mm: update_lru_size warn and reset bad lru_size
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
ca707239
HD
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1029 */
fa9add64
HD
1030void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
3f58a829
MK
1032{
1033 struct mem_cgroup_per_zone *mz;
fa9add64 1034 unsigned long *lru_size;
ca707239
HD
1035 long size;
1036 bool empty;
3f58a829
MK
1037
1038 if (mem_cgroup_disabled())
1039 return;
1040
fa9add64
HD
1041 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1042 lru_size = mz->lru_size + lru;
ca707239
HD
1043 empty = list_empty(lruvec->lists + lru);
1044
1045 if (nr_pages < 0)
1046 *lru_size += nr_pages;
1047
1048 size = *lru_size;
1049 if (WARN_ONCE(size < 0 || empty != !size,
1050 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1051 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1052 VM_BUG_ON(1);
1053 *lru_size = 0;
1054 }
1055
1056 if (nr_pages > 0)
1057 *lru_size += nr_pages;
08e552c6 1058}
544122e5 1059
2314b42d 1060bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1061{
2314b42d 1062 struct mem_cgroup *task_memcg;
158e0a2d 1063 struct task_struct *p;
ffbdccf5 1064 bool ret;
4c4a2214 1065
158e0a2d 1066 p = find_lock_task_mm(task);
de077d22 1067 if (p) {
2314b42d 1068 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1069 task_unlock(p);
1070 } else {
1071 /*
1072 * All threads may have already detached their mm's, but the oom
1073 * killer still needs to detect if they have already been oom
1074 * killed to prevent needlessly killing additional tasks.
1075 */
ffbdccf5 1076 rcu_read_lock();
2314b42d
JW
1077 task_memcg = mem_cgroup_from_task(task);
1078 css_get(&task_memcg->css);
ffbdccf5 1079 rcu_read_unlock();
de077d22 1080 }
2314b42d
JW
1081 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1082 css_put(&task_memcg->css);
4c4a2214
DR
1083 return ret;
1084}
1085
19942822 1086/**
9d11ea9f 1087 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1088 * @memcg: the memory cgroup
19942822 1089 *
9d11ea9f 1090 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1091 * pages.
19942822 1092 */
c0ff4b85 1093static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1094{
3e32cb2e
JW
1095 unsigned long margin = 0;
1096 unsigned long count;
1097 unsigned long limit;
9d11ea9f 1098
3e32cb2e 1099 count = page_counter_read(&memcg->memory);
4db0c3c2 1100 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1101 if (count < limit)
1102 margin = limit - count;
1103
7941d214 1104 if (do_memsw_account()) {
3e32cb2e 1105 count = page_counter_read(&memcg->memsw);
4db0c3c2 1106 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1107 if (count <= limit)
1108 margin = min(margin, limit - count);
1109 }
1110
1111 return margin;
19942822
JW
1112}
1113
32047e2a 1114/*
bdcbb659 1115 * A routine for checking "mem" is under move_account() or not.
32047e2a 1116 *
bdcbb659
QH
1117 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1118 * moving cgroups. This is for waiting at high-memory pressure
1119 * caused by "move".
32047e2a 1120 */
c0ff4b85 1121static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1122{
2bd9bb20
KH
1123 struct mem_cgroup *from;
1124 struct mem_cgroup *to;
4b534334 1125 bool ret = false;
2bd9bb20
KH
1126 /*
1127 * Unlike task_move routines, we access mc.to, mc.from not under
1128 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1129 */
1130 spin_lock(&mc.lock);
1131 from = mc.from;
1132 to = mc.to;
1133 if (!from)
1134 goto unlock;
3e92041d 1135
2314b42d
JW
1136 ret = mem_cgroup_is_descendant(from, memcg) ||
1137 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1138unlock:
1139 spin_unlock(&mc.lock);
4b534334
KH
1140 return ret;
1141}
1142
c0ff4b85 1143static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1144{
1145 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1146 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1147 DEFINE_WAIT(wait);
1148 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1149 /* moving charge context might have finished. */
1150 if (mc.moving_task)
1151 schedule();
1152 finish_wait(&mc.waitq, &wait);
1153 return true;
1154 }
1155 }
1156 return false;
1157}
1158
58cf188e 1159#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1160/**
58cf188e 1161 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1162 * @memcg: The memory cgroup that went over limit
1163 * @p: Task that is going to be killed
1164 *
1165 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1166 * enabled
1167 */
1168void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1169{
58cf188e
SZ
1170 struct mem_cgroup *iter;
1171 unsigned int i;
e222432b 1172
e222432b
BS
1173 rcu_read_lock();
1174
2415b9f5
BV
1175 if (p) {
1176 pr_info("Task in ");
1177 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1178 pr_cont(" killed as a result of limit of ");
1179 } else {
1180 pr_info("Memory limit reached of cgroup ");
1181 }
1182
e61734c5 1183 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1184 pr_cont("\n");
e222432b 1185
e222432b
BS
1186 rcu_read_unlock();
1187
3e32cb2e
JW
1188 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1189 K((u64)page_counter_read(&memcg->memory)),
1190 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1191 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1192 K((u64)page_counter_read(&memcg->memsw)),
1193 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1194 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1195 K((u64)page_counter_read(&memcg->kmem)),
1196 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1197
1198 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1199 pr_info("Memory cgroup stats for ");
1200 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1201 pr_cont(":");
1202
1203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1204 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1205 continue;
484ebb3b 1206 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1207 K(mem_cgroup_read_stat(iter, i)));
1208 }
1209
1210 for (i = 0; i < NR_LRU_LISTS; i++)
1211 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1212 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1213
1214 pr_cont("\n");
1215 }
e222432b
BS
1216}
1217
81d39c20
KH
1218/*
1219 * This function returns the number of memcg under hierarchy tree. Returns
1220 * 1(self count) if no children.
1221 */
c0ff4b85 1222static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1223{
1224 int num = 0;
7d74b06f
KH
1225 struct mem_cgroup *iter;
1226
c0ff4b85 1227 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1228 num++;
81d39c20
KH
1229 return num;
1230}
1231
a63d83f4
DR
1232/*
1233 * Return the memory (and swap, if configured) limit for a memcg.
1234 */
3e32cb2e 1235static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1236{
3e32cb2e 1237 unsigned long limit;
f3e8eb70 1238
3e32cb2e 1239 limit = memcg->memory.limit;
9a5a8f19 1240 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1241 unsigned long memsw_limit;
37e84351 1242 unsigned long swap_limit;
9a5a8f19 1243
3e32cb2e 1244 memsw_limit = memcg->memsw.limit;
37e84351
VD
1245 swap_limit = memcg->swap.limit;
1246 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1247 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1248 }
9a5a8f19 1249 return limit;
a63d83f4
DR
1250}
1251
b6e6edcf 1252static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1253 int order)
9cbb78bb 1254{
6e0fc46d
DR
1255 struct oom_control oc = {
1256 .zonelist = NULL,
1257 .nodemask = NULL,
1258 .gfp_mask = gfp_mask,
1259 .order = order,
6e0fc46d 1260 };
9cbb78bb
DR
1261 struct mem_cgroup *iter;
1262 unsigned long chosen_points = 0;
1263 unsigned long totalpages;
1264 unsigned int points = 0;
1265 struct task_struct *chosen = NULL;
1266
dc56401f
JW
1267 mutex_lock(&oom_lock);
1268
876aafbf 1269 /*
465adcf1
DR
1270 * If current has a pending SIGKILL or is exiting, then automatically
1271 * select it. The goal is to allow it to allocate so that it may
1272 * quickly exit and free its memory.
876aafbf 1273 */
d003f371 1274 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1275 mark_oom_victim(current);
dc56401f 1276 goto unlock;
876aafbf
DR
1277 }
1278
6e0fc46d 1279 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1280 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1281 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1282 struct css_task_iter it;
9cbb78bb
DR
1283 struct task_struct *task;
1284
72ec7029
TH
1285 css_task_iter_start(&iter->css, &it);
1286 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1287 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1288 case OOM_SCAN_SELECT:
1289 if (chosen)
1290 put_task_struct(chosen);
1291 chosen = task;
1292 chosen_points = ULONG_MAX;
1293 get_task_struct(chosen);
1294 /* fall through */
1295 case OOM_SCAN_CONTINUE:
1296 continue;
1297 case OOM_SCAN_ABORT:
72ec7029 1298 css_task_iter_end(&it);
9cbb78bb
DR
1299 mem_cgroup_iter_break(memcg, iter);
1300 if (chosen)
1301 put_task_struct(chosen);
dc56401f 1302 goto unlock;
9cbb78bb
DR
1303 case OOM_SCAN_OK:
1304 break;
1305 };
1306 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1307 if (!points || points < chosen_points)
1308 continue;
1309 /* Prefer thread group leaders for display purposes */
1310 if (points == chosen_points &&
1311 thread_group_leader(chosen))
1312 continue;
1313
1314 if (chosen)
1315 put_task_struct(chosen);
1316 chosen = task;
1317 chosen_points = points;
1318 get_task_struct(chosen);
9cbb78bb 1319 }
72ec7029 1320 css_task_iter_end(&it);
9cbb78bb
DR
1321 }
1322
dc56401f
JW
1323 if (chosen) {
1324 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1325 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1326 "Memory cgroup out of memory");
dc56401f
JW
1327 }
1328unlock:
1329 mutex_unlock(&oom_lock);
b6e6edcf 1330 return chosen;
9cbb78bb
DR
1331}
1332
ae6e71d3
MC
1333#if MAX_NUMNODES > 1
1334
4d0c066d
KH
1335/**
1336 * test_mem_cgroup_node_reclaimable
dad7557e 1337 * @memcg: the target memcg
4d0c066d
KH
1338 * @nid: the node ID to be checked.
1339 * @noswap : specify true here if the user wants flle only information.
1340 *
1341 * This function returns whether the specified memcg contains any
1342 * reclaimable pages on a node. Returns true if there are any reclaimable
1343 * pages in the node.
1344 */
c0ff4b85 1345static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1346 int nid, bool noswap)
1347{
c0ff4b85 1348 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1349 return true;
1350 if (noswap || !total_swap_pages)
1351 return false;
c0ff4b85 1352 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1353 return true;
1354 return false;
1355
1356}
889976db
YH
1357
1358/*
1359 * Always updating the nodemask is not very good - even if we have an empty
1360 * list or the wrong list here, we can start from some node and traverse all
1361 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1362 *
1363 */
c0ff4b85 1364static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1365{
1366 int nid;
453a9bf3
KH
1367 /*
1368 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1369 * pagein/pageout changes since the last update.
1370 */
c0ff4b85 1371 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1372 return;
c0ff4b85 1373 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1374 return;
1375
889976db 1376 /* make a nodemask where this memcg uses memory from */
31aaea4a 1377 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1378
31aaea4a 1379 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1380
c0ff4b85
R
1381 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1382 node_clear(nid, memcg->scan_nodes);
889976db 1383 }
453a9bf3 1384
c0ff4b85
R
1385 atomic_set(&memcg->numainfo_events, 0);
1386 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1387}
1388
1389/*
1390 * Selecting a node where we start reclaim from. Because what we need is just
1391 * reducing usage counter, start from anywhere is O,K. Considering
1392 * memory reclaim from current node, there are pros. and cons.
1393 *
1394 * Freeing memory from current node means freeing memory from a node which
1395 * we'll use or we've used. So, it may make LRU bad. And if several threads
1396 * hit limits, it will see a contention on a node. But freeing from remote
1397 * node means more costs for memory reclaim because of memory latency.
1398 *
1399 * Now, we use round-robin. Better algorithm is welcomed.
1400 */
c0ff4b85 1401int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1402{
1403 int node;
1404
c0ff4b85
R
1405 mem_cgroup_may_update_nodemask(memcg);
1406 node = memcg->last_scanned_node;
889976db 1407
0edaf86c 1408 node = next_node_in(node, memcg->scan_nodes);
889976db 1409 /*
fda3d69b
MH
1410 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1411 * last time it really checked all the LRUs due to rate limiting.
1412 * Fallback to the current node in that case for simplicity.
889976db
YH
1413 */
1414 if (unlikely(node == MAX_NUMNODES))
1415 node = numa_node_id();
1416
c0ff4b85 1417 memcg->last_scanned_node = node;
889976db
YH
1418 return node;
1419}
889976db 1420#else
c0ff4b85 1421int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1422{
1423 return 0;
1424}
1425#endif
1426
0608f43d
AM
1427static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1428 struct zone *zone,
1429 gfp_t gfp_mask,
1430 unsigned long *total_scanned)
1431{
1432 struct mem_cgroup *victim = NULL;
1433 int total = 0;
1434 int loop = 0;
1435 unsigned long excess;
1436 unsigned long nr_scanned;
1437 struct mem_cgroup_reclaim_cookie reclaim = {
1438 .zone = zone,
1439 .priority = 0,
1440 };
1441
3e32cb2e 1442 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1443
1444 while (1) {
1445 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1446 if (!victim) {
1447 loop++;
1448 if (loop >= 2) {
1449 /*
1450 * If we have not been able to reclaim
1451 * anything, it might because there are
1452 * no reclaimable pages under this hierarchy
1453 */
1454 if (!total)
1455 break;
1456 /*
1457 * We want to do more targeted reclaim.
1458 * excess >> 2 is not to excessive so as to
1459 * reclaim too much, nor too less that we keep
1460 * coming back to reclaim from this cgroup
1461 */
1462 if (total >= (excess >> 2) ||
1463 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1464 break;
1465 }
1466 continue;
1467 }
0608f43d
AM
1468 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1469 zone, &nr_scanned);
1470 *total_scanned += nr_scanned;
3e32cb2e 1471 if (!soft_limit_excess(root_memcg))
0608f43d 1472 break;
6d61ef40 1473 }
0608f43d
AM
1474 mem_cgroup_iter_break(root_memcg, victim);
1475 return total;
6d61ef40
BS
1476}
1477
0056f4e6
JW
1478#ifdef CONFIG_LOCKDEP
1479static struct lockdep_map memcg_oom_lock_dep_map = {
1480 .name = "memcg_oom_lock",
1481};
1482#endif
1483
fb2a6fc5
JW
1484static DEFINE_SPINLOCK(memcg_oom_lock);
1485
867578cb
KH
1486/*
1487 * Check OOM-Killer is already running under our hierarchy.
1488 * If someone is running, return false.
1489 */
fb2a6fc5 1490static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1491{
79dfdacc 1492 struct mem_cgroup *iter, *failed = NULL;
a636b327 1493
fb2a6fc5
JW
1494 spin_lock(&memcg_oom_lock);
1495
9f3a0d09 1496 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1497 if (iter->oom_lock) {
79dfdacc
MH
1498 /*
1499 * this subtree of our hierarchy is already locked
1500 * so we cannot give a lock.
1501 */
79dfdacc 1502 failed = iter;
9f3a0d09
JW
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
23751be0
JW
1505 } else
1506 iter->oom_lock = true;
7d74b06f 1507 }
867578cb 1508
fb2a6fc5
JW
1509 if (failed) {
1510 /*
1511 * OK, we failed to lock the whole subtree so we have
1512 * to clean up what we set up to the failing subtree
1513 */
1514 for_each_mem_cgroup_tree(iter, memcg) {
1515 if (iter == failed) {
1516 mem_cgroup_iter_break(memcg, iter);
1517 break;
1518 }
1519 iter->oom_lock = false;
79dfdacc 1520 }
0056f4e6
JW
1521 } else
1522 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1523
1524 spin_unlock(&memcg_oom_lock);
1525
1526 return !failed;
a636b327 1527}
0b7f569e 1528
fb2a6fc5 1529static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1530{
7d74b06f
KH
1531 struct mem_cgroup *iter;
1532
fb2a6fc5 1533 spin_lock(&memcg_oom_lock);
0056f4e6 1534 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1535 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1536 iter->oom_lock = false;
fb2a6fc5 1537 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1538}
1539
c0ff4b85 1540static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1541{
1542 struct mem_cgroup *iter;
1543
c2b42d3c 1544 spin_lock(&memcg_oom_lock);
c0ff4b85 1545 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1546 iter->under_oom++;
1547 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1548}
1549
c0ff4b85 1550static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1551{
1552 struct mem_cgroup *iter;
1553
867578cb
KH
1554 /*
1555 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1556 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1557 */
c2b42d3c 1558 spin_lock(&memcg_oom_lock);
c0ff4b85 1559 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1560 if (iter->under_oom > 0)
1561 iter->under_oom--;
1562 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1563}
1564
867578cb
KH
1565static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1566
dc98df5a 1567struct oom_wait_info {
d79154bb 1568 struct mem_cgroup *memcg;
dc98df5a
KH
1569 wait_queue_t wait;
1570};
1571
1572static int memcg_oom_wake_function(wait_queue_t *wait,
1573 unsigned mode, int sync, void *arg)
1574{
d79154bb
HD
1575 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1576 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1577 struct oom_wait_info *oom_wait_info;
1578
1579 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1580 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1581
2314b42d
JW
1582 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1583 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1584 return 0;
dc98df5a
KH
1585 return autoremove_wake_function(wait, mode, sync, arg);
1586}
1587
c0ff4b85 1588static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1589{
c2b42d3c
TH
1590 /*
1591 * For the following lockless ->under_oom test, the only required
1592 * guarantee is that it must see the state asserted by an OOM when
1593 * this function is called as a result of userland actions
1594 * triggered by the notification of the OOM. This is trivially
1595 * achieved by invoking mem_cgroup_mark_under_oom() before
1596 * triggering notification.
1597 */
1598 if (memcg && memcg->under_oom)
f4b90b70 1599 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1600}
1601
3812c8c8 1602static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1603{
626ebc41 1604 if (!current->memcg_may_oom)
3812c8c8 1605 return;
867578cb 1606 /*
49426420
JW
1607 * We are in the middle of the charge context here, so we
1608 * don't want to block when potentially sitting on a callstack
1609 * that holds all kinds of filesystem and mm locks.
1610 *
1611 * Also, the caller may handle a failed allocation gracefully
1612 * (like optional page cache readahead) and so an OOM killer
1613 * invocation might not even be necessary.
1614 *
1615 * That's why we don't do anything here except remember the
1616 * OOM context and then deal with it at the end of the page
1617 * fault when the stack is unwound, the locks are released,
1618 * and when we know whether the fault was overall successful.
867578cb 1619 */
49426420 1620 css_get(&memcg->css);
626ebc41
TH
1621 current->memcg_in_oom = memcg;
1622 current->memcg_oom_gfp_mask = mask;
1623 current->memcg_oom_order = order;
3812c8c8
JW
1624}
1625
1626/**
1627 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1628 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1629 *
49426420
JW
1630 * This has to be called at the end of a page fault if the memcg OOM
1631 * handler was enabled.
3812c8c8 1632 *
49426420 1633 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1634 * sleep on a waitqueue until the userspace task resolves the
1635 * situation. Sleeping directly in the charge context with all kinds
1636 * of locks held is not a good idea, instead we remember an OOM state
1637 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1638 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1639 *
1640 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1641 * completed, %false otherwise.
3812c8c8 1642 */
49426420 1643bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1644{
626ebc41 1645 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1646 struct oom_wait_info owait;
49426420 1647 bool locked;
3812c8c8
JW
1648
1649 /* OOM is global, do not handle */
3812c8c8 1650 if (!memcg)
49426420 1651 return false;
3812c8c8 1652
c32b3cbe 1653 if (!handle || oom_killer_disabled)
49426420 1654 goto cleanup;
3812c8c8
JW
1655
1656 owait.memcg = memcg;
1657 owait.wait.flags = 0;
1658 owait.wait.func = memcg_oom_wake_function;
1659 owait.wait.private = current;
1660 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1661
3812c8c8 1662 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1663 mem_cgroup_mark_under_oom(memcg);
1664
1665 locked = mem_cgroup_oom_trylock(memcg);
1666
1667 if (locked)
1668 mem_cgroup_oom_notify(memcg);
1669
1670 if (locked && !memcg->oom_kill_disable) {
1671 mem_cgroup_unmark_under_oom(memcg);
1672 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1673 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1674 current->memcg_oom_order);
49426420 1675 } else {
3812c8c8 1676 schedule();
49426420
JW
1677 mem_cgroup_unmark_under_oom(memcg);
1678 finish_wait(&memcg_oom_waitq, &owait.wait);
1679 }
1680
1681 if (locked) {
fb2a6fc5
JW
1682 mem_cgroup_oom_unlock(memcg);
1683 /*
1684 * There is no guarantee that an OOM-lock contender
1685 * sees the wakeups triggered by the OOM kill
1686 * uncharges. Wake any sleepers explicitely.
1687 */
1688 memcg_oom_recover(memcg);
1689 }
49426420 1690cleanup:
626ebc41 1691 current->memcg_in_oom = NULL;
3812c8c8 1692 css_put(&memcg->css);
867578cb 1693 return true;
0b7f569e
KH
1694}
1695
d7365e78 1696/**
81f8c3a4
JW
1697 * lock_page_memcg - lock a page->mem_cgroup binding
1698 * @page: the page
32047e2a 1699 *
81f8c3a4
JW
1700 * This function protects unlocked LRU pages from being moved to
1701 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1702 */
62cccb8c 1703void lock_page_memcg(struct page *page)
89c06bd5
KH
1704{
1705 struct mem_cgroup *memcg;
6de22619 1706 unsigned long flags;
89c06bd5 1707
6de22619
JW
1708 /*
1709 * The RCU lock is held throughout the transaction. The fast
1710 * path can get away without acquiring the memcg->move_lock
1711 * because page moving starts with an RCU grace period.
6de22619 1712 */
d7365e78
JW
1713 rcu_read_lock();
1714
1715 if (mem_cgroup_disabled())
62cccb8c 1716 return;
89c06bd5 1717again:
1306a85a 1718 memcg = page->mem_cgroup;
29833315 1719 if (unlikely(!memcg))
62cccb8c 1720 return;
d7365e78 1721
bdcbb659 1722 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1723 return;
89c06bd5 1724
6de22619 1725 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1726 if (memcg != page->mem_cgroup) {
6de22619 1727 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1728 goto again;
1729 }
6de22619
JW
1730
1731 /*
1732 * When charge migration first begins, we can have locked and
1733 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1734 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1735 */
1736 memcg->move_lock_task = current;
1737 memcg->move_lock_flags = flags;
d7365e78 1738
62cccb8c 1739 return;
89c06bd5 1740}
81f8c3a4 1741EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1742
d7365e78 1743/**
81f8c3a4 1744 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1745 * @page: the page
d7365e78 1746 */
62cccb8c 1747void unlock_page_memcg(struct page *page)
89c06bd5 1748{
62cccb8c
JW
1749 struct mem_cgroup *memcg = page->mem_cgroup;
1750
6de22619
JW
1751 if (memcg && memcg->move_lock_task == current) {
1752 unsigned long flags = memcg->move_lock_flags;
1753
1754 memcg->move_lock_task = NULL;
1755 memcg->move_lock_flags = 0;
1756
1757 spin_unlock_irqrestore(&memcg->move_lock, flags);
1758 }
89c06bd5 1759
d7365e78 1760 rcu_read_unlock();
89c06bd5 1761}
81f8c3a4 1762EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1763
cdec2e42
KH
1764/*
1765 * size of first charge trial. "32" comes from vmscan.c's magic value.
1766 * TODO: maybe necessary to use big numbers in big irons.
1767 */
7ec99d62 1768#define CHARGE_BATCH 32U
cdec2e42
KH
1769struct memcg_stock_pcp {
1770 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1771 unsigned int nr_pages;
cdec2e42 1772 struct work_struct work;
26fe6168 1773 unsigned long flags;
a0db00fc 1774#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1775};
1776static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1777static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1778
a0956d54
SS
1779/**
1780 * consume_stock: Try to consume stocked charge on this cpu.
1781 * @memcg: memcg to consume from.
1782 * @nr_pages: how many pages to charge.
1783 *
1784 * The charges will only happen if @memcg matches the current cpu's memcg
1785 * stock, and at least @nr_pages are available in that stock. Failure to
1786 * service an allocation will refill the stock.
1787 *
1788 * returns true if successful, false otherwise.
cdec2e42 1789 */
a0956d54 1790static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1791{
1792 struct memcg_stock_pcp *stock;
3e32cb2e 1793 bool ret = false;
cdec2e42 1794
a0956d54 1795 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1796 return ret;
a0956d54 1797
cdec2e42 1798 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1799 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1800 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1801 ret = true;
1802 }
cdec2e42
KH
1803 put_cpu_var(memcg_stock);
1804 return ret;
1805}
1806
1807/*
3e32cb2e 1808 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1809 */
1810static void drain_stock(struct memcg_stock_pcp *stock)
1811{
1812 struct mem_cgroup *old = stock->cached;
1813
11c9ea4e 1814 if (stock->nr_pages) {
3e32cb2e 1815 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1816 if (do_memsw_account())
3e32cb2e 1817 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1818 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1819 stock->nr_pages = 0;
cdec2e42
KH
1820 }
1821 stock->cached = NULL;
cdec2e42
KH
1822}
1823
1824/*
1825 * This must be called under preempt disabled or must be called by
1826 * a thread which is pinned to local cpu.
1827 */
1828static void drain_local_stock(struct work_struct *dummy)
1829{
7c8e0181 1830 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1831 drain_stock(stock);
26fe6168 1832 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1833}
1834
1835/*
3e32cb2e 1836 * Cache charges(val) to local per_cpu area.
320cc51d 1837 * This will be consumed by consume_stock() function, later.
cdec2e42 1838 */
c0ff4b85 1839static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1840{
1841 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1842
c0ff4b85 1843 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1844 drain_stock(stock);
c0ff4b85 1845 stock->cached = memcg;
cdec2e42 1846 }
11c9ea4e 1847 stock->nr_pages += nr_pages;
cdec2e42
KH
1848 put_cpu_var(memcg_stock);
1849}
1850
1851/*
c0ff4b85 1852 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1853 * of the hierarchy under it.
cdec2e42 1854 */
6d3d6aa2 1855static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1856{
26fe6168 1857 int cpu, curcpu;
d38144b7 1858
6d3d6aa2
JW
1859 /* If someone's already draining, avoid adding running more workers. */
1860 if (!mutex_trylock(&percpu_charge_mutex))
1861 return;
cdec2e42 1862 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1863 get_online_cpus();
5af12d0e 1864 curcpu = get_cpu();
cdec2e42
KH
1865 for_each_online_cpu(cpu) {
1866 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1867 struct mem_cgroup *memcg;
26fe6168 1868
c0ff4b85
R
1869 memcg = stock->cached;
1870 if (!memcg || !stock->nr_pages)
26fe6168 1871 continue;
2314b42d 1872 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1873 continue;
d1a05b69
MH
1874 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1875 if (cpu == curcpu)
1876 drain_local_stock(&stock->work);
1877 else
1878 schedule_work_on(cpu, &stock->work);
1879 }
cdec2e42 1880 }
5af12d0e 1881 put_cpu();
f894ffa8 1882 put_online_cpus();
9f50fad6 1883 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1884}
1885
0db0628d 1886static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1887 unsigned long action,
1888 void *hcpu)
1889{
1890 int cpu = (unsigned long)hcpu;
1891 struct memcg_stock_pcp *stock;
1892
619d094b 1893 if (action == CPU_ONLINE)
1489ebad 1894 return NOTIFY_OK;
1489ebad 1895
d833049b 1896 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1897 return NOTIFY_OK;
711d3d2c 1898
cdec2e42
KH
1899 stock = &per_cpu(memcg_stock, cpu);
1900 drain_stock(stock);
1901 return NOTIFY_OK;
1902}
1903
f7e1cb6e
JW
1904static void reclaim_high(struct mem_cgroup *memcg,
1905 unsigned int nr_pages,
1906 gfp_t gfp_mask)
1907{
1908 do {
1909 if (page_counter_read(&memcg->memory) <= memcg->high)
1910 continue;
1911 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1912 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1913 } while ((memcg = parent_mem_cgroup(memcg)));
1914}
1915
1916static void high_work_func(struct work_struct *work)
1917{
1918 struct mem_cgroup *memcg;
1919
1920 memcg = container_of(work, struct mem_cgroup, high_work);
1921 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1922}
1923
b23afb93
TH
1924/*
1925 * Scheduled by try_charge() to be executed from the userland return path
1926 * and reclaims memory over the high limit.
1927 */
1928void mem_cgroup_handle_over_high(void)
1929{
1930 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1931 struct mem_cgroup *memcg;
b23afb93
TH
1932
1933 if (likely(!nr_pages))
1934 return;
1935
f7e1cb6e
JW
1936 memcg = get_mem_cgroup_from_mm(current->mm);
1937 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1938 css_put(&memcg->css);
1939 current->memcg_nr_pages_over_high = 0;
1940}
1941
00501b53
JW
1942static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1943 unsigned int nr_pages)
8a9f3ccd 1944{
7ec99d62 1945 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1946 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1947 struct mem_cgroup *mem_over_limit;
3e32cb2e 1948 struct page_counter *counter;
6539cc05 1949 unsigned long nr_reclaimed;
b70a2a21
JW
1950 bool may_swap = true;
1951 bool drained = false;
a636b327 1952
ce00a967 1953 if (mem_cgroup_is_root(memcg))
10d53c74 1954 return 0;
6539cc05 1955retry:
b6b6cc72 1956 if (consume_stock(memcg, nr_pages))
10d53c74 1957 return 0;
8a9f3ccd 1958
7941d214 1959 if (!do_memsw_account() ||
6071ca52
JW
1960 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1961 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1962 goto done_restock;
7941d214 1963 if (do_memsw_account())
3e32cb2e
JW
1964 page_counter_uncharge(&memcg->memsw, batch);
1965 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1966 } else {
3e32cb2e 1967 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1968 may_swap = false;
3fbe7244 1969 }
7a81b88c 1970
6539cc05
JW
1971 if (batch > nr_pages) {
1972 batch = nr_pages;
1973 goto retry;
1974 }
6d61ef40 1975
06b078fc
JW
1976 /*
1977 * Unlike in global OOM situations, memcg is not in a physical
1978 * memory shortage. Allow dying and OOM-killed tasks to
1979 * bypass the last charges so that they can exit quickly and
1980 * free their memory.
1981 */
1982 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1983 fatal_signal_pending(current) ||
1984 current->flags & PF_EXITING))
10d53c74 1985 goto force;
06b078fc
JW
1986
1987 if (unlikely(task_in_memcg_oom(current)))
1988 goto nomem;
1989
d0164adc 1990 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1991 goto nomem;
4b534334 1992
241994ed
JW
1993 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1994
b70a2a21
JW
1995 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1996 gfp_mask, may_swap);
6539cc05 1997
61e02c74 1998 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1999 goto retry;
28c34c29 2000
b70a2a21 2001 if (!drained) {
6d3d6aa2 2002 drain_all_stock(mem_over_limit);
b70a2a21
JW
2003 drained = true;
2004 goto retry;
2005 }
2006
28c34c29
JW
2007 if (gfp_mask & __GFP_NORETRY)
2008 goto nomem;
6539cc05
JW
2009 /*
2010 * Even though the limit is exceeded at this point, reclaim
2011 * may have been able to free some pages. Retry the charge
2012 * before killing the task.
2013 *
2014 * Only for regular pages, though: huge pages are rather
2015 * unlikely to succeed so close to the limit, and we fall back
2016 * to regular pages anyway in case of failure.
2017 */
61e02c74 2018 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2019 goto retry;
2020 /*
2021 * At task move, charge accounts can be doubly counted. So, it's
2022 * better to wait until the end of task_move if something is going on.
2023 */
2024 if (mem_cgroup_wait_acct_move(mem_over_limit))
2025 goto retry;
2026
9b130619
JW
2027 if (nr_retries--)
2028 goto retry;
2029
06b078fc 2030 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2031 goto force;
06b078fc 2032
6539cc05 2033 if (fatal_signal_pending(current))
10d53c74 2034 goto force;
6539cc05 2035
241994ed
JW
2036 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2037
3608de07
JM
2038 mem_cgroup_oom(mem_over_limit, gfp_mask,
2039 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2040nomem:
6d1fdc48 2041 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2042 return -ENOMEM;
10d53c74
TH
2043force:
2044 /*
2045 * The allocation either can't fail or will lead to more memory
2046 * being freed very soon. Allow memory usage go over the limit
2047 * temporarily by force charging it.
2048 */
2049 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2050 if (do_memsw_account())
10d53c74
TH
2051 page_counter_charge(&memcg->memsw, nr_pages);
2052 css_get_many(&memcg->css, nr_pages);
2053
2054 return 0;
6539cc05
JW
2055
2056done_restock:
e8ea14cc 2057 css_get_many(&memcg->css, batch);
6539cc05
JW
2058 if (batch > nr_pages)
2059 refill_stock(memcg, batch - nr_pages);
b23afb93 2060
241994ed 2061 /*
b23afb93
TH
2062 * If the hierarchy is above the normal consumption range, schedule
2063 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2064 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2065 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2066 * not recorded as it most likely matches current's and won't
2067 * change in the meantime. As high limit is checked again before
2068 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2069 */
2070 do {
b23afb93 2071 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2072 /* Don't bother a random interrupted task */
2073 if (in_interrupt()) {
2074 schedule_work(&memcg->high_work);
2075 break;
2076 }
9516a18a 2077 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2078 set_notify_resume(current);
2079 break;
2080 }
241994ed 2081 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2082
2083 return 0;
7a81b88c 2084}
8a9f3ccd 2085
00501b53 2086static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2087{
ce00a967
JW
2088 if (mem_cgroup_is_root(memcg))
2089 return;
2090
3e32cb2e 2091 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2092 if (do_memsw_account())
3e32cb2e 2093 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2094
e8ea14cc 2095 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2096}
2097
0a31bc97
JW
2098static void lock_page_lru(struct page *page, int *isolated)
2099{
2100 struct zone *zone = page_zone(page);
2101
2102 spin_lock_irq(&zone->lru_lock);
2103 if (PageLRU(page)) {
2104 struct lruvec *lruvec;
2105
2106 lruvec = mem_cgroup_page_lruvec(page, zone);
2107 ClearPageLRU(page);
2108 del_page_from_lru_list(page, lruvec, page_lru(page));
2109 *isolated = 1;
2110 } else
2111 *isolated = 0;
2112}
2113
2114static void unlock_page_lru(struct page *page, int isolated)
2115{
2116 struct zone *zone = page_zone(page);
2117
2118 if (isolated) {
2119 struct lruvec *lruvec;
2120
2121 lruvec = mem_cgroup_page_lruvec(page, zone);
2122 VM_BUG_ON_PAGE(PageLRU(page), page);
2123 SetPageLRU(page);
2124 add_page_to_lru_list(page, lruvec, page_lru(page));
2125 }
2126 spin_unlock_irq(&zone->lru_lock);
2127}
2128
00501b53 2129static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2130 bool lrucare)
7a81b88c 2131{
0a31bc97 2132 int isolated;
9ce70c02 2133
1306a85a 2134 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2135
2136 /*
2137 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2138 * may already be on some other mem_cgroup's LRU. Take care of it.
2139 */
0a31bc97
JW
2140 if (lrucare)
2141 lock_page_lru(page, &isolated);
9ce70c02 2142
0a31bc97
JW
2143 /*
2144 * Nobody should be changing or seriously looking at
1306a85a 2145 * page->mem_cgroup at this point:
0a31bc97
JW
2146 *
2147 * - the page is uncharged
2148 *
2149 * - the page is off-LRU
2150 *
2151 * - an anonymous fault has exclusive page access, except for
2152 * a locked page table
2153 *
2154 * - a page cache insertion, a swapin fault, or a migration
2155 * have the page locked
2156 */
1306a85a 2157 page->mem_cgroup = memcg;
9ce70c02 2158
0a31bc97
JW
2159 if (lrucare)
2160 unlock_page_lru(page, isolated);
7a81b88c 2161}
66e1707b 2162
127424c8 2163#ifndef CONFIG_SLOB
f3bb3043 2164static int memcg_alloc_cache_id(void)
55007d84 2165{
f3bb3043
VD
2166 int id, size;
2167 int err;
2168
dbcf73e2 2169 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2170 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2171 if (id < 0)
2172 return id;
55007d84 2173
dbcf73e2 2174 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2175 return id;
2176
2177 /*
2178 * There's no space for the new id in memcg_caches arrays,
2179 * so we have to grow them.
2180 */
05257a1a 2181 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2182
2183 size = 2 * (id + 1);
55007d84
GC
2184 if (size < MEMCG_CACHES_MIN_SIZE)
2185 size = MEMCG_CACHES_MIN_SIZE;
2186 else if (size > MEMCG_CACHES_MAX_SIZE)
2187 size = MEMCG_CACHES_MAX_SIZE;
2188
f3bb3043 2189 err = memcg_update_all_caches(size);
60d3fd32
VD
2190 if (!err)
2191 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2192 if (!err)
2193 memcg_nr_cache_ids = size;
2194
2195 up_write(&memcg_cache_ids_sem);
2196
f3bb3043 2197 if (err) {
dbcf73e2 2198 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2199 return err;
2200 }
2201 return id;
2202}
2203
2204static void memcg_free_cache_id(int id)
2205{
dbcf73e2 2206 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2207}
2208
d5b3cf71 2209struct memcg_kmem_cache_create_work {
5722d094
VD
2210 struct mem_cgroup *memcg;
2211 struct kmem_cache *cachep;
2212 struct work_struct work;
2213};
2214
d5b3cf71 2215static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2216{
d5b3cf71
VD
2217 struct memcg_kmem_cache_create_work *cw =
2218 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2219 struct mem_cgroup *memcg = cw->memcg;
2220 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2221
d5b3cf71 2222 memcg_create_kmem_cache(memcg, cachep);
bd673145 2223
5722d094 2224 css_put(&memcg->css);
d7f25f8a
GC
2225 kfree(cw);
2226}
2227
2228/*
2229 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2230 */
d5b3cf71
VD
2231static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2232 struct kmem_cache *cachep)
d7f25f8a 2233{
d5b3cf71 2234 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2235
776ed0f0 2236 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2237 if (!cw)
d7f25f8a 2238 return;
8135be5a
VD
2239
2240 css_get(&memcg->css);
d7f25f8a
GC
2241
2242 cw->memcg = memcg;
2243 cw->cachep = cachep;
d5b3cf71 2244 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2245
d7f25f8a
GC
2246 schedule_work(&cw->work);
2247}
2248
d5b3cf71
VD
2249static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2250 struct kmem_cache *cachep)
0e9d92f2
GC
2251{
2252 /*
2253 * We need to stop accounting when we kmalloc, because if the
2254 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2255 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2256 *
2257 * However, it is better to enclose the whole function. Depending on
2258 * the debugging options enabled, INIT_WORK(), for instance, can
2259 * trigger an allocation. This too, will make us recurse. Because at
2260 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2261 * the safest choice is to do it like this, wrapping the whole function.
2262 */
6f185c29 2263 current->memcg_kmem_skip_account = 1;
d5b3cf71 2264 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2265 current->memcg_kmem_skip_account = 0;
0e9d92f2 2266}
c67a8a68 2267
d7f25f8a
GC
2268/*
2269 * Return the kmem_cache we're supposed to use for a slab allocation.
2270 * We try to use the current memcg's version of the cache.
2271 *
2272 * If the cache does not exist yet, if we are the first user of it,
2273 * we either create it immediately, if possible, or create it asynchronously
2274 * in a workqueue.
2275 * In the latter case, we will let the current allocation go through with
2276 * the original cache.
2277 *
2278 * Can't be called in interrupt context or from kernel threads.
2279 * This function needs to be called with rcu_read_lock() held.
2280 */
230e9fc2 2281struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2282{
2283 struct mem_cgroup *memcg;
959c8963 2284 struct kmem_cache *memcg_cachep;
2a4db7eb 2285 int kmemcg_id;
d7f25f8a 2286
f7ce3190 2287 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2288
230e9fc2
VD
2289 if (cachep->flags & SLAB_ACCOUNT)
2290 gfp |= __GFP_ACCOUNT;
2291
2292 if (!(gfp & __GFP_ACCOUNT))
2293 return cachep;
2294
9d100c5e 2295 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2296 return cachep;
2297
8135be5a 2298 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2299 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2300 if (kmemcg_id < 0)
ca0dde97 2301 goto out;
d7f25f8a 2302
2a4db7eb 2303 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2304 if (likely(memcg_cachep))
2305 return memcg_cachep;
ca0dde97
LZ
2306
2307 /*
2308 * If we are in a safe context (can wait, and not in interrupt
2309 * context), we could be be predictable and return right away.
2310 * This would guarantee that the allocation being performed
2311 * already belongs in the new cache.
2312 *
2313 * However, there are some clashes that can arrive from locking.
2314 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2315 * memcg_create_kmem_cache, this means no further allocation
2316 * could happen with the slab_mutex held. So it's better to
2317 * defer everything.
ca0dde97 2318 */
d5b3cf71 2319 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2320out:
8135be5a 2321 css_put(&memcg->css);
ca0dde97 2322 return cachep;
d7f25f8a 2323}
d7f25f8a 2324
8135be5a
VD
2325void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2326{
2327 if (!is_root_cache(cachep))
f7ce3190 2328 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2329}
2330
f3ccb2c4
VD
2331int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2332 struct mem_cgroup *memcg)
7ae1e1d0 2333{
f3ccb2c4
VD
2334 unsigned int nr_pages = 1 << order;
2335 struct page_counter *counter;
7ae1e1d0
GC
2336 int ret;
2337
f3ccb2c4 2338 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2339 if (ret)
f3ccb2c4 2340 return ret;
52c29b04
JW
2341
2342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2343 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2344 cancel_charge(memcg, nr_pages);
2345 return -ENOMEM;
7ae1e1d0
GC
2346 }
2347
f3ccb2c4 2348 page->mem_cgroup = memcg;
7ae1e1d0 2349
f3ccb2c4 2350 return 0;
7ae1e1d0
GC
2351}
2352
f3ccb2c4 2353int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2354{
f3ccb2c4 2355 struct mem_cgroup *memcg;
fcff7d7e 2356 int ret = 0;
7ae1e1d0 2357
f3ccb2c4 2358 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2359 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2360 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2361 css_put(&memcg->css);
d05e83a6 2362 return ret;
7ae1e1d0
GC
2363}
2364
d05e83a6 2365void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2366{
1306a85a 2367 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2368 unsigned int nr_pages = 1 << order;
7ae1e1d0 2369
7ae1e1d0
GC
2370 if (!memcg)
2371 return;
2372
309381fe 2373 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2374
52c29b04
JW
2375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2376 page_counter_uncharge(&memcg->kmem, nr_pages);
2377
f3ccb2c4 2378 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2379 if (do_memsw_account())
f3ccb2c4 2380 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2381
1306a85a 2382 page->mem_cgroup = NULL;
f3ccb2c4 2383 css_put_many(&memcg->css, nr_pages);
60d3fd32 2384}
127424c8 2385#endif /* !CONFIG_SLOB */
7ae1e1d0 2386
ca3e0214
KH
2387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2388
ca3e0214
KH
2389/*
2390 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2391 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2392 */
e94c8a9c 2393void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2394{
e94c8a9c 2395 int i;
ca3e0214 2396
3d37c4a9
KH
2397 if (mem_cgroup_disabled())
2398 return;
b070e65c 2399
29833315 2400 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2401 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2402
1306a85a 2403 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2404 HPAGE_PMD_NR);
ca3e0214 2405}
12d27107 2406#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2407
c255a458 2408#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2409static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2410 bool charge)
d13d1443 2411{
0a31bc97
JW
2412 int val = (charge) ? 1 : -1;
2413 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2414}
02491447
DN
2415
2416/**
2417 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2418 * @entry: swap entry to be moved
2419 * @from: mem_cgroup which the entry is moved from
2420 * @to: mem_cgroup which the entry is moved to
2421 *
2422 * It succeeds only when the swap_cgroup's record for this entry is the same
2423 * as the mem_cgroup's id of @from.
2424 *
2425 * Returns 0 on success, -EINVAL on failure.
2426 *
3e32cb2e 2427 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2428 * both res and memsw, and called css_get().
2429 */
2430static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2431 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2432{
2433 unsigned short old_id, new_id;
2434
34c00c31
LZ
2435 old_id = mem_cgroup_id(from);
2436 new_id = mem_cgroup_id(to);
02491447
DN
2437
2438 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2439 mem_cgroup_swap_statistics(from, false);
483c30b5 2440 mem_cgroup_swap_statistics(to, true);
02491447
DN
2441 return 0;
2442 }
2443 return -EINVAL;
2444}
2445#else
2446static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2447 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2448{
2449 return -EINVAL;
2450}
8c7c6e34 2451#endif
d13d1443 2452
3e32cb2e 2453static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2454
d38d2a75 2455static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2456 unsigned long limit)
628f4235 2457{
3e32cb2e
JW
2458 unsigned long curusage;
2459 unsigned long oldusage;
2460 bool enlarge = false;
81d39c20 2461 int retry_count;
3e32cb2e 2462 int ret;
81d39c20
KH
2463
2464 /*
2465 * For keeping hierarchical_reclaim simple, how long we should retry
2466 * is depends on callers. We set our retry-count to be function
2467 * of # of children which we should visit in this loop.
2468 */
3e32cb2e
JW
2469 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2470 mem_cgroup_count_children(memcg);
81d39c20 2471
3e32cb2e 2472 oldusage = page_counter_read(&memcg->memory);
628f4235 2473
3e32cb2e 2474 do {
628f4235
KH
2475 if (signal_pending(current)) {
2476 ret = -EINTR;
2477 break;
2478 }
3e32cb2e
JW
2479
2480 mutex_lock(&memcg_limit_mutex);
2481 if (limit > memcg->memsw.limit) {
2482 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2483 ret = -EINVAL;
628f4235
KH
2484 break;
2485 }
3e32cb2e
JW
2486 if (limit > memcg->memory.limit)
2487 enlarge = true;
2488 ret = page_counter_limit(&memcg->memory, limit);
2489 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2490
2491 if (!ret)
2492 break;
2493
b70a2a21
JW
2494 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2495
3e32cb2e 2496 curusage = page_counter_read(&memcg->memory);
81d39c20 2497 /* Usage is reduced ? */
f894ffa8 2498 if (curusage >= oldusage)
81d39c20
KH
2499 retry_count--;
2500 else
2501 oldusage = curusage;
3e32cb2e
JW
2502 } while (retry_count);
2503
3c11ecf4
KH
2504 if (!ret && enlarge)
2505 memcg_oom_recover(memcg);
14797e23 2506
8c7c6e34
KH
2507 return ret;
2508}
2509
338c8431 2510static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2511 unsigned long limit)
8c7c6e34 2512{
3e32cb2e
JW
2513 unsigned long curusage;
2514 unsigned long oldusage;
2515 bool enlarge = false;
81d39c20 2516 int retry_count;
3e32cb2e 2517 int ret;
8c7c6e34 2518
81d39c20 2519 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2520 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2521 mem_cgroup_count_children(memcg);
2522
2523 oldusage = page_counter_read(&memcg->memsw);
2524
2525 do {
8c7c6e34
KH
2526 if (signal_pending(current)) {
2527 ret = -EINTR;
2528 break;
2529 }
3e32cb2e
JW
2530
2531 mutex_lock(&memcg_limit_mutex);
2532 if (limit < memcg->memory.limit) {
2533 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2534 ret = -EINVAL;
8c7c6e34
KH
2535 break;
2536 }
3e32cb2e
JW
2537 if (limit > memcg->memsw.limit)
2538 enlarge = true;
2539 ret = page_counter_limit(&memcg->memsw, limit);
2540 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2541
2542 if (!ret)
2543 break;
2544
b70a2a21
JW
2545 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2546
3e32cb2e 2547 curusage = page_counter_read(&memcg->memsw);
81d39c20 2548 /* Usage is reduced ? */
8c7c6e34 2549 if (curusage >= oldusage)
628f4235 2550 retry_count--;
81d39c20
KH
2551 else
2552 oldusage = curusage;
3e32cb2e
JW
2553 } while (retry_count);
2554
3c11ecf4
KH
2555 if (!ret && enlarge)
2556 memcg_oom_recover(memcg);
3e32cb2e 2557
628f4235
KH
2558 return ret;
2559}
2560
0608f43d
AM
2561unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2562 gfp_t gfp_mask,
2563 unsigned long *total_scanned)
2564{
2565 unsigned long nr_reclaimed = 0;
2566 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2567 unsigned long reclaimed;
2568 int loop = 0;
2569 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2570 unsigned long excess;
0608f43d
AM
2571 unsigned long nr_scanned;
2572
2573 if (order > 0)
2574 return 0;
2575
2576 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2577 /*
2578 * This loop can run a while, specially if mem_cgroup's continuously
2579 * keep exceeding their soft limit and putting the system under
2580 * pressure
2581 */
2582 do {
2583 if (next_mz)
2584 mz = next_mz;
2585 else
2586 mz = mem_cgroup_largest_soft_limit_node(mctz);
2587 if (!mz)
2588 break;
2589
2590 nr_scanned = 0;
2591 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2592 gfp_mask, &nr_scanned);
2593 nr_reclaimed += reclaimed;
2594 *total_scanned += nr_scanned;
0a31bc97 2595 spin_lock_irq(&mctz->lock);
bc2f2e7f 2596 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2597
2598 /*
2599 * If we failed to reclaim anything from this memory cgroup
2600 * it is time to move on to the next cgroup
2601 */
2602 next_mz = NULL;
bc2f2e7f
VD
2603 if (!reclaimed)
2604 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2605
3e32cb2e 2606 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2607 /*
2608 * One school of thought says that we should not add
2609 * back the node to the tree if reclaim returns 0.
2610 * But our reclaim could return 0, simply because due
2611 * to priority we are exposing a smaller subset of
2612 * memory to reclaim from. Consider this as a longer
2613 * term TODO.
2614 */
2615 /* If excess == 0, no tree ops */
cf2c8127 2616 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2617 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2618 css_put(&mz->memcg->css);
2619 loop++;
2620 /*
2621 * Could not reclaim anything and there are no more
2622 * mem cgroups to try or we seem to be looping without
2623 * reclaiming anything.
2624 */
2625 if (!nr_reclaimed &&
2626 (next_mz == NULL ||
2627 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2628 break;
2629 } while (!nr_reclaimed);
2630 if (next_mz)
2631 css_put(&next_mz->memcg->css);
2632 return nr_reclaimed;
2633}
2634
ea280e7b
TH
2635/*
2636 * Test whether @memcg has children, dead or alive. Note that this
2637 * function doesn't care whether @memcg has use_hierarchy enabled and
2638 * returns %true if there are child csses according to the cgroup
2639 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2640 */
b5f99b53
GC
2641static inline bool memcg_has_children(struct mem_cgroup *memcg)
2642{
ea280e7b
TH
2643 bool ret;
2644
ea280e7b
TH
2645 rcu_read_lock();
2646 ret = css_next_child(NULL, &memcg->css);
2647 rcu_read_unlock();
2648 return ret;
b5f99b53
GC
2649}
2650
c26251f9
MH
2651/*
2652 * Reclaims as many pages from the given memcg as possible and moves
2653 * the rest to the parent.
2654 *
2655 * Caller is responsible for holding css reference for memcg.
2656 */
2657static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2658{
2659 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2660
c1e862c1
KH
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
f817ed48 2663 /* try to free all pages in this cgroup */
3e32cb2e 2664 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2665 int progress;
c1e862c1 2666
c26251f9
MH
2667 if (signal_pending(current))
2668 return -EINTR;
2669
b70a2a21
JW
2670 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2671 GFP_KERNEL, true);
c1e862c1 2672 if (!progress) {
f817ed48 2673 nr_retries--;
c1e862c1 2674 /* maybe some writeback is necessary */
8aa7e847 2675 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2676 }
f817ed48
KH
2677
2678 }
ab5196c2
MH
2679
2680 return 0;
cc847582
KH
2681}
2682
6770c64e
TH
2683static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2684 char *buf, size_t nbytes,
2685 loff_t off)
c1e862c1 2686{
6770c64e 2687 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2688
d8423011
MH
2689 if (mem_cgroup_is_root(memcg))
2690 return -EINVAL;
6770c64e 2691 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2692}
2693
182446d0
TH
2694static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2695 struct cftype *cft)
18f59ea7 2696{
182446d0 2697 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2698}
2699
182446d0
TH
2700static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2701 struct cftype *cft, u64 val)
18f59ea7
BS
2702{
2703 int retval = 0;
182446d0 2704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2705 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2706
567fb435 2707 if (memcg->use_hierarchy == val)
0b8f73e1 2708 return 0;
567fb435 2709
18f59ea7 2710 /*
af901ca1 2711 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2712 * in the child subtrees. If it is unset, then the change can
2713 * occur, provided the current cgroup has no children.
2714 *
2715 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 * set if there are no children.
2717 */
c0ff4b85 2718 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2719 (val == 1 || val == 0)) {
ea280e7b 2720 if (!memcg_has_children(memcg))
c0ff4b85 2721 memcg->use_hierarchy = val;
18f59ea7
BS
2722 else
2723 retval = -EBUSY;
2724 } else
2725 retval = -EINVAL;
567fb435 2726
18f59ea7
BS
2727 return retval;
2728}
2729
72b54e73 2730static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2731{
2732 struct mem_cgroup *iter;
72b54e73 2733 int i;
ce00a967 2734
72b54e73 2735 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2736
72b54e73
VD
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_STAT; i++)
2739 stat[i] += mem_cgroup_read_stat(iter, i);
2740 }
ce00a967
JW
2741}
2742
72b54e73 2743static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2744{
2745 struct mem_cgroup *iter;
72b54e73 2746 int i;
587d9f72 2747
72b54e73 2748 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2749
72b54e73
VD
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2752 events[i] += mem_cgroup_read_events(iter, i);
2753 }
587d9f72
JW
2754}
2755
6f646156 2756static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2757{
72b54e73 2758 unsigned long val = 0;
ce00a967 2759
3e32cb2e 2760 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2761 struct mem_cgroup *iter;
2762
2763 for_each_mem_cgroup_tree(iter, memcg) {
2764 val += mem_cgroup_read_stat(iter,
2765 MEM_CGROUP_STAT_CACHE);
2766 val += mem_cgroup_read_stat(iter,
2767 MEM_CGROUP_STAT_RSS);
2768 if (swap)
2769 val += mem_cgroup_read_stat(iter,
2770 MEM_CGROUP_STAT_SWAP);
2771 }
3e32cb2e 2772 } else {
ce00a967 2773 if (!swap)
3e32cb2e 2774 val = page_counter_read(&memcg->memory);
ce00a967 2775 else
3e32cb2e 2776 val = page_counter_read(&memcg->memsw);
ce00a967 2777 }
c12176d3 2778 return val;
ce00a967
JW
2779}
2780
3e32cb2e
JW
2781enum {
2782 RES_USAGE,
2783 RES_LIMIT,
2784 RES_MAX_USAGE,
2785 RES_FAILCNT,
2786 RES_SOFT_LIMIT,
2787};
ce00a967 2788
791badbd 2789static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2790 struct cftype *cft)
8cdea7c0 2791{
182446d0 2792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2793 struct page_counter *counter;
af36f906 2794
3e32cb2e 2795 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2796 case _MEM:
3e32cb2e
JW
2797 counter = &memcg->memory;
2798 break;
8c7c6e34 2799 case _MEMSWAP:
3e32cb2e
JW
2800 counter = &memcg->memsw;
2801 break;
510fc4e1 2802 case _KMEM:
3e32cb2e 2803 counter = &memcg->kmem;
510fc4e1 2804 break;
d55f90bf 2805 case _TCP:
0db15298 2806 counter = &memcg->tcpmem;
d55f90bf 2807 break;
8c7c6e34
KH
2808 default:
2809 BUG();
8c7c6e34 2810 }
3e32cb2e
JW
2811
2812 switch (MEMFILE_ATTR(cft->private)) {
2813 case RES_USAGE:
2814 if (counter == &memcg->memory)
c12176d3 2815 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2816 if (counter == &memcg->memsw)
c12176d3 2817 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2818 return (u64)page_counter_read(counter) * PAGE_SIZE;
2819 case RES_LIMIT:
2820 return (u64)counter->limit * PAGE_SIZE;
2821 case RES_MAX_USAGE:
2822 return (u64)counter->watermark * PAGE_SIZE;
2823 case RES_FAILCNT:
2824 return counter->failcnt;
2825 case RES_SOFT_LIMIT:
2826 return (u64)memcg->soft_limit * PAGE_SIZE;
2827 default:
2828 BUG();
2829 }
8cdea7c0 2830}
510fc4e1 2831
127424c8 2832#ifndef CONFIG_SLOB
567e9ab2 2833static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2834{
d6441637
VD
2835 int memcg_id;
2836
b313aeee
VD
2837 if (cgroup_memory_nokmem)
2838 return 0;
2839
2a4db7eb 2840 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2841 BUG_ON(memcg->kmem_state);
d6441637 2842
f3bb3043 2843 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2844 if (memcg_id < 0)
2845 return memcg_id;
d6441637 2846
ef12947c 2847 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2848 /*
567e9ab2 2849 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2850 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2851 * guarantee no one starts accounting before all call sites are
2852 * patched.
2853 */
900a38f0 2854 memcg->kmemcg_id = memcg_id;
567e9ab2 2855 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2856
2857 return 0;
d6441637
VD
2858}
2859
8e0a8912
JW
2860static void memcg_offline_kmem(struct mem_cgroup *memcg)
2861{
2862 struct cgroup_subsys_state *css;
2863 struct mem_cgroup *parent, *child;
2864 int kmemcg_id;
2865
2866 if (memcg->kmem_state != KMEM_ONLINE)
2867 return;
2868 /*
2869 * Clear the online state before clearing memcg_caches array
2870 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2871 * guarantees that no cache will be created for this cgroup
2872 * after we are done (see memcg_create_kmem_cache()).
2873 */
2874 memcg->kmem_state = KMEM_ALLOCATED;
2875
2876 memcg_deactivate_kmem_caches(memcg);
2877
2878 kmemcg_id = memcg->kmemcg_id;
2879 BUG_ON(kmemcg_id < 0);
2880
2881 parent = parent_mem_cgroup(memcg);
2882 if (!parent)
2883 parent = root_mem_cgroup;
2884
2885 /*
2886 * Change kmemcg_id of this cgroup and all its descendants to the
2887 * parent's id, and then move all entries from this cgroup's list_lrus
2888 * to ones of the parent. After we have finished, all list_lrus
2889 * corresponding to this cgroup are guaranteed to remain empty. The
2890 * ordering is imposed by list_lru_node->lock taken by
2891 * memcg_drain_all_list_lrus().
2892 */
2893 css_for_each_descendant_pre(css, &memcg->css) {
2894 child = mem_cgroup_from_css(css);
2895 BUG_ON(child->kmemcg_id != kmemcg_id);
2896 child->kmemcg_id = parent->kmemcg_id;
2897 if (!memcg->use_hierarchy)
2898 break;
2899 }
2900 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2901
2902 memcg_free_cache_id(kmemcg_id);
2903}
2904
2905static void memcg_free_kmem(struct mem_cgroup *memcg)
2906{
0b8f73e1
JW
2907 /* css_alloc() failed, offlining didn't happen */
2908 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2909 memcg_offline_kmem(memcg);
2910
8e0a8912
JW
2911 if (memcg->kmem_state == KMEM_ALLOCATED) {
2912 memcg_destroy_kmem_caches(memcg);
2913 static_branch_dec(&memcg_kmem_enabled_key);
2914 WARN_ON(page_counter_read(&memcg->kmem));
2915 }
8e0a8912 2916}
d6441637 2917#else
0b8f73e1 2918static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2919{
2920 return 0;
2921}
2922static void memcg_offline_kmem(struct mem_cgroup *memcg)
2923{
2924}
2925static void memcg_free_kmem(struct mem_cgroup *memcg)
2926{
2927}
2928#endif /* !CONFIG_SLOB */
2929
d6441637 2930static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2931 unsigned long limit)
d6441637 2932{
b313aeee 2933 int ret;
127424c8
JW
2934
2935 mutex_lock(&memcg_limit_mutex);
127424c8 2936 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2937 mutex_unlock(&memcg_limit_mutex);
2938 return ret;
d6441637 2939}
510fc4e1 2940
d55f90bf
VD
2941static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2942{
2943 int ret;
2944
2945 mutex_lock(&memcg_limit_mutex);
2946
0db15298 2947 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2948 if (ret)
2949 goto out;
2950
0db15298 2951 if (!memcg->tcpmem_active) {
d55f90bf
VD
2952 /*
2953 * The active flag needs to be written after the static_key
2954 * update. This is what guarantees that the socket activation
2955 * function is the last one to run. See sock_update_memcg() for
2956 * details, and note that we don't mark any socket as belonging
2957 * to this memcg until that flag is up.
2958 *
2959 * We need to do this, because static_keys will span multiple
2960 * sites, but we can't control their order. If we mark a socket
2961 * as accounted, but the accounting functions are not patched in
2962 * yet, we'll lose accounting.
2963 *
2964 * We never race with the readers in sock_update_memcg(),
2965 * because when this value change, the code to process it is not
2966 * patched in yet.
2967 */
2968 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2969 memcg->tcpmem_active = true;
d55f90bf
VD
2970 }
2971out:
2972 mutex_unlock(&memcg_limit_mutex);
2973 return ret;
2974}
d55f90bf 2975
628f4235
KH
2976/*
2977 * The user of this function is...
2978 * RES_LIMIT.
2979 */
451af504
TH
2980static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2981 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2982{
451af504 2983 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2984 unsigned long nr_pages;
628f4235
KH
2985 int ret;
2986
451af504 2987 buf = strstrip(buf);
650c5e56 2988 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2989 if (ret)
2990 return ret;
af36f906 2991
3e32cb2e 2992 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2993 case RES_LIMIT:
4b3bde4c
BS
2994 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2995 ret = -EINVAL;
2996 break;
2997 }
3e32cb2e
JW
2998 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2999 case _MEM:
3000 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3001 break;
3e32cb2e
JW
3002 case _MEMSWAP:
3003 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3004 break;
3e32cb2e
JW
3005 case _KMEM:
3006 ret = memcg_update_kmem_limit(memcg, nr_pages);
3007 break;
d55f90bf
VD
3008 case _TCP:
3009 ret = memcg_update_tcp_limit(memcg, nr_pages);
3010 break;
3e32cb2e 3011 }
296c81d8 3012 break;
3e32cb2e
JW
3013 case RES_SOFT_LIMIT:
3014 memcg->soft_limit = nr_pages;
3015 ret = 0;
628f4235
KH
3016 break;
3017 }
451af504 3018 return ret ?: nbytes;
8cdea7c0
BS
3019}
3020
6770c64e
TH
3021static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3022 size_t nbytes, loff_t off)
c84872e1 3023{
6770c64e 3024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3025 struct page_counter *counter;
c84872e1 3026
3e32cb2e
JW
3027 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3028 case _MEM:
3029 counter = &memcg->memory;
3030 break;
3031 case _MEMSWAP:
3032 counter = &memcg->memsw;
3033 break;
3034 case _KMEM:
3035 counter = &memcg->kmem;
3036 break;
d55f90bf 3037 case _TCP:
0db15298 3038 counter = &memcg->tcpmem;
d55f90bf 3039 break;
3e32cb2e
JW
3040 default:
3041 BUG();
3042 }
af36f906 3043
3e32cb2e 3044 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3045 case RES_MAX_USAGE:
3e32cb2e 3046 page_counter_reset_watermark(counter);
29f2a4da
PE
3047 break;
3048 case RES_FAILCNT:
3e32cb2e 3049 counter->failcnt = 0;
29f2a4da 3050 break;
3e32cb2e
JW
3051 default:
3052 BUG();
29f2a4da 3053 }
f64c3f54 3054
6770c64e 3055 return nbytes;
c84872e1
PE
3056}
3057
182446d0 3058static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3059 struct cftype *cft)
3060{
182446d0 3061 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3062}
3063
02491447 3064#ifdef CONFIG_MMU
182446d0 3065static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3066 struct cftype *cft, u64 val)
3067{
182446d0 3068 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3069
1dfab5ab 3070 if (val & ~MOVE_MASK)
7dc74be0 3071 return -EINVAL;
ee5e8472 3072
7dc74be0 3073 /*
ee5e8472
GC
3074 * No kind of locking is needed in here, because ->can_attach() will
3075 * check this value once in the beginning of the process, and then carry
3076 * on with stale data. This means that changes to this value will only
3077 * affect task migrations starting after the change.
7dc74be0 3078 */
c0ff4b85 3079 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3080 return 0;
3081}
02491447 3082#else
182446d0 3083static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3084 struct cftype *cft, u64 val)
3085{
3086 return -ENOSYS;
3087}
3088#endif
7dc74be0 3089
406eb0c9 3090#ifdef CONFIG_NUMA
2da8ca82 3091static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3092{
25485de6
GT
3093 struct numa_stat {
3094 const char *name;
3095 unsigned int lru_mask;
3096 };
3097
3098 static const struct numa_stat stats[] = {
3099 { "total", LRU_ALL },
3100 { "file", LRU_ALL_FILE },
3101 { "anon", LRU_ALL_ANON },
3102 { "unevictable", BIT(LRU_UNEVICTABLE) },
3103 };
3104 const struct numa_stat *stat;
406eb0c9 3105 int nid;
25485de6 3106 unsigned long nr;
2da8ca82 3107 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3108
25485de6
GT
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3111 seq_printf(m, "%s=%lu", stat->name, nr);
3112 for_each_node_state(nid, N_MEMORY) {
3113 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3114 stat->lru_mask);
3115 seq_printf(m, " N%d=%lu", nid, nr);
3116 }
3117 seq_putc(m, '\n');
406eb0c9 3118 }
406eb0c9 3119
071aee13
YH
3120 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3121 struct mem_cgroup *iter;
3122
3123 nr = 0;
3124 for_each_mem_cgroup_tree(iter, memcg)
3125 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3126 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3127 for_each_node_state(nid, N_MEMORY) {
3128 nr = 0;
3129 for_each_mem_cgroup_tree(iter, memcg)
3130 nr += mem_cgroup_node_nr_lru_pages(
3131 iter, nid, stat->lru_mask);
3132 seq_printf(m, " N%d=%lu", nid, nr);
3133 }
3134 seq_putc(m, '\n');
406eb0c9 3135 }
406eb0c9 3136
406eb0c9
YH
3137 return 0;
3138}
3139#endif /* CONFIG_NUMA */
3140
2da8ca82 3141static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3142{
2da8ca82 3143 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3144 unsigned long memory, memsw;
af7c4b0e
JW
3145 struct mem_cgroup *mi;
3146 unsigned int i;
406eb0c9 3147
0ca44b14
GT
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3149 MEM_CGROUP_STAT_NSTATS);
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3151 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3153
af7c4b0e 3154 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3155 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3156 continue;
484ebb3b 3157 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3158 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3159 }
7b854121 3160
af7c4b0e
JW
3161 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3162 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3163 mem_cgroup_read_events(memcg, i));
3164
3165 for (i = 0; i < NR_LRU_LISTS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3167 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3168
14067bb3 3169 /* Hierarchical information */
3e32cb2e
JW
3170 memory = memsw = PAGE_COUNTER_MAX;
3171 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3172 memory = min(memory, mi->memory.limit);
3173 memsw = min(memsw, mi->memsw.limit);
fee7b548 3174 }
3e32cb2e
JW
3175 seq_printf(m, "hierarchical_memory_limit %llu\n",
3176 (u64)memory * PAGE_SIZE);
7941d214 3177 if (do_memsw_account())
3e32cb2e
JW
3178 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3179 (u64)memsw * PAGE_SIZE);
7f016ee8 3180
af7c4b0e 3181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3182 unsigned long long val = 0;
af7c4b0e 3183
7941d214 3184 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3185 continue;
af7c4b0e
JW
3186 for_each_mem_cgroup_tree(mi, memcg)
3187 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3188 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3189 }
3190
3191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3192 unsigned long long val = 0;
3193
3194 for_each_mem_cgroup_tree(mi, memcg)
3195 val += mem_cgroup_read_events(mi, i);
3196 seq_printf(m, "total_%s %llu\n",
3197 mem_cgroup_events_names[i], val);
3198 }
3199
3200 for (i = 0; i < NR_LRU_LISTS; i++) {
3201 unsigned long long val = 0;
3202
3203 for_each_mem_cgroup_tree(mi, memcg)
3204 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3206 }
14067bb3 3207
7f016ee8 3208#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3209 {
3210 int nid, zid;
3211 struct mem_cgroup_per_zone *mz;
89abfab1 3212 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3213 unsigned long recent_rotated[2] = {0, 0};
3214 unsigned long recent_scanned[2] = {0, 0};
3215
3216 for_each_online_node(nid)
3217 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3218 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3219 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3220
89abfab1
HD
3221 recent_rotated[0] += rstat->recent_rotated[0];
3222 recent_rotated[1] += rstat->recent_rotated[1];
3223 recent_scanned[0] += rstat->recent_scanned[0];
3224 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3225 }
78ccf5b5
JW
3226 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3227 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3228 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3229 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3230 }
3231#endif
3232
d2ceb9b7
KH
3233 return 0;
3234}
3235
182446d0
TH
3236static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3237 struct cftype *cft)
a7885eb8 3238{
182446d0 3239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3240
1f4c025b 3241 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3242}
3243
182446d0
TH
3244static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3245 struct cftype *cft, u64 val)
a7885eb8 3246{
182446d0 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3248
3dae7fec 3249 if (val > 100)
a7885eb8
KM
3250 return -EINVAL;
3251
14208b0e 3252 if (css->parent)
3dae7fec
JW
3253 memcg->swappiness = val;
3254 else
3255 vm_swappiness = val;
068b38c1 3256
a7885eb8
KM
3257 return 0;
3258}
3259
2e72b634
KS
3260static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3261{
3262 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3263 unsigned long usage;
2e72b634
KS
3264 int i;
3265
3266 rcu_read_lock();
3267 if (!swap)
2c488db2 3268 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3269 else
2c488db2 3270 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3271
3272 if (!t)
3273 goto unlock;
3274
ce00a967 3275 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3276
3277 /*
748dad36 3278 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3279 * If it's not true, a threshold was crossed after last
3280 * call of __mem_cgroup_threshold().
3281 */
5407a562 3282 i = t->current_threshold;
2e72b634
KS
3283
3284 /*
3285 * Iterate backward over array of thresholds starting from
3286 * current_threshold and check if a threshold is crossed.
3287 * If none of thresholds below usage is crossed, we read
3288 * only one element of the array here.
3289 */
3290 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3291 eventfd_signal(t->entries[i].eventfd, 1);
3292
3293 /* i = current_threshold + 1 */
3294 i++;
3295
3296 /*
3297 * Iterate forward over array of thresholds starting from
3298 * current_threshold+1 and check if a threshold is crossed.
3299 * If none of thresholds above usage is crossed, we read
3300 * only one element of the array here.
3301 */
3302 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3303 eventfd_signal(t->entries[i].eventfd, 1);
3304
3305 /* Update current_threshold */
5407a562 3306 t->current_threshold = i - 1;
2e72b634
KS
3307unlock:
3308 rcu_read_unlock();
3309}
3310
3311static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3312{
ad4ca5f4
KS
3313 while (memcg) {
3314 __mem_cgroup_threshold(memcg, false);
7941d214 3315 if (do_memsw_account())
ad4ca5f4
KS
3316 __mem_cgroup_threshold(memcg, true);
3317
3318 memcg = parent_mem_cgroup(memcg);
3319 }
2e72b634
KS
3320}
3321
3322static int compare_thresholds(const void *a, const void *b)
3323{
3324 const struct mem_cgroup_threshold *_a = a;
3325 const struct mem_cgroup_threshold *_b = b;
3326
2bff24a3
GT
3327 if (_a->threshold > _b->threshold)
3328 return 1;
3329
3330 if (_a->threshold < _b->threshold)
3331 return -1;
3332
3333 return 0;
2e72b634
KS
3334}
3335
c0ff4b85 3336static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3337{
3338 struct mem_cgroup_eventfd_list *ev;
3339
2bcf2e92
MH
3340 spin_lock(&memcg_oom_lock);
3341
c0ff4b85 3342 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3343 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3344
3345 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3346 return 0;
3347}
3348
c0ff4b85 3349static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3350{
7d74b06f
KH
3351 struct mem_cgroup *iter;
3352
c0ff4b85 3353 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3354 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3355}
3356
59b6f873 3357static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3358 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3359{
2c488db2
KS
3360 struct mem_cgroup_thresholds *thresholds;
3361 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3362 unsigned long threshold;
3363 unsigned long usage;
2c488db2 3364 int i, size, ret;
2e72b634 3365
650c5e56 3366 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3367 if (ret)
3368 return ret;
3369
3370 mutex_lock(&memcg->thresholds_lock);
2c488db2 3371
05b84301 3372 if (type == _MEM) {
2c488db2 3373 thresholds = &memcg->thresholds;
ce00a967 3374 usage = mem_cgroup_usage(memcg, false);
05b84301 3375 } else if (type == _MEMSWAP) {
2c488db2 3376 thresholds = &memcg->memsw_thresholds;
ce00a967 3377 usage = mem_cgroup_usage(memcg, true);
05b84301 3378 } else
2e72b634
KS
3379 BUG();
3380
2e72b634 3381 /* Check if a threshold crossed before adding a new one */
2c488db2 3382 if (thresholds->primary)
2e72b634
KS
3383 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3384
2c488db2 3385 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3386
3387 /* Allocate memory for new array of thresholds */
2c488db2 3388 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3389 GFP_KERNEL);
2c488db2 3390 if (!new) {
2e72b634
KS
3391 ret = -ENOMEM;
3392 goto unlock;
3393 }
2c488db2 3394 new->size = size;
2e72b634
KS
3395
3396 /* Copy thresholds (if any) to new array */
2c488db2
KS
3397 if (thresholds->primary) {
3398 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3399 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3400 }
3401
2e72b634 3402 /* Add new threshold */
2c488db2
KS
3403 new->entries[size - 1].eventfd = eventfd;
3404 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3405
3406 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3407 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3408 compare_thresholds, NULL);
3409
3410 /* Find current threshold */
2c488db2 3411 new->current_threshold = -1;
2e72b634 3412 for (i = 0; i < size; i++) {
748dad36 3413 if (new->entries[i].threshold <= usage) {
2e72b634 3414 /*
2c488db2
KS
3415 * new->current_threshold will not be used until
3416 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3417 * it here.
3418 */
2c488db2 3419 ++new->current_threshold;
748dad36
SZ
3420 } else
3421 break;
2e72b634
KS
3422 }
3423
2c488db2
KS
3424 /* Free old spare buffer and save old primary buffer as spare */
3425 kfree(thresholds->spare);
3426 thresholds->spare = thresholds->primary;
3427
3428 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3429
907860ed 3430 /* To be sure that nobody uses thresholds */
2e72b634
KS
3431 synchronize_rcu();
3432
2e72b634
KS
3433unlock:
3434 mutex_unlock(&memcg->thresholds_lock);
3435
3436 return ret;
3437}
3438
59b6f873 3439static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3440 struct eventfd_ctx *eventfd, const char *args)
3441{
59b6f873 3442 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3443}
3444
59b6f873 3445static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3446 struct eventfd_ctx *eventfd, const char *args)
3447{
59b6f873 3448 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3449}
3450
59b6f873 3451static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3452 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3453{
2c488db2
KS
3454 struct mem_cgroup_thresholds *thresholds;
3455 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3456 unsigned long usage;
2c488db2 3457 int i, j, size;
2e72b634
KS
3458
3459 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3460
3461 if (type == _MEM) {
2c488db2 3462 thresholds = &memcg->thresholds;
ce00a967 3463 usage = mem_cgroup_usage(memcg, false);
05b84301 3464 } else if (type == _MEMSWAP) {
2c488db2 3465 thresholds = &memcg->memsw_thresholds;
ce00a967 3466 usage = mem_cgroup_usage(memcg, true);
05b84301 3467 } else
2e72b634
KS
3468 BUG();
3469
371528ca
AV
3470 if (!thresholds->primary)
3471 goto unlock;
3472
2e72b634
KS
3473 /* Check if a threshold crossed before removing */
3474 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3475
3476 /* Calculate new number of threshold */
2c488db2
KS
3477 size = 0;
3478 for (i = 0; i < thresholds->primary->size; i++) {
3479 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3480 size++;
3481 }
3482
2c488db2 3483 new = thresholds->spare;
907860ed 3484
2e72b634
KS
3485 /* Set thresholds array to NULL if we don't have thresholds */
3486 if (!size) {
2c488db2
KS
3487 kfree(new);
3488 new = NULL;
907860ed 3489 goto swap_buffers;
2e72b634
KS
3490 }
3491
2c488db2 3492 new->size = size;
2e72b634
KS
3493
3494 /* Copy thresholds and find current threshold */
2c488db2
KS
3495 new->current_threshold = -1;
3496 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3497 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3498 continue;
3499
2c488db2 3500 new->entries[j] = thresholds->primary->entries[i];
748dad36 3501 if (new->entries[j].threshold <= usage) {
2e72b634 3502 /*
2c488db2 3503 * new->current_threshold will not be used
2e72b634
KS
3504 * until rcu_assign_pointer(), so it's safe to increment
3505 * it here.
3506 */
2c488db2 3507 ++new->current_threshold;
2e72b634
KS
3508 }
3509 j++;
3510 }
3511
907860ed 3512swap_buffers:
2c488db2
KS
3513 /* Swap primary and spare array */
3514 thresholds->spare = thresholds->primary;
8c757763 3515
2c488db2 3516 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3517
907860ed 3518 /* To be sure that nobody uses thresholds */
2e72b634 3519 synchronize_rcu();
6611d8d7
MC
3520
3521 /* If all events are unregistered, free the spare array */
3522 if (!new) {
3523 kfree(thresholds->spare);
3524 thresholds->spare = NULL;
3525 }
371528ca 3526unlock:
2e72b634 3527 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3528}
c1e862c1 3529
59b6f873 3530static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3531 struct eventfd_ctx *eventfd)
3532{
59b6f873 3533 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3534}
3535
59b6f873 3536static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3537 struct eventfd_ctx *eventfd)
3538{
59b6f873 3539 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3540}
3541
59b6f873 3542static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3543 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3544{
9490ff27 3545 struct mem_cgroup_eventfd_list *event;
9490ff27 3546
9490ff27
KH
3547 event = kmalloc(sizeof(*event), GFP_KERNEL);
3548 if (!event)
3549 return -ENOMEM;
3550
1af8efe9 3551 spin_lock(&memcg_oom_lock);
9490ff27
KH
3552
3553 event->eventfd = eventfd;
3554 list_add(&event->list, &memcg->oom_notify);
3555
3556 /* already in OOM ? */
c2b42d3c 3557 if (memcg->under_oom)
9490ff27 3558 eventfd_signal(eventfd, 1);
1af8efe9 3559 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3560
3561 return 0;
3562}
3563
59b6f873 3564static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3565 struct eventfd_ctx *eventfd)
9490ff27 3566{
9490ff27 3567 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3568
1af8efe9 3569 spin_lock(&memcg_oom_lock);
9490ff27 3570
c0ff4b85 3571 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3572 if (ev->eventfd == eventfd) {
3573 list_del(&ev->list);
3574 kfree(ev);
3575 }
3576 }
3577
1af8efe9 3578 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3579}
3580
2da8ca82 3581static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3582{
2da8ca82 3583 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3584
791badbd 3585 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3586 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3587 return 0;
3588}
3589
182446d0 3590static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3591 struct cftype *cft, u64 val)
3592{
182446d0 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3594
3595 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3596 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3597 return -EINVAL;
3598
c0ff4b85 3599 memcg->oom_kill_disable = val;
4d845ebf 3600 if (!val)
c0ff4b85 3601 memcg_oom_recover(memcg);
3dae7fec 3602
3c11ecf4
KH
3603 return 0;
3604}
3605
52ebea74
TH
3606#ifdef CONFIG_CGROUP_WRITEBACK
3607
3608struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3609{
3610 return &memcg->cgwb_list;
3611}
3612
841710aa
TH
3613static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3614{
3615 return wb_domain_init(&memcg->cgwb_domain, gfp);
3616}
3617
3618static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3619{
3620 wb_domain_exit(&memcg->cgwb_domain);
3621}
3622
2529bb3a
TH
3623static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3624{
3625 wb_domain_size_changed(&memcg->cgwb_domain);
3626}
3627
841710aa
TH
3628struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3629{
3630 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3631
3632 if (!memcg->css.parent)
3633 return NULL;
3634
3635 return &memcg->cgwb_domain;
3636}
3637
c2aa723a
TH
3638/**
3639 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3640 * @wb: bdi_writeback in question
c5edf9cd
TH
3641 * @pfilepages: out parameter for number of file pages
3642 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3643 * @pdirty: out parameter for number of dirty pages
3644 * @pwriteback: out parameter for number of pages under writeback
3645 *
c5edf9cd
TH
3646 * Determine the numbers of file, headroom, dirty, and writeback pages in
3647 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3648 * is a bit more involved.
c2aa723a 3649 *
c5edf9cd
TH
3650 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3651 * headroom is calculated as the lowest headroom of itself and the
3652 * ancestors. Note that this doesn't consider the actual amount of
3653 * available memory in the system. The caller should further cap
3654 * *@pheadroom accordingly.
c2aa723a 3655 */
c5edf9cd
TH
3656void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3657 unsigned long *pheadroom, unsigned long *pdirty,
3658 unsigned long *pwriteback)
c2aa723a
TH
3659{
3660 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3661 struct mem_cgroup *parent;
c2aa723a
TH
3662
3663 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3664
3665 /* this should eventually include NR_UNSTABLE_NFS */
3666 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3667 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3668 (1 << LRU_ACTIVE_FILE));
3669 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3670
c2aa723a
TH
3671 while ((parent = parent_mem_cgroup(memcg))) {
3672 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3673 unsigned long used = page_counter_read(&memcg->memory);
3674
c5edf9cd 3675 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3676 memcg = parent;
3677 }
c2aa723a
TH
3678}
3679
841710aa
TH
3680#else /* CONFIG_CGROUP_WRITEBACK */
3681
3682static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3683{
3684 return 0;
3685}
3686
3687static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3688{
3689}
3690
2529bb3a
TH
3691static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3692{
3693}
3694
52ebea74
TH
3695#endif /* CONFIG_CGROUP_WRITEBACK */
3696
3bc942f3
TH
3697/*
3698 * DO NOT USE IN NEW FILES.
3699 *
3700 * "cgroup.event_control" implementation.
3701 *
3702 * This is way over-engineered. It tries to support fully configurable
3703 * events for each user. Such level of flexibility is completely
3704 * unnecessary especially in the light of the planned unified hierarchy.
3705 *
3706 * Please deprecate this and replace with something simpler if at all
3707 * possible.
3708 */
3709
79bd9814
TH
3710/*
3711 * Unregister event and free resources.
3712 *
3713 * Gets called from workqueue.
3714 */
3bc942f3 3715static void memcg_event_remove(struct work_struct *work)
79bd9814 3716{
3bc942f3
TH
3717 struct mem_cgroup_event *event =
3718 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3719 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3720
3721 remove_wait_queue(event->wqh, &event->wait);
3722
59b6f873 3723 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3724
3725 /* Notify userspace the event is going away. */
3726 eventfd_signal(event->eventfd, 1);
3727
3728 eventfd_ctx_put(event->eventfd);
3729 kfree(event);
59b6f873 3730 css_put(&memcg->css);
79bd9814
TH
3731}
3732
3733/*
3734 * Gets called on POLLHUP on eventfd when user closes it.
3735 *
3736 * Called with wqh->lock held and interrupts disabled.
3737 */
3bc942f3
TH
3738static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3739 int sync, void *key)
79bd9814 3740{
3bc942f3
TH
3741 struct mem_cgroup_event *event =
3742 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3743 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3744 unsigned long flags = (unsigned long)key;
3745
3746 if (flags & POLLHUP) {
3747 /*
3748 * If the event has been detached at cgroup removal, we
3749 * can simply return knowing the other side will cleanup
3750 * for us.
3751 *
3752 * We can't race against event freeing since the other
3753 * side will require wqh->lock via remove_wait_queue(),
3754 * which we hold.
3755 */
fba94807 3756 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3757 if (!list_empty(&event->list)) {
3758 list_del_init(&event->list);
3759 /*
3760 * We are in atomic context, but cgroup_event_remove()
3761 * may sleep, so we have to call it in workqueue.
3762 */
3763 schedule_work(&event->remove);
3764 }
fba94807 3765 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3766 }
3767
3768 return 0;
3769}
3770
3bc942f3 3771static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3772 wait_queue_head_t *wqh, poll_table *pt)
3773{
3bc942f3
TH
3774 struct mem_cgroup_event *event =
3775 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3776
3777 event->wqh = wqh;
3778 add_wait_queue(wqh, &event->wait);
3779}
3780
3781/*
3bc942f3
TH
3782 * DO NOT USE IN NEW FILES.
3783 *
79bd9814
TH
3784 * Parse input and register new cgroup event handler.
3785 *
3786 * Input must be in format '<event_fd> <control_fd> <args>'.
3787 * Interpretation of args is defined by control file implementation.
3788 */
451af504
TH
3789static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3790 char *buf, size_t nbytes, loff_t off)
79bd9814 3791{
451af504 3792 struct cgroup_subsys_state *css = of_css(of);
fba94807 3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3794 struct mem_cgroup_event *event;
79bd9814
TH
3795 struct cgroup_subsys_state *cfile_css;
3796 unsigned int efd, cfd;
3797 struct fd efile;
3798 struct fd cfile;
fba94807 3799 const char *name;
79bd9814
TH
3800 char *endp;
3801 int ret;
3802
451af504
TH
3803 buf = strstrip(buf);
3804
3805 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3806 if (*endp != ' ')
3807 return -EINVAL;
451af504 3808 buf = endp + 1;
79bd9814 3809
451af504 3810 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3811 if ((*endp != ' ') && (*endp != '\0'))
3812 return -EINVAL;
451af504 3813 buf = endp + 1;
79bd9814
TH
3814
3815 event = kzalloc(sizeof(*event), GFP_KERNEL);
3816 if (!event)
3817 return -ENOMEM;
3818
59b6f873 3819 event->memcg = memcg;
79bd9814 3820 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3821 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3822 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3823 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3824
3825 efile = fdget(efd);
3826 if (!efile.file) {
3827 ret = -EBADF;
3828 goto out_kfree;
3829 }
3830
3831 event->eventfd = eventfd_ctx_fileget(efile.file);
3832 if (IS_ERR(event->eventfd)) {
3833 ret = PTR_ERR(event->eventfd);
3834 goto out_put_efile;
3835 }
3836
3837 cfile = fdget(cfd);
3838 if (!cfile.file) {
3839 ret = -EBADF;
3840 goto out_put_eventfd;
3841 }
3842
3843 /* the process need read permission on control file */
3844 /* AV: shouldn't we check that it's been opened for read instead? */
3845 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3846 if (ret < 0)
3847 goto out_put_cfile;
3848
fba94807
TH
3849 /*
3850 * Determine the event callbacks and set them in @event. This used
3851 * to be done via struct cftype but cgroup core no longer knows
3852 * about these events. The following is crude but the whole thing
3853 * is for compatibility anyway.
3bc942f3
TH
3854 *
3855 * DO NOT ADD NEW FILES.
fba94807 3856 */
b583043e 3857 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3858
3859 if (!strcmp(name, "memory.usage_in_bytes")) {
3860 event->register_event = mem_cgroup_usage_register_event;
3861 event->unregister_event = mem_cgroup_usage_unregister_event;
3862 } else if (!strcmp(name, "memory.oom_control")) {
3863 event->register_event = mem_cgroup_oom_register_event;
3864 event->unregister_event = mem_cgroup_oom_unregister_event;
3865 } else if (!strcmp(name, "memory.pressure_level")) {
3866 event->register_event = vmpressure_register_event;
3867 event->unregister_event = vmpressure_unregister_event;
3868 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3869 event->register_event = memsw_cgroup_usage_register_event;
3870 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3871 } else {
3872 ret = -EINVAL;
3873 goto out_put_cfile;
3874 }
3875
79bd9814 3876 /*
b5557c4c
TH
3877 * Verify @cfile should belong to @css. Also, remaining events are
3878 * automatically removed on cgroup destruction but the removal is
3879 * asynchronous, so take an extra ref on @css.
79bd9814 3880 */
b583043e 3881 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3882 &memory_cgrp_subsys);
79bd9814 3883 ret = -EINVAL;
5a17f543 3884 if (IS_ERR(cfile_css))
79bd9814 3885 goto out_put_cfile;
5a17f543
TH
3886 if (cfile_css != css) {
3887 css_put(cfile_css);
79bd9814 3888 goto out_put_cfile;
5a17f543 3889 }
79bd9814 3890
451af504 3891 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3892 if (ret)
3893 goto out_put_css;
3894
3895 efile.file->f_op->poll(efile.file, &event->pt);
3896
fba94807
TH
3897 spin_lock(&memcg->event_list_lock);
3898 list_add(&event->list, &memcg->event_list);
3899 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3900
3901 fdput(cfile);
3902 fdput(efile);
3903
451af504 3904 return nbytes;
79bd9814
TH
3905
3906out_put_css:
b5557c4c 3907 css_put(css);
79bd9814
TH
3908out_put_cfile:
3909 fdput(cfile);
3910out_put_eventfd:
3911 eventfd_ctx_put(event->eventfd);
3912out_put_efile:
3913 fdput(efile);
3914out_kfree:
3915 kfree(event);
3916
3917 return ret;
3918}
3919
241994ed 3920static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3921 {
0eea1030 3922 .name = "usage_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3924 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3925 },
c84872e1
PE
3926 {
3927 .name = "max_usage_in_bytes",
8c7c6e34 3928 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3929 .write = mem_cgroup_reset,
791badbd 3930 .read_u64 = mem_cgroup_read_u64,
c84872e1 3931 },
8cdea7c0 3932 {
0eea1030 3933 .name = "limit_in_bytes",
8c7c6e34 3934 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3935 .write = mem_cgroup_write,
791badbd 3936 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3937 },
296c81d8
BS
3938 {
3939 .name = "soft_limit_in_bytes",
3940 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3941 .write = mem_cgroup_write,
791badbd 3942 .read_u64 = mem_cgroup_read_u64,
296c81d8 3943 },
8cdea7c0
BS
3944 {
3945 .name = "failcnt",
8c7c6e34 3946 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3947 .write = mem_cgroup_reset,
791badbd 3948 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3949 },
d2ceb9b7
KH
3950 {
3951 .name = "stat",
2da8ca82 3952 .seq_show = memcg_stat_show,
d2ceb9b7 3953 },
c1e862c1
KH
3954 {
3955 .name = "force_empty",
6770c64e 3956 .write = mem_cgroup_force_empty_write,
c1e862c1 3957 },
18f59ea7
BS
3958 {
3959 .name = "use_hierarchy",
3960 .write_u64 = mem_cgroup_hierarchy_write,
3961 .read_u64 = mem_cgroup_hierarchy_read,
3962 },
79bd9814 3963 {
3bc942f3 3964 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3965 .write = memcg_write_event_control,
7dbdb199 3966 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3967 },
a7885eb8
KM
3968 {
3969 .name = "swappiness",
3970 .read_u64 = mem_cgroup_swappiness_read,
3971 .write_u64 = mem_cgroup_swappiness_write,
3972 },
7dc74be0
DN
3973 {
3974 .name = "move_charge_at_immigrate",
3975 .read_u64 = mem_cgroup_move_charge_read,
3976 .write_u64 = mem_cgroup_move_charge_write,
3977 },
9490ff27
KH
3978 {
3979 .name = "oom_control",
2da8ca82 3980 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3981 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3982 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3983 },
70ddf637
AV
3984 {
3985 .name = "pressure_level",
70ddf637 3986 },
406eb0c9
YH
3987#ifdef CONFIG_NUMA
3988 {
3989 .name = "numa_stat",
2da8ca82 3990 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3991 },
3992#endif
510fc4e1
GC
3993 {
3994 .name = "kmem.limit_in_bytes",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3996 .write = mem_cgroup_write,
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4002 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4003 },
4004 {
4005 .name = "kmem.failcnt",
4006 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4007 .write = mem_cgroup_reset,
791badbd 4008 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4009 },
4010 {
4011 .name = "kmem.max_usage_in_bytes",
4012 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4013 .write = mem_cgroup_reset,
791badbd 4014 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4015 },
749c5415
GC
4016#ifdef CONFIG_SLABINFO
4017 {
4018 .name = "kmem.slabinfo",
b047501c
VD
4019 .seq_start = slab_start,
4020 .seq_next = slab_next,
4021 .seq_stop = slab_stop,
4022 .seq_show = memcg_slab_show,
749c5415
GC
4023 },
4024#endif
d55f90bf
VD
4025 {
4026 .name = "kmem.tcp.limit_in_bytes",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4028 .write = mem_cgroup_write,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "kmem.tcp.failcnt",
4038 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4039 .write = mem_cgroup_reset,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "kmem.tcp.max_usage_in_bytes",
4044 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4045 .write = mem_cgroup_reset,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
6bc10349 4048 { }, /* terminate */
af36f906 4049};
8c7c6e34 4050
c0ff4b85 4051static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4052{
4053 struct mem_cgroup_per_node *pn;
1ecaab2b 4054 struct mem_cgroup_per_zone *mz;
41e3355d 4055 int zone, tmp = node;
1ecaab2b
KH
4056 /*
4057 * This routine is called against possible nodes.
4058 * But it's BUG to call kmalloc() against offline node.
4059 *
4060 * TODO: this routine can waste much memory for nodes which will
4061 * never be onlined. It's better to use memory hotplug callback
4062 * function.
4063 */
41e3355d
KH
4064 if (!node_state(node, N_NORMAL_MEMORY))
4065 tmp = -1;
17295c88 4066 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4067 if (!pn)
4068 return 1;
1ecaab2b 4069
1ecaab2b
KH
4070 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4071 mz = &pn->zoneinfo[zone];
bea8c150 4072 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4073 mz->usage_in_excess = 0;
4074 mz->on_tree = false;
d79154bb 4075 mz->memcg = memcg;
1ecaab2b 4076 }
54f72fe0 4077 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4078 return 0;
4079}
4080
c0ff4b85 4081static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4082{
54f72fe0 4083 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4084}
4085
0b8f73e1 4086static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4087{
c8b2a36f 4088 int node;
59927fb9 4089
0b8f73e1 4090 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4091 for_each_node(node)
4092 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4093 free_percpu(memcg->stat);
8ff69e2c 4094 kfree(memcg);
59927fb9 4095}
3afe36b1 4096
0b8f73e1 4097static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4098{
d142e3e6 4099 struct mem_cgroup *memcg;
0b8f73e1 4100 size_t size;
6d12e2d8 4101 int node;
8cdea7c0 4102
0b8f73e1
JW
4103 size = sizeof(struct mem_cgroup);
4104 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4105
4106 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4107 if (!memcg)
0b8f73e1
JW
4108 return NULL;
4109
4110 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4111 if (!memcg->stat)
4112 goto fail;
78fb7466 4113
3ed28fa1 4114 for_each_node(node)
c0ff4b85 4115 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4116 goto fail;
f64c3f54 4117
0b8f73e1
JW
4118 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4119 goto fail;
28dbc4b6 4120
f7e1cb6e 4121 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4122 memcg->last_scanned_node = MAX_NUMNODES;
4123 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4124 mutex_init(&memcg->thresholds_lock);
4125 spin_lock_init(&memcg->move_lock);
70ddf637 4126 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4127 INIT_LIST_HEAD(&memcg->event_list);
4128 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4129 memcg->socket_pressure = jiffies;
127424c8 4130#ifndef CONFIG_SLOB
900a38f0 4131 memcg->kmemcg_id = -1;
900a38f0 4132#endif
52ebea74
TH
4133#ifdef CONFIG_CGROUP_WRITEBACK
4134 INIT_LIST_HEAD(&memcg->cgwb_list);
4135#endif
0b8f73e1
JW
4136 return memcg;
4137fail:
4138 mem_cgroup_free(memcg);
4139 return NULL;
d142e3e6
GC
4140}
4141
0b8f73e1
JW
4142static struct cgroup_subsys_state * __ref
4143mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4144{
0b8f73e1
JW
4145 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4146 struct mem_cgroup *memcg;
4147 long error = -ENOMEM;
d142e3e6 4148
0b8f73e1
JW
4149 memcg = mem_cgroup_alloc();
4150 if (!memcg)
4151 return ERR_PTR(error);
d142e3e6 4152
0b8f73e1
JW
4153 memcg->high = PAGE_COUNTER_MAX;
4154 memcg->soft_limit = PAGE_COUNTER_MAX;
4155 if (parent) {
4156 memcg->swappiness = mem_cgroup_swappiness(parent);
4157 memcg->oom_kill_disable = parent->oom_kill_disable;
4158 }
4159 if (parent && parent->use_hierarchy) {
4160 memcg->use_hierarchy = true;
3e32cb2e 4161 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4162 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4163 page_counter_init(&memcg->memsw, &parent->memsw);
4164 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4165 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4166 } else {
3e32cb2e 4167 page_counter_init(&memcg->memory, NULL);
37e84351 4168 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4169 page_counter_init(&memcg->memsw, NULL);
4170 page_counter_init(&memcg->kmem, NULL);
0db15298 4171 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4172 /*
4173 * Deeper hierachy with use_hierarchy == false doesn't make
4174 * much sense so let cgroup subsystem know about this
4175 * unfortunate state in our controller.
4176 */
d142e3e6 4177 if (parent != root_mem_cgroup)
073219e9 4178 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4179 }
d6441637 4180
0b8f73e1
JW
4181 /* The following stuff does not apply to the root */
4182 if (!parent) {
4183 root_mem_cgroup = memcg;
4184 return &memcg->css;
4185 }
4186
b313aeee 4187 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4188 if (error)
4189 goto fail;
127424c8 4190
f7e1cb6e 4191 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4192 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4193
0b8f73e1
JW
4194 return &memcg->css;
4195fail:
4196 mem_cgroup_free(memcg);
4197 return NULL;
4198}
4199
4200static int
4201mem_cgroup_css_online(struct cgroup_subsys_state *css)
4202{
4203 if (css->id > MEM_CGROUP_ID_MAX)
4204 return -ENOSPC;
2f7dd7a4
JW
4205
4206 return 0;
8cdea7c0
BS
4207}
4208
eb95419b 4209static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4210{
eb95419b 4211 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4212 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4213
4214 /*
4215 * Unregister events and notify userspace.
4216 * Notify userspace about cgroup removing only after rmdir of cgroup
4217 * directory to avoid race between userspace and kernelspace.
4218 */
fba94807
TH
4219 spin_lock(&memcg->event_list_lock);
4220 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4221 list_del_init(&event->list);
4222 schedule_work(&event->remove);
4223 }
fba94807 4224 spin_unlock(&memcg->event_list_lock);
ec64f515 4225
567e9ab2 4226 memcg_offline_kmem(memcg);
52ebea74 4227 wb_memcg_offline(memcg);
df878fb0
KH
4228}
4229
6df38689
VD
4230static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4231{
4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233
4234 invalidate_reclaim_iterators(memcg);
4235}
4236
eb95419b 4237static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4238{
eb95419b 4239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4240
f7e1cb6e 4241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4242 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4243
0db15298 4244 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4245 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4246
0b8f73e1
JW
4247 vmpressure_cleanup(&memcg->vmpressure);
4248 cancel_work_sync(&memcg->high_work);
4249 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4250 memcg_free_kmem(memcg);
0b8f73e1 4251 mem_cgroup_free(memcg);
8cdea7c0
BS
4252}
4253
1ced953b
TH
4254/**
4255 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4256 * @css: the target css
4257 *
4258 * Reset the states of the mem_cgroup associated with @css. This is
4259 * invoked when the userland requests disabling on the default hierarchy
4260 * but the memcg is pinned through dependency. The memcg should stop
4261 * applying policies and should revert to the vanilla state as it may be
4262 * made visible again.
4263 *
4264 * The current implementation only resets the essential configurations.
4265 * This needs to be expanded to cover all the visible parts.
4266 */
4267static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4268{
4269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270
d334c9bc
VD
4271 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4272 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4273 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4274 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4275 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4276 memcg->low = 0;
4277 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4278 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4279 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4280}
4281
02491447 4282#ifdef CONFIG_MMU
7dc74be0 4283/* Handlers for move charge at task migration. */
854ffa8d 4284static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4285{
05b84301 4286 int ret;
9476db97 4287
d0164adc
MG
4288 /* Try a single bulk charge without reclaim first, kswapd may wake */
4289 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4290 if (!ret) {
854ffa8d 4291 mc.precharge += count;
854ffa8d
DN
4292 return ret;
4293 }
9476db97
JW
4294
4295 /* Try charges one by one with reclaim */
854ffa8d 4296 while (count--) {
00501b53 4297 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4298 if (ret)
38c5d72f 4299 return ret;
854ffa8d 4300 mc.precharge++;
9476db97 4301 cond_resched();
854ffa8d 4302 }
9476db97 4303 return 0;
4ffef5fe
DN
4304}
4305
4306/**
8d32ff84 4307 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4308 * @vma: the vma the pte to be checked belongs
4309 * @addr: the address corresponding to the pte to be checked
4310 * @ptent: the pte to be checked
02491447 4311 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4312 *
4313 * Returns
4314 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4315 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4316 * move charge. if @target is not NULL, the page is stored in target->page
4317 * with extra refcnt got(Callers should handle it).
02491447
DN
4318 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4319 * target for charge migration. if @target is not NULL, the entry is stored
4320 * in target->ent.
4ffef5fe
DN
4321 *
4322 * Called with pte lock held.
4323 */
4ffef5fe
DN
4324union mc_target {
4325 struct page *page;
02491447 4326 swp_entry_t ent;
4ffef5fe
DN
4327};
4328
4ffef5fe 4329enum mc_target_type {
8d32ff84 4330 MC_TARGET_NONE = 0,
4ffef5fe 4331 MC_TARGET_PAGE,
02491447 4332 MC_TARGET_SWAP,
4ffef5fe
DN
4333};
4334
90254a65
DN
4335static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4336 unsigned long addr, pte_t ptent)
4ffef5fe 4337{
90254a65 4338 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4339
90254a65
DN
4340 if (!page || !page_mapped(page))
4341 return NULL;
4342 if (PageAnon(page)) {
1dfab5ab 4343 if (!(mc.flags & MOVE_ANON))
90254a65 4344 return NULL;
1dfab5ab
JW
4345 } else {
4346 if (!(mc.flags & MOVE_FILE))
4347 return NULL;
4348 }
90254a65
DN
4349 if (!get_page_unless_zero(page))
4350 return NULL;
4351
4352 return page;
4353}
4354
4b91355e 4355#ifdef CONFIG_SWAP
90254a65
DN
4356static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4357 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4358{
90254a65
DN
4359 struct page *page = NULL;
4360 swp_entry_t ent = pte_to_swp_entry(ptent);
4361
1dfab5ab 4362 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4363 return NULL;
4b91355e
KH
4364 /*
4365 * Because lookup_swap_cache() updates some statistics counter,
4366 * we call find_get_page() with swapper_space directly.
4367 */
33806f06 4368 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4369 if (do_memsw_account())
90254a65
DN
4370 entry->val = ent.val;
4371
4372 return page;
4373}
4b91355e
KH
4374#else
4375static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4376 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4377{
4378 return NULL;
4379}
4380#endif
90254a65 4381
87946a72
DN
4382static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4383 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4384{
4385 struct page *page = NULL;
87946a72
DN
4386 struct address_space *mapping;
4387 pgoff_t pgoff;
4388
4389 if (!vma->vm_file) /* anonymous vma */
4390 return NULL;
1dfab5ab 4391 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4392 return NULL;
4393
87946a72 4394 mapping = vma->vm_file->f_mapping;
0661a336 4395 pgoff = linear_page_index(vma, addr);
87946a72
DN
4396
4397 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4398#ifdef CONFIG_SWAP
4399 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4400 if (shmem_mapping(mapping)) {
4401 page = find_get_entry(mapping, pgoff);
4402 if (radix_tree_exceptional_entry(page)) {
4403 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4404 if (do_memsw_account())
139b6a6f
JW
4405 *entry = swp;
4406 page = find_get_page(swap_address_space(swp), swp.val);
4407 }
4408 } else
4409 page = find_get_page(mapping, pgoff);
4410#else
4411 page = find_get_page(mapping, pgoff);
aa3b1895 4412#endif
87946a72
DN
4413 return page;
4414}
4415
b1b0deab
CG
4416/**
4417 * mem_cgroup_move_account - move account of the page
4418 * @page: the page
4419 * @nr_pages: number of regular pages (>1 for huge pages)
4420 * @from: mem_cgroup which the page is moved from.
4421 * @to: mem_cgroup which the page is moved to. @from != @to.
4422 *
3ac808fd 4423 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4424 *
4425 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4426 * from old cgroup.
4427 */
4428static int mem_cgroup_move_account(struct page *page,
f627c2f5 4429 bool compound,
b1b0deab
CG
4430 struct mem_cgroup *from,
4431 struct mem_cgroup *to)
4432{
4433 unsigned long flags;
f627c2f5 4434 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4435 int ret;
c4843a75 4436 bool anon;
b1b0deab
CG
4437
4438 VM_BUG_ON(from == to);
4439 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4440 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4441
4442 /*
6a93ca8f 4443 * Prevent mem_cgroup_migrate() from looking at
45637bab 4444 * page->mem_cgroup of its source page while we change it.
b1b0deab 4445 */
f627c2f5 4446 ret = -EBUSY;
b1b0deab
CG
4447 if (!trylock_page(page))
4448 goto out;
4449
4450 ret = -EINVAL;
4451 if (page->mem_cgroup != from)
4452 goto out_unlock;
4453
c4843a75
GT
4454 anon = PageAnon(page);
4455
b1b0deab
CG
4456 spin_lock_irqsave(&from->move_lock, flags);
4457
c4843a75 4458 if (!anon && page_mapped(page)) {
b1b0deab
CG
4459 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4460 nr_pages);
4461 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462 nr_pages);
4463 }
4464
c4843a75
GT
4465 /*
4466 * move_lock grabbed above and caller set from->moving_account, so
4467 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4468 * So mapping should be stable for dirty pages.
4469 */
4470 if (!anon && PageDirty(page)) {
4471 struct address_space *mapping = page_mapping(page);
4472
4473 if (mapping_cap_account_dirty(mapping)) {
4474 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4475 nr_pages);
4476 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4477 nr_pages);
4478 }
4479 }
4480
b1b0deab
CG
4481 if (PageWriteback(page)) {
4482 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4483 nr_pages);
4484 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485 nr_pages);
4486 }
4487
4488 /*
4489 * It is safe to change page->mem_cgroup here because the page
4490 * is referenced, charged, and isolated - we can't race with
4491 * uncharging, charging, migration, or LRU putback.
4492 */
4493
4494 /* caller should have done css_get */
4495 page->mem_cgroup = to;
4496 spin_unlock_irqrestore(&from->move_lock, flags);
4497
4498 ret = 0;
4499
4500 local_irq_disable();
f627c2f5 4501 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4502 memcg_check_events(to, page);
f627c2f5 4503 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4504 memcg_check_events(from, page);
4505 local_irq_enable();
4506out_unlock:
4507 unlock_page(page);
4508out:
4509 return ret;
4510}
4511
8d32ff84 4512static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4513 unsigned long addr, pte_t ptent, union mc_target *target)
4514{
4515 struct page *page = NULL;
8d32ff84 4516 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4517 swp_entry_t ent = { .val = 0 };
4518
4519 if (pte_present(ptent))
4520 page = mc_handle_present_pte(vma, addr, ptent);
4521 else if (is_swap_pte(ptent))
4522 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4523 else if (pte_none(ptent))
87946a72 4524 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4525
4526 if (!page && !ent.val)
8d32ff84 4527 return ret;
02491447 4528 if (page) {
02491447 4529 /*
0a31bc97 4530 * Do only loose check w/o serialization.
1306a85a 4531 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4532 * not under LRU exclusion.
02491447 4533 */
1306a85a 4534 if (page->mem_cgroup == mc.from) {
02491447
DN
4535 ret = MC_TARGET_PAGE;
4536 if (target)
4537 target->page = page;
4538 }
4539 if (!ret || !target)
4540 put_page(page);
4541 }
90254a65
DN
4542 /* There is a swap entry and a page doesn't exist or isn't charged */
4543 if (ent.val && !ret &&
34c00c31 4544 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4545 ret = MC_TARGET_SWAP;
4546 if (target)
4547 target->ent = ent;
4ffef5fe 4548 }
4ffef5fe
DN
4549 return ret;
4550}
4551
12724850
NH
4552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4553/*
4554 * We don't consider swapping or file mapped pages because THP does not
4555 * support them for now.
4556 * Caller should make sure that pmd_trans_huge(pmd) is true.
4557 */
4558static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4559 unsigned long addr, pmd_t pmd, union mc_target *target)
4560{
4561 struct page *page = NULL;
12724850
NH
4562 enum mc_target_type ret = MC_TARGET_NONE;
4563
4564 page = pmd_page(pmd);
309381fe 4565 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4566 if (!(mc.flags & MOVE_ANON))
12724850 4567 return ret;
1306a85a 4568 if (page->mem_cgroup == mc.from) {
12724850
NH
4569 ret = MC_TARGET_PAGE;
4570 if (target) {
4571 get_page(page);
4572 target->page = page;
4573 }
4574 }
4575 return ret;
4576}
4577#else
4578static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4579 unsigned long addr, pmd_t pmd, union mc_target *target)
4580{
4581 return MC_TARGET_NONE;
4582}
4583#endif
4584
4ffef5fe
DN
4585static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4586 unsigned long addr, unsigned long end,
4587 struct mm_walk *walk)
4588{
26bcd64a 4589 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4590 pte_t *pte;
4591 spinlock_t *ptl;
4592
b6ec57f4
KS
4593 ptl = pmd_trans_huge_lock(pmd, vma);
4594 if (ptl) {
12724850
NH
4595 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4596 mc.precharge += HPAGE_PMD_NR;
bf929152 4597 spin_unlock(ptl);
1a5a9906 4598 return 0;
12724850 4599 }
03319327 4600
45f83cef
AA
4601 if (pmd_trans_unstable(pmd))
4602 return 0;
4ffef5fe
DN
4603 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4604 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4605 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4606 mc.precharge++; /* increment precharge temporarily */
4607 pte_unmap_unlock(pte - 1, ptl);
4608 cond_resched();
4609
7dc74be0
DN
4610 return 0;
4611}
4612
4ffef5fe
DN
4613static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4614{
4615 unsigned long precharge;
4ffef5fe 4616
26bcd64a
NH
4617 struct mm_walk mem_cgroup_count_precharge_walk = {
4618 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4619 .mm = mm,
4620 };
dfe076b0 4621 down_read(&mm->mmap_sem);
26bcd64a 4622 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4623 up_read(&mm->mmap_sem);
4ffef5fe
DN
4624
4625 precharge = mc.precharge;
4626 mc.precharge = 0;
4627
4628 return precharge;
4629}
4630
4ffef5fe
DN
4631static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4632{
dfe076b0
DN
4633 unsigned long precharge = mem_cgroup_count_precharge(mm);
4634
4635 VM_BUG_ON(mc.moving_task);
4636 mc.moving_task = current;
4637 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4638}
4639
dfe076b0
DN
4640/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4641static void __mem_cgroup_clear_mc(void)
4ffef5fe 4642{
2bd9bb20
KH
4643 struct mem_cgroup *from = mc.from;
4644 struct mem_cgroup *to = mc.to;
4645
4ffef5fe 4646 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4647 if (mc.precharge) {
00501b53 4648 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4649 mc.precharge = 0;
4650 }
4651 /*
4652 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4653 * we must uncharge here.
4654 */
4655 if (mc.moved_charge) {
00501b53 4656 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4657 mc.moved_charge = 0;
4ffef5fe 4658 }
483c30b5
DN
4659 /* we must fixup refcnts and charges */
4660 if (mc.moved_swap) {
483c30b5 4661 /* uncharge swap account from the old cgroup */
ce00a967 4662 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4663 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4664
05b84301 4665 /*
3e32cb2e
JW
4666 * we charged both to->memory and to->memsw, so we
4667 * should uncharge to->memory.
05b84301 4668 */
ce00a967 4669 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4670 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4671
e8ea14cc 4672 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4673
4050377b 4674 /* we've already done css_get(mc.to) */
483c30b5
DN
4675 mc.moved_swap = 0;
4676 }
dfe076b0
DN
4677 memcg_oom_recover(from);
4678 memcg_oom_recover(to);
4679 wake_up_all(&mc.waitq);
4680}
4681
4682static void mem_cgroup_clear_mc(void)
4683{
264a0ae1
TH
4684 struct mm_struct *mm = mc.mm;
4685
dfe076b0
DN
4686 /*
4687 * we must clear moving_task before waking up waiters at the end of
4688 * task migration.
4689 */
4690 mc.moving_task = NULL;
4691 __mem_cgroup_clear_mc();
2bd9bb20 4692 spin_lock(&mc.lock);
4ffef5fe
DN
4693 mc.from = NULL;
4694 mc.to = NULL;
264a0ae1 4695 mc.mm = NULL;
2bd9bb20 4696 spin_unlock(&mc.lock);
264a0ae1
TH
4697
4698 mmput(mm);
4ffef5fe
DN
4699}
4700
1f7dd3e5 4701static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4702{
1f7dd3e5 4703 struct cgroup_subsys_state *css;
eed67d75 4704 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4705 struct mem_cgroup *from;
4530eddb 4706 struct task_struct *leader, *p;
9f2115f9 4707 struct mm_struct *mm;
1dfab5ab 4708 unsigned long move_flags;
9f2115f9 4709 int ret = 0;
7dc74be0 4710
1f7dd3e5
TH
4711 /* charge immigration isn't supported on the default hierarchy */
4712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4713 return 0;
4714
4530eddb
TH
4715 /*
4716 * Multi-process migrations only happen on the default hierarchy
4717 * where charge immigration is not used. Perform charge
4718 * immigration if @tset contains a leader and whine if there are
4719 * multiple.
4720 */
4721 p = NULL;
1f7dd3e5 4722 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4723 WARN_ON_ONCE(p);
4724 p = leader;
1f7dd3e5 4725 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4726 }
4727 if (!p)
4728 return 0;
4729
1f7dd3e5
TH
4730 /*
4731 * We are now commited to this value whatever it is. Changes in this
4732 * tunable will only affect upcoming migrations, not the current one.
4733 * So we need to save it, and keep it going.
4734 */
4735 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4736 if (!move_flags)
4737 return 0;
4738
9f2115f9
TH
4739 from = mem_cgroup_from_task(p);
4740
4741 VM_BUG_ON(from == memcg);
4742
4743 mm = get_task_mm(p);
4744 if (!mm)
4745 return 0;
4746 /* We move charges only when we move a owner of the mm */
4747 if (mm->owner == p) {
4748 VM_BUG_ON(mc.from);
4749 VM_BUG_ON(mc.to);
4750 VM_BUG_ON(mc.precharge);
4751 VM_BUG_ON(mc.moved_charge);
4752 VM_BUG_ON(mc.moved_swap);
4753
4754 spin_lock(&mc.lock);
264a0ae1 4755 mc.mm = mm;
9f2115f9
TH
4756 mc.from = from;
4757 mc.to = memcg;
4758 mc.flags = move_flags;
4759 spin_unlock(&mc.lock);
4760 /* We set mc.moving_task later */
4761
4762 ret = mem_cgroup_precharge_mc(mm);
4763 if (ret)
4764 mem_cgroup_clear_mc();
264a0ae1
TH
4765 } else {
4766 mmput(mm);
7dc74be0
DN
4767 }
4768 return ret;
4769}
4770
1f7dd3e5 4771static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4772{
4e2f245d
JW
4773 if (mc.to)
4774 mem_cgroup_clear_mc();
7dc74be0
DN
4775}
4776
4ffef5fe
DN
4777static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4778 unsigned long addr, unsigned long end,
4779 struct mm_walk *walk)
7dc74be0 4780{
4ffef5fe 4781 int ret = 0;
26bcd64a 4782 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4783 pte_t *pte;
4784 spinlock_t *ptl;
12724850
NH
4785 enum mc_target_type target_type;
4786 union mc_target target;
4787 struct page *page;
4ffef5fe 4788
b6ec57f4
KS
4789 ptl = pmd_trans_huge_lock(pmd, vma);
4790 if (ptl) {
62ade86a 4791 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4792 spin_unlock(ptl);
12724850
NH
4793 return 0;
4794 }
4795 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4796 if (target_type == MC_TARGET_PAGE) {
4797 page = target.page;
4798 if (!isolate_lru_page(page)) {
f627c2f5 4799 if (!mem_cgroup_move_account(page, true,
1306a85a 4800 mc.from, mc.to)) {
12724850
NH
4801 mc.precharge -= HPAGE_PMD_NR;
4802 mc.moved_charge += HPAGE_PMD_NR;
4803 }
4804 putback_lru_page(page);
4805 }
4806 put_page(page);
4807 }
bf929152 4808 spin_unlock(ptl);
1a5a9906 4809 return 0;
12724850
NH
4810 }
4811
45f83cef
AA
4812 if (pmd_trans_unstable(pmd))
4813 return 0;
4ffef5fe
DN
4814retry:
4815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4816 for (; addr != end; addr += PAGE_SIZE) {
4817 pte_t ptent = *(pte++);
02491447 4818 swp_entry_t ent;
4ffef5fe
DN
4819
4820 if (!mc.precharge)
4821 break;
4822
8d32ff84 4823 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4824 case MC_TARGET_PAGE:
4825 page = target.page;
53f9263b
KS
4826 /*
4827 * We can have a part of the split pmd here. Moving it
4828 * can be done but it would be too convoluted so simply
4829 * ignore such a partial THP and keep it in original
4830 * memcg. There should be somebody mapping the head.
4831 */
4832 if (PageTransCompound(page))
4833 goto put;
4ffef5fe
DN
4834 if (isolate_lru_page(page))
4835 goto put;
f627c2f5
KS
4836 if (!mem_cgroup_move_account(page, false,
4837 mc.from, mc.to)) {
4ffef5fe 4838 mc.precharge--;
854ffa8d
DN
4839 /* we uncharge from mc.from later. */
4840 mc.moved_charge++;
4ffef5fe
DN
4841 }
4842 putback_lru_page(page);
8d32ff84 4843put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4844 put_page(page);
4845 break;
02491447
DN
4846 case MC_TARGET_SWAP:
4847 ent = target.ent;
e91cbb42 4848 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4849 mc.precharge--;
483c30b5
DN
4850 /* we fixup refcnts and charges later. */
4851 mc.moved_swap++;
4852 }
02491447 4853 break;
4ffef5fe
DN
4854 default:
4855 break;
4856 }
4857 }
4858 pte_unmap_unlock(pte - 1, ptl);
4859 cond_resched();
4860
4861 if (addr != end) {
4862 /*
4863 * We have consumed all precharges we got in can_attach().
4864 * We try charge one by one, but don't do any additional
4865 * charges to mc.to if we have failed in charge once in attach()
4866 * phase.
4867 */
854ffa8d 4868 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4869 if (!ret)
4870 goto retry;
4871 }
4872
4873 return ret;
4874}
4875
264a0ae1 4876static void mem_cgroup_move_charge(void)
4ffef5fe 4877{
26bcd64a
NH
4878 struct mm_walk mem_cgroup_move_charge_walk = {
4879 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4880 .mm = mc.mm,
26bcd64a 4881 };
4ffef5fe
DN
4882
4883 lru_add_drain_all();
312722cb 4884 /*
81f8c3a4
JW
4885 * Signal lock_page_memcg() to take the memcg's move_lock
4886 * while we're moving its pages to another memcg. Then wait
4887 * for already started RCU-only updates to finish.
312722cb
JW
4888 */
4889 atomic_inc(&mc.from->moving_account);
4890 synchronize_rcu();
dfe076b0 4891retry:
264a0ae1 4892 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4893 /*
4894 * Someone who are holding the mmap_sem might be waiting in
4895 * waitq. So we cancel all extra charges, wake up all waiters,
4896 * and retry. Because we cancel precharges, we might not be able
4897 * to move enough charges, but moving charge is a best-effort
4898 * feature anyway, so it wouldn't be a big problem.
4899 */
4900 __mem_cgroup_clear_mc();
4901 cond_resched();
4902 goto retry;
4903 }
26bcd64a
NH
4904 /*
4905 * When we have consumed all precharges and failed in doing
4906 * additional charge, the page walk just aborts.
4907 */
4908 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4909 up_read(&mc.mm->mmap_sem);
312722cb 4910 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4911}
4912
264a0ae1 4913static void mem_cgroup_move_task(void)
67e465a7 4914{
264a0ae1
TH
4915 if (mc.to) {
4916 mem_cgroup_move_charge();
a433658c 4917 mem_cgroup_clear_mc();
264a0ae1 4918 }
67e465a7 4919}
5cfb80a7 4920#else /* !CONFIG_MMU */
1f7dd3e5 4921static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4922{
4923 return 0;
4924}
1f7dd3e5 4925static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4926{
4927}
264a0ae1 4928static void mem_cgroup_move_task(void)
5cfb80a7
DN
4929{
4930}
4931#endif
67e465a7 4932
f00baae7
TH
4933/*
4934 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4935 * to verify whether we're attached to the default hierarchy on each mount
4936 * attempt.
f00baae7 4937 */
eb95419b 4938static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4939{
4940 /*
aa6ec29b 4941 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4942 * guarantees that @root doesn't have any children, so turning it
4943 * on for the root memcg is enough.
4944 */
9e10a130 4945 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4946 root_mem_cgroup->use_hierarchy = true;
4947 else
4948 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4949}
4950
241994ed
JW
4951static u64 memory_current_read(struct cgroup_subsys_state *css,
4952 struct cftype *cft)
4953{
f5fc3c5d
JW
4954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4955
4956 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4957}
4958
4959static int memory_low_show(struct seq_file *m, void *v)
4960{
4961 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4962 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4963
4964 if (low == PAGE_COUNTER_MAX)
d2973697 4965 seq_puts(m, "max\n");
241994ed
JW
4966 else
4967 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4968
4969 return 0;
4970}
4971
4972static ssize_t memory_low_write(struct kernfs_open_file *of,
4973 char *buf, size_t nbytes, loff_t off)
4974{
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4976 unsigned long low;
4977 int err;
4978
4979 buf = strstrip(buf);
d2973697 4980 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4981 if (err)
4982 return err;
4983
4984 memcg->low = low;
4985
4986 return nbytes;
4987}
4988
4989static int memory_high_show(struct seq_file *m, void *v)
4990{
4991 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4992 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4993
4994 if (high == PAGE_COUNTER_MAX)
d2973697 4995 seq_puts(m, "max\n");
241994ed
JW
4996 else
4997 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4998
4999 return 0;
5000}
5001
5002static ssize_t memory_high_write(struct kernfs_open_file *of,
5003 char *buf, size_t nbytes, loff_t off)
5004{
5005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5006 unsigned long nr_pages;
241994ed
JW
5007 unsigned long high;
5008 int err;
5009
5010 buf = strstrip(buf);
d2973697 5011 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5012 if (err)
5013 return err;
5014
5015 memcg->high = high;
5016
588083bb
JW
5017 nr_pages = page_counter_read(&memcg->memory);
5018 if (nr_pages > high)
5019 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5020 GFP_KERNEL, true);
5021
2529bb3a 5022 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5023 return nbytes;
5024}
5025
5026static int memory_max_show(struct seq_file *m, void *v)
5027{
5028 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5029 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5030
5031 if (max == PAGE_COUNTER_MAX)
d2973697 5032 seq_puts(m, "max\n");
241994ed
JW
5033 else
5034 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5035
5036 return 0;
5037}
5038
5039static ssize_t memory_max_write(struct kernfs_open_file *of,
5040 char *buf, size_t nbytes, loff_t off)
5041{
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5043 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5044 bool drained = false;
241994ed
JW
5045 unsigned long max;
5046 int err;
5047
5048 buf = strstrip(buf);
d2973697 5049 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5050 if (err)
5051 return err;
5052
b6e6edcf
JW
5053 xchg(&memcg->memory.limit, max);
5054
5055 for (;;) {
5056 unsigned long nr_pages = page_counter_read(&memcg->memory);
5057
5058 if (nr_pages <= max)
5059 break;
5060
5061 if (signal_pending(current)) {
5062 err = -EINTR;
5063 break;
5064 }
5065
5066 if (!drained) {
5067 drain_all_stock(memcg);
5068 drained = true;
5069 continue;
5070 }
5071
5072 if (nr_reclaims) {
5073 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5074 GFP_KERNEL, true))
5075 nr_reclaims--;
5076 continue;
5077 }
5078
5079 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5080 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5081 break;
5082 }
241994ed 5083
2529bb3a 5084 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5085 return nbytes;
5086}
5087
5088static int memory_events_show(struct seq_file *m, void *v)
5089{
5090 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5091
5092 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5093 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5094 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5095 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5096
5097 return 0;
5098}
5099
587d9f72
JW
5100static int memory_stat_show(struct seq_file *m, void *v)
5101{
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5103 unsigned long stat[MEMCG_NR_STAT];
5104 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5105 int i;
5106
5107 /*
5108 * Provide statistics on the state of the memory subsystem as
5109 * well as cumulative event counters that show past behavior.
5110 *
5111 * This list is ordered following a combination of these gradients:
5112 * 1) generic big picture -> specifics and details
5113 * 2) reflecting userspace activity -> reflecting kernel heuristics
5114 *
5115 * Current memory state:
5116 */
5117
72b54e73
VD
5118 tree_stat(memcg, stat);
5119 tree_events(memcg, events);
5120
587d9f72 5121 seq_printf(m, "anon %llu\n",
72b54e73 5122 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5123 seq_printf(m, "file %llu\n",
72b54e73 5124 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5125 seq_printf(m, "kernel_stack %llu\n",
5126 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5127 seq_printf(m, "slab %llu\n",
5128 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5129 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5130 seq_printf(m, "sock %llu\n",
72b54e73 5131 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5132
5133 seq_printf(m, "file_mapped %llu\n",
72b54e73 5134 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5135 seq_printf(m, "file_dirty %llu\n",
72b54e73 5136 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5137 seq_printf(m, "file_writeback %llu\n",
72b54e73 5138 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5139
5140 for (i = 0; i < NR_LRU_LISTS; i++) {
5141 struct mem_cgroup *mi;
5142 unsigned long val = 0;
5143
5144 for_each_mem_cgroup_tree(mi, memcg)
5145 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5146 seq_printf(m, "%s %llu\n",
5147 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5148 }
5149
27ee57c9
VD
5150 seq_printf(m, "slab_reclaimable %llu\n",
5151 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5152 seq_printf(m, "slab_unreclaimable %llu\n",
5153 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5154
587d9f72
JW
5155 /* Accumulated memory events */
5156
5157 seq_printf(m, "pgfault %lu\n",
72b54e73 5158 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5159 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5160 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5161
5162 return 0;
5163}
5164
241994ed
JW
5165static struct cftype memory_files[] = {
5166 {
5167 .name = "current",
f5fc3c5d 5168 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5169 .read_u64 = memory_current_read,
5170 },
5171 {
5172 .name = "low",
5173 .flags = CFTYPE_NOT_ON_ROOT,
5174 .seq_show = memory_low_show,
5175 .write = memory_low_write,
5176 },
5177 {
5178 .name = "high",
5179 .flags = CFTYPE_NOT_ON_ROOT,
5180 .seq_show = memory_high_show,
5181 .write = memory_high_write,
5182 },
5183 {
5184 .name = "max",
5185 .flags = CFTYPE_NOT_ON_ROOT,
5186 .seq_show = memory_max_show,
5187 .write = memory_max_write,
5188 },
5189 {
5190 .name = "events",
5191 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5192 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5193 .seq_show = memory_events_show,
5194 },
587d9f72
JW
5195 {
5196 .name = "stat",
5197 .flags = CFTYPE_NOT_ON_ROOT,
5198 .seq_show = memory_stat_show,
5199 },
241994ed
JW
5200 { } /* terminate */
5201};
5202
073219e9 5203struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5204 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5205 .css_online = mem_cgroup_css_online,
92fb9748 5206 .css_offline = mem_cgroup_css_offline,
6df38689 5207 .css_released = mem_cgroup_css_released,
92fb9748 5208 .css_free = mem_cgroup_css_free,
1ced953b 5209 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5210 .can_attach = mem_cgroup_can_attach,
5211 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5212 .post_attach = mem_cgroup_move_task,
f00baae7 5213 .bind = mem_cgroup_bind,
241994ed
JW
5214 .dfl_cftypes = memory_files,
5215 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5216 .early_init = 0,
8cdea7c0 5217};
c077719b 5218
241994ed
JW
5219/**
5220 * mem_cgroup_low - check if memory consumption is below the normal range
5221 * @root: the highest ancestor to consider
5222 * @memcg: the memory cgroup to check
5223 *
5224 * Returns %true if memory consumption of @memcg, and that of all
5225 * configurable ancestors up to @root, is below the normal range.
5226 */
5227bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5228{
5229 if (mem_cgroup_disabled())
5230 return false;
5231
5232 /*
5233 * The toplevel group doesn't have a configurable range, so
5234 * it's never low when looked at directly, and it is not
5235 * considered an ancestor when assessing the hierarchy.
5236 */
5237
5238 if (memcg == root_mem_cgroup)
5239 return false;
5240
4e54dede 5241 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5242 return false;
5243
5244 while (memcg != root) {
5245 memcg = parent_mem_cgroup(memcg);
5246
5247 if (memcg == root_mem_cgroup)
5248 break;
5249
4e54dede 5250 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5251 return false;
5252 }
5253 return true;
5254}
5255
00501b53
JW
5256/**
5257 * mem_cgroup_try_charge - try charging a page
5258 * @page: page to charge
5259 * @mm: mm context of the victim
5260 * @gfp_mask: reclaim mode
5261 * @memcgp: charged memcg return
5262 *
5263 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5264 * pages according to @gfp_mask if necessary.
5265 *
5266 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5267 * Otherwise, an error code is returned.
5268 *
5269 * After page->mapping has been set up, the caller must finalize the
5270 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5271 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5272 */
5273int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5274 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5275 bool compound)
00501b53
JW
5276{
5277 struct mem_cgroup *memcg = NULL;
f627c2f5 5278 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5279 int ret = 0;
5280
5281 if (mem_cgroup_disabled())
5282 goto out;
5283
5284 if (PageSwapCache(page)) {
00501b53
JW
5285 /*
5286 * Every swap fault against a single page tries to charge the
5287 * page, bail as early as possible. shmem_unuse() encounters
5288 * already charged pages, too. The USED bit is protected by
5289 * the page lock, which serializes swap cache removal, which
5290 * in turn serializes uncharging.
5291 */
e993d905 5292 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5293 if (page->mem_cgroup)
00501b53 5294 goto out;
e993d905 5295
37e84351 5296 if (do_swap_account) {
e993d905
VD
5297 swp_entry_t ent = { .val = page_private(page), };
5298 unsigned short id = lookup_swap_cgroup_id(ent);
5299
5300 rcu_read_lock();
5301 memcg = mem_cgroup_from_id(id);
5302 if (memcg && !css_tryget_online(&memcg->css))
5303 memcg = NULL;
5304 rcu_read_unlock();
5305 }
00501b53
JW
5306 }
5307
00501b53
JW
5308 if (!memcg)
5309 memcg = get_mem_cgroup_from_mm(mm);
5310
5311 ret = try_charge(memcg, gfp_mask, nr_pages);
5312
5313 css_put(&memcg->css);
00501b53
JW
5314out:
5315 *memcgp = memcg;
5316 return ret;
5317}
5318
5319/**
5320 * mem_cgroup_commit_charge - commit a page charge
5321 * @page: page to charge
5322 * @memcg: memcg to charge the page to
5323 * @lrucare: page might be on LRU already
5324 *
5325 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5326 * after page->mapping has been set up. This must happen atomically
5327 * as part of the page instantiation, i.e. under the page table lock
5328 * for anonymous pages, under the page lock for page and swap cache.
5329 *
5330 * In addition, the page must not be on the LRU during the commit, to
5331 * prevent racing with task migration. If it might be, use @lrucare.
5332 *
5333 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5334 */
5335void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5336 bool lrucare, bool compound)
00501b53 5337{
f627c2f5 5338 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5339
5340 VM_BUG_ON_PAGE(!page->mapping, page);
5341 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5342
5343 if (mem_cgroup_disabled())
5344 return;
5345 /*
5346 * Swap faults will attempt to charge the same page multiple
5347 * times. But reuse_swap_page() might have removed the page
5348 * from swapcache already, so we can't check PageSwapCache().
5349 */
5350 if (!memcg)
5351 return;
5352
6abb5a86
JW
5353 commit_charge(page, memcg, lrucare);
5354
6abb5a86 5355 local_irq_disable();
f627c2f5 5356 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5357 memcg_check_events(memcg, page);
5358 local_irq_enable();
00501b53 5359
7941d214 5360 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5361 swp_entry_t entry = { .val = page_private(page) };
5362 /*
5363 * The swap entry might not get freed for a long time,
5364 * let's not wait for it. The page already received a
5365 * memory+swap charge, drop the swap entry duplicate.
5366 */
5367 mem_cgroup_uncharge_swap(entry);
5368 }
5369}
5370
5371/**
5372 * mem_cgroup_cancel_charge - cancel a page charge
5373 * @page: page to charge
5374 * @memcg: memcg to charge the page to
5375 *
5376 * Cancel a charge transaction started by mem_cgroup_try_charge().
5377 */
f627c2f5
KS
5378void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5379 bool compound)
00501b53 5380{
f627c2f5 5381 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5382
5383 if (mem_cgroup_disabled())
5384 return;
5385 /*
5386 * Swap faults will attempt to charge the same page multiple
5387 * times. But reuse_swap_page() might have removed the page
5388 * from swapcache already, so we can't check PageSwapCache().
5389 */
5390 if (!memcg)
5391 return;
5392
00501b53
JW
5393 cancel_charge(memcg, nr_pages);
5394}
5395
747db954 5396static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5397 unsigned long nr_anon, unsigned long nr_file,
5398 unsigned long nr_huge, struct page *dummy_page)
5399{
18eca2e6 5400 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5401 unsigned long flags;
5402
ce00a967 5403 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5404 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5405 if (do_memsw_account())
18eca2e6 5406 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5407 memcg_oom_recover(memcg);
5408 }
747db954
JW
5409
5410 local_irq_save(flags);
5411 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5412 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5414 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5415 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5416 memcg_check_events(memcg, dummy_page);
5417 local_irq_restore(flags);
e8ea14cc
JW
5418
5419 if (!mem_cgroup_is_root(memcg))
18eca2e6 5420 css_put_many(&memcg->css, nr_pages);
747db954
JW
5421}
5422
5423static void uncharge_list(struct list_head *page_list)
5424{
5425 struct mem_cgroup *memcg = NULL;
747db954
JW
5426 unsigned long nr_anon = 0;
5427 unsigned long nr_file = 0;
5428 unsigned long nr_huge = 0;
5429 unsigned long pgpgout = 0;
747db954
JW
5430 struct list_head *next;
5431 struct page *page;
5432
8b592656
JW
5433 /*
5434 * Note that the list can be a single page->lru; hence the
5435 * do-while loop instead of a simple list_for_each_entry().
5436 */
747db954
JW
5437 next = page_list->next;
5438 do {
5439 unsigned int nr_pages = 1;
747db954
JW
5440
5441 page = list_entry(next, struct page, lru);
5442 next = page->lru.next;
5443
5444 VM_BUG_ON_PAGE(PageLRU(page), page);
5445 VM_BUG_ON_PAGE(page_count(page), page);
5446
1306a85a 5447 if (!page->mem_cgroup)
747db954
JW
5448 continue;
5449
5450 /*
5451 * Nobody should be changing or seriously looking at
1306a85a 5452 * page->mem_cgroup at this point, we have fully
29833315 5453 * exclusive access to the page.
747db954
JW
5454 */
5455
1306a85a 5456 if (memcg != page->mem_cgroup) {
747db954 5457 if (memcg) {
18eca2e6
JW
5458 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5459 nr_huge, page);
5460 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5461 }
1306a85a 5462 memcg = page->mem_cgroup;
747db954
JW
5463 }
5464
5465 if (PageTransHuge(page)) {
5466 nr_pages <<= compound_order(page);
5467 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5468 nr_huge += nr_pages;
5469 }
5470
5471 if (PageAnon(page))
5472 nr_anon += nr_pages;
5473 else
5474 nr_file += nr_pages;
5475
1306a85a 5476 page->mem_cgroup = NULL;
747db954
JW
5477
5478 pgpgout++;
5479 } while (next != page_list);
5480
5481 if (memcg)
18eca2e6
JW
5482 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5483 nr_huge, page);
747db954
JW
5484}
5485
0a31bc97
JW
5486/**
5487 * mem_cgroup_uncharge - uncharge a page
5488 * @page: page to uncharge
5489 *
5490 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5491 * mem_cgroup_commit_charge().
5492 */
5493void mem_cgroup_uncharge(struct page *page)
5494{
0a31bc97
JW
5495 if (mem_cgroup_disabled())
5496 return;
5497
747db954 5498 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5499 if (!page->mem_cgroup)
0a31bc97
JW
5500 return;
5501
747db954
JW
5502 INIT_LIST_HEAD(&page->lru);
5503 uncharge_list(&page->lru);
5504}
0a31bc97 5505
747db954
JW
5506/**
5507 * mem_cgroup_uncharge_list - uncharge a list of page
5508 * @page_list: list of pages to uncharge
5509 *
5510 * Uncharge a list of pages previously charged with
5511 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5512 */
5513void mem_cgroup_uncharge_list(struct list_head *page_list)
5514{
5515 if (mem_cgroup_disabled())
5516 return;
0a31bc97 5517
747db954
JW
5518 if (!list_empty(page_list))
5519 uncharge_list(page_list);
0a31bc97
JW
5520}
5521
5522/**
6a93ca8f
JW
5523 * mem_cgroup_migrate - charge a page's replacement
5524 * @oldpage: currently circulating page
5525 * @newpage: replacement page
0a31bc97 5526 *
6a93ca8f
JW
5527 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5528 * be uncharged upon free.
0a31bc97
JW
5529 *
5530 * Both pages must be locked, @newpage->mapping must be set up.
5531 */
6a93ca8f 5532void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5533{
29833315 5534 struct mem_cgroup *memcg;
44b7a8d3
JW
5535 unsigned int nr_pages;
5536 bool compound;
0a31bc97
JW
5537
5538 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5539 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5540 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5541 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5542 newpage);
0a31bc97
JW
5543
5544 if (mem_cgroup_disabled())
5545 return;
5546
5547 /* Page cache replacement: new page already charged? */
1306a85a 5548 if (newpage->mem_cgroup)
0a31bc97
JW
5549 return;
5550
45637bab 5551 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5552 memcg = oldpage->mem_cgroup;
29833315 5553 if (!memcg)
0a31bc97
JW
5554 return;
5555
44b7a8d3
JW
5556 /* Force-charge the new page. The old one will be freed soon */
5557 compound = PageTransHuge(newpage);
5558 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5559
5560 page_counter_charge(&memcg->memory, nr_pages);
5561 if (do_memsw_account())
5562 page_counter_charge(&memcg->memsw, nr_pages);
5563 css_get_many(&memcg->css, nr_pages);
0a31bc97 5564
9cf7666a 5565 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5566
5567 local_irq_disable();
5568 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5569 memcg_check_events(memcg, newpage);
5570 local_irq_enable();
0a31bc97
JW
5571}
5572
ef12947c 5573DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5574EXPORT_SYMBOL(memcg_sockets_enabled_key);
5575
5576void sock_update_memcg(struct sock *sk)
5577{
5578 struct mem_cgroup *memcg;
5579
5580 /* Socket cloning can throw us here with sk_cgrp already
5581 * filled. It won't however, necessarily happen from
5582 * process context. So the test for root memcg given
5583 * the current task's memcg won't help us in this case.
5584 *
5585 * Respecting the original socket's memcg is a better
5586 * decision in this case.
5587 */
5588 if (sk->sk_memcg) {
5589 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5590 css_get(&sk->sk_memcg->css);
5591 return;
5592 }
5593
5594 rcu_read_lock();
5595 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5596 if (memcg == root_mem_cgroup)
5597 goto out;
0db15298 5598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5599 goto out;
f7e1cb6e 5600 if (css_tryget_online(&memcg->css))
11092087 5601 sk->sk_memcg = memcg;
f7e1cb6e 5602out:
11092087
JW
5603 rcu_read_unlock();
5604}
5605EXPORT_SYMBOL(sock_update_memcg);
5606
5607void sock_release_memcg(struct sock *sk)
5608{
5609 WARN_ON(!sk->sk_memcg);
5610 css_put(&sk->sk_memcg->css);
5611}
5612
5613/**
5614 * mem_cgroup_charge_skmem - charge socket memory
5615 * @memcg: memcg to charge
5616 * @nr_pages: number of pages to charge
5617 *
5618 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5619 * @memcg's configured limit, %false if the charge had to be forced.
5620 */
5621bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5622{
f7e1cb6e 5623 gfp_t gfp_mask = GFP_KERNEL;
11092087 5624
f7e1cb6e 5625 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5626 struct page_counter *fail;
f7e1cb6e 5627
0db15298
JW
5628 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5629 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5630 return true;
5631 }
0db15298
JW
5632 page_counter_charge(&memcg->tcpmem, nr_pages);
5633 memcg->tcpmem_pressure = 1;
f7e1cb6e 5634 return false;
11092087 5635 }
d886f4e4 5636
f7e1cb6e
JW
5637 /* Don't block in the packet receive path */
5638 if (in_softirq())
5639 gfp_mask = GFP_NOWAIT;
5640
b2807f07
JW
5641 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5642
f7e1cb6e
JW
5643 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5644 return true;
5645
5646 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5647 return false;
5648}
5649
5650/**
5651 * mem_cgroup_uncharge_skmem - uncharge socket memory
5652 * @memcg - memcg to uncharge
5653 * @nr_pages - number of pages to uncharge
5654 */
5655void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5656{
f7e1cb6e 5657 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5658 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5659 return;
5660 }
d886f4e4 5661
b2807f07
JW
5662 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5663
f7e1cb6e
JW
5664 page_counter_uncharge(&memcg->memory, nr_pages);
5665 css_put_many(&memcg->css, nr_pages);
11092087
JW
5666}
5667
f7e1cb6e
JW
5668static int __init cgroup_memory(char *s)
5669{
5670 char *token;
5671
5672 while ((token = strsep(&s, ",")) != NULL) {
5673 if (!*token)
5674 continue;
5675 if (!strcmp(token, "nosocket"))
5676 cgroup_memory_nosocket = true;
04823c83
VD
5677 if (!strcmp(token, "nokmem"))
5678 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5679 }
5680 return 0;
5681}
5682__setup("cgroup.memory=", cgroup_memory);
11092087 5683
2d11085e 5684/*
1081312f
MH
5685 * subsys_initcall() for memory controller.
5686 *
5687 * Some parts like hotcpu_notifier() have to be initialized from this context
5688 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5689 * everything that doesn't depend on a specific mem_cgroup structure should
5690 * be initialized from here.
2d11085e
MH
5691 */
5692static int __init mem_cgroup_init(void)
5693{
95a045f6
JW
5694 int cpu, node;
5695
2d11085e 5696 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5697
5698 for_each_possible_cpu(cpu)
5699 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5700 drain_local_stock);
5701
5702 for_each_node(node) {
5703 struct mem_cgroup_tree_per_node *rtpn;
5704 int zone;
5705
5706 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5707 node_online(node) ? node : NUMA_NO_NODE);
5708
5709 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5710 struct mem_cgroup_tree_per_zone *rtpz;
5711
5712 rtpz = &rtpn->rb_tree_per_zone[zone];
5713 rtpz->rb_root = RB_ROOT;
5714 spin_lock_init(&rtpz->lock);
5715 }
5716 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5717 }
5718
2d11085e
MH
5719 return 0;
5720}
5721subsys_initcall(mem_cgroup_init);
21afa38e
JW
5722
5723#ifdef CONFIG_MEMCG_SWAP
5724/**
5725 * mem_cgroup_swapout - transfer a memsw charge to swap
5726 * @page: page whose memsw charge to transfer
5727 * @entry: swap entry to move the charge to
5728 *
5729 * Transfer the memsw charge of @page to @entry.
5730 */
5731void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5732{
5733 struct mem_cgroup *memcg;
5734 unsigned short oldid;
5735
5736 VM_BUG_ON_PAGE(PageLRU(page), page);
5737 VM_BUG_ON_PAGE(page_count(page), page);
5738
7941d214 5739 if (!do_memsw_account())
21afa38e
JW
5740 return;
5741
5742 memcg = page->mem_cgroup;
5743
5744 /* Readahead page, never charged */
5745 if (!memcg)
5746 return;
5747
5748 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5749 VM_BUG_ON_PAGE(oldid, page);
5750 mem_cgroup_swap_statistics(memcg, true);
5751
5752 page->mem_cgroup = NULL;
5753
5754 if (!mem_cgroup_is_root(memcg))
5755 page_counter_uncharge(&memcg->memory, 1);
5756
ce9ce665
SAS
5757 /*
5758 * Interrupts should be disabled here because the caller holds the
5759 * mapping->tree_lock lock which is taken with interrupts-off. It is
5760 * important here to have the interrupts disabled because it is the
5761 * only synchronisation we have for udpating the per-CPU variables.
5762 */
5763 VM_BUG_ON(!irqs_disabled());
f627c2f5 5764 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5765 memcg_check_events(memcg, page);
5766}
5767
37e84351
VD
5768/*
5769 * mem_cgroup_try_charge_swap - try charging a swap entry
5770 * @page: page being added to swap
5771 * @entry: swap entry to charge
5772 *
5773 * Try to charge @entry to the memcg that @page belongs to.
5774 *
5775 * Returns 0 on success, -ENOMEM on failure.
5776 */
5777int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5778{
5779 struct mem_cgroup *memcg;
5780 struct page_counter *counter;
5781 unsigned short oldid;
5782
5783 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5784 return 0;
5785
5786 memcg = page->mem_cgroup;
5787
5788 /* Readahead page, never charged */
5789 if (!memcg)
5790 return 0;
5791
5792 if (!mem_cgroup_is_root(memcg) &&
5793 !page_counter_try_charge(&memcg->swap, 1, &counter))
5794 return -ENOMEM;
5795
5796 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5797 VM_BUG_ON_PAGE(oldid, page);
5798 mem_cgroup_swap_statistics(memcg, true);
5799
5800 css_get(&memcg->css);
5801 return 0;
5802}
5803
21afa38e
JW
5804/**
5805 * mem_cgroup_uncharge_swap - uncharge a swap entry
5806 * @entry: swap entry to uncharge
5807 *
37e84351 5808 * Drop the swap charge associated with @entry.
21afa38e
JW
5809 */
5810void mem_cgroup_uncharge_swap(swp_entry_t entry)
5811{
5812 struct mem_cgroup *memcg;
5813 unsigned short id;
5814
37e84351 5815 if (!do_swap_account)
21afa38e
JW
5816 return;
5817
5818 id = swap_cgroup_record(entry, 0);
5819 rcu_read_lock();
adbe427b 5820 memcg = mem_cgroup_from_id(id);
21afa38e 5821 if (memcg) {
37e84351
VD
5822 if (!mem_cgroup_is_root(memcg)) {
5823 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5824 page_counter_uncharge(&memcg->swap, 1);
5825 else
5826 page_counter_uncharge(&memcg->memsw, 1);
5827 }
21afa38e
JW
5828 mem_cgroup_swap_statistics(memcg, false);
5829 css_put(&memcg->css);
5830 }
5831 rcu_read_unlock();
5832}
5833
d8b38438
VD
5834long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5835{
5836 long nr_swap_pages = get_nr_swap_pages();
5837
5838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5839 return nr_swap_pages;
5840 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5841 nr_swap_pages = min_t(long, nr_swap_pages,
5842 READ_ONCE(memcg->swap.limit) -
5843 page_counter_read(&memcg->swap));
5844 return nr_swap_pages;
5845}
5846
5ccc5aba
VD
5847bool mem_cgroup_swap_full(struct page *page)
5848{
5849 struct mem_cgroup *memcg;
5850
5851 VM_BUG_ON_PAGE(!PageLocked(page), page);
5852
5853 if (vm_swap_full())
5854 return true;
5855 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5856 return false;
5857
5858 memcg = page->mem_cgroup;
5859 if (!memcg)
5860 return false;
5861
5862 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5863 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5864 return true;
5865
5866 return false;
5867}
5868
21afa38e
JW
5869/* for remember boot option*/
5870#ifdef CONFIG_MEMCG_SWAP_ENABLED
5871static int really_do_swap_account __initdata = 1;
5872#else
5873static int really_do_swap_account __initdata;
5874#endif
5875
5876static int __init enable_swap_account(char *s)
5877{
5878 if (!strcmp(s, "1"))
5879 really_do_swap_account = 1;
5880 else if (!strcmp(s, "0"))
5881 really_do_swap_account = 0;
5882 return 1;
5883}
5884__setup("swapaccount=", enable_swap_account);
5885
37e84351
VD
5886static u64 swap_current_read(struct cgroup_subsys_state *css,
5887 struct cftype *cft)
5888{
5889 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5890
5891 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5892}
5893
5894static int swap_max_show(struct seq_file *m, void *v)
5895{
5896 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5897 unsigned long max = READ_ONCE(memcg->swap.limit);
5898
5899 if (max == PAGE_COUNTER_MAX)
5900 seq_puts(m, "max\n");
5901 else
5902 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5903
5904 return 0;
5905}
5906
5907static ssize_t swap_max_write(struct kernfs_open_file *of,
5908 char *buf, size_t nbytes, loff_t off)
5909{
5910 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5911 unsigned long max;
5912 int err;
5913
5914 buf = strstrip(buf);
5915 err = page_counter_memparse(buf, "max", &max);
5916 if (err)
5917 return err;
5918
5919 mutex_lock(&memcg_limit_mutex);
5920 err = page_counter_limit(&memcg->swap, max);
5921 mutex_unlock(&memcg_limit_mutex);
5922 if (err)
5923 return err;
5924
5925 return nbytes;
5926}
5927
5928static struct cftype swap_files[] = {
5929 {
5930 .name = "swap.current",
5931 .flags = CFTYPE_NOT_ON_ROOT,
5932 .read_u64 = swap_current_read,
5933 },
5934 {
5935 .name = "swap.max",
5936 .flags = CFTYPE_NOT_ON_ROOT,
5937 .seq_show = swap_max_show,
5938 .write = swap_max_write,
5939 },
5940 { } /* terminate */
5941};
5942
21afa38e
JW
5943static struct cftype memsw_cgroup_files[] = {
5944 {
5945 .name = "memsw.usage_in_bytes",
5946 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5947 .read_u64 = mem_cgroup_read_u64,
5948 },
5949 {
5950 .name = "memsw.max_usage_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5952 .write = mem_cgroup_reset,
5953 .read_u64 = mem_cgroup_read_u64,
5954 },
5955 {
5956 .name = "memsw.limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5958 .write = mem_cgroup_write,
5959 .read_u64 = mem_cgroup_read_u64,
5960 },
5961 {
5962 .name = "memsw.failcnt",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5964 .write = mem_cgroup_reset,
5965 .read_u64 = mem_cgroup_read_u64,
5966 },
5967 { }, /* terminate */
5968};
5969
5970static int __init mem_cgroup_swap_init(void)
5971{
5972 if (!mem_cgroup_disabled() && really_do_swap_account) {
5973 do_swap_account = 1;
37e84351
VD
5974 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5975 swap_files));
21afa38e
JW
5976 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5977 memsw_cgroup_files));
5978 }
5979 return 0;
5980}
5981subsys_initcall(mem_cgroup_swap_init);
5982
5983#endif /* CONFIG_MEMCG_SWAP */
This page took 3.17628 seconds and 5 git commands to generate.