRY)
2326 goto nomem;
6539cc05
JW
2327 /*
2328 * Even though the limit is exceeded at this point, reclaim
2329 * may have been able to free some pages. Retry the charge
2330 * before killing the task.
2331 *
2332 * Only for regular pages, though: huge pages are rather
2333 * unlikely to succeed so close to the limit, and we fall back
2334 * to regular pages anyway in case of failure.
2335 */
61e02c74 2336 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2337 goto retry;
2338 /*
2339 * At task move, charge accounts can be doubly counted. So, it's
2340 * better to wait until the end of task_move if something is going on.
2341 */
2342 if (mem_cgroup_wait_acct_move(mem_over_limit))
2343 goto retry;
2344
9b130619
JW
2345 if (nr_retries--)
2346 goto retry;
2347
06b078fc
JW
2348 if (gfp_mask & __GFP_NOFAIL)
2349 goto bypass;
2350
6539cc05
JW
2351 if (fatal_signal_pending(current))
2352 goto bypass;
2353
61e02c74 2354 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2355nomem:
6d1fdc48 2356 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2357 return -ENOMEM;
867578cb 2358bypass:
ce00a967 2359 return -EINTR;
6539cc05
JW
2360
2361done_restock:
e8ea14cc 2362 css_get_many(&memcg->css, batch);
6539cc05
JW
2363 if (batch > nr_pages)
2364 refill_stock(memcg, batch - nr_pages);
2365done:
05b84301 2366 return ret;
7a81b88c 2367}
8a9f3ccd 2368
00501b53 2369static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2370{
ce00a967
JW
2371 if (mem_cgroup_is_root(memcg))
2372 return;
2373
3e32cb2e 2374 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2375 if (do_swap_account)
3e32cb2e 2376 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2377
2378 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2379}
2380
a3b2d692
KH
2381/*
2382 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2383 * rcu_read_lock(). The caller is responsible for calling
2384 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2385 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2386 */
2387static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2388{
a3b2d692
KH
2389 /* ID 0 is unused ID */
2390 if (!id)
2391 return NULL;
34c00c31 2392 return mem_cgroup_from_id(id);
a3b2d692
KH
2393}
2394
0a31bc97
JW
2395/*
2396 * try_get_mem_cgroup_from_page - look up page's memcg association
2397 * @page: the page
2398 *
2399 * Look up, get a css reference, and return the memcg that owns @page.
2400 *
2401 * The page must be locked to prevent racing with swap-in and page
2402 * cache charges. If coming from an unlocked page table, the caller
2403 * must ensure the page is on the LRU or this can race with charging.
2404 */
e42d9d5d 2405struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2406{
29833315 2407 struct mem_cgroup *memcg;
3c776e64 2408 struct page_cgroup *pc;
a3b2d692 2409 unsigned short id;
b5a84319
KH
2410 swp_entry_t ent;
2411
309381fe 2412 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2413
3c776e64 2414 pc = lookup_page_cgroup(page);
29833315
JW
2415 memcg = pc->mem_cgroup;
2416
2417 if (memcg) {
2418 if (!css_tryget_online(&memcg->css))
c0ff4b85 2419 memcg = NULL;
e42d9d5d 2420 } else if (PageSwapCache(page)) {
3c776e64 2421 ent.val = page_private(page);
9fb4b7cc 2422 id = lookup_swap_cgroup_id(ent);
a3b2d692 2423 rcu_read_lock();
c0ff4b85 2424 memcg = mem_cgroup_lookup(id);
ec903c0c 2425 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2426 memcg = NULL;
a3b2d692 2427 rcu_read_unlock();
3c776e64 2428 }
c0ff4b85 2429 return memcg;
b5a84319
KH
2430}
2431
0a31bc97
JW
2432static void lock_page_lru(struct page *page, int *isolated)
2433{
2434 struct zone *zone = page_zone(page);
2435
2436 spin_lock_irq(&zone->lru_lock);
2437 if (PageLRU(page)) {
2438 struct lruvec *lruvec;
2439
2440 lruvec = mem_cgroup_page_lruvec(page, zone);
2441 ClearPageLRU(page);
2442 del_page_from_lru_list(page, lruvec, page_lru(page));
2443 *isolated = 1;
2444 } else
2445 *isolated = 0;
2446}
2447
2448static void unlock_page_lru(struct page *page, int isolated)
2449{
2450 struct zone *zone = page_zone(page);
2451
2452 if (isolated) {
2453 struct lruvec *lruvec;
2454
2455 lruvec = mem_cgroup_page_lruvec(page, zone);
2456 VM_BUG_ON_PAGE(PageLRU(page), page);
2457 SetPageLRU(page);
2458 add_page_to_lru_list(page, lruvec, page_lru(page));
2459 }
2460 spin_unlock_irq(&zone->lru_lock);
2461}
2462
00501b53 2463static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2464 bool lrucare)
7a81b88c 2465{
ce587e65 2466 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2467 int isolated;
9ce70c02 2468
29833315 2469 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
ca3e0214
KH
2470 /*
2471 * we don't need page_cgroup_lock about tail pages, becase they are not
2472 * accessed by any other context at this point.
2473 */
9ce70c02
HD
2474
2475 /*
2476 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2477 * may already be on some other mem_cgroup's LRU. Take care of it.
2478 */
0a31bc97
JW
2479 if (lrucare)
2480 lock_page_lru(page, &isolated);
9ce70c02 2481
0a31bc97
JW
2482 /*
2483 * Nobody should be changing or seriously looking at
29833315 2484 * pc->mem_cgroup at this point:
0a31bc97
JW
2485 *
2486 * - the page is uncharged
2487 *
2488 * - the page is off-LRU
2489 *
2490 * - an anonymous fault has exclusive page access, except for
2491 * a locked page table
2492 *
2493 * - a page cache insertion, a swapin fault, or a migration
2494 * have the page locked
2495 */
c0ff4b85 2496 pc->mem_cgroup = memcg;
9ce70c02 2497
0a31bc97
JW
2498 if (lrucare)
2499 unlock_page_lru(page, isolated);
7a81b88c 2500}
66e1707b 2501
7ae1e1d0 2502#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2503/*
2504 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2505 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2506 */
2507static DEFINE_MUTEX(memcg_slab_mutex);
2508
1f458cbf
GC
2509/*
2510 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2511 * in the memcg_cache_params struct.
2512 */
2513static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2514{
2515 struct kmem_cache *cachep;
2516
2517 VM_BUG_ON(p->is_root_cache);
2518 cachep = p->root_cache;
7a67d7ab 2519 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2520}
2521
3e32cb2e
JW
2522static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2523 unsigned long nr_pages)
7ae1e1d0 2524{
3e32cb2e 2525 struct page_counter *counter;
7ae1e1d0 2526 int ret = 0;
7ae1e1d0 2527
3e32cb2e
JW
2528 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2529 if (ret < 0)
7ae1e1d0
GC
2530 return ret;
2531
3e32cb2e 2532 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2533 if (ret == -EINTR) {
2534 /*
00501b53
JW
2535 * try_charge() chose to bypass to root due to OOM kill or
2536 * fatal signal. Since our only options are to either fail
2537 * the allocation or charge it to this cgroup, do it as a
2538 * temporary condition. But we can't fail. From a kmem/slab
2539 * perspective, the cache has already been selected, by
2540 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2541 * our minds.
2542 *
2543 * This condition will only trigger if the task entered
00501b53
JW
2544 * memcg_charge_kmem in a sane state, but was OOM-killed
2545 * during try_charge() above. Tasks that were already dying
2546 * when the allocation triggers should have been already
7ae1e1d0
GC
2547 * directed to the root cgroup in memcontrol.h
2548 */
3e32cb2e 2549 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2550 if (do_swap_account)
3e32cb2e 2551 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2552 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2553 ret = 0;
2554 } else if (ret)
3e32cb2e 2555 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2556
2557 return ret;
2558}
2559
3e32cb2e
JW
2560static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2561 unsigned long nr_pages)
7ae1e1d0 2562{
3e32cb2e 2563 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2564 if (do_swap_account)
3e32cb2e 2565 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2566
64f21993 2567 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2568
2569 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2570}
2571
2633d7a0
GC
2572/*
2573 * helper for acessing a memcg's index. It will be used as an index in the
2574 * child cache array in kmem_cache, and also to derive its name. This function
2575 * will return -1 when this is not a kmem-limited memcg.
2576 */
2577int memcg_cache_id(struct mem_cgroup *memcg)
2578{
2579 return memcg ? memcg->kmemcg_id : -1;
2580}
2581
f3bb3043 2582static int memcg_alloc_cache_id(void)
55007d84 2583{
f3bb3043
VD
2584 int id, size;
2585 int err;
2586
2587 id = ida_simple_get(&kmem_limited_groups,
2588 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2589 if (id < 0)
2590 return id;
55007d84 2591
f3bb3043
VD
2592 if (id < memcg_limited_groups_array_size)
2593 return id;
2594
2595 /*
2596 * There's no space for the new id in memcg_caches arrays,
2597 * so we have to grow them.
2598 */
2599
2600 size = 2 * (id + 1);
55007d84
GC
2601 if (size < MEMCG_CACHES_MIN_SIZE)
2602 size = MEMCG_CACHES_MIN_SIZE;
2603 else if (size > MEMCG_CACHES_MAX_SIZE)
2604 size = MEMCG_CACHES_MAX_SIZE;
2605
f3bb3043
VD
2606 mutex_lock(&memcg_slab_mutex);
2607 err = memcg_update_all_caches(size);
2608 mutex_unlock(&memcg_slab_mutex);
2609
2610 if (err) {
2611 ida_simple_remove(&kmem_limited_groups, id);
2612 return err;
2613 }
2614 return id;
2615}
2616
2617static void memcg_free_cache_id(int id)
2618{
2619 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2620}
2621
2622/*
2623 * We should update the current array size iff all caches updates succeed. This
2624 * can only be done from the slab side. The slab mutex needs to be held when
2625 * calling this.
2626 */
2627void memcg_update_array_size(int num)
2628{
f3bb3043 2629 memcg_limited_groups_array_size = num;
55007d84
GC
2630}
2631
776ed0f0
VD
2632static void memcg_register_cache(struct mem_cgroup *memcg,
2633 struct kmem_cache *root_cache)
2633d7a0 2634{
93f39eea
VD
2635 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2636 memcg_slab_mutex */
bd673145 2637 struct kmem_cache *cachep;
d7f25f8a
GC
2638 int id;
2639
bd673145
VD
2640 lockdep_assert_held(&memcg_slab_mutex);
2641
2642 id = memcg_cache_id(memcg);
2643
2644 /*
2645 * Since per-memcg caches are created asynchronously on first
2646 * allocation (see memcg_kmem_get_cache()), several threads can try to
2647 * create the same cache, but only one of them may succeed.
2648 */
2649 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2650 return;
2651
073ee1c6 2652 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2653 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2654 /*
bd673145
VD
2655 * If we could not create a memcg cache, do not complain, because
2656 * that's not critical at all as we can always proceed with the root
2657 * cache.
2edefe11 2658 */
bd673145
VD
2659 if (!cachep)
2660 return;
2edefe11 2661
33a690c4 2662 css_get(&memcg->css);
bd673145 2663 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2664
d7f25f8a 2665 /*
959c8963
VD
2666 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2667 * barrier here to ensure nobody will see the kmem_cache partially
2668 * initialized.
d7f25f8a 2669 */
959c8963
VD
2670 smp_wmb();
2671
bd673145
VD
2672 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2673 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2674}
d7f25f8a 2675
776ed0f0 2676static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2677{
bd673145 2678 struct kmem_cache *root_cache;
1aa13254
VD
2679 struct mem_cgroup *memcg;
2680 int id;
2681
bd673145 2682 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2683
bd673145 2684 BUG_ON(is_root_cache(cachep));
2edefe11 2685
bd673145
VD
2686 root_cache = cachep->memcg_params->root_cache;
2687 memcg = cachep->memcg_params->memcg;
96403da2 2688 id = memcg_cache_id(memcg);
d7f25f8a 2689
bd673145
VD
2690 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2691 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2692
bd673145
VD
2693 list_del(&cachep->memcg_params->list);
2694
2695 kmem_cache_destroy(cachep);
33a690c4
VD
2696
2697 /* drop the reference taken in memcg_register_cache */
2698 css_put(&memcg->css);
2633d7a0
GC
2699}
2700
0e9d92f2
GC
2701/*
2702 * During the creation a new cache, we need to disable our accounting mechanism
2703 * altogether. This is true even if we are not creating, but rather just
2704 * enqueing new caches to be created.
2705 *
2706 * This is because that process will trigger allocations; some visible, like
2707 * explicit kmallocs to auxiliary data structures, name strings and internal
2708 * cache structures; some well concealed, like INIT_WORK() that can allocate
2709 * objects during debug.
2710 *
2711 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2712 * to it. This may not be a bounded recursion: since the first cache creation
2713 * failed to complete (waiting on the allocation), we'll just try to create the
2714 * cache again, failing at the same point.
2715 *
2716 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2717 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2718 * inside the following two functions.
2719 */
2720static inline void memcg_stop_kmem_account(void)
2721{
2722 VM_BUG_ON(!current->mm);
2723 current->memcg_kmem_skip_account++;
2724}
2725
2726static inline void memcg_resume_kmem_account(void)
2727{
2728 VM_BUG_ON(!current->mm);
2729 current->memcg_kmem_skip_account--;
2730}
2731
776ed0f0 2732int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2733{
2734 struct kmem_cache *c;
b8529907 2735 int i, failed = 0;
7cf27982 2736
bd673145 2737 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2738 for_each_memcg_cache_index(i) {
2739 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2740 if (!c)
2741 continue;
2742
776ed0f0 2743 memcg_unregister_cache(c);
b8529907
VD
2744
2745 if (cache_from_memcg_idx(s, i))
2746 failed++;
7cf27982 2747 }
bd673145 2748 mutex_unlock(&memcg_slab_mutex);
b8529907 2749 return failed;
7cf27982
GC
2750}
2751
776ed0f0 2752static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2753{
2754 struct kmem_cache *cachep;
bd673145 2755 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2756
2757 if (!memcg_kmem_is_active(memcg))
2758 return;
2759
bd673145
VD
2760 mutex_lock(&memcg_slab_mutex);
2761 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2762 cachep = memcg_params_to_cache(params);
bd673145
VD
2763 kmem_cache_shrink(cachep);
2764 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2765 memcg_unregister_cache(cachep);
1f458cbf 2766 }
bd673145 2767 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2768}
2769
776ed0f0 2770struct memcg_register_cache_work {
5722d094
VD
2771 struct mem_cgroup *memcg;
2772 struct kmem_cache *cachep;
2773 struct work_struct work;
2774};
2775
776ed0f0 2776static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2777{
776ed0f0
VD
2778 struct memcg_register_cache_work *cw =
2779 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2780 struct mem_cgroup *memcg = cw->memcg;
2781 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2782
bd673145 2783 mutex_lock(&memcg_slab_mutex);
776ed0f0 2784 memcg_register_cache(memcg, cachep);
bd673145
VD
2785 mutex_unlock(&memcg_slab_mutex);
2786
5722d094 2787 css_put(&memcg->css);
d7f25f8a
GC
2788 kfree(cw);
2789}
2790
2791/*
2792 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2793 */
776ed0f0
VD
2794static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2795 struct kmem_cache *cachep)
d7f25f8a 2796{
776ed0f0 2797 struct memcg_register_cache_work *cw;
d7f25f8a 2798
776ed0f0 2799 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2800 if (cw == NULL) {
2801 css_put(&memcg->css);
d7f25f8a
GC
2802 return;
2803 }
2804
2805 cw->memcg = memcg;
2806 cw->cachep = cachep;
2807
776ed0f0 2808 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2809 schedule_work(&cw->work);
2810}
2811
776ed0f0
VD
2812static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2813 struct kmem_cache *cachep)
0e9d92f2
GC
2814{
2815 /*
2816 * We need to stop accounting when we kmalloc, because if the
2817 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2818 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2819 *
2820 * However, it is better to enclose the whole function. Depending on
2821 * the debugging options enabled, INIT_WORK(), for instance, can
2822 * trigger an allocation. This too, will make us recurse. Because at
2823 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2824 * the safest choice is to do it like this, wrapping the whole function.
2825 */
2826 memcg_stop_kmem_account();
776ed0f0 2827 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2828 memcg_resume_kmem_account();
2829}
c67a8a68
VD
2830
2831int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2832{
3e32cb2e 2833 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2834 int res;
2835
3e32cb2e 2836 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2837 if (!res)
3e32cb2e 2838 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2839 return res;
2840}
2841
2842void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2843{
3e32cb2e
JW
2844 unsigned int nr_pages = 1 << order;
2845
2846 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2847 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2848}
2849
d7f25f8a
GC
2850/*
2851 * Return the kmem_cache we're supposed to use for a slab allocation.
2852 * We try to use the current memcg's version of the cache.
2853 *
2854 * If the cache does not exist yet, if we are the first user of it,
2855 * we either create it immediately, if possible, or create it asynchronously
2856 * in a workqueue.
2857 * In the latter case, we will let the current allocation go through with
2858 * the original cache.
2859 *
2860 * Can't be called in interrupt context or from kernel threads.
2861 * This function needs to be called with rcu_read_lock() held.
2862 */
2863struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2864 gfp_t gfp)
2865{
2866 struct mem_cgroup *memcg;
959c8963 2867 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2868
2869 VM_BUG_ON(!cachep->memcg_params);
2870 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2871
0e9d92f2
GC
2872 if (!current->mm || current->memcg_kmem_skip_account)
2873 return cachep;
2874
d7f25f8a
GC
2875 rcu_read_lock();
2876 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2877
cf2b8fbf 2878 if (!memcg_kmem_is_active(memcg))
ca0dde97 2879 goto out;
d7f25f8a 2880
959c8963
VD
2881 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2882 if (likely(memcg_cachep)) {
2883 cachep = memcg_cachep;
ca0dde97 2884 goto out;
d7f25f8a
GC
2885 }
2886
ca0dde97 2887 /* The corresponding put will be done in the workqueue. */
ec903c0c 2888 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2889 goto out;
2890 rcu_read_unlock();
2891
2892 /*
2893 * If we are in a safe context (can wait, and not in interrupt
2894 * context), we could be be predictable and return right away.
2895 * This would guarantee that the allocation being performed
2896 * already belongs in the new cache.
2897 *
2898 * However, there are some clashes that can arrive from locking.
2899 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2900 * memcg_create_kmem_cache, this means no further allocation
2901 * could happen with the slab_mutex held. So it's better to
2902 * defer everything.
ca0dde97 2903 */
776ed0f0 2904 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2905 return cachep;
2906out:
2907 rcu_read_unlock();
2908 return cachep;
d7f25f8a 2909}
d7f25f8a 2910
7ae1e1d0
GC
2911/*
2912 * We need to verify if the allocation against current->mm->owner's memcg is
2913 * possible for the given order. But the page is not allocated yet, so we'll
2914 * need a further commit step to do the final arrangements.
2915 *
2916 * It is possible for the task to switch cgroups in this mean time, so at
2917 * commit time, we can't rely on task conversion any longer. We'll then use
2918 * the handle argument to return to the caller which cgroup we should commit
2919 * against. We could also return the memcg directly and avoid the pointer
2920 * passing, but a boolean return value gives better semantics considering
2921 * the compiled-out case as well.
2922 *
2923 * Returning true means the allocation is possible.
2924 */
2925bool
2926__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2927{
2928 struct mem_cgroup *memcg;
2929 int ret;
2930
2931 *_memcg = NULL;
6d42c232
GC
2932
2933 /*
2934 * Disabling accounting is only relevant for some specific memcg
2935 * internal allocations. Therefore we would initially not have such
52383431
VD
2936 * check here, since direct calls to the page allocator that are
2937 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2938 * outside memcg core. We are mostly concerned with cache allocations,
2939 * and by having this test at memcg_kmem_get_cache, we are already able
2940 * to relay the allocation to the root cache and bypass the memcg cache
2941 * altogether.
6d42c232
GC
2942 *
2943 * There is one exception, though: the SLUB allocator does not create
2944 * large order caches, but rather service large kmallocs directly from
2945 * the page allocator. Therefore, the following sequence when backed by
2946 * the SLUB allocator:
2947 *
f894ffa8
AM
2948 * memcg_stop_kmem_account();
2949 * kmalloc(<large_number>)
2950 * memcg_resume_kmem_account();
6d42c232
GC
2951 *
2952 * would effectively ignore the fact that we should skip accounting,
2953 * since it will drive us directly to this function without passing
2954 * through the cache selector memcg_kmem_get_cache. Such large
2955 * allocations are extremely rare but can happen, for instance, for the
2956 * cache arrays. We bring this test here.
2957 */
2958 if (!current->mm || current->memcg_kmem_skip_account)
2959 return true;
2960
df381975 2961 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2962
cf2b8fbf 2963 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2964 css_put(&memcg->css);
2965 return true;
2966 }
2967
3e32cb2e 2968 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2969 if (!ret)
2970 *_memcg = memcg;
7ae1e1d0
GC
2971
2972 css_put(&memcg->css);
2973 return (ret == 0);
2974}
2975
2976void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2977 int order)
2978{
2979 struct page_cgroup *pc;
2980
2981 VM_BUG_ON(mem_cgroup_is_root(memcg));
2982
2983 /* The page allocation failed. Revert */
2984 if (!page) {
3e32cb2e 2985 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2986 return;
2987 }
7ae1e1d0 2988 pc = lookup_page_cgroup(page);
7ae1e1d0 2989 pc->mem_cgroup = memcg;
7ae1e1d0
GC
2990}
2991
2992void __memcg_kmem_uncharge_pages(struct page *page, int order)
2993{
29833315
JW
2994 struct page_cgroup *pc = lookup_page_cgroup(page);
2995 struct mem_cgroup *memcg = pc->mem_cgroup;
7ae1e1d0 2996
7ae1e1d0
GC
2997 if (!memcg)
2998 return;
2999
309381fe 3000 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 3001
3e32cb2e 3002 memcg_uncharge_kmem(memcg, 1 << order);
29833315 3003 pc->mem_cgroup = NULL;
7ae1e1d0 3004}
1f458cbf 3005#else
776ed0f0 3006static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3007{
3008}
7ae1e1d0
GC
3009#endif /* CONFIG_MEMCG_KMEM */
3010
ca3e0214
KH
3011#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3012
ca3e0214
KH
3013/*
3014 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3015 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3016 * charge/uncharge will be never happen and move_account() is done under
3017 * compound_lock(), so we don't have to take care of races.
ca3e0214 3018 */
e94c8a9c 3019void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3020{
29833315 3021 struct page_cgroup *pc = lookup_page_cgroup(head);
e94c8a9c 3022 int i;
ca3e0214 3023
3d37c4a9
KH
3024 if (mem_cgroup_disabled())
3025 return;
b070e65c 3026
29833315
JW
3027 for (i = 1; i < HPAGE_PMD_NR; i++)
3028 pc[i].mem_cgroup = pc[0].mem_cgroup;
b9982f8d 3029
29833315 3030 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3031 HPAGE_PMD_NR);
ca3e0214 3032}
12d27107 3033#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3034
f817ed48 3035/**
de3638d9 3036 * mem_cgroup_move_account - move account of the page
5564e88b 3037 * @page: the page
7ec99d62 3038 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3039 * @pc: page_cgroup of the page.
3040 * @from: mem_cgroup which the page is moved from.
3041 * @to: mem_cgroup which the page is moved to. @from != @to.
3042 *
3043 * The caller must confirm following.
08e552c6 3044 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3045 * - compound_lock is held when nr_pages > 1
f817ed48 3046 *
2f3479b1
KH
3047 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3048 * from old cgroup.
f817ed48 3049 */
7ec99d62
JW
3050static int mem_cgroup_move_account(struct page *page,
3051 unsigned int nr_pages,
3052 struct page_cgroup *pc,
3053 struct mem_cgroup *from,
2f3479b1 3054 struct mem_cgroup *to)
f817ed48 3055{
de3638d9
JW
3056 unsigned long flags;
3057 int ret;
987eba66 3058
f817ed48 3059 VM_BUG_ON(from == to);
309381fe 3060 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3061 /*
3062 * The page is isolated from LRU. So, collapse function
3063 * will not handle this page. But page splitting can happen.
3064 * Do this check under compound_page_lock(). The caller should
3065 * hold it.
3066 */
3067 ret = -EBUSY;
7ec99d62 3068 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3069 goto out;
3070
0a31bc97
JW
3071 /*
3072 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3073 * of its source page while we change it: page migration takes
3074 * both pages off the LRU, but page cache replacement doesn't.
3075 */
3076 if (!trylock_page(page))
3077 goto out;
de3638d9
JW
3078
3079 ret = -EINVAL;
29833315 3080 if (pc->mem_cgroup != from)
0a31bc97 3081 goto out_unlock;
de3638d9 3082
354a4783 3083 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3084
0a31bc97 3085 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3086 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3087 nr_pages);
3088 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3089 nr_pages);
3090 }
3ea67d06 3091
59d1d256
JW
3092 if (PageWriteback(page)) {
3093 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3094 nr_pages);
3095 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3096 nr_pages);
3097 }
3ea67d06 3098
0a31bc97
JW
3099 /*
3100 * It is safe to change pc->mem_cgroup here because the page
3101 * is referenced, charged, and isolated - we can't race with
3102 * uncharging, charging, migration, or LRU putback.
3103 */
d69b042f 3104
854ffa8d 3105 /* caller should have done css_get */
08e552c6 3106 pc->mem_cgroup = to;
354a4783
JW
3107 spin_unlock_irqrestore(&from->move_lock, flags);
3108
de3638d9 3109 ret = 0;
0a31bc97
JW
3110
3111 local_irq_disable();
3112 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3113 memcg_check_events(to, page);
0a31bc97 3114 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3115 memcg_check_events(from, page);
0a31bc97
JW
3116 local_irq_enable();
3117out_unlock:
3118 unlock_page(page);
de3638d9 3119out:
f817ed48
KH
3120 return ret;
3121}
3122
c255a458 3123#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3124static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3125 bool charge)
d13d1443 3126{
0a31bc97
JW
3127 int val = (charge) ? 1 : -1;
3128 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3129}
02491447
DN
3130
3131/**
3132 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3133 * @entry: swap entry to be moved
3134 * @from: mem_cgroup which the entry is moved from
3135 * @to: mem_cgroup which the entry is moved to
3136 *
3137 * It succeeds only when the swap_cgroup's record for this entry is the same
3138 * as the mem_cgroup's id of @from.
3139 *
3140 * Returns 0 on success, -EINVAL on failure.
3141 *
3e32cb2e 3142 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3143 * both res and memsw, and called css_get().
3144 */
3145static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3146 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3147{
3148 unsigned short old_id, new_id;
3149
34c00c31
LZ
3150 old_id = mem_cgroup_id(from);
3151 new_id = mem_cgroup_id(to);
02491447
DN
3152
3153 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3154 mem_cgroup_swap_statistics(from, false);
483c30b5 3155 mem_cgroup_swap_statistics(to, true);
02491447 3156 /*
483c30b5 3157 * This function is only called from task migration context now.
3e32cb2e 3158 * It postpones page_counter and refcount handling till the end
483c30b5 3159 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3160 * improvement. But we cannot postpone css_get(to) because if
3161 * the process that has been moved to @to does swap-in, the
3162 * refcount of @to might be decreased to 0.
3163 *
3164 * We are in attach() phase, so the cgroup is guaranteed to be
3165 * alive, so we can just call css_get().
02491447 3166 */
4050377b 3167 css_get(&to->css);
02491447
DN
3168 return 0;
3169 }
3170 return -EINVAL;
3171}
3172#else
3173static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3174 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3175{
3176 return -EINVAL;
3177}
8c7c6e34 3178#endif
d13d1443 3179
f212ad7c
DN
3180#ifdef CONFIG_DEBUG_VM
3181static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3182{
3183 struct page_cgroup *pc;
3184
3185 pc = lookup_page_cgroup(page);
cfa44946
JW
3186 /*
3187 * Can be NULL while feeding pages into the page allocator for
3188 * the first time, i.e. during boot or memory hotplug;
3189 * or when mem_cgroup_disabled().
3190 */
29833315 3191 if (likely(pc) && pc->mem_cgroup)
f212ad7c
DN
3192 return pc;
3193 return NULL;
3194}
3195
3196bool mem_cgroup_bad_page_check(struct page *page)
3197{
3198 if (mem_cgroup_disabled())
3199 return false;
3200
3201 return lookup_page_cgroup_used(page) != NULL;
3202}
3203
3204void mem_cgroup_print_bad_page(struct page *page)
3205{
3206 struct page_cgroup *pc;
3207
3208 pc = lookup_page_cgroup_used(page);
29833315
JW
3209 if (pc)
3210 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
f212ad7c
DN
3211}
3212#endif
3213
3e32cb2e
JW
3214static DEFINE_MUTEX(memcg_limit_mutex);
3215
d38d2a75 3216static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3217 unsigned long limit)
628f4235 3218{
3e32cb2e
JW
3219 unsigned long curusage;
3220 unsigned long oldusage;
3221 bool enlarge = false;
81d39c20 3222 int retry_count;
3e32cb2e 3223 int ret;
81d39c20
KH
3224
3225 /*
3226 * For keeping hierarchical_reclaim simple, how long we should retry
3227 * is depends on callers. We set our retry-count to be function
3228 * of # of children which we should visit in this loop.
3229 */
3e32cb2e
JW
3230 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3231 mem_cgroup_count_children(memcg);
81d39c20 3232
3e32cb2e 3233 oldusage = page_counter_read(&memcg->memory);
628f4235 3234
3e32cb2e 3235 do {
628f4235
KH
3236 if (signal_pending(current)) {
3237 ret = -EINTR;
3238 break;
3239 }
3e32cb2e
JW
3240
3241 mutex_lock(&memcg_limit_mutex);
3242 if (limit > memcg->memsw.limit) {
3243 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3244 ret = -EINVAL;
628f4235
KH
3245 break;
3246 }
3e32cb2e
JW
3247 if (limit > memcg->memory.limit)
3248 enlarge = true;
3249 ret = page_counter_limit(&memcg->memory, limit);
3250 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3251
3252 if (!ret)
3253 break;
3254
b70a2a21
JW
3255 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3256
3e32cb2e 3257 curusage = page_counter_read(&memcg->memory);
81d39c20 3258 /* Usage is reduced ? */
f894ffa8 3259 if (curusage >= oldusage)
81d39c20
KH
3260 retry_count--;
3261 else
3262 oldusage = curusage;
3e32cb2e
JW
3263 } while (retry_count);
3264
3c11ecf4
KH
3265 if (!ret && enlarge)
3266 memcg_oom_recover(memcg);
14797e23 3267
8c7c6e34
KH
3268 return ret;
3269}
3270
338c8431 3271static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3272 unsigned long limit)
8c7c6e34 3273{
3e32cb2e
JW
3274 unsigned long curusage;
3275 unsigned long oldusage;
3276 bool enlarge = false;
81d39c20 3277 int retry_count;
3e32cb2e 3278 int ret;
8c7c6e34 3279
81d39c20 3280 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3281 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3282 mem_cgroup_count_children(memcg);
3283
3284 oldusage = page_counter_read(&memcg->memsw);
3285
3286 do {
8c7c6e34
KH
3287 if (signal_pending(current)) {
3288 ret = -EINTR;
3289 break;
3290 }
3e32cb2e
JW
3291
3292 mutex_lock(&memcg_limit_mutex);
3293 if (limit < memcg->memory.limit) {
3294 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3295 ret = -EINVAL;
8c7c6e34
KH
3296 break;
3297 }
3e32cb2e
JW
3298 if (limit > memcg->memsw.limit)
3299 enlarge = true;
3300 ret = page_counter_limit(&memcg->memsw, limit);
3301 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3302
3303 if (!ret)
3304 break;
3305
b70a2a21
JW
3306 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3307
3e32cb2e 3308 curusage = page_counter_read(&memcg->memsw);
81d39c20 3309 /* Usage is reduced ? */
8c7c6e34 3310 if (curusage >= oldusage)
628f4235 3311 retry_count--;
81d39c20
KH
3312 else
3313 oldusage = curusage;
3e32cb2e
JW
3314 } while (retry_count);
3315
3c11ecf4
KH
3316 if (!ret && enlarge)
3317 memcg_oom_recover(memcg);
3e32cb2e 3318
628f4235
KH
3319 return ret;
3320}
3321
0608f43d
AM
3322unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3323 gfp_t gfp_mask,
3324 unsigned long *total_scanned)
3325{
3326 unsigned long nr_reclaimed = 0;
3327 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3328 unsigned long reclaimed;
3329 int loop = 0;
3330 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3331 unsigned long excess;
0608f43d
AM
3332 unsigned long nr_scanned;
3333
3334 if (order > 0)
3335 return 0;
3336
3337 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3338 /*
3339 * This loop can run a while, specially if mem_cgroup's continuously
3340 * keep exceeding their soft limit and putting the system under
3341 * pressure
3342 */
3343 do {
3344 if (next_mz)
3345 mz = next_mz;
3346 else
3347 mz = mem_cgroup_largest_soft_limit_node(mctz);
3348 if (!mz)
3349 break;
3350
3351 nr_scanned = 0;
3352 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3353 gfp_mask, &nr_scanned);
3354 nr_reclaimed += reclaimed;
3355 *total_scanned += nr_scanned;
0a31bc97 3356 spin_lock_irq(&mctz->lock);
bc2f2e7f 3357 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3358
3359 /*
3360 * If we failed to reclaim anything from this memory cgroup
3361 * it is time to move on to the next cgroup
3362 */
3363 next_mz = NULL;
bc2f2e7f
VD
3364 if (!reclaimed)
3365 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3366
3e32cb2e 3367 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3368 /*
3369 * One school of thought says that we should not add
3370 * back the node to the tree if reclaim returns 0.
3371 * But our reclaim could return 0, simply because due
3372 * to priority we are exposing a smaller subset of
3373 * memory to reclaim from. Consider this as a longer
3374 * term TODO.
3375 */
3376 /* If excess == 0, no tree ops */
cf2c8127 3377 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3378 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3379 css_put(&mz->memcg->css);
3380 loop++;
3381 /*
3382 * Could not reclaim anything and there are no more
3383 * mem cgroups to try or we seem to be looping without
3384 * reclaiming anything.
3385 */
3386 if (!nr_reclaimed &&
3387 (next_mz == NULL ||
3388 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3389 break;
3390 } while (!nr_reclaimed);
3391 if (next_mz)
3392 css_put(&next_mz->memcg->css);
3393 return nr_reclaimed;
3394}
3395
ea280e7b
TH
3396/*
3397 * Test whether @memcg has children, dead or alive. Note that this
3398 * function doesn't care whether @memcg has use_hierarchy enabled and
3399 * returns %true if there are child csses according to the cgroup
3400 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3401 */
b5f99b53
GC
3402static inline bool memcg_has_children(struct mem_cgroup *memcg)
3403{
ea280e7b
TH
3404 bool ret;
3405
696ac172 3406 /*
ea280e7b
TH
3407 * The lock does not prevent addition or deletion of children, but
3408 * it prevents a new child from being initialized based on this
3409 * parent in css_online(), so it's enough to decide whether
3410 * hierarchically inherited attributes can still be changed or not.
696ac172 3411 */
ea280e7b
TH
3412 lockdep_assert_held(&memcg_create_mutex);
3413
3414 rcu_read_lock();
3415 ret = css_next_child(NULL, &memcg->css);
3416 rcu_read_unlock();
3417 return ret;
b5f99b53
GC
3418}
3419
c26251f9
MH
3420/*
3421 * Reclaims as many pages from the given memcg as possible and moves
3422 * the rest to the parent.
3423 *
3424 * Caller is responsible for holding css reference for memcg.
3425 */
3426static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3427{
3428 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3429
c1e862c1
KH
3430 /* we call try-to-free pages for make this cgroup empty */
3431 lru_add_drain_all();
f817ed48 3432 /* try to free all pages in this cgroup */
3e32cb2e 3433 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3434 int progress;
c1e862c1 3435
c26251f9
MH
3436 if (signal_pending(current))
3437 return -EINTR;
3438
b70a2a21
JW
3439 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3440 GFP_KERNEL, true);
c1e862c1 3441 if (!progress) {
f817ed48 3442 nr_retries--;
c1e862c1 3443 /* maybe some writeback is necessary */
8aa7e847 3444 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3445 }
f817ed48
KH
3446
3447 }
ab5196c2
MH
3448
3449 return 0;
cc847582
KH
3450}
3451
6770c64e
TH
3452static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3453 char *buf, size_t nbytes,
3454 loff_t off)
c1e862c1 3455{
6770c64e 3456 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3457
d8423011
MH
3458 if (mem_cgroup_is_root(memcg))
3459 return -EINVAL;
6770c64e 3460 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3461}
3462
182446d0
TH
3463static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3464 struct cftype *cft)
18f59ea7 3465{
182446d0 3466 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3467}
3468
182446d0
TH
3469static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3470 struct cftype *cft, u64 val)
18f59ea7
BS
3471{
3472 int retval = 0;
182446d0 3473 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3474 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3475
0999821b 3476 mutex_lock(&memcg_create_mutex);
567fb435
GC
3477
3478 if (memcg->use_hierarchy == val)
3479 goto out;
3480
18f59ea7 3481 /*
af901ca1 3482 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3483 * in the child subtrees. If it is unset, then the change can
3484 * occur, provided the current cgroup has no children.
3485 *
3486 * For the root cgroup, parent_mem is NULL, we allow value to be
3487 * set if there are no children.
3488 */
c0ff4b85 3489 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3490 (val == 1 || val == 0)) {
ea280e7b 3491 if (!memcg_has_children(memcg))
c0ff4b85 3492 memcg->use_hierarchy = val;
18f59ea7
BS
3493 else
3494 retval = -EBUSY;
3495 } else
3496 retval = -EINVAL;
567fb435
GC
3497
3498out:
0999821b 3499 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3500
3501 return retval;
3502}
3503
3e32cb2e
JW
3504static unsigned long tree_stat(struct mem_cgroup *memcg,
3505 enum mem_cgroup_stat_index idx)
ce00a967
JW
3506{
3507 struct mem_cgroup *iter;
3508 long val = 0;
3509
3510 /* Per-cpu values can be negative, use a signed accumulator */
3511 for_each_mem_cgroup_tree(iter, memcg)
3512 val += mem_cgroup_read_stat(iter, idx);
3513
3514 if (val < 0) /* race ? */
3515 val = 0;
3516 return val;
3517}
3518
3519static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3520{
3521 u64 val;
3522
3e32cb2e
JW
3523 if (mem_cgroup_is_root(memcg)) {
3524 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3525 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3526 if (swap)
3527 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3528 } else {
ce00a967 3529 if (!swap)
3e32cb2e 3530 val = page_counter_read(&memcg->memory);
ce00a967 3531 else
3e32cb2e 3532 val = page_counter_read(&memcg->memsw);
ce00a967 3533 }
ce00a967
JW
3534 return val << PAGE_SHIFT;
3535}
3536
3e32cb2e
JW
3537enum {
3538 RES_USAGE,
3539 RES_LIMIT,
3540 RES_MAX_USAGE,
3541 RES_FAILCNT,
3542 RES_SOFT_LIMIT,
3543};
ce00a967 3544
791badbd 3545static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3546 struct cftype *cft)
8cdea7c0 3547{
182446d0 3548 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3549 struct page_counter *counter;
af36f906 3550
3e32cb2e 3551 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3552 case _MEM:
3e32cb2e
JW
3553 counter = &memcg->memory;
3554 break;
8c7c6e34 3555 case _MEMSWAP:
3e32cb2e
JW
3556 counter = &memcg->memsw;
3557 break;
510fc4e1 3558 case _KMEM:
3e32cb2e 3559 counter = &memcg->kmem;
510fc4e1 3560 break;
8c7c6e34
KH
3561 default:
3562 BUG();
8c7c6e34 3563 }
3e32cb2e
JW
3564
3565 switch (MEMFILE_ATTR(cft->private)) {
3566 case RES_USAGE:
3567 if (counter == &memcg->memory)
3568 return mem_cgroup_usage(memcg, false);
3569 if (counter == &memcg->memsw)
3570 return mem_cgroup_usage(memcg, true);
3571 return (u64)page_counter_read(counter) * PAGE_SIZE;
3572 case RES_LIMIT:
3573 return (u64)counter->limit * PAGE_SIZE;
3574 case RES_MAX_USAGE:
3575 return (u64)counter->watermark * PAGE_SIZE;
3576 case RES_FAILCNT:
3577 return counter->failcnt;
3578 case RES_SOFT_LIMIT:
3579 return (u64)memcg->soft_limit * PAGE_SIZE;
3580 default:
3581 BUG();
3582 }
8cdea7c0 3583}
510fc4e1 3584
510fc4e1 3585#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3586static int memcg_activate_kmem(struct mem_cgroup *memcg,
3587 unsigned long nr_pages)
d6441637
VD
3588{
3589 int err = 0;
3590 int memcg_id;
3591
3592 if (memcg_kmem_is_active(memcg))
3593 return 0;
3594
3595 /*
3596 * We are going to allocate memory for data shared by all memory
3597 * cgroups so let's stop accounting here.
3598 */
3599 memcg_stop_kmem_account();
3600
510fc4e1
GC
3601 /*
3602 * For simplicity, we won't allow this to be disabled. It also can't
3603 * be changed if the cgroup has children already, or if tasks had
3604 * already joined.
3605 *
3606 * If tasks join before we set the limit, a person looking at
3607 * kmem.usage_in_bytes will have no way to determine when it took
3608 * place, which makes the value quite meaningless.
3609 *
3610 * After it first became limited, changes in the value of the limit are
3611 * of course permitted.
510fc4e1 3612 */
0999821b 3613 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3614 if (cgroup_has_tasks(memcg->css.cgroup) ||
3615 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3616 err = -EBUSY;
3617 mutex_unlock(&memcg_create_mutex);
3618 if (err)
3619 goto out;
510fc4e1 3620
f3bb3043 3621 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3622 if (memcg_id < 0) {
3623 err = memcg_id;
3624 goto out;
3625 }
3626
d6441637
VD
3627 memcg->kmemcg_id = memcg_id;
3628 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3629
3630 /*
3631 * We couldn't have accounted to this cgroup, because it hasn't got the
3632 * active bit set yet, so this should succeed.
3633 */
3e32cb2e 3634 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3635 VM_BUG_ON(err);
3636
3637 static_key_slow_inc(&memcg_kmem_enabled_key);
3638 /*
3639 * Setting the active bit after enabling static branching will
3640 * guarantee no one starts accounting before all call sites are
3641 * patched.
3642 */
3643 memcg_kmem_set_active(memcg);
510fc4e1 3644out:
d6441637
VD
3645 memcg_resume_kmem_account();
3646 return err;
d6441637
VD
3647}
3648
d6441637 3649static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3650 unsigned long limit)
d6441637
VD
3651{
3652 int ret;
3653
3e32cb2e 3654 mutex_lock(&memcg_limit_mutex);
d6441637 3655 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3656 ret = memcg_activate_kmem(memcg, limit);
d6441637 3657 else
3e32cb2e
JW
3658 ret = page_counter_limit(&memcg->kmem, limit);
3659 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3660 return ret;
3661}
3662
55007d84 3663static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3664{
55007d84 3665 int ret = 0;
510fc4e1 3666 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3667
d6441637
VD
3668 if (!parent)
3669 return 0;
55007d84 3670
8c0145b6 3671 mutex_lock(&memcg_limit_mutex);
55007d84 3672 /*
d6441637
VD
3673 * If the parent cgroup is not kmem-active now, it cannot be activated
3674 * after this point, because it has at least one child already.
55007d84 3675 */
d6441637 3676 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3677 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3678 mutex_unlock(&memcg_limit_mutex);
55007d84 3679 return ret;
510fc4e1 3680}
d6441637
VD
3681#else
3682static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3683 unsigned long limit)
d6441637
VD
3684{
3685 return -EINVAL;
3686}
6d043990 3687#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3688
628f4235
KH
3689/*
3690 * The user of this function is...
3691 * RES_LIMIT.
3692 */
451af504
TH
3693static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3694 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3695{
451af504 3696 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3697 unsigned long nr_pages;
628f4235
KH
3698 int ret;
3699
451af504 3700 buf = strstrip(buf);
3e32cb2e
JW
3701 ret = page_counter_memparse(buf, &nr_pages);
3702 if (ret)
3703 return ret;
af36f906 3704
3e32cb2e 3705 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3706 case RES_LIMIT:
4b3bde4c
BS
3707 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3708 ret = -EINVAL;
3709 break;
3710 }
3e32cb2e
JW
3711 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3712 case _MEM:
3713 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3714 break;
3e32cb2e
JW
3715 case _MEMSWAP:
3716 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3717 break;
3e32cb2e
JW
3718 case _KMEM:
3719 ret = memcg_update_kmem_limit(memcg, nr_pages);
3720 break;
3721 }
296c81d8 3722 break;
3e32cb2e
JW
3723 case RES_SOFT_LIMIT:
3724 memcg->soft_limit = nr_pages;
3725 ret = 0;
628f4235
KH
3726 break;
3727 }
451af504 3728 return ret ?: nbytes;
8cdea7c0
BS
3729}
3730
6770c64e
TH
3731static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3732 size_t nbytes, loff_t off)
c84872e1 3733{
6770c64e 3734 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3735 struct page_counter *counter;
c84872e1 3736
3e32cb2e
JW
3737 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3738 case _MEM:
3739 counter = &memcg->memory;
3740 break;
3741 case _MEMSWAP:
3742 counter = &memcg->memsw;
3743 break;
3744 case _KMEM:
3745 counter = &memcg->kmem;
3746 break;
3747 default:
3748 BUG();
3749 }
af36f906 3750
3e32cb2e 3751 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3752 case RES_MAX_USAGE:
3e32cb2e 3753 page_counter_reset_watermark(counter);
29f2a4da
PE
3754 break;
3755 case RES_FAILCNT:
3e32cb2e 3756 counter->failcnt = 0;
29f2a4da 3757 break;
3e32cb2e
JW
3758 default:
3759 BUG();
29f2a4da 3760 }
f64c3f54 3761
6770c64e 3762 return nbytes;
c84872e1
PE
3763}
3764
182446d0 3765static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3766 struct cftype *cft)
3767{
182446d0 3768 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3769}
3770
02491447 3771#ifdef CONFIG_MMU
182446d0 3772static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3773 struct cftype *cft, u64 val)
3774{
182446d0 3775 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3776
3777 if (val >= (1 << NR_MOVE_TYPE))
3778 return -EINVAL;
ee5e8472 3779
7dc74be0 3780 /*
ee5e8472
GC
3781 * No kind of locking is needed in here, because ->can_attach() will
3782 * check this value once in the beginning of the process, and then carry
3783 * on with stale data. This means that changes to this value will only
3784 * affect task migrations starting after the change.
7dc74be0 3785 */
c0ff4b85 3786 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3787 return 0;
3788}
02491447 3789#else
182446d0 3790static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3791 struct cftype *cft, u64 val)
3792{
3793 return -ENOSYS;
3794}
3795#endif
7dc74be0 3796
406eb0c9 3797#ifdef CONFIG_NUMA
2da8ca82 3798static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3799{
25485de6
GT
3800 struct numa_stat {
3801 const char *name;
3802 unsigned int lru_mask;
3803 };
3804
3805 static const struct numa_stat stats[] = {
3806 { "total", LRU_ALL },
3807 { "file", LRU_ALL_FILE },
3808 { "anon", LRU_ALL_ANON },
3809 { "unevictable", BIT(LRU_UNEVICTABLE) },
3810 };
3811 const struct numa_stat *stat;
406eb0c9 3812 int nid;
25485de6 3813 unsigned long nr;
2da8ca82 3814 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3815
25485de6
GT
3816 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3817 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3818 seq_printf(m, "%s=%lu", stat->name, nr);
3819 for_each_node_state(nid, N_MEMORY) {
3820 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3821 stat->lru_mask);
3822 seq_printf(m, " N%d=%lu", nid, nr);
3823 }
3824 seq_putc(m, '\n');
406eb0c9 3825 }
406eb0c9 3826
071aee13
YH
3827 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3828 struct mem_cgroup *iter;
3829
3830 nr = 0;
3831 for_each_mem_cgroup_tree(iter, memcg)
3832 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3833 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3834 for_each_node_state(nid, N_MEMORY) {
3835 nr = 0;
3836 for_each_mem_cgroup_tree(iter, memcg)
3837 nr += mem_cgroup_node_nr_lru_pages(
3838 iter, nid, stat->lru_mask);
3839 seq_printf(m, " N%d=%lu", nid, nr);
3840 }
3841 seq_putc(m, '\n');
406eb0c9 3842 }
406eb0c9 3843
406eb0c9
YH
3844 return 0;
3845}
3846#endif /* CONFIG_NUMA */
3847
af7c4b0e
JW
3848static inline void mem_cgroup_lru_names_not_uptodate(void)
3849{
3850 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3851}
3852
2da8ca82 3853static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3854{
2da8ca82 3855 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3856 unsigned long memory, memsw;
af7c4b0e
JW
3857 struct mem_cgroup *mi;
3858 unsigned int i;
406eb0c9 3859
af7c4b0e 3860 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3861 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3862 continue;
af7c4b0e
JW
3863 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3864 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3865 }
7b854121 3866
af7c4b0e
JW
3867 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3868 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3869 mem_cgroup_read_events(memcg, i));
3870
3871 for (i = 0; i < NR_LRU_LISTS; i++)
3872 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3873 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3874
14067bb3 3875 /* Hierarchical information */
3e32cb2e
JW
3876 memory = memsw = PAGE_COUNTER_MAX;
3877 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3878 memory = min(memory, mi->memory.limit);
3879 memsw = min(memsw, mi->memsw.limit);
fee7b548 3880 }
3e32cb2e
JW
3881 seq_printf(m, "hierarchical_memory_limit %llu\n",
3882 (u64)memory * PAGE_SIZE);
3883 if (do_swap_account)
3884 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3885 (u64)memsw * PAGE_SIZE);
7f016ee8 3886
af7c4b0e
JW
3887 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3888 long long val = 0;
3889
bff6bb83 3890 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3891 continue;
af7c4b0e
JW
3892 for_each_mem_cgroup_tree(mi, memcg)
3893 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3894 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3895 }
3896
3897 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3898 unsigned long long val = 0;
3899
3900 for_each_mem_cgroup_tree(mi, memcg)
3901 val += mem_cgroup_read_events(mi, i);
3902 seq_printf(m, "total_%s %llu\n",
3903 mem_cgroup_events_names[i], val);
3904 }
3905
3906 for (i = 0; i < NR_LRU_LISTS; i++) {
3907 unsigned long long val = 0;
3908
3909 for_each_mem_cgroup_tree(mi, memcg)
3910 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3911 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3912 }
14067bb3 3913
7f016ee8 3914#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3915 {
3916 int nid, zid;
3917 struct mem_cgroup_per_zone *mz;
89abfab1 3918 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3919 unsigned long recent_rotated[2] = {0, 0};
3920 unsigned long recent_scanned[2] = {0, 0};
3921
3922 for_each_online_node(nid)
3923 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3924 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3925 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3926
89abfab1
HD
3927 recent_rotated[0] += rstat->recent_rotated[0];
3928 recent_rotated[1] += rstat->recent_rotated[1];
3929 recent_scanned[0] += rstat->recent_scanned[0];
3930 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3931 }
78ccf5b5
JW
3932 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3933 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3934 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3935 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3936 }
3937#endif
3938
d2ceb9b7
KH
3939 return 0;
3940}
3941
182446d0
TH
3942static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3943 struct cftype *cft)
a7885eb8 3944{
182446d0 3945 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3946
1f4c025b 3947 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3948}
3949
182446d0
TH
3950static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3951 struct cftype *cft, u64 val)
a7885eb8 3952{
182446d0 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3954
3dae7fec 3955 if (val > 100)
a7885eb8
KM
3956 return -EINVAL;
3957
14208b0e 3958 if (css->parent)
3dae7fec
JW
3959 memcg->swappiness = val;
3960 else
3961 vm_swappiness = val;
068b38c1 3962
a7885eb8
KM
3963 return 0;
3964}
3965
2e72b634
KS
3966static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3967{
3968 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3969 unsigned long usage;
2e72b634
KS
3970 int i;
3971
3972 rcu_read_lock();
3973 if (!swap)
2c488db2 3974 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3975 else
2c488db2 3976 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3977
3978 if (!t)
3979 goto unlock;
3980
ce00a967 3981 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3982
3983 /*
748dad36 3984 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3985 * If it's not true, a threshold was crossed after last
3986 * call of __mem_cgroup_threshold().
3987 */
5407a562 3988 i = t->current_threshold;
2e72b634
KS
3989
3990 /*
3991 * Iterate backward over array of thresholds starting from
3992 * current_threshold and check if a threshold is crossed.
3993 * If none of thresholds below usage is crossed, we read
3994 * only one element of the array here.
3995 */
3996 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3997 eventfd_signal(t->entries[i].eventfd, 1);
3998
3999 /* i = current_threshold + 1 */
4000 i++;
4001
4002 /*
4003 * Iterate forward over array of thresholds starting from
4004 * current_threshold+1 and check if a threshold is crossed.
4005 * If none of thresholds above usage is crossed, we read
4006 * only one element of the array here.
4007 */
4008 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4009 eventfd_signal(t->entries[i].eventfd, 1);
4010
4011 /* Update current_threshold */
5407a562 4012 t->current_threshold = i - 1;
2e72b634
KS
4013unlock:
4014 rcu_read_unlock();
4015}
4016
4017static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4018{
ad4ca5f4
KS
4019 while (memcg) {
4020 __mem_cgroup_threshold(memcg, false);
4021 if (do_swap_account)
4022 __mem_cgroup_threshold(memcg, true);
4023
4024 memcg = parent_mem_cgroup(memcg);
4025 }
2e72b634
KS
4026}
4027
4028static int compare_thresholds(const void *a, const void *b)
4029{
4030 const struct mem_cgroup_threshold *_a = a;
4031 const struct mem_cgroup_threshold *_b = b;
4032
2bff24a3
GT
4033 if (_a->threshold > _b->threshold)
4034 return 1;
4035
4036 if (_a->threshold < _b->threshold)
4037 return -1;
4038
4039 return 0;
2e72b634
KS
4040}
4041
c0ff4b85 4042static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4043{
4044 struct mem_cgroup_eventfd_list *ev;
4045
2bcf2e92
MH
4046 spin_lock(&memcg_oom_lock);
4047
c0ff4b85 4048 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4049 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4050
4051 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4052 return 0;
4053}
4054
c0ff4b85 4055static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4056{
7d74b06f
KH
4057 struct mem_cgroup *iter;
4058
c0ff4b85 4059 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4060 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4061}
4062
59b6f873 4063static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4064 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4065{
2c488db2
KS
4066 struct mem_cgroup_thresholds *thresholds;
4067 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4068 unsigned long threshold;
4069 unsigned long usage;
2c488db2 4070 int i, size, ret;
2e72b634 4071
3e32cb2e 4072 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4073 if (ret)
4074 return ret;
4075
4076 mutex_lock(&memcg->thresholds_lock);
2c488db2 4077
05b84301 4078 if (type == _MEM) {
2c488db2 4079 thresholds = &memcg->thresholds;
ce00a967 4080 usage = mem_cgroup_usage(memcg, false);
05b84301 4081 } else if (type == _MEMSWAP) {
2c488db2 4082 thresholds = &memcg->memsw_thresholds;
ce00a967 4083 usage = mem_cgroup_usage(memcg, true);
05b84301 4084 } else
2e72b634
KS
4085 BUG();
4086
2e72b634 4087 /* Check if a threshold crossed before adding a new one */
2c488db2 4088 if (thresholds->primary)
2e72b634
KS
4089 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4090
2c488db2 4091 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4092
4093 /* Allocate memory for new array of thresholds */
2c488db2 4094 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4095 GFP_KERNEL);
2c488db2 4096 if (!new) {
2e72b634
KS
4097 ret = -ENOMEM;
4098 goto unlock;
4099 }
2c488db2 4100 new->size = size;
2e72b634
KS
4101
4102 /* Copy thresholds (if any) to new array */
2c488db2
KS
4103 if (thresholds->primary) {
4104 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4105 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4106 }
4107
2e72b634 4108 /* Add new threshold */
2c488db2
KS
4109 new->entries[size - 1].eventfd = eventfd;
4110 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4111
4112 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4113 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4114 compare_thresholds, NULL);
4115
4116 /* Find current threshold */
2c488db2 4117 new->current_threshold = -1;
2e72b634 4118 for (i = 0; i < size; i++) {
748dad36 4119 if (new->entries[i].threshold <= usage) {
2e72b634 4120 /*
2c488db2
KS
4121 * new->current_threshold will not be used until
4122 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4123 * it here.
4124 */
2c488db2 4125 ++new->current_threshold;
748dad36
SZ
4126 } else
4127 break;
2e72b634
KS
4128 }
4129
2c488db2
KS
4130 /* Free old spare buffer and save old primary buffer as spare */
4131 kfree(thresholds->spare);
4132 thresholds->spare = thresholds->primary;
4133
4134 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4135
907860ed 4136 /* To be sure that nobody uses thresholds */
2e72b634
KS
4137 synchronize_rcu();
4138
2e72b634
KS
4139unlock:
4140 mutex_unlock(&memcg->thresholds_lock);
4141
4142 return ret;
4143}
4144
59b6f873 4145static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4146 struct eventfd_ctx *eventfd, const char *args)
4147{
59b6f873 4148 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4149}
4150
59b6f873 4151static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4152 struct eventfd_ctx *eventfd, const char *args)
4153{
59b6f873 4154 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4155}
4156
59b6f873 4157static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4158 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4159{
2c488db2
KS
4160 struct mem_cgroup_thresholds *thresholds;
4161 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4162 unsigned long usage;
2c488db2 4163 int i, j, size;
2e72b634
KS
4164
4165 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4166
4167 if (type == _MEM) {
2c488db2 4168 thresholds = &memcg->thresholds;
ce00a967 4169 usage = mem_cgroup_usage(memcg, false);
05b84301 4170 } else if (type == _MEMSWAP) {
2c488db2 4171 thresholds = &memcg->memsw_thresholds;
ce00a967 4172 usage = mem_cgroup_usage(memcg, true);
05b84301 4173 } else
2e72b634
KS
4174 BUG();
4175
371528ca
AV
4176 if (!thresholds->primary)
4177 goto unlock;
4178
2e72b634
KS
4179 /* Check if a threshold crossed before removing */
4180 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4181
4182 /* Calculate new number of threshold */
2c488db2
KS
4183 size = 0;
4184 for (i = 0; i < thresholds->primary->size; i++) {
4185 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4186 size++;
4187 }
4188
2c488db2 4189 new = thresholds->spare;
907860ed 4190
2e72b634
KS
4191 /* Set thresholds array to NULL if we don't have thresholds */
4192 if (!size) {
2c488db2
KS
4193 kfree(new);
4194 new = NULL;
907860ed 4195 goto swap_buffers;
2e72b634
KS
4196 }
4197
2c488db2 4198 new->size = size;
2e72b634
KS
4199
4200 /* Copy thresholds and find current threshold */
2c488db2
KS
4201 new->current_threshold = -1;
4202 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4203 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4204 continue;
4205
2c488db2 4206 new->entries[j] = thresholds->primary->entries[i];
748dad36 4207 if (new->entries[j].threshold <= usage) {
2e72b634 4208 /*
2c488db2 4209 * new->current_threshold will not be used
2e72b634
KS
4210 * until rcu_assign_pointer(), so it's safe to increment
4211 * it here.
4212 */
2c488db2 4213 ++new->current_threshold;
2e72b634
KS
4214 }
4215 j++;
4216 }
4217
907860ed 4218swap_buffers:
2c488db2
KS
4219 /* Swap primary and spare array */
4220 thresholds->spare = thresholds->primary;
8c757763
SZ
4221 /* If all events are unregistered, free the spare array */
4222 if (!new) {
4223 kfree(thresholds->spare);
4224 thresholds->spare = NULL;
4225 }
4226
2c488db2 4227 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4228
907860ed 4229 /* To be sure that nobody uses thresholds */
2e72b634 4230 synchronize_rcu();
371528ca 4231unlock:
2e72b634 4232 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4233}
c1e862c1 4234
59b6f873 4235static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4236 struct eventfd_ctx *eventfd)
4237{
59b6f873 4238 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4239}
4240
59b6f873 4241static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4242 struct eventfd_ctx *eventfd)
4243{
59b6f873 4244 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4245}
4246
59b6f873 4247static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4248 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4249{
9490ff27 4250 struct mem_cgroup_eventfd_list *event;
9490ff27 4251
9490ff27
KH
4252 event = kmalloc(sizeof(*event), GFP_KERNEL);
4253 if (!event)
4254 return -ENOMEM;
4255
1af8efe9 4256 spin_lock(&memcg_oom_lock);
9490ff27
KH
4257
4258 event->eventfd = eventfd;
4259 list_add(&event->list, &memcg->oom_notify);
4260
4261 /* already in OOM ? */
79dfdacc 4262 if (atomic_read(&memcg->under_oom))
9490ff27 4263 eventfd_signal(eventfd, 1);
1af8efe9 4264 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4265
4266 return 0;
4267}
4268
59b6f873 4269static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4270 struct eventfd_ctx *eventfd)
9490ff27 4271{
9490ff27 4272 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4273
1af8efe9 4274 spin_lock(&memcg_oom_lock);
9490ff27 4275
c0ff4b85 4276 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4277 if (ev->eventfd == eventfd) {
4278 list_del(&ev->list);
4279 kfree(ev);
4280 }
4281 }
4282
1af8efe9 4283 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4284}
4285
2da8ca82 4286static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4287{
2da8ca82 4288 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4289
791badbd
TH
4290 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4291 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4292 return 0;
4293}
4294
182446d0 4295static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4296 struct cftype *cft, u64 val)
4297{
182446d0 4298 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4299
4300 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4301 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4302 return -EINVAL;
4303
c0ff4b85 4304 memcg->oom_kill_disable = val;
4d845ebf 4305 if (!val)
c0ff4b85 4306 memcg_oom_recover(memcg);
3dae7fec 4307
3c11ecf4
KH
4308 return 0;
4309}
4310
c255a458 4311#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4312static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4313{
55007d84
GC
4314 int ret;
4315
2633d7a0 4316 memcg->kmemcg_id = -1;
55007d84
GC
4317 ret = memcg_propagate_kmem(memcg);
4318 if (ret)
4319 return ret;
2633d7a0 4320
1d62e436 4321 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4322}
e5671dfa 4323
10d5ebf4 4324static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4325{
1d62e436 4326 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4327}
e5671dfa 4328#else
cbe128e3 4329static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4330{
4331 return 0;
4332}
d1a4c0b3 4333
10d5ebf4
LZ
4334static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4335{
4336}
e5671dfa
GC
4337#endif
4338
3bc942f3
TH
4339/*
4340 * DO NOT USE IN NEW FILES.
4341 *
4342 * "cgroup.event_control" implementation.
4343 *
4344 * This is way over-engineered. It tries to support fully configurable
4345 * events for each user. Such level of flexibility is completely
4346 * unnecessary especially in the light of the planned unified hierarchy.
4347 *
4348 * Please deprecate this and replace with something simpler if at all
4349 * possible.
4350 */
4351
79bd9814
TH
4352/*
4353 * Unregister event and free resources.
4354 *
4355 * Gets called from workqueue.
4356 */
3bc942f3 4357static void memcg_event_remove(struct work_struct *work)
79bd9814 4358{
3bc942f3
TH
4359 struct mem_cgroup_event *event =
4360 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4361 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4362
4363 remove_wait_queue(event->wqh, &event->wait);
4364
59b6f873 4365 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4366
4367 /* Notify userspace the event is going away. */
4368 eventfd_signal(event->eventfd, 1);
4369
4370 eventfd_ctx_put(event->eventfd);
4371 kfree(event);
59b6f873 4372 css_put(&memcg->css);
79bd9814
TH
4373}
4374
4375/*
4376 * Gets called on POLLHUP on eventfd when user closes it.
4377 *
4378 * Called with wqh->lock held and interrupts disabled.
4379 */
3bc942f3
TH
4380static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4381 int sync, void *key)
79bd9814 4382{
3bc942f3
TH
4383 struct mem_cgroup_event *event =
4384 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4385 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4386 unsigned long flags = (unsigned long)key;
4387
4388 if (flags & POLLHUP) {
4389 /*
4390 * If the event has been detached at cgroup removal, we
4391 * can simply return knowing the other side will cleanup
4392 * for us.
4393 *
4394 * We can't race against event freeing since the other
4395 * side will require wqh->lock via remove_wait_queue(),
4396 * which we hold.
4397 */
fba94807 4398 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4399 if (!list_empty(&event->list)) {
4400 list_del_init(&event->list);
4401 /*
4402 * We are in atomic context, but cgroup_event_remove()
4403 * may sleep, so we have to call it in workqueue.
4404 */
4405 schedule_work(&event->remove);
4406 }
fba94807 4407 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4408 }
4409
4410 return 0;
4411}
4412
3bc942f3 4413static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4414 wait_queue_head_t *wqh, poll_table *pt)
4415{
3bc942f3
TH
4416 struct mem_cgroup_event *event =
4417 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4418
4419 event->wqh = wqh;
4420 add_wait_queue(wqh, &event->wait);
4421}
4422
4423/*
3bc942f3
TH
4424 * DO NOT USE IN NEW FILES.
4425 *
79bd9814
TH
4426 * Parse input and register new cgroup event handler.
4427 *
4428 * Input must be in format '<event_fd> <control_fd> <args>'.
4429 * Interpretation of args is defined by control file implementation.
4430 */
451af504
TH
4431static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4432 char *buf, size_t nbytes, loff_t off)
79bd9814 4433{
451af504 4434 struct cgroup_subsys_state *css = of_css(of);
fba94807 4435 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4436 struct mem_cgroup_event *event;
79bd9814
TH
4437 struct cgroup_subsys_state *cfile_css;
4438 unsigned int efd, cfd;
4439 struct fd efile;
4440 struct fd cfile;
fba94807 4441 const char *name;
79bd9814
TH
4442 char *endp;
4443 int ret;
4444
451af504
TH
4445 buf = strstrip(buf);
4446
4447 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4448 if (*endp != ' ')
4449 return -EINVAL;
451af504 4450 buf = endp + 1;
79bd9814 4451
451af504 4452 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4453 if ((*endp != ' ') && (*endp != '\0'))
4454 return -EINVAL;
451af504 4455 buf = endp + 1;
79bd9814
TH
4456
4457 event = kzalloc(sizeof(*event), GFP_KERNEL);
4458 if (!event)
4459 return -ENOMEM;
4460
59b6f873 4461 event->memcg = memcg;
79bd9814 4462 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4463 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4464 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4465 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4466
4467 efile = fdget(efd);
4468 if (!efile.file) {
4469 ret = -EBADF;
4470 goto out_kfree;
4471 }
4472
4473 event->eventfd = eventfd_ctx_fileget(efile.file);
4474 if (IS_ERR(event->eventfd)) {
4475 ret = PTR_ERR(event->eventfd);
4476 goto out_put_efile;
4477 }
4478
4479 cfile = fdget(cfd);
4480 if (!cfile.file) {
4481 ret = -EBADF;
4482 goto out_put_eventfd;
4483 }
4484
4485 /* the process need read permission on control file */
4486 /* AV: shouldn't we check that it's been opened for read instead? */
4487 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4488 if (ret < 0)
4489 goto out_put_cfile;
4490
fba94807
TH
4491 /*
4492 * Determine the event callbacks and set them in @event. This used
4493 * to be done via struct cftype but cgroup core no longer knows
4494 * about these events. The following is crude but the whole thing
4495 * is for compatibility anyway.
3bc942f3
TH
4496 *
4497 * DO NOT ADD NEW FILES.
fba94807
TH
4498 */
4499 name = cfile.file->f_dentry->d_name.name;
4500
4501 if (!strcmp(name, "memory.usage_in_bytes")) {
4502 event->register_event = mem_cgroup_usage_register_event;
4503 event->unregister_event = mem_cgroup_usage_unregister_event;
4504 } else if (!strcmp(name, "memory.oom_control")) {
4505 event->register_event = mem_cgroup_oom_register_event;
4506 event->unregister_event = mem_cgroup_oom_unregister_event;
4507 } else if (!strcmp(name, "memory.pressure_level")) {
4508 event->register_event = vmpressure_register_event;
4509 event->unregister_event = vmpressure_unregister_event;
4510 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4511 event->register_event = memsw_cgroup_usage_register_event;
4512 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4513 } else {
4514 ret = -EINVAL;
4515 goto out_put_cfile;
4516 }
4517
79bd9814 4518 /*
b5557c4c
TH
4519 * Verify @cfile should belong to @css. Also, remaining events are
4520 * automatically removed on cgroup destruction but the removal is
4521 * asynchronous, so take an extra ref on @css.
79bd9814 4522 */
ec903c0c
TH
4523 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4524 &memory_cgrp_subsys);
79bd9814 4525 ret = -EINVAL;
5a17f543 4526 if (IS_ERR(cfile_css))
79bd9814 4527 goto out_put_cfile;
5a17f543
TH
4528 if (cfile_css != css) {
4529 css_put(cfile_css);
79bd9814 4530 goto out_put_cfile;
5a17f543 4531 }
79bd9814 4532
451af504 4533 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4534 if (ret)
4535 goto out_put_css;
4536
4537 efile.file->f_op->poll(efile.file, &event->pt);
4538
fba94807
TH
4539 spin_lock(&memcg->event_list_lock);
4540 list_add(&event->list, &memcg->event_list);
4541 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4542
4543 fdput(cfile);
4544 fdput(efile);
4545
451af504 4546 return nbytes;
79bd9814
TH
4547
4548out_put_css:
b5557c4c 4549 css_put(css);
79bd9814
TH
4550out_put_cfile:
4551 fdput(cfile);
4552out_put_eventfd:
4553 eventfd_ctx_put(event->eventfd);
4554out_put_efile:
4555 fdput(efile);
4556out_kfree:
4557 kfree(event);
4558
4559 return ret;
4560}
4561
8cdea7c0
BS
4562static struct cftype mem_cgroup_files[] = {
4563 {
0eea1030 4564 .name = "usage_in_bytes",
8c7c6e34 4565 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4566 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4567 },
c84872e1
PE
4568 {
4569 .name = "max_usage_in_bytes",
8c7c6e34 4570 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4571 .write = mem_cgroup_reset,
791badbd 4572 .read_u64 = mem_cgroup_read_u64,
c84872e1 4573 },
8cdea7c0 4574 {
0eea1030 4575 .name = "limit_in_bytes",
8c7c6e34 4576 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4577 .write = mem_cgroup_write,
791badbd 4578 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4579 },
296c81d8
BS
4580 {
4581 .name = "soft_limit_in_bytes",
4582 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4583 .write = mem_cgroup_write,
791badbd 4584 .read_u64 = mem_cgroup_read_u64,
296c81d8 4585 },
8cdea7c0
BS
4586 {
4587 .name = "failcnt",
8c7c6e34 4588 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4589 .write = mem_cgroup_reset,
791badbd 4590 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4591 },
d2ceb9b7
KH
4592 {
4593 .name = "stat",
2da8ca82 4594 .seq_show = memcg_stat_show,
d2ceb9b7 4595 },
c1e862c1
KH
4596 {
4597 .name = "force_empty",
6770c64e 4598 .write = mem_cgroup_force_empty_write,
c1e862c1 4599 },
18f59ea7
BS
4600 {
4601 .name = "use_hierarchy",
4602 .write_u64 = mem_cgroup_hierarchy_write,
4603 .read_u64 = mem_cgroup_hierarchy_read,
4604 },
79bd9814 4605 {
3bc942f3 4606 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4607 .write = memcg_write_event_control,
79bd9814
TH
4608 .flags = CFTYPE_NO_PREFIX,
4609 .mode = S_IWUGO,
4610 },
a7885eb8
KM
4611 {
4612 .name = "swappiness",
4613 .read_u64 = mem_cgroup_swappiness_read,
4614 .write_u64 = mem_cgroup_swappiness_write,
4615 },
7dc74be0
DN
4616 {
4617 .name = "move_charge_at_immigrate",
4618 .read_u64 = mem_cgroup_move_charge_read,
4619 .write_u64 = mem_cgroup_move_charge_write,
4620 },
9490ff27
KH
4621 {
4622 .name = "oom_control",
2da8ca82 4623 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4624 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4625 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4626 },
70ddf637
AV
4627 {
4628 .name = "pressure_level",
70ddf637 4629 },
406eb0c9
YH
4630#ifdef CONFIG_NUMA
4631 {
4632 .name = "numa_stat",
2da8ca82 4633 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4634 },
4635#endif
510fc4e1
GC
4636#ifdef CONFIG_MEMCG_KMEM
4637 {
4638 .name = "kmem.limit_in_bytes",
4639 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4640 .write = mem_cgroup_write,
791badbd 4641 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4642 },
4643 {
4644 .name = "kmem.usage_in_bytes",
4645 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4646 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4647 },
4648 {
4649 .name = "kmem.failcnt",
4650 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4651 .write = mem_cgroup_reset,
791badbd 4652 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4653 },
4654 {
4655 .name = "kmem.max_usage_in_bytes",
4656 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4657 .write = mem_cgroup_reset,
791badbd 4658 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4659 },
749c5415
GC
4660#ifdef CONFIG_SLABINFO
4661 {
4662 .name = "kmem.slabinfo",
b047501c
VD
4663 .seq_start = slab_start,
4664 .seq_next = slab_next,
4665 .seq_stop = slab_stop,
4666 .seq_show = memcg_slab_show,
749c5415
GC
4667 },
4668#endif
8c7c6e34 4669#endif
6bc10349 4670 { }, /* terminate */
af36f906 4671};
8c7c6e34 4672
2d11085e
MH
4673#ifdef CONFIG_MEMCG_SWAP
4674static struct cftype memsw_cgroup_files[] = {
4675 {
4676 .name = "memsw.usage_in_bytes",
4677 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4678 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4679 },
4680 {
4681 .name = "memsw.max_usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4683 .write = mem_cgroup_reset,
791badbd 4684 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4685 },
4686 {
4687 .name = "memsw.limit_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4689 .write = mem_cgroup_write,
791badbd 4690 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4691 },
4692 {
4693 .name = "memsw.failcnt",
4694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4695 .write = mem_cgroup_reset,
791badbd 4696 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4697 },
4698 { }, /* terminate */
4699};
4700#endif
c0ff4b85 4701static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4702{
4703 struct mem_cgroup_per_node *pn;
1ecaab2b 4704 struct mem_cgroup_per_zone *mz;
41e3355d 4705 int zone, tmp = node;
1ecaab2b
KH
4706 /*
4707 * This routine is called against possible nodes.
4708 * But it's BUG to call kmalloc() against offline node.
4709 *
4710 * TODO: this routine can waste much memory for nodes which will
4711 * never be onlined. It's better to use memory hotplug callback
4712 * function.
4713 */
41e3355d
KH
4714 if (!node_state(node, N_NORMAL_MEMORY))
4715 tmp = -1;
17295c88 4716 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4717 if (!pn)
4718 return 1;
1ecaab2b 4719
1ecaab2b
KH
4720 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4721 mz = &pn->zoneinfo[zone];
bea8c150 4722 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4723 mz->usage_in_excess = 0;
4724 mz->on_tree = false;
d79154bb 4725 mz->memcg = memcg;
1ecaab2b 4726 }
54f72fe0 4727 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4728 return 0;
4729}
4730
c0ff4b85 4731static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4732{
54f72fe0 4733 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4734}
4735
33327948
KH
4736static struct mem_cgroup *mem_cgroup_alloc(void)
4737{
d79154bb 4738 struct mem_cgroup *memcg;
8ff69e2c 4739 size_t size;
33327948 4740
8ff69e2c
VD
4741 size = sizeof(struct mem_cgroup);
4742 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4743
8ff69e2c 4744 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4745 if (!memcg)
e7bbcdf3
DC
4746 return NULL;
4747
d79154bb
HD
4748 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4749 if (!memcg->stat)
d2e61b8d 4750 goto out_free;
d79154bb
HD
4751 spin_lock_init(&memcg->pcp_counter_lock);
4752 return memcg;
d2e61b8d
DC
4753
4754out_free:
8ff69e2c 4755 kfree(memcg);
d2e61b8d 4756 return NULL;
33327948
KH
4757}
4758
59927fb9 4759/*
c8b2a36f
GC
4760 * At destroying mem_cgroup, references from swap_cgroup can remain.
4761 * (scanning all at force_empty is too costly...)
4762 *
4763 * Instead of clearing all references at force_empty, we remember
4764 * the number of reference from swap_cgroup and free mem_cgroup when
4765 * it goes down to 0.
4766 *
4767 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4768 */
c8b2a36f
GC
4769
4770static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4771{
c8b2a36f 4772 int node;
59927fb9 4773
bb4cc1a8 4774 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4775
4776 for_each_node(node)
4777 free_mem_cgroup_per_zone_info(memcg, node);
4778
4779 free_percpu(memcg->stat);
4780
3f134619
GC
4781 /*
4782 * We need to make sure that (at least for now), the jump label
4783 * destruction code runs outside of the cgroup lock. This is because
4784 * get_online_cpus(), which is called from the static_branch update,
4785 * can't be called inside the cgroup_lock. cpusets are the ones
4786 * enforcing this dependency, so if they ever change, we might as well.
4787 *
4788 * schedule_work() will guarantee this happens. Be careful if you need
4789 * to move this code around, and make sure it is outside
4790 * the cgroup_lock.
4791 */
a8964b9b 4792 disarm_static_keys(memcg);
8ff69e2c 4793 kfree(memcg);
59927fb9 4794}
3afe36b1 4795
7bcc1bb1
DN
4796/*
4797 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4798 */
e1aab161 4799struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4800{
3e32cb2e 4801 if (!memcg->memory.parent)
7bcc1bb1 4802 return NULL;
3e32cb2e 4803 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4804}
e1aab161 4805EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4806
bb4cc1a8
AM
4807static void __init mem_cgroup_soft_limit_tree_init(void)
4808{
4809 struct mem_cgroup_tree_per_node *rtpn;
4810 struct mem_cgroup_tree_per_zone *rtpz;
4811 int tmp, node, zone;
4812
4813 for_each_node(node) {
4814 tmp = node;
4815 if (!node_state(node, N_NORMAL_MEMORY))
4816 tmp = -1;
4817 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4818 BUG_ON(!rtpn);
4819
4820 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4821
4822 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4823 rtpz = &rtpn->rb_tree_per_zone[zone];
4824 rtpz->rb_root = RB_ROOT;
4825 spin_lock_init(&rtpz->lock);
4826 }
4827 }
4828}
4829
0eb253e2 4830static struct cgroup_subsys_state * __ref
eb95419b 4831mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4832{
d142e3e6 4833 struct mem_cgroup *memcg;
04046e1a 4834 long error = -ENOMEM;
6d12e2d8 4835 int node;
8cdea7c0 4836
c0ff4b85
R
4837 memcg = mem_cgroup_alloc();
4838 if (!memcg)
04046e1a 4839 return ERR_PTR(error);
78fb7466 4840
3ed28fa1 4841 for_each_node(node)
c0ff4b85 4842 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4843 goto free_out;
f64c3f54 4844
c077719b 4845 /* root ? */
eb95419b 4846 if (parent_css == NULL) {
a41c58a6 4847 root_mem_cgroup = memcg;
3e32cb2e
JW
4848 page_counter_init(&memcg->memory, NULL);
4849 page_counter_init(&memcg->memsw, NULL);
4850 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4851 }
28dbc4b6 4852
d142e3e6
GC
4853 memcg->last_scanned_node = MAX_NUMNODES;
4854 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4855 memcg->move_charge_at_immigrate = 0;
4856 mutex_init(&memcg->thresholds_lock);
4857 spin_lock_init(&memcg->move_lock);
70ddf637 4858 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4859 INIT_LIST_HEAD(&memcg->event_list);
4860 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4861
4862 return &memcg->css;
4863
4864free_out:
4865 __mem_cgroup_free(memcg);
4866 return ERR_PTR(error);
4867}
4868
4869static int
eb95419b 4870mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4871{
eb95419b 4872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4873 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4874 int ret;
d142e3e6 4875
15a4c835 4876 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4877 return -ENOSPC;
4878
63876986 4879 if (!parent)
d142e3e6
GC
4880 return 0;
4881
0999821b 4882 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4883
4884 memcg->use_hierarchy = parent->use_hierarchy;
4885 memcg->oom_kill_disable = parent->oom_kill_disable;
4886 memcg->swappiness = mem_cgroup_swappiness(parent);
4887
4888 if (parent->use_hierarchy) {
3e32cb2e
JW
4889 page_counter_init(&memcg->memory, &parent->memory);
4890 page_counter_init(&memcg->memsw, &parent->memsw);
4891 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4892
7bcc1bb1 4893 /*
8d76a979
LZ
4894 * No need to take a reference to the parent because cgroup
4895 * core guarantees its existence.
7bcc1bb1 4896 */
18f59ea7 4897 } else {
3e32cb2e
JW
4898 page_counter_init(&memcg->memory, NULL);
4899 page_counter_init(&memcg->memsw, NULL);
4900 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4901 /*
4902 * Deeper hierachy with use_hierarchy == false doesn't make
4903 * much sense so let cgroup subsystem know about this
4904 * unfortunate state in our controller.
4905 */
d142e3e6 4906 if (parent != root_mem_cgroup)
073219e9 4907 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4908 }
0999821b 4909 mutex_unlock(&memcg_create_mutex);
d6441637 4910
2f7dd7a4
JW
4911 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4912 if (ret)
4913 return ret;
4914
4915 /*
4916 * Make sure the memcg is initialized: mem_cgroup_iter()
4917 * orders reading memcg->initialized against its callers
4918 * reading the memcg members.
4919 */
4920 smp_store_release(&memcg->initialized, 1);
4921
4922 return 0;
8cdea7c0
BS
4923}
4924
eb95419b 4925static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4926{
eb95419b 4927 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4928 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4929
4930 /*
4931 * Unregister events and notify userspace.
4932 * Notify userspace about cgroup removing only after rmdir of cgroup
4933 * directory to avoid race between userspace and kernelspace.
4934 */
fba94807
TH
4935 spin_lock(&memcg->event_list_lock);
4936 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4937 list_del_init(&event->list);
4938 schedule_work(&event->remove);
4939 }
fba94807 4940 spin_unlock(&memcg->event_list_lock);
ec64f515 4941
776ed0f0 4942 memcg_unregister_all_caches(memcg);
33cb876e 4943 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4944}
4945
eb95419b 4946static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4947{
eb95419b 4948 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4949
10d5ebf4 4950 memcg_destroy_kmem(memcg);
465939a1 4951 __mem_cgroup_free(memcg);
8cdea7c0
BS
4952}
4953
1ced953b
TH
4954/**
4955 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4956 * @css: the target css
4957 *
4958 * Reset the states of the mem_cgroup associated with @css. This is
4959 * invoked when the userland requests disabling on the default hierarchy
4960 * but the memcg is pinned through dependency. The memcg should stop
4961 * applying policies and should revert to the vanilla state as it may be
4962 * made visible again.
4963 *
4964 * The current implementation only resets the essential configurations.
4965 * This needs to be expanded to cover all the visible parts.
4966 */
4967static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4968{
4969 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4970
3e32cb2e
JW
4971 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4972 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4973 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4974 memcg->soft_limit = 0;
1ced953b
TH
4975}
4976
02491447 4977#ifdef CONFIG_MMU
7dc74be0 4978/* Handlers for move charge at task migration. */
854ffa8d 4979static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4980{
05b84301 4981 int ret;
9476db97
JW
4982
4983 /* Try a single bulk charge without reclaim first */
00501b53 4984 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4985 if (!ret) {
854ffa8d 4986 mc.precharge += count;
854ffa8d
DN
4987 return ret;
4988 }
692e7c45 4989 if (ret == -EINTR) {
00501b53 4990 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4991 return ret;
4992 }
9476db97
JW
4993
4994 /* Try charges one by one with reclaim */
854ffa8d 4995 while (count--) {
00501b53 4996 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4997 /*
4998 * In case of failure, any residual charges against
4999 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5000 * later on. However, cancel any charges that are
5001 * bypassed to root right away or they'll be lost.
9476db97 5002 */
692e7c45 5003 if (ret == -EINTR)
00501b53 5004 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5005 if (ret)
38c5d72f 5006 return ret;
854ffa8d 5007 mc.precharge++;
9476db97 5008 cond_resched();
854ffa8d 5009 }
9476db97 5010 return 0;
4ffef5fe
DN
5011}
5012
5013/**
8d32ff84 5014 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5015 * @vma: the vma the pte to be checked belongs
5016 * @addr: the address corresponding to the pte to be checked
5017 * @ptent: the pte to be checked
02491447 5018 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5019 *
5020 * Returns
5021 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5022 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5023 * move charge. if @target is not NULL, the page is stored in target->page
5024 * with extra refcnt got(Callers should handle it).
02491447
DN
5025 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5026 * target for charge migration. if @target is not NULL, the entry is stored
5027 * in target->ent.
4ffef5fe
DN
5028 *
5029 * Called with pte lock held.
5030 */
4ffef5fe
DN
5031union mc_target {
5032 struct page *page;
02491447 5033 swp_entry_t ent;
4ffef5fe
DN
5034};
5035
4ffef5fe 5036enum mc_target_type {
8d32ff84 5037 MC_TARGET_NONE = 0,
4ffef5fe 5038 MC_TARGET_PAGE,
02491447 5039 MC_TARGET_SWAP,
4ffef5fe
DN
5040};
5041
90254a65
DN
5042static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5043 unsigned long addr, pte_t ptent)
4ffef5fe 5044{
90254a65 5045 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5046
90254a65
DN
5047 if (!page || !page_mapped(page))
5048 return NULL;
5049 if (PageAnon(page)) {
5050 /* we don't move shared anon */
4b91355e 5051 if (!move_anon())
90254a65 5052 return NULL;
87946a72
DN
5053 } else if (!move_file())
5054 /* we ignore mapcount for file pages */
90254a65
DN
5055 return NULL;
5056 if (!get_page_unless_zero(page))
5057 return NULL;
5058
5059 return page;
5060}
5061
4b91355e 5062#ifdef CONFIG_SWAP
90254a65
DN
5063static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5064 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5065{
90254a65
DN
5066 struct page *page = NULL;
5067 swp_entry_t ent = pte_to_swp_entry(ptent);
5068
5069 if (!move_anon() || non_swap_entry(ent))
5070 return NULL;
4b91355e
KH
5071 /*
5072 * Because lookup_swap_cache() updates some statistics counter,
5073 * we call find_get_page() with swapper_space directly.
5074 */
33806f06 5075 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5076 if (do_swap_account)
5077 entry->val = ent.val;
5078
5079 return page;
5080}
4b91355e
KH
5081#else
5082static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5083 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5084{
5085 return NULL;
5086}
5087#endif
90254a65 5088
87946a72
DN
5089static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5090 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5091{
5092 struct page *page = NULL;
87946a72
DN
5093 struct address_space *mapping;
5094 pgoff_t pgoff;
5095
5096 if (!vma->vm_file) /* anonymous vma */
5097 return NULL;
5098 if (!move_file())
5099 return NULL;
5100
87946a72
DN
5101 mapping = vma->vm_file->f_mapping;
5102 if (pte_none(ptent))
5103 pgoff = linear_page_index(vma, addr);
5104 else /* pte_file(ptent) is true */
5105 pgoff = pte_to_pgoff(ptent);
5106
5107 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5108#ifdef CONFIG_SWAP
5109 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5110 if (shmem_mapping(mapping)) {
5111 page = find_get_entry(mapping, pgoff);
5112 if (radix_tree_exceptional_entry(page)) {
5113 swp_entry_t swp = radix_to_swp_entry(page);
5114 if (do_swap_account)
5115 *entry = swp;
5116 page = find_get_page(swap_address_space(swp), swp.val);
5117 }
5118 } else
5119 page = find_get_page(mapping, pgoff);
5120#else
5121 page = find_get_page(mapping, pgoff);
aa3b1895 5122#endif
87946a72
DN
5123 return page;
5124}
5125
8d32ff84 5126static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5127 unsigned long addr, pte_t ptent, union mc_target *target)
5128{
5129 struct page *page = NULL;
5130 struct page_cgroup *pc;
8d32ff84 5131 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5132 swp_entry_t ent = { .val = 0 };
5133
5134 if (pte_present(ptent))
5135 page = mc_handle_present_pte(vma, addr, ptent);
5136 else if (is_swap_pte(ptent))
5137 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5138 else if (pte_none(ptent) || pte_file(ptent))
5139 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5140
5141 if (!page && !ent.val)
8d32ff84 5142 return ret;
02491447
DN
5143 if (page) {
5144 pc = lookup_page_cgroup(page);
5145 /*
0a31bc97
JW
5146 * Do only loose check w/o serialization.
5147 * mem_cgroup_move_account() checks the pc is valid or
5148 * not under LRU exclusion.
02491447 5149 */
29833315 5150 if (pc->mem_cgroup == mc.from) {
02491447
DN
5151 ret = MC_TARGET_PAGE;
5152 if (target)
5153 target->page = page;
5154 }
5155 if (!ret || !target)
5156 put_page(page);
5157 }
90254a65
DN
5158 /* There is a swap entry and a page doesn't exist or isn't charged */
5159 if (ent.val && !ret &&
34c00c31 5160 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5161 ret = MC_TARGET_SWAP;
5162 if (target)
5163 target->ent = ent;
4ffef5fe 5164 }
4ffef5fe
DN
5165 return ret;
5166}
5167
12724850
NH
5168#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5169/*
5170 * We don't consider swapping or file mapped pages because THP does not
5171 * support them for now.
5172 * Caller should make sure that pmd_trans_huge(pmd) is true.
5173 */
5174static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5175 unsigned long addr, pmd_t pmd, union mc_target *target)
5176{
5177 struct page *page = NULL;
5178 struct page_cgroup *pc;
5179 enum mc_target_type ret = MC_TARGET_NONE;
5180
5181 page = pmd_page(pmd);
309381fe 5182 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5183 if (!move_anon())
5184 return ret;
5185 pc = lookup_page_cgroup(page);
29833315 5186 if (pc->mem_cgroup == mc.from) {
12724850
NH
5187 ret = MC_TARGET_PAGE;
5188 if (target) {
5189 get_page(page);
5190 target->page = page;
5191 }
5192 }
5193 return ret;
5194}
5195#else
5196static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5197 unsigned long addr, pmd_t pmd, union mc_target *target)
5198{
5199 return MC_TARGET_NONE;
5200}
5201#endif
5202
4ffef5fe
DN
5203static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5204 unsigned long addr, unsigned long end,
5205 struct mm_walk *walk)
5206{
5207 struct vm_area_struct *vma = walk->private;
5208 pte_t *pte;
5209 spinlock_t *ptl;
5210
bf929152 5211 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5212 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5213 mc.precharge += HPAGE_PMD_NR;
bf929152 5214 spin_unlock(ptl);
1a5a9906 5215 return 0;
12724850 5216 }
03319327 5217
45f83cef
AA
5218 if (pmd_trans_unstable(pmd))
5219 return 0;
4ffef5fe
DN
5220 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5221 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5222 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5223 mc.precharge++; /* increment precharge temporarily */
5224 pte_unmap_unlock(pte - 1, ptl);
5225 cond_resched();
5226
7dc74be0
DN
5227 return 0;
5228}
5229
4ffef5fe
DN
5230static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5231{
5232 unsigned long precharge;
5233 struct vm_area_struct *vma;
5234
dfe076b0 5235 down_read(&mm->mmap_sem);
4ffef5fe
DN
5236 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5237 struct mm_walk mem_cgroup_count_precharge_walk = {
5238 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5239 .mm = mm,
5240 .private = vma,
5241 };
5242 if (is_vm_hugetlb_page(vma))
5243 continue;
4ffef5fe
DN
5244 walk_page_range(vma->vm_start, vma->vm_end,
5245 &mem_cgroup_count_precharge_walk);
5246 }
dfe076b0 5247 up_read(&mm->mmap_sem);
4ffef5fe
DN
5248
5249 precharge = mc.precharge;
5250 mc.precharge = 0;
5251
5252 return precharge;
5253}
5254
4ffef5fe
DN
5255static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5256{
dfe076b0
DN
5257 unsigned long precharge = mem_cgroup_count_precharge(mm);
5258
5259 VM_BUG_ON(mc.moving_task);
5260 mc.moving_task = current;
5261 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5262}
5263
dfe076b0
DN
5264/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5265static void __mem_cgroup_clear_mc(void)
4ffef5fe 5266{
2bd9bb20
KH
5267 struct mem_cgroup *from = mc.from;
5268 struct mem_cgroup *to = mc.to;
5269
4ffef5fe 5270 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5271 if (mc.precharge) {
00501b53 5272 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5273 mc.precharge = 0;
5274 }
5275 /*
5276 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5277 * we must uncharge here.
5278 */
5279 if (mc.moved_charge) {
00501b53 5280 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5281 mc.moved_charge = 0;
4ffef5fe 5282 }
483c30b5
DN
5283 /* we must fixup refcnts and charges */
5284 if (mc.moved_swap) {
483c30b5 5285 /* uncharge swap account from the old cgroup */
ce00a967 5286 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5287 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5288
05b84301 5289 /*
3e32cb2e
JW
5290 * we charged both to->memory and to->memsw, so we
5291 * should uncharge to->memory.
05b84301 5292 */
ce00a967 5293 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5294 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5295
e8ea14cc 5296 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5297
4050377b 5298 /* we've already done css_get(mc.to) */
483c30b5
DN
5299 mc.moved_swap = 0;
5300 }
dfe076b0
DN
5301 memcg_oom_recover(from);
5302 memcg_oom_recover(to);
5303 wake_up_all(&mc.waitq);
5304}
5305
5306static void mem_cgroup_clear_mc(void)
5307{
dfe076b0
DN
5308 /*
5309 * we must clear moving_task before waking up waiters at the end of
5310 * task migration.
5311 */
5312 mc.moving_task = NULL;
5313 __mem_cgroup_clear_mc();
2bd9bb20 5314 spin_lock(&mc.lock);
4ffef5fe
DN
5315 mc.from = NULL;
5316 mc.to = NULL;
2bd9bb20 5317 spin_unlock(&mc.lock);
4ffef5fe
DN
5318}
5319
eb95419b 5320static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5321 struct cgroup_taskset *tset)
7dc74be0 5322{
2f7ee569 5323 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5324 int ret = 0;
eb95419b 5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5326 unsigned long move_charge_at_immigrate;
7dc74be0 5327
ee5e8472
GC
5328 /*
5329 * We are now commited to this value whatever it is. Changes in this
5330 * tunable will only affect upcoming migrations, not the current one.
5331 * So we need to save it, and keep it going.
5332 */
5333 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5334 if (move_charge_at_immigrate) {
7dc74be0
DN
5335 struct mm_struct *mm;
5336 struct mem_cgroup *from = mem_cgroup_from_task(p);
5337
c0ff4b85 5338 VM_BUG_ON(from == memcg);
7dc74be0
DN
5339
5340 mm = get_task_mm(p);
5341 if (!mm)
5342 return 0;
7dc74be0 5343 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5344 if (mm->owner == p) {
5345 VM_BUG_ON(mc.from);
5346 VM_BUG_ON(mc.to);
5347 VM_BUG_ON(mc.precharge);
854ffa8d 5348 VM_BUG_ON(mc.moved_charge);
483c30b5 5349 VM_BUG_ON(mc.moved_swap);
247b1447 5350
2bd9bb20 5351 spin_lock(&mc.lock);
4ffef5fe 5352 mc.from = from;
c0ff4b85 5353 mc.to = memcg;
ee5e8472 5354 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5355 spin_unlock(&mc.lock);
dfe076b0 5356 /* We set mc.moving_task later */
4ffef5fe
DN
5357
5358 ret = mem_cgroup_precharge_mc(mm);
5359 if (ret)
5360 mem_cgroup_clear_mc();
dfe076b0
DN
5361 }
5362 mmput(mm);
7dc74be0
DN
5363 }
5364 return ret;
5365}
5366
eb95419b 5367static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5368 struct cgroup_taskset *tset)
7dc74be0 5369{
4e2f245d
JW
5370 if (mc.to)
5371 mem_cgroup_clear_mc();
7dc74be0
DN
5372}
5373
4ffef5fe
DN
5374static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5375 unsigned long addr, unsigned long end,
5376 struct mm_walk *walk)
7dc74be0 5377{
4ffef5fe
DN
5378 int ret = 0;
5379 struct vm_area_struct *vma = walk->private;
5380 pte_t *pte;
5381 spinlock_t *ptl;
12724850
NH
5382 enum mc_target_type target_type;
5383 union mc_target target;
5384 struct page *page;
5385 struct page_cgroup *pc;
4ffef5fe 5386
12724850
NH
5387 /*
5388 * We don't take compound_lock() here but no race with splitting thp
5389 * happens because:
5390 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5391 * under splitting, which means there's no concurrent thp split,
5392 * - if another thread runs into split_huge_page() just after we
5393 * entered this if-block, the thread must wait for page table lock
5394 * to be unlocked in __split_huge_page_splitting(), where the main
5395 * part of thp split is not executed yet.
5396 */
bf929152 5397 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5398 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5399 spin_unlock(ptl);
12724850
NH
5400 return 0;
5401 }
5402 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5403 if (target_type == MC_TARGET_PAGE) {
5404 page = target.page;
5405 if (!isolate_lru_page(page)) {
5406 pc = lookup_page_cgroup(page);
5407 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5408 pc, mc.from, mc.to)) {
12724850
NH
5409 mc.precharge -= HPAGE_PMD_NR;
5410 mc.moved_charge += HPAGE_PMD_NR;
5411 }
5412 putback_lru_page(page);
5413 }
5414 put_page(page);
5415 }
bf929152 5416 spin_unlock(ptl);
1a5a9906 5417 return 0;
12724850
NH
5418 }
5419
45f83cef
AA
5420 if (pmd_trans_unstable(pmd))
5421 return 0;
4ffef5fe
DN
5422retry:
5423 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5424 for (; addr != end; addr += PAGE_SIZE) {
5425 pte_t ptent = *(pte++);
02491447 5426 swp_entry_t ent;
4ffef5fe
DN
5427
5428 if (!mc.precharge)
5429 break;
5430
8d32ff84 5431 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5432 case MC_TARGET_PAGE:
5433 page = target.page;
5434 if (isolate_lru_page(page))
5435 goto put;
5436 pc = lookup_page_cgroup(page);
7ec99d62 5437 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5438 mc.from, mc.to)) {
4ffef5fe 5439 mc.precharge--;
854ffa8d
DN
5440 /* we uncharge from mc.from later. */
5441 mc.moved_charge++;
4ffef5fe
DN
5442 }
5443 putback_lru_page(page);
8d32ff84 5444put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5445 put_page(page);
5446 break;
02491447
DN
5447 case MC_TARGET_SWAP:
5448 ent = target.ent;
e91cbb42 5449 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5450 mc.precharge--;
483c30b5
DN
5451 /* we fixup refcnts and charges later. */
5452 mc.moved_swap++;
5453 }
02491447 5454 break;
4ffef5fe
DN
5455 default:
5456 break;
5457 }
5458 }
5459 pte_unmap_unlock(pte - 1, ptl);
5460 cond_resched();
5461
5462 if (addr != end) {
5463 /*
5464 * We have consumed all precharges we got in can_attach().
5465 * We try charge one by one, but don't do any additional
5466 * charges to mc.to if we have failed in charge once in attach()
5467 * phase.
5468 */
854ffa8d 5469 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5470 if (!ret)
5471 goto retry;
5472 }
5473
5474 return ret;
5475}
5476
5477static void mem_cgroup_move_charge(struct mm_struct *mm)
5478{
5479 struct vm_area_struct *vma;
5480
5481 lru_add_drain_all();
312722cb
JW
5482 /*
5483 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5484 * move_lock while we're moving its pages to another memcg.
5485 * Then wait for already started RCU-only updates to finish.
5486 */
5487 atomic_inc(&mc.from->moving_account);
5488 synchronize_rcu();
dfe076b0
DN
5489retry:
5490 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5491 /*
5492 * Someone who are holding the mmap_sem might be waiting in
5493 * waitq. So we cancel all extra charges, wake up all waiters,
5494 * and retry. Because we cancel precharges, we might not be able
5495 * to move enough charges, but moving charge is a best-effort
5496 * feature anyway, so it wouldn't be a big problem.
5497 */
5498 __mem_cgroup_clear_mc();
5499 cond_resched();
5500 goto retry;
5501 }
4ffef5fe
DN
5502 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5503 int ret;
5504 struct mm_walk mem_cgroup_move_charge_walk = {
5505 .pmd_entry = mem_cgroup_move_charge_pte_range,
5506 .mm = mm,
5507 .private = vma,
5508 };
5509 if (is_vm_hugetlb_page(vma))
5510 continue;
4ffef5fe
DN
5511 ret = walk_page_range(vma->vm_start, vma->vm_end,
5512 &mem_cgroup_move_charge_walk);
5513 if (ret)
5514 /*
5515 * means we have consumed all precharges and failed in
5516 * doing additional charge. Just abandon here.
5517 */
5518 break;
5519 }
dfe076b0 5520 up_read(&mm->mmap_sem);
312722cb 5521 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5522}
5523
eb95419b 5524static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5525 struct cgroup_taskset *tset)
67e465a7 5526{
2f7ee569 5527 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5528 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5529
dfe076b0 5530 if (mm) {
a433658c
KM
5531 if (mc.to)
5532 mem_cgroup_move_charge(mm);
dfe076b0
DN
5533 mmput(mm);
5534 }
a433658c
KM
5535 if (mc.to)
5536 mem_cgroup_clear_mc();
67e465a7 5537}
5cfb80a7 5538#else /* !CONFIG_MMU */
eb95419b 5539static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5540 struct cgroup_taskset *tset)
5cfb80a7
DN
5541{
5542 return 0;
5543}
eb95419b 5544static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5545 struct cgroup_taskset *tset)
5cfb80a7
DN
5546{
5547}
eb95419b 5548static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5549 struct cgroup_taskset *tset)
5cfb80a7
DN
5550{
5551}
5552#endif
67e465a7 5553
f00baae7
TH
5554/*
5555 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5556 * to verify whether we're attached to the default hierarchy on each mount
5557 * attempt.
f00baae7 5558 */
eb95419b 5559static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5560{
5561 /*
aa6ec29b 5562 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5563 * guarantees that @root doesn't have any children, so turning it
5564 * on for the root memcg is enough.
5565 */
aa6ec29b 5566 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5567 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5568}
5569
073219e9 5570struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5571 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5572 .css_online = mem_cgroup_css_online,
92fb9748
TH
5573 .css_offline = mem_cgroup_css_offline,
5574 .css_free = mem_cgroup_css_free,
1ced953b 5575 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5576 .can_attach = mem_cgroup_can_attach,
5577 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5578 .attach = mem_cgroup_move_task,
f00baae7 5579 .bind = mem_cgroup_bind,
5577964e 5580 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5581 .early_init = 0,
8cdea7c0 5582};
c077719b 5583
c255a458 5584#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5585static int __init enable_swap_account(char *s)
5586{
a2c8990a 5587 if (!strcmp(s, "1"))
a42c390c 5588 really_do_swap_account = 1;
a2c8990a 5589 else if (!strcmp(s, "0"))
a42c390c
MH
5590 really_do_swap_account = 0;
5591 return 1;
5592}
a2c8990a 5593__setup("swapaccount=", enable_swap_account);
c077719b 5594
2d11085e
MH
5595static void __init memsw_file_init(void)
5596{
2cf669a5
TH
5597 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5598 memsw_cgroup_files));
6acc8b02
MH
5599}
5600
5601static void __init enable_swap_cgroup(void)
5602{
5603 if (!mem_cgroup_disabled() && really_do_swap_account) {
5604 do_swap_account = 1;
5605 memsw_file_init();
5606 }
2d11085e 5607}
6acc8b02 5608
2d11085e 5609#else
6acc8b02 5610static void __init enable_swap_cgroup(void)
2d11085e
MH
5611{
5612}
c077719b 5613#endif
2d11085e 5614
0a31bc97
JW
5615#ifdef CONFIG_MEMCG_SWAP
5616/**
5617 * mem_cgroup_swapout - transfer a memsw charge to swap
5618 * @page: page whose memsw charge to transfer
5619 * @entry: swap entry to move the charge to
5620 *
5621 * Transfer the memsw charge of @page to @entry.
5622 */
5623void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5624{
7bdd143c 5625 struct mem_cgroup *memcg;
0a31bc97
JW
5626 struct page_cgroup *pc;
5627 unsigned short oldid;
5628
5629 VM_BUG_ON_PAGE(PageLRU(page), page);
5630 VM_BUG_ON_PAGE(page_count(page), page);
5631
5632 if (!do_swap_account)
5633 return;
5634
5635 pc = lookup_page_cgroup(page);
29833315 5636 memcg = pc->mem_cgroup;
0a31bc97
JW
5637
5638 /* Readahead page, never charged */
29833315 5639 if (!memcg)
0a31bc97
JW
5640 return;
5641
7bdd143c 5642 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5643 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5644 mem_cgroup_swap_statistics(memcg, true);
5645
29833315 5646 pc->mem_cgroup = NULL;
7bdd143c
JW
5647
5648 if (!mem_cgroup_is_root(memcg))
5649 page_counter_uncharge(&memcg->memory, 1);
5650
5651 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5652 VM_BUG_ON(!irqs_disabled());
0a31bc97 5653
7bdd143c
JW
5654 mem_cgroup_charge_statistics(memcg, page, -1);
5655 memcg_check_events(memcg, page);
0a31bc97
JW
5656}
5657
5658/**
5659 * mem_cgroup_uncharge_swap - uncharge a swap entry
5660 * @entry: swap entry to uncharge
5661 *
5662 * Drop the memsw charge associated with @entry.
5663 */
5664void mem_cgroup_uncharge_swap(swp_entry_t entry)
5665{
5666 struct mem_cgroup *memcg;
5667 unsigned short id;
5668
5669 if (!do_swap_account)
5670 return;
5671
5672 id = swap_cgroup_record(entry, 0);
5673 rcu_read_lock();
5674 memcg = mem_cgroup_lookup(id);
5675 if (memcg) {
ce00a967 5676 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5677 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5678 mem_cgroup_swap_statistics(memcg, false);
5679 css_put(&memcg->css);
5680 }
5681 rcu_read_unlock();
5682}
5683#endif
5684
00501b53
JW
5685/**
5686 * mem_cgroup_try_charge - try charging a page
5687 * @page: page to charge
5688 * @mm: mm context of the victim
5689 * @gfp_mask: reclaim mode
5690 * @memcgp: charged memcg return
5691 *
5692 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5693 * pages according to @gfp_mask if necessary.
5694 *
5695 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5696 * Otherwise, an error code is returned.
5697 *
5698 * After page->mapping has been set up, the caller must finalize the
5699 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5700 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5701 */
5702int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5703 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5704{
5705 struct mem_cgroup *memcg = NULL;
5706 unsigned int nr_pages = 1;
5707 int ret = 0;
5708
5709 if (mem_cgroup_disabled())
5710 goto out;
5711
5712 if (PageSwapCache(page)) {
5713 struct page_cgroup *pc = lookup_page_cgroup(page);
5714 /*
5715 * Every swap fault against a single page tries to charge the
5716 * page, bail as early as possible. shmem_unuse() encounters
5717 * already charged pages, too. The USED bit is protected by
5718 * the page lock, which serializes swap cache removal, which
5719 * in turn serializes uncharging.
5720 */
29833315 5721 if (pc->mem_cgroup)
00501b53
JW
5722 goto out;
5723 }
5724
5725 if (PageTransHuge(page)) {
5726 nr_pages <<= compound_order(page);
5727 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5728 }
5729
5730 if (do_swap_account && PageSwapCache(page))
5731 memcg = try_get_mem_cgroup_from_page(page);
5732 if (!memcg)
5733 memcg = get_mem_cgroup_from_mm(mm);
5734
5735 ret = try_charge(memcg, gfp_mask, nr_pages);
5736
5737 css_put(&memcg->css);
5738
5739 if (ret == -EINTR) {
5740 memcg = root_mem_cgroup;
5741 ret = 0;
5742 }
5743out:
5744 *memcgp = memcg;
5745 return ret;
5746}
5747
5748/**
5749 * mem_cgroup_commit_charge - commit a page charge
5750 * @page: page to charge
5751 * @memcg: memcg to charge the page to
5752 * @lrucare: page might be on LRU already
5753 *
5754 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5755 * after page->mapping has been set up. This must happen atomically
5756 * as part of the page instantiation, i.e. under the page table lock
5757 * for anonymous pages, under the page lock for page and swap cache.
5758 *
5759 * In addition, the page must not be on the LRU during the commit, to
5760 * prevent racing with task migration. If it might be, use @lrucare.
5761 *
5762 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5763 */
5764void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5765 bool lrucare)
5766{
5767 unsigned int nr_pages = 1;
5768
5769 VM_BUG_ON_PAGE(!page->mapping, page);
5770 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5771
5772 if (mem_cgroup_disabled())
5773 return;
5774 /*
5775 * Swap faults will attempt to charge the same page multiple
5776 * times. But reuse_swap_page() might have removed the page
5777 * from swapcache already, so we can't check PageSwapCache().
5778 */
5779 if (!memcg)
5780 return;
5781
6abb5a86
JW
5782 commit_charge(page, memcg, lrucare);
5783
00501b53
JW
5784 if (PageTransHuge(page)) {
5785 nr_pages <<= compound_order(page);
5786 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5787 }
5788
6abb5a86
JW
5789 local_irq_disable();
5790 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5791 memcg_check_events(memcg, page);
5792 local_irq_enable();
00501b53
JW
5793
5794 if (do_swap_account && PageSwapCache(page)) {
5795 swp_entry_t entry = { .val = page_private(page) };
5796 /*
5797 * The swap entry might not get freed for a long time,
5798 * let's not wait for it. The page already received a
5799 * memory+swap charge, drop the swap entry duplicate.
5800 */
5801 mem_cgroup_uncharge_swap(entry);
5802 }
5803}
5804
5805/**
5806 * mem_cgroup_cancel_charge - cancel a page charge
5807 * @page: page to charge
5808 * @memcg: memcg to charge the page to
5809 *
5810 * Cancel a charge transaction started by mem_cgroup_try_charge().
5811 */
5812void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5813{
5814 unsigned int nr_pages = 1;
5815
5816 if (mem_cgroup_disabled())
5817 return;
5818 /*
5819 * Swap faults will attempt to charge the same page multiple
5820 * times. But reuse_swap_page() might have removed the page
5821 * from swapcache already, so we can't check PageSwapCache().
5822 */
5823 if (!memcg)
5824 return;
5825
5826 if (PageTransHuge(page)) {
5827 nr_pages <<= compound_order(page);
5828 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5829 }
5830
5831 cancel_charge(memcg, nr_pages);
5832}
5833
747db954 5834static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5835 unsigned long nr_anon, unsigned long nr_file,
5836 unsigned long nr_huge, struct page *dummy_page)
5837{
18eca2e6 5838 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5839 unsigned long flags;
5840
ce00a967 5841 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5842 page_counter_uncharge(&memcg->memory, nr_pages);
5843 if (do_swap_account)
5844 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5845 memcg_oom_recover(memcg);
5846 }
747db954
JW
5847
5848 local_irq_save(flags);
5849 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5850 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5851 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5852 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5853 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5854 memcg_check_events(memcg, dummy_page);
5855 local_irq_restore(flags);
e8ea14cc
JW
5856
5857 if (!mem_cgroup_is_root(memcg))
18eca2e6 5858 css_put_many(&memcg->css, nr_pages);
747db954
JW
5859}
5860
5861static void uncharge_list(struct list_head *page_list)
5862{
5863 struct mem_cgroup *memcg = NULL;
747db954
JW
5864 unsigned long nr_anon = 0;
5865 unsigned long nr_file = 0;
5866 unsigned long nr_huge = 0;
5867 unsigned long pgpgout = 0;
747db954
JW
5868 struct list_head *next;
5869 struct page *page;
5870
5871 next = page_list->next;
5872 do {
5873 unsigned int nr_pages = 1;
5874 struct page_cgroup *pc;
5875
5876 page = list_entry(next, struct page, lru);
5877 next = page->lru.next;
5878
5879 VM_BUG_ON_PAGE(PageLRU(page), page);
5880 VM_BUG_ON_PAGE(page_count(page), page);
5881
5882 pc = lookup_page_cgroup(page);
29833315 5883 if (!pc->mem_cgroup)
747db954
JW
5884 continue;
5885
5886 /*
5887 * Nobody should be changing or seriously looking at
29833315
JW
5888 * pc->mem_cgroup at this point, we have fully
5889 * exclusive access to the page.
747db954
JW
5890 */
5891
5892 if (memcg != pc->mem_cgroup) {
5893 if (memcg) {
18eca2e6
JW
5894 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5895 nr_huge, page);
5896 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
5897 }
5898 memcg = pc->mem_cgroup;
5899 }
5900
5901 if (PageTransHuge(page)) {
5902 nr_pages <<= compound_order(page);
5903 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5904 nr_huge += nr_pages;
5905 }
5906
5907 if (PageAnon(page))
5908 nr_anon += nr_pages;
5909 else
5910 nr_file += nr_pages;
5911
29833315 5912 pc->mem_cgroup = NULL;
747db954
JW
5913
5914 pgpgout++;
5915 } while (next != page_list);
5916
5917 if (memcg)
18eca2e6
JW
5918 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5919 nr_huge, page);
747db954
JW
5920}
5921
0a31bc97
JW
5922/**
5923 * mem_cgroup_uncharge - uncharge a page
5924 * @page: page to uncharge
5925 *
5926 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5927 * mem_cgroup_commit_charge().
5928 */
5929void mem_cgroup_uncharge(struct page *page)
5930{
0a31bc97 5931 struct page_cgroup *pc;
0a31bc97
JW
5932
5933 if (mem_cgroup_disabled())
5934 return;
5935
747db954 5936 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 5937 pc = lookup_page_cgroup(page);
29833315 5938 if (!pc->mem_cgroup)
0a31bc97
JW
5939 return;
5940
747db954
JW
5941 INIT_LIST_HEAD(&page->lru);
5942 uncharge_list(&page->lru);
5943}
0a31bc97 5944
747db954
JW
5945/**
5946 * mem_cgroup_uncharge_list - uncharge a list of page
5947 * @page_list: list of pages to uncharge
5948 *
5949 * Uncharge a list of pages previously charged with
5950 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5951 */
5952void mem_cgroup_uncharge_list(struct list_head *page_list)
5953{
5954 if (mem_cgroup_disabled())
5955 return;
0a31bc97 5956
747db954
JW
5957 if (!list_empty(page_list))
5958 uncharge_list(page_list);
0a31bc97
JW
5959}
5960
5961/**
5962 * mem_cgroup_migrate - migrate a charge to another page
5963 * @oldpage: currently charged page
5964 * @newpage: page to transfer the charge to
5965 * @lrucare: both pages might be on the LRU already
5966 *
5967 * Migrate the charge from @oldpage to @newpage.
5968 *
5969 * Both pages must be locked, @newpage->mapping must be set up.
5970 */
5971void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5972 bool lrucare)
5973{
29833315 5974 struct mem_cgroup *memcg;
0a31bc97
JW
5975 struct page_cgroup *pc;
5976 int isolated;
5977
5978 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5979 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5980 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5981 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5982 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5983 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5984 newpage);
0a31bc97
JW
5985
5986 if (mem_cgroup_disabled())
5987 return;
5988
5989 /* Page cache replacement: new page already charged? */
5990 pc = lookup_page_cgroup(newpage);
29833315 5991 if (pc->mem_cgroup)
0a31bc97
JW
5992 return;
5993
7d5e3245
JW
5994 /*
5995 * Swapcache readahead pages can get migrated before being
5996 * charged, and migration from compaction can happen to an
5997 * uncharged page when the PFN walker finds a page that
5998 * reclaim just put back on the LRU but has not released yet.
5999 */
0a31bc97 6000 pc = lookup_page_cgroup(oldpage);
29833315
JW
6001 memcg = pc->mem_cgroup;
6002 if (!memcg)
0a31bc97
JW
6003 return;
6004
0a31bc97
JW
6005 if (lrucare)
6006 lock_page_lru(oldpage, &isolated);
6007
29833315 6008 pc->mem_cgroup = NULL;
0a31bc97
JW
6009
6010 if (lrucare)
6011 unlock_page_lru(oldpage, isolated);
6012
29833315 6013 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
6014}
6015
2d11085e 6016/*
1081312f
MH
6017 * subsys_initcall() for memory controller.
6018 *
6019 * Some parts like hotcpu_notifier() have to be initialized from this context
6020 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6021 * everything that doesn't depend on a specific mem_cgroup structure should
6022 * be initialized from here.
2d11085e
MH
6023 */
6024static int __init mem_cgroup_init(void)
6025{
6026 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6027 enable_swap_cgroup();
bb4cc1a8 6028 mem_cgroup_soft_limit_tree_init();
e4777496 6029 memcg_stock_init();
2d11085e
MH
6030 return 0;
6031}
6032subsys_initcall(mem_cgroup_init);
This page took 1.789202 seconds and 5 git commands to generate.